This invention relates to discharge sources, in particular to methods, systems and devices for nanoparticle seeded short-wavelength discharge sources for X-Ray, XUV and EUV emissions that can be used in applications such as lithography, and as Hollow Cathode Plasma Discharge (HCPD) lamps, dense plasma focus (DPF) sources and other sources.
Pulsed electric discharges are well known sources of short-wavelength light, having applications in regions of the electromagnetic spectrum from the ultra-violet (UV, wavelength λ˜300 nm) to the x-ray range (λ<1 nm). However, there is a need for stable, long-life light sources in the EUV region of the spectrum, λ=10 to 50 nm), particularly for EUV lithography (EUVL).
EUVL is expected to succeed Deep UV lithography technology for the production of silicon-based computer chips, at and beyond the 35 nm node. This technology is expected to take over fabrication in the 2007-2009 time frame. The stepper machines that print these chips are expected to cost $20-40 M each, and, in this time frame, anticipated sales of 200-300 units/year are expected, providing the three major stepper manufacturing companies, ASML (Netherlands & USA), Nikon and Canon (Japan), with a new $100 B/year market. The light sources for these steppers, are currently required to provide greater than 100 W of ‘clean power’ and can account for up to 20% of this total market. A source of sufficient power is identified as the principal problem area in the ITRS (SEMATECH) Roadmap for the development of EUVL. The roadmap has been modified periodically over the years to take into account the required increase in wafer throughput, larger (300 mm) wafers, and higher Cost of Ownership (CoO), and the power of the source demanded has progressively increased. λ Currently the total required emitted power within a solid angle of 2λ, from a source of <1 mm in size within a 2% bandwidth at a wavelength of 13.5 nm, is 400 to 1000 W. This large amount of power is the major challenge for companies developing the light sources.
There are two primary types of light sources being developed, those that depend on electrical discharge plasma, and those that use a laser-plasma source. Both approaches operates at frequencies in excess of 6 kHz, with pulse-to-pulse stability of approximately 1% . They are also required to be capable of long term operation (up time >95%), and ‘clean’ operation. By ‘clean’ operation we mean ‘debris-free’ or protected from the effects of particulate emission and plasma ions emanating from the source.
Both laser plasmas and discharge plasmas can produce high velocity particulate emission or ‘projectiles’ that will damage the expensive, precision-coated EUV collection mirrors that are in direct line-of-sight of the source. In laser plasmas, this particulate debris can originate from solid target sources, or close-proximity nozzles used to inject gaseous targets. In discharge sources the debris originates from the electrodes or from insulative materials close by. The plasma ions are, of coarse, inherent to the plasmas themselves. They need to be stopped from sputtering (ablating) the collection mirrors. Several techniques have been devised to stop the sputtering, including Repeller Field approach disclosed in U.S. Pat. No. 6,377,651 issued to Richardson, et al. on Apr. 23, 2002, which is incorporated by reference.
Companies developing discharge plasmas (DP) include Philips (Hollow-Cathode Plasma Discharge), Xtreme Technologies (HC Z-pinch), Cymer (Dense Plasma Focus), Plex LLC (star discharge), Gygaphoton (capillary discharge pinch plasma). Most of these companies are focusing their R&D activities on Xenon-based plasmas. Although the use of Xenon mitigates the debris problem to some extent, the principal drawback is its low conversion efficiency into in-band, 13.5 nm EUV light. Both DP and LP sources have been limited to conversion efficiencies (CE) of 0.5 to 0.7%. The highest known CE is 0.95%. Moreover, there are now solid, atomic physics, reason to believe that the CE of Xenon will not improve much beyond these values.
These low CE's have adverse implications for both discharge plasma and laser plasma sources. For the laser plasma it means the use of a laser system having a power in excess 40 k W, beyond known technical capabilities and possibly prohibitively expensive. For discharge plasma sources, the low CE poses extreme problems with heat removal from the source and very large electrical power requirements, approaching 1 MW.
