OLIGONUCLEOTIDE COMPOSITIONS AND METHODS OF USE THEREOF

Abstract
Among other things, the present disclosure provides designed oligonucleotides, compositions, and methods of use thereof. In some embodiments, the present disclosure provides technologies useful for reducing levels of transcripts. In some embodiments, the present disclosure provides technologies useful for modulating transcript splicing. In some embodiments, provided technologies can alter splicing of a dystrophin (DMD) transcript. In some embodiments, the present disclosure provides methods for treating diseases, such as Duchenne muscular dystrophy, Becker's muscular dystrophy, etc.
Description
BACKGROUND

Oligonucleotides are useful in therapeutic, diagnostic, research and nanomaterials applications. The use of naturally occurring nucleic acids (e.g., unmodified DNA or RNA) for therapeutics can be limited, for example, because of their instability against extra- and intracellular nucleases and/or their poor cell penetration and distribution. There is a need for new and improved oligonucleotides and oligonucleotide compositions, such as, e.g., new oligonucleotides and oligonucleotide compositions capable of modulating exon skipping of Dystrophin for treatment of muscular dystrophy.


SUMMARY

Among other things, the present disclosure encompasses the recognition that structural elements of oligonucleotides, such as base sequence, chemical modifications (e.g., modifications of sugar, base, and/or internucleotidic linkages, and patterns thereof), and/or stereochemistry (e.g., stereochemistry of backbone chiral centers (chiral internucleotidic linkages), and/or patterns thereof), can have significant impact on oligonucleotide properties, e.g., activities, toxicities, e.g., as may be mediated by protein binding characteristics, stability, splicing-altering capabilities, etc. In some embodiments, the present disclosure demonstrates that oligonucleotide compositions comprising oligonucleotides with controlled structural elements, e.g., controlled chemical modification and/or controlled backbone stereochemistry patterns, provide unexpected properties, including but not limited to certain activities, toxicities, etc. In some embodiments, the present disclosure demonstrates that oligonucleotide properties, e.g., activities, toxicities, etc., can be modulated by chemical modifications (e.g., modifications of sugars, bases, internucleotidic linkages, etc.), chiral structures (e.g., stereochemistry of chiral internucleotidic linkages and patterns thereof, etc.), and/or combinations thereof.


In some embodiments, the present disclosure provides an oligonucleotide or an oligonucleotide composition. In some embodiments, an oligonucleotide or an oligonucleotide composition is a DMD oligonucleotide or a DMD oligonucleotide composition. In some embodiments, a DMD oligonucleotide or a DMD oligonucleotide composition is an oligonucleotide or an oligonucleotide composition capable of modulating skipping of one or more exons of the target gene Dystrophin (DMD). In some embodiments, a DMD oligonucleotide or a DMD oligonucleotide composition is useful for treatment of muscular dystrophy. In some embodiments, an oligonucleotide or oligonucleotide composition is an oligonucleotide or oligonucleotide composition which comprises a non-negatively charged internucleotidic linkage. In some embodiments, an oligonucleotide or oligonucleotide composition which comprises a non-negatively charged internucleotidic linkage is capable of modulating the expression, level and/or activity of a gene target or a gene product thereof, including but not limited to, increasing or decreasing the expression, level and/or activity of a gene target or gene product thereof via any mechanism, including but not limited to: an RNase H-dependent mechanism, steric hindrance, RNA interference, modulation of skipping of one or more exon, etc. In some embodiments, the present disclosure pertains to an oligonucleotide or oligonucleotide composition which comprises a non-negatively charged internucleotidic linkage, in combination with any other structure or chemical moiety described herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide or DMD oligonucleotide composition which comprises a non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure provides technologies related to an oligonucleotide or an oligonucleotide composition for reducing levels of a transcript and/or a protein encoded thereby. In some embodiments, as demonstrated by example data described herein, provided technologies are particularly useful for reducing levels of mRNA and/or proteins encoded thereby.


In some embodiments, the present disclosure provides technologies, e.g., oligonucleotides, compositions and methods, etc., for altering gene expression, levels and/or splicing of transcripts. In some embodiments, a transcript is Dystrophin (DMD). Splicing of a transcript, such as pre-mRNA, is an essential step for the transcript to perform its biological functions in many higher eukaryotes. In some embodiments, the present disclosure recognizes that targeting splicing, especially through compositions comprising oligonucleotides having base sequences and/or chemical modifications and/or stereochemistry patterns (and/or patterns thereof) described in this disclosure, can effectively correct disease-associated mutations and/or aberrant splicing, and/or introduce and/or enhance beneficial splicing that lead to desired products, e.g., mRNA, proteins, etc. which can repair, restore, or add new desired biological functions. e.g., one or more functions of Dystrophin.


In some embodiments, the present disclosure provides compositions and methods for altering splicing of DMD transcripts, wherein altered splicing deletes or compensates for an exon(s) comprising a disease-associated mutation.


For example, in some embodiments, a Dystrophin gene can comprise an exon comprising one or more mutations associated with a disease, e.g., muscular dystrophy (including but not limited to Duchenne (Duchenne's) muscular dystrophy (DMD) and Becker (Becker's) muscular dystrophy (BMD)). In some embodiments, a disease-associated exon comprises a mutation (e.g., a missense mutation, a frameshift mutation, a nonsense mutation, a premature stop codon, etc.) in an exon. In some embodiments, the present disclosure provides compositions and methods for effectively skipping a disease-associated Dystrophin exon(s) and/or a different or an adjacent exon(s), while maintaining or restoring the reading frame so that a shorter (e.g., internally truncated) but partially functional dystrophin can be produced. A person having ordinary skill in the art appreciates that provided technologies (oligonucleotides, compositions, methods, etc.) can also be utilized for skipping of other exons, for example, those described in WO 2017/062862 and incorporated herein by reference, in accordance with the present disclosure to treat a disease and/or condition.


Among other things, the present disclosure demonstrates that chemical modifications and/or stereochemistry can be used to modulate transcript splicing by oligonucleotide compositions. In some embodiments, the present disclosure provides combinations of chemical modifications and stereochemistry to improve properties of oligonucleotides, e.g., their capabilities to alter splicing of transcripts. In some embodiments, the present disclosure provides chirally controlled oligonucleotide compositions that, when compared to a reference condition (e.g., absence of the composition, presence of a reference composition (e.g., a stereorandom composition of oligonucleotides having the same constitution (as understood by those skilled in the art, unless otherwise indicated constitution generally refers to the description of the identity and connectivity (and corresponding bond multiplicities) of the atoms in a molecular entity but omitting any distinction arising from their spatial arrangement), a different chirally controlled oligonucleotide composition, etc.), combinations thereof, etc.), provide altered splicing that can deliver one or more desired biological effects, for example, increase production of desired proteins, knockdown of a gene by producing mRNA with frameshift mutations and/or premature termination codons, knockdown of a gene expressing a mRNA with a frameshift mutation and/or premature termination codon, etc. In some embodiments, compared to a reference condition, provided chirally controlled oligonucleotide compositions are surprisingly effective. In some embodiments, desired biological effects (e.g., as measured by increased levels of desired mRNA, proteins, etc., decreased levels of undesired mRNA, proteins, etc.) can be enhanced by more than 5, 10, 15, 20, 25, 30, 40, 50, or 100 fold.


The present disclosure recognizes challenges of providing low toxicity oligonucleotide compositions and methods of use thereof. In some embodiments, the present disclosure provides oligonucleotide compositions and methods with reduced toxicity. In some embodiments, the present disclosure provides oligonucleotide compositions and methods with reduced immune responses. In some embodiments, the present disclosure recognizes that various toxicities induced by oligonucleotides are related to cytokine and/or complement activation. In some embodiments, the present disclosure provides oligonucleotide compositions and methods with reduced cytokine and/or complement activation. In some embodiments, the present disclosure provides oligonucleotide compositions and methods with reduced complement activation via the alternative pathway. In some embodiments, the present disclosure provides oligonucleotide compositions and methods with reduced complement activation via the classical pathway. In some embodiments, the present disclosure provides oligonucleotide compositions and methods with reduced drug-induced vascular injury. In some embodiments, the present disclosure provides oligonucleotide compositions and methods with reduced injection site inflammation. In some embodiments, reduced toxicity can be evaluated through one or more assays widely known to and practiced by a person having ordinary skill in the art, e.g., evaluation of levels of complete activation product, protein binding, etc.


In some embodiments, the present disclosure provides oligonucleotides with enhanced antagonism of hTLR9 activity. In some embodiments, certain diseases, e.g., DMD, are associated with inflammation in, e.g., muscle tissues. In some embodiments, provided technologies (e.g., oligonucleotides, compositions, methods, etc.) provides both enhanced activities (e.g., exon-skipping activities) and hTLR9 antagonist activities which can be beneficial to one or more conditions and/or diseases associated with inflammation. In some embodiments, provided oligonucleotides and/or compositions thereof provides both exon-skipping capabilities and decreased levels of toxicity and/or inflammation. In some embodiments, the present disclosure provides an oligonucleotide which comprises one or more non-negatively charged internucleotidic linkages, wherein the oligonucleotide agonizes TLR9 activity less than another oligonucleotide which does not comprise a non-negatively charged internucleotidic linkage or which comprises fewer non-negatively charged internucleotidic linkages and which is otherwise identical. In some embodiments, the present disclosure provides an oligonucleotide which comprises one or more non-negatively charged internucleotidic linkages, wherein the oligonucleotide agonizes TLR9 activity less than an otherwise identical oligonucleotide which does not comprise a non-negatively charged internucleotidic linkage or which comprises fewer non-negatively charged internucleotidic linkages. In some embodiments, the present disclosure pertains to an oligonucleotide comprising at least one non-negatively charged internucleotidic linkage. In some embodiments, the non-negatively charged internucleotidic is selected from: n001, n002, n003 n004, n005, n006, n007 n008, n009, or n010, or a chirally controlled stereoisomer of n001 n002, n003, n004, n005, n006, n007, n008, n009, or n010. In some embodiments, the present disclosure pertains to an oligonucleotide which comprises at least two non-negatively charged internucleotidic linkages, wherein the linkages are different from each other. In some embodiments, the present disclosure pertains to an oligonucleotide comprising a CpG motif, wherein at least one internucleotidic linkage in the CpG (e.g., the p in CpG) or immediately upstream of the CpG (toward the 5′ end of the oligonucleotide) or immediately downstream of the CpG (toward the 3′ end of the oligonucleotide) is a non-negatively charged internucleotidic linkage. In some embodiments, TLR9 is a human TLR9. In some embodiments, TLR9 is a mouse TLR9.


In some embodiments, the present disclosure demonstrates that oligonucleotide properties, e.g., activities, toxicities, etc., can be modulated through chemical modifications. In some embodiments, the present disclosure provides an oligonucleotide composition comprising a plurality of oligonucleotides which have a common base sequence, and comprise one or more modified internucleotidic linkages (or “non-natural internucleotidic linkages”, linkages that are not but can be utilized in place of a natural phosphate internucleotidic linkage (—OP(O)(OH)O—, which may exist as a salt form (—OP(O)(O)O—) at a physiological pH) found in natural DNA and RNA), one or more modified sugar moieties, and/or one or more natural phosphate linkages. In some embodiments, provided oligonucleotides may comprise two or more types of modified internucleotidic linkages. In some embodiments, a provided oligonucleotide comprises a non-negatively charged internucleotidic linkage. In some embodiments, a non-negatively charged internucleotidic linkage is a neutral internucleotidic linkage. In some embodiments, a neutral internucleotidic linkage comprises a triazole, alkyne, or guanidine (e.g., cyclic guanidine) moiety. Such moieties are optionally substituted. In some embodiments, a provided oligonucleotide comprises a neutral internucleotidic linkage and another internucleotidic linkage which is not a neutral backbone. In some embodiments, a provided oligonucleotide comprises a neutral internucleotidic linkage and a phosphorothioate internucleotidic linkage. In some embodiments, provided oligonucleotide compositions comprising a plurality of oligonucleotides are chirally controlled and level of the plurality of oligonucleotides in the composition is controlled or pre-determined, and oligonucleotides of the plurality share a common stereochemistry configuration at one or more chiral internucleotidic linkages. For example, in some embodiments, oligonucleotides of a plurality share a common stereochemistry configuration at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 or more chiral internucleotidic linkages, each of which is independently Rp or Sp; in some embodiments, oligonucleotides of a plurality share a common stereochemistry configuration at each chiral internucleotidic linkages. In some embodiments, a chiral internucleotidic linkage where a controlled level of oligonucleotides of a composition share a common stereochemistry configuration (independently in the Rp or Sp configuration) is referred to as a chirally controlled internucleotidic linkage.


In some embodiments, a modified internucleotidic linkage is a non-negatively charged (neutral or cationic) internucleotidic linkage in that at a pH, (e.g., human physiological pH (7.4), pH of a delivery site (e.g., an organelle, cell, tissue, organ, organism, etc.), it largely (e.g., at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90° %, etc.; in some embodiments, at least 30%; in some embodiments, at least 40%; in some embodiments, at least 50%; in some embodiments, at least 60%; in some embodiments, at least 70%; in some embodiments, at least 80%; in some embodiments, at least 90%; in some embodiments, at least 99%; etc.) exists as a neutral or cationic form (as compared to an anionic form (e.g., —O—P(O)(O)—O— (the anionic form of natural phosphate linkage), —O—P(O)(S)—O— (the anionic form of phosphorothioate linkage), etc.)), respectively. In some embodiments, a modified internucleotidic linkage is a neutral internucleotidic linkage in that at a pH, it largely exists as a neutral form. In some embodiments, a modified internucleotidic linkage is a cationic internucleotidic linkage in that at a pH, it largely exists as a cationic form. In some embodiments, a pH is human physiological pH (˜7.4). In some embodiments, a modified internucleotidic linkage is a neutral internucleotidic linkage in that at pH 7.4 in a water solution, at least 90% of the internucleotidic linkage exists as its neutral form. In some embodiments, a modified internucleotidic linkage is a neutral internucleotidic linkage in that in a water solution of the oligonucleotide, at least 50%, 60%, 70%, 80%, 90%, 95%, or 99% of the internucleotidic linkage exists in its neutral form. In some embodiments, the percentage is at least 90%. In some embodiments, the percentage is at least 95%. In some embodiments, the percentage is at least 99%. In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, when in its neutral form has no moiety with a pKa that is less than 8, 9, 10, 11, 12, 13, or 14. In some embodiments, pKa of an internucleotidic linkage in the present disclosure can be represented by pKa of CH3— the internucleotidic linkage-CH3 (i.e., replacing the two nucleoside units connected by the internucleotidic linkage with two —CH3 groups). Without wishing to be bound by any particular theory, in at least some cases, a neutral internucleotidic linkage in an oligonucleotide can provide improved properties and/or activities, e.g., improved delivery, improved resistance to exonucleases and endonucleases, improved cellular uptake, improved endosomal escape and/or improved nuclear uptake, etc., compared to a comparable nucleic acid which does not comprises a neutral internucleotidic linkage.


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of e.g., of formula I-n-1, I-n-2, I-n-3, I-n-4, H, II-a-1, II-a-2, I-b-1, II-b-2, I-c-1, II-c-2, II-d-1, II-d-2, etc. In some embodiments, a non-negatively charged internucleotidic linkage comprises a triazole or alkyne moiety. In some embodiments, a non-negatively charged internucleotidic linkage comprises a guanidine moiety. In some embodiments, a non-negatively charged internucleotidic linkage comprises a cyclic guanidine moiety. In some embodiments, a modified internucleotidic linkage comprising a cyclic guanidine moiety has the structure of:




embedded image


In some embodiments, a neutral internucleotidic linkage comprising a cyclic guanidine moiety is chirally controlled. In some embodiments, the present disclosure pertains to a composition comprising an oligonucleotide comprising at least one neutral internucleotidic linkage and at least one phosphorothioate internucleotidic linkage.


In some embodiments, a non-negatively charged internucleotidic linkage is n001, n002, n003, n004, n005, n006, n007, or n008. In some embodiments, a non-negatively charged internucleotidic linkage is chirally controlled, e.g., n001R, n002R, n003R, n004R, n005R, n006R, n007R, n008R, n009R n001S, n002S, n003S, n004S, n005S, n006S, n007S, n008S, n009S, etc.


In some embodiments, the present disclosure pertains to a composition comprising an oligonucleotide comprising at least one neutral internucleotidic linkage and at least one phosphorothioate internucleotidic linkage, wherein the phosphorothioate internucleotidic linkage is a chirally controlled internucleotidic linkage in the Sp configuration.


In some embodiments, the present disclosure pertains to a composition comprising an oligonucleotide comprising at least one neutral internucleotidic linkage and at least one phosphorothioate internucleotidic linkage, wherein the phosphorothioate internucleotidic linkage is a chirally controlled internucleotidic linkage in the Rp configuration.


In some embodiments, the present disclosure pertains to a composition comprising an oligonucleotide comprising at least one neutral internucleotidic linkage selected from a neutral internucleotidic linkage comprising an optionally substituted triazolyl group, a neutral internucleotidic linkage comprising an optionally substituted alkynyl group, and a neutral internucleotidic linkage comprising a moiety




embedded image


and at least one phosphorothioate internucleotidic linkage. In some embodiments, the present disclosure pertains to a composition comprising an oligonucleotide comprising at least one neutral internucleotidic linkage selected from a neutral internucleotidic linkage comprising an optionally substituted triazolyl group, a neutral internucleotidic linkage comprising an optionally substituted alkynyl group, and a neutral internucleotidic linkage comprising a Tmg group




embedded image


and at least one phosphorothioate internucleotidic linkage. In some embodiments, an oligonucleotide comprises at least one non-negatively charged internucleotidic linkage and at least one phosphorothioate internucleotidic linkage. In some embodiments, the non-negatively charged internucleotidic linkage is n001. In some embodiments, the non-negatively charged internucleotidic linkage and the phosphorothioate internucleotidic linkage are independently chirally controlled. In some embodiments, each of the non-negatively charged internucleotidic linkage and the phosphorothioate internucleotidic linkages are independently chirally controlled.


In some embodiments, the present disclosure pertains to a composition comprising an oligonucleotide comprising at least one neutral internucleotidic linkage selected from a neutral internucleotidic linkage comprising an optionally substituted triazolyl group, a neutral internucleotidic linkage comprising an optionally substituted alkynyl group, and a neutral internucleotidic linkage comprising a Tmg group, and at least one phosphorothioate, wherein the phosphorothioate is a chirally controlled internucleotidic linkage in the Sp configuration.


In some embodiments, the present disclosure pertains to a composition comprising an oligonucleotide comprising at least one neutral internucleotidic linkage selected from a neutral internucleotidic linkage comprising an optionally substituted triazolyl group, a neutral internucleotidic linkage comprising an optionally substituted alkynyl group, and a neutral internucleotidic linkage comprising a Tmg group, and at least one phosphorothioate, wherein the phosphorothioate is a chirally controlled internucleotidic linkage in the Rp configuration.


Various types of internucleotidic linkages differ in properties. Without wishing to be bound by any theory, the present disclosure notes that a natural phosphate linkage (phosphodiester internucleotidic linkage) is anionic and may be unstable when used by itself without other chemical modifications in vivo; a phosphorothioate internucleotidic linkage is anionic, generally more stable in vivo than a natural phosphate linkage, and generally more hydrophobic; a neutral internucleotidic linkage such as one exemplified in the present disclosure comprising a cyclic guanidine moiety is neutral at physiological pH, can be more stable in vivo than a natural phosphate linkage, and more hydrophobic.


In some embodiments, an internucleotidic linkage (e.g., a non-negatively charged internucleotidic linkage, a chirally controlled non-negatively charged internucleotidic linkage, etc.) is neutral at physiological pH, chirally controlled, stable in vivo, hydrophobic, and may increase endosomal escape.


In some embodiments, an oligonucleotide or oligonucleotide composition is: a DMD oligonucleotide or oligonucleotide composition; an oligonucleotide or oligonucleotide composition comprising a non-negatively charged internucleotidic linkage; or a DMD oligonucleotide comprising a non-negatively charged internucleotidic linkage.


In some embodiments, an oligonucleotide has, as non-limiting examples, a wing-core-wing, wing-core, core-wing, wing-wing-core-wing-wing, wing-wing-core-wing, or wing-core-wing-wing structure (in some embodiments, a wing-wing comprises or consists of a first wing and a second wing, wherein the first wing is different than the second wing, and the first and second wings are different than the core). A wing or core can be defined by any structural elements and/or patterns and/or combinations thereof. In some embodiments, a wing and core is defined by nucleoside modifications, sugar modifications, and/or internucleotidic linkages, wherein a wing comprises a nucleoside modification, sugar modification and/or internucleotidic linkage and/or pattern and/or combination thereof, that the core region does not have, or vice versa. In some embodiments, oligonucleotides of the present disclosure comprise or consist of a 5′-end region, a middle region, and a 3′-end region. In some embodiments, a 5′-end region is a 5′-wing region. In some embodiments, a 5′-wing region is a 5′-end region. In some embodiments, a 3′-end region is a 3′-wing region. In some embodiments, a 3′-wing region is a 3′-end region. In some embodiments, a core region is a middle region.


In some embodiments, each wing region (or each of the 5′-end and 3′-end regions) independently comprises one or more modified phosphate linkages and no natural phosphate linkages, and the core region (the middle region) comprises one or more modified internucleotidic linkages and one or more natural phosphate linkages. In some embodiments, each wing region (or each of the 5′-end and 3′-end regions) independently comprises one or more natural phosphate linkages and optionally one or more modified internucleotidic linkages, and the core (or the middle region) comprises one or more modified internucleotidic linkages and optionally one or more natural phosphate linkages. In some embodiments, a wing (or a 5′-end or 3′-end region) comprises modified sugar moieties. In some embodiments, a modified internucleotidic linkage is a phosphorothioate internucleotidic linkage.


Among other things, the present disclosure encompasses the recognition that stereorandom oligonucleotide preparations contain a plurality of distinct chemical entities that differ from one another, e.g., in the stereochemical structure of individual backbone chiral centers within the oligonucleotide chain. Without control of stereochemistry of backbone chiral centers, stereorandom oligonucleotide preparations provide uncontrolled (or stereorandom) compositions comprising undetermined levels of oligonucleotide stereoisomers. Even though these stereoisomers may have the same base sequence and/or chemical modifications, they are different chemical entities at least due to their different backbone stereochemistry, and they can have, as demonstrated herein, different properties, e.g., activities, toxicities, distribution etc. Among other things, the present disclosure provides chirally controlled compositions that are or contain particular stereoisomers of oligonucleotides of interest; in contrast to chirally uncontrolled compositions, chirally controlled compositions comprise controlled levels of particular stereoisomers of oligonucleotides. In some embodiments, a particular stereoisomer may be defined, for example, by its base sequence, its pattern of backbone linkages, its pattern of backbone chiral centers, and pattern of backbone phosphorus modifications, etc. As is understood in the art, in some embodiments, base sequence may refer solely to the sequence of bases and/or to the identity and/or modification status of nucleoside residues (e.g., of sugar and/or base components, relative to standard naturally occurring nucleotides such as adenine, cytosine, guanosine, thymine, and uracil) in an oligonucleotide and/or to the hybridization character (i.e., the ability to hybridize with particular complementary residues) of such residues. In some embodiments, the present disclosure demonstrates that property improvements (e.g., improved activities, lower toxicities, etc.) achieved through inclusion and/or location of particular chiral structures within an oligonucleotide can be comparable to, or even better than those achieved through use of chemical modifications, e.g., particular backbone linkages, residue modifications, etc. (e.g., through use of certain types of modified phosphates [e.g., phosphorothioate, substituted phosphorothioate, etc.], sugar modifications [e.g., 2′-modifications, etc.], and/or base modifications [e.g., methylation, etc.]). In some embodiments, the present disclosure demonstrates that chirally controlled oligonucleotide compositions of oligonucleotides comprising certain chemical modifications (e.g., 2′-F, 2′-OMe, phosphorothioate internucleotidic linkages, lipid conjugation, etc.) demonstrate unexpectedly high exon-skipping efficiency.


In some embodiments, provided oligonucleotides are blockmers. In some embodiments, a blockmer is an oligonucleotide comprising one or more blocks.


In some embodiments, a block is a portion of an oligonucleotide. In some embodiments, a block is a wing or a core. In some embodiments, a blockmer comprises one or more blocks. In some embodiments, a 5′-block is a 5′-end region or 5′-wing. In some embodiments, a 3′-block is a 3′-end region or 3′-wing.


In some embodiments, provided oligonucleotide are altmers. In some embodiments, provided oligonucleotides are altmers comprising alternating blocks. In some embodiments, a blockmer or an altmer can be defined by chemical modifications (including presence or absence), e.g., base modifications, sugar modification, internucleotidic linkage modifications, stereochemistry, etc.


In some embodiments, provided oligonucleotides comprise blocks comprising different internucleotidic linkages. In some embodiments, provided oligonucleotides comprise blocks comprising modified internucleotidic linkages and/or natural phosphate linkages.


In some embodiments, provided oligonucleotides comprise blocks comprising sugar modifications. In some embodiments, provided oligonucleotides comprise one or more blocks comprising one or more 2′-F modifications (2′-F blocks). In some embodiments, provided oligonucleotides comprise blocks comprising consecutive 2′-F modifications. In some embodiments, a block comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more consecutive 2′-F modifications.


In some embodiments, provided oligonucleotides comprises one or more blocks comprising one or more 2′-OR1 modifications (2′-OR1 blocks), wherein R1 is independently as defined and described herein and below. In some embodiments, provided oligonucleotides comprise both 2′-F and 2′-OR1 blocks. In some embodiments, provided oligonucleotides comprise alternating 2′-F and 2′-OR1 blocks. In some embodiments, provided oligonucleotides comprise a first 2′-F block at the 5′-end, and a second 2′-F block at the 3′-end, each of which independently comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more consecutive 2′-F modifications.


In some embodiments, provided oligonucleotides comprise a 5′-block wherein each sugar moiety of the 5′-block comprises a 2′-F modification. In some embodiments, provided oligonucleotides comprise a 3′-block wherein each sugar moiety of the 3′-block comprises a 2′-F modification. In some embodiments, such provided oligonucleotides comprise one or more 2′-OR1 blocks, and optionally one or more 2′-F blocks, between the 5′ and 3′ 2′-F blocks. In some embodiments, such provided oligonucleotides comprise one or more 2′-OR1 blocks, and one or more 2′-F blocks, between the 5′ and 3′ 2′-F blocks (e.g., WV-3047, WV-3048, etc.).


In some embodiments, a block is a stereochemistry block. In some embodiments, a block is an Rp block in that each internucleotidic linkage of the block is Rp. In some embodiments, a 5′-block is an Rp block. In some embodiments, a 3′-block is an Rp block. In some embodiments, a block is an Sp block in that each internucleotidic linkage of the block is Sp. In some embodiments, a 5′-block is an Sp block. In some embodiments, a 3′-block is an Sp block. In some embodiments, provided oligonucleotides comprise both Rp and Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Rp but no Sp blocks. In some embodiments, provided oligonucleotides comprise one or more Sp but no Rp blocks.


In some embodiments, provided oligonucleotides comprise one or more PO blocks wherein each internucleotidic linkage in a natural phosphate linkage.


In some embodiments, a 5′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block is an Sp block wherein each internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 5′-block comprises 4 or more nucleoside units.


In some embodiments, a 3′-block is an Sp block wherein each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each internucleotidic linkage is a modified internucleotidic linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block is an Sp block wherein each internucleotidic linkage is a phosphorothioate linkage and each sugar moiety comprises a 2′-F modification. In some embodiments, a 3′-block comprises 4 or more nucleoside units.


In some embodiments, provided oligonucleotides comprise alternating blocks comprising different modified sugar moieties and/or unmodified sugar moieties. In some embodiments, provided oligonucleotides comprise alternating blocks comprising different modified sugar moieties and unmodified sugar moieties. In some embodiments, provided oligonucleotides comprise alternating blocks comprising different modified sugar moieties. In some embodiments, provided oligonucleotides comprise alternating blocks comprising different modified sugar moieties, wherein the modified sugar moieties comprise different 2′-modifications. For example, in some embodiments, provided oligonucleotide comprises alternating blocks comprising 2′-OMe and 2′-F, respectively.


In some embodiments, the present disclosure provides an oligonucleotide composition comprising a plurality of oligonucleotides which:


1) have a common base sequence complementary to a target sequence in a transcript; and


2) comprise one or more modified sugar moieties and modified internucleotidic linkages.


In some embodiments, a provided oligonucleotide composition is characterized in that, when it is contacted with the transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, a reference condition is absence of the composition. In some embodiments, a reference condition is presence of a reference composition. Example reference compositions comprising a reference plurality of oligonucleotides are extensively described in this disclosure. In some embodiments, oligonucleotides of the reference plurality have a different structural elements (chemical modifications, stereochemistry, etc.) compared with oligonucleotides of the plurality in a provided composition. In some embodiments, a reference composition is a stereorandom preparation of oligonucleotides having the same chemical modifications. In some embodiments, a reference composition is a mixture of stereoisomers while a provided composition is a chirally controlled oligonucleotide composition of one stereoisomer. In some embodiments, oligonucleotides of the reference plurality have the same base sequence, same sugar modifications, same base modifications, same internucleotidic linkage modifications, and/or same stereochemistry as oligonucleotide of the plurality in a provided composition but different chemical modifications, e.g., base modification, sugar modification, internucleotidic linkage modifications, etc.


Example splicing systems are widely known in the art. In some embodiments, a splicing system is an in vivo or in vitro system including components sufficient to achieve splicing of a relevant target transcript. In some embodiments, a splicing system is or comprises a spliceosome (e.g., protein and/or RNA components thereof). In some embodiments, a splicing system is or comprises an organellar membrane (e.g., a nuclear membrane) and/or an organelle (e.g., a nucleus). In some embodiments, a splicing system is or comprises a cell or population thereof. In some embodiments, a splicing system is or comprises a tissue. In some embodiments, a splicing system is or comprises an organism, e.g., an animal, e.g., a mammal such as a mouse, rat, monkey, dog, human, etc.


In some embodiments, the present disclosure provides an oligonucleotide composition comprising a plurality of oligonucleotides which:


1) have a common base sequence complementary to a target sequence in a transcript; and


2) comprise one or more modified sugar moieties and modified internucleotidic linkages,


the oligonucleotide composition being characterized in that, when it is contacted with the transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides an oligonucleotide composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications.


In some embodiments, the present disclosure provides an oligonucleotide composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


which composition is chirally controlled and it is enriched, relative to a substantially racemic preparation of oligonucleotides having the same base sequence, for oligonucleotides of the particular oligonucleotide type,


the oligonucleotide composition being characterized in that, when it is contacted with the transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide composition comprising oligonucleotides of a particular oligonucleotide type characterized by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


which composition is a substantially pure preparation of a single oligonucleotide in that at least about 10% of the oligonucleotides in the composition have the common base sequence and length, the common pattern of backbone linkages, and the common pattern of backbone chiral centers.


In some embodiments, each region (e.g., a block, wing, core, 5′-end, 3′-end, or middle region, etc.) of an oligonucleotide independently comprises 3, 4, 5, 6, 7, 8, 9, 10 or more bases. In some embodiments, each region independently comprises 3 or more bases. In some embodiments, each region independently comprises 4 or more bases. In some embodiments, each region independently comprises 5 or more bases. In some embodiments, each region independently comprises 6 or more bases. In some embodiments, each sugar moiety in a region is modified. In some embodiments, a modification is a 2′-modification. In some embodiments, each modification is a 2′-modification. In some embodiments, a modification is 2′-F. In some embodiments, each modification is 2′-F. In some embodiments, a modification is 2′-OR1. In some embodiments, each modification is 2′-OR1. In some embodiments, a modification is 2′-OR1. In some embodiments, each modification is 2′-OMe. In some embodiments, each modification is 2′-OMe. In some embodiments, each modification is 2′-MOE. In some embodiments, each modification is 2′-MOE. In some embodiments, a modification is an LNA sugar modification. In some embodiments, each modification is an LNA sugar modification. In some embodiments, each internucleotidic linkage in a region is a chiral internucleotidic linkage. In some embodiments, each internucleotidic linkage in a wing, or 5′-end or 3′-end region, is an Sp chiral internucleotidic linkage. In some embodiments, a chiral internucleotidic linkage is a phosphorothioate linkage. In some embodiments, a core or middle region comprises one or more natural phosphate linkages and one or more modified internucleotidic linkages. In some embodiments, a core or middle region comprises one or more natural phosphate linkages and one or more chiral internucleotidic linkages. In some embodiments, a core region comprises one or more natural phosphate linkages and one or more Sp chiral internucleotidic linkages. In some embodiments, a core or middle region comprises one or more natural phosphate linkages and one or more Sp phosphorothioate linkages.


In some embodiments, a region (e.g., a block, wing, core, 5′-end, 3′-end, middle region, etc.) of an oligonucleotide comprises a non-negatively charged internucleotidic linkage, e.g., of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, etc. In some embodiments, a region comprises a neutral internucleotidic linkage. In some embodiments, a region comprises an internucleotidic linkage which comprises a triazole or alkyne moiety. In some embodiments, a region comprises an internucleotidic linkage which comprises a cyclic guanidine guanidine. In some embodiments, a region comprises an internucleotidic linkage which comprises a cyclic guanidine moiety. In some embodiments, a region comprises an internucleotidic linkage having the structure of




embedded image


In some embodiments, such internucleotidic linkages are chirally controlled.


In some embodiments, the base sequence of an oligonucleotide, e.g., the base sequence of a plurality of oligonucleotides of a particular oligonucleotide type, is or comprises a base sequence disclosed herein (e.g., a base sequence of an example oligonucleotide (e.g., those listed in the tables, examples, etc.), a target sequence, etc.) (or a portion thereof which is at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 bases long). In some embodiments, a provided oligonucleotide has a base sequence comprising the base sequence of any example oligonucleotides or another base sequence disclosed herein, and a length of up to 30 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising the base sequence of any example oligonucleotides or another base sequence disclosed herein, and a length of up to 40 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising the base sequence of any example oligonucleotides or another base sequence disclosed herein, and a length of up to 50 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising at least 15 contiguous bases of the base sequence of an oligonucleotide example or another sequence disclosed herein, and a length of up to 30 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising at least 15 contiguous bases of the base sequence of an oligonucleotide example or another sequence disclosed herein, and a length of up to 40 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising at least 15 contiguous bases of the base sequence of an oligonucleotide example or another sequence disclosed herein, and a length of up to 50 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising a sequence having no more than 5 mismatches from the base sequence of an example oligonucleotide or another sequence disclosed herein, and a length of up to 30 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising a sequence having no more than 5 mismatches from the base sequence of an example oligonucleotide or another sequence disclosed herein, and a length of up to 40 bases. In some embodiments, a provided oligonucleotide has a base sequence comprising a sequence having no more than 5 mismatches from the base sequence of an example oligonucleotide or another sequence disclosed herein, and a length of up to 50 bases.


In some embodiments, the base sequence of a provided oligonucleotide is the base sequence of an example oligonucleotide or another sequence disclosed herein, and a pattern of backbone chiral centers comprises at least one chirally controlled center which is a Sp linkage phosphorus of a phosphorothioate linkage. In some embodiments, the base sequence of a provided oligonucleotide is the base sequence of an example oligonucleotide or another sequence disclosed herein, the oligonucleotide has a length of up to 30 bases, and a pattern of backbone chiral centers comprises at least one chirally controlled center which is a Sp linkage phosphorus of a phosphorothioate linkage. In some embodiments, the base sequence of a provided oligonucleotide is the base sequence of an example oligonucleotide or another sequence disclosed herein, the oligonucleotide has a length of up to 40 bases, and a pattern of backbone chiral centers comprises at least one chirally controlled center which is a Sp linkage phosphorus of a phosphorothioate linkage. In some embodiments, the base sequence of a provided oligonucleotide comprises at least 15 contiguous bases of any example oligonucleotides or another sequence disclosed herein, the oligonucleotide has a length of up to 30, 40, or 50 bases, and a pattern of backbone chiral centers comprises at least one chirally controlled center which is a Sp linkage phosphorus of a phosphorothioate linkage.


In some embodiments, a mismatch is a difference between the base sequence or length when two sequences are maximally aligned and compared. As a non-limiting example, a mismatch is counted if a difference exists between the base at a particular location in one sequence and the base at the corresponding position in another sequence. Thus, a mismatch is counted, for example, if a position in one sequence has a particular base (e.g., A), and the corresponding position on the other sequence has a different base (e.g., G, C or U). A mismatch is also counted, e.g., if a position in one sequence has a base (e.g., A), and the corresponding position on the other sequence has no base (e.g., that position is an abasic nucleotide which comprises a phosphate-sugar backbone but no base) or that position is skipped. A single-stranded nick in either sequence (or in the sense or antisense strand) may not be counted as mismatch, for example, no mismatch would be counted if one sequence comprises the sequence 5′-AG-3′, but the other sequence comprises the sequence 5′-AG-3′ with a single-stranded nick between the A and the G. A base modification is generally not considered a mismatch, for example, if one sequence comprises a C, and the other sequence comprises a modified C (e.g., with a 2′-modification) at the same position, no mismatch may be counted.


In some embodiments, oligonucleotides of a particular type are chemically identical in that they have the same base sequence (including length), the same pattern of chemical modifications to sugar and base moieties, the same pattern of backbone linkages (e.g., pattern of natural phosphate linkages, phosphorothioate linkages, phosphorothioate triester linkages, non-negatively charged linkages, and combinations thereof), the same pattern of backbone chiral centers (e.g., pattern of stereochemistry (Rp/Sp) of chiral internucleotidic linkages), and the same pattern of backbone phosphorus modifications (e.g., pattern of modifications on the internucleotidic phosphorus atom, such as —S—, and -L-R1 of formula I).


In some embodiments, the present disclosure provides chirally controlled oligonucleotide compositions of oligonucleotides comprising multiple (e.g., more than 5, 6, 7, 8, 9, or 10) internucleotidic linkages, and particularly for oligonucleotides comprising multiple (e.g., more than 5, 6, 7, 8, 9, or 10) chiral internucleotidic linkages, wherein the oligonucleotides comprise at least one, and in some embodiments, more than 5, 6, 7, 8, 9, or 10 chirally controlled internucleotidic linkages. In some embodiments, in a chirally controlled composition of oligonucleotides each chiral internucleotidic linkage of the oligonucleotides is independently a chirally controlled internucleotidic linkage. In some embodiments, in a stereorandom or racemic composition of oligonucleotides, each chiral internucleotidic linkage is formed with less than 90:10, 95:5, 96:4, 97:3, or 98:2 diastereoselectivity. In some embodiments, in a stereoselective or chirally controlled composition of oligonucleotides, each chirally controlled internucleotidic linkage of the oligonucleotides independently has a diastereopurity of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% at its chiral linkage phosphorus (either Rp or Sp). Among other things, the present disclosure provides technologies to prepare oligonucleotides of high diastereopurity. In some embodiments, diastereopurity of a chiral internucleotidic linkage in an oligonucleotide may be measured through a model reaction, e.g. formation of a dimer under essentially the same or comparable conditions wherein the dimer has the same internucleotidic linkage as the chiral internucleotidic linkage, the 5′-nucleoside of the dimer is the same as the nucleoside to the 5′-end of the chiral internucleotidic linkage, and the 3′-nucleoside of the dimer is the same as the nucleoside to the 3′-end of the chiral internucleotidic linkage.


As described herein, provided compositions and methods are capable of altering splicing of transcripts. In some embodiments, provided compositions and methods provide improved splicing patterns of transcripts compared to reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof. An improvement can be an improvement of any desired biological functions. In some embodiments, for example, in DMD, an improvement is production of an mRNA from which a dystrophin protein with improved biological activities is produced.


In some embodiments, the present disclosure provides a method for altering splicing of a target transcript, comprising administering a provided composition, wherein the splicing of the target transcript is altered relative to reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides a method of generating a set of spliced products from a target transcript, the method comprising steps of:


contacting a splicing system containing the target transcript with an oligonucleotide composition comprising a plurality of oligonucleotides (e.g., a provided chirally controlled oligonucleotide composition), in an amount, for a time, and under conditions sufficient for a set of spliced products to be generated that is different from a set generated under reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides a method for treating or preventing a disease, comprising administering to a subject an oligonucleotide composition described herein.


In some embodiments, the present disclosure provides a method for treating or preventing a disease, comprising administering to a subject an oligonucleotide composition comprising a plurality of oligonucleotides, which:


1) have a common base sequence complementary to a target sequence in a transcript; and


2) comprise one or more modified sugar moieties and modified internucleotidic linkages,


the oligonucleotide composition being characterized in that, when it is contacted with the transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides a method for treating or preventing a disease, comprising administering to a subject a chirally controlled oligonucleotide composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers, and


4) pattern of backbone phosphorus modifications,


which composition is chirally controlled and it is enriched, relative to a substantially racemic preparation of oligonucleotides having the same base sequence, for oligonucleotides of the particular oligonucleotide type, wherein:


the oligonucleotide composition being characterized in that, when it is contacted with the transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, a disease is one in which, after administering a provided composition, one or more spliced transcripts repair, restore or introduce a new beneficial function. For example, in DMD, after skipping one or more exons, functions of dystrophin can be restored, or partially restored, through a truncated but (at least partially) active version. In some embodiments, a disease is one in which, after administering a provided composition, one or more spliced transcripts repair, a gene is effectively knockdown by altering splicing of the gene transcript.


In some embodiments, a disease is muscular dystrophy, including but not limited to Duchenne (Duchenne's) muscular dystrophy (DMD) and Becker (Becker's) muscular dystrophy (BMD).


In some embodiments, a transcript is of Dystrophin gene or a variant thereof.


In some embodiments, the present disclosure provides a method of treating a disease by administering a composition comprising a plurality of oligonucleotides sharing a common base sequence comprising a nucleotide sequence, which nucleotide sequence is complementary to a target sequence in the target transcript,


the improvement that comprises using as the oligonucleotide composition a chirally controlled oligonucleotide composition characterized in that, when it is contacted with the transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, a common sequence comprises a sequence (or at least 15 base long portion thereof) of any oligonucleotide in Table A1.


In some embodiments, the present disclosure provides a method of administering an oligonucleotide composition comprising a plurality of oligonucleotides having a common nucleotide sequence, the improvement that comprises:


administering an oligonucleotide composition comprising the plurality of oligonucleotides each of which independently comprises one or more negatively charged internucleotidic linkages and one or more non-negatively charged internucleotidic linkages, wherein the oligonucleotide composition is optionally chirally controlled.


In some embodiments, the present disclosure provides a method of administering an oligonucleotide composition comprising a plurality of oligonucleotides having a common nucleotide sequence, the improvement that comprises:


administering an oligonucleotide composition comprising the plurality of oligonucleotides that is chirally controlled and that is characterized by reduced toxicity relative to a reference oligonucleotide composition of the same common nucleotide sequence.


In some embodiments, the present disclosure provides a method of administering an oligonucleotide composition comprising a plurality of oligonucleotides having a common nucleotide sequence, the improvement that comprises:


administering an oligonucleotide composition in which each oligonucleotide in the plurality includes one or more natural phosphate linkages and one or more modified phosphate linkages;


wherein the oligonucleotide composition is characterized by reduced toxicity when tested in at least one assay that is observed with an otherwise comparable reference composition whose oligonucleotides do not comprise natural phosphate linkages.