One approach for laser plasma sources uses microscopic, mass-limited, spherical targets composed of several materials including a small amount of tin. Tin is a metal and can, in principal pose a more serious debris problem as an EUV source. However, it has the advantage that much higher CE's are possible. CE's of 1-2% have been demonstrated and there is reason to believe higher values are possible.
The possible advantages of introducing tin into the discharge region of the source have been recognized and cursory tests completed. Use of electrodes made of tin-containing material, or using some method (thermal evaporation, or electron-beam heating) to introduce a tin vapor into the discharge has been disclosed. It is believed that the results have been disappointing for one or more reasons including, creation of large amounts of debris, instabilities in the discharge, and difficulties foreseen in scaling to the required powers. These difficulties originate from the inability to inject into the discharge a precisely known quantity of tin atoms, the minimum quantity that is required for the discharge to radiate 13.5 nm light efficiently.
The present invention advances the art by inclusion of method, apparatus and system that generates a cloud of nano-droplets for use as an X-ray, XUV, EUV, and EUV lithography light source and as a seed for a hollow cathode plasma discharge (HCPD) and dense plasma focus (DPF) source. The principle is the rapid transformation of a micro-target of mixed materials into a cloud of nano-droplets or nanoparticles. Incorporation of the nanoparticle generator into a plasma discharge light source, converts the plasma into a nanoparticle dominated plasma that produces a short-wavelength light and improves efficiency.
The first objective of the present invention is to provide a method, apparatus and system for generating a cloud of nano-droplets or nanoparticles from the rapid transformation of a microparticle mixed materials.
The second objective of the present invention is to provide a method, apparatus and system for generating a cloud of nano-droplets or nanoparticles for use as an X-ray light source.
The third objective of the present invention is to provide a method, apparatus and system for generating a cloud of nano-droplets or nanoparticles for use as an XUV light source.
The fourth objective of this invention is to provide a method, apparatus and system for generating a cloud of nano-droplets or nanoparticles for use as an EUV light source.
The fifth objective of the present invention is to provide a method, apparatus and system for generating a cloud of nano-droplets or nanoparticles for use in EUV lithography.
The sixth objective of the present invention is to provide a method, apparatus and system for generating a cloud of nano-droplets or nanoparticles as a seed for a Hollow Cathode
The seventh objective of the present invention is to provide a method, apparatus and system for generating a cloud of nano-droplets or nanoparticles as a seed for a dense plasma focus (DPF) source.
The method, apparatus and system of the present invention generates a cloud of nano-droplets for use as an X-ray, XUV, EUV, and EUV lithography light source and as a seed for a hollow cathode plasma discharge (HCPD), Star discharge (SD) and dense plasma focus (DPF) source, and other sources. The principle is the rapid transformation of a micro-target of mixed materials into a cloud of nano-droplets or nanoparticles. The micro-target includes at least two materials, an evaporant and a nanoparticle material.
The method, apparatus and system includes a dispenser for dispensing a target stream of microparticles, a light source and a focus lens for focusing the light source on the target stream. The target stream of dispensed microparticles, or micro-droplets, are arranged to pass through the focus of the lens that focuses the light source onto the target stream. The energy absorbed from the light source heats the material of the microparticle, generating nano-droplets. Incorporation of the nanoparticle generator into a plasma discharge light source, converts the plasma into a nanoparticle dominated plasma that produces a short-wavelength light and improves efficiency. With the integration of the novel nanoparticle generator, these discharge lamps would work the same way they do now with a gaseous medium, with the exception that the gaseous medium would be modified, and seeded with a known number of nanoparticles of elements.
Further objects and advantages of this invention will be apparent from the following detailed description of the presently preferred embodiments which are illustrated schematically in the accompanying drawings.
Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its applications to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.
The present method, apparatus and system generates a cloud of nano-droplets for use as an X-ray, XUV, EUV, and EUV lithography light source and as a seed for a hollow cathode plasma discharge (HCPD) and dense plasma focus (DPF) source, Star Plasma Device or any other electrical discharge plasma source. The principle is the rapid transformation of a micro-target of mixed materials into a cloud of nano-droplets or nanoparticles. The micro-target includes at least two materials that are categorized as either an evaporant or a nanoparticle material (NPM). Typical NPM's might be any metal, particularly metals with low melting points (such as Copper, Zinc, Lead, Tin, Silver, Antimony, Gold, Aluminum Lithium, etc or a non metal with a relatively high melting point. A list of some possible NPM's is included in Table 1.