In some embodiments, oligonucleotides can elicit proinflammatory responses. In some embodiments, the present disclosure provides compositions and methods for reducing inflammation. In some embodiments, the present disclosure provides compositions and methods for reducing proinflammatory responses. In some embodiments, the present disclosure provides methods for reducing injection site inflammation using provided compositions. In some embodiments, the present disclosure provides methods for reducing drug-induced vascular injury using provided compositions.


In some embodiments, the present disclosure provides a method, comprising administering a composition comprising a plurality of oligonucleotides of a common base sequence, which composition displays reduced injection site inflammation as compared with a reference composition comprising a plurality of oligonucleotides, each of which also has the common base sequence, but which differs structurally from the oligonucleotides of the plurality in that:


individual oligonucleotides within the reference plurality differ from one another in stereochemical structure; and/or


at least some oligonucleotides within the reference plurality have a structure different from a structure represented by the plurality of oligonucleotides of the composition; and/or


at least some oligonucleotides within the reference plurality do not comprise a wing region and a core region.


In some embodiments, the present disclosure provides a method, comprising administering a composition comprising a plurality of oligonucleotides of a common base sequence, which composition displays altered protein binding as compared with a reference composition comprising a plurality of oligonucleotides, each of which also has the common base sequence but which differs structurally from the oligonucleotides of the plurality in that:


individual oligonucleotides within the reference plurality differ from one another in stereochemical structure; and/or


at least some oligonucleotides within the reference plurality have a structure different from a structure represented by the plurality of oligonucleotides of the composition; and/or


at least some oligonucleotides within the reference plurality do not comprise a wing region and a core region.


In some embodiments, the present disclosure provides a method of administering an oligonucleotide composition comprising a plurality of oligonucleotides having a common nucleotide sequence, the improvement that comprises:


administering an oligonucleotide composition comprising a plurality of oligonucleotides that is characterized by altered protein binding relative to a reference oligonucleotide composition of the same common nucleotide sequence.


In some embodiments, the present disclosure provides a method comprising administering a composition comprising a plurality of oligonucleotides of a common base sequence, which composition displays improved delivery as compared with a reference composition comprising a reference plurality of oligonucleotides, each of which also has the common base sequence but which differs structurally from the oligonucleotides of the plurality in that:


individual oligonucleotides within the reference plurality differ from one another in stereochemical structure; and/or


at least some oligonucleotides within the reference plurality have a structure different from a structure represented by the plurality of oligonucleotides of the composition; and/or


at least some oligonucleotides within the reference plurality do not comprise a wing region and a core region.


In some embodiments, the present disclosure provides a method of administering an oligonucleotide composition comprising a plurality of oligonucleotides having a common nucleotide sequence, the improvement that comprises:


administering an oligonucleotide comprising a plurality of oligonucleotides that is characterized by improved delivery relative to a reference oligonucleotide composition of the same common nucleotide sequence.


In some embodiments, the present disclosure provides a composition comprising any oligonucleotide disclosed herein. In some embodiments, the present disclosure provides a composition comprising any chirally controlled oligonucleotide disclosed herein.


In some embodiments, the present disclosure provides a composition comprising an oligonucleotide disclosed herein which is capable of mediating skipping of Dystrophin exon 45. In some embodiments, the present disclosure provides a composition comprising an oligonucleotide disclosed herein which is capable of mediating skipping of Dystrophin exon 51. In some embodiments, the present disclosure provides a composition comprising an oligonucleotide disclosed herein which is capable of mediating skipping of Dystrophin exon 53. In some embodiments, the present disclosure provides a composition comprising an oligonucleotide(s) disclosed herein which is capable of mediating skipping of multiple Dystrophin exons. In some embodiments, such a composition is a chirally controlled oligonucleotide composition.


In some embodiments, the present disclosure pertains to an oligonucleotide or an oligonucleotide composition capable of mediating skipping of a DMD exon or multiple DMD exons. In some embodiments, a DMD exon is exon 51. In some embodiments, a DMD exon is exon 53. In some embodiments, a DMD exon is exon 45. In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of a DMD exon 53, wherein the oligonucleotide composition comprises at least one chirally controlled internucleotidic linkage.


In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 45. In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of DMD exon 45, wherein the oligonucleotide composition comprises at least one chirally controlled internucleotidic linkage and comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 45 and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of DMD exon 45, wherein the oligonucleotide composition comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 45 and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 51. In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of DMD exon 51, wherein the oligonucleotide composition comprises at least one chirally controlled internucleotidic linkage and comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 51 and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of DMD exon 51, wherein the oligonucleotide composition comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 51 and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 53. In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of DMD exon 53, wherein the oligonucleotide composition comprises at least one chirally controlled internucleotidic linkage and comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 53 and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of DMD exon 53, wherein the oligonucleotide composition comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of DMD exon 53 and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of multiple DMD exons. In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of multiple DMD exons, wherein the oligonucleotide composition comprises at least one chirally controlled internucleotidic linkage and comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of multiple DMD exons and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of a DMD exon, wherein the oligonucleotide composition comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of a DMD exon and comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of multiple DMD exons. In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of multiple DMD exons, wherein the oligonucleotide composition comprises at least one chirally controlled internucleotidic linkage and comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of multiple DMD exons and comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, a DMD exon is any DMD exon disclosed herein, including but not limited to exon 45, exon 51, exon 52, exon 53, exon 55, exon 56, and exon 57.


In some embodiments, the present disclosure pertains to an oligonucleotide composition capable of mediating skipping of multiple DMD exons, wherein the oligonucleotide composition comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a chirally controlled oligonucleotide composition, wherein the oligonucleotide is capable of mediating skipping of multiple DMD exons and comprises at least one non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure provides a chirally controlled composition of an oligonucleotide capable of mediating skipping of Dystrophin exon 51. In some embodiments, the present disclosure provides a chirally controlled composition of an oligonucleotide capable of mediating skipping of Dystrophin exon 51 and disclosed herein.


In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is, comprises, or comprises a 15-base portion of the base sequence of UCAAGGAAGAUGGCAUUUCU, wherein each U can be optionally and independently replaced by T. and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is UCAAGGAAGAUGGCAUUUCU, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which comprises UCAAGGAAGAUGGCAUUUCU, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which comprises a 15-base portion of the base sequence of UCAAGGAAGAUGGCAUUUCU, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is, comprises, or comprises a 15-base portion of any of: UCAAGGAAGAUGGCAUUUCU, UCAAGGAAGAUGGCAUUUC, UCAAGGAAGAUGGCAUUU, UCAAGGAAGAUGGCAUU, UCAAGGAAGAUGGCAU. UCAAGGAAGAUGGCA, CAAGGAAGAUGGCAUUUCU, AAGGAAGAUGGCAUUUCU, AGGAAGAUGGCAUUUCU, GGAAGAUGGCAUUUCU, GAAGAUGGCAUUUCU, CAAGGAAGAUGGCAUUUC, CAAGGAAGAUGGCAUUU, AAGGAAGAUGGCAUUUC, AAGGAAGAUGGCAUUU, AGGAAGAUGGCAUUU, or AAGGAAGAUGGCAUU, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled.


In some embodiments, the present disclosure provides a chirally controlled composition of an oligonucleotide capable of mediating skipping of Dystrophin exon 53. In some embodiments, the present disclosure provides a chirally controlled composition of an oligonucleotide capable of mediating skipping of Dystrophin exon 53 and disclosed herein.


In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9517. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9519. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9521. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9524. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9714. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9715. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9747. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9748. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9749. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9897. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9898. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9899. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9900. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9906. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-9912. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-10670. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-10671. In some embodiments, the present disclosure provides a chirally controlled composition of oligonucleotide WV-10672.


In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is, comprises, or comprises a 15-base portion of the base sequence of CUCCGGUUCUGAAGGUGUUC, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is CUCCGGUUCUGAAGGUGUUC, wherein each U can be optionally and independently replaced by T. and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which comprises CUCCGGUUCUGAAGGUGUUC, wherein each U can be optionally and independently replaced by T and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is, comprises, or comprises a 15-base portion of CUCCGGUUCUGAAGGUGUUC, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is or comprises CUCCGGUUCUGAAGGUGUUCC, UCCGGUUCUGAAGGUGUUC, UCCGGUUCUGAAGGUGUUC, CCGGUUCUGAAGGUGUUC, CGGUUCUGAAGGUGUUC, GGUUCUGAAGGUGUUC. GUUCUGAAGGUGUUC, CUCCGGUUCUGAAGGUGUU, CUCCGGUUCUGAAGGUGU, CUCCGGUUCUGAAGGUG, CUCCGGUUCUGAAGGU, CUCCGGUUCUGAAGG, UCCGGUUCUGAAGGUGUU, CCGGUUCUGAAGGUGUU, UCCGGUUCUGAAGGUGU, CCGGUUCUGAAGGUGU, UCCGGUUCUGAAGGUG, CGGUUCUGAAGGUGU, UCCGGUUCUGAAGGU, CCGGUUCUGAAGGUG, CGGUUCUGAAGGUGUU, UCCGGUUCUGAAGGUGUUC, UCCGGUUCUGAAGGUG, UCCGGUUCUGAAGGU, CGGUUCUGAAGGUGUU, GGUUCUGAAGGUGUU, or GGUUCUGAAGGUGUU, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is, comprises, or comprises a 15-base portion of the base sequence of UUCUGAAGGUGUUCUUGUAC, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is UUCUGAAGGUGUUCUUGUAC, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which comprises UUCUGAAGGUGUUCUUGUAC, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which comprises a 15-base portion of the base sequence of UUCUGAAGGUGUUCUUGUAC, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled. In some embodiments, the present disclosure provides a composition of an oligonucleotide having a base sequence which is or comprises UUCUGAAGGUGUUCUUGUAC, UCUGAAGGUGUUCUUGUAC, CUGAAGGUGUUCUUGUAC, UGAAGGUGUUCUUGUAC, GAAGGUGUUCUUGUAC, AAGGUGUUCUUGUAC, UUCUGAAGGUGUUCUUGUA, UUCUGAAGGUGUUCUUGU, UUCUGAAGGUGUUCUUG, UUCUGAAGGUGUUCUU, UUCUGAAGGUGUUCU, UCUGAAGGUGUUCUUGUA, UCUGAAGGUGUUCUUGU, UCUGAAGGUGUUCUUG, UCUGAAGGUGUUCUU, CUGAAGGUGUUCUUGUA, CUGAAGGUGUUCUUGU, CUGAAGGUGUUCUUG, UGAAGGUGUUCUUGU, or UGAAGGUGUUCUUGUA, wherein each U can be optionally and independently replaced by T, and wherein the composition is optionally chirally controlled.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide composition of an oligonucleotide selected from any of the Tables. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide composition of an oligonucleotide selected from any of the Tables, wherein the oligonucleotide is conjugated to a lipid or a targeting moiety.


In some embodiments, an oligonucleotide is at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 bases long, and optionally no more than 25, 30, 35, 40, 45, 50, 55, or 60 bases long. In some embodiments, an oligonucleotide is no more than 25 bases long. In some embodiments, an oligonucleotide is no more than 30 bases long. In some embodiments, an oligonucleotide is no more than 35 bases long. In some embodiments, an oligonucleotide is no more than 40 bases long. In some embodiments, an oligonucleotide is no more than 45 bases long. In some embodiments, an oligonucleotide is no more than 50 bases long. In some embodiments, an oligonucleotide is no more than 55 bases long. In some embodiments, an oligonucleotide is no more than 60 bases long. In some embodiments, each base is independently optionally substituted A T, C, G. or U. or an optionally substituted tautomer of A, T, C, G, or U


In some embodiments, provided oligonucleotides comprise additional chemical moieties besides their oligonucleotide chains (oligonucleotide backbones and bases), e.g., lipid moieties, targeting moieties, etc. In some embodiments, a lipid is a fatty acid. In some embodiments, an oligonucleotide is conjugated to a fatty acid. In some embodiments, a fatty acid comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more carbon atoms.


In some embodiments, a lipid is stearic acid or turbinaric acid. In some embodiments, a lipid is stearic acid acid. In some embodiments, a lipid is turbinaric acid.


In some embodiments, a lipid comprises an optionally substituted. C10-C80, C10-C60, or C10-C40 saturated or partially unsaturated aliphatic group, wherein one or more methylene units are optionally and independently replaced by C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, a C1-C6 heteroaliphatic moiety, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—. —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —N(R′)S(O)—. —SC(O)—, —C(O)S—, —OC(O)—, and —C(O)O—, wherein each variable is independently as defined and described herein.


In some embodiments, a lipid is selected from the group consisting of: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (DHA or cis-DHA), turbinaric acid and dilinoleyl.


In some embodiments, a lipid is conjugated to an oligonucleotide chain, optionally through one or more linker moieties. In some embodiments, a lipid is not conjugated to an oligonucleotide chain.


In some embodiments, a provided oligonucleotide is conjugated, optionally through a linker, to a chemical moiety, e.g., a lipid moiety, a peptide moiety, a targeting moiety, a carbohydrate moiety, a sulfonamide moiety, an antibody or a fragment thereof. In some embodiments, a provided compound, e.g., an oligonucleotide, has the structure of:

    • Ac-[-LLD-(RLD)a]b, Ac-[-LM-(RD)a]b, [(Ac)a-LM]b-RD, (Ac)a-LM-(Ac)b, or (Ac)a-LM-(RD)b,


      or a slat thereof, wherein:


      Ac is an oligonucleotide chain (e.g., H-Ac, [H]a-Ac or [H]b-Ac is an oligonucleotide);


      a is 1-1000;


      b is 1-1000:


      each of LLD and LM is independently a linker moiety:


      RLD is a lipid moiety; and


      each RD is independently a lipid moiety or a targeting moiety.


In some embodiments, a provided compound, e.g., an oligonucleotide, has the structure of:

    • Ac-[-LLD-(RLD)a]b, Ac-[-LM-(RD)a]b, [(Ac)a-LM]b-RD, (Ac)a-LM-(Ac)b, or (Ac)a-LM-(RD)b,


      or a salt thereof, wherein:


      Ac is an oligonucleotide chain (e.g., H-Ac, [H]a-Ac or [H]b-Ac is an oligonucleotide);


      a is 1-1000;


      b is 1-1000;


      each RD is independently RLD, RCD or RTD;


RCD is an optionally substituted, linear or branched group selected from a C1-100 aliphatic group and a C1-100 heteroaliphatic group having 1-30 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—; and one or more CH or carbon atoms are optionally and independently replaced with CyL;


RLD is an optionally substituted, linear or branched C1-100 aliphatic group wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—; and one or more CH or carbon atoms are optionally and independently replaced with CyL;


RTD is a targeting moiety;


each of LLD and LM is independently a covalent bond, or a bivalent or multivalent, optionally substituted, linear or branched group selected from a C1-100 aliphatic group and a C1-100 heteroaliphatic group having 1-30 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C— a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—. —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—; and one or more CH or carbon atoms are optionally and independently replaced with CyL;


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each R′ is independently —R. —C(O)R, —C(O)OR, or —S(O)2R; and


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


In some embodiments, the present disclosure provides an oligonucleotide composition comprising a plurality of oligonucleotides each having the structure of:

    • Ac-[-LLD-(RLD)a]b, Ac-[-LM-(RD)a]b, [(Ac)a-LM]b-RD, (Ac)a-LM-(Ac)b, or (Ac)aLM-(RD)b,


      or a salt thereof.


In some embodiments, [H]b-Ac (wherein b is 1-1000) is an oligonucleotide of any one of the Tables. In some embodiments, [H]b-Ac is an oligonucleotide of Table A1.


In some embodiments, a is 1-100. In some embodiments, a is 1-50. In some embodiments, a is 1-40. In some embodiments, a is 1-30. In some embodiments, a is 1-20. In some embodiments, a is 1-15. In some embodiments, a is 1-10. In some embodiments, a is 1-9. In some embodiments, a is 1-8. In some embodiments, a is 1-7. In some embodiments, a is 1-6. In some embodiments, a is 1-5. In some embodiments, a is 1-4. In some embodiments, a is 1-3. In some embodiments, a is 1-2. In some embodiments, a is 1. In some embodiments, a is 2. In some embodiments, a is 3. In some embodiments, a is 4. In some embodiments, a is 5. In some embodiments, a is 6. In some embodiments, a is 7. In some embodiments, a is 8. In some embodiments, a is 9. In some embodiments, a is 10. In some embodiments, a is more than 10. In some embodiments, b is 1-100. In some embodiments, b is 1-50. In some embodiments, b is 1-40. In some embodiments, b is 1-30. In some embodiments, b is 1-20. In some embodiments, b is 1-15. In some embodiments, b is 1-10. In some embodiments, b is 1-9. In some embodiments, b is 1-8. In some embodiments, b is 1-7. In some embodiments, b is 1-6. In some embodiments, b is 1-5. In some embodiments, b is 1-4. In some embodiments, b is 1-3. In some embodiments, b is 1-2. In some embodiments, b is 1. In some embodiments, b is 2. In some embodiments, b is 3. In some embodiments, b is 4. In some embodiments, b is 5. In some embodiments, b is 6. In some embodiments, b is 7. In some embodiments, b is 8. In some embodiments, b is 9. In some embodiments, b is 10. In some embodiments, b is more than 10. In some embodiments, an oligonucleotide has the structure of Ac-LLD-RLD. In some embodiments, Ac is conjugated through one or more of its sugar, base and/or internucleotidic linkage moieties. In some embodiments, Ac is conjugated through its 5′-OH (5′-O—). In some embodiments, A is conjugated through its 3′-OH (3′-O—). In some embodiments, before conjugation, A-(H)b (b is an integer of 1-1000 depending on valency of Ac) is an oligonucleotide as described herein, for example, one of those described in any one of the Tables. In some embodiments, LM is -L-. In some embodiments, LM comprises a phosphorothioate group. In some embodiments, LM is —C(O)NH—(CH2)6—OP(═O)(S)—O—. In some embodiments, the —C(O)NH end is connected to RLD, and the —O— end is connected to the oligonucleotide, e.g., through 5′- or 3′-end. In some embodiments, R is optionally substituted C10, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, or C25 to C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C35, C40, C45, C50, C60, C70, or C80 aliphatic. In some embodiments, RLD is optionally substituted C1-80 aliphatic. In some embodiments, RLD is optionally substituted C20-80 aliphatic. In some embodiments, RLD is optionally substituted C10-70 aliphatic. In some embodiments, RLD is optionally substituted C20-70 aliphatic. In some embodiments, RLD is optionally substituted C10-60 aliphatic. In some embodiments, RLD is optionally substituted C20-60 aliphatic. In some embodiments, RLD is optionally substituted C10-50 aliphatic. In some embodiments, RLD is optionally substituted C20-50 aliphatic. In some embodiments, RLD is optionally substituted C10-40 aliphatic. In some embodiments, RLD is optionally substituted C20-40 aliphatic. In some embodiments, RLD is optionally substituted C10-30 aliphatic. In some embodiments, RLD is optionally substituted C20-30 aliphatic. In some embodiments, RD is unsubstituted C10, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, or C25 to C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C35, C40, C45, C50, C60, C70, or C80 aliphatic. In some embodiments, RLD is unsubstituted C10-80 aliphatic. In some embodiments, RLD is unsubstituted C20-80 aliphatic. In some embodiments, RLD is unsubstituted C10-70 aliphatic. In some embodiments, RLD is unsubstituted C20-70 aliphatic. In some embodiments, RLD is unsubstituted C10-60 aliphatic. In some embodiments, RLD is unsubstituted C20-60 aliphatic. In some embodiments, RLD is unsubstituted C10-50 aliphatic. In some embodiments, RLD is unsubstituted C20-50 aliphatic. In some embodiments, RLD is unsubstituted C10-40 aliphatic. In some embodiments, RLD is unsubstituted C20-40 aliphatic. In some embodiments, RLD is unsubstituted C10-30 aliphatic. In some embodiments, RLD is unsubstituted C20-30 aliphatic.


In some embodiments, incorporation of a lipid moiety into an oligonucleotide improves at least one property of the oligonucleotide compared to an otherwise identical oligonucleotide without the lipid moiety. In some embodiments, improved properties include increased activity (e.g., increased ability to induce desirable skipping of a deleterious exon), decreased toxicity, and/or improved distribution to a tissue. In some embodiments, a tissue is muscle tissue. In some embodiments, a tissue is skeletal muscle, gastrocnemius, triceps, heart or diaphragm. In some embodiments, improved properties include reduced hTLR9 agonist activity. In some embodiments, improved properties include hTLR9 antagonist activity. In some embodiments, improved properties include increased hTLR9 antagonist activity.


In some embodiments, an oligonucleotide or oligonucleotide composition is: a DMD oligonucleotide or oligonucleotide composition; an oligonucleotide or oligonucleotide composition comprising a non-negatively charged internucleotidic linkage; or a DMD oligonucleotide comprising a non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure pertains to a composition comprising an a DMD oligonucleotide comprising at least one chirally controlled phosphorothioate internucleotidic linkage in the Rp or Sp configuration, at least one natural phosphate internucleotidic linkage, and at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a composition comprising an a DMD oligonucleotide comprising at least one phosphorothioate internucleotidic linkage, at least one natural phosphate internucleotidic linkage, and at least one non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a composition comprising an a DMD oligonucleotide comprising at least one phosphorothioate internucleotidic linkage, at least one natural phosphate internucleotidic linkage, and at least one chirally controlled non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure pertains to a composition comprising an a DMD oligonucleotide comprising at least one chirally controlled phosphorothioate internucleotidic linkage in the Rp or Sp configuration, at least one natural phosphate internucleotidic linkage, and at least one chirally controlled non-negatively charged internucleotidic linkage.


In some embodiments, a DMD oligonucleotide (e.g., an oligonucleotide whose base sequence contains no more than 5, 4, 3, 2, or 1 mismatches when hybridizing to a portion of a DMD transcript or a DMD genetic sequence having the same length) is capable of mediating skipping of one or more exons of the Dystrophin transcript.


In some embodiments, a DMD oligonucleotide has a base sequence which consists of the base sequence of an example oligonucleotide disclosed herein (e.g., an oligonucleotide listed in a Table), or a base sequence which comprises a 15-base portion of an example oligonucleotide nucleotide described herein. In some embodiments, a DMD oligonucleotide has a length of 15 to 50 bases.


In some embodiments, an oligonucleotide comprises a nucleobase modification, a sugar modification, and/or an internucleotidic linkage. In some embodiments, a DMD oligonucleotide has a pattern of nucleobase modifications, sugar modifications, and/or internucleotidic linkages of an example oligonucleotide described herein (or any portion thereof having a length of at least 5 bases).


In some embodiments, an oligonucleotide comprises a nucleobase modification which is BrU.


In some embodiments, an oligonucleotide comprises a sugar modification which is 2′-OMe, 2′-F, 2′-MOE, or LNA.


In some embodiments, an oligonucleotide comprises an internucleotidic linkage which is a natural phosphate linkage or a phosphorothioate internucleotidic linkage. In some embodiments, a phosphorothioate internucleotidic linkage is not chirally controlled. In some embodiments, a phosphorothioate internucleotidic linkage is a chirally controlled internucleotidic linkage (e.g., Sp or Rp).


In some embodiments, an oligonucleotide comprises a non-negatively charged internucleotidic linkage. In some embodiments, a DMD oligonucleotide comprises a neutral internucleotidic linkage. In some embodiments, a neutral internucleotidic linkage is or comprises a triazole, alkyne, or cyclic guanidine moiety.


In some embodiments, an internucleotidic linkage comprising a triazole moiety (e.g., an optionally substituted triazolyl group) in a provided oligonucleotide, e.g., a DMD oligonucleotide, has the structure of:




embedded image


In some embodiments, an internucleotidic linkage comprising a triazole moiety has the formula of




embedded image


where W is O or S. In some embodiments, an internucleotidic linkage comprising an alkyne moiety (e.g., an optionally substituted alkynyl group) has the formula of:




embedded image


wherein W is O or S. In some embodiments, an internucleotidic linkage comprises a guanidine moiety. In some embodiments, an internucleotidic linkage comprises a cyclic guanidine moiety. In some embodiments, an internucleotidic linkage comprising a cyclic guanidine moiety has the structure of:




embedded image


In some embodiments, a neutral internucleotidic linkage or internucleotidic linkage comprising a cyclic guanidine moiety is stereochemically controlled.


In some embodiments, a DMD oligonucleotide comprises a lipid moiety In some embodiments, an internucleotidic linkage comprises a Tmg group




embedded image


In some embodiments, an internucleotidic linkage comprises a Tmg group and has the structure of




embedded image


(the “Tmg internucleotidic linkage”). In some embodiments, neutral internucleotidic linkages include internucleotidic linkages of PNA and PMO, and an Tmg internucleotidic linkage.


In general, properties of oligonucleotide compositions as described herein can be assessed using any appropriate assay. Relative toxicity and/or protein binding properties for different compositions (e.g., stereocontrolled vs non-stereocontrolled, and/or different stereocontrolled compositions) are typically desirably determined in the same assay, in some embodiments substantially simultaneously and in some embodiments with reference to historical results.


Those of skill in the art will be aware of and/or will readily be able to develop appropriate assays for particular oligonucleotide compositions. The present disclosure provides descriptions of certain particular assays, for example that may be useful in assessing one or more features of oligonucleotide composition behavior e.g., complement activation, injection site inflammation, protein biding, etc.


For example, certain assays that may be useful in the assessment of toxicity and/or protein binding properties of oligonucleotide compositions may include any assay described and/or exemplified herein.


Among other things, in some embodiments, the present disclosure provides an oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 chirally controlled internucleotidic linkages; and


the oligonucleotide composition being characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides a composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


which composition is chirally controlled and it is enriched, relative to a substantially racemic preparation of oligonucleotides having the same base sequence, pattern of backbone linkages and pattern of backbone phosphorus modifications, for oligonucleotides of the particular oligonucleotide type, wherein:


the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of skipping of an exon is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides a composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages; and


3) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 non-negatively charged internucleotidic linkages;


the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of skipping of an exon is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


In some embodiments, the present disclosure provides a composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages; and


3) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise:


1) a 5′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety;


2) a 3′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety; and


3) a middle region between the 5′-end region and the 3′-region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotidic units comprising a phosphodiester linkage.


In some embodiments, the present disclosure provides a composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 chirally controlled internucleotidic linkages; and


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 non-negatively charged internucleotidic linkages.


In some embodiments, the present disclosure provides a composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


wherein:


the oligonucleotides of the plurality comprise cholesterol L-carnitine (amide and carbamate bond); Folic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand; Gambogic acid; CPP; Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).


In some embodiments, the present disclosure provides a pharmaceutical composition comprising an oligonucleotide or an oligonucleotide composition of the present disclosure and a pharmaceutically acceptable carrier.


In some embodiments, the present disclosure provides a method for altering splicing of a target transcript, comprising administering an oligonucleotide composition of the present disclosure. In some embodiments, the present disclosure provides a method for reducing level of a transcript or a product thereof, comprising administering an oligonucleotide composition of the present disclosure. In some embodiments, the present disclosure provides a method for increase level of a transcript or a product thereof, comprising administering an oligonucleotide composition of the present disclosure. A method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising administering to a subject susceptible thereto or suffering therefrom a composition described in the present disclosure.


In some embodiments, the present disclosure provides a method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising administering to a subject susceptible thereto or suffering therefrom a composition comprising any DMD oligonucleotide disclosed herein.


In some embodiments, the present disclosure provides a method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising (a) administering to a subject susceptible thereto or suffering therefrom a composition comprising any oligonucleotide disclosed herein, and (b) administering to the subject additional treatment which is capable of preventing, treating, ameliorating or slowing the progress of muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example of multiple exon skipping.



FIG. 2 shows a cartoon of a method for detecting multiple exon skipping.



FIG. 3 illustrates various strategies for multiple exon skipping.





DEFINITIONS

As used herein, the following definitions shall apply unless otherwise indicated. For purposes of this disclosure, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in “Organic Chemistry”, Thomas Sorrell, University Science Books, Sausalito: 1999, and “March's Advanced Organic Chemistry”, 5th Ed., Ed.: Smith, M. B. and March, J., John Wiley & Sons, New York: 2001.


Aliphatic: The term “aliphatic” or “aliphatic group”, as used herein, means a straight-chain (i.e., unbranched) or branched, substituted or unsubstituted hydrocarbon chain that is completely saturated or that contains one or more units of unsaturation, or a monocyclic hydrocarbon or bicyclic or polycyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” “cycloaliphatic” or “cycloalkyl”), or combinations thereof. In some embodiments, aliphatic groups contain 1-100 aliphatic carbon atoms. In some embodiments, aliphatic groups contain 1-20 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-10 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-9 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-8 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-7 aliphatic carbon atoms. In other embodiments, aliphatic groups contain 1-6 aliphatic carbon atoms. In still other embodiments, aliphatic groups contain 1-5 aliphatic carbon atoms, and in yet other embodiments, aliphatic groups contain 1, 2, 3, or 4 aliphatic carbon atoms. In some embodiments, “cycloaliphatic” (or “carbocycle” or “cycloalkyl”) refers to a monocyclic or bicyclic or polycyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic. In some embodiments, “cycloaliphatic” (or “carbocycle” or “cycloalkyl”) refers to a monocyclic C3-C6 hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic. Suitable aliphatic groups include, but are not limited to, linear or branched, substituted or unsubstituted alkyl, alkenyl, alkynyl groups and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.


Alkenyl: As used herein, the term “alkenyl” refers to an aliphatic group, as defined herein, having one or more double bonds.


Alkyl: As used herein, the term “alkyl” is given its ordinary meaning in the art and may include saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In some embodiments, an alkyl has 1-100 carbon atoms. In certain embodiments, a straight chain or branched chain alkyl has about 1-20 carbon atoms in its backbone (e.g., C1-C20 for straight chain, C2-C20 for branched chain), and alternatively, about 1-10. In some embodiments, cycloalkyl rings have from about 3-10 carbon atoms in their ring structure where such rings are monocyclic, bicyclic, or polycyclic, and alternatively about 5, 6 or 7 carbons in the ring structure. In some embodiments, an alkyl group may be a lower alkyl group, wherein a lower alkyl group comprises 1-4 carbon atoms (e.g., C1-C4 for straight chain lower alkyls).


Alkynyl: As used herein, the term “alkynyl” refers to an aliphatic group, as defined herein, having one or more triple bonds.


Animal: As used herein, the term “animal” refers to any member of the animal kingdom. In some embodiments, “animal” refers to humans, at any stage of development. In some embodiments, “animal” refers to non-human animals, at any stage of development. In certain embodiments, the non-human animal is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a primate, and/or a pig). In some embodiments, animals include, but are not limited to, mammals, birds, reptiles, amphibians, fish, and/or worms. In some embodiments, an animal may be a transgenic animal, a genetically-engineered animal, and/or a clone.


Approximately: As used herein, the terms “approximately” or “about” in reference to a number are generally taken to include numbers that fall within a range of 5%, 10%, 15%, or 20% in either direction (greater than or less than) of the number unless otherwise stated or otherwise evident from the context (except where such number would be less than 0% or exceed 100% of a possible value). In some embodiments, use of the term “about” in reference to dosages means±5 mg/kg/day.


Aryl: The term “aryl”, as used herein, used alone or as part of a larger moiety as in “aralkyl,” “aralkoxy,” or “aryloxyalkyl,” refers to monocyclic, bicyclic or polycyclic ring systems having a total of, e.g., five to thirty ring members, wherein at least one ring in the system is aromatic. In some embodiments, an aryl group is a monocyclic, bicyclic or polycyclic ring system having a total of five to fourteen ring members, wherein at least one ring in the system is aromatic, and wherein each ring in the system contains 3 to 7 ring members. In some embodiments, an aryl group is a biaryl group. The term “aryl” may be used interchangeably with the term “aryl ring.” In certain embodiments of the present disclosure, “aryl” refers to an aromatic ring system which includes, but not limited to, phenyl, biphenyl, naphthyl, binaphthyl, anthracyl and the like, which may bear one or more substituents. Also included within the scope of the term “aryl,” as it is used herein, is an aromatic ring fused to one or more non-aromatic rings, such as indanyl, phthalimidyl, naphthimidyl, phenanthridinyl, or tetrahydronaphthyl, and the like.


Characteristic sequence: A “characteristic sequence” is a sequence that is found in all members of a family of polypeptides or nucleic acids, and therefore can be used by those of ordinary skill in the art to define members of the family.


Comparable: The term “comparable” is used herein to describe two (or more) sets of conditions or circumstances that are sufficiently similar to one another to permit comparison of results obtained or phenomena observed. In some embodiments, comparable sets of conditions or circumstances are characterized by a plurality of substantially identical features and one or a small number of varied features. Those of ordinary skill in the art will appreciate that sets of conditions are comparable to one another when characterized by a sufficient number and type of substantially identical features to warrant a reasonable conclusion that differences in results obtained or phenomena observed under the different sets of conditions or circumstances are caused by or indicative of the variation in those features that are varied.


Cycloaliphatic: The term “cycloaliphatic,” “carbocycle,” “carbocyclyl,” “carbocyclic radical,” and “carbocyclic ring,” are used interchangeably, and as used herein, refer to saturated or partially unsaturated, but non-aromatic, cyclic aliphatic monocyclic, bicyclic, or polycyclic ring systems, as described herein, having, unless otherwise specified, from 3 to 30 ring members. Cycloaliphatic groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, cyclooctyl, cyclooctenyl, norbornyl, adamantyl, and cyclooctadienyl. In some embodiments, a cycloaliphatic group has 3-6 carbons. In some embodiments, a cycloaliphatic group is saturated and is cycloalkyl. The term “cycloaliphatic” may also include aliphatic rings that are fused to one or more aromatic or nonaromatic rings, such as decahydronaphthyl or 1,2,3,4-tetrahydronaphth-1-yl. In some embodiments, a cycloaliphatic group is bicyclic. In some embodiments, a cycloaliphatic group is tricyclic. In some embodiments, a cycloaliphatic group is polycyclic. In some embodiments, “cycloaliphatic” refers to C3-C6 monocyclic hydrocarbon, or C8-C10 bicyclic or polycyclic hydrocarbon, that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic, or a C9-C16 polycyclic hydrocarbon that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic.


Dosing regimen: As used herein, a“dosing regimen” or “therapeutic regimen” refers to a set of unit doses (typically more than one) that are administered individually to a subject, typically separated by periods of time. In some embodiments, a given therapeutic agent has a recommended dosing regimen, which may involve one or more doses. In some embodiments, a dosing regimen comprises a plurality of doses each of which are separated from one another by a time period of the same length; in some embodiments, a dosing regime comprises a plurality of doses and at least two different time periods separating individual doses. In some embodiments, all doses within a dosing regimen are of the same unit dose amount. In some embodiments, different doses within a dosing regimen are of different amounts. In some embodiments, a dosing regimen comprises a first dose in a first dose amount, followed by one or more additional doses in a second dose amount different from the first dose amount. In some embodiments, a dosing regimen comprises a first dose in a first dose amount, followed by one or more additional doses in a second dose amount same as the first dose amount.


Heteroaliphatic: The term “heteroaliphatic” refers to an aliphatic group wherein one or more units selected from C, CH, CH2, and CH3 are independently replaced by one or more heteroatoms. In some embodiments, a heteroaliphatic group is heteroalkyl. In some embodiments, a heteroaliphatic group is heteroalkenyl.


Heteroaryl: The terms “heteroaryl” and “heteroar-”, as used herein, used alone or as part of a larger moiety. e.g., “heteroaralkyl,” or “heteroaralkoxy,” refer to monocyclic, bicyclic or polycyclic ring systems having a total of, e.g., five to thirty ring members, wherein at least one ring in the system is aromatic and at least one aromatic ring atom is a heteroatom. In some embodiments, a heteroaryl group is a group having 5 to 10 ring atoms (i.e., monocyclic, bicyclic or polycyclic), in some embodiments 5, 6, 9, or 10 ring atoms. In some embodiments, a heteroaryl group has 6, 10, or 14 π electrons shared in a cyclic array; and having, in addition to carbon atoms, from one to five heteroatoms. Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, and pteridinyl. In some embodiments, a heteroaryl is a heterobiaryl group, such as bipyridyl and the like. The terms “heteroaryl” and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring. Non-limiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H-quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3-b]-1,4-oxazin-3(4H)-one. A heteroaryl group may be monocyclic, bicyclic or polycyclic. The term “heteroaryl” may be used interchangeably with the terms “heteroaryl ring.” “heteroaryl group,” or “heteroaromatic,” any of which terms include rings that are optionally substituted. The term “heteroaralkyl” refers to an alkyl group substituted by a heteroaryl group, wherein the alkyl and heteroaryl portions independently are optionally substituted.


Heteroatom: The term “heteroatom” means an atom that is not carbon or hydrogen. In some embodiments, a heteroatom is oxygen, sulfur, nitrogen, phosphorus, boron or silicon (including any oxidized form of nitrogen, sulfur, phosphorus, or silicon; the quaternized form of any basic nitrogen or a substitutable nitrogen of a heterocyclic ring (for example, N as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl) or NR+ (as in N-substituted pyrrolidinyl); etc.). In some embodiments, a heteroatom is boron, nitrogen, oxygen, silicon, sulfur, or phosphorus. In some embodiments, a heteroatom is nitrogen, oxygen, silicon, sulfur, or phosphorus. In some embodiments, a heteroatom is nitrogen, oxygen, sulfur, or phosphorus. In some embodiments, a heteroatom is nitrogen, oxygen or sulfur.


Heterocycle: As used herein, the terms “heterocycle,” “heterocyclyl,” “heterocyclic radical,” and “heterocyclic ring”, as used herein, are used interchangeably and refer to a monocyclic, bicyclic or polycyclic ring moiety (e.g., 3-30 membered) that is saturated or partially unsaturated and has one or more heteroatom ring atoms. In some embodiments, a hetercyclyl group is a stable 5- to 7-membered monocyclic or 7- to 10-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above. When used in reference to a ring atom of a heterocycle, the term “nitrogen” includes substituted nitrogen. As an example, in a saturated or partially unsaturated ring having 0-3 heteroatoms selected from oxygen, sulfur and nitrogen, the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl), or NR (as in N-substituted pyrrolidinyl). A heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted. Examples of such saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl. The terms “heterocycle.” “heterocyclyl,” “heterocyclyl ring,” “heterocyclic group,” “heterocyclic moiety,” and “heterocyclic radical,” are used interchangeably herein, and also include heterocyclyl rings fused to one or more aryl, heteroaryl, or cycloaliphatic rings, such as indolinyl, 3H-indolyl, chromanyl, phenanthridinyl, or tetrahydroquinolinyl. A heterocyclyl group may be monocyclic, bicyclic or polycyclic. The term “heterocyclylalkyl” refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.


Intraperitoneal: The phrases “intraperitoneal administration” and “administered intraperitonealy” as used herein have their art-understood meaning referring to administration of a compound or composition into the peritoneum of a subject.


In vitro: As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, etc., rather than within an organism (e.g., animal, plant, and/or microbe).


In vivo: As used herein, the term “in vivo” refers to events that occur within an organism (e.g., animal, plant, and/or microbe).


Lower alkyl: The term “lower alkyl” refers to a C1-4 straight or branched alkyl group. Example lower alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and tert-butyl.


Lower haloalkyl: The term “lower haloalkyl” refers to a C1-4 straight or branched alkyl group that is substituted with one or more halogen atoms.


Optionally substituted: As described herein, compounds of the disclosure, e.g., oligonucleotides, lipids, carbohydrates, etc., may contain “optionally substituted” moieties. In general, the term “substituted,” whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent. Unless otherwise indicated, an “optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position. Combinations of substituents envisioned by this disclosure are preferably those that result in the formation of stable or chemically feasible compounds. The term “stable,” as used herein, refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.


Suitable monovalent substituents are halogen; —(CH2)0-4Ro; —(CH2)0-4ORo; —O(CH2)0-4Ro, —O—(CH2)0-4C(O)ORo; —(CH2)0-4CH(ORo)2; —(CH2)0-4Ph, which may be substituted with Ro; —(CH2)0-4 O(CH2)0-1Ph which may be substituted with Ro; —CH═CHPh, which may be substituted with Ro; —(CH2)0-4O(CH2)0-1-pyridyl which may be substituted with Ro; —NO2; —CN; —N3; —(CH2)0-4N(Ro)2; —(CH2)0-4 N(Ro)C(O)Ro; —N(Ro)C(S)Ro; —(CH2)0-4N(Ro)C(O)N(Ro)2; —N(Ro)C(S)N(Ro)2; —(CH2)0-4N(Ro)C(O)ORo; —N(Ro)N(Ro)C(O)Ro; —N(Ro)N(Ro)C(O)N(Ro)2; —N(Ro)N(Ro)C(O)ORo; —(CH2)0-4 C(O)Ro; —C(S)Ro; —(CH2)0-4C(O)ORo; —(CH2)0-4C(O)SRo; —(CH2)0-4C(O)OSi(Ro)3; —(CH2)0-4OC(O)Ro; —OC(O)(CH2)0-4SRo, —SC(S)SRo; —(CH2))0-4SC(O)Ro; —(CH2)0-4C(O)N(Ro)2; —C(S)N(Ro)2; —C(S)SRo; —SC(S)SRo, —(CH2)0-4OC(O)N(Ro)2; —C(O)N(ORo)Ro; —C(O)C(O)Ro; —C(O)CH2C(O)Ro; —C(NORo)Ro; —(CH2)0-4SSRo; —(CH2)0-4(S(O)2Ro; —(CH2)0-4S(O)2ORo; —(CH2)0-4OS(O)2Ro; —S(O)2N(Ro)2; —(CH2)0-4S(O)Ro; —N(Ro)S(O)2N(Ro)2; —N(Ro)S(O)2Ro; —N(ORo)Ro; —C(NH)N(Ro)2; —Si(Ro)3; —OSi(Ro)3; —P(Ro)2; —P(ORo)2; —P(Ro)(ORo); —OP(Ro)2; —OP(ORo)2; —OP(Ro)(ORo); —P[N(Ro)2]2; —P(Ro)[N(Ro)2]; —P(ORo)[N(Ro)2]; —OP[N(Ro)2]2; —OP(Ro)[N(Ro)2]; —OP(ORo)[N(Ro)2]; —N(Ro)P(Ro)2; —N(Ro)P(ORo)2; —N(Ro)P(Ro)(ORo); —N(Ro)P[N(Ro)2]2; —N(Ro)P(Ro)[N(Ro)2]; —N(Ro)P(ORo)[N(Ro)2]2; —B(Ro)2; —B(Ro)(ORo); —B(ORo)2; —OB(Ro)2; —OB(Ro)(ORo); —OB(ORo)2; —P(O)Ro)2; —P(O)(Ro)(ORo); —P(O)(Ro)(SRo); —P(O)(Ro)[N(Ro)2]; —P(O)(ORo)2; —P(O)(SRo)2; —P(O)(ORo)[N(Ro)2]; —P(O)(SRo)[N(Ro)2]; —P(O)(ORo)(SRo); —P(O)[N(Ro)2]2; —OP(O)(Ro)2; —OP(O)(Ro)(ORo); —OP(O)(Ro)(SRo); —OP(O)(Ro)[N(Ro)2]; —OP(O)(ORo)2; —OP(O)(SRo)2; —OP(O)(ORo)[N(Ro)2]; —OP(O)(SRo)[N(Ro)2]; —OP(O)(ORo)(SRo); —OP(O)[N(Ro)2]2; —SP(O)(Ro)2; —SP(O)(Ro)(ORo); —SP(O)(Ro)(SRo); —SP(O)(Ro)[N(Ro)2]; —SP(O)(ORo)2; —SP(O)(SRo)2; —SP(O)(ORo)[N(Ro)2]; —SP(O)(SRo)[N(R)2]; —SP(O)(ORo)(SRo); —SP(O)[N(Ro)2]2; —N(Ro)P(O)(Ro)2; —N(Ro)P(O)(Ro)(ORo); —N(Ro)P(O)(Ro)(SRo); —N(Ro)P(O)(Ro)[N(Ro)2]; —N(Ro)P(O)(ORo)2; —N(Ro)P(O)(SRo)2; —N(Ro)P(O)(ORo)[N(Ro)2]; —N(Ro)P(O)(SRo)[N(Ro)2]; —N(Ro)P(O)(ORo)(SRo); —N(Ro)P(O)[N(Ro)2]2; —P(Ro)2[B(Ro)3]; —P(ORo)2[B(Ro)3]; —P(NRo)2[B(Ro)3]; —P(Ro)(ORo)[B(Ro)3]; —P(Ro)[N(Ro)2][B(R)3]; —P(ORo)[N(Ro)2][B(Ro)3]; —OP(Ro)2[B(Ro)3]; —OP(ORo)2[B(Ro)3]; —OP(NRo)2[B(Ro)3]; —OP(Ro)(ORo)[B(Ro)3]; —OP(Ro)[N(Ro)2][B(Ro)3]; —OP(ORo)[N(Ro)2][B(Ro)3]; —N(Ro)P(Ro)2[B(Ro)3]; —N(Ro)P(ORo)2[B(Ro)3]; —N(Ro)P(NRo)2[B(Ro)3]; —N(Ro)P(Ro)(ORo)[B(Ro)3]; —N(Ro)P(Ro)[N(Ro)2][B(Ro)3]; —N(Ro)P(ORo)[N(Ro)2][B(Ro)3]; —P(OR′)[B(R′)3]—; —(C1-4 straight or branched alkylene)O—N(Ro)2; or —(C1-4 straight or branched alkylene)C(O)O—N(Ro)2, wherein each Ro may be substituted as defined below and is independently hydrogen, C1-20 aliphatic, C1-20 heteroaliphatic having 1-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus, —CH2—(C6-20 aryl), —O(CH2)0-1 (C6-20 aryl), —CH2-(5-20 membered heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus), a 5-20 membered, monocyclic, bicyclic, or polycyclic, saturated, partially unsaturated or aryl ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus, or, notwithstanding the definition above, two independent occurrences of Ro, taken together with their intervening atom(s), form a 3-20 membered, monocyclic, bicyclic, or polycyclic, saturated, partially unsaturated or aryl ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus, which may be substituted as defined below.


Suitable monovalent substituents on Ro (or the ring formed by taking two independent occurrences of Ro together with their intervening atoms), are independently halogen, —(CH2)0-2R, -(haloR), —(CH2)0-2OH, —(CH2)0-2OR, —(CH2)0-2CH(OR)2—O(haloR), —CN, —N3, —(CH2)0-2C(O)R, —(CH2)0-2(C(O)OH, —(CH2)0-2C(O)OR, —(CH2)0-2SR, —(CH2)0-2SH, —(CH2)0-2NH2, —(CH2)0-2NHR, —(CH2)0-2NR2, —NO2, —SiR3, —OSiR3, —C(O)SR, —(C1-4 straight or branched alkylene)C(O)OR*, or —SSR wherein each R is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently selected from C4 aliphatic, —CH2Ph, —O(CH2)0-1Ph, and a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. Suitable divalent substituents on a saturated carbon atom of Ro include ═O and ═S.


Suitable divalent substituents, e.g., on a suitable carbon atom, nitrogen atom, are independently the following: ═O, ═S, ═CR*2, ═NNR*2, ═NNHC(O)R*, ═NNHC(O)OR*, ═NNHS(O)2R*, ═NR*, ═NOR*, —O(C(R*2))2-3O—, or —S(C(R*2))2-3S—, wherein each R* may be substituted as defined below and is independently hydrogen, C1-20 aliphatic, C1-20 heteroaliphatic having 1-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus, —CH2-(C6-20 aryl), —O(CH2)0-1(C6-20 aryl), —CH2-(5-20 membered heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus), a 5-20 membered, monocyclic, bicyclic, or polycyclic, saturated, partially unsaturated or aryl ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus, or, notwithstanding the definition above, two independent occurrences of R*, taken together with their intervening atom(s), form a 3-20 membered, monocyclic, bicyclic, or polycyclic, saturated, partially unsaturated or aryl ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus, which may be substituted as defined below. Suitable divalent substituents that are bound to vicinal substitutable atoms of an “optionally substituted” group include: —O(CR*2)2-3O—.


Suitable monovalent substituents on R* (or the ring formed by taking two independent occurrences of R* together with their intervening atoms), are independently halogen, —(CH2)0-2R, -(haloR), —(CH2)0-2 OH, —(CH2)0-2OR, —(CH2)0-2 CH(OR)2; —O(haloR), —CN, —N3, —(CH2)0-2C(O)R, —(CH2)0-2C(O)OH, —(CH2)0-2C(O)OR, —(CH2)0-2SR, —(CH2)0-2SH, —(CH2)0-2NH2, —(CH2)0-2NHR, —(CH2)0-2NR2, —NO2, —SiR3, —OSiR•3, —C(O)SR, —(C1-4 straight or branched alkylene)C(O)OR, or —SSR wherein each R is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently selected from C4 aliphatic, —CH2Ph, —O(CH2)0-1Ph, and a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. Suitable divalent substituents on a saturated carbon atom of R* include ═O and ═S.


In some embodiments, suitable substituents on a substitutable nitrogen of an “optionally substituted” group include —R, —NR2, —C(O)R, —C(O)OR, —C(O)C(O)R, —C(O)CH2C(O)R, —S(O)2R, —S(O)2NR2, —C(S)NR2, —C(NH)NR2, or —N(R)S(O)2R; wherein each R is independently hydrogen, C1-6 aliphatic which may be substituted as defined below, unsubstituted —OPh, or an unsubstituted 5-6 membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrences of R, taken together with their intervening atom(s) form an unsubstituted 3-12 membered saturated, partially unsaturated, or aryl mono- or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


In some embodiments, suitable substituents on the aliphatic group of R are independently halogen, —R, -(haloR), —OH, —OR, —O(haloR), —CN, —C(O)OH, —C(O)OR, —NH2, —NHR, —NR2, or —NO2, wherein each R is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C1-4 aliphatic, —CH2Ph, —O(CH2)0-1Ph, or a 5-6 membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


Oral: The phrases “oral administration” and “administered orally” as used herein have their art-understood meaning referring to administration by mouth of a compound or composition.


Parenteral: The phrases “parenteral administration” and “administered parenterally” as used herein have their art-understood meaning referring to modes of administration other than enteral and topical administration, usually by injection, and include, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticulare, subcapsular, subarachnoid, intraspinal, and intrastemal injection and infusion.


Partially unsaturated: As used herein, the term “partially unsaturated” refers to a ring moiety that includes at least one double or triple bond. The term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.


Pharmaceutical composition: As used herein, the term “pharmaceutical composition” refers to an active agent, formulated together with one or more pharmaceutically acceptable carriers. In some embodiments, active agent is present in unit dose amount appropriate for administration in a therapeutic regimen that shows a statistically significant probability of achieving a controlled therapeutic effect when administered to a relevant population. In some embodiments, pharmaceutical compositions may be specially formulated for administration in solid or liquid form, including those adapted for the following: oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin, lungs, or oral cavity; intravaginally or intrarectally, for example, as a pessary, cream, or foam; sublingually; ocularly; transdermally; or nasally, pulmonary, and to other mucosal surfaces.


Pharmaceutically acceptable: As used herein, the phrase “pharmaceutically acceptable” refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


Pharmaceutically acceptable carrier: As used herein, the term “pharmaceutically acceptable carrier” means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: sugars, such as lactose, glucose and sucrose, starches, such as corn starch and potato starch; cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients, such as cocoa butter and suppository waxes; oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols, such as propylene glycol; polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; esters, such as ethyl oleate and ethyl laurate; agar; buffering agents, such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; pH buffered solutions; polyesters, polycarbonates and/or polyanhydrides; and other non-toxic compatible substances employed in pharmaceutical formulations.


Pharmaceutically acceptable salt: The term “pharmaceutically acceptable salt”, as used herein, refers to salts of such compounds that are appropriate for use in pharmaceutical contexts, i.e., salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977). In some embodiments, pharmaceutically acceptable salts include, but are not limited to, nontoxic acid addition salts, which are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange. In some embodiments, pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. In some embodiments, pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate. In some embodiments, a provided compound comprises one or more acidic groups, e.g., an oligonucleotide, and a pharmaceutically acceptable salt is an alkali, alkaline earth metal, or ammonium (e.g., an ammonium salt of N(R)3, wherein each R is independently as defined and described in the present disclosure) salt. Representative alkali or alkaline earth metal salts include salts of sodium, lithium, potassium, calcium, magnesium, and the like. In some embodiments, a pharmaceutically acceptable salt is a sodium salt. In some embodiments, a pharmaceutically acceptable salt is a potassium salt. In some embodiments, a pharmaceutically acceptable salt is a calcium salt. In some embodiments, pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate. In some embodiments, a provided compound comprises more than one acid groups, for example, a provided oligonucleotide may comprise two or more acidic groups (e.g., in natural phosphate linkages and/or modified internucleotidic linkages). In some embodiments, a pharmaceutically acceptable salt, or generally a salt, of such a compound comprises two or more cations, which can be the same or different. In some embodiments, in a pharmaceutically acceptable salt (or generally, a salt), each acidic group having sufficient acidity independently exists as its salt form (e.g., in an oligonucleotide comprising natural phosphate linkages and phosphorothioate internucleotidic linkages, each of the natural phosphate linkages and phosphorothioate internucleotidic linkages independently exists as its salt form). In some embodiments, a pharmaceutically acceptable salt of an oligonucleotide is a sodium salt of a provided oligonucleotide. In some embodiments, a pharmaceutically acceptable salt of an oligonucleotide is a sodium salt of a provided oligonucleotide, wherein each acidic linkage, e.g., each natural phosphate linkage and phosphorothioate internucleotidic linkage, exists as a sodium salt form (all sodium salt).


Protecting group: The term “protecting group,” as used herein, is well known in the art and includes those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3rd edition, John Wiley & Sons, 1999, the entirety of which is incorporated herein by reference. Also included are those protecting groups specially adapted for nucleoside and nucleotide chemistry, e.g., those described in Current Protocols in Nucleic Acid Chemistry, edited by Serge L. Beaucage et al. 06/2012, the entirety of Chapter 2 is incorporated herein by reference. Suitable amino-protecting groups include methyl carbamate, ethyl carbamante, 9-fluorenylmethyl carbamate (Fmoc), 9-(2-sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-t-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanthyl)]methyl carbamate (DBD-Tmoc), 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2-trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), 1-(1-adamantyl)-1-methylethyl carbamate (Adpoc), 1,1-dimethyl-2-haloethyl carbamate, 1,1-dimethyl-2,2-dibromoethyl carbamate (DB-t-BOC), 1,1-dimethyl-2,2,2-trichloroethyl carbamate (TCBOC), 1-methyl-1-(4-biphenylyl)ethyl carbamate (Bpoc), 1-(3,5-di-t-butylphenyl)-1-methylethyl carbamate (t-Bumeoc), 2-(2′- and 4′-pyridyl)ethyl carbamate (Pyoc), 2-(N,N-dicyclohexylcarboxamido)ethyl carbamate, t-butyl carbamate (BOC), 1-adamantyl carbamate (Adoc), vinyl carbamate (Voc), allyl carbamate (Alloc), 1-isopropylallyl carbamate (Ipaoc), cinnamyl carbamate (Coc), 4-nitrocinnamyl carbamate (Noc), 8-quinolyl carbamate, N-hydroxypiperidinyl carbamate, alkyldithio carbamate, benzyl carbamate (Cbz), p-methoxybenzyl carbamate (Moz), p-nitobenzyl carbamate, p-bromobenzyl carbamate, p-chlorobenzyl carbamate, 2,4-dichlorobenzyl carbamate, 4-methylsulfinylbenzyl carbamate (Msz), 9-anthrylmethyl carbamate, diphenylmethyl carbamate, 2-methylthioethyl carbamate, 2-methylsulfonylethyl carbamate, 2-p-toluenesulfonyl)ethyl carbamate, [2-(1,3-dithianyl)]methyl carbamate (Dmoc), 4-methylthiophenyl carbamate (Mtpc), 2,4-dimethylthiophenyl carbamate (Bmpc), 2-phosphonioethyl carbamate (Peoc), 2-triphenylphosphonioisopropyl carbamate (Ppoc), 1,1-dimethyl-2-cyanoethyl carbamate, m-chloro-p-acyloxybenzyl carbamate, p-(dihydroxyboryl)benzyl carbamate, 5-benzisoxazolylmethyl carbamate, 2-(trifluoromethyl)-6-chromonylmethyl carbamate (Tcroc), m-nitrophenyl carbamate, 3,5-dimethoxybenzyl carbamate, o-nitrobenzyl carbamate, 3,4-dimethoxy-6-nitrobenzyl carbamate, phenyl(o-nitrophenyl)methyl carbamate, phenothiazinyl-(10)-carbonyl derivative, N′-p-toluenesulfonylaminocarbonyl derivative, N′-phenylaminothiocarbonyl derivative, t-amyl carbamate, S-benzyl thiocarbamate, p-cyanobenzyl carbamate, cyclobutyl carbamate, cyclohexyl carbamate, cyclopentyl carbamate, cyclopropylmethyl carbamate, p-decyloxybenzyl carbamate, 2,2-dimethoxycarbonylvinyl carbamate, o-(N,N-dimethylcarboxamido)benzyl carbamate, 1,1-dimethyl-3-(N,N-dimethylcarboxamido)propyl carbamate, 1,1-<dimethylpropynyl carbamate, di(2-pyridyl)methyl carbamate, 2-furanylmethyl carbamate, 2-iodoethyl carbamate, isoborynl carbamate, isobutyl carbamate, isonicotinyl carbamate, p-(p′-methoxyphenylazo)benzyl carbamate, 1-methylcyclobutyl carbamate, 1-methylcyclohexyl carbamate, 1-methyl-1-cyclopropylmethyl carbamate, 1-methyl-1-(3,5-dimethoxyphenyl)ethyl carbamate, 1-methyl-1-(p-phenylazophenyl)ethyl carbamate, 1-methyl-1-phenylethyl carbamate, 1-methyl-1-(4-pyridyl)ethyl carbamate, phenyl carbamate, p-(phenylazo)benzyl carbamate, 2,4,6-tri-t-butylphenyl carbamate, 4-(trimethylammonium)benzyl carbamate, 2,4,6-trimethylbenzyl carbamate, formamide, acetamide, chloroacetamide, trichloroacetamide, trifluoroacetamide, phenylacetamide, 3-phenylpropanamide, picolinamide, 3-pyridylcarboxamide, N-benzoylphenylalanyl derivative, benzamide, p-phenylbenzamide, o-nitrophenylacetamide, o-nitrophenoxyacetamide, acetoacetamide, (N′-dithiobenzyloxycarbonylamino)acetamide, 3-(p-hydroxyphenyl)propanamide, 3-(o-nitrophenyl)propanamide, 2-methyl-2-(o-nitrophenoxy)propanamide, 2-methyl-2-(o-phenylazophenoxy)propanamide, 4-chlorobutanamide, 3-methyl-3-nitrobutanamide, o-nitrocinnamide, N-acetylmethionine derivative, o-nitrobenzamide, o-(benzoyloxymethyl)benzamide, 4,5-diphenyl-3-oxazolin-2-one, N-phthalimide, N-dithiasuccinimide (Dts), N-2,3-diphenylmaleimide, N-2,5-dimethylpyrrole, N-1,1,4,4-tetramethyldisilylazacyclopentane adduct (STABASE), 5-substituted 1,3-dimethyl-1,3,5-triazacyclohexan-2-one, 5-substituted 1,3-dibenzyl-1,3,5-triazacyclohexan-2-one, 1-substituted 3,5-dinitro-4-pyridone, N-methylamine, N-allylamine, N-[2-(trimethylsilyl)ethoxy]methylamine (SEM), N-3-acetoxypropylamine, N-(1-isopropyl-4-nitro-2-oxo-3-pyroolin-3-yl)anine, quaternary ammonium salts, N-benzylamine, N-di(4-methoxyphenyl)methylamine, N-5-dibenzosuberylamine, N-triphenylmethylamine (Tr), N-[(4-methoxyphenyl)diphenylmethyl]amine (MMTr), N-9-phenylfluorenylamine (PhF), N-2,7-dichloro-9-fluorenylmethyleneamine, N-ferrocenylmethylamino (Fcm), N-2-picolylamino N′-oxide, N-1,1-dimethylthiomethyleneamine, N-benzylideneamine, N-p-methoxybenzylideneamine, N-diphenylmethyleneamine, N-[(2-pyridyl)mesityl]methyleneamine, N-(N′,N′-dimethylaminomethylene)amine, N,N′-isopropylidenediamine, N-p-nitrobenzylideneamine, N-salicylideneamine, N-5-chlorosalicylideneamine, N-(5-chloro-2-hydroxyphenyl)phenylmethyleneamine, N-cyclohexylideneamine, N-(5,5-dimethyl-3-oxo-1-cyclohexenyl)amine. N-borane derivative, N-diphenylborinic acid derivative, N-[phenyl(pentacarbonylchromium- or tungsten)carbonyl]amine, N-copper chelate, N-zinc chelate, N-nitroamine, N-nitrosoamine, amine N oxide, diphenylphosphinamide (Dpp), dimethylthiophosphinamide (Mpt), diphenylthiophosphinamide (Ppt), dialkyl phosphoramidates, dibenzyl phosphoramidate, diphenyl phosphoramidate, benzenesulfenamide, o-nitrobenzenesulfenamide (Nps), 2,4-dinitrobenzenesulfenamide, pentachlorobenzenesulfenamide, 2-nitro-4-methoxybenzenesulfenamide, triphenylmethylsulfenamide, 3-nitropyridinesulfenamide (Npys), p-toluenesulfonamide (Ts), benzenesulfonamide, 2,3,6,-trimethyl-4-methoxybenzenesulfonamide (Mtr), 2,4,6-trimethoxybenzenesulfonamide (Mtb), 2,6-dimethyl-4-methoxybenzenesulfonamide (Pme), 2,3,5,6-tetramethyl-4-methoxybenzenesulfonamide (Mte), 4-methoxybenzenesulfonamide (Mbs), 2,4,6-trimethylbenzenesulfonamide (Mts), 2,6-dimethoxy-4-methylbenzenesulfonamide (iMds), 2,2,5,7,8-pentamethylchroman-6-sulfonamide (Pmc), methanesulfonamide (Ms), β trimethylsilylethanesulfonamide (SES), 9-anthracenesulfonamide, 4-(4′,8-dimethoxynaphthylmethyl)benzenesulfonamide (DNMBS), benzylsulfonamide, trifluoromethylsulfonamide, and phenacylsulfonamide.


Suitably protected carboxylic acids further include, but are not limited to, silyl-, alkyl-, alkenyl-, aryl-, and arylalkyl-protected carboxylic acids. Examples of suitable silyl groups include trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, triisopropylsilyl, and the like. Examples of suitable alkyl groups include methyl, benzyl, p-methoxybenzyl, 3,4-dimethoxybenzyl, trityl, t-butyl, tetrahydropyran-2-yl. Examples of suitable alkenyl groups include allyl. Examples of suitable aryl groups include optionally substituted phenyl, biphenyl, or naphthyl. Examples of suitable arylalkyl groups include optionally substituted benzyl (e.g., p-methoxybenzyl (MPM), 3,4-dimethoxybenzyl, O-nitrobenzyl, p-nitrobenzyl, p-halobenzyl, 2,6-dichlorobenzyl, p-cyanobenzyl), and 2- and 4-picolyl.


Suitable hydroxyl protecting groups include methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), t-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p-methoxybenzyloxymethyl (PMBM). (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), t-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2-(trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3-bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl (MTHP), 4-methoxytetrahydrothiopyranyl, 4-methoxytetrahydrothiopyranyl S,S-dioxide, 1-[(2-chloro-4-methyl)phenyl]-4-methoxypiperidin-4-yl (CTMP), 1,4-dioxan-2-yl, tetrahydrofuranyl, tetrahydrothiofuranyl, 2,3,3a, 4,5,6,7,7a-octahydro-7,8,8-trimethyl-4,7-methanobenzofuran-2-yl, I-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 1-methyl-1-methoxyethyl, 1-methyl-1-benzyloxyethyl, 1-methyl-1-benzyloxy-2-fluoroethyl, 2,2,2-trichloroethyl, 2-trimethylsilylethyl, 2-(phenylselenyl)ethyl, t-butyl, allyl, p-chlorophenyl, p-methoxyphenyl, 2,4-dinitrophenyl, benzyl, p-methoxybenzyl, 3,4-dimethoxybenzyl, o-nitrobenzyl, p-nitrobenzyl, p-halobenzyl, 2,6-dichlorobenzyl, p-cyanobenzyl, p-phenylbenzyl, 2-picolyl, 4-picolyl, 3-methyl-2-picolyl N-oxido, diphenylmethyl, p,p′-dinitrobenzhydryl, 5-dibenzosuberyl, triphenylmethyl, α-naphthyldiphenylmethyl, p-methoxyphenyldiphenylmethyl, di(p-methoxyphenyl)phenylmethyl, tri(p-methoxyphenyl)methyl, 4-(4′-bromophenacyloxyphenyl)diphenylmethyl, 4,4′,4′-tris(4,5-dichlorophthalimidophenyl)methyl, 4,4′,4″-tris(levulinoyloxyphenyl)methyl, 4,4′,4″-tris(benzoyloxyphenyl)methyl, 3-(imidazol-1-yl)bis(4′,4″-dimethoxyphenyl)methyl, 1,1-bis(4-methoxyphenyl)-1′-pyrenylmethyl, 9-anthryl, 9-(9-phenyl)xanthenyl, 9-(9-phenyl-10-oxo)anthryl, 1,3-benzodithiolan-2-yl, benzisothiazolyl S,S-dioxido, trimethylsilyl (TMS), triethylsilyl (TES), triisopropylsilyl (TIPS), dimethylisopropylsilyl (IPDMS), diethylisopropylsilyl(DEIPS),dimethylthexylsilyl, t-butyldimethylsilyl(TBDMS), t-butyldiphenylsilyl (TBDPS), tribenzylsilyl, tri-p-xylylsilyl, triphenylsilyl, diphenylmethylsilyl (DPMS), t-butylmethoxyphenylsilyl (TBMPS), formate, benzoylformate, acetate, chloroacetate, dichloroacetate, trichloroacetate, trifluoroacetate, methoxyacetate, triphenylmethoxyacetate, phenoxyacetate, p-chlorophenoxyacetate, 3-phenylpropionate, 4-oxopentanoate(levulinate), 4,4-(ethylenedithio)pentanoate (levulinoyldithioacetal), pivaloate, adamantoate, crotonate, 4-methoxycrotonate, benzoate, p-phenylbenzoate, 2,4,6-trimethylbenzoate (mesitoate), alkyl methyl carbonate, 9-fluorenylmethyl carbonate (Fmoc), alkyl ethyl carbonate, alkyl 2,2,2-trichloroethyl carbonate (Troc), 2-(trimethylsilyl)ethyl carbonate (TMSEC), 2-(phenylsulfonyl) ethyl carbonate (Psec), 2-(triphenylphosphonio) ethyl carbonate (Peoc), alkyl isobutyl carbonate, alkyl vinyl carbonate alkyl allyl carbonate, alkyl p-nitrophenyl carbonate, alkyl benzyl carbonate, alkyl p-methoxybenzyl carbonate, alkyl 3,4-dimethoxybenzyl carbonate, alkyl o-nitrobenzyl carbonate, alkyl p-nitrobenzyl carbonate, alkyl S-benzyl thiocarbonate, 4-ethoxy-1-napththyl carbonate, methyl dithiocarbonate, 2-iodobenzoate, 4-azidobutyrate, 4-nitro-4-methylpentanoate, o-(dibromomethyl)benzoate, 2-formylbenzenesulfonate, 2-(methylthiomethoxy)ethyl, 4-(methylthiomethoxy)butyrate, 2-(methylthiomethoxymethyl)benzoate, 2,6-dichloro-4-methylphenoxyacetate, 2,6-dichloro-4-(1,1,3,3-tetramethylbutyl)phenoxyacetate, 2,4-bis(1,1-dimethylpropyl)phenoxyacetate, chlorodiphenylacetate, isobutyrate, monosuccinoate, (E)-2-methyl-2-butenoate, o-(methoxycarbonyl)benzoate, α-naphthoate, nitrate, alkyl N,N,N′,N′-tetramethylphosphorodiamidate, alkyl N-phenylcarbamate, borate, dimethylphosphinothioyl, alkyl 2,4-dinitrophenylsulfenate, sulfate, methanesulfonate (mesylate), benzylsulfonate, and tosylate (Ts). For protecting 1,2- or 1,3-diols, the protecting groups include methylene acetal, ethylidene acetal, 1-t-butylethylidene ketal, 1-phenylethylidene ketal, (4-methoxyphenyl)ethylidene acetal, 2,2,2-trichloroethylidene acetal, acetonide, cyclopentylidene ketal, cyclohexylidene ketal, cycloheptylidene ketal, benzylidene acetal, p-methoxybenzylidene acetal, 2,4-dimethoxybenzylidene ketal, 3,4-dimethoxybenzylidene acetal, 2-nitrobenzylidene acetal, methoxymethylene acetal, ethoxymethlene acetal, dimethoxymethylene ortho ester, 1-methoxyethylidene ortho ester, 1-ethoxyethylidine ortho ester, 1,2-dimethoxyethylidene ortho ester, α-methoxybenzylidene ortho ester, 1-(N,N-dimethylamino)ethylidene derivative, α-(N,N′-dimethylamino)benzylidene derivative, 2-oxacyclopentylidene ortho ester, di-t-butylsilylene group (DTBS), 1,3-(1,1,3,3-tetraisopropyldisiloxanylidene) derivative (TIPDS), tetra-t-butoxydisiloxane-1,3-diylidene derivative (TBDS), cyclic carbonates, cyclic boronates, ethyl boronate, and phenyl boronate.


In some embodiments, a hydroxyl protecting group is acetyl, t-butyl, tbutoxymethyl, methoxymethyl, tetrahydropyranyl, 1-ethoxyethyl, 1-(2-chloroethoxy)ethyl, 2-trimethylsilylethyl, p-chlorophenyl, 2,4-dinitrophenyl, benzyl, benzoyl, p-phenylbenzoyl, 2,6-dichlorobenzyl, diphenylmethyl, p-nitrobenzyl, triphenylmethyl (trityl), 4,4′-dimethoxytrityl, trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, t-butyldiphenylsilyl, triphenylsilyl, triisopropylsilyl, benzoylformate, chloroacetyl, trichloroacetyl, trifiuoroacetyl, pivaloyl, 9-fluorenylmethyl carbonate, mesylate, tosylate, triflate, trityl, monomethoxytrityl (MMTr), 4,4′-dimethoxytrityl, (DMTr) and 4,4′,4″-trimethoxytrityl (TMTr), 2-cyanoethyl (CE or Cne), 2-(trimethylsilyl)ethyl (TSE), 2-(2-nitrophenyl)ethyl, 2-(4-cyanophenyl)ethyl 2-(4-nitrophenyl)ethyl (NPE), 2-(4-nitrophenylsulfonyl)ethyl, 3,5-dichlorophenyl, 2,4-dimethylphenyl, 2-nitrophenyl, 4-nitrophenyl, 2,4,6-trimethylphenyl, 2-(2-nitrophenyl)ethyl, butylthiocarbonyl, 4,4′,4″-tris(benzoyloxy)trityl, diphenylcarbamoyl, levulinyl, 2-(dibromomethyl)benzoyl (Dbmb), 2-(isopropylthiomethoxymethyl)benzoyl (Ptmt), 9-phenylxanthen-9-yl (pixyl) or 9-(p-methoxyphenyl)xanthine-9-yl (MOX). In some embodiments, each of the hydroxyl protecting groups is, independently selected from acetyl, benzyl, t-butyldimethylsilyl, t-butyldiphenylsilyl and 4,4′-dimethoxytrityl. In some embodiments, the hydroxyl protecting group is selected from the group consisting of trityl, monomethoxytrityl and 4,4′-dimethoxytrityl group.


In some embodiments, a phosphorous protecting group is a group attached to the internucleotide phosphorous linkage throughout oligonucleotide synthesis. In some embodiments, the phosphorous protecting group is attached to the sulfur atom of the internucleotide phosphorothioate linkage. In some embodiments, the phosphorous protecting group is attached to the oxygen atom of the internucleotide phosphorothioate linkage. In some embodiments, the phosphorous protecting group is attached to the oxygen atom of the internucleotide phosphate linkage. In some embodiments the phosphorous protecting group is 2-cyanoethyl (CE or Cne), 2-trimethylsilylethyl, 2-nitroethyl, 2-sulfonylethyl, methyl, benzyl, o-nitrobenzyl, 2-(p-nitrophenyl)ethyl (NPE or Npe), 2-phenylethyl, 3-(N-tert-butylcarboxamido)-1-propyl, 4-oxopentyl, 4-methylthio-1-butyl, 2-cyano-1,1-dimethylethyl, 4-N-methylaminobutyl, 3-(2-pyridyl)-1-propyl, 2-[N-methyl-N-(2-pyridyl)]aminoethyl, 2-(N-formyl,N-methyl)aminoethyl, 4-[N-methyl-N-(2,2,2-trifluoroacetyl)amino]butyl.


Protein: As used herein, the term “protein” refers to a polypeptide (i.e., a string of at least two amino acids linked to one another by peptide bonds). In some embodiments, proteins include only naturally-occurring amino acids. In some embodiments, proteins include one or more non-naturally-occurring amino acids (e.g., moieties that form one or more peptide bonds with adjacent amino acids). In some embodiments, one or more residues in a protein chain contain a non-amino-acid moiety (e.g., a glycan, etc). In some embodiments, a protein includes more than one polypeptide chain, for example linked by one or more disulfide bonds or associated by other means. In some embodiments, proteins contain L-amino acids, D-amino acids, or both: in some embodiments, proteins contain one or more amino acid modifications or analogs known in the art. Useful modifications include, e.g., terminal acetylation, amidation, methylation, etc. The term “peptide” is generally used to refer to a polypeptide having a length of less than about 100 amino acids, less than about 50 amino acids, less than 20 amino acids, or less than 10 amino acids.


Subject: As used herein, the term “subject” or “test subject” refers to any organism to which a provided compound or composition is administered in accordance with the present disclosure e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans; insects; worms; etc.) and plants. In some embodiments, a subject may be suffering from, and/or susceptible to a disease, disorder, and/or condition.


Substantially: As used herein, the term “substantially” refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result. The term “substantially” is therefore used herein to capture the potential lack of completeness inherent in many biological and/or chemical phenomena.


Suffering from: An individual who is “suffering from” a disease, disorder, and/or condition has been diagnosed with and/or displays one or more symptoms of a disease, disorder, and/or condition.


Susceptible to: An individual who is “susceptible to” a disease, disorder, and/or condition is one who has a higher risk of developing the disease, disorder, and/or condition than does a member of the general public. In some embodiments, an individual who is susceptible to a disease, disorder and/or condition may not have been diagnosed with the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition may exhibit symptoms of the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition may not exhibit symptoms of the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will develop the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will not develop the disease, disorder, and/or condition.


Systemic: The phrases “systemic administration,” “administered systemically,” “peripheral administration,” and “administered peripherally” as used herein have their art-understood meaning referring to administration of a compound or composition such that it enters the recipient's system.


Tautomeric forms: The phrase “tautomeric forms,” as used herein and generally understood in the art, is used to describe different isomeric forms of organic compounds that are capable of facile interconversion. Tautomers may be characterized by the formal migration of a hydrogen atom or proton, accompanied by a switch of a single bond and adjacent double bond. In some embodiments, tautomers may result from prototropic tautomerism (i.e., the relocation of a proton). In some embodiments, tautomers may result from valence tautomerism (i.e., the rapid reorganization of bonding electrons). All such tautomeric forms are intended to be included within the scope of the present disclosure. In some embodiments, tautomeric forms of a compound exist in mobile equilibrium with each other, so that attempts to prepare the separate substances results in the formation of a mixture. In some embodiments, tautomeric forms of a compound are separable and isolatable compounds. In some embodiments of the disclosure, chemical compositions may be provided that are or include pure preparations of a single tautomeric form of a compound. In some embodiments of the disclosure, chemical compositions may be provided as mixtures of two or more tautomeric forms of a compound. In certain embodiments, such mixtures contain equal amounts of different tautomeric forms; in certain embodiments, such mixtures contain different amounts of at least two different tautomeric forms of a compound. In some embodiments of the disclosure, chemical compositions may contain all tautomeric forms of a compound. In some embodiments of the disclosure, chemical compositions may contain less than all tautomeric forms of a compound. In some embodiments of the disclosure, chemical compositions may contain one or more tautomeric forms of a compound in amounts that vary over time as a result of interconversion. In some embodiments of the disclosure, the tautomerism is keto-enol tautomerism. One of skill in the chemical arts would recognize that a keto-enol tautomer can be “trapped” (i.e., chemically modified such that it remains in the “enol” form) using any suitable reagent known in the chemical arts in to provide an enol derivative that may subsequently be isolated using one or more suitable techniques known in the art. Unless otherwise indicated, the present disclosure encompasses all tautomeric forms of relevant compounds, whether in pure form or in admixture with one another.


Therapeutic agent: As used herein, the phrase “therapeutic agent” refers to any agent that, when administered to a subject, has a therapeutic effect and/or elicits a desired biological and/or pharmacological effect. In some embodiments, a therapeutic agent is any substance that can be used to alleviate, ameliorate, relieve, inhibit, prevent, delay onset of, reduce severity of, and/or reduce incidence of one or more symptoms or features of a disease, disorder, and/or condition.


Therapeutically effective amount: As used herein, the term “therapeutically effective amount” means an amount of a substance (e.g., a therapeutic agent, composition, and/or formulation) that elicits a desired biological response when administered as part of a therapeutic regimen. In some embodiments, a therapeutically effective amount of a substance is an amount that is sufficient, when administered to a subject suffering from or susceptible to a disease, disorder, and/or condition, to treat, diagnose, prevent, and/or delay the onset of the disease, disorder, and/or condition. As will be appreciated by those of ordinary skill in this art, the effective amount of a substance may vary depending on such factors as the desired biological endpoint, the substance to be delivered, the target cell or tissue, etc. For example, the effective amount of compound in a formulation to treat a disease, disorder, and/or condition is the amount that alleviates, ameliorates, relieves, inhibits, prevents, delays onset of, reduces severity of and/or reduces incidence of one or more symptoms or features of the disease, disorder, and/or condition. In some embodiments, a therapeutically effective amount is administered in a single dose; in some embodiments, multiple unit doses are required to deliver a therapeutically effective amount.


Treat: As used herein, the term “treat,” “treatment,” or “treating” refers to any method used to partially or completely alleviate, ameliorate, relieve, inhibit, prevent, delay onset of, reduce severity of, and/or reduce incidence of one or more symptoms or features of a disease, disorder, and/or condition. Treatment may be administered to a subject who does not exhibit signs of a disease, disorder, and/or condition. In some embodiments, treatment may be administered to a subject who exhibits only early signs of the disease, disorder, and/or condition, for example for the purpose of decreasing the risk of developing pathology associated with the disease, disorder, and/or condition.


Unit dose: The expression “unit dose” as used herein refers to an amount administered as a single dose and/or in a physically discrete unit of a pharmaceutical composition. In many embodiments, a unit dose contains a predetermined quantity of an active agent. In some embodiments, a unit dose contains an entire single dose of the agent. In some embodiments, more than one unit dose is administered to achieve a total single dose. In some embodiments, administration of multiple unit doses is required, or expected to be required, in order to achieve an intended effect. A unit dose may be, for example, a volume of liquid (e.g., an acceptable carrier) containing a predetermined quantity of one or more therapeutic agents, a predetermined amount of one or more therapeutic agents in solid form, a sustained release formulation or drug delivery device containing a predetermined amount of one or more therapeutic agents, etc. It will be appreciated that a unit dose may be present in a formulation that includes any of a variety of components in addition to the therapeutic agent(s). For example, acceptable carriers (e.g., pharmaceutically acceptable carriers), diluents, stabilizers, buffers, preservatives, etc., may be included as described infra. It will be appreciated by those skilled in the art, in many embodiments, a total appropriate daily dosage of a particular therapeutic agent may comprise a portion, or a plurality, of unit doses, and may be decided, for example, by the attending physician within the scope of sound medical judgment. In some embodiments, the specific effective dose level for any particular subject or organism may depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of specific active compound employed; specific composition employed; age, body weight, general health, sex and diet of the subject; time of administration, and rate of excretion of the specific active compound employed; duration of the treatment; drugs and/or additional therapies used in combination or coincidental with specific compound(s) employed, and like factors well known in the medical arts.


Unsaturated: The term “unsaturated,” as used herein, means that a moiety has one or more units of unsaturation.


Wild-type: As used herein, the term “wild-type” has its art-understood meaning that refers to an entity having a structure and/or activity as found in nature in a “normal” (as contrasted with mutant, diseased, altered, etc) state or context. Those of ordinary skill in the art will appreciate that wild type genes and polypeptides often exist in multiple different forms (e.g., alleles).


Nucleic acid: The term “nucleic acid” includes any nucleotides, analogs thereof, and polymers thereof. The term “polynucleotide” as used herein refer to a polymeric form of nucleotides of any length, either ribonucleotides (RNA) or deoxyribonucleotides (DNA) or analogs thereof. These terms refer to the primary structure of the molecules and include double- and single-stranded DNA, and double- and single-stranded RNA. These terms include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs and modified polynucleotides such as, though not limited to, methylated, protected and/or capped nucleotides or polynucleotides. The terms encompass poly- or oligo-ribonucleotides (RNA) and poly- or oligo-deoxyribonucleotides (DNA); RNA or DNA derived from N-glycosides or C-glycosides of nucleobases and/or modified nucleobases; nucleic acids derived from sugars and/or modified sugars; and nucleic acids derived from phosphate bridges and/or modified phosphorus-atom bridges (also referred to herein as “internucleotidic linkages”). The term encompasses nucleic acids containing any combinations of nucleobases, modified nucleobases, sugars, modified sugars, natural natural phosphate internucleotidic linkages or non-natural internucleotidic linkages. Examples include, and are not limited to, nucleic acids containing ribose moieties, nucleic acids containing deoxy-ribose moieties, nucleic acids containing both ribose and deoxyribose moieties, nucleic acids containing ribose and modified ribose moieties. Unless otherwise specified, the prefix poly-refers to a nucleic acid containing 2 to about 10,000 nucleotide monomer units and wherein the prefix oligo-refers to a nucleic acid containing 2 to about 200 nucleotide monomer units.


Nucleotide: The term “nucleotide” as used herein refers to a monomeric unit of a polynucleotide that consists of a heterocyclic base, a sugar, and one or more phosphate groups or phosphorus-containing internucleotidic linkages. Naturally occurring bases, (guanine, (G), adenine, (A), cytosine, (C), thymine, (T), and uracil (U)) are derivatives of purine or pyrimidine, though it should be understood that naturally and non-naturally occurring base analogs are also included. Naturally occurring sugars include the pentose (five-carbon sugar) deoxyribose (which is found in natural DNA) or ribose (which is found in natural RNA), though it should be understood that naturally and non-naturally occurring sugar analogs are also included, such as sugars with 2-modifications, sugars in locked nucleic acid (LNA) and phosphorodiamidate morpholino oligomer (PMO). Nucleotides are linked via internucleotidic linkages to form nucleic acids, or polynucleotides. Many internucleotidic linkages are known in the art (such as, though not limited to, natural phosphate linkage, phosphorothioate linkages, boranophosphate linkages and the like). Artificial nucleic acids include PNAs (peptide nucleic acids), phosphotriesters, phosphorothionates, H-phosphonates, phosphoramidates, boranophosphates, methylphosphonates, phosphonoacetates, thiophosphonoacetates and other variants of the phosphate backbone of native nucleic acids, etc. In some embodiments, a nucleotide is a natural nucleotide comprising a naturally occurring nucleobase, a natural occurring sugar and the natural phosphate linkage. In some embodiments, a nucleotide is a modified nucleotide or a nucleotide analog, which is a structural analog that can be used in lieu of a natural nucleotide.


Modified nucleotide: The term “modified nucleotide” includes any chemical moiety which differs structurally from a natural nucleotide but is capable of performing at least one function of a natural nucleotide. In some embodiments, a modified nucleotide comprises a modification at a sugar, base and/or internucleotidic linkage. In some embodiments, a modified nucleotide comprises a modified sugar, modified nucleobase and/or modified internucleotidic linkage. In some embodiments, a modified nucleotide is capable of at least one function of a nucleotide, e.g., forming a subunit in a polymer capable of base-pairing to a nucleic acid comprising an at least complementary sequence of bases.


Analog: The term “analog” includes any chemical moiety which differs structurally from a reference chemical moiety or class of moieties, but which is capable of performing at least one function of such a reference chemical moiety or class of moieties. As non-limiting examples, a nucleotide analog differs structurally from a nucleotide but performs at least one function of a nucleotide; a nucleobase analog differs structurally from a nucleobase but performs at least one function of a nucleobase; a sugar analog differs structurally from a nucleobase but performs at least one function of a sugar, etc.


Nucleoside: The term “nucleoside” refers to a moiety wherein a nucleobase or a modified nucleobase is covalently bound to a sugar or modified sugar.


Modified nucleoside: The term “modified nucleoside” refers to a chemical moiety which is chemically distinct from a natural nucleoside, but which is capable of performing at least one function of a nucleoside. In some embodiments, a modified nucleoside is derived from or chemically similar to a natural nucleoside, but which comprises a chemical modification which differentiates it from a natural nucleoside. Non-limiting examples of modified nucleosides include those which comprise a modification at the base and/or the sugar. Non-limiting examples of modified nucleosides include those with a 2′-modification at a sugar. Non-limiting examples of modified nucleosides also include abasic nucleosides (which lack a nucleobase). In some embodiments, a modified nucleoside is capable of at least one function of a nucleoside, e.g., forming a moiety in a polymer capable of base-pairing to a nucleic acid comprising an at least complementary sequence of bases.


Nucleoside analog: The term “nucleoside analog” refers to a chemical moiety which is chemically distinct from a natural nucleoside, but which is capable of performing at least one function of a nucleoside. In some embodiments, a nucleoside analog comprises an analog of a sugar and/or an analog of a nucleobase. In some embodiments, a modified nucleoside is capable of at least one function of a nucleoside, e.g., forming a moiety in a polymer capable of base-pairing to a nucleic acid comprising a complementary sequence of bases.


Sugar: The term “sugar” refers to a monosaccharide or polysaccharide in closed and/or open form. In some embodiments, sugars are monosaccharides. In some embodiments, sugars are polysaccharides. Sugars include, but are not limited to, ribose, deoxyribose, pentofuranose, pentopyranose, and hexopyranose moieties. As used herein, the term “sugar” also encompasses structural analogs used in lieu of conventional sugar molecules, such as glycol, polymer of which forms the backbone of the nucleic acid analog, glycol nucleic acid (“GNA”), etc. As used herein, the term “sugar” also encompasses structural analogs used in lieu of natural or naturally-occurring nucleotides, such as modified sugars and nucleotide sugars. In some embodiments, a sugar is D-2-deoxyribose. In some embodiments, a sugar is beta-D-deoxyribofuranose. In some embodiments, a sugar moiety is a beta-D-deoxyribofuranose moiety. In some embodiments, a sugar is D-ribose. In some embodiments, a sugar is beta-D-ribofuranose. In some embodiments, a sugar moiety is a beta-D-ribofuranose moiety. In some embodiments, a sugar is optionally substituted beta-D-deoxyribofuranose or beta-D-ribofuranose. In some embodiments, a sugar moiety is an optionally substituted beta-D-deoxyribofuranose or beta-D-ribofuranose moiety. In some embodiments, a sugar moiety/unit in an oligonucleotide, nucleic acid, etc. is a sugar which comprises one or more carbon atoms each independently connected to an internucleotidic linkage, e.g., optionally substituted beta-D-deoxyribofuranose or beta-D-ribofuranose whose 5′-C and/or 3-C are each independently connected to an internucleotidic linkage (e.g., a natural phosphate linkage, a modified internucleotidic linkage, a chirally controlled internucleotidic linkage, etc.).


Modified sugar: The term “modified sugar” refers to a moiety that can replace a sugar. A modified sugar mimics the spatial arrangement, electronic properties, or some other physicochemical property of a sugar. In some embodiments, a modified sugar is substituted beta-D-deoxyribofuranose or beta-D-ribofuranose. In some embodiments, a modified sugar comprises a 2′-modification. In some embodiments, a modified sugar comprises a linker (e.g., optionally substituted bivalent heteroaliphatic) connecting two sugar carbon atoms (e.g., C2 and C4), e.g., as found in LNA. In some embodiments, a linker is —O—CH(R)—, wherein R is as described in the present disclosure. In some embodiments, a linker is —O—CH(R)—, wherein O is connected to C2, and —CH(R)— is connected to C4 of a sugar, and R is as described in the present disclosure. In some embodiments, R is methyl. In some embodiments, R is —H. In some embodiments, —CH(R)— is of S configuration. In some embodiments, —CH(R)— is of R configuration.


Nucleobase: The term “nucleobase” refers to the parts of nucleic acids that are involved in the hydrogen-bonding that binds one nucleic acid strand to another complementary strand in a sequence specific manner. The most common naturally-occurring nucleobases are adenine (A), guanine (G), uracil (U), cytosine (C), and thymine (T). In some embodiments, a modified nucleobase is a substituted nucleobase which nucleobase is selected from A, T, C, G, U, and tautomers thereof. In some embodiments, the naturally-occurring nucleobases are modified adenine, guanine, uracil, cytosine, or thymine. In some embodiments, the naturally-occurring nucleobases are methylated adenine, guanine, uracil, cytosine, or thymine. In some embodiments, a nucleobase is a “modified nucleobase,” e.g., a nucleobase other than adenine (A), guanine (G), uracil (U), cytosine (C), and thymine (T). In some embodiments, the modified nucleobases are methylated adenine, guanine, uracil, cytosine, or thymine. In some embodiments, the modified nucleobase mimics the spatial arrangement, electronic properties, or some other physicochemical property of the nucleobase and retains the property of hydrogen-bonding that binds one nucleic acid strand to another in a sequence specific manner. In some embodiments, a modified nucleobase can pair with all of the five naturally occurring bases (uracil, thymine, adenine, cytosine, or guanine) without substantially affecting the melting behavior, recognition by intracellular enzymes or activity of the oligonucleotide duplex. As used herein, the term “nucleobase” also encompasses structural analogs used in lieu of natural or naturally-occurring nucleotides, such as modified nucleobases and nucleobase analogs. In some embodiments, a nucleobase is an optionally substituted A, T, C, G, or U. or a substituted nucleobase which nucleobase is selected from A, T, C, G U and tautomers thereof.


Modified nucleobase: The terms “modified nucleobase”, “modified base” and the like refer to a chemical moiety which is chemically distinct from a nucleobase, but which is capable of performing at least one function of a nucleobase. In some embodiments, a modified nucleobase is a nucleobase which comprises a modification. In some embodiments, a modified nucleobase is capable of at least one function of a nucleobase, e.g., forming a moiety in a polymer capable of base-pairing to a nucleic acid comprising an at least complementary sequence of bases. In some embodiments, a modified nucleobase is a substituted nucleobase which nucleobase is selected from A, T, C, G, U, and tautomers thereof.


Chiral ligand: The term “chiral ligand” or “chiral auxiliary” refers to a moiety that is chiral and can be incorporated into a reaction so that the reaction can be carried out with certain stereoselectivity. In some embodiments, the term may also refer to a compound that comprises such a moiety.


Blocking group: The term “blocking group” refers to a group that masks the reactivity of a functional group. The functional group can be subsequently unmasked by removal of the blocking group. In some embodiments, a blocking group is a protecting group.


Moiety: The term “moiety” refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule. In some embodiments, a moiety of a compound is a monovalent, bivalent, or polyvalent group formed from the compound by removing one or more —H and/or equivalents thereof from a compound. In some embodiments, depending on its context, “moiety” may also refer to a compound or entity from which the moiety is derived from.


Solid support: The term “solid support” when used in the context of preparation of nucleic acids, oligonucleotides, or other compounds refers to any support which enables synthesis of nucleic acids, oligonucleotides or other compounds. In some embodiments, the term refers to a glass or a polymer, that is insoluble in the media employed in the reaction steps performed to synthesize nucleic acids, and is derivatized to comprise reactive groups. In some embodiments, the solid support is Highly Cross-linked Polystyrene (HCP) or Controlled Pore Glass (CPG). In some embodiments, the solid support is Controlled Pore Glass (CPG). In some embodiments, the solid support is hybrid support of Controlled Pore Glass (CPG) and Highly Cross-linked Polystyrene (HCP).


Reading frame: The term “reading frame” refers to one of the six possible reading frames, three in each direction, of a double stranded DNA molecule. The reading frame that is used determines which codons are used to encode amino acids within the coding sequence of a DNA molecule.


Antisense: As used herein, an “antisense” nucleic acid molecule comprises a nucleotide sequence which is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule, complementary to an mRNA sequence or complementary to the coding strand of a gene. Accordingly, an antisense nucleic acid molecule can associate via hydrogen bonds to a sense nucleic acid molecule. In some embodiments, transcripts may be generated from both strands. In some embodiments, transcripts may or may not encode protein products. In some embodiments, when directed or targeted to a particular nucleic acid sequence, a “antisense” sequence may refer to a sequence that is complementary to the particular nucleic acid sequence.


Oligonucleotide: the term “oligonucleotide” refers to a polymer or oligomer of nucleotide monomers, containing any combination of nucleobases, modified nucleobases, sugars, modified sugars, natural phosphate linkages, or non-natural internucleotidic linkages.


Oligonucleotides can be single-stranded or double-stranded. As used herein, the term “oligonucleotide strand” encompasses a single-stranded oligonucleotide. A single-stranded oligonucleotide can have double-stranded regions and a double-stranded oligonucleotide can have single-stranded regions. Example oligonucleotides include, but are not limited to structural genes, genes including control and termination regions, self-replicating systems such as viral or plasmid DNA, single-stranded and double-stranded siRNAs and other RNA interference reagents (RNAi agents or iRNA agents), shRNA, antisense oligonucleotides, ribozymes, microRNAs, microRNA mimics, supermirs, aptamers, antimirs, antagomirs, U1 adaptors, triplex-forming oligonucleotides, G-quadruplex oligonucleotides. RNA activators, immuno-stimulatory oligonucleotides, and decoy oligonucleotides.


Double-stranded and single-stranded oligonucleotides that are effective in inducing RNA interference may also be referred to as siRNA, RNAi agent, or iRNA agent. In some embodiments, these RNA interference inducing oligonucleotides associate with a cytoplasmic multi-protein complex known as RNAi-induced silencing complex (RISC). In many embodiments, single-stranded and double-stranded RNAi agents are sufficiently long that they can be cleaved by an endogenous molecule, e.g., by Dicer, to produce smaller oligonucleotides that can enter the RISC machinery and participate in RISC mediated cleavage of a target sequence, e.g. a target mRNA.


Oligonucleosides of the present disclosure can be of various lengths. In particular embodiments, oligonucleosides can range from about 2 to about 200 nucleosides in length. In various related embodiments, oligonucleosides, single-stranded, double-stranded, and triple-stranded, can range in length from about 4 to about 10 nucleosides, from about 10 to about 50 nucleosides, from about 20 to about 50 nucleosides, from about 15 to about 30 nucleosides, from about 20 to about 30 nucleosides in length. In some embodiments, the oligonucleoside is from about 9 to about 39 nucleosides in length. In some embodiments, the oligonucleoside is at least 15 nucleosides in length. In some embodiments, the oligonucleoside is at least 20 nucleosides in length. In some embodiments, the oligonucleoside is at least 25 nucleosides in length. In some embodiments, the oligonucleoside is at least 30 nucleosides in length. In some embodiments, the oligonucleoside is a duplex of complementary strands of at least 18 nucleosides in length. In some embodiments, the oligonucleoside is a duplex of complementary strands of at least 21 nucleosides in length. In some embodiments, for the purpose of oligonucleotide lengths, each nucleoside counted independently comprises an optionally substituted nucleobase selected from A, T, C, G, U and their tautomers.


Internucleotidic linkage: As used herein, the phrase “internucleotidic linkage” refers generally to a linkage, typically a phosphorus-containing linkage, between nucleotide units of a nucleic acid or an oligonucleotide, and is interchangeable with “inter-sugar linkage”, “internucleotidic linkage,” and “phosphorus atom bridge,” as used above and herein. As appreciated by those skilled in the art, natural DNA and RNA contain natural phosphate linkages. In some embodiments, an internucleotidic linkage is a natural phosphate linkage (—OP(O)(OH)O—, typically existing as its anionic form —OP(O)(O)O— at pH e.g., ˜7.4), as found in naturally occurring DNA and RNA molecules. In some embodiments, an internucleotidic linkage is a modified internucleotidic linkage (or non-natural internucleotidic linkage), which is structurally different from a natural phosphate linkage but may be utilized in place of a natural phosphate linkage, e.g., phosphorothioate internucleotidic linkage. PMO linkages, etc. In some embodiments, an internucleotidic linkage is a modified internucleotidic linkage wherein one or more oxygen atoms of a natural phosphodiester linkage are independently replaced by one or more organic or inorganic moieties. In some embodiments, such an organic or inorganic moiety is selected from but not limited to ═S, ═Se, ═NR′, —SR′, —SeR′, —N(R′)2, B(R′), —S—, —Se—, and —N(R′)—, wherein each R′ is independently as defined and described below. In some embodiments, an internucleotidic linkage is a phosphotriester linkage. In some embodiments, an internucleotidic linkage is a phosphorothioate diester linkage (phosphorothioate internucleotidic linkage,




embedded image


typically existing as its anionic form —OP(O)(S)O— at pH e.g., ˜7.4). It is understood by a person of ordinary skill in the art that an internucleotidic linkage may exist as an anion or cation at a given pH due to the existence of acid or base moieties in the linkage. In some embodiments, an internucleotidic linkage is a non-negatively charged internucleotidic linkage at a given pH. In some embodiments, an internucleotidic linkage is a neutral internucleotidic linkage at a given pH. In some embodiments, a given pH is pH ˜7.4. In some embodiments, a given pH is in the range of pH about 0, 1, 2, 3, 4, 5, 6 or 7 to pH about 7, 8, 9, 10, 11, 12, 13 or 14. In some embodiments, a given pH is in the range of pH 5-9. In some embodiments, a given pH is in the range of pH 6-8. In some embodiments, an internucleotidic linkage has the structure of formula I, I-a, I-b. I-c, I-n-1, I-n-2. I-n-3, I-n-4, II, II-a-1, II-a-2. II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, etc., as described in the present disclosure. In some embodiments, a non-negatively charged internucleotidic linkage has the structure of formula I-n-1, i-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, etc., as described in the present disclosure. In some embodiments, an internucleotidic linkage is one of, e.g., PNA (peptide nucleic acid) or PMO (phosphorodiamidate Morpholino oligomer) linkage. In some embodiments, an internucleotidic linkage comprises a chiral linkage phosphorus. In some embodiments, an internucleotidic linkage is a chirally controlled internucleotidic linkage. In some embodiments, an internucleotidic linkage is selected from: s (phosphorothioate), s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17 or s18, wherein each of s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17 and s18 is independently as described in WO 2017/062862.


Unless otherwise specified, the Rp/Sp designations preceding an oligonucleotide sequence describe the configurations of linkage phosphorus in chirally controlled internucleotidic linkages sequentially from 5′ to 3′ of the oligonucleotide sequence. For instance, in (Rp, Sp)-ATsCs1GA, the phosphorus in the “s” linkage between T and C has Rp configuration and the phosphorus in “s1” linkage between C and G has Sp configuration. In some embodiments, “All-(Rp)” or “All-(Sp)” is used to indicate that all chiral linkage phosphorus atoms in chirally controlled internucleotidic linkages have the same Rp or Sp configuration, respectively. For instance, All-(Rp)-GsCsCsTsCsAsGsTsCsTsGsCsTsTsCsGsCsAsCsC indicates that all the chiral linkage phosphorus atoms in the oligonucleotide have Rp configuration; All-(Sp)-GsCsCsTsCsAsGsTsCsTsGsCsTsTsCsGsCsAsCsC indicates that all the chiral linkage phosphorus atoms in the oligonucleotide have Sp configuration.


Oligonucleotide type: As used herein, the phrase “oligonucleotide type” is used to define oligonucleotides that have a particular base sequence, pattern of backbone linkages (i.e., pattern of internucleotidic linkage types, for example, natural phosphate linkages, phosphorothioate internucleotidic linkages, negatively charged internucleotidic linkages, neutral internucleotidic linkages etc), pattern of backbone chiral centers (i.e. pattern of linkage phosphorus stereochemistry (Rp/Sp)), and pattern of backbone phosphorus modifications (e.g., pattern of “-X-L-R1” groups in formula I). In some embodiments, oligonucleotides of a common designated “type” are structurally identical to one another.


One of skill in the art will appreciate that synthetic methods of the present disclosure provide for a degree of control during the synthesis of an oligonucleotide strand such that each nucleotide unit of the oligonucleotide strand can be designed and/or selected in advance to have a particular stereochemistry at the linkage phosphorus and/or a particular modification at the linkage phosphorus, and/or a particular base, and/or a particular sugar. In some embodiments, an oligonucleotide strand is designed and/or selected in advance to have a particular combination of stereocenters at the linkage phosphorus. In some embodiments, an oligonucleotide strand is designed and/or determined to have a particular combination of modifications at the linkage phosphorus. In some embodiments, an oligonucleotide strand is designed and/or selected to have a particular combination of bases. In some embodiments, an oligonucleotide strand is designed and/or selected to have a particular combination of one or more of the above structural characteristics. The present disclosure provides compositions comprising or consisting of a plurality of oligonucleotide molecules (e.g., chirally controlled oligonucleotide compositions). In some embodiments, all such molecules are of the same type. In some embodiments, all such molecules are structurally identical to one another. In some embodiments, provided compositions comprise a plurality of oligonucleotides of different types, typically in pre-determined (non-random) relative amounts.


Chiral control: As used herein, “chiral control” refers to control of the stereochemical designation of a chiral linkage phosphorus in a chiral internucleotidic linkage within an oligonucleotide. In some embodiments, a control is achieved through a chiral element that is absent from the sugar and base moieties of an oligonucleotide, for example, in some embodiments, a control is achieved through use of one or more chiral auxiliaries during oligonucleotide preparation as exemplified in the present disclosure, which chiral auxiliaries often are part of chiral phosphoramidites used during oligonucleotide preparation. In contrast to chiral control, a person having ordinary skill in the art appreciates that conventional oligonucleotide synthesis which does not use chiral auxiliaries cannot control stereochemistry at a chiral internucleotidic linkage if such conventional oligonucleotide synthesis is used to form the chiral internucleotidic linkage. In some embodiments, the stereochemical designation of each chiral linkage phosphorus in a chiral internucleotidic linkage within an oligonucleotide is controlled.


Chirally controlled oligonucleotide composition: The terms “chirally controlled (stereocontrolled or stereodefined) oligonucleotide composition”, “chirally controlled (stereocontrolled or stereodefined) nucleic acid composition”, and the like, as used herein, refers to a composition that comprises a plurality of oligonucleotides (or nucleic acids, chirally controlled oligonucleotides or chirally controlled nucleic acids) which share 1) a common base sequence, 2) a common pattern of backbone linkages; 3) a common pattern of backbone chiral centers, and 4) a common pattern of backbone phosphorus modifications (oligonucleotides of a particular type), wherein the plurality of oligonucleotides (or nucleic acids) share the same stereochemistry at one or more chiral internucleotidic linkages (chirally controlled internucleotidic linkages, whose chiral linkage phosphorus is Rp or Sp, not a random Rp and Sp mixture as non-chirally controlled internucleotidic linkages). Level of the plurality of oligonucleotides (or nucleic acids) in a chirally controlled oligonucleotide composition is non-random (pre-determined, controlled). Chirally controlled oligonucleotide compositions are typically prepared through chirally controlled oligonucleotide preparation to stereoselectively form one or more chiral internucleotidic linkages (e.g., using chiral auxiliaries as exemplified in the present disclosure, compared to non-chirally controlled (stereorandom, non-stereoselective, racemic) oligonucleotide synthesis such as traditional phosphoramidite-based oligonucleotide synthesis using no chiral auxiliaries or chiral catalysts to purposefully control stereoselectivity). A chirally controlled oligonucleotide composition is enriched, relative to a substantially racemic preparation of oligonucleotides having the common base sequence, the common pattern of backbone linkages, and the common pattern of backbone phosphorus modifications, for oligonucleotides of the plurality. In some embodiments, a chirally controlled oligonucleotide composition comprises a plurality of oligonucleotides of a particular oligonucleotide type defined by: 1) base sequence; 2) pattern of backbone linkages; 3) pattern of backbone chiral centers; and 4) pattern of backbone phosphorus modifications, wherein it is enriched, relative to a substantially racemic preparation of oligonucleotides having the same base sequence, pattern of backbone linkages, and pattern of backbone phosphorus modifications, for oligonucleotides of the particular oligonucleotide type. As one having ordinary skill in the art readily appreciates, such enrichment can be characterized in that compared to a substantially racemic preparation, at each chirally controlled internucleotidic linkage, a higher level of the linkage phosphorus has the desired configuration. In some embodiments, each chirally controlled internucleotidic linkage independently has a diastereopurity of at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% with respect to its chiral linkage phosphorus. In some embodiments, each independently has a diastereopurity of at least 90%. In some embodiments, each independently has a diastereopurity of at least 95%. In some embodiments, each independently has a diastereopurity of at least 97%. In some embodiments, each independently has a diastereopurity of at least 98%. In some embodiments, oligonucleotides of a plurality have the same constitution. In some embodiments, oligonucleotides of a plurality have the same constitution and stereochemistry, and are structurally identical.


In some embodiments, the plurality of oligonucleotides in a chirally controlled oligonucleotide composition share the same base sequence, the same, if any, nucleobase, sugar, and internucleotidic linkage modifications, and the same stereochemistry (Rp or Sp) independently at linkage phosphorus chiral centers of one or more chirally controlled internucleotidic linkages, though stereochemistry of certain linkage phosphorus chiral centers may differ. In some embodiments, about 0.1%-100%, (e.g., about 1%-100%, 5%-100%, 10%-100%, 20%-100%, 30%-100%, 40%-100%, 50%-100%, 60%-100%, 70%-100%, 80-100%, 90-100%, 95-100%, 50%-90%, or about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) of all oligonucleotides in a chirally controlled oligonucleotide composition are oligonucleotides of the plurality. In some embodiments, about 0.1%-100%, (e.g., about 1%-100%, 5%-100%, 10%-100%, 20%-100%, 30%-100%, 40%-00%, 50%-100%, 60%-100%, 70%-100%, 80-100%, 90-100%, 95-100%, 50%-90%, or about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) of all oligonucleotides in a chirally controlled oligonucleotide composition that share the common base sequence are oligonucleotides of the plurality. In some embodiments, about 0.1%-100%, (e.g., about 1%-100%, 5%-100%, 10%-100%, 20%-100%, 30%-100%, 40%-100%, 50%-100%, 60%-100%, 70%-100%, 80-100%, 90-100%, 95-100%, 50%-90%, or about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) of all oligonucleotides in a chirally controlled oligonucleotide composition that share the common base sequence, the common pattern of backbone linkages, and the common pattern of backbone phosphorus modifications are oligonucleotides of the plurality. In some embodiments, about 0.1%-100%, (e.g., about 1%-100%, 5%-100%, 10%-100%, 20%-100%, 30%-100%, 40%-100%, 50%-100%, 60%-100%, 70%-100%, 80-100%, 90-100%, 95-100%, 50%-90%, or about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) of all oligonucleotides in a chirally controlled oligonucleotide composition, or of all oligonucleotides in a composition that share a common base sequence (e.g., of a plurality of oligonucleotide or an oligonucleotide type), or of all oligonucleotides in a composition that share a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone phosphorus modifications (e.g., of a plurality of oligonucleotide or an oligonucleotide type), or of all oligonucleotides in a composition that share a common base sequence, a common patter of base modifications, a common pattern of sugar modifications, a common pattern of internucleotidic linkage types, and/or a common pattern of internucleotidic linkage modifications (e.g., of a plurality of oligonucleotide or an oligonucleotide type), or of all oligonucleotides in a composition that share the same constitution, are oligonucleotides of the plurality. In some embodiments, a percentage is at least (DP)NCI, wherein DP is a percentage selected from 85%-100%, and NCI is the number of chirally controlled internucleotidic linkage. In some embodiments, DP is at least 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. In some embodiments, DP is at least 85%. In some embodiments, DP is at least 90%. In some embodiments, DP is at least 95%. In some embodiments, DP is at least 96%. In some embodiments, DP is at least 97%. In some embodiments, DP is at least 98%. In some embodiments, DP is at least 99%. In some embodiments, DP reflects diastereopurity of linkage phosphorus chiral centers chirally controlled internucleotidic linkages. In some embodiments, diastereopurity of a linkage phosphorus chiral center of an internucleotidic linkage may be typically assessed using an appropriate dimer comprising such an internucleotidic linkage and the two nucleoside units being linked by the internucleotidic linkage. In some embodiments, the plurality of oligonucleotides share the same stereochemistry at about 1-50 (e.g., about 1-10, 1-20, 5-10, 5-20, 10-15, 10-20, 10-25, 10-30, or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20, or at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) chiral internucleotidic linkages. In some embodiments, the plurality of oligonucleotides share the same stereochemistry at about 0.1%-100% (e.g., about 1%-100%, 5%-400%, 10%-100%, 20%-100%, 30%-100%, 40%-100%, 50%-100%, 60%-100%, 70%-100%, 80-100%, 90-100%, 95-100%, 50%-90%, about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%, or at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99%) of chiral internucleotidic linkages. In some embodiments, each chiral internucleotidic linkage is a chiral controlled internucleotidic linkage, and the composition is a completely chirally controlled oligonucleotide composition. In some embodiments, not all chiral internucleotidic linkages are chiral controlled internucleotidic linkages, and the composition is a partially chirally controlled oligonucleotide composition. In some embodiments, a chirally controlled oligonucleotide composition comprises predetermined levels of individual oligonucleotide or nucleic acids types. For instance, in some embodiments a chirally controlled oligonucleotide composition comprises one oligonucleotide type at a predetermined level (e.g., as described above). In some embodiments, a chirally controlled oligonucleotide composition comprises more than one oligonucleotide type, each independently at a predetermined level. In some embodiments, a chirally controlled oligonucleotide composition comprises multiple oligonucleotide types, each independently at a predetermined level. In some embodiments, a chirally controlled oligonucleotide composition is a composition of oligonucleotides of an oligonucleotide type, which composition comprises a predetermined level of a plurality of oligonucleotides of the oligonucleotide type.


Chirally pure: as used herein, the phrase “chirally pure” is used to describe an oligonucleotide or compositions thereof, in which all or nearly all (the rest are impurities) of the oligonucleotide molecules exist in a single diastereomeric form with respect to the linkage phosphorus atoms. In many embodiments, as appreciated by those skilled in the art, a chirally pure oligonucleotide composition is substantially pure in that substantially all of the oligonucleotides in the composition are structurally identical (being the same stereoisomer).


Linkage phosphorus: as defined herein, the phrase “linkage phosphorus” is used to indicate that the particular phosphorus atom being referred to is the phosphorus atom present in an internucleotidic linkage, which phosphorus atom corresponds to the phosphorus atom of a natural phosphate linkage as occurs in naturally occurring DNA and RNA. In some embodiments, a linkage phosphorus atom is in a modified internucleotidic linkage. In some embodiments, a linkage phosphorus atom is the P of PL of formula I. In some embodiments, a linkage phosphorus atom is chiral.


P-modification: as used herein, the term “P-modification” refers to any modification at the linkage phosphorus other than a stereochemical modification. In some embodiments, a P-modification comprises addition, substitution, or removal of a pendant moiety covalently attached to a linkage phosphorus. In some embodiments, the “P-modification” is W, Y, Z, or -X-L-R1 of formula I.


Blockmer: the term “blockmer,” as used herein, refers to an oligonucleotide whose pattern of structural features characterizing each individual nucleotide unit is characterized by the presence of at least two consecutive nucleotide units sharing a common structural feature at the nucleobase, sugar and/or internucleotidic linkage. By common structural feature is meant common chemistry and/or stereochemistry, e.g., common modifications at nucleobases, sugars, and/or internucleotidic linkages and common stereochemistry at linkage phosphorus chiral centers. In some embodiments, the at least two consecutive nucleotide units sharing a common structural feature are referred to as a “block”.


In some embodiments, a blockmer is a “stereoblockmer,” e.g., at least two consecutive nucleotide units have the same stereochemistry at the linkage phosphorus. Such at least two consecutive nucleotide units form a “stereoblock.” For instance, (Sp, Sp)-ATsCs1GA is a stereoblockmer because at least two consecutive nucleotide units, the Ts and the Cs1, have the same stereochemistry at the linkage phosphorus (both Sp). In the same oligonucleotide (Sp, Sp)-ATsCs1GA, TsCs1 forms a block, and it is a stereoblock.


In some embodiments, a blockmer is a “P-modification blockmer,” e.g., at least two consecutive nucleotide units have the same modification at the linkage phosphorus. Such at least two consecutive nucleotide units form a “P-modification block”. For instance, (Rp, Sp)-ATsCsGA is a P-modification blockmer because at least two consecutive nucleotide units, the Ts and the Cs, have the same P-modification (i.e., both are a phosphorothioate diester). In the same oligonucleotide of (Rp, Sp)-ATsCsGA, TsCs forms a block, and it is a P-modification block.


In some embodiments, a blockmer is a “linkage blockmer,” e.g., at least two consecutive nucleotide units have identical stereochemistry and identical modifications at the linkage phosphorus. At least two consecutive nucleotide units form a “linkage block”. For instance, (Rp, Rp)-ATsCsGA is a linkage blockmer because at least two consecutive nucleotide units, the Ts and the Cs, have the same stereochemistry (both Rp) and P-modification (both phosphorothioate). In the same oligonucleotide of (Rp, Rp)-ATsCsGA, TsCs forms a block, and it is a linkage block.


In some embodiments, a blockmer is a “sugar modification blockmer,” e.g., at least two consecutive nucleotide units have identical sugar modifications. In some embodiments, a sugar modification blockmer is a 2′-F blockmer wherein at least two consecutive nucleotide units have 2′-F modification at their sugars. In some embodiments, a sugar modification blockmer is a 2′-OR blockmer wherein at lead two consecutive nucleotide units independently have 2′-OR modification at their sugars, wherein each R is independent as described in the present disclosure. In some embodiments, a sugar modification blockmer is a 2′-OMe blockmer wherein at least two consecutive nucleotide units have 2′-OMe modification at their sugars. In some embodiments, a sugar modification blockmer is a 2′-MOE blockmer wherein at lead two consecutive nucleotide units have 2′-MOE modification at their sugars. In some embodiments, a sugar modification blockmer is a LNA blockmer wherein at least two consecutive nucleotide units have LNA sugars.


In some embodiments, a blockmer comprises one or more blocks independently selected from a sugar modification block, a stereoblock, a P-modification block and a linkage block. In some embodiments, a blockmer is a stereoblockmer with respect to one block, and/or a P-modification blockmer with respect to another block, and/or a linkage blockmer with respect to yet another block.


Altmer: the term “altmer,” as used herein, refers to an oligonucleotide whose pattern of structural features characterizing each individual nucleotide unit is characterized in that no two consecutive nucleotide units of the oligonucleotide strand share a particular structural feature at the nucleobase, sugar, and/or the internucleotidic phosphorus linkage. In some embodiments, an altmer is designed such that it comprises a repeating pattern. In some embodiments, an altmer is designed such that it does not comprise a repeating pattern.


In some embodiments, an altmer is a “stereoaltmer,” e.g., no two consecutive nucleotide units have the same stereochemistry at the linkage phosphorus. For instance, (Rp, Sp, Rp, Sp, Rp, Sp, Rp, Sp, Rp, Sp Rp, Sp, Rp, Sp, Rp, Sp, Rp, Sp, Rp)-GsCsCsTsCsAsGsTsCsTsGsCsTsTsCsGsCsAsCsC.


Gapmer: as used herein, the term “gapmer” refers to an oligonucleotide characterized in that one or more nucleotide units (gap) do not have the structural features (e.g., nucleobase modifications, sugar modifications, internucleotidic linkage modifications, linkage phosphours stereochemistry, etc.) contained by nucleotide units flanking such one or more nucleotide units at both ends. In some embodiments, a gapmer comprises a gap of one or more natural phosphate linkages, independently flanked at both ends by non-natural internucleotidic linkages. In some embodiments, a gapmer is a sugar modification gapmer, wherein the gapmer comprises a gap of one or more nucleotide units comprising no sugar modifications which the flanking nucleotide at both ends contain. In some embodiments, a gapmer comprises a gap, wherein each nucleotide unit in the gap region contains no 2′-modification that is contained in nucleotide units flanking the gap at both ends. In some embodiments, a provided oligonucleotide comprising a gap, wherein each nucleotide unit in the gap region contains no 2′-OR modification, while nucleotide units flanking the gap at each end independently comprise a 2′-OR modification. In some embodiments, a provided oligonucleotide comprising a gap, wherein each nucleotide unit in the gap region contains no 2′-F modification, while nucleotide units flanking the gap at each end independently comprise a 2′-F modification.


Skipmer: as used herein, the term “skipmer” refers to a type of gapmer in which every other internucleotidic phosphorus linkage of the oligonucleotide strand is a phosphate diester linkage (a natural phosphate linkage), for example such as those found in naturally occurring DNA or RNA, and every other internucleotidic phosphorus linkage of the oligonucleotide strand is a modified internucleotidic linkage (a non-natural internucleotidic linkage).


For purposes of this disclosure, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 67th Ed., 1986-87, inside cover.


Unless otherwise specified, salts, such as pharmaceutically acceptable acid or base addition salts, stereoisomeric forms, and tautomeric forms, of compounds (e.g., oligonucleotides, agents, etc.) are included. Unless otherwise specified, singular forms “a” “an,” and “the” include the plural reference unless the context clearly indicates otherwise (and vice versa). Thus, for example, a reference to “a compound” may include a plurality of such compounds.


DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS

Synthetic oligonucleotides provide useful molecular tools in a wide variety of applications. For example, oligonucleotides are useful in therapeutic, diagnostic, research, and new nanomaterials applications. The use of naturally occurring nucleic acids (e.g., unmodified DNA or RNA) is limited, for example, by their susceptibility to endo- and exo-nucleases. As such, various synthetic counterparts have been developed to circumvent these shortcomings. These include synthetic oligonucleotides that contain chemical modification. e.g., base modifications, sugar modifications, backbone modifications, etc., which, among other things, render these molecules less susceptible to degradation and improve other properties of oligonucleotides. Chemical modifications may also lead to certain undesired effects, such as increased toxicities, etc. From a structural point of view, modifications to natural phosphate linkages can introduce chirality, and certain properties of oligonucleotides may be affected by the configurations of the phosphorus atoms that form the backbone of the oligonucleotides.


In some embodiments, an oligonucleotide or oligonucleotide composition is: a DMD oligonucleotide or oligonucleotide composition; an oligonucleotide or oligonucleotide composition comprising a non-negatively charged internucleotidic linkage; or a DMD oligonucleotide comprising a non-negatively charged internucleotidic linkage.


In some embodiments, the chirality of the backbone (e.g. the configurations of the phosphorus atoms) or inclusion of natural phosphate linkages or non-natural internucleotidic linkages in the backbone and/or modifications of a sugar and/or nucleobase, and/or the addition of chemical moieties can affect properties and activities of oligonucleotides, e.g., the ability of a DMD oligonucleotide (e.g., an oligonucleotide antisense to a Dystrophin (DMD) transcript sequence) to skip one or more exons, and/or other properties of a DMD oligonucleotide, including but not limited to, increased stability, improved pharmacokinetics, and/or decreased immunogenicity, etc. Suitable assays for assessing properties and/or activities of provided compounds, e.g., oligonucleotides, and compositions thereof are widely known in the art and can be utilized in accordance with the present disclosure. For example, to test immunogenicity, various DMD oligonucleotides were tested in mouse serum in vivo and demonstrated minimal activation of cytokines, and various DMD oligonucleotides were tested ex vivo in human PBMC (peripheral blood mononuclear cells) for cytokine activity (e.g., IL-12p40, IL-12p70, IL-1alpha, IL-1beta, IL-6, MCP-1, MIP-1alpha, MIP-1beta, and TNF-alpha).


In some embodiments, technologies (e.g., oligonucleotides, compositions, and methods of use thereof) of the present disclosure can be utilized to target various nucleic acids (e.g., by hybridizing to a target sequence of a target nucleic acid, and/or providing level reduction, degradation, splicing modulation, transcription suppression, etc. of the target nucleic acid, etc.) In some embodiments, provided technologies are particularly useful for modulating splicing of transcripts, e.g., to increase levels of desired splicing products and/or to reduce levels of undesired splicing products. In some embodiments, provided technologies are particularly useful for reducing levels of transcripts, e.g., pre-mRNA. RNA, etc., and in many instances, reducing levels of products arising from or encoded by such transcripts such as mRNA, proteins, etc.


In some embodiments, a transcript is pre-mRNA. In some embodiments, a splicing product is mature RNA. In some embodiments, a splicing product is mRNA. In some embodiments, splicing modulation or alteration comprises skipping one or more exons. In some embodiments, splicing of a transcript is improved in that exon skipping increases levels of mRNA and proteins that have improved beneficial activities compared with absence of exon skipping. In some embodiments, an exon causing frameshift is skipped. In some embodiments, an exon comprising an undesired mutation is skipped. In some embodiments, an exon comprising a premature termination codon is skipped. An undesired mutation can be a mutation causing changes in protein sequences; it can also be a silent mutation. In some embodiments, a transcript is a transcript of Dystrophin (DMD).


In some embodiments, splicing of a transcript is improved in that exon skipping lowers levels of mRNA and proteins that have undesired activities compared with absence of exon skipping. In some embodiments, a target is knocked down through exon skipping which, by skipping one or more exons, causes premature stop codon and/or frameshift mutations. In some embodiments, provided oligonucleotides in provided compositions, e.g., oligonucleotides of a plurality, comprise base modifications, sugar modifications, and/or internucleotidic linkage modifications. In some embodiments, provided oligonucleotides comprise base modifications and sugar modifications. In some embodiments, provided oligonucleotides comprise base modifications and internucleotidic linkage modifications. In some embodiments, provided oligonucleotides comprise sugar modifications and internucleotidic modifications. In some embodiments, provided compositions comprise base modifications, sugar modifications, and internucleotidic linkage modifications. Example chemical modifications, such as base modifications, sugar modifications, internucleotidic linkage modifications, etc. are widely known in the art including but not limited to those described in this disclosure. In some embodiments, a modified base is substituted A, T, C, G or U. In some embodiments, a sugar modification is 2′-modification. In some embodiments, a 2′-modification is 2-F modification. In some embodiments, a 2′-modification is 2′-OR, wherein R1 is not hydrogen. In some embodiments, a 2′-modification is 2′-OR, wherein R1 is optionally substituted alkyl. In some embodiments, a 2′-modification is 2′-OMe. In some embodiments, a 2′-modification is 2′-MOE. In some embodiments, a modified sugar moiety is a bridged bicyclic or polycyclic ring. In some embodiments, a modified sugar moiety is a bridged bicyclic or polycyclic ring having 5-20 ring atoms wherein one or more ring atoms are optionally and independently heteroatoms. Example ring structures are widely known in the art, such as those found in BNA, LNA, etc. In some embodiments, provided oligonucleotides comprise both one or more modified internucleotidic linkages and one or more natural phosphate linkages. In some embodiments, oligonucleotides comprising both modified internucleotidic linkage and natural phosphate linkage and compositions thereof provide improved properties, e.g., activities and toxicities, etc. In some embodiments, a modified internucleotidic linkage is a chiral internucleotidic linkage. In some embodiments, a modified internucleotidic linkage is a phosphorothioate linkage. In some embodiments, a modified internucleotidic linkage is a substituted phosphorothioate linkage.


In some embodiments, provided oligonucleotides comprise one or more non-negatively charged internucleotidic linkages. In some embodiments, a non-negatively charged internucleotidic linkage is a positively charged internucleotidic linkage. In some embodiments, a non-negatively charged internucleotidic linkage is a neutral internucleotidic linkage. In some embodiments, a modified internucleotidic linkage (e.g., a non-negatively charged internucleotidic linkage) comprises optionally substituted triazolyl. In some embodiments, a modified internucleotidic linkage (e.g., a non-negatively charged internucleotidic linkage) comprises optionally substituted alkynyl. In some embodiments, a modified internucleotidic linkage comprises a triazole or alkyne moiety. In some embodiments, a triazole moiety, e.g., a triazolyl group, is optionally substituted. In some embodiments, a triazole moiety. e.g., a triazolyl group) is substituted. In some embodiments, a triazole moiety is unsubstituted. In some embodiments, a modified internucleotidic linkage comprises an optionally substituted guanidine moiety. In some embodiments, a modified internucleotidic linkage comprises an optionally substituted cyclic guanidine moiety. In some embodiments, a modified internucleotidic linkage comprises an optionally substituted cyclic guanidine moiety and has the structure of:




embedded image


wherein W is O or S. In some embodiments, W is O. In some embodiments, W is S. In some embodiments, a non-negatively charged internucleotidic linkage is stereochemically controlled.


In some embodiments, an internucleotidic linkage comprising an optionally substituted guanidine moiety is an internucleotidic linkage of formula I-n-2, I-n-3, I-n-4, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2 as described herein. In some embodiments, an internucleotidic linkage comprising an optionally substituted cyclic guanidine moiety is an internucleotidic linkage of formula II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2.


Among other things, the present disclosure encompasses the recognition that stereorandom oligonucleotide preparations contain a plurality of distinct chemical entities that differ from one another, e.g., in the stereochemical structure of individual backbone linkage phosphorus chiral centers within the oligonucleotide chain. Without control of stereochemistry of backbone chiral centers, stereorandom oligonucleotide preparations provide uncontrolled compositions comprising undetermined levels of oligonucleotide stereoisomers with respect to the uncontrolled chiral centers, e.g., chiral linkage phosphorus. Even though these stereoisomers may have the same base sequence, they are different chemical entities at least due to their different backbone stereochemistry, and they can have, as demonstrated herein, different properties, e.g., activities, toxicities, etc. Among other things, the present disclosure provides new oligonucleotide compositions wherein stereochemistry of one or more linkage phosphorus chiral centers are independently controlled (e.g., in chirally controlled internucleotidic linkages). In some embodiments, the present disclosure provides chirally controlled oligonucleotide compositions which are or contain particular stereoisomers of oligonucleotides of interest.


In some embodiments, provided oligonucleotides contain increased levels of one or more isotopes. In some embodiments, provided oligonucleotides are labeled, e.g., by one or more isotopes of one or more elements. e.g., hydrogen, carbon, nitrogen, etc. In some embodiments, provided oligonucleotides in provided compositions. e.g., oligonucleotides of a plurality, comprise base modifications, sugar modifications, and/or internucleotidic linkage modifications, wherein the oligonucleotides contain an enriched level of deuterium. In some embodiments, provided oligonucleotides are labeled with deuterium (replacing —1H with —2H) at one or more positions. In some embodiments, one or more 1H of an oligonucleotide or any moiety conjugated to the oligonucleotide (e.g., a targeting moiety, lipid, etc.) is substituted with 2H. Such oligonucleotides can be used in any composition or method described herein.


In some embodiments, in an oligonucleotide, a pattern of backbone chiral centers can provide improved activity(s) or characteristic(s), including but not limited to: improved skipping of one or more exons, increased stability, increased activity, increased stability and activity, low toxicity, low immune response, improved protein binding profile, increased binding to certain proteins, and/or enhanced delivery.


In some embodiments, a pattern of backbone chiral centers is or comprises S, SS, SSS. SSSS, SSSSS, SSSSSS, SSSSSSS, SOS, SSOSS, SSSOSSS, SSSSOSSSS, SSSSSOSSSSS, SSSSSSOSSSSSS, SSSSSSSOSSSSSSS, SSSSSSSSOSSSSSSSS, SSSSSSSSSOSSSSSSSSS, SOSOSOSOS, SSOSOSOSOSS, SSSOSOSOSOSOSSS, SSSSOSOSOSOSSSS, SSSSSOSOSOSOSSSSS, SSSSSSOSOSOSOSSSSSS, SOSOSSOOS, SSOSOSSOOSS, SSSOSOSSOOSSS, SSSSOSOSSOOSSSS, SSSSSOSOSSOOSSSSS, SSSSSSOSOSSOOSSSSSS, SOSOOSOOS, SSOSOOSOOSS, SSSOSOOSOOSSS, SSSSOSOOSOOSSSS, SSSSSOSOOSOOSSSSS, SSSSSSOSOOSOOSSSSSS, SOSOSSOOS, SSOSOSSOOSO, SSSOSOSSOOSOS, SSSSOSOSSOOSOSS, SSSSSOSOSSOOSOSSS, SSSSSSOSOSSOOSOSSSS, SOSOOSOOSO, SSOSOOSOOSOS, SSSOSOOSOOSOS, SSSSOSOOSOOSOSS, SSSSSOSOOSOOSOSSS, SSSSSSOSOOSOOSOSSSS, SSOSOSSOO, SSSOSOSSOOS, SSSSOSOSSOOS, SSSSSOSOSSOOSS, SSSSSSOSOSSOOSSS, OSSSSSOSOSSOOSSS, OOSSSSSSOSOSSOOS, OOSSSSSSOSOSSOOSS, OOSSSSSSOSOSSOOSSS, OOSSSSSSOSOSSOOSSSS, OOSSSSSSOSOSSOOSSSSS, and/or OOSSSSSSOSOSSOOSSSSSS, RS, SR, SRS, SRSS, SSRS, RR, RRR, RRRR, RRRRR, SRR, RRS, SRRS, SSRRS, SRRSS, SRRR, RRRS, SRRRS, SSRRRS, SSRRRS, RSRRR, SRRRSR, SSSRSSS, SSSSRSSSS, SSSSSRSSSSS, SSSSSSRSSSSSS, SSSSSSSRSSSSSSS, SSSSSSSSRSSSSSSSS, SSSSSSSSSRSSSSSSSSS, SRSRSRSRS, SSRSRSRSRSS, SSSRSRSRSRSSS, SSSSRSRSRSRSSSS, SSSSSRSRSRSRSSSSS, SSSSSSRSRSRSRSSSSSS, SRSRSSRRS, SSRSRSSRRSS, SSSRSRSSRRSSS, SSSSRSRSSRRSSSS, SSSSSRSRSSRRSSSSS, SSSSSSRSRSSRRSSSSSS, SRSRRSRRS, SSRSRRSRRSS, SSSRSRRSRRSSS, SSSSRSRRSRRSSSS, SSSSSRSRRSRRSSSSS, SSSSSSRSRRSRRSSSSSS, SRSRSSRRS, SSRSRSSRRSR, SSSRSRSSRRSRS, SSSSRSRSSRRSRSS, SSSSSRSRSSRRSRSSS, SSSSSSRSRSSRRSRSSSS, SRSRRSRRSR, SSRSRRSRRSRS, SSSRSRRSRRSRS, SSSSRSRRSRRSRSS, SSSSSRSRRSRRSRSSS, SSSSSSRSRRSRRSRSSSS, SSRSRSSRR, SSSRSRSSRRS, SSSSRSRSSRRS, SSSSSRSRSSRRSS, SSSSSSRSRSSRRSSS, RSSSSSSRSRSSRRSSS, RRSSSSSSRSRSSRRS, RRSSSSSSRSRSSRRSS, RRSSSSSSRSRSSRRSSS, RRSSSSSSRSRSSRRSSSS, RRSSSSSSRSRSSRRSSSSS, (R)n(S)m, (S)t(R)n, (O)t(R)n(S)m, (S)t(O)m, (O)m(S)t, (S)t(R)n(S)m, (S)t(O)m(S)n, (S)t(O)m, wherein t, m and n are independently 1 to 20. O is a non-chiral internucleotidic linkage, R is a Rp chiral internucleotidic linkage, and S is an Sp chiral internucleotidic linkage. In some embodiments, the non-chiral center is a phosphodiester linkage. In some embodiments, the chiral center in a Sp configuration is a phosphorothioate linkage.


In some embodiments, the 5′-end region of provided oligonucleotides, e.g., a 5′-wing, comprises a stereochemistry pattern of S. SS, SSS, SSSS, SSSSS, SSSSSS, or SSSSSS. In some embodiments, each S is or represents an Sp phosphorothioate internucleotidic linkage. In some embodiments, the 5′-end region of provided oligonucleotides, e.g., a 5′-wing, comprises a stereochemistry pattern of S, SS, SSS, SSSS. SSSSS, SSSSSS, or SSSSSS, wherein the first S represents the first (the 5′-end) internucleotidic linkage of a provided oligonucleotide. In some embodiments, one or more nucleotidic units comprising an Sp internucleotidic linkage in the 5′-end region independently comprise —F. In some embodiments, each nucleotidic unit comprising an Sp internucleotidic linkage in the 5′-end region independently comprises —F. In some embodiments, one or more nucleotidic units comprising an Sp internucleotidic linkage in the Y-end region independently comprise a sugar modification. In some embodiments, each nucleotidic unit comprising an Sp internucleotidic linkage in the 5′-end region independently comprises a sugar modification. In some embodiments, each 2′-modification is the same. In some embodiments, a sugar modification is a 2′-modification. In some embodiments, a 2′-modification is 2′-OR1. In some embodiments, a 2′-modification is 2′-F. In some embodiments, the 3′-end region of provided oligonucleotides, e.g., a 3′-wing, comprises a stereochemistry pattern of S, SS, SSS, SSSS, SSSSS, SSSSSS, or SSSSSS. In some embodiments, each S is or represents an Sp phosphorothioate internucleotidic linkage. In some embodiments, the 3′-end region of provided oligonucleotides, e.g., a 3′-wing, comprises a stereochemistry pattern of S. SS, SSS, SSSS, SSSSS, SSSSSS, or SSSSSS, wherein the last S represents the last (the 3′-end) internucleotidic linkage of a provided oligonucleotide. In some embodiments, each S represents an Sp phosphorothioate internucleotidic linkage. In some embodiments, one or more nucleotidic units comprising an Sp internucleotidic linkage in the 3′-end region independently comprise —F. In some embodiments, each nucleotidic unit comprising an Sp internucleotidic linkage in the 3′-end region independently comprises —F. In some embodiments, one or more nucleotidic units comprising an Sp internucleotidic linkage in the 3′-end region independently comprise a sugar modification. In some embodiments, each nucleotidic unit comprising an Sp internucleotidic linkage in the 3′-end region independently comprises a sugar modification. In some embodiments, each 2′-modification is the same. In some embodiments, a sugar modification is a 2′-modification. In some embodiments, a 2′-modification is 2′-OR1. In some embodiments, a 2′-modification is 2′-F. In some embodiments, provided oligonucleotides comprise both a 5′-end region, e.g., a 5′-wing, and a 3′-end region, e.g., a 3′-end wing, as described herein. In some embodiments, the 5′-end region comprises a stereochemistry pattern of SS, wherein the first S represents the first internucleotidic linkage of a provided oligonucleotide, the 3′-end region comprises a stereochemistry pattern of SS, wherein one or more nucleotidic unit comprising an Sp internucleotidic linkage in the 5′- or 3′-end region comprise —F. In some embodiments, the 5′-end region comprises a stereochemistry pattern of SS, wherein the first S represents the first internucleotidic linkage of a provided oligonucleotide, the 3′-end region comprises a stereochemistry pattern of SS, wherein one or more nucleotidic unit comprising an Sp internucleotidic linkage in the 5′- or 3′-end region comprise a 2′-F sugar modification. In some embodiments, provided oligonucleotides further comprise a middle region between the 5-end and 3′-end regions, e.g., a core region, which comprises one or more natural phosphate linkages. In some embodiments, provided oligonucleotides further comprise a middle region between the 5′-end and 3′-end regions, e.g., a core region, which comprises one or more natural phosphate linkages and one or more internucleotidic linkages. In some embodiments, a middle region comprises one or more sugar moieties, wherein each sugar moiety independently comprises a 2′-OR modification. In some embodiments, a middle region comprises one or more sugar moieties comprising no 2′-F modification. In some embodiments, a middle region comprises one or more Sp internucleotidic linkages. In some embodiments, a middle region comprises one or more Sp internucleotidic linkages and one or more natural phosphate linkages. In some embodiments, a middle region comprises one or more Rp internucleotidic linkages. In some embodiments, a middle region comprises one or more Rp internucleotidic linkages and one or more natural phosphate linkages. In some embodiments, a middle region comprises one or more Rp internucleotidic linkages and one or more Sp internucleotidic linkages.


In some embodiments, provided oligonucleotides comprise one or more modified internucleotidic linkages. In some embodiments, provided oligonucleotides comprise one or more chiral modified internucleotidic linkages. In some embodiments, provided oligonucleotides comprise one or more chirally controlled chiral modified internucleotidic linkages. In some embodiments, provided oligonucleotides comprise one or more natural phosphate linkages. In some embodiments, provided oligonucleotides comprise one or more modified internucleotidic linkages and one or more natural phosphate linkages. In some embodiments, a modified internucleotidic linkage is a phosphorothioate linkage. In some embodiments, each modified internucleotidic linkage is a phosphorothioate linkage. In some embodiments, a modified internucleotidic linkage comprises a triazole, substituted triazole, alkyne or Tmg.


In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage comprising a triazole or alkyne moiety. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage comprising an optionally substituted triazolyl or alkynyl. In some embodiments, such a nucleic acid is a siRNA, double-straned siRNA, single-stranded siRNA, oligonucleotide, gapmer, skipmer, blockmer, antisense oligonucleotide, antagomir, microRNA, pre-microRNA, antimir, supermir, ribozyme, U1 adaptor, RNA activator, RNAi agent, decoy oligonucleotide, triplex forming oligonucleotide, aptamer or adjuvant. In some embodiments, the present disclosure pertains to an oligonucleotide which comprises a modified internucleotidic linkage comprising a triazole or alkyne moiety. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which comprises a modified internucleotidic linkage comprising a triazole or alkyne moiety. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage comprising a triazole moiety. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage comprising optionally substituted triazolyl. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage comprising a substituted triazole moiety. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage comprising an alkyne moiety. In some embodiments, the present disclosure pertains to a nucleic acid or oligonucleotide which comprises, at a 5′ end, a structure of the formula:




embedded image


wherein W is O or S. In some embodiments, an oligonucleotide is a single-stranded siRNA which comprises, at a 5′ end, a structure of the formula:




embedded image


wherein W is O or S. In some embodiments, a modified internucleotidic linkage is any modified internucleotidic linkage described in Krishna et al. 2012 J. Am. Chem. Soc. 134: 11618-11631.


In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage which comprises a guanidine moiety. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage which comprises a cyclic guanidine moiety. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage which comprises a cyclic guanidine moiety and has the structure of:




embedded image


wherein W is O or S. In some embodiments, a neutral internucleotidic linkage or internucleotidic linkage comprising a cyclic guanidine is chirally controlled. In some embodiments, a nucleic acid comprising a non-negatively charged internucleotidic linkage or a modified internucleotidic linkage comprising a cyclic guanidine moiety is a siRNA, double-straned siRNA, single-stranded siRNA, oligonucleotide, gapmer, skipmer, blockmer, antisense oligonucleotide, antagomir, microRNA, pre-microRNA, antimir, supermir, ribozyme, U1 adaptor, RNA activator, RNAi agent, decoy oligonucleotide, triplex forming oligonucleotide, aptamer or adjuvant. In some embodiments, the present disclosure pertains to an oligonucleotide which comprises a modified internucleotidic linkage which comprises a cyclic guanidine moiety. In some embodiments, the present disclosure pertains to an oligonucleotide which comprises a modified internucleotidic linkage which has the structure of:




embedded image


wherein W is O or S. In some embodiments, a neutral internucleotidic linkage or internucleotidic linkage comprising a cyclic guanidine moiety is chirally controlled. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which comprises a modified internucleotidic linkage comprising a cyclic guanidine moiety. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which comprises a modified internucleotidic linkage which has the structure of:




embedded image


wherein W is O or S. In some embodiments, a neutral internucleotidic linkage or internucleotidic linkage comprising a cyclic guanidine moiety is chirally controlled. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage comprising a cyclic guanidine moiety. In some embodiments, the present disclosure pertains to a nucleic acid which comprises a modified internucleotidic linkage which has the structure of:




embedded image


wherein W is O or S. In some embodiments, the present disclosure pertains to a nucleic acid or oligonucleotide which comprises, at a 5′ end, a structure comprising a cyclic guanidine moiety. In some embodiments, the present disclosure pertains to a nucleic acid or oligonucleotide which comprises, at a 5′ end, a structure of the formula:




embedded image


wherein W is O or S. In some embodiments, the oligonucleotide is a single-stranded siRNA which comprises, at a 5′ end, a structure comprising a cyclic guanidine moiety. In some embodiments, the oligonucleotide is a single-stranded siRNA which comprises, at a 5′ end, a structure of the formula:




embedded image


wherein W is O or S. In some embodiments, the internucleotidic linkage comprise




embedded image


(wherein W is O or S) and is chirally controlled.


In some embodiments, provided oligonucleotides can bind to a transcript, and change the splicing pattern of the transcript. In some embodiments, provided oligonucleotides provides exon-skipping of an exon, with efficiency greater than a comparable oligonucleotide under one or more suitable conditions, e.g., as described herein. In some embodiments, a provided skipping efficiency is at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190% more than, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50 or more fold of, that of a comparable oligonucleotide under one or more suitable conditions, e.g., as described herein. In some embodiments, a comparable oligonucleotide is an oligonucleotide which has fewer or no chirally controlled internucleotidic linkages and/or fewer or no non-negatively charged internucleotidic linkages but is otherwise identical.


In some embodiments, the present disclosure demonstrates that 2′-F modifications, among other things, can improve exon-skipping efficiency. In some embodiments, the present disclosure demonstrates that Sp internucleotidic linkages, among other things, at the 5′- and 3′-ends can improve oligonucleotide stability. In some embodiments, the present disclosure demonstrates that, among other things, natural phosphate linkages and/or Rp internucleotidic linkages can improve removal of oligonucleotides from a system. As appreciated by a person having ordinary skill in the art, various assays known in the art can be utilized to assess such properties in accordance with the present disclosure.


In some embodiments, provided oligonucleotides comprise one or more modified sugar moieties. In some embodiments, a modified sugar moiety comprises a 2′-modification. In some embodiments, a modified sugar moiety comprises a 2′-modification. In some embodiments, a 2′-modification is 2′-OR1. In some embodiments, a 2′-modification is a 2′-OMe. In some embodiments, a 2′-modification is a 2′-MOE. In some embodiments, a 2-modification is an LNA sugar modification. In some embodiments, a 2′-modification is 2′-F. In some embodiments, each sugar modification is independently a 2′-modification. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein R1 is optionally substituted C1 alkyl. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein at least one is 2′-F. In some embodiments, each sugar modification is independently 2′—OR1 or 2′-F, wherein R1 is optionally substituted C1-6 alkyl, and wherein at least one is 2′-OR1. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein at least one is 2′-F, and at least one is 2′-OR1. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein R1 is optionally substituted C1-6 alkyl, and wherein at least one is 2′-F, and at least one is 2′-OR1.


In some embodiments, 5% or more of the sugar moieties of provided oligonucleotides are modified. In some embodiments, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, or more of the sugar moieties of provided oligonucleotides are modified. In some embodiments, each sugar moiety of provided oligonucleotides is modified. In some embodiments, a modified sugar moiety comprises a 2′-modification. In some embodiments, a modified sugar moiety comprises a 2′-modification. In some embodiments, a 2′-modification is 2′-OR1. In some embodiments, a 2′-modification is a 2′-OMe. In some embodiments, a 2′-modification is a 2′-MOE. In some embodiments, a 2′-modification is an LNA sugar modification. In some embodiments, a 2′-modification is 2′-F. In some embodiments, each sugar modification is independently a 2′-modification. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein R1 is optionally substituted C1-6 alkyl. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein at least one is 2′-F. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein R1 is optionally substituted C1-6 alkyl, and wherein at least one is 2′-OR1. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein at least one is 2′-F. and at least one is 2′-OR1. In some embodiments, each sugar modification is independently 2′-OR1 or 2′-F, wherein R1 is optionally substituted C1-6 alkyl, and wherein at least one is 2′-F, and at least one is 2′-OR1.


In some embodiments, provided oligonucleotides comprise one or more 2′-F. In some embodiments, provided oligonucleotides comprise two or more 2′-F.


In some embodiments, provided oligonucleotides comprise alternating 2′-F modified sugar moieties and 2′-OR1 modified sugar moieties. In some embodiments, provided oligonucleotides comprise alternating 2′-F modified sugar moieties and 2′-OMe modified sugar moieties, e.g., [(2′-F)(2′-OMe)]x, [(2′-OMe)(2′-F)]x, etc., wherein x is 1-50. In some embodiments, provided oligonucleotides comprise at least two pairs of alternating 2′-F and 2′-OMe modifications. In some embodiments, provided oligonucleotides comprises alternating phosphodiester and phosphorothioate internucleotidic linkages, e.g., [(PO)(PS)]x, [(PS)(PO)]x, etc., wherein x is 1-50. In some embodiments, provided oligonucleotides comprise at least two pairs of alternating phosphodiester and phosphorothioate internucleotidic linkages.


In some embodiments, provided oligonucleotides comprise one or more natural phosphate linkages and one or more modified internucleotidic linkages. In some embodiments, provided oligonucleotides comprise one or more natural phosphate linkages and one or more modified internucleotidic linkages and one or more non-negatively charged internucleotidic linkages.


In some embodiments, the present disclosure provides an oligonucleotide composition comprising a plurality of oligonucleotides, wherein:


oligonucleotides of the plurality have the same base sequence; and


oligonucleotides of the plurality comprise one or more modified sugar moieties, or comprise one or more natural phosphate linkages and one or more modified internucleotidic linkages.


In some embodiments, oligonucleotides of a plurality comprise one or more modified sugar moieties. In some embodiments, provided oligonucleotides comprise one or more modified sugar moieties. In some embodiments, provided oligonucleotides comprise 2 or more modified sugar moieties. In some embodiments, provided oligonucleotides comprise 3 or more modified sugar moieties.


In some embodiments, provided compositions alter transcript splicing so that an undesired target and/or biological function are suppressed.


In some embodiments, provided compositions alter transcript splicing so a desired target and/or biological function is enhanced.


In some embodiments, each oligonucleotide of a plurality comprises one or more modified sugar moieties and modified internucleotidic linkages.


In some embodiments, each oligonucleotide of a plurality comprises no more than about 25 consecutive unmodified sugar moieties


In some embodiments, each oligonucleotide of a plurality comprises no more than about 95% unmodified sugar moieties. In some embodiments, each oligonucleotide of a plurality comprises no more than about 90% unmodified sugar moieties. In some embodiments, each oligonucleotide of a plurality comprises no more than about 85% unmodified sugar moieties. In some embodiments, each oligonucleotide of a plurality comprises no more than about 15 consecutive unmodified sugar moieties.


In some embodiments, each oligonucleotide of a plurality comprises no more than about 95% unmodified sugar moieties.


In some embodiments, each oligonucleotide of a plurality comprises two or more modified internucleotidic linkages.


In some embodiments, about 5% of the internucleotidic linkages in each oligonucleotide of a plurality are modified internucleotidic linkages.


In some embodiments, each oligonucleotide of a plurality comprises no more than about 25 consecutive natural phosphate linkages. In some embodiments, each oligonucleotide of a plurality comprises no more than about 20 natural phosphate linkages.


In some embodiments, oligonucleotides of a plurality comprise no natural DNA nucleotide units. In some embodiments, oligonucleotides of a plurality comprise no more than 30 natural DNA nucleotides. In some embodiments, oligonucleotides of a plurality comprise no more than 30 consecutive DNA nucleotides.


In some embodiments, compared to a reference condition, provided chirally controlled oligonucleotide compositions are surprisingly effective. In some embodiments, desired biological effects (e.g., as measured by increased levels of desired mRNA, proteins, etc., decreased levels of undesired mRNA, proteins, etc.) can be enhanced by more than 5, 10, 15, 20, 25, 30, 40, 50, or 100 fold. In some embodiments, a change is measured by increase of a desired mRNA level compared to a reference condition. In some embodiments, a change is measured by decrease of an undesired mRNA level compared to a reference condition. In some embodiments, a reference condition is absence of oligonucleotide treatment. In some embodiments, a reference condition is a stereorandom composition of oligonucleotides having the same base sequence and chemical modifications.


In some embodiments, a desired biological effect is: improved skipping of one or more exons, increased stability, increased activity, increased stability and activity, low toxicity, low immune response, improved protein binding profile, increased binding to certain proteins, and/or enhanced delivery. In some embodiments, a desired biological effect is enhanced by more than 2 fold, 3 fold, 4 fold, 5 fold, 6 fold, 7 fold, 8 fold, 9 fold, 10 fold, 11 fold, 12 fold, 13 fold, 14 fold, 15 fold, 20 fold, 25 fold, 30 fold, 35 fold, 40 fold, 45 fold, 50 fold, 60 fold, 70 fold, 80 fold, 90 fold, 100 fold, 200 fold, or 500 fold.


In some embodiments, the structure of a DMD oligonucleotide is or comprises a wing-core-wing, wing-core, or core-wing structure. In some embodiments, a 5′-wing is a 5′-end region. In some embodiments, a 3′-wing is a 3′-end region. In some embodiments, a core is a middle region. In some embodiments, a 5′-end region is a 5′-wing region. In some embodiments, a 3′-end region is a 3′-wing region. In some embodiments, a middle region is a core region.


In some embodiments, an oligonucleotide having a wing-core-wing structure is designated a gapmer. In some embodiments, a gapmer is asymmetric, in that the chemistry of one wing is different from the chemistry of the other wing. In some embodiments, a gapmer is asymmetric, in that the chemistry of one wing is different from the chemistry of the other wing, wherein the wings differ in sugar modifications and/or internucleotidic linkages, or patterns thereof. In some embodiments, a gapmer is asymmetric, in that the chemistry of one wing is different from the chemistry of the other wing, wherein the wings differ in sugar modifications, wherein one wing comprises a sugar modification not present in the other wing; or both wings each comprise a sugar modification not found in the other wing; or both wings comprise different patterns of the same types of sugar modifications; or one wing comprises only one type of sugar modification, while the other wing comprises two types of sugar modifications; etc.


In some embodiments, an internucleotidic linkage between a wing region and a core region is considered part of the wing region. In some embodiments, an internucleotidic linkage between a 5′-wing region and a core region is considered part of the wing region. In some embodiments, an internucleotidic linkage between a 3′-wing region and a core region is considered part of the wing region. In some embodiments, an internucleotidic linkage between a wing region and a core region is considered part of the core region. In some embodiments, an internucleotidic linkage between a 5′-wing region and a core region is considered part of the core region. In some embodiments, an internucleotidic linkage between a 3-wing region and a core region is considered part of the core region.


In some embodiments, a region (e.g., a wing region, a core region, a 5′-end region, a middle region, a 3′-end region, etc.) comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more nucleoside units.


In some embodiments, provided oligonucleotides comprise two wing and one core regions. In some embodiments, provided oligonucleotides comprises a 5′-wing-core-wing-3′ structure. In some embodiments, provided oligonucleotides are of a 5′-wing-core-wing-3′ gapmer structure. In some embodiments, the two wing regions are identical. In some embodiments, the two wing regions are different. In some embodiments, the two wing regions are identical in chemical modifications. In some embodiments, the two wing regions are identical in 2′-modifications. In some embodiments, the two wing regions are identical in internucleotidic linkage modifications. In some embodiments, the two wing regions are identical in patterns of backbone chiral centers. In some embodiments, the two wing regions are identical in pattern of backbone linkages. In some embodiments, the two wing regions are identical in pattern of backbone linkage types. In some embodiments, the two wing regions are identical in pattern of backbone phosphorus modifications.


A wing region can be differentiated from a core region in that a wing region contains a different structure feature than a core region. For example, in some embodiments, a wing region differs from a core region in that they have different sugar modifications, base modifications, internucleotidic linkages, internucleotidic linkage stereochemistry, etc. In some embodiments, a wing region differs from a core region in that they have different 2′-modifications of the sugars.


In some embodiments, a region (e.g., a wing region, a core region, a 5′-end region, a middle region, a 3′-end region, etc.) comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more modified internucleotidic linkages. In some embodiments, a region comprises 2 or more modified internucleotidic linkages. In some embodiments, a region comprises 3 or more modified internucleotidic linkages. In some embodiments, a region comprises 4 or more modified internucleotidic linkages. In some embodiments, a region comprises 5 or more modified internucleotidic linkages. In some embodiments, a region comprises 6 or more modified internucleotidic linkages. In some embodiments, a region comprises 7 or more modified internucleotidic linkages. In some embodiments, a region comprises 8 or more modified internucleotidic linkages. In some embodiments, a region comprises 9 or more modified internucleotidic linkages. In some embodiments, a region comprises 10 or more modified internucleotidic linkages.


In some embodiments, provided oligonucleotides comprise consecutive nucleoside units each of which comprises no 2′-OR1 modifications (wherein R1 is not hydrogen). In some embodiments, provided oligonucleotides comprise consecutive nucleoside units whose 2′-positions are independently unsubstituted or substituted with 2′-F. In some embodiments, such an oligonucleotide is a DMD oligonucleotide. In some embodiments, each of the consecutive nucleoside units is independently preceded and/or followed by a modified internucleotidic linkage. In some embodiments, each of the consecutive nucleoside units is independently preceded and/or followed by a phosphorothioate linkage. In some embodiments, each of the consecutive nucleoside units is independently preceded and/or followed by a chirally controlled modified internucleotidic linkage. In some embodiments, each of the consecutive nucleoside units is independently preceded and/or followed by a chirally controlled phosphorothioate linkage.


In some embodiments, a modified internucleotidic linkage has the structure of formula I. I-a, I-b, I-c, 1-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, etc., or a salt form thereof. In some embodiments, a modified internucleotidic linkage has a structure of formula I or a salt form thereof. In some embodiments, a modified internucleotidic linkage has a structure of formula I-a or a salt form thereof.


In some embodiments, a modified internucleotidic linkage is a non-negatively charged internucleotidic linkage. In some embodiments, a modified internucleotidic linkage is a positively-charged internucleotidic linkage. In some embodiments, a modified internucleotidic linkage is a neutral internucleotidic linkage. In some embodiments, a non-negatively charged internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, etc., or a salt form thereof. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 3-20 membered heterocyclyl or heteroaryl group having 1-10 heteroatoms. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 3-20 membered heterocyclyl or heteroaryl group having 1-10 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, such a heterocyclyl or heteroaryl group is of a 5-membered ring. In some embodiments, such a heterocyclyl or heteroaryl group is of a 6-membered ring.


In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-20 membered heteroaryl group having 1-10 heteroatoms. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-20 membered heteroaryl group having 1-10 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-6 membered heteroaryl group having 1-4 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-membered heteroaryl group having 1-4 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, a heteroaryl group is directly bonded to a linkage phosphorus. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted triazolyl group. In some embodiments, a non-negatively charged internucleotidic linkage comprises an unsubstituted triazolyl group, e.g.,




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage comprises a substituted triazolyl group. e.g.,




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-20 membered heterocyclyl group having 1-10 heteroatoms. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-20 membered heterocyclyl group having 1-10 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-6 membered heterocyclyl group having 1-4 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted 5-membered heterocyclyl group having 1-4 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, at least two heteroatoms are nitrogen. In some embodiments, a heterocyclyl group is directly bonded to a linkage phosphorus. In some embodiments, a heterocyclyl group is bonded to a linkage phosphorus through a linker, e.g., ═N— when the heterocyclyl group is part of a guanidine moiety who directed bonded to a linkage phosphorus through its ═N—. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted




embedded image


group. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted




embedded image


group. In some embodiments, a non-negatively charged internucleotidic linkage comprises an substituted




embedded image


group. In some embodiments, a non-negatively charged internucleotidic linkage comprises a




embedded image


group. In some embodiments, each R1 is independently optionally substituted C1-20 alkyl. In some embodiments, each R1 is independently optionally substituted C1-6 alkyl. In some embodiments, each R1 is independently methyl. In some embodiments, the two R1 groups are different; for example, in some embodiments, one R1 is methyl, and the other is —CH2(CH2)10CH3.


In some embodiments, a modified internucleotidic linkage. e.g., a non-negatively charged internucleotidic linkage, comprises a triazole or alkyne moiety, each of which is optionally substituted. In some embodiments, a modified internucleotidic linkage comprises a triazole moiety. In some embodiments, a modified internucleotidic linkage comprises a unsubstituted triazole moiety. In some embodiments, a modified internucleotidic linkage comprises a substituted triazole moiety. In some embodiments, a modified internucleotidic linkage comprises an alkyl moiety. In some embodiments, a modified internucleotidic linkage comprises an optionally substituted alkynyl group. In some embodiments, a modified internucleotidic linkage comprises an unsubstituted alkynyl group. In some embodiments, a modified internucleotidic linkage comprises a substituted alkynyl group. In some embodiments, an alkynyl group is directly bonded to a linkage phosphorus.


In some embodiments, an oligonucleotide comprising a non-negatively charged internucleotidic linkage can comprise any structure, format, or portion thereof described herein. In some embodiments, an oligonucleotide comprising a non-negatively charged internucleotidic linkage can comprise any structure, format, or portion thereof described herein as being a component of a DMD oligonucleotide. In some embodiments, any structure, format, or portion thereof described as being a component of any DMD oligonucleotide can be used in any oligonucleotide comprising a non-negatively charged internucleotidic linkage, whether or not that oligonucleotide targets DMD or not, or whether the oligonucleotide is capable of mediating skipping of a DMD exon or not. In some embodiments, an oligonucleotide comprising a non-negatively charged internucleotidic is double-stranded or single-stranded.


In some embodiments, a provided oligonucleotide composition is characterized in that, when it is contacted with the transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under reference conditions selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof. In some embodiments, a desired splicing product is increased 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 fold or more. In some embodiments, a desired splicing reference is absent (e.g., cannot be reliably detected by quantitative PCR) under reference conditions. In some embodiments, as exemplified in the present disclosure, levels of the plurality of oligonucleotides, e.g., a plurality of oligonucleotides, in provided compositions are pre-determined.


In some embodiments, provided oligonucleotides, e.g., oligonucleotides of a plurality in a provided composition, comprise two or more regions. In some embodiments, provided comprise a 5′-end region, a 3′-end region, and a middle region in between. In some embodiments, provided oligonucleotides have two wing and one core regions. In some embodiments, provided oligonucleotides are of a wing-core-wing structure. In some embodiments, the two wing regions are identical. In some embodiments, the two wing regions are different. In some embodiments, a 5′-end region is a 5′-wing region. In some embodiments, a 5′-wing region is a 5′-nd region. In some embodiments, a 3′-end region is a 3′-wing region. In some embodiments, a 3′-wing region is a 3′-end region. In some embodiments, a core region is a middle region.


In some embodiments, a region (e.g., a 5′-wing region, a 3′-wing, a core region, a 5′-end region, a middle region, etc.) comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more nucleoside units. In some embodiments, a region comprises 2 or more nucleoside units. In some embodiments, a region comprises 3 or more nucleoside units. In some embodiments, a region comprises 4 or more nucleoside units. In some embodiments, a region comprises 5 or more nucleoside units. In some embodiments, a region comprises 6 or more nucleoside units. In some embodiments, a region comprises 7 or more nucleoside units. In some embodiments, a region comprises 8 or more nucleoside units. In some embodiments, a region comprises 9 or more nucleoside units. In some embodiments, a region comprises 10 or more nucleoside units.


In some embodiments, a region (e.g., a 5′-wing region, a 3′-wing, a core region, a 5′-end region, a middle region, etc.) comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more modified internucleotidic linkages. In some embodiments, a region comprises 2 or more modified internucleotidic linkages. In some embodiments, the one or more modified internucleotidic linkages are consecutive. In some embodiments, a region comprises 2 or more consecutive modified internucleotidic linkages. In some embodiments, each internucleotidic linkage in a region is independently a modified internucleotidic linkage, wherein each chiral internucleotidic linkage is optionally and independently chirally controlled. In some embodiments, a chiral internucleotidic linkage or a modified internucleotidic linkage has the structure of formula I or a salt form thereof. In some embodiments, a chiral internucleotidic linkage or a modified internucleotidic linkage is a phosphorothioate internucleotidic linkage. In some embodiments, each chiral internucleotidic linkage or a modified internucleotidic linkage independently has the structure of formula I or a salt form thereof. In some embodiments, each chiral internucleotidic linkage or a modified internucleotidic linkage is a phosphorothioate internucleotidic linkage. In some embodiments, a region comprises 3 or consecutive modified internucleotidic linkages.


In some embodiments, a wing region comprises one or more natural phosphate linkages. In some embodiments, a core region comprises one or more natural phosphate linkages. In some embodiments, a 5′-end region comprises one or more natural phosphate linkages. In some embodiments, a 3′-end region comprises one or more natural phosphate linkages. In some embodiments, a middle region comprises one or more natural phosphate linkages. In some embodiments, the one or more natural phosphate linkages are consecutive.


In some embodiments, a natural phosphate linkage follows (e.g., connected to a 3′-position of a sugar moiety) or precedes (e.g., connected to a 5′-position of a sugar moiety) a nucleoside unit whose sugar moiety comprises a 2′-OR1 modification, wherein R1 is not hydrogen. In some embodiments, R1 is optionally substituted C1-6 aliphatic. In some embodiments, a modified internucleotidic linkage follows (e.g., connected to a 3′-position of a sugar moiety) or precedes (e.g., connected to a 5′-position of a sugar moiety) all or most (e.g., more than 55%, 60%, 70%, 80%, 90%, 95%, etc.) nucleoside units whose sugar moiety comprises no 2′-OR1 modification, wherein R1 is not hydrogen (e.g., those having two 2′-H at the 2′-position, those having a 2′-H and a 2′-F at the 2′-position (2′-F modified), etc.).


In some embodiments, a region comprises one or more nucleoside units comprising sugar modifications, e.g., 2′-F, 2′-OR1, LNA sugar modifications, etc. In some embodiments, each sugar in a region is independently modified. In some embodiments, each sugar moiety in a wing, a 5′-end region, and/or a Y-end region is modified. In some embodiments, a modification is a 2′-modification. In some embodiments, a modification can increase stability, e.g., 2′-OR1 where in R1 is not —H (e.g., is optionally substituted C1-6 aliphatic), LNA sugar modifications, etc. In some embodiments, a region, e.g., a core region or a middle region, comprise no sugar modifications (or no 2′-OR sugar modifications/LNA modifications etc.). In some embodiments, such a core/middle region can form a duplex with a RNA for recognition/binding of a protein, e.g., RNase H, for the protein to perform one or more of its functions (e.g., in the case of RNase H, its binding and cleavage of DNA/RNA duplex).


A region and/or a provided oligonucleotide may have various patterns of backbone chiral centers. In some embodiments, each internucleotidic linkage in a region is a chirally controlled internucleotidic linkage and is Sp. In some embodiments, the 5′-end and/or the 3′-end internucleotidic linkage is a chirally controlled internucleotidic linkage and is Sp. In some embodiments, the pattern of backbone chiral centers of a wing region, a 5′-end region, and/or a Y-end region is or comprises a 5′-end and/or a 3′-end internucleotidic linkage which is a chirally controlled internucleotidic linkage and is Sp, with the other internucleotidic linkages in the region independently being an natural phosphate linkage, a modified internucleotidic linkage, or a chirally controlled internucleotidic linkage (Sp or Rp). In some embodiments, such patterns provide stability. Many example patterns of backbone chiral centers are described in the present disclosure.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide composition comprising a plurality of oligonucleotides defined by having:


1) a common base sequence;


2) a common pattern of backbone linkages; and


3) a common pattern of backbone chiral centers, which composition is a substantially pure preparation of a single oligonucleotide in that a controlled level of the oligonucleotides in the composition have the common base sequence and length, the common pattern of backbone linkages, and the common pattern of backbone chiral centers.


In some embodiments, oligonucleotides having a common base sequence may have the same pattern of nucleoside modifications, e.g., sugar modifications, base modifications, etc. In some embodiments, a pattern of nucleoside modifications may be represented by a combination of locations and modifications. In some embodiments, all non-chiral linkages (e.g., PO) may be omitted. In some embodiments, oligonucleotides having the same base sequence have the same constitution.


As understood by a person having ordinary skill in the art, a stereorandom or racemic preparation of oligonucleotides is prepared by non-stereoselective and/or low-stereoselective coupling of nucleotide monomers, typically without using any chiral auxiliaries, chiral modification reagents, and/or chiral catalysts. In some embodiments, in a substantially racemic (or chirally uncontrolled) preparation of oligonucleotides, all or most coupling steps are not chirally controlled in that the coupling steps are not specifically conducted to provide enhanced stereoselectivity. An example substantially racemic preparation of oligonucleotides is the preparation of phosphorothioate oligonucleotides through sulfurizing phosphite triesters from commonly used phosphoramidite oligonucleotide synthesis with either tetraethylthiuram disulfide or (TETD) or 3H-1, 2-bensodithiol-3-one 1, 1-dioxide (BDTD), a well-known process in the art. In some embodiments, substantially racemic preparation of oligonucleotides provides substantially racemic oligonucleotide compositions (or chirally uncontrolled oligonucleotide compositions). In some embodiments, at least one coupling of a nucleotide monomer has a diastereoselectivity lower than about 60:40, 70:30, 80:20, 85:15, 90:10, 91:9, 92:8, 97:3, 98:2, or 99:1. In some embodiments, each internucleotidic linkage independently has a diastereoselectivity lower than about 60:40, 70:30, 80:20, 85:15, 90:10, 91:9, 92:8, 97:3, 98:2, or 99:1. In some embodiments, a diastereoselectivity is lower than about 60:40. In some embodiments, a diastereoselectivity is lower than about 70:30. In some embodiments, a diastereoselectivity is lower than about 80:20. In some embodiments, a diastereoselectivity is lower than about 90:10. In some embodiments, a diastereoselectivity is lower than about 91:9. In some embodiments, at least one internucleotidic linkage has a diastereoselectivity lower than about 90:10. In some embodiments, at least two internucleotidic linkages have a diastereoselectivity lower than about 90:10. In some embodiments, at least three internucleotidic linkages have a diastereoselectivity lower than about 90:10. In some embodiments, at least four internucleotidic linkages have a diastereoselectivity lower than about 90:10. In some embodiments, at least five internucleotidic linkages have a diastereoselectivity lower than about 90:10. In some embodiments, each internucleotidic linkage independently has a diastereoselectivity lower than about 90:10. In some embodiments, a non-chirally controlled internucleotidic linkage has a diastereomeric purity no more than 90%, 85%, 80%, 75%, 70%, 65%, 60%, or 55%. In some embodiments, the purity is no more than 90%. In some embodiments, the purity is no more than 85%. In some embodiments, the purity is no more than 80%.


In contrast, in chirally controlled oligonucleotide composition, at least one and typically each chirally controlled internucleotidic linkage, such as those of oligonucleotides of chirally controlled oligonucleotide compositions, independently has a diastereomeric purity of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more with respect to the chiral linkage phosphors. In some embodiments, a diastereomeric purity is 95% or more. In some embodiments, a diastereomeric purity is 96% or more. In some embodiments, a diastereomeric purity is 97% or more. In some embodiments, a diastereomeric purity is 98% or more. In some embodiments, a diastereomeric purity is 99% or more. Among other things, technologies of the present disclosure routinely provide chirally controlled internucleotidic linkages with high diastereomeric purity.


As appreciated by a person having ordinary skill in the art, diastereoselectivity of a coupling or diastereomeric purity (diastereopurity) of an internucleotidic linkage can be assessed through the diastereoselectivity of a dimer formation/diasteromeric purity of the internucleotidic linkage of a dimer formed under the same or comparable conditions, wherein the dimer has the same 5′- and 3′-nucleosides and internucleotidic linkage.


In some embodiments, the present disclosure provides chirally controlled (and/or stereochemically pure) oligonucleotide compositions comprising a plurality of oligonucleotides defined by having:


1) a common base sequence;


2) a common pattern of backbone linkages; and


3) a common pattern of backbone chiral centers, which composition is a substantially pure preparation of a single oligonucleotide in that at least about 10% of the oligonucleotides in the composition have the common base sequence and length, the common pattern of backbone linkages, and the common pattern of backbone chiral centers.


In some embodiments, the present disclosure provides chirally controlled oligonucleotide composition of a plurality of oligonucleotides, wherein the composition is enriched, relative to a substantially racemic preparation of the same oligonucleotides, for oligonucleotides of a single oligonucleotide type. In some embodiments, the present disclosure provides chirally controlled oligonucleotide composition of a plurality of oligonucleotides wherein the composition is enriched, relative to a substantially racemic preparation of the same oligonucleotides, for oligonucleotides of a single oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications.


wherein the composition is enriched, relative to a substantially racemic preparation of oligonucleotides having the same base sequence and length, for oligonucleotides of the particular oligonucleotide type.


In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers have a common pattern of backbone phosphorus modifications and a common pattern of base modifications. In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers have a common pattern of backbone phosphorus modifications and a common pattern of nucleoside modifications. In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers have identical structures.


In some embodiments, oligonucleotides of an oligonucleotide type have a common pattern of backbone phosphorus modifications and a common pattern of sugar modifications. In some embodiments, oligonucleotides of an oligonucleotide type have a common pattern of backbone phosphorus modifications and a common pattern of base modifications. In some embodiments, oligonucleotides of an oligonucleotide type have a common pattern of backbone phosphorus modifications and a common pattern of nucleoside modifications. In some embodiments, oligonucleotides of a particular type have the same constitution. In some embodiments, oligonucleotides of an oligonucleotide type are identical.


In some embodiments, a chirally controlled oligonucleotide composition is a substantially pure preparation of an oligonucleotide type in that oligonucleotides in the composition that are not of the oligonucleotide type are impurities form the preparation process of said oligonucleotide type, in some case, after certain purification procedures.


In some embodiments, at least about 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 95% of the oligonucleotides in the composition have a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers.


In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers have a common pattern of backbone phosphorus modifications. In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers have a common pattern of backbone phosphorus modifications and a common pattern of nucleoside modifications. In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers have a common pattern of backbone phosphorus modifications and a common pattern of sugar modifications. In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers have a common pattern of backbone phosphorus modifications and a common pattern of base modifications. In some embodiments, oligonucleotides having a common base sequence, a common pattern of backbone linkages, and a common pattern of backbone chiral centers are identical.


In some embodiments, purity of a chirally controlled oligonucleotide composition of an oligonucleotide type is expressed as the percentage of oligonucleotides in the composition that are of the oligonucleotide type. In some embodiments, at least about 10% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 20% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 30% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 40% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 50% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 60% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 70% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 80% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 90% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 92% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 94% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 95% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 96% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the same oligonucleotide type. In some embodiments, at least about 97% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 98% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type. In some embodiments, at least about 99% of the oligonucleotides in a chirally controlled oligonucleotide composition are of the oligonucleotide type.


In some embodiments, purity of a chirally controlled oligonucleotide composition can be controlled by stereoselectivity of each coupling step in its preparation process. In some embodiments, a coupling step has a stereoselectivity (e.g., diastereoselectivity) of 60% (60% of the new internucleotidic linkage formed from the coupling step has the intended stereochemistry). After such a coupling step, the new internucleotidic linkage formed may be referred to have a 60% purity. In some embodiments, each coupling step has a stereoselectivity of at least 60%. In some embodiments, each coupling step has a stereoselectivity of at least 70%. In some embodiments, each coupling step has a stereoselectivity of at least 80%. In some embodiments, each coupling step has a stereoselectivity of at least 85%. In some embodiments, each coupling step has a stereoselectivity of at least 90%. In some embodiments, each coupling step has a stereoselectivity of at least 91%. In some embodiments, each coupling step has a stereoselectivity of at least 92%. In some embodiments, each coupling step has a stereoselectivity of at least 93%. In some embodiments, each coupling step has a stereoselectivity of at least 94%. In some embodiments, each coupling step has a stereoselectivity of at least 95%. In some embodiments, each coupling step has a stereoselectivity of at least 96%. In some embodiments, each coupling step has a stereoselectivity of at least 97%. In some embodiments, each coupling step has a stereoselectivity of at least 98%. In some embodiments, each coupling step has a stereoselectivity of at least 99%. In some embodiments, each coupling step has a stereoselectivity of at least 99.5%. In some embodiments, each coupling step has a stereoselectivity of virtually 100%. In some embodiments, a coupling step has a stereoselectivity of virtually 100% in that all detectable product from the coupling step by an analytical method (e.g., NMR. HPLC, use of a nuclease which stereoselectively cleaves phosphorothioates, etc) has the intended stereoselectivity. In some embodiments, stereoselectivity of a chiral internucleotidic linkage in an oligonucleotide may be measured through a model reaction, e.g. formation of a dimer under essentially the same or comparable conditions wherein the dimer has the same internucleotidic linkage as the chiral internucleotidic linkage, the 5′-nucleoside of the dimer is the same as the nucleoside to the 5′-end of the chiral internucleotidic linkage, and the 3′-nucleoside of the dimer is the same as the nucleoside to the 3′-end of the chiral internucleotidic linkage (e.g., for fU*SfU*fC*SfU, through the dimer of fU*SfC). As appreciated by a person having ordinary skill in the art, percentage of oligonucleotides of a particular type having n chirally controlled internucleotidic linkages in a preparation may be calculated as DP1*DP2*DP3* . . . DPn, wherein each of DP1, DP2, DP3, . . . , and DPn is independently the diastereomeric purity of the 1st, 2nd, 3rd, . . . , and nth chirally controlled internucleotidic linkage. In some embodiments, each of DP1, DP2, DP3, . . . , and DPn is independently 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97% or 99% or more. In some embodiments, each of DP1, DP2, DP3, . . . , and DPn is independently 95% or more.


In some embodiments, in provided compositions, at least 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97% or 99% of oligonucleotides that have the base sequence of a particular oligonucleotide type (defined by 1) base sequence; 2) pattern of backbone linkages; 3) pattern of backbone chiral centers; and 4) pattern of backbone phosphorus modifications) are oligonucleotides of the particular oligonucleotide type. In some embodiments, at least 0.5%, 1%, 2%, 3%, 4%, 5%. 6%, 7%, 8% 9%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97% or 99% of oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of a particular oligonucleotide type are oligonucleotides of the particular oligonucleotide type.


In some embodiments, oligonucleotides of a particular type in a chirally controlled oligonucleotide composition is enriched at least 5 fold (oligonucleotides of the particular type have a fraction of 5*(½n) of oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type, wherein n is the number of chiral internucleotidic linkages; or oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type but are not of the particular oligonucleotide type are no more than [1-(½n)]/5 of oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type) compared to a stereorandom preparation of the oligonucleotides (oligonucleotides of the particular type are typically considered to have a fraction of ½″ of oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type, wherein n is the number of chiral internucleotidic linkages, and oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type but are not of the particular oligonucleotide type are typically considered to have a fraction of [1-(½″)] of oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type). In some embodiments, the enrichment is at least 20 fold. In some embodiments, the enrichment is at least 30 fold. In some embodiments, the enrichment is at least 40 fold. In some embodiments, the enrichment is at least 50 fold. In some embodiments, the enrichment is at least 60 fold. In some embodiments, the enrichment is at least 70 fold. In some embodiments, the enrichment is at least 80 fold. In some embodiments, the enrichment is at least 90 fold. In some embodiments, the enrichment is at least 100 fold. In some embodiments, the enrichment is at least 20,000 fold. In some embodiments, the enrichment is at least (1.5)″. In some embodiments, the enrichment is at least (1.6)″. In some embodiments, the enrichment is at least (1.7)″. In some embodiments, the enrichment is at least (1.1)″. In some embodiments, the enrichment is at least (1.8)″. In some embodiments, the enrichment is at least (1.9)″. In some embodiments, the enrichment is at least 2″. In some embodiments, the enrichment is at least 3″. In some embodiments, the enrichment is at least 4″. In some embodiments, the enrichment is at least 5″ In some embodiments, the enrichment is at least 6″. In some embodiments, the enrichment is at least 7″. In some embodiments, the enrichment is at least 8″. In some embodiments, the enrichment is at least 9″. In some embodiments, the enrichment is at least 10″. In some embodiments, the enrichment is at least 15″. In some embodiments, the enrichment is at least 20″. In some embodiments, the enrichment is at least 25″. In some embodiments, the enrichment is at least 30″. In some embodiments, the enrichment is at least 40″. In some embodiments, the enrichment is at least 50″. In some embodiments, the enrichment is at least 100. In some embodiments, enrichment is measured by increase of the fraction of oligonucleotides of the particular oligonucleotide type in oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type. In some embodiments, an enrichment is measured by decrease of the fraction of oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type but are not of the particular oligonucleotide type in oligonucleotides that have the base sequence, the pattern of backbone linkages, and the pattern of backbone phosphorus modifications of the particular oligonucleotide type.


In some embodiments, provided oligonucleotides are antisense oligonucleotides. In some embodiments, provided oligonucleotides are siRNA oligonucleotides. In some embodiments, a provided chirally controlled oligonucleotide composition is of oligonucleotides that can be antisense oligonucleotide, antagomir, microRNA, pre-microRNA, antimir, supermir, ribozyme, U1 adaptor. RNA activator, RNAi agent, decoy oligonucleotide, triplex forming oligonucleotide, aptamer or adjuvant. In some embodiments, a chirally controlled oligonucleotide composition is of antisense oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of siRNA oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of antagomir oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of microRNA oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of pre-microRNA oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of antimir oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of supermir oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of ribozyme oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of U1 adaptor oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of RNA activator oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of RNAi agent oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of decoy oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of triplex forming oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of aptamer oligonucleotides. In some embodiments, a chirally controlled oligonucleotide composition is of adjuvant oligonucleotides.


In some embodiments, a provided oligonucleotide comprises one or more chiral, modified phosphate linkages. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of oligonucleotides that include one or more modified backbone linkages, bases, and/or sugars.


In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 80%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 85%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 90%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 91%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 92%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 93%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 94%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 95%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 96%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 97%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 98%. In some embodiments, provided chirally controlled (and/or stereochemically pure) preparations are of a stereochemical purity of greater than about 99%.


In some embodiments, at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the internucleotidic linkages of an oligonucleotide are independently chiral internucleotidic linkages. In some embodiments, all chiral, modified internucleotidic linkages are chiral phosphorothioate internucleotidic linkages. In some embodiments, all chiral, modified internucleotidic linkages except non-negatively charged internucleotidic linkages are chiral phosphorothioate internucleotidic linkages. In some embodiments, each chiral internucleotidic linkage is chirally controlled. In some embodiments, at least about 10, 20, 30, 40, 50, 60, 70, 80, or 90% chiral internucleotidic linkages of an oligonucleotide are chirally controlled and are of the Sp conformation. In some embodiments, at least about 10, 20, 30, 40, 50, 60, 70, 80, or 90% phosphorothioate internucleotidic linkages of an oligonucleotide are chirally controlled and are of the Sp conformation. In some embodiments, the percentage is at least about 10%. In some embodiments, the percentage is at least about 20%. In some embodiments, the percentage is at least about 30%. In some embodiments, the percentage is at least about 40%. In some embodiments, the percentage is at least about 50%. In some embodiments, the percentage is at least about 60%. In some embodiments, the percentage is at least about 70%. In some embodiments, the percentage is at least about 80%. In some embodiments, the percentage is at least about 90%.


In some embodiments, at least about 10, 20, 30, 40, 50, 60, 70, 80, or 90% chiral internucleotidic linkages of an oligonucleotide are chirally controlled and are of the Rp conformation. In some embodiments, at least about 10, 20, 30, 40, 50, 60, 70, 80, or 90% chiral phosphorothioate internucleotidic linkages of an oligonucleotide are chirally controlled and are of the Rp conformation. In some embodiments, the percentage is at least about 10%. In some embodiments, the percentage is at least about 20%. In some embodiments, the percentage is at least about 30%. In some embodiments, no more than 10, 20, 30, 40, 50, 60, 70, 80, or 90% chiral internucleotidic linkages of an oligonucleotide are chirally controlled and are of the Rp conformation. In some embodiments, no more than 10, 20, 30, 40, 50, 60, 70, 80, or 90% phosphorothioate internucleotidic linkages of an oligonucleotide are of the Rp conformation. In some embodiments, the percentage is no more than 10%. In some embodiments, the percentage is no more than 20%. In some embodiments, the percentage is no more than 30%.


In some embodiments, provided chirally controlled (and/or stereochemically pure) compositions are of oligonucleotides that contain one or more modified bases. In some embodiments, provided chirally controlled (and/or stereochemically pure) compositions are of oligonucleotides that contain no modified bases. As appreciated by those skilled in the art, many types of modified bases can be utilized in accordance with the present disclosure. Example modified bases are described herein.


In some embodiments, oligonucleotides of provided compositions comprise at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise at least one natural phosphate linkage. In some embodiments, oligonucleotides of provided compositions comprise at least two natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise at least three natural phosphate linkages.


In some embodiments, oligonucleotides of provided compositions comprise 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise one natural phosphate linkage. In some embodiments, oligonucleotides of provided compositions comprise two natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise three natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise four natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise five natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise six natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise seven natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise eight natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise nine natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise ten natural phosphate linkages.


In some embodiments, oligonucleotides of provided compositions comprise at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 consecutive natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise at least two consecutive natural phosphate linkages. In some embodiments, oligonucleotides of provided compositions comprise at least three consecutive natural phosphate linkages.


In some embodiments, oligonucleotides of the present disclosure have at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, or 75 nucleobases in length. In some embodiments, oligonucleotides of the present disclosure comprises at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, or 75 nucleobases in length, wherein each nucleobase is independently optionally substituted A, T, C, G, U, or a tautomer thereof.


In some embodiments, provided compositions comprise oligonucleotides containing one or more residues which are modified at the sugar moiety. In some embodiments, provided compositions comprise oligonucleotides containing one or more residues which are modified at the 2′ position of the sugar moiety (referred to herein as a “2′-modification”). Examples of such modifications are described herein and include, but are not limited to, 2′-OMe, 2′-MOE, 2′-LNA, 2′-F, FRNA, FANA, S-cEt, etc. In some embodiments, provided compositions comprise oligonucleotides containing one or more residues which are 2′-modified. For example, in some embodiments, provided oligonucleotides contain one or more residues which are 2′-O-methoxyethyl (2′-MOE)-modified residues. In some embodiments, provided compositions comprise oligonucleotides which do not contain any 2′-modifications. In some embodiments, provided compositions are oligonucleotides which do not contain any 2′-MOE residues. That is, in some embodiments, provided oligonucleotides are not MOE-modified. Additional example sugar modifications are described in the present disclosure.


In some embodiments, one or more is one. In some embodiments, one or more is two. In some embodiments, one or more is three. In some embodiments, one or more is four. In some embodiments, one or more is five. In some embodiments, one or more is six. In some embodiments, one or more is seven. In some embodiments, one or more is eight. In some embodiments, one or more is nine. In some embodiments, one or more is ten. In some embodiments, one or more is at least one. In some embodiments, one or more is at least two. In some embodiments, one or more is at least three. In some embodiments, one or more is at least four. In some embodiments, one or more is at least five. In some embodiments, one or more is at least six. In some embodiments, one or more is at least seven. In some embodiments, one or more is at least eight. In some embodiments, one or more is at least nine. In some embodiments, one or more is at least ten.


In some embodiments, a base sequence, e.g., a common base sequence of a plurality of oligonucleotide, a base sequence of a particular oligonucleotide type, etc., comprises or is a sequence complementary to a gene or transcript (e.g., of Dystrophin or DMD). In some embodiments, a common base sequence comprises or is a sequence 100% complementary to a gene. In some embodiments, a common base sequence comprises or is a sequence complementary to a characteristic sequence element of a gene, which characteristic sequences differentiate the gene from a similar sequence sharing homology with the gene. In some embodiments, a common base sequence comprises or is a sequence 100% complementary to a characteristic sequence element of a gene, which characteristic sequences differentiate the gene from another allele of the gene. In some embodiments, a common base sequence comprises or is a sequence 100% complementary to a characteristic sequence element of a gene, which characteristic sequences differentiate the gene from a similar sequence sharing homology with the gene. In some embodiments, a common base sequence comprises or is a sequence complementary to characteristic sequence element of a target gene, which characteristic sequences comprises a mutation that is not found in other copies of the gene, e.g., the wild-type copy of the gene, another mutant copy the gene, etc. In some embodiments, a common base sequence comprises or is a sequence 100% complementary to characteristic sequence element of a target gene, which characteristic sequences comprises a mutation that is not found in other copies of the gene, e.g., the wild-type copy of the gene, another mutant copy the gene, etc. In some embodiments, a common base sequence comprises or is a sequence 100% complementary to a characteristic sequence element of a gene, which characteristic sequences differentiate the gene from another allele of the gene. In some embodiments, a characteristic sequence element is a mutation. In some embodiments, a characteristic sequence element is a SNP.


In some embodiments, a chiral internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, etc., or a salt form thereof. In some embodiments, linkage phosphorus of chiral internucleotidic linkages are chirally controlled. In some embodiments, a chiral internucleotidic linkage is phosphorothioate internucleotidic linkage. In some embodiments, each chiral internucleotidic linkage in an oligonucleotide of a provided composition independently has the structure of formula I. In some embodiments, each chiral internucleotidic linkage in an oligonucleotide of a provided composition independently has the structure of formula II. In some embodiments, each chiral internucleotidic linkage in an oligonucleotide of a provided composition independently has the structure of formula III. In some embodiments, each chiral internucleotidic linkage in an oligonucleotide of a provided composition is a phosphorothioate internucleotidic linkage.


As appreciated by those skilled in the art, internucleotidic linkages, e.g., those of formula I, natural phosphate linkages, phosphorothioate internucleotidic linkages, etc. may exist in their salt forms depending on pH of their environment. Unless otherwise indicated, such salt forms are included in the present application when such internucleotidic linkages are referred to.


In some embodiments, oligonucleotides of the present disclosure comprise one or more modified sugar moieties. In some embodiments, oligonucleotides of the present disclosure comprise one or more modified base moieties. As known by a person of ordinary skill in the art and described in the disclosure, various modifications can be introduced to sugar and base moieties. For example, in some embodiments, a modification is a modification described in U.S. Pat. No. 9,006,198, WO2014/012081, WO/2015/107425, and WO/2017/062862, the sugar and base modifications of each of which are incorporated herein by reference.


In some embodiments, a sugar modification is a 2′-modification. Commonly used 2′-modifications include but are not limited to 2′-OR1, wherein R1 is not hydrogen. In some embodiments, a modification is 2′-OR, wherein R is optionally substituted aliphatic. In some embodiments, a modification is 2′-OMe. In some embodiments, a modification is 2′-O-MOE. In some embodiments, the present disclosure demonstrates that inclusion and/or location of particular chirally pure internucleotidic linkages can provide stability improvements comparable to or better than those achieved through use of modified backbone linkages, bases, and/or sugars. In some embodiments, a provided single oligonucleotide of a provided composition has no modifications on the sugars. In some embodiments, a provided single oligonucleotide of a provided composition has no modifications on 2′-positions of the sugars (i.e., the two groups at the 2′-position are either —H/—H or -H/—OH). In some embodiments, a provided single oligonucleotide of a provided composition does not have any 2′-MOE modifications.


In some embodiments, a 2′-modification is —O-L- or -L- which connects the 2′-carbon of a sugar moiety to another carbon of a sugar moiety. In some embodiments, a 2′-modification is —O-L- or -L- which connects the 2′-carbon of a sugar moiety to the 4′-carbon of a sugar moiety. In some embodiments, a 2′-modification is S-cEt. In some embodiments, a modified sugar moiety is an LNA sugar moiety.


In some embodiments, a 2′-modification is —F. In some embodiments, a 2′-modification is FANA. In some embodiments, a 2′-modification is FRNA.


In some embodiments, a sugar modification is a 5′-modification. In some embodiments, a modification is 5′-R1, wherein R1 is not hydrogen. In some embodiments, a sugar modification is 5′-R, wherein R is not hydrogen and is otherwise as described in the present disclosure. In some embodiments, a sugar modification is 5′-R, wherein R is optionally substituted C1-6 aliphatic. In some embodiments, a sugar modification is 5′-R, wherein R is optionally substituted C1-6 alkyl. In some embodiments, a sugar modification is 5′-R, wherein R is optionally substituted methyl. In some embodiments, a sugar modification is 5′-R, wherein R is optionally substituted methyl, wherein no substituents of the methyl group comprises a carbon atom. In some embodiments, a 5′-modification is methyl. In some embodiments, each substituent is independently halogen. In some embodiments, a substituted 5′-carbon is diastereomerically pure. In some embodiments, a substituted 5-carbon has the R configuration. In some embodiments, a substituted 5-carbon has the S configuration. In some embodiments, a 5′-modification is 5′-(R)-Me. In some embodiments, a 5′-modification is 5′-(S)-Me.


In some embodiments, a sugar moiety has one and no more than one modification at a position, e.g., a 2-position, 5′-position, etc. In some embodiments, a 2′-modification takes the position corresponding to the position of the 2′-OH in a natural RNA sugar moiety. In some embodiments, a 2′-modification takes the position corresponding to the position of the 2′-H in a natural RNA sugar moiety.


In some embodiments, a sugar modification changes the size of the sugar ring. In some embodiments, a sugar modification changes the conformation of the sugar ring. In some embodiments, a sugar modification is the sugar moiety in FHNA.


In some embodiments, a sugar modification replaces a sugar moiety with another cyclic or acyclic moiety. Examples of such moieties are widely known in the art, including but not limited to those used in Morpholino, glycol nucleic acids, etc.


Certain Embodiments of Internucleotidic Linkages, Chirally Controlled Oligonucleotides and Chirally Controlled Oligonucleotide Compositions

Among other things, the present disclosure provides chirally controlled oligonucleotides and chirally controlled oligonucleotide compositions. In some embodiments, the present disclosure provides chirally controlled oligonucleotides and chirally controlled oligonucleotide compositions which are of high crude purity. In some embodiments, the present disclosure provides chirally controlled oligonucleotides, and chirally controlled oligonucleotide compositions which are of high diastereomeric purity. Chirally controlled oligonucleotides are oligonucleotides comprise one or more chirally controlled internucleotidic linkages, such as oligonucleotides of a plurality in chirally controlled oligonucleotide compositions. In some embodiments, chirally controlled oligonucleotides comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more chirally controlled internucleotidic linkages. In some embodiments, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or more chiral internucleotidic linkages of a chirally controlled oligonucleotide are independently chirally controlled internucleotidic linkages. In some embodiments, each chiral internucleotidic linkage in a chirally controlled oligonucleotide is a chirally controlled internucleotidic linkage, and a chirally controlled oligonucleotide is diastereomerically pure.


In some embodiments, a chirally controlled oligonucleotide composition is a substantially pure composition of an oligonucleotide type in that oligonucleotides in the composition that are not of the oligonucleotide type are impurities. In some embodiments, such impurities are formed during the preparation process of oligonucleotides of said oligonucleotide type, in some case, after certain purification procedures.


In some embodiments, the present disclosure provides oligonucleotides comprising one or more diastereomerically pure internucleotidic linkages with respect to the chiral linkage phosphorus (e.g., linkage phosphorus of chirally controlled internucleotidic linkages). In some embodiments, the present disclosure provides oligonucleotides comprising one or more diastereomerically pure internucleotidic linkages having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, etc., or a salt form thereof. In some embodiments, the present disclosure provides oligonucleotides comprising one or more diastereomerically pure internucleotidic linkages with respect to the chiral linkage phosphorus, and one or more natural phosphate linkages (unless otherwise indicated, reference in the present application to internucleotidic linkages, such as natural phosphate linkages and other types of internucleotidic linkages when applicable, includes salt forms of such linkages). Thus, diastereomerically pure internucleotidic linkages here include salt forms of diastereomerically pure internucleotidic linkages; natural phosphate linkages here include salt forms of natural phosphate linkages. A person having ordinary skill in the art appreciates that many internucleotidic linkages, such as natural phosphate linkages, exist as salt forms when at physiological pH, in many buffers (e.g., PBS buffers having a pH around 7, e.g., PH 7.4), etc.). In some embodiments, the present disclosure provides oligonucleotides comprising one or more diastereomerically pure internucleotidic linkages having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, etc., or a salt form thereof, and one or more natural phosphate linkages. In some embodiments, the present disclosure provides oligonucleotides comprising one or more diastereomerically pure internucleotidic linkages having the structure of formula I-c, and one or more phosphate diester linkages. In some embodiments, such oligonucleotides are prepared by using stereoselective oligonucleotide synthesis, as described in this application, to form designed diastereomerically pure internucleotidic linkages with respect to the chiral linkage phosphorus.


In some embodiments, an oligonucleotide of the present disclosure comprises at least one internucleotidic linkage, e.g., a modified (non-natural) internucleotidic linkage (e.g., non-negatively charged internucleotidic linkage) within or at the terminus (e.g. 5′ or 3′) of the oligonucleotide. In some embodiments, an oligonucleotide comprises a P-modification moiety within or at the terminus (e.g. 5′ or 3′) of the oligonucleotide.


In some embodiments, an oligonucleotide of the present disclosure comprises at least one chirally controlled internucleotidic linkage within the oligonucleotide. In some embodiments, an oligonucleotide of the present disclosure comprises at least one chirally controlled internucleotidic linkage within the oligonucleotide, and at least one natural phosphate linkage. In some embodiments, an oligonucleotide of the present disclosure comprises at least one chirally controlled internucleotidic linkage within the oligonucleotide, at least one natural phosphate linkage, and at least one phosphorothioate internucleotidic linkage. In some embodiments, an oligonucleotide of the present disclosure comprises at least one chirally controlled internucleotidic linkage within the oligonucleotide, and at least one phosphorothioate triester internucleotidic linkage. In some embodiments, an oligonucleotide of the present disclosure comprises at least one chirally controlled internucleotidic linkage within the oligonucleotide, at least one natural phosphate linkage, and at least one phosphorothioate triester internucleotidic linkage.


In some embodiments, an oligonucleotide of the present disclosure comprises at least two chirally controlled internucleotidic linkages within the oligonucleotide that have different stereochemistry and/or different P-modifications relative to one another. In some embodiments, such at least two internucleotidic linkages have different stereochemistry. In some embodiments, such at least two internucleotidic linkages have different P-modifications. In some embodiments, an oligonucleotide of the present disclosure comprises at least two chirally controlled internucleotidic linkages within the oligonucleotide that have different P-modifications relative to one another, and at least one natural phosphate linkage. In some embodiments, an oligonucleotide of the present disclosure comprises at least two chirally controlled internucleotidic linkages within the oligonucleotide that have different P-modifications relative to one another, at least one natural phosphate linkage, and at least one phosphorothioate internucleotidic linkage. In some embodiments, an oligonucleotide of the present disclosure comprises at least two chirally controlled internucleotidic linkages within the oligonucleotide that have different P-modifications relative to one another, and at least one phosphorothioate triester internucleotidic linkage. In some embodiments, an oligonucleotide of the present disclosure comprises at least two chirally controlled internucleotidic linkages within the oligonucleotide that have different P-modifications relative to one another, at least one natural phosphate linkage, and at least one phosphorothioate triester internucleotidic linkage.


In certain embodiments, an internucleotidic linkage (e.g., a modified (non-natural) internucleotidic linkage when formula I is not a natural phosphate linkage) has the structure of formula I:




embedded image


or a salt form thereof, wherein:


PL is P(═W), P, or P→B(R′)3;


W is O, N(-L-R5), S or Se;


each of R1 and R5 is independently —H, -L-R′, halogen, —CN, —NO2, -L-Si(R′)3, —OR′, —SR′, or —N(R′)2;


each of X, Y and Z is independently —O—, —S—, —N(-L-R5)—, or L:


each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—. —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL;


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each R′ is independently —R, —C(O)R, —C(O)OR, or —S(O)2R;


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having I-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


In some embodiments, a linkage of formula I is chiral at the linkage phosphorus (P in PL). In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising one or more modified internucleotidic linkages of formula I. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising one or more modified internucleotidic linkages of formula I, and wherein individual internucleotidic linkages of formula I within the oligonucleotide have different P-modifications relative to one another. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising one or more modified internucleotidic linkages of formula I, and wherein individual internucleotidic linkages of formula I within the oligonucleotide have different -X-L-R1 relative to one another. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising one or more modified internucleotidic linkages of formula I, and wherein individual internucleotidic linkages of formula I within the oligonucleotide have different X relative to one another. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising one or more modified internucleotidic linkages of formula I, and wherein individual internucleotidic linkages of formula I within the oligonucleotide have different -L-R1 relative to one another. In some embodiments, a chirally controlled oligonucleotide is an oligonucleotide in a provided composition that is of the particular oligonucleotide type. In some embodiments, a chirally controlled oligonucleotide is an oligonucleotide in a provided composition that has the common base sequence and length, the common pattern of backbone linkages, and the common pattern of backbone chiral centers.


As extensively described herein, in some embodiments, -X-L-R1 is a moiety useful for oligonucleotide preparation. For example, in some embodiments, -X-L-R1 is —OCH2CH2CN (e.g., in non-chirally controlled internucleotidic linkages); in some embodiments. -X-L-R1 is of such a structure that H-X-L-R1 is a chiral auxiliary, optionally capped, as described herein (e.g., DPSE, PSM, etc.; particularly in chirally controlled internucleotidic linkages, although may also in non-chirally controlled internucleotidic linkages (e.g., precursors of natural phosphate linkages)).


In some embodiments, a chirally controlled oligonucleotide is an oligonucleotide in a chirally controlled composition that is of a particular oligonucleotide type, and the chirally controlled oligonucleotide is of the type. In some embodiments, a chirally controlled oligonucleotide is an oligonucleotide in a provided composition that comprises a controlled level of a plurality of oligonucleotides that share a common base sequence, a common pattern of backbone linkages, a common pattern of backbone chiral centers, and a common pattern of backbone phosphorus modifications, and the chirally controlled oligonucleotide shares the common base sequence, the common pattern of backbone linkages, the common pattern of backbone chiral centers, and the common pattern of backbone phosphorus modifications.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide, wherein at least two chirally controlled internucleotidic linkages within the oligonucleotide have different P-modifications relative to one another, in that they have different X atoms in their -XLR1 moieties, and/or in that they have different L groups in their -XLR1 moieties, and/or that they have different R1 atoms in their -XLR1 moieties, and/or in that they have different -XLR1 moieties.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide, wherein at least two of the individual internucleotidic linkages within the oligonucleotide have different stereochemistry and/or different P-modifications relative to one another and the oligonucleotide has a structure represented by the following formula:





[SBn1RBn2SBn3RBn4 . . . SBnxRBny]


wherein:


each RB independently represents a block of nucleotide units having the R configuration at the linkage phosphorus;


each SB independently represents a block of nucleotide units having the S configuration at the linkage phosphorus;


each of n1-ny is zero or an integer, with the requirement that at least one odd n and at least one even n must be non-zero so that the oligonucleotide includes at least two individual internucleotidic linkages with different stereochemistry relative to one another; and


wherein the sum of n1-ny is between 2 and 200, and in some embodiments is between a lower limit selected from the group consisting of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more and an upper limit selected from the group consisting of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, and 200, the upper limit being larger than the lower limit.


In some such embodiments, each n has the same value; in some embodiments, each even n has the same value as each other even n; in some embodiments, each odd n has the same value each other odd n; in some embodiments, at least two even ns have different values from one another; in some embodiments, at least two odd ns have different values from one another.


In some embodiments, at least two adjacent ns are equal to one another, so that a provided oligonucleotide includes adjacent blocks of S stereochemistry linkages and R stereochemistry linkages of equal lengths. In some embodiments, provided oligonucleotides include repeating blocks of S and R stereochemistry linkages of equal lengths. In some embodiments, provided oligonucleotides include repeating blocks of S and R stereochemistry linkages, where at least two such blocks are of different lengths from one another; in some such embodiments each S stereochemistry block is of the same length, and is of a different length from each R stereochemistry length, which may optionally be of the same length as one another.


In some embodiments, at least two skip-adjacent ns are equal to one another, so that a provided oligonucleotide includes at least two blocks of linkages of a first stereochemistry that are equal in length to one another and are separated by a block of linkages of the other stereochemistry, which separating block may be of the same length or a different length from the blocks of first stereochemistry.


In some embodiments, ns associated with linkage blocks at the ends of a provided oligonucleotide are of the same length. In some embodiments, provided oligonucleotides have terminal blocks of the same linkage stereochemistry. In some such embodiments, the terminal blocks are separated from one another by a middle block of the other linkage stereochemistry.


In some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] is a stereoblockmer. In some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] is a stereoskipmer. In some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] is a stereoaltmer. In some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] is a gapmer.


In some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] is of any of the above described patterns and further comprises patterns of P-modifications. For instance, in some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] and is a stereoskipmer and P-modification skipmer. In some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] and is a stereoblockmer and P-modification altmer. In some embodiments, a provided oligonucleotide of formula [SBn1RBn2SBn3RBn4 . . . SBnxRBny] and is a stereoaltmer and P-modification blockmer.


In some embodiments, an internucleotidic linkage of formula I has the structure of:




embedded image


wherein:


P* is an asymmetric phosphorus atom and is either Rp or Sp;


W is O, S or Se;

each of X, Y and Z is independently —O—, —S—, —N(-L-R1)—, or L;

  • L is a covalent bond or an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, a C1-C6 heteroaliphatic moiety, —C(R′)r, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2— —SC(O)—, —C(O)S—, —OC(O)—, and —C(O)O—;
  • R1 is halogen, R, or an optionally substituted C1-C50 aliphatic wherein one or more methylene units are optionally and independently replaced by C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, a C1-C6 heteroaliphatic moiety, —C(R′)2—, -Cy-, —O—, —S—, —S—S— —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2— —SC(O)—, —C(O)S—, —OC(O)—, and —C(O)O—;
  • each R′ is independently —R, —C(O)R, —CO2R or —SO2R, or:
    • two R′ are taken together with their intervening atoms to form an optionally substituted aryl, carbocyclic, heterocyclic, or heteroaryl ring;
  • -Cy- is an optionally substituted bivalent ring selected from phenylene, carbocyclylene, arylene, heteroarylene, and heterocyclylene;
  • each R is independently hydrogen, or an optionally substituted group selected from C1-C6 aliphatic, carbocyclyl, aryl, heteroaryl, and heterocyclyl; and
  • each




embedded image


independently represents a connection to a nucleoside.


In some embodiments, L is a covalent bond or an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡—, —C(R′)—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—;

  • R1 is halogen, R, or an optionally substituted C1-C50 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—;
  • each R′ is independently —R, —C(O)R, —CO2R, or —SO2R, or:
    • two R′ on the same nitrogen are taken together with their intervening atoms to form an optionally substituted heterocyclic or heteroaryl ring, or
    • two R′ on the same carbon are taken together with their intervening atoms to form an optionally substituted aryl, carbocyclic, heterocyclic, or heteroaryl ring;
  • -Cy- is an optionally substituted bivalent ring selected from phenylene, carbocyclylene, arylene, heteroarylene, or heterocyclylene;
  • each R is independently hydrogen, or an optionally substituted group selected from C1-C6 aliphatic, phenyl, carbocyclyl, aryl, heteroaryl, or heterocyclyl; and each




embedded image


independently represents a connection to a nucleoside.


In some embodiments, a chirally controlled oligonucleotide comprises one or more modified internucleotidic linkages. In some embodiments, a chirally controlled oligonucleotide comprises, e.g., a phosphorothioate or a phosphorothioate triester internucleotidic linkage. In some embodiments, a chirally controlled oligonucleotide comprises a chirally controlled phosphorothioate triester linkage. In some embodiments, a chirally controlled oligonucleotide comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 chirally controlled phosphorothioate triester internucleotidic linkages. In some embodiments, a chirally controlled oligonucleotide comprises at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 chirally controlled phosphorothioate internucleotidic linkages (—O—P(O)(SH)—O— or salt forms thereof).


In some embodiments, an oligonucleotide comprises different types of internucleotidic phosphorus linkages. In some embodiments, a chirally controlled oligonucleotide comprises at least one natural phosphate linkage and at least one modified (non-natural) internucleotidic linkage. In some embodiments, an oligonucleotide comprises at least one natural phosphate linkage and at least one phosphorothioate. In some embodiments, an oligonucleotide comprises at least one non-negatively charged internucleotidic linkage. In some embodiments, an oligonucleotide comprises at least one natural phosphate linkage and at least one non-negatively charged internucleotidic linkage. In some embodiments, an oligonucleotide comprises at least one phosphorothioate internucleotidic linkage and at least one non-negatively charged internucleotidic linkage. In some embodiments, an oligonucleotide comprises at least one phosphorothioate internucleotidic linkage, at least one natural phosphate linkage, and at least one non-negatively charged internucleotidic linkage.


In some embodiments, an internucleotidic linkage comprises a chiral auxiliary. In some embodiments, an internucleotidic linkage of formula I, I-a, I-b, I-c. I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, etc., comprises a chiral auxiliary, wherein PL is P═S. In some embodiments, an internucleotidic linkage of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, I-a-1, II-a-2, II-b-1, II-b-2, I-c-1, II-c-2, II-d-1, II-d-2, etc., comprises a chiral auxiliary, wherein PL is P═O. In some embodiments, a phosphorothioate triester linkage comprises a chiral auxiliary, which, for example, is used to control the stereoselectivity of a reaction. In some embodiments, a phosphorothioate triester linkage does not comprise a chiral auxiliary. Example chiral auxiliaries that can be utilized in accordance with the present disclosure include those described in U.S. Pat. Nos. 9,394,333, 9,744,183, 9,605,019, US 20130178612, US 20150211006, U.S. Pat. No. 9,598,458. US 20170037399, WO 2017/015555, WO 2017/062862, WO 2018/237194, WO 2019/055951, the chiral auxiliaries of each of which is incorporated herein by reference. In some embodiments, one or more -X-L-R1 independently comprise or are an optionally substituted chiral auxiliary. In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is a chiral reagent/chiral auxiliary described herein (e.g., one having the structure of formula 3-I, formula 3-AA, etc.). In some embodiments, H-X-L-R1 is a capped chiral reagent/chiral auxiliary described herein (e.g., one having the structure of formula 3-1, formula 3-AA, etc.), which is capped in that an amino group of the chiral reagent/chiral auxiliary (e.g., H-W1 and H-W2 is or comprises H-NG5-) is capped (e.g., forming R1-NG5-(e.g., R1C(O)-NG5-, RS(O)2—NG5-, etc.)). In some embodiments, R′ is optionally substituted C1-6 alkyl. In some embodiments. R′ is methyl. In some embodiments one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is




embedded image


In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is




embedded image


In some embodiments one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is




embedded image


In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is a compound selected from Tables CA-1, CA-2, CA-3, CA-4, CA-5, CA-6, CA-7, CA-8, CA-9, CA-10, CA-11, CA-12, or CA-13, or a related (having the same constitution) diastereomer or enantiomer thereof. In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is




embedded image


In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is




embedded image


In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is




embedded image


In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is a compound selected from Tables CA-1, CA-2, CA-3, CA-4, CA-5, CA-6, CA-7, CA-8, CA-9, CA-10, CA-11, CA-12, or CA-13, or a related (having the same constitution) diastereomer or enantiomer thereof, wherein the —NH— of the 5-membered pyrrolidinyl is replaced with —N(R1)—. In some embodiments, one or more -X-L-R1 are independently




embedded image


In some embodiments, one or more -X-L-R1 are independently




embedded image


In some embodiments, one or more -X-L-R1 are independently




embedded image


In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is a compound selected from Tables CA-1, CA-2, CA-3, CA-4, CA-5, CA-6, CA-7, CA-8, CA-9, CA-10, CA-11, CA-12, or CA-13, or a related (having the same constitution) diastereomer or enantiomer thereof, wherein the connection to the linkage phosphorus is through the alcohol hydroxyl group. In some embodiments, one or more -X-L-R1 are independently,




embedded image


In some embodiments, one or more -X-L-R1 are independently




embedded image


In some embodiments, one or more -X-L-R1 are independently




embedded image


In some embodiments, one or more -X-L-R1 are each independently of such a structure that H-X-L-R1 is a compound selected from Tables CA-1, CA-2, CA-3, CA-4, CA-5, CA-6, CA-7, CA-8, CA-9, CA-10, CA-11, CA-12, or CA-13, or a related (having the same constitution) diastereomer or enantiomer thereof, wherein the —NH— of the 5-membered pyrrolidinyl is replaced with —N(R1)—, and wherein the connection to the linkage phosphorus is through the alcohol hydroxyl group. In some embodiments, one or more -X-L-R1 are independently




embedded image


and one or more -X-L-R1 are independently




embedded image


In some embodiments, one or more -X-L-R1 are independently




embedded image


and one or more -X-L-R1 are independently




embedded image


In some embodiments, one or more -X-L-R1 are independently




embedded image


and one or more -X-L-R1 are independently




embedded image


In some embodiments, R1 is a capping group utilized in oligonucleotide synthesis. In some embodiments, R1 is —C(O)—R′. In some embodiments, R1 is —C(O)—R′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R1 is —C(O)CH3.


In some embodiments, an oligonucleotide, e.g., a chirally controlled oligonucleotide, an oligonucleotide of a plurality, etc. is linked to a solid support. In some embodiments, an oligonucleotide is not linked to a solid support.


In some embodiments, an oligonucleotide comprises at least one natural phosphate linkage and at least two consecutive chirally controlled modified internucleotidic linkages. In some embodiments, a chirally controlled oligonucleotide comprises at least one natural phosphate linkage and at least two consecutive chirally controlled phosphorothioate internucleotidic linkages.


In some embodiments, a chirally controlled oligonucleotide is a blockmer. In some embodiments, a chirally controlled oligonucleotide is a stereoblockmer. In some embodiments, a chirally controlled oligonucleotide is a P-modification blockmer. In some embodiments, a chirally controlled oligonucleotide is a linkage blockmer.


In some embodiments, a chirally controlled oligonucleotide is an altmer. In some embodiments, a chirally controlled oligonucleotide is a stereoaltmer. In some embodiments, a chirally controlled oligonucleotide is a P-modification altmer. In some embodiments, a chirally controlled oligonucleotide is a linkage altmer.


In some embodiments, a chirally controlled oligonucleotide is a unimer.


In some embodiments, in a unimer, all nucleotide units within a strand share at least one common structural feature at the internucleotidic phosphorus linkage. In some embodiments, a common structural feature is a common stereochemistry at the linkage phosphorus or a common modification at the linkage phosphorus. In some embodiments, a chirally controlled oligonucleotide is a stereounimer. In some embodiments, a chirally controlled oligonucleotide is a P-modification unimer. In some embodiments, a chirally controlled oligonucleotide is a linkage unimer.


In some embodiments, a chirally controlled oligonucleotide is a gapmer.


In some embodiments, a chirally controlled oligonucleotide is a skipmer.


In some embodiments, the present disclosure provides oligonucleotides comprising one or more modified internucleotidic linkages independently having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, I-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, I-d-2, III, or a salt form thereof.


In some embodiments, L is a covalent bond or an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—;

  • R1 is halogen, R, or an optionally substituted C1-C50 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —N(R′)S(O)—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—;
  • each R′ is independently —R, —C(O)R, —CO2R, or —SO2R, or:
    • two R′ on the same nitrogen are taken together with their intervening atoms to form an optionally substituted heterocyclic or heteroaryl ring, or
    • two R′ on the same carbon are taken together with their intervening atoms to form an optionally substituted aryl, carbocyclic, heterocyclic, or heteroaryl ring
  • -Cy- is an optionally substituted bivalent ring selected from phenylene, carbocyclylene, arylene, heteroarylene, or heterocyclylene;
  • each R is independently hydrogen, or an optionally substituted group selected from C1-C6 aliphatic, phenyl, carbocyclyl, aryl, heteroaryl, or heterocyclyl; and
  • each




embedded image


independently represents a connection to a nucleoside.


In some embodiments, a chirally controlled oligonucleotide comprises one or more modified internucleotidic phosphorus linkages. In some embodiments, a chirally controlled oligonucleotide comprises, e.g., a phosphorothioate or a phosphorothioate triester linkage. In some embodiments, a chirally controlled oligonucleotide comprises a phosphorothioate triester linkage. In some embodiments, a chirally controlled oligonucleotide comprises at least two phosphorothioate triester linkages. In some embodiments, a chirally controlled oligonucleotide comprises at least three phosphorothioate triester linkages. Example modified internucleotidic phosphorus linkages are described further herein. In some embodiments, a chirally controlled oligonucleotide comprises different internucleotidic phosphorus linkages. In some embodiments, a chirally controlled oligonucleotide comprises at least one phosphate diester internucleotidic linkage and at least one modified internucleotidic linkage. In some embodiments, a chirally controlled oligonucleotide comprises at least one phosphate diester internucleotidic linkage and at least one phosphorothioate triester linkage. In some embodiments, a chirally controlled oligonucleotide comprises at least one phosphate diester internucleotidic linkage and at least two phosphorothioate triester linkages. In some embodiments, a chirally controlled oligonucleotide comprises at least one phosphate diester internucleotidic linkage and at least three phosphorothioate triester linkages.


In some embodiments, P* is an asymmetric phosphorus atom and is either Rp or Sp. In some embodiments, P* is Rp. In other embodiments, P* is Sp. In some embodiments, an oligonucleotide comprises one or more internucleotidic linkages of formula I wherein each P* is independently Rp or Sp. In some embodiments, an oligonucleotide comprises one or more internucleotidic linkages of formula I wherein each P* is Rp. In some embodiments, an oligonucleotide comprises one or more internucleotidic linkages of formula I wherein each P* is Sp. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein P* is Rp. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein P* is Sp. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein P* is Rp, and at least one internucleotidic linkage of formula I wherein P* is Sp.


In some embodiments, W is O, S, or Se. In some embodiments, W is O. In some embodiments, W is S. In some embodiments, W is Se. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein W is O. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein W is S. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein W is Se.


In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein W is O. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein W is S.


In some embodiments, X is —O—. In some embodiments, X is —S—. In some embodiments, X is —O— or —S—. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein X is —O—. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein X is —S—. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein X is —O—, and at least one internucleotidic linkage of formula I wherein X is —S—. In some embodiments, an oligonucleotide comprises at least one internucleotidic linkage of formula I wherein X is —O—, and at least one internucleotidic linkage of formula I wherein X is —S—, and at least one internucleotidic linkage of formula I wherein L is an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—. —OC(O)—, or —C(O)O—.


In some embodiments, X is —N(-L-R1)—. In some embodiments, X is —N(R′)—. In some embodiments, X is —N(R′)—. In some embodiments, X is —N(R)—. In some embodiments, X is —NH—.


In some embodiments, X is L. In some embodiments, X is a covalent bond. In some embodiments, X is or an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—. In some embodiments, X is an optionally substituted C1-C1 alkylene or C1-C10 alkenylene. In some embodiments, X is methylene.


In some embodiments, Y is —O—. In some embodiments, Y is —S—.


In some embodiments, Y is —N(-L-R1)—. In some embodiments, Y is —N(R′)—. In some embodiments, Y is —N(R′)—. In some embodiments, Y is —N(R)—. In some embodiments, Y is —NH—.


In some embodiments, Y is L. In some embodiments, Y is a covalent bond. In some embodiments, Y is or an optionally substituted, linear or branched C1-C0 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene. —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—. —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—. In some embodiments, Y is an optionally substituted C1-C10 alkylene or C1-C10 alkenylene. In some embodiments, Y is methylene.


In some embodiments, Z is —O—. In some embodiments, Z is —S—.


In some embodiments, Z is —N(-L-R1)—. In some embodiments, Z is —N(R1)—. In some embodiments, Z is —N(R′)—. In some embodiments, Z is —N(R)—. In some embodiments, Z is —NH—.


In some embodiments, Z is L. In some embodiments, Z is a covalent bond. In some embodiments, Z is or an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—. In some embodiments. Z is an optionally substituted C1-C10 alkylene or C1-C10 alkenylene. In some embodiments, Z is methylene.


In some embodiments, L is a covalent bond or an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡—C—, —C(R′)2, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—.


In some embodiments, L is a covalent bond. In some embodiments, L is an optionally substituted, linear or branched C1-C10 alkylene, wherein one or more methylene units of L are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—.


In some embodiments, L has the structure of -L1-V-, wherein:


L1 is an optionally substituted group selected from




embedded image


C1-C6 alkylene, C1-C6 alkenylene, carbocyclylene, arylene, C1-C6 heteroalkylene, heterocyclylene, and heteroarylene;


V is selected from —O—, —S—, —NR′—, C(R′)2, —S—S—, —B—S—S—C—,




embedded image


or an optionally substituted group selected from C1-C6 alkylene, arylene, C1-C6 heteroalkylene, heterocyclylene, and heteroarylene;


A is ═O, ═S, ═NR′, or ═C(R′)2;

each of B and C is independently —O—, —S—, —NR′—, —C(R′)—, or an optionally substituted group selected from C1-C6 alkylene, carbocyclylene, arylene, heterocyclylene, or heteroarylene; and


each R′ is independently as defined above and described herein.


In some embodiments, L1 is




embedded image


In some embodiments, L1 is,




embedded image


wherein Ring Cy′ is an optionally substituted arylene, carbocyclylene, heteroarylene, or heterocyclylene. In some embodiments, L1 is optionally substitute




embedded image


In some embodiments, L1 is




embedded image


In some embodiments, L1 is connected to X. In some embodiments, L1 is an optionally substituted group selected from




embedded image


and the sulfur atom is connect to V. In some embodiments, L1 is an optionally substituted group selected from




embedded image


and the carbon atom is connect to X.


In some embodiments, L has the structure of:




embedded image


wherein:


E is —O—, —S—, —NR′— or —C(R′)2;


custom-character is a single or double bond; the two RL1 are taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, carbocyclic, heteroaryl or heterocyclic ring; and each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:


G is —O—, —S—, or —NR′;


custom-character is a single or double bond; and


the two RL1 taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, C3-C10 carbocyclic, heteroaryl or heterocyclic ring.


In some embodiments, L has the structure of:




embedded image


wherein:

  • E is —O—, —S—, —NR′— or —C(R′)2—;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—; and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • G is —O—, —S—, or —NR′;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—.


In some embodiments, L has the structure of:




embedded image


wherein:

  • E is —O—, —S—, —NR′— or —C(R)2—;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—; and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • G is —O—, —S—, or —NR′;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)— ═C(I)—, ═C(CN)— ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—.


In some embodiments, L has the structure of:




embedded image


wherein:


E is —O—, —S—, —NR′— or —C(R′)2—;


custom-character is a single or double bond;


the two RL1 are taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, C3-C10 carbocyclic, heteroaryl or heterocyclic ring;


and each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:


G is —O—, —S—, or —NR′;


custom-character is a single or double bond;


the two RL1 already taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, C3-C10 carbocyclic, heteroaryl or heterocyclic ring:


and each R′ is independently as defined above and described herein.


In some embodiments, L las the structure of:




embedded image


wherein:

  • E is —O—, —S—, —NR′— or —C(R′)2—;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3— and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • G is —O—, —S—, or —NR′;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—; and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • E is —O—, —S—, —NR′— or —C(R′)2—;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—; and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • G is —O—, —S—, or —NR′;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 (aliphatic))-, or ═C(CF3)—; and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:


E is —O—, —S—, —NR′— or —C(R′)2-;


custom-character is a single or double bond;


the RL1 are taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, C3-C10 carbocyclic, heteroaryl or heterocyclic ring; and each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:


G is —O—, —S—, or —NR′;


custom-character is a single or double bond;


the two RL1 are taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, C3-C10 carbocyclic, heteroaryl or heterocyclic ring; and each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • E is —O—, —S—, —NR′— or —C(R′)2—;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—; and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • G is —O—, —S—, or —NR′;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—; and


    R′ is as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • E is —O—, —S—, —NR′— or —C(R′)2—;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(I)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 (aliphatic))-, or ═C(CF3)—; and


    each R′ is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein:

  • G is —O—, —S—, or —NR′;
  • D is ═N—, ═C(F)—, ═C(Cl)—, ═C(Br)—, ═C(O)—, ═C(CN)—, ═C(NO2)—, ═C(CO2—(C1-C6 aliphatic))-, or ═C(CF3)—; and


    R′ is as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein the phenyl ring is optionally substituted. In some embodiments, the phenyl ring is not substituted. In some embodiments, the phenyl ring is substituted.


In some embodiments, L has the structure of:




embedded image


wherein the phenyl ring is optionally substituted. In some embodiments, the phenyl ring is not substituted. In some embodiments, the phenyl ring is substituted.


In some embodiments, L has the structure of:




embedded image


wherein:

custom-character is a single or double bond; and

  • the two RL1 are taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, C3-C10 carbocyclic, heteroaryl or heterocyclic ring.


In some embodiments, L has the structure of:




embedded image


wherein:

  • G is —O—, —S—, or —NR′;
  • custom-character is a single or double bond; and
  • the two RL1 are taken together with the two carbon atoms to which they are bound to form an optionally substituted aryl, C3-C10 carbocyclic, heteroaryl or heterocyclic ring.


In some embodiments, E is —O—, —S—, —NR′— or —C(R′)2—, wherein each R′ independently as defined above and described herein. In some embodiments, E is —O—, —S—, or —NR′—. In some embodiments, E is —O—, —S—, or —NH—. In some embodiments, E is —O—. In some embodiments, E is —S—. In some embodiments, E is —NH—.


In some embodiments, G is —O—, —S—, or —NR′, wherein each R′ independently as defined above and described herein. In some embodiments, G is —O—, —S—, or —NH—. In some embodiments, G is —O—. In some embodiments, G is —S—. In some embodiments, G is —NH—.


In some embodiments, L is -L3-G-, wherein:

  • L3 is an optionally substituted C1-C5 alkylene or alkenylene, wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —S(O)—, —S(O)2—, or




embedded image


and


wherein each of G, R′ and Ring Cy′ is independently as defined above and described herein.


In some embodiments, L is -L3-S—, wherein L3 is as defined above and described herein. In some embodiments, L is -L3-O—, wherein L3 is as defined above and described herein. In some embodiments, L is -L3-N(R′)—, wherein each of L3 and R′ is independently as defined above and described herein. In some embodiments, L is -L3-NH—, wherein each of L3 and R′ is independently as defined above and described herein.


In some embodiments, L3 is an optionally substituted C5 alkylene or alkenylene, wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —S(O)—, —S(O)2—, or




embedded image


and each of R′ and Ring Cy′ is independently as defined above and described herein. In some embodiments, L3 is an optionally substituted C5 alkylene. In some embodiments, -L3-G- is




embedded image


In some embodiments, L3 is an optionally substituted C4 alkylene or alkenylene, wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —S(O)—, —S(O)—, or




embedded image


and each of R′ and Cy′ is independently as defined above and described herein.


In some embodiments, -L3-G- is




embedded image


In some embodiments, L3 is an optionally substituted C3 alkylene or alkenylene, wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —S(O)—, —S(O)2, or




embedded image


and each of R′ and Cy′ is independently as defined above and described herein.


In some embodiments -L3-G- is




embedded image


In some embodiments, L is




embedded image


In some embodiments, L is




embedded image


In some embodiments, L is




embedded image


In some embodiments, L3 is an optionally substituted C2 alkylene or alkenylene, wherein one or more methylene units are optionally and independently replaced by —O—, —S—, —N(R′)—, —C(O)— —C(S)—, —C(NR′)—, —S(O)—, —S(O)2—, or




embedded image


and each of R′ and Cy′ is independently as defined above and described herein.


In some embodiments, -L3-G- is




embedded image


wherein each of G and Cy′ is independently as defined above and described herein. In some embodiments, L is




embedded image


In some embodiments, L is -L4-G-, wherein L4 is an optionally substituted C1-C2 alkylene; and G is as defined above and described herein. In some embodiments, L is -L4-G-, wherein L4 is an optionally substituted C1-C2 alkylene; G is as defined above and described herein; and G is connected to R1. In some embodiments, L is -L4-G-, wherein L4 is an optionally substituted methylene; G is as defined above and described herein; and G is connected to R1. In some embodiments, L is -L4-G-, wherein L4 is methylene; G is as defined above and described herein; and G is connected to R1. In some embodiments, L is -L4-G-, wherein L4 is an optionally substituted —(CH2)2—; G is as defined above and described herein; and G is connected to R1. In some embodiments, L is -L4-G-, wherein L4 is —(CH2)2—; G is as defined above and described herein; and G is connected to R1.


In some embodiments, L is




embedded image


wherein G is as defined above and described herein, and G is connected to R1. In some embodiments, L is




embedded image


wherein G is as defined above and described herein, and G is connected to R1. In some embodiments, L is




embedded image


wherein G is as defined above and described herein, and G is connected to R1. In some embodiments, L is




embedded image


wherein the sulfur atom is connected to R1. In some embodiments, L is




embedded image


wherein the oxygen atom is connected to R1.


In some embodiments, L is




embedded image


wherein G is as defined above and described herein.


In some embodiments, L is —S—RL3— or —S—C(O)—RL3—, wherein RL3 is an optionally substituted, linear or branched, C1-C9, alkylene, wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, wherein each of R′ and -Cy- is independently as defined above and described herein. In some embodiments, L is —S—RL3— or —S—C(O)—RL3—, wherein RL3 is an optionally substituted C1-C6 alkylene. In some embodiments, L is —S—RL3- or —S—C(O)—RL3—, wherein RL3 is an optionally substituted C1-C6 alkenylene. In some embodiments, L is —S—RL3— or —S—C(O)—RL3—, wherein RL3 is an optionally substituted C1-C6 alkylene wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkenylene, arylene, or heteroarylene. In some embodiments, In some embodiments, RL3 is an optionally substituted —S—(C1-C6 alkenylene)-, —S—(C1-C6 alkylene)-, —S—(C1-C6 alkylene)-arylene-(C1-C6 alkylene)-, —S—CO-arylene-(C1-C6 alkylene)-, or —S—CO—(C1-C6 alkylene)-arylene-(C1-C6 alkylene)-.


In some embodiments, L is




embedded image


In some embodiments, L is




embedded image


In some embodiments, L is




embedded image


In some embodiments,




embedded image


In some embodiments, the sulfur atom in the L embodiments described above and herein is connected to X. In some embodiments, the sulfur atom in the L embodiments described above and herein is connected to R1.


In some embodiments, R1 is halogen, R, or an optionally substituted C1-C50 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, wherein each variable is independently as defined above and described herein. In some embodiments, R1 is halogen, R, or an optionally substituted C1-C10 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, wherein each variable is independently as defined above and described herein.


In some embodiments, R1 is hydrogen. In some embodiments, R1 is halogen. In some embodiments, R1 is —F. In some embodiments, R1 is —Cl. In some embodiments, R1 is —Br. In some embodiments, R1 is —I.


In some embodiments, R1 is R wherein R is as defined above and described herein.


In some embodiments, R1 is hydrogen. In some embodiments, R1 is an optionally substituted group selected from C1-C50 aliphatic, phenyl, carbocyclyl, aryl, heteroaryl, or heterocyclyl.


In some embodiments, R1 is an optionally substituted C1-C50 aliphatic. In some embodiments, R1 is an optionally substituted C1-C10 aliphatic. In some embodiments, R1 is an optionally substituted C1-C6 aliphatic. In some embodiments, R1 is an optionally substituted C1-C6 alkyl. In some embodiments, R1 is optionally substituted, linear or branched hexyl. In some embodiments, R1 is optionally substituted, linear or branched pentyl. In some embodiments, R1 is optionally substituted, linear or branched butyl. In some embodiments, R1 is optionally substituted, linear or branched propyl. In some embodiments, R1 is optionally substituted ethyl. In some embodiments, R1 is optionally substituted methyl.


In some embodiments, R1 is optionally substituted phenyl. In some embodiments, R1 is substituted phenyl. In some embodiments, R1 is phenyl.


In some embodiments, R1 is optionally substituted carbocyclyl. In some embodiments, R1 is optionally substituted C3-C10 carbocyclyl. In some embodiments, R1 is optionally substituted monocyclic carbocyclyl. In some embodiments, R1 is optionally substituted cycloheptyl. In some embodiments, R1 is optionally substituted cyclohexyl. In some embodiments, R is optionally substituted cyclopentyl. In some embodiments, R1 is optionally substituted cyclobutyl. In some embodiments, R1 is an optionally substituted cyclopropyl. In some embodiments, R1 is optionally substituted bicyclic carbocyclyl.


In some embodiments, R1 is an optionally substituted C1-C50 polycyclic hydrocarbon. In some embodiments, R1 is an optionally substituted C1-C50 polycyclic hydrocarbon wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, wherein each variable is independently as defined above and described herein. In some embodiments, R1 is optionally substituted




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is optionally substituted




embedded image


In some embodiments, R1 is an optionally substituted C1-C50 aliphatic comprising one or more optionally substituted polycyclic hydrocarbon moieties. In some embodiments, R1 is an optionally substituted C1-C50 aliphatic comprising one or more optionally substituted polycyclic hydrocarbon moieties, wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, wherein each variable is independently as defined above and described herein. In some embodiments. R1 is an optionally substituted C1-C50 aliphatic comprising one or more optionally substituted




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is an optionally substituted aryl. In some embodiments, R1 is an optionally substituted bicyclic aryl ring.


In some embodiments, R1 is an optionally substituted heteroaryl. In some embodiments, R1 is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, sulfur, or oxygen. In some embodiments, R1 is a substituted 5-6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an unsubstituted 5-6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, sulfur, or oxygen.


In some embodiments, R1 is an optionally substituted 5 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur. In some embodiments, R1 is an optionally substituted 6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


In some embodiments, R1 is an optionally substituted 5-membered monocyclic heteroaryl ring having 1 heteroatom selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is selected from pyrrolyl, furanyl, or thienyl.


In some embodiments, R1 is an optionally substituted 5-membered heteroaryl ring having 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R1 is an optionally substituted 5-membered heteroaryl ring having 1 nitrogen atom, and an additional heteroatom selected from sulfur or oxygen. Example R groups include optionally substituted pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl or isoxazolyl.


In some embodiments, R1 is a 6-membered heteroaryl ring having 1-3 nitrogen atoms. In other embodiments, R1 is an optionally substituted 6-membered heteroaryl ring having 1-2 nitrogen atoms. In some embodiments, R1 is an optionally substituted 6-membered heteroaryl ring having 2 nitrogen atoms. In certain embodiments, R1 is an optionally substituted 6-membered heteroaryl ring having 1 nitrogen. Example R1 groups include optionally substituted pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, or tetrazinyl.


In certain embodiments, R1 is an optionally substituted 8-10 membered bicyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted 5,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In other embodiments, R1 is an optionally substituted 5,6-fused heteroaryl ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R1 is an optionally substituted 5,6-fused heteroaryl ring having 1 heteroatom independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted indolyl. In some embodiments, R1 is an optionally substituted azabicyclo[3.2.1]octanyl. In certain embodiments, R1 is an optionally substituted 5,6-fused heteroaryl ring having 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted azaindolyl. In some embodiments, R1 is an optionally substituted benzimidazolyl. In some embodiments, R1 is an optionally substituted benzothiazolyl. In some embodiments, R1 is an optionally substituted benzoxazolyl. In some embodiments, R1 is an optionally substituted indazolyl. In certain embodiments, R1 is an optionally substituted 5,6-fused heteroaryl ring having 3 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


In certain embodiments, R1 is an optionally substituted 6,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted 6,6-fused heteroaryl ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In other embodiments, R1 is an optionally substituted 6,6-fused heteroaryl ring having 1 heteroatom independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted quinolinyl. In some embodiments, R1 is an optionally substituted isoquinolinyl. According to one aspect, R1 is an optionally substituted 6,6-fused heteroaryl ring having 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is a quinazoline or a quinoxaline.


In some embodiments, R1 is an optionally substituted heterocyclyl. In some embodiments, R1 is an optionally substituted 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is a substituted 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an unsubstituted 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


In some embodiments, R1 is an optionally substituted heterocyclyl. In some embodiments. R1 is an optionally substituted 6 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted 6 membered partially unsaturated heterocyclic ring having 2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted 6 membered partially unsaturated heterocyclic ring having 2 oxygen atoms.


In certain embodiments, R1 is a 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R1 is oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, oxepaneyl, aziridineyl, azetidineyl, pyrrolidinyl, piperidinyl, azepanyl, thiiranyl, thietanyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, thiepanyl, dioxolanyl, oxathiolanyl, oxazolidinyl, imidazolidinyl, thiazolidinyl, dithiolanyl, dioxanyl, morpholinyl, oxathianyl, piperazinyl, thiomorpholinyl, dithianyl, dioxepanyl, oxazepanyl, oxathiepanyl, dithiepanyl, diazepanyl, dihydrofuranonyl, tetrahydropyranonyl, oxepanonyl, pyrolidinonyl, piperidinonyl, azepanonyl, dihydrothiophenonyl, tetrahydrothiopyranonyl, thiepanonyl, oxazolidinonyl, oxazinanonyl, oxazepanonyl, dioxolanonyl, dioxanonyl, dioxepanonyl, oxathiolinonyl, oxathianonyl, oxathiepanonyl, thiazolidinonyl, thiazinanonyl, thiazepanonyl, imidazolidinonyl, tetrahydropyrimidinonyl, diazepanonyl, imidazolidinedionyl, oxazolidinedionyl, thiazolidinedionyl, dioxolanedionyl, oxathiolanedionyl, piperazinedionyl, morpholinedionyl, thiomorpholinedionyl, tetrahydropyranyl, tetrahydrofuranyl, morpholinyl, thiomorpholinyl, piperidinyl, piperazinyl, pyrrolidinyl, tetrahydrothiophenyl, or tetrahydrothiopyranyl. In some embodiments, R1 is an optionally substituted 5 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur.


In certain embodiments, R1 is an optionally substituted 5-6 membered partially unsaturated monocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In certain embodiments, R1 is an optionally substituted tetrahydropyridinyl, dihydrothiazolyl, dihydrooxazolyl, or oxazolinyl group.


In some embodiments, R1 is an optionally substituted 8-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur. In some embodiments, R1 is an optionally substituted indolinyl. In some embodiments, R1 is an optionally substituted isoindolinyl. In some embodiments, R1 is an optionally substituted 1, 2, 3, 4-tetrahydroquinoline. In some embodiments, R1 is an optionally substituted 1, 2, 3, 4-tetrahydroisoquinoline.


In some embodiments, R1 is an optionally substituted C1-C10 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, wherein each variable is independently as defined above and described herein. In some embodiments, R1 is an optionally substituted C1-C10 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally-Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —OC(O)—, or —C(O)O—, wherein each R′ is independently as defined above and described herein. In some embodiments, R1 is an optionally substituted C1-C10 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally-Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —OC(O)—, or —C(O)O—, wherein each R′ is independently as defined above and described herein.


In some embodiments, R1 is




embedded image


embedded image


embedded image


embedded image


In some embodiments, R1 is CH3—,




embedded image


In some embodiments, R1 comprises a terminal optionally substituted —(CH2)2-moiety which is connected to L. Examples of such R1 groups are depicted below:




embedded image


In some embodiments, R1 comprises a terminal optionally substituted —(CH2)— moiety which is connected to L. Example such R1 groups are depicted below:




embedded image


In some embodiments, R1 is —S—RL2, wherein RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—. —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, and each of R′ and -Cy- is independently as defined above and described herein. In some embodiments, RL2 is —S—RL2, wherein the sulfur atom is connected with the sulfur atom in L group.


In some embodiments, R1 is —C(O)—RL2, wherein RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, and each of R′ and -Cy- is independently as defined above and described herein. In some embodiments, R1 is —C(O)—RL2, wherein the carbonyl group is connected with G in L group. In some embodiments, R1 is —C(O)—RL2, wherein the carbonyl group is connected with the sulfur atom in L group.


In some embodiments, RL2 is optionally substituted C1-C9 aliphatic. In some embodiments, RL2 is optionally substituted C1-C9 alkyl. In some embodiments, RL2 is optionally substituted C1-C9 alkenyl. In some embodiments, RL2 is optionally substituted C1-C9 alkynyl. In some embodiments, RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by -Cy- or —C(O)—. In some embodiments, RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by -Cy-. In some embodiments, RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted heterocycylene. In some embodiments, RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted arylene. In some embodiments, RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted heteroarylene. In some embodiments, Ru is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C3-C10 carbocyclylene. In some embodiments, RL2 is an optionally substituted C1-C9 aliphatic wherein two methylene units are optionally and independently replaced by -Cy- or —C(O)—. In some embodiments, R is an optionally substituted C1-C9, aliphatic wherein two methylene units are optionally and independently replaced by -Cy- or —C(O)—. Example RL2 groups are depicted below:




embedded image


In some embodiments R1 is hydrogen, or an optionally substituted group selected from




embedded image


—S—(C1-C10 aliphatic), C1-C10 aliphatic, aryl, C1-C6 heteroalkyl, heteroaryl and heterocyclyl. In some embodiments, R1 is




embedded image


or —S—(C1-C10 aliphatic). In some embodiments, R is




embedded image


In some embodiments, R1 is an optionally substituted group selected from —S—(C1-C6 aliphatic), C1-C10 aliphatic, C1-C6 heteroaliphatic, aryl, heterocyclyl and heteroaryl.


In some embodiments, R1 is




embedded image


In some embodiments, the sulfur atom in the R1 embodiments described above and herein is connected with the sulfur atom, G. E. or —C(O)— moiety in the L embodiments described above and herein. In some embodiments, the —C(O)— moiety in the R1 embodiments described above and herein is connected with the sulfur atom, G, E, or —C(O)— moiety in the L embodiments described above and herein.


In some embodiments, -L-R1 is any combination of the L embodiments and R1 embodiments described above and herein.


In some embodiments, -L-R1 is -L3-G-R1 wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 is -L4-G-R1 wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 is -L3-G-S—RL2, wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 is -L3-G-C(O)—RL2, wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 is




embedded image


wherein RL2 is an optionally substituted C1-C9 aliphatic wherein one or more methylene units are optionally and independently replaced by an optionally substituted C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, —C(R′)2—, -Cy-, —O—, —S— —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, or —C(O)O—, and each G is independently as defined above and described herein.


In some embodiments, -L-R1 is —RL3—S—S—RL2, wherein each variable is independently as defined above and described herein. In some embodiments, -L-R1 is —RL3—C(O)—S—S—RL2, wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -L-R1 has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, L has the structure of:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, -X-L-R1 has the structure of:




embedded image


wherein:


the phenyl ring is optionally substituted, and


each of R and X is independently as defined above and described herein.


In some embodiments, -L-R1 is




embedded image


embedded image


embedded image


embedded image


In some embodiments, -L-R1 is:




embedded image


In some embodiments, -L-R1 is CH3—,




embedded image


In some embodiments, -L-R1 is




embedded image


In some embodiments, -L-R1 comprises a terminal optionally substituted —(CH2)2-moiety which is connected to X. In some embodiments, -L-R1 comprises a terminal —(CH2)2-moiety which is connected to X. Examples of such -L-R1 moieties are depicted below:




embedded image


In some embodiments, -L-R1 comprises a terminal optionally substituted —(CH2)-moiety which is connected to X. In some embodiments, -L-R1 comprises a terminal —(CH2)— moiety which is connected to X. Examples of such -L-R1 moieties are depicted below:




embedded image


In some embodiments, -L-R1 is




embedded image


In some embodiments, -L-R1 is CH3—,




embedded image


and X is —S—.

In some embodiments, -L-R1 is CH3—,




embedded image


X is —S—. W is O, Y is —O—, and Z is —O—.

In some embodiments, R1 is




embedded image


or —S—(C1-C10 aliphatic).


In some embodiments R1 is




embedded image


In some embodiments, X is —O— or —S—, and R1 is




embedded image


or —S—(C1-C10 aliphatic).


In some embodiments, X is —O— or —S—, and R1 is




embedded image


—S—(C1-C10 aliphatic) or —S—(C1-C50 aliphatic).


In some embodiments, L is a covalent bond and -L-R1 is R1.


In some embodiments, -L-R1 is not hydrogen.


In some embodiments, -X-L-R1 is R1 is




embedded image


—S—(C1-C10 aliphatic) or —S—(C1-C50 aliphatic).


In some embodiments, -X-L-R1 has the structure of




embedded image


wherein the




embedded image


moiety is optionally substituted. In some embodiments, -X-L-R1 is




embedded image


In some embodiments, -X-L-R1 is




embedded image


In some embodiments, -X-L-R1 is




embedded image


In some embodiments, -X-L-R1 has the structure of




embedded image


wherein X′ is O or S, Y′ is —O—, —S— or —NR′—, and the




embedded image


moiety is optionally substituted. In some embodiments, Y′ is —O—, —S— or —NH—. In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments, -X-L-R1 has the structure of




embedded image


wherein X′ is O or S, and the




embedded image


moiety is optionally substituted. In some embodiments,




embedded image


is




embedded image


In some embodiments, -X-L-R1 is




embedded image


wherein the




embedded image


is optionally substituted. In some embodiments, -X-L-R1 is




embedded image


wherein the




embedded image


is substituted. In some embodiments, -X-L-R1 is




embedded image


wherein the




embedded image


is unsubstituted.


In some embodiments, -X-L-R1 is R1—C(O)—S-Lx-S— wherein Lx is an optionally substituted group selected from




embedded image


In some embodiments, Lx is




embedded image


In some embodiments, -X-L-R1 is (CH3)3C—S—S-Lx-S—. In some embodiments, -X-L-R1 is R1—C(═X′)—Y′—C(R)2—S-Lx-S—. In some embodiments, -X-L-R1 is R—C(═X′)—Y′—CH2-Lx-S—. In some embodiments. -X-L-R1 is




embedded image


As will be appreciated by a person skilled in the art, many of the -X-L-R1 groups described herein are cleavable and can be converted to -X after administration to a subject. In some embodiments, -X-L-R1 is cleavable. In some embodiments, -X-L-R1 is —S-L-R1, and is converted to —S after administration to a subject. In some embodiments, the conversion is promoted by an enzyme of a subject. As appreciated by a person skilled in the art, methods of determining whether the -S-L-R1 group is converted to -S after administration is widely known and practiced in the art, including those used for studying drug metabolism and pharmacokinetics.


In some embodiments, the internucleotidic linkage having the structure of formula I is




embedded image


In some embodiments, the internucleotidic linkage of formula I has the structure of formula I-a:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, the internucleotidic linkage of formula I has the structure of formula I-b:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments, the internucleotidic linkage of formula I is an phosphorothioate triester linkage having the structure of formula I-c:




embedded image


wherein R is not —H when L is a covalent bond.


In some embodiments, the internucleotidic linkage having the structure of formula I is




embedded image


embedded image


In some embodiments, the internucleotidic linkage having the structure of formula I-c is




embedded image


embedded image


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising one or more natural phosphate linkages, and one or more modified internucleotidic linkages having the formula of I-a, I-b, or I-c.


In some embodiments, a modified internucleotidic linkage has the structure of I. In some embodiments, a modified internucleotidic linkage has the structure of I-a. In some embodiments, a modified internucleotidic linkage has the structure of I-b. In some embodiments, a modified internucleotidic linkage has the structure of I-c.


In some embodiments, a modified internucleotidic linkage is phosphorothioate internucleotidic linkage. Examples of internucleotidic linkages having the structure of formula I that can be utilized in accordance with the present disclosure include those described in U.S. Pat. Nos. 9,394,333, 9,744,183, 9,605,019, US 20130178612, US 20150211006, U.S. Pat. No. 9,598,458, US 20170037399, WO 2017/015555, WO 2017/062862, the internucleotidic linkages of each of which is incorporated herein by reference.


Non-limiting examples of internucleotidic linkages that can be utilized in accordance with the present disclosure also include those described in the art, including, but not limited to, those described in any of: Gryaznov, S.; Chen, J.-K. J. Am. Chem. Soc. 1994, 116, 3143, Jones et al. J. Org. Chem. 1993, 58, 2983, Koshkin et al. 1998 Tetrahedron 54: 3607-3630, Lauritsen et al. 2002 Chem. Comm. 5: 530-531, Lauritsen et al. 2003 Bioo. Med. Chem. Lett. 13: 253-256, Mesmaeker et al. Angew. Chem., Int. Ed. Engl. 1994, 33, 226, Petersen et al. 2003 TRENDS Biotech. 21: 74-81, Schultz et al. 1996 Nucleic Acids Res. 24: 2966, Ts'o et al. Ann. N. Y. Acad. Sci. 1988, 507, 220, and Vasseur et al. J. Am. Chem. Soc. 1992, 114, 4006.


In some embodiments, oligonucleotides comprise one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more non-negatively charged internucleotidic linkages. In some embodiments, a non-negatively charged internucleotidic linkage is not negatively charged in that at a given pH in an aqueous solution less than 50%, 40%, 40%, 30%, 20%, 10%, 5%, or 1% of the internucleotidic linkage exists in a negatively charged salt form. In some embodiments, a pH is about pH 7.4. In some embodiments, a pH is about 4-9. In some embodiments, the percentage is less than 10%. In some embodiments, the percentage is less than 5%. In some embodiments, the percentage is less than 1%. In some embodiments, an internucleotidic linkage is a non-negatively charged internucleotidic linkage in that the neutral form of the internucleotidic linkage has no pKa that is no more than about 1, 2, 3, 4, 5, 6, or 7 in water. In some embodiments, no pKa is 7 or less. In some embodiments, no pKa is 6 or less. In some embodiments, no pKa is 5 or less. In some embodiments, no pKa is 4 or less. In some embodiments, no pKa is 3 or less. In some embodiments, no pKa is 2 or less. In some embodiments, no pKa is 1 or less. In some embodiments, pKa of the neutral form of an internucleotidic linkage can be represented by pKa of the neutral form of a compound having the structure of CH3—the internucleotidic linkage-CH3. For example, pKa of the neutral form of an internucleotidic linkage having the structure of formula I may be represented by the pKa of the neutral form of a compound having the structure of




embedded image


pKa of




embedded image


can be represented by pKa




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage is a neutral internucleotidic linkage. In some embodiments, a non-negatively charged internucleotidic linkage is a positively-charged internucleotidic linkage. In some embodiments, a non-negatively charged internucleotidic linkage comprises a guanidine moiety. In some embodiments, a non-negatively charged internucleotidic linkage comprises a heteroaryl base moiety. In some embodiments, a non-negatively charged internucleotidic linkage comprises a triazole moiety. In some embodiments, a non-negatively charged internucleotidic linkage comprises an alkynyl moiety.


In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, comprises —PL(—N═)—, wherein PL is as described in the present disclosure. In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, comprises —P(—N═)—. In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, comprises —P(═)(—N═)—. In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, comprises —P(═O)(—N═)—. In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, comprises —P(═S)(—N═)—.


In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, comprises




embedded image


wherein PL is as described in the present disclosure. For example, in some embodiments, PL is P; in some embodiments, PL is P(O); in some embodiments, PL is P(S); etc. In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, comprises




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2 II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof (not negatively charged). In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage, has the structure of formula I-n-1 or a salt form thereof:




embedded image


In some embodiments, X is a covalent bond and -X-Cy-R1 is -Cy-R. In some embodiments, -Cy- is an optionally substituted bivalent group selected from a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms. In some embodiments. -Cy- is an optionally substituted bivalent 5-20 membered heteroaryl ring having 1-10 heteroatoms. In some embodiments, -Cy-R1 is optionally substituted 5-20 membered heteroaryl ring having 1-10 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, -Cy-R1 is optionally substituted 5-membered heteroaryl ring having 1-4 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, -Cy-R1 is optionally substituted 6-membered heteroaryl ring having 1-4 heteroatoms, wherein at least one heteroatom is nitrogen. In some embodiments, -Cy-R1 is optionally substituted triazolyl.


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage, has the structure of formula I-n-2 or a salt form thereof:




embedded image


In some embodiments, R1 is R′. In some embodiments, L is a covalent bond. In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage, has the structure of formula I-n-3 or a salt form thereof:




embedded image


In some embodiments, two R′ on different nitrogen atoms are taken together to form a ring as described. In some embodiments, a formed ring is 5-membered. In some embodiments, a formed ring is 6-membered. In some embodiments, a formed ring is substituted. In some embodiments, the two R′ group that are not taken together to form a ring are each independently R. In some embodiments, the two R′ group that are not taken together to form a ring are each independently hydrogen or an optionally substituted C1-6 aliphatic. In some embodiments, the two R′ group that are not taken together to form a ring are each independently hydrogen or an optionally substituted C1-6 alkyl. In some embodiments, the two R′ group that are not taken together to form a ring are the same. In some embodiments, the two R′ group that are not taken together to form a ring are different. In some embodiments, both of them are —CH3.


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage, has the structure of formula I-n-4 or a salt form thereof:




embedded image


wherein each of La and Lb is independently L or —N(R1)—, and each other variable is independently as described in the present disclosure. In some embodiments, L is a covalent bond, and an internucleotidic linkage of formula I-n-4 has the structure of:




embedded image


or a salt form thereof, wherein each variable is independently as described in the present disclosure.


In some embodiments, La is —N(R1)—. In some embodiments, La is L as described in the present disclosure. In some embodiments, La is a covalent bond. In some embodiments, La is —N(R′)—. In some embodiments, La is —N(R)—. In some embodiments, La is —O—. In some embodiments, La is —S—. In some embodiments, La is —S(O)—. In some embodiments, La is —S(O)2—. In some embodiments, La is —S(O)2N(R′)—. In some embodiments, Lb is —N(R′)—. In some embodiments, Lb is L as described in the present disclosure. In some embodiments, Lb is a covalent bond. In some embodiments, Lb is —N(R′)—. In some embodiments, Lb is —N(R)—. In some embodiments, Lb is —O—. In some embodiments, Lb is —S—. In some embodiments, Lb is —S(O)—. In some embodiments, Lb is —S(O)2—. In some embodiments, Lb is —S(O)2N(R′)—. In some embodiments, La and Lb are the same. In some embodiments, La and Lb are different. In some embodiments, at least one of La and Lb is —N(R′)—. In some embodiments, at least one of La and Lb is —O—. In some embodiments, at least one of La and Lb is —S—. In some embodiments, at least one of La and Lb is a covalent bond. In some embodiments, as described herein, R1 is R. In some embodiments, R1 is —H. In some embodiments, R1 is optionally substituted C1-10 aliphatic. In some embodiments, R1 is optionally substituted C1-10 alkyl. In some embodiments, a structure of formula I-n-4 is a structure of formula I-n-2. In some embodiments, a structure of formula I-n-4 is a structure of formula I-n-3. In some embodiments, a non-negatively charged internucleotidic linkage, e.g., a neutral internucleotidic linkage, has the structure of formula I. In some embodiments, X, e.g., in formula I, II, etc., is —N(-L-R5)—, wherein R5 is R as described herein. In some embodiments, X is —NH—. In some embodiments, L. e.g., in -X-L- of formula I. II, etc., comprises —SO2—. In some embodiments, L is —SO2—. In some embodiments, L is a covalent bond. In some embodiments. L is —C(O)O—(C1-4 alkylene)- wherein the alkylene is optionally substituted. In some embodiments, L is —C(O)OCH2—. In some embodiments, R1, e.g., in formula I, III, etc., comprise an optionally substituted ring. In some embodiments, R1 is R as described herein. In some embodiments, R1 is optionally substituted phenyl. In some embodiments, R1 is 4-methylphenyl. In some embodiments, R1 is 4-methoxyphenyl. In some embodiments, R1 is 4-aminophenyl. In some embodiments, R1 is an optionally substituted heteroaliphatic ring. In some embodiments, R1 is an optionally substituted 3-10 (e.g., 3, 4, 5, 6, 7, or 8) membered heteroaliphatic ring. In some embodiments, R1 is an optionally substituted 5- or 6-membered saturated monocyclic heteroaliphatic ring having 1-3 heteroatoms. In some embodiments, the ring is 5-membered. In some embodiments, the ring is 6-membered. In some embodiments, the number of ring heteroatom(s) is 1. In some embodiments, the number of ring heteroatoms is 2. In some embodiments, a heteroatom is oxygen. In some embodiments, R1 is optionally substituted




embedded image


In some embodiments, R1 is optionally substituted




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is optionally substituted C1-30 aliphatic. In some embodiments, R1 is optionally substituted C1-10 alkyl.


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage, has the structure of formula II or a salt form thereof:




embedded image


or a salt form thereof, wherein:


PL is P(═W), P, or P→B(R′)3;


W is O, N(-L-R5), S or Se;


each of X, Y and Z is independently —O—, —S—, —N(-L-R5)—, or L;


R5 is —H, -L-R′, halogen, —CN, —NO2, -L-Si(R′)3, —OR′, —SR′, or —N(R′)2;


Ring AL is an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms;


each Rs is independently —H, halogen, —CN, —N3, —NO, —NO2, -L-R′, -L-Si(R)3, -L-OR′, -L-SR′, -L-N(R′)2, —O-L-R′, —O-L-Si(R)3, —O-L-OR′, —O-L-SR′, or —O-L-N(R′)2;


g is 0-20;


each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3], —OP(O)(OR′)O—, —OP(O)(SR′)O—, —P(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL;


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each R′ is independently —R, —C(O)R, —C(O)OR, or —S(O)2R;


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C1-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or,


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


In some embodiments, Ring AL in various structures of the present disclosure is an optionally substituted aryl ring. In some embodiments, Ring AL is an optionally substituted phenyl ring. In some embodiments, Ring AL is an optionally substituted 3-10 (e.g., 3, 4, 5, 6, 7, or 8) membered heteroaliphatic ring. In some embodiments, Ring AL is an optionally substituted 5- or 6-membered saturated monocyclic heteroaliphatic ring having 1-3 heteroatoms. In some embodiments, the ring is 5-membered. In some embodiments, the ring is 6-membered. In some embodiments, the number of ring heteroatom(s) is 1. In some embodiments, the number of ring heteroatoms is 2. In some embodiments, a heteroatom is oxygen. In some embodiments, Rs is optionally substituted C1-C6 alkyl group. In some embodiments, Rs is Me. In some embodiments, Rs is OR, wherein R is hydrogen or C1-C6 alkyl group. In some embodiments, Rs is OH. In some embodiments, Rs is OMe. In some embodiments, Rs is —N(R′)2. In some embodiments, Rs is —NH2. In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments, an internucleotidic linkage, e.g. a neutral internucleotidic linkage of formula I or II, is n002




embedded image


which, as one skilled in the art will appreciate, can exist under certain conditions in the form of




embedded image


In some embodiments, an internucleotidic linkage, e.g. a neutral internucleotidic linkage of formula I or II, is n005(




embedded image


which, as one skilled in the art will appreciate, can exist under certain conditions in the form of




embedded image


In some embodiments, an internucleotidic linkage, e.g. a neutral internucleotidic linkage of formula I or II, is n006




embedded image


which, as one skilled in the art will appreciate, can exist under certain conditions in the form of




embedded image


In some embodiments, an internucleotidic linkage, e.g. a neutral internucleotidic linkage of formula I or II, is n007




embedded image


which, as one skilled in the art will appreciate, can exist under certain conditions in a form of




embedded image


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II, has the structure of formula II-a-1 or a salt form thereof:




embedded image


or a salt form thereof.


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II, has the structure of formula II-a-2 or a salt form thereof:




embedded image


or a salt form thereof.


In some embodiments, AL is bonded to —N═ or L through a carbon atom. In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II or II-a-1, II-a-2, has the structure of formula II-b-1 or a salt form thereof:




embedded image


In some embodiments, a structure of formula II-a-1 or II-a-2 may be referred to a structure of formula II-a. In some embodiments, a structure of formula II-b-1 or II-b-2 may be referred to a structure of formula II-b. In some embodiments, a structure of formula II-c-1 or II-c-2 may be referred to a structure of formula II-c. In some embodiments, a structure of formula II-d-1 or II-d-2 may be referred to a structure of formula II-d.


In some embodiments, AL is bonded to —N═ or L through a carbon atom. In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II or II-a-1, II-a-2, has the structure of formula II-b-2 or a salt form thereof:




embedded image


In some embodiments, Ring AL is an optionally substituted 3-20 membered monocyclic ring having 0-10 heteroatoms (in addition to the two nitrogen atoms for formula I-b). In some embodiments, Ring AL is an optionally substituted 5-membered monocyclic saturated ring.


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II, II-a, or II-b, has the structure of formula II-c-1 or a salt form thereof:




embedded image


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II, II-a, or II-b, has the structure of formula II-c-2 or a salt form thereof:




embedded image


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II, II-a, II-b, or II-c has the structure of formula II-d-1 or a salt form thereof:




embedded image


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage of formula II, II-a, II-b, or II-c has the structure of formula II-d-2 or a salt form thereof:




embedded image


In some embodiments, each R′ is independently optionally substituted C1-6 aliphatic. In some embodiments, each R′ is independently optionally substituted C1-6 alkyl. In some embodiments, each R′ is independently —CH3. In some embodiments, each Rs is —H.


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, W is O. In some embodiments, W is S. In some embodiments, a non-negatively charged internucleotidic linkage is chirally controlled. In some embodiments, the linkage phosphorus is Rp. In some embodiments, the linkage phosphorus is Sp.


In some embodiments, each non-negatively charged internucleotidic linkage or neutral internucleotidic linkage (e.g., those of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2) is independently Rp at its linkage phosphorus. In some embodiments, each negatively charged chiral internucleotidic linkage is Sp at its linkage phosphorus. In some embodiments, each phosphorothioate internucleotidic linkages is Sp at its linkage phosphorus. In some embodiments, each natural phosphate linkage is independently bonded to a sugar comprising a 2′-OR modification, wherein R is not —H. In some embodiments, each natural phosphate linkage is independently bonded to a sugar comprising a 2′-OR modification, wherein R is not —H, at a 3′-position. In some embodiments, each sugar that contains no 2′-OR modification wherein R is not —H is independently bonded to at least one non-natural phosphate linkages, in many cases, two non-natural natural phosphate linkages. In some embodiments, each 2′-F modified sugar is independently bonded to at least one non-natural phosphate linkages, in many cases, two non-natural natural phosphate linkages. In some embodiments, each non-natural phosphate linkage is a phosphorothioate internucleotidic linkage. In some embodiments, each non-natural phosphate linkage is a Sp phosphorothioate internucleotidic linkage. In some embodiments, each sugar bonded to non-negatively charged internucleotidic linkage or neutral internucleotidic linkage (e.g., those of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2) independently contains no 2′-OR. In some embodiments, each sugar bonded to non-negatively charged internucleotidic linkage or neutral internucleotidic linkage (e.g., those of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2) is a 2′-F modified sugar.


In some embodiments, the present disclosure provides a compound, e.g., an oligonucleotide, a chirally controlled oligonucleotide, an oligonucleotide of a provided composition (e.g., of a plurality of oligonucleotides), having the structure of formula O-I:




embedded image


or a salt thereof, wherein:


R5s is independently R′ or —OR′;


each BA is independently an optionally substituted group selected from C3-30 cycloaliphatic, C6-30 aryl, C5-30 heteroaryl having 1-10 heteroatoms, C3-30 heterocyclyl having 1-10 heteroatoms, a natural nucleobase moiety, and a modified nucleobase moiety;


each Rs is independently —H, halogen, —CN, —N3, —NO, —NO2, -L-R′, -L-Si(R)3, -L-OR′, -L-SR′, -L-N(R′)2, —O-L-R′, —O-L-Si(R)3, —O-L-OR′, —O-L-SR′, or —O-L-N(R′)2;


each s is independently 0-20;


each Ls is independently —C(R5s)2—, or L;


each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL.


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each Ring A is independently an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon;


each LP is independently an internucleotidic linkage;


z is 1-1000;


L3E is L or -L-L-;


R3E is —R′, -L-R′, —OR′, or a solid support;


each R′ is independently —R, —C(O)R, —C(O)OR, or —S(O)2R;


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


In some embodiments, each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. In some embodiments, each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. In some embodiments, an internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, an internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, III, I-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. In some embodiments, each internucleotidic linkage independently has the structure of formula I, I-a, I-b. I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, each internucleotidic linkage independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. In some embodiments, an internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. In some embodiments, each internucleotidic linkage independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


In some embodiments, each BA is independently an optionally substituted group selected from C5-30, heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and C3-30 heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus, boron and silicon;


each Ring A is independently an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2. II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


In some embodiments, each BA is independently an optionally substituted C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein the heteroaryl comprises one or more heteroatoms selected from oxygen and nitrogen;


each Ring A is independently an optionally substituted 5-10 membered monocyclic or bicyclic saturated ring having 0-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein the ring comprises at least one oxygen atom; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


In some embodiments, each BA is independently an optionally substituted A, T, C, G, or U, or an optionally substituted tautomer of A, T, C, G, or U;


each Ring A is independently an optionally substituted 5-7 membered monocyclic or bicyclic saturated ring having one or more oxygen atoms; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, I-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


In some embodiments, each BA is independently an optionally substituted or protected nucleobase selected from adenine, cytosine, guanosine, thymine, and uracil and tautomers thereof;


each Ring A is independently an optionally substituted 5-7 membered monocyclic or bicyclic saturated ring having one or more oxygen atoms; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


In some embodiments, BA is an optionally substituted group selected from C3-30 cycloaliphatic, C6-30 aryl, C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C3-3 heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, a natural nucleobase moiety, and a modified nucleobase moiety. In some embodiments, BA is an optionally substituted group selected from C5-3 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C3-30 heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, a natural nucleobase moiety, and a modified nucleobase moiety. In some embodiments, BA is an optionally substituted group selected from C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, a natural nucleobase moiety, and a modified nucleobase moiety. In some embodiments, BA is optionally substituted C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, BA is optionally substituted natural nucleobases and tautomers thereof. In some embodiments, BA is protected natural nucleobases and tautomers thereof. Various nucleobase protecting groups for oligonucleotide synthesis are known and can be utilized in accordance with the present disclosure. In some embodiments, BA is an optionally substituted nucleobase selected from adenine, cytosine, guanosine, thymine, and uracil, and tautomers thereof. In some embodiments, BA is an optionally protected nucleobase selected from adenine, cytosine, guanosine, thymine, and uracil, and tautomers thereof.


In some embodiments, BA is optionally substituted C3-30 cycloaliphatic. In some embodiments, BA is optionally substituted C6-30 aryl. In some embodiments, BA is optionally substituted C3-30 heterocyclyl. In some embodiments, BA is optionally substituted C5-30 heteroaryl. In some embodiments, BA is an optionally substituted natural base moiety. In some embodiments, BA is an optionally substituted modified base moiety. BA is an optionally substituted group selected from C3-30 cycloaliphatic, C6-30 aryl, C3-30 heterocyclyl, and C5-30 heteroaryl. In some embodiments, BA is an optionally substituted group selected from C3-30 cycloaliphatic, C6-30 aryl, C3-30 heterocyclyl, C5-30 heteroaryl, and a natural nucleobase moiety.


In some embodiments, BA is connected through an aromatic ring. In some embodiments, BA is connected through a heteroatom. In some embodiments, BA is connected through a ring heteroatom of an aromatic ring. In some embodiments, BA is connected through a ring nitrogen atom of an aromatic ring.


In some embodiments, BA is a natural nucleobase moiety. In some embodiments, BA is an optionally substituted natural nucleobase moiety. In some embodiments, BA is a substituted natural nucleobase moiety. In some embodiments, BA is optionally substituted, or an optionally substituted tautomer of, A, T, C, U, or G. In some embodiments, BA is natural nucleobase A, T, C, U, or G. In some embodiments, BA is an optionally substituted group selected from natural nucleobases A, T, C, U, and G.


In some embodiments, BA is an optionally substituted purine base residue. In some embodiments, BA is a protected purine base residue. In some embodiments, BA is an optionally substituted adenine residue. In some embodiments, BA is a protected adenine residue. In some embodiments, BA is an optionally substituted guanine residue. In some embodiments, BA is a protected guanine residue. In some embodiments, BA is an optionally substituted cytosine residue. In some embodiments, BA is a protected cytosine residue. In some embodiments, BA is an optionally substituted thymine residue. In some embodiments, BA is a protected thymine residue. In some embodiments, BA is an optionally substituted uracil residue. In some embodiments, BA is a protected uracil residue. In some embodiments, BA is an optionally substituted 5-methylcytosine residue. In some embodiments, BA is a protected 5-methylcytosine residue.


In some embodiments, BA is a protected base residue as used in oligonucleotide preparation. In some embodiments, BA is a base residue illustrated in US 2011/0294124, US 2015/0211006, US 2015/0197540, and WO 2015/107425, each of which is incorporated herein by reference.


In some embodiments, R5s-Ls- is —CH2OH. In some embodiments, R5s-Ls- is —CH(R5s)—OH, wherein R5s is as described in the present disclosure. In some embodiments, Ls is —CH2—. In some embodiments, Ls is —CH(R5s)- wherein R5s is not —H. In some embodiments, Ls is —CH(R5s)—wherein R5s is not —H and is otherwise R. In some embodiments, R is optionally substituted C1-C6 aliphatic. In some embodiments, R is optionally substituted C1-C6 alkyl. In some embodiments, R is methyl. In some embodiments, —CH(R5s)— wherein R5s is not —H has is R. In some embodiments, —CH(R5s)— wherein R5s is not —H has is S.


Example embodiments for variables, e.g., variables of each of the formulae, are additionally described in the present disclosure, and may be independently and optionally combined.


In some embodiments, the present disclosure provides oligonucleotides and oligonucleotide compositions that are chirally controlled. For instance, in some embodiments, a provided composition contains controlled levels of one or more individual oligonucleotide types, wherein an oligonucleotide type is defined by: 1) base sequence; 2) pattern of backbone linkages; 3) pattern of backbone chiral centers; and 4) pattern of backbone P-modifications. In some embodiments, oligonucleotides of the same oligonucleotide type are identical.


In some embodiments, a provided oligonucleotide is an altmer. In some embodiments, a provided oligonucleotide is a P-modification altmer. In some embodiments, a provided oligonucleotide is a stereoaltmer.


In some embodiments, a provided oligonucleotide is a blockmer. In some embodiments, a provided oligonucleotide is a P-modification blockmer. In some embodiments, a provided oligonucleotide is a stereoblockmer.


In some embodiments, a provided oligonucleotide is a gapmer.


In some embodiments, a provided oligonucleotide is a skipmer.


In some embodiments, a provided oligonucleotide is a hemimer. In some embodiments, a hemimer is an oligonucleotide wherein the 5′-end or the 3′-end has a sequence that possesses a structure feature that the rest of the oligonucleotide does not have. In some embodiments, the 5′-end or the 3′-nd has or comprises 2 to 20 nucleotides. In some embodiments, a structural feature is a base modification. In some embodiments, a structural feature is a sugar modification. In some embodiments, a structural feature is a P-modification. In some embodiments, a structural feature is stereochemistry of the chiral internucleotidic linkage. In some embodiments, a structural feature is or comprises a base modification, a sugar modification, a P-modification, or stereochemistry of the chiral internucleotidic linkage, or combinations thereof. In some embodiments, a hemimer is an oligonucleotide in which each sugar moiety of the 5′-end sequence shares a common modification. In some embodiments, a hemimer is an oligonucleotide in which each sugar moiety of the 3′-nd sequence shares a common modification. In some embodiments, a common sugar modification of the 5′ or 3′ end sequence is not shared by any other sugar moieties in the oligonucleotide. In some embodiments, an example hemimer is an oligonucleotide comprising a sequence of substituted or unsubstituted 2′-O-alkyl sugar modified nucleosides, bicyclic sugar modified nucleosides. β-D-ribonucleosides or 3-D- deoxyribonucleosides (for example 2′-MOE modified nucleosides, and LNA™ or ENA™ bicyclic sugar modified nucleosides) at one terminus and a sequence of nucleosides with a different sugar moiety (such as a substituted or unsubstituted 2′-O-alkyl sugar modified nucleosides, bicyclic sugar modified nucleosides or natural ones) at the other terminus. In some embodiments, a provided oligonucleotide is a combination of one or more of unimer, altmer, blockmer, gapmer, hemimer and skipmer. In some embodiments, a provided oligonucleotide is a combination of one or more of unimer, altmer, blockmer, gapmer, and skipmer. For instance, in some embodiments, a provided oligonucleotide is both an altmer and a gapmer. In some embodiments, a provided nucleotide is both a gapmer and a skipmer. One of skill in the chemical and synthetic arts will recognize that numerous other combinations of patterns are available and are limited only by the commercial availability and/or synthetic accessibility of constituent parts required to synthesize a provided oligonucleotide in accordance with methods of the present disclosure. In some embodiments, a hemimer structure provides advantageous benefits. In some embodiments, provided oligonucleotides are 5′-hemimers that comprises modified sugar moieties in a 5′-end sequence. In some embodiments, provided oligonucleotides are 5′-hemimers that comprises modified 2′-sugar moieties in a 5′-end sequence.


In some embodiments, a provided oligonucleotide comprises one or more optionally substituted nucleotides. In some embodiments, a provided oligonucleotide comprises one or more modified nucleotides. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted nucleosides. In some embodiments, a provided oligonucleotide comprises one or more modified nucleosides. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted nucleosides or sugars of LNAs.


In some embodiments, a provided oligonucleotide comprises one or more optionally substituted nucleobases. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted natural nucleobases. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted modified nucleobases. In some embodiments, a provided oligonucleotide comprises one or more 5-methylcytidine; 5-hydroxymethylcytidine, 5-formylcytosine, or 5-carboxylcytosine. In some embodiments, a provided oligonucleotide comprises one or more 5-methylcytidine.


In some embodiments, a provided oligonucleotide comprises one or more optionally substituted sugars. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted sugars found in naturally occurring DNA and RNA. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted ribose or deoxyribose. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted ribose or deoxyribose, wherein one or more hydroxyl groups of the ribose or deoxyribose moiety is optionally and independently replaced by halogen, R′, —N(R′)2, —OR′, or —SR′, wherein each R′ is independently as defined above and described herein. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with R, halogen, R′, —N(R′)2, —OR′, or —SR′, wherein each R′ is independently as defined above and described herein. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with halogen. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with one or more —F, halogen. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with —OR′, wherein each R′ is independently as defined above and described herein. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with —OR′, wherein each R′ is independently an optionally substituted C1-C6 aliphatic. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with —OR′, wherein each R′ is independently an optionally substituted C1-C6 alkyl. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with -OMe. In some embodiments, a provided oligonucleotide comprises one or more optionally substituted deoxyribose, wherein the 2′ position of the deoxyribose is optionally and independently substituted with —O-methoxyethyl.


In some embodiments, a provided oligonucleotide is single-stranded oligonucleotide. In some embodiments, a provided oligonucleotide is a hybridized oligonucleotide strand. In certain embodiments, a provided oligonucleotide is a partially hybridized oligonucleotide strand. In certain embodiments, a provided oligonucleotide is a completely hybridized oligonucleotide strand. In certain embodiments, a provided oligonucleotide is a double-stranded oligonucleotide. In certain embodiments, a provided oligonucleotide is a triple-stranded oligonucleotide (e.g., a triplex).


In some embodiments, a provided oligonucleotide is chimeric. For example, in some embodiments, a provided oligonucleotide is DNA-RNA chimera, DNA-LNA chimera, etc.


In some embodiments, an oligonucleotide is a chirally controlled oligonucleotide variant of an oligonucleotide described in WO2012/030683. For example, in some embodiments, a chirally controlled oligonucleotide variant comprises a chirally controlled version of a chiral internucleotidic linkage which is not chirally controlled in WO2012/030683. In some embodiments, a chirally controlled oligonucleotide variant comprises one or more chirally controlled internucleotidic linkages which independently replace one or more natural phosphate linkages or non-chirally controlled modified internucleotidic linkages in WO2012/030683.


In some embodiments, a provided oligonucleotide is or comprises a portion of GNA, LNA, PNA, TNA or Morpholino.


In some embodiments, a provided oligonucleotide is from about 15 to about 25 nucleotide units in length. In some embodiments, a provided oligonucleotide is from about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotide units in length.


In some embodiments, the present disclosure provides oligonucleotides comprising one or more modified internucleotidic linkage, which can be chiral at linkage phosphorus and chirally controlled. In some embodiments, an oligonucleotide comprises one or more linkages LPO, LPA or LPB, wherein:


each LPO is independently




embedded image


or a salt form thereof;


each LPA is independently an internucleotidic linkage having the structure of




embedded image


or a salt form thereof;


each LPB is independently an internucleotidic linkage having the structure of




embedded image


or a salt form thereof;


Nx is —N(-L-R5)-L-R1,




embedded image


and


WN is ═N-L-R5,




embedded image


wherein each other variable is independently as described herein.


In some embodiments, each LPO is independently




embedded image


or a salt form thereof.


In some embodiments, —O-L-R1 is —OH. In some embodiments, -X-L-R1, e.g., in LPO is —OCH2CH2CN. In some embodiments, —S-L-R1 is —SH. In some embodiments, LPA is a phosphorothioate internucleotidic linkage with the specified stereochemistry. In some embodiments, LPB is a phosphorothioate internucleotidic linkage with the specified stereochemistry. In some embodiments, X is-O—, and -X-L-R1 is as described in the present disclosure, e.g., -X-L-R1 is




embedded image


wherein each variable is independently in accordance with the present disclosure, or H-X-L-R1 is a chiral auxiliary as described herein. In some embodiments, -X-L-R1 is




embedded image


wherein G4 and G5 are taken together to form an optionally substituted ring as described herein. In some embodiments, -X-L-R1 is




embedded image


In some embodiments, G2 is —CH2Si(R)3 as described herein. In some embodiments, G2 is —CH2Si(Ph)2Me. In some embodiments, G2 comprises an electron-withdrawing group as described herein, for example, in some embodiments, G2 is —CH2SO2R as described herein. In some embodiments, G2 is —CH2SO2Ph.


In some embodiments, Nx is —N(-L-R5)-L-R1, and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula I wherein PL is P═O, Y and Z are —O—, and X is —N(-L-R5)— linkage phosphorus stereochemistry is as specified. In some embodiments, Nx is




embedded image


and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula II, wherein PL is P═O, Y and Z are —O—, and X is —N(-L-R5)—, wherein the linkage phosphorus stereochemistry is as specified. In some embodiments, Nx is




embedded image


In some embodiments, Nx is




embedded image


In some embodiments, Nx is




embedded image


In some embodiments, Nx is




embedded image


In some embodiments, Nx is




embedded image


and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula I-n-3, wherein PL is P═O, and Y and Z are —O—, wherein the linkage phosphorus stereochemistry is as specified. In some embodiments, R1 is optionally substituted alkyl. In some embodiments, R1 is methyl. In some embodiments, Nx




embedded image


In some embodiments, two R1 on the same nitrogen independently are taken together to form an optionally substituted ring as described herein, e.g., an optionally substituted 5- or 6-membered ring which in addition to the nitrogen atom, has 1-3 heteroatoms. In some embodiments the ring is saturated. In some embodiments, the ring is monocyclic. In some embodiments Nx is




embedded image


In some embodiments, Nx is




embedded image


In some embodiments, Nx is




embedded image


Those skilled in the art will appreciate that two —N(R1)2 groups, in any, in a structure or formula can either be the same or different. In some embodiments, Nx is




embedded image


and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula I-n4, wherein PL is P═O. L is a covalent bond, and Y and Z are —O—, wherein the linkage phosphorus stereochemistry is as specified. In some embodiments, Nx is




embedded image


and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula II-a-1, wherein PL is P═O, L is a covalent bond, and Y and Z are —O—, wherein the linkage phosphorus stereochemistry is as specified. In some embodiments, Nx is




embedded image


and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula II-b-1, wherein PL is P═O, L is a covalent bond, and Y and Z are —O—, wherein the linkage phosphorus stereochemistry is as specified. In some embodiments, Nx is




embedded image


and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula -c-1, wherein PL is P═O, L is a covalent bond, and Y and Z are —O—, wherein the linkage phosphorus stereochemistry is as specified. In some embodiments, Nx is




embedded image


and an internucleotidic linkage having such a Nx group is an internucleotidic linkage having the structure of formula II-d-1, wherein PL is P═O, L is a covalent bond, and Y and Z are —O—, wherein the linkage phosphorus stereochemistry is as specified. In some embodiments, R′ or Rs is optionally substituted alkyl. In some embodiments, R′ or Rs is —CH3. In some embodiments, R′ or Rs is —CH2(CH2)10CH3 In some embodiments, Rs is —H. In some embodiments, Nx is




embedded image


In some embodiments, Nx is




embedded image


In some embodiments P=WN is a PN group as described herein. In some embodiments, WN is




embedded image


wherein each variable is as described herein (for example, in Nx). In some embodiments, WN is




embedded image


In some embodiments, as described herein R′ or Rs is optionally substituted alkyl or —H. In some embodiments, R′ is —CH3. In some embodiments, R′ is —CH2(CH2)10CH3. In some embodiments, Rs is —H In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is ═N-L-R5 wherein each variable is as described herein. For example, in some embodiments. L is —SO2—. In some embodiments, L is —C(O)OCH2—. In some embodiments, as described herein, R5 is or comprise an optionally substituted ring. In some embodiments, R5 is R as described herein. In some embodiments, R5 is optionally substituted phenyl. In some embodiments, R5 is 4-methylphenyl. In some embodiments, R5 is 4-methoxyphenyl. In some embodiments, R5 is 4-aminophenyl. In some embodiments, R5 is an optionally substituted heteroaliphatic ring. In some embodiments, R5 is an optionally substituted 3-10 (e.g., 3, 4, 5, 6, 7, or 8) membered heteroaliphatic ring. In some embodiments, R5 is an optionally substituted 5- or 6-membered saturated monocyclic heteroaliphatic ring having 1-3 heteroatoms. In some embodiments, the ring is 5-membered. In some embodiments, the ring is 6-membered. In some embodiments, the number of ring heteroatom(s) is 1. In some embodiments, the number of ring heteroatoms is 2. In some embodiments, a heteroatom is oxygen. In some embodiments, R5 is optionally substituted




embedded image


In some embodiments, R5 is optionally substituted




embedded image


In some embodiments, R5 is




embedded image


In some embodiments, R5 is optionally substituted C1-30 aliphatic. In some embodiments, R5 is optionally substituted C1-10 alkyl. In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, WN is




embedded image


In some embodiments, Q is PF6.


In some embodiments, -X-L-R1 in




embedded image


is




embedded image


In some embodiments, -X-L-R1 in




embedded image


is




embedded image


In some embodiments, G2 is —CH2Si(R)3 described herein. In some embodiments, G2 is —CH2Si(Ph)2Me. In some embodiments, -X-L-R1 in




embedded image


is




embedded image


In some embodiments, -X-L-R1 in




embedded image


is




embedded image


In some embodiments, G2 comprises an electron-withdrawing group as described herein. In some embodiments, G2 is —CH2SO2R, wherein R is not —H. In some embodiments, R is optionally substituted phenyl. In some embodiments, G2 is —CH2SO2Ph. In some embodiments, R is optionally substituted C1-6 aliphatic, e.g., t-butyl. In some embodiments, as described herein, R1 is —C(O)R′. In some embodiments, R1 is —C(O)CH3. In some embodiments, R1 is —H.


In some embodiments, LPO is a natural phosphate linkage. In some embodiments, LPA is a Rp phosphorothioate internucleotidic linkage. In some embodiments, LPA is a Rp non-negatively charged internucleotidic linkage. e.g., n001. In some embodiments, LPB is a Sp phosphorothioate internucleotidic linkage. In some embodiments, LPB is a Sp non-negatively charged internucleotidic linkage, e.g., n001. In some embodiments, an oligonucleotide comprises one or more linkages L. In some embodiments, an oligonucleotide comprises one or more linkages LPA. In some embodiments, an oligonucleotide comprises one or more linkages LPB. In some embodiments, an oligonucleotide comprises one or more internucleotidic linkages independently selected from LPO, LPA and LPB. In some embodiments, each internucleotidic linkage is independently selected from LPO, LPA and LPB. In some embodiments, each internucleotidic linkage is independently selected from LPA and LPB. In some embodiments, at least one internucleotidic linkage is LPA or LPB. In some embodiments, each chirally controlled internucleotidic linkage is independently selected from LPA and LPB.


In some embodiments, the present disclosure provides oligonucleotides (e.g., chirally controlled oligonucleotides) and compositions thereof (e.g., chirally controlled oligonucleotide compositions), wherein the internucleotidic linkages of the oligonucleotides or regions thereof are or comprise the following consecutive internucleotidic linkages (from 5′ to 3′):


(LPX/LPO)t[(LPA)n(LPB)m]y, (LPX/LPO)t[(LPO)n(LPB)m]y, (LPX/LPO)t[(LPO/LPA)n(LPB)m]y, [(LPA)n(LPB)m]y, [(LPO)n(LPB)m]y, ((LPB)t[(LPA)n(LPB)m]y, (LPB)t[(LPO)(LPB)m]y, (LPB)t[(LPO/LPA)n(LPB)m]y, [(LPA)n(LPB)m]y, [(LPO)n(LPB)m]y, [(LPO/LPA)n(LPB)m]y, (LPA)t(LPX)n(LPA)m, (LPX/LPO)t(LPX)n(LPX/LPO)m, (LPX/LPO)t(LPB)n(LPX/LPO)m, (LPX/LPO)t[(LPX/LPO)n]y(LPX/LPO)m, (LPX/LPO)t[(LPB/LPO)n]y(LPX/LPO)m, (LPX/LPO)t[(LPB/LPO)n]y(LPX/LPO)m, (LPA/LPO)t(LPX)n(LPA/LPO)m, (LPA/LPO)t(LPB)n(LPA/LPO)m, (LPA/LPO)t[(LPX/LPO)n]y(LPA/LPO)m, (LPA/LPO)t[(LPB/LPO)n]y(LPA/LPO)m, or (LPA/LPO)t[(LPB/LPO)n]y(LPA/LPO)m, or a combination thereof, wherein:


each LPX is independently LPA or LPB; and


each other variable is independently as described herein.


In some embodiments, internucleotidic linkages of an provided oligonucleotides or regions thereof comprise or are consecutive internucleotidic linkages [(LPA)n(LPB)m]y, [(LPO)n(LPB)m]y, (LPB)t[(LPA)n(LPB)m]y, or (LPB)t[(LPO)n(LPB)m]y. In some embodiments, internucleotidic linkages of an provided oligonucleotides or regions thereof comprise or are consecutive internucleotidic linkages (LPA)(LPB)m. In some embodiments, internucleotidic linkages of an provided oligonucleotides or regions thereof comprise or are consecutive internucleotidic linkages [(LPA)(LPB)m]y. In some embodiments, internucleotidic linkages of an provided oligonucleotides or regions thereof comprise or are consecutive internucleotidic linkages (LPB)t(LPA)(LPB)m. In some embodiments, each sugar between two of the consecutive internucleotidic linkages independently contains no 2′-modification. In some embodiments, each sugar between two of the consecutive internucleotidic linkages is independently




embedded image


In some embodiments, n is 1. In some embodiments, y is 1. In some embodiments, y is 2-10. In some embodiments, t is 1. In some embodiments, t is 2-10. In some embodiments, t is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, n is 1, and m is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, t is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, n is 1, and m is 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, t is 2-10, n is 1 and m is 2-10. In some embodiments, each LPA is independently




embedded image


or a salt form thereof. In some embodiments, each LPB is independently




embedded image


or a salt form thereof. In some embodiments, each LPA is independently




embedded image


or a salt form thereof, and each LPB is independently




embedded image


or a salt form thereof.


In some embodiments, internucleotidic linkages of an provided oligonucleotides or regions thereof comprise or are consecutive internucleotidic linkages (from 5′ to 3′) (LPO)m(LPA/LPB)n, LPO(LPA/LPB)n, (LPO)m(LPB)n, LPO(LPB)n, [(LPO)m(LPA/LPB)n]y, [LPO(LPA/LPB)n]y, [(LPO)m(LPB)n]y, [LPO(LPB)n]y, (LPA/LPB)t(LPO)m(LPA/LPB)n, (LPA/LPB)t LPO(LPA/LPB)n, (LPA/LPB)t(LPO)m(LPB)n, (LPA/LPB)tLPO(LPB)n, (LPA/LPB)t[(LPO)m(LPA/LPB)n]y, (LPA/LPB)t[LPO(LPA/LPB)n]y, (LPA/LPB)t[(LPO)m(LPB)n]y, (LPA/LPB)t[LPO(LPB)n]y, (LPO)m(LPA/LPB)n(LPA/LPB)t, LPO(LPA/LPB)n(LPA/LPB)t, (LPO)m(LPB)n(LPA/LPB)t, LPO(LPB)n(LPA/LPB)t, [(LPO)m(LPA/LPB)n]y(LPA/LPB)t, [LPO(LPA/LPB)n]y(LPA/LPB)t, [(LPO)m(LPB)n]y(LPA/LPB)t, [LPO(LPB)n]y(LPA/LPB)t, (LPA/LPB)t[(LPO)m(LPA/LPB)n]y(LPA/LPB)t, LPB(LPA/LPB)t[(LPO)m(LPA/LPB)n]y(LPA/LPB)tLPB, (LPA/LPB)t[(LPO)m(LPB)n]y(LPA/LPB)t, LPB(LPA/LPB)t[(LPO)m(LPB)n]y(LPA/LPB)tLPB, (LPA/LPB)t[(LPO)(LPA/LPB)]y(LPA/LPB)t, LPB(LPA/LPB)t[(LPO)(LPA/LPB)]y(LPA/LPB)tLPB, (LPA/LPB)t[(LPO)(LPB)]y(LPA/LPB)t, LPB(LPA/LPB)t[(LPO)(LPB)]y(LPA/LPB)tLPB, or a combination thereof, wherein each variable is independently as described herein. In some embodiments, at least one LPA/LPB of (LPA/LPB)t is LPA. In some embodiments, at least one LPA/LPB of (LPA/LPB)t is LPB. In some embodiments, at least one LPA/LPB of (LPA/LPB)t is LPA, and at least one LPA/LPB of (LPA/LPB)t is LPB. In some embodiments, at least one LPA/LPB of (LPA/LPB)m is LPA. In some embodiments, at least one LPA/LPB of (LPA/LPB)m is LPA. In some embodiments, at least one LPA/LPB of (LPA/LPB)m is LPA, and at least one LPA/LPB of (LPA/LP)m is LPB. In some embodiments, each LPA/LPB of (LPA/LPB)m is LPB. In some embodiments, a sugar bonded to a LPO linkage at its 3′-carbon comprises a 2-modification, wherein the T-modification is not 2′-F. In some embodiments, a sugar bonded to a LPO linkage at its 3′-carbon is independently




embedded image


wherein R2s is not —H or —OH. In some embodiments, each sugar bonded to a LPO linkage at its 3′-carbon is independently




embedded image


wherein R2s is not —H or —OH. In some embodiments, each sugar bonded to a LPO linkage at its 3′-carbon is independently




embedded image


wherein R2s is not —H or —OH. In some embodiments, R4s is —H. In some embodiments. R2s is not —H, —F or —OH. In some embodiments, each sugar bonded to a LPO linkage at its 3′-carbon is independently




embedded image


wherein R2s is not —H, —F or —OH. In some embodiments, R2s is —OR, wherein R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6 alkyl. In some embodiments, R2s is -OMe. In some embodiments, a 5′-end sugar, a 3′-nd sugar, and/or a sugar between LPA/LPB and LPA/LPB comprises a 2′-F modification. In some embodiments, a 5′-end sugar, a 3-end sugar, and/or a sugar between LPA/LPB and LPA/LPB is




embedded image


wherein R2s is —F. In some embodiments, each sugar comprises a 2′-F is bonded to a modified internucleotidic linkage. e.g., at its 3′-carbon. In some embodiments, a modified internucleotidic linkage is LPA or LPB. In some embodiments, each LPA is independently




embedded image


or a salt form thereof. In some embodiments, each LPB is independently




embedded image


or a salt form thereof. In some embodiments, t is 2-10. In some embodiments, each LPA is independently




embedded image


or a salt form thereof, and each LPB is independently




embedded image


or a salt form thereof. In some embodiments, each modified internucleotidic linkage in a provided oligonucleotide is independently LPO (wherein -X-L-R1 is not —H),




embedded image


or a salt form thereof. In some embodiments, each modified internucleotidic linkage is independently




embedded image


or a salt form thereof. In some embodiments, each modified internucleotidic linkage is independently




embedded image


or a salt form thereof. In some embodiments, m is 1. In some embodiments, each m is 1. In some embodiments, n is 2 or more. In some embodiments, each n is 2 or more. In some embodiments, t is 1. In some embodiments, t is 2 or more. In some embodiments, t is 3. In some embodiments, t is 4. In some embodiments, t is 5. In some embodiments, t is 6. In some embodiments, t is 7. In some embodiments, t is 8. In some embodiments, t is 9. In some embodiments, t is 10. In some embodiments, each t is independently 2 or more. In some embodiments, each t is independently 3 or more. In some embodiments, each t is independently 4 or more. In some embodiments, each t is independently 5 or more.


In some embodiments, each of LPO, LPA and LPB independently bonds to a 5′-sugar through its 3′-carbon, and to a 3′-sugar through its 5′-carbon, e.g., each LPA is independently an internucleotidic linkage having the structure of




embedded image


or a salt form thereof; each LPB is independently an internucleotidic linkage having the structure of




embedded image


or a salt form thereof. Example sugar structures are described herein, e.g., in some embodiments, each sugar moiety independently has the structure of




embedded image


wherein each variable is independently as described m the present disclosure.


In some embodiments, LPO has a pattern, location, number, percentage, etc. as described herein for a natural phosphate linkage. In some embodiments, LPA has a pattern, location, number, percentage. etc. as described herein for a Rp internucleotidic linkage. In some embodiments, a Rp internucleotidic linkage is a Rp phosphorothioate internucleotidic linkage. In some embodiments, a Rp internucleotidic linkage is a Rp non-negatively charged internucleotidic linkage (e.g., n001). In some embodiments, LPB has a pattern, location, number, percentage, etc. as described herein for a Sp internucleotidic linkage. In some embodiments, a Sp internucleotidic linkage is a Sp phosphorothioate internucleotidic linkage. In some embodiments, a Sp internucleotidic linkage is a Sp non-negatively charged internucleotidic linkage (e.g., n001).


In some embodiments, the present disclosure provides an oligonucleotide, wherein the first internucleotidic linkage from the 5′-end is an internucleotidic linkage of OSP, and each other internucleotidic linkage is independently selected from OP, *PD, *PD S, *PDR, *N, *N S, *NR, wherein:


O5P is




embedded image


LPO, LPA, LPB, or a salt form thereof;


each OP is independently LPO; each *PD is independently




embedded image


or a salt form thereof;


each *PDS is independently




embedded image


or a salt form thereof;


each *PDR is independently




embedded image


or a salt form thereof;


each *N is independently




embedded image


or a salt form thereof;


each *NS is independently




embedded image


or a salt form thereof; and


each *NR is independently




embedded image


or a salt form thereof;


wherein each variable in independently as described herein, wherein -X-L-R1 is not —OH.


In some embodiments, O5P is independently




embedded image


LPO, LPA, LPB, or a salt form thereof. In some embodiments, each OP is independently LPO. In some embodiments, each *PD is independently




embedded image


or a salt form thereof. In some embodiments, each *PDS is independently




embedded image


or a salt form thereof. In some embodiments, each *PDR is independently




embedded image


or a salt form thereof. In some embodiments, each *N is independently




embedded image


or a salt form thereof. In some embodiments, each *NS is independently




embedded image


or a salt form thereof. In some embodiments, each *NR is independently




embedded image


or a salt form thereof.


In some embodiments, X is —O—. In some embodiments, -L-R1 contains an electron-withdrawing group. In some embodiments, -L-R1 is —CH2G2, wherein the methylene unit is optionally substituted. In some embodiments, -L-R1 is —CH(R′)G2. In some embodiments, G2 does not comprise a chiral element, and G2 comprises an electron-withdrawing group as described herein, e.g., in some embodiments. G2 is —CH2CN (e.g., in O5P, OP, *PD, or *N, wherein linkage phosphorus is not chirally controlled). In some embodiments, G2 comprises a chiral element, e.g., wherein linkage phosphorus is chirally controlled. In some embodiments, -X-L-R1 is of such a structure that H-X-L-R1 is a chiral reagent described herein, or a capped chiral reagent described herein wherein an amino group of the chiral reagent (typically of -W1—H or —W2—H, which comprises an amino group -NHG5-) is capped, e.g., with —C(O)R′ (replacing a —H, e.g., —N[—C(O)R′]G5-). In some embodiments, -X-L-R1 is




embedded image


wherein each variable is independently in accordance with the present disclosure. In m embodiments. -X-L-R1 is




embedded image


wherein each variable is independently in accordance with the present disclosure. In some embodiments, R1 is —H or —C(O)R′. In some embodiments, wherein R1 is —H, e.g., in O5P. In some embodiments, R1 is —C(O)R′ (e.g., in O5P, OP, *PDS, *PDR, *NS *NR, etc.). In some embodiments, R1 is CH3C(O)—. In some embodiments, as described herein, G2 is In some embodiments, G2 is —C(R)2Si(R)3, wherein —C(R)2— is optionally substituted —CH2—, and each R of —Si(R)3 is independently an optionally substituted group selected from C1-10 aliphatic, heterocyclyl, heteroaryl and aryl. In some embodiments, G2 is —CH2Si(Me)(Ph)2. In some embodiments, e.g., in *PS, *DR, etc., G2 is —CH2Si(Me)(Ph)2. In some embodiments, G2 comprises an electron-withdrawing group as described herein. In some embodiments, G2 is —C(R)2SO2R′, wherein —C(R)2— is optionally substituted —CH2—, and R′ is an optionally substituted group selected from C1-10 aliphatic, heterocyclyl, heteroaryl and aryl. In some embodiments, R′ is phenyl. In some embodiments, e.g., in *NS, *NR, etc., G2 is —CH2SO2Ph.


In some embodiments, the present disclosure provides an oligonucleotide (“a first oligonucleotide”), which has an identical structure as an oligonucleotide described in a Table herein or an oligonucleotide described in e.g., US 20150211006, US 20170037399, US 20180216107, US 20180216108, US 20190008986, WO 2017/015555, WO 2017/015575, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/022473, WO 2018/067973, WO 2018/098264, WO 2018/223056, WO 2018/223073, WO 2018/223081, WO 2018/237194, WO 2019/032607, WO 2019/032612, etc., the oligonucleotide of each of which is incorporated herein by reference (“a second oligonucleotide”), which second oligonucleotide comprises modified internucleotidic linkages, except that compared to the second oligonucleotide, in the first oligonucleotide:


the first internucleotidic linkage from the 5′-end is an internucleotidic linkage of O5P; and for the rest linkages:


at each location where there is a phosphate linkage in the second oligonucleotide, there is independently a linkage of OP in the first oligonucleotide;


at each location where there is a stereorandom phosphorothioate linkages in the second oligonucleotide, there is independently a linkage of *PD in the first oligonucleotide;


at each location where there is a Sp phosphorothioate linkage in the second oligonucleotide, there is independently a linkage of *PDS in the first oligonucleotide;


at each location where there is a Rp phosphorothioate linkage in the second oligonucleotide, there is independently a linkage of *PDR in the first oligonucleotide;


at each location where there is a stereorandom non-negatively charged internucleotidic linkage in the second oligonucleotide, there is independently a linkage of *N in the first oligonucleotide;


at each location where there is a Sp non-negatively charged internucleotidic linkage in the second oligonucleotide, there is independently a linkage of *NS in the first oligonucleotide;


at each location where there is a Rp non-negatively charged internucleotidic linkage in the second oligonucleotide, there is independently a linkage of *NR in the first oligonucleotide, and


each nucleobase in the first oligonucleotide is optionally and independently protected (e.g., as in oligonucleotide synthesis), and each additional chemical moiety, if any, in the first oligonucleotide is optionally and independently protected (e.g., —OH in a carbohydrate moiety protected as -OAc).


In some embodiments, at each location where there is a phosphate linkage in the second oligonucleotide, there is independently a linkage of OP in the first oligonucleotide; at each location where there is a stereorandom phosphorothioate linkages in the second oligonucleotide, there is independently a linkage of *PD in the first oligonucleotide; at each location where there is a Sp phosphorothioate linkage in the second oligonucleotide, there is independently a linkage of *PDS in the first oligonucleotide; at each location there is a Rp phosphorothioate linkage in the second oligonucleotide, there is independently a linkage of *PDR in the first oligonucleotide; at each location there is a stereorandom non-negatively charged internucleotidic linkage in the second oligonucleotide, there is independently a linkage of *N in the first oligonucleotide; at each location there is a Sp non-negatively charged internucleotidic linkage in the second oligonucleotide, there is independently a linkage of *NS in the first oligonucleotide; at each location there is a Rp non-negatively charged internucleotidic linkage in the second oligonucleotide, there is independently a linkage of *NR in the first oligonucleotide, and each nucleobase in the first oligonucleotide is optionally and independently protected (e.g., as in oligonucleotide synthesis), and each additional chemical moiety, if any, in the first oligonucleotide is optionally and independently protected (e.g., —OH in a carbohydrate moiety protected as -OAc); wherein each of O5P, OP, *PDS, *PDR, *N, *NS and *NR is independently as described herein. In some embodiments, such an oligonucleotide is linked to a support optionally through a linker, e.g., a CNA linker to CPG. In some embodiments, as appreciated by those skilled in the art, after a removal process of -X-L-R, a linkage of O5P, OP, *PD, *PDS, *PDR, *N, *NS or *NR becomes a linkage it replaces. In some embodiments, such oligonucleotides (e.g., first oligonucleotides) are useful intermediates for preparing their corresponding oligonucleotides (e.g., second oligonucleotides). In some embodiments, the present disclosure provides chirally controlled oligonucleotide composition of a provided first oligonucleotide or a stereoisomer thereof.


In some embodiments, as appreciated by those skilled in the art, WN is of such a structure that its N-moiety has the same non-hydrogen atoms and connections of non-hydrogen atoms as the N-moiety of the non-negatively charged internucleotidic linkage it replaces (without considering single, double, or triple bond etc.). For example, in some embodiments, PN in *N is




embedded image


(such a *N is n001P), and its corresponding non-negatively charged internucleotidic linkage is n001.


In some embodiments, a provided oligonucleotide has the same “Description” as an oligonucleotide listed in a Table herein (e.g., Table A1), except that:


the oligonucleotide comprises at least one linkage of OP, and/or at each location in the oligonucleotide where there is a phosphate linkage, there is independently a linkage of OP, wherein OP is




embedded image


at each location where there is a stereorandom phosphorothioate linkages, there is independently a linkage of *PD, wherein *PD is




embedded image


at each location where there is a Sp phosphorothioate linkage, there is independently a linkage of *PDS, wherein *PDS is




embedded image


at each location where there is a Rp phosphorothioate linkage, there is independently a linkage of *PDR, wherein *PDR is




embedded image


at each location where there is a stereorandom n001, there is independently a linkage of *N, wherein *N is




embedded image


(as appreciated by those skilled in the art, it is associated with an anion (e.g., Q such as PF6 (which can be an anion in a modification step)));


at each location where there is a Sp n001, there is independently a linkage of *NS, wherein *NS is




embedded image


(as appreciated by those skilled in the art, it is associated with an anion (e.g., Q such as PF6 (which can be an anion in a modification step))); and


at each location where there is a Rp n001, there is independently a linkage of *NR, wherein *NR is




embedded image


(as appreciated by those skilled in the art, it is associated with an anion (e.g., Q such as PF6 (which can be an anion in a modification step))); and


the oligonucleotide is optionally connected to a solid support, optionally through a linker. In some embodiments, the oligonucleotide is connected to a solid support, e.g., CPG, polystyrene support, etc. In some embodiments, the oligonucleotide is connected to a solid support through a linker, e.g., a CNA linker. In some embodiments, such an oligonucleotide is an oligonucleotide of formula O-I or a salt form thereof.


Certain Embodiments of Stereochemistry and Pattern of Backbone Chiral Centers

Among other things, the present disclosure provides oligonucleotides comprising one or more chirally controlled internucleotidic linkages. In some embodiments, the present disclosure provides chirally controlled oligonucleotide compositions. In some embodiments, each chiral linkage phosphorus of provided oligonucleotides is independently chirally controlled (stereocontrolled) (e.g., each independently having a stereopurity (diastereopurity) of at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% (e.g., as typically assessed using an appropriate dimer comprising an internucleotidic linkage containing the linkage phosphorus, and the two nucleoside units being linked by the internucleotidic linkage)). In some embodiments, a stereopurity is at least 90%. In some embodiments, a stereopurity is at least 95%. In some embodiments, a stereopurity is at least 96%. In some embodiments, a stereopurity is at least 97%. In some embodiments, a stereopurity is at least 98%. In some embodiments, a stereopurity is at least 99%. With the capability to fully control stereochemistry and other modifications (e.g., base modifications, sugar modifications, internucleotidic linkage modifications, etc.), the present disclosure provides technologies of improved properties and/or activities compared to corresponding non-chirally controlled technologies.


In some embodiments, pattern of backbone chiral centers of a region, particularly a core region or a middle region, or of an oligonucleotide (e.g., an oligonucleotide of a plurality of oligonucleotides) is or comprises (Np/Op)t[(Rp)n(Sp)m]y, (Np/Op)t[(Op)n(Sp)m]y, (Np/Op)t[(Op/Rp)n(Sp)m]y, (Sp)t[(Rp)n(Sp)m]y, (Sp)t[(Op)n(Sp)m]y, (Sp)t[(Op/Rp)n(Sp)m]y, [(Rp)n(Sp)m]y, [(Op)n(Sp)m]y, [(Op/Rp)n(Sp)m]y, (Rp)t(Np)n(Rp)m. (Rp)t(Sp)n(Rp)m, (Rp)t[(Np/Op)n]y(Rp)m, (Rp)t[(Sp/Np)n]y(Rp)m, (Rp)t[(Sp/Op)n]y(Rp)m, (Np/Op)t(Np)n(Np/Op)m, (Np/Op)t(Sp)n(Np/Op)m, (Np/Op)t[(Np/Op)n]y(Np/Op)m, (Np/Op)t[(Sp/Op)n]y(Np/Op)m, (Np/Op)t[(Sp/Op)n]y(Np/Op)m, (Rp/Op)t(Np)n(Rp/Op)m, (Rp/Op)t(Sp)n(Rp/Op)m, (Rp/Op)t[(Np/Op)n]y(Rp/Op)m, (