Typical evaporants might be any liquid such as water, alcohol, methane etc., any liquid with a low boiling point, and may include any low boiling point material that is chemically attached to the NPM (such as Chlorine, Fluorine, Oxides, and the like). The evaporant and the nanoparticle material forms a, microparticle which is used interchangeably with or micro-droplet, and micro-target.
In
As shown in
Only small laser pulse energies, as low as approximately 1 micro Joule of laser energy, is required for super-heating the micro-target. For instance, for an approximately 30 micron diameter micro-target, the laser pulse energy can be a few micro joules. When the evaporant material boils into a vapor 120, it will start to explode the microparticle. When the temperature of the microparticle material is above the melting point, then the atoms of this microparticle material will coalesce into clusters or small aerosols, nanoparticles 130, while the vapors 120 of the evaporant material will be driven off as gases 125 as shown in
Control of the irradiation conditions (laser pulse energy, pulse duration, wavelength, focal spot size), the particle conditions (size, material composition), and the exposure chamber environment, provides control over the size and size-distribution of the nanoparticles created. The size of the resultant nanoparticle may be determined by commonly known techniques such as simple witness plate detection techniques.
In
The laser required to convert the microparticles into nanoparticles is not required to be sophisticated. A mall, diode-pumped Nd:YAG laser with a fiber optic output producing a few millijoules of energy is sufficient. The fiber optic coupler, the focusing element 220 and the droplet dispenser 210 can be fabricated to fit into a cylindrical assembly having a diameter of approximately 1 mm or less. As shown in
In an embodiment, the nanoparticle system of the present invention is integrated with plasma devices and electrical discharge plasmas, particularly, though not limited to, those that are used as X-ray, XUV or EUV light sources. A discharge lamp is a leading candidate as an approximately 13.5 nm light source for EUV lithography. X-ray, XUV or EUV emitting discharge lamps currently use a gas as the initial plasma medium. The spectral characteristics of the light source are therefore limited to the spectral characteristics that can be afforded those gases that can be used in the discharge. This limits the accessibility of specific wavelengths which would result in improved efficiency. For example, the EUVL requires a very bright light at approximately 13.5 nm with an approximately 2% bandwidth (approximately 0.27 nm).
Xenon is one gas that provides emission at this wavelength in a discharge plasma. The emission primarily comes from excited states of Xe10+. However, the efficiency of light generation at this wavelength in Xenon is extremely small, approximately 0.7%. Were the wavelength to be approximately 11.0 nm, the preferred wavelength for Xenon, the efficiency would be ten times higher. This is a general problem with high power short-wavelength light sources. The limited number of atomic gases in the Mendeleyev Table allow only a small number of discrete wavelengths to be generated with good efficiency. The method, system and device of the present invention expands the range of selectivity, by increasing the number of materials that can be used in a discharge light source, essentially to include nearly all of the elements in the periodic table.
With the integration of the novel nanoparticle generator, these discharge lamps would work the same way they do now with a gaseous medium, with the exception that the gaseous medium would be modified, and seeded with a known number of nanoparticles. For instance, in the case of the approximately 13.5 nm light source for EUVL, discharge light sources would be modified to operate with gases seeded with a predetermined number of Tin nanoparticles. In-band conversion efficiencies of several percent are then possible. Moreover, with an optimized conversion efficiency, the number and size of nanoparticles generated from each droplet can be adjusted so that all nanoparticles of tin (or other materials) are completely ionized, thereby minimizing the associated debris.
The nanoparticle generator is sufficiently small and rugged and can therefore be incorporated in different regions of a conventional plasma discharge design. The configuration and placement of the nanoparticle generator within a particular plasma discharge design depends on a number of factors, including the lamps overall design and operation, thermal considerations, and the plasma environment. It may be advantageous to protect the components of the nanoparticle generator from the effects of electrode debris and plasma erosion.
While there are many possible designs of discharge plasma light sources that the nanoparticle generator of the present invention can be incorporated into, the nanoparticle generator is described for use with a hollow cathode discharge plasma source and a dense plasma focus source for purpose of illustration and discussion, not of limitation.
The Hollow Cathode Plasma Discharge (HCPD) lamp design 400 of
The Xenon gas HCPD plasma is created between two electrodes, the anode 420 and the cathode 430, in a static atmosphere of low pressure Xe. This gas is first pre-ionized by partially ionizing the gas between a pre-ionizing planar electrode 405 shown in
The conversion of this plasma lamp to a nanoparticle dominated plasma could be effected by one of the examples illustrated in
Another plasma discharge light source that is improved by incorporation of a seeded nanoparticle generator is the Dense Plasma Focus (DPF) discharge as shown in
In
The method, apparatus and system of the present generates a cloud of nano-droplets for use as an X-ray, XUV, EUV, and EUV lithography light source and as a seed for a hollow cathode plasma discharge (HCPD) and dense plasma focus (DPF) source. The principle is the rapid transformation of a microparticle of mixed materials into a cloud of nano-droplets or nanoparticles. The microparticle includes at least two materials, an evaporant and a nanoparticle material.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
This invention claims the benefit of U.S. Provisional Patent Application Ser. No. 60/517,523 filed Nov. 5, 2003, and this invention is a Continuation-In-Part of U.S. application Ser. No. 10/082,658 filed Oct. 19, 2001, now U.S. Pat. No. 6,865,255, which is a continuation-in-part of U.S. application Ser. No. 09/881,620 filed Jun. 14, 2001, now U.S. Pat. No. 6,831,963 that further claims the benefit of U.S. Provisional application No. 60/242,102 filed Oct. 20, 2000, and which is a Continuation-In-Part of U.S. application Ser. No. 09/685,291 filed Oct. 10, 2000, now U.S. Pat. No. 6,377,651 that further claims the benefit of U.S. Provisional Application No. 60/158,723 filed Oct. 11, 1999, and this invention is a Continuation-In-Part of U.S. application Ser. No. 10/795,814 filed Mar. 8, 2004, now U.S. Pat. No. 6,862,339.
Number | Name | Date | Kind |
---|---|---|---|
4182574 | Quillfeldt | Jan 1980 | A |
4723262 | Noda et al. | Feb 1988 | A |
5459771 | Richardson | Oct 1995 | A |
5577091 | Richardson | Nov 1996 | A |
5577092 | Richardson | Nov 1996 | A |
5991360 | Matsui et al. | Nov 1999 | A |
6285743 | Kondo | Sep 2001 | B1 |
6304630 | Hubertus | Oct 2001 | B1 |
6307913 | Foster et al. | Oct 2001 | B1 |
6377651 | Richardson et al. | Apr 2002 | B1 |
6493423 | Josephus | Dec 2002 | B1 |
20020015473 | Hertz | Feb 2002 | A1 |
20020044629 | Hertz | Apr 2002 | A1 |
20020070353 | Richardson | Jun 2002 | A1 |
20020090054 | Sogard | Jul 2002 | A1 |
20020141536 | Richardson | Oct 2002 | A1 |
20030108155 | Wilkins | Jun 2003 | A1 |
20030223544 | Murakami | Dec 2003 | A1 |
20040170252 | Richardson | Sep 2004 | A1 |
20040208286 | Richardson | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2003043198 | Feb 2003 | JP |
Number | Date | Country | |
---|---|---|---|
60517523 | Nov 2003 | US | |
60242102 | Oct 2000 | US | |
60158723 | Oct 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10795814 | Mar 2004 | US |
Child | 10982380 | US | |
Parent | 10082658 | Oct 2001 | US |
Child | 10795814 | US | |
Parent | 09881620 | Jun 2001 | US |
Child | 10082658 | US | |
Parent | 09685291 | Oct 2000 | US |
Child | 09881620 | US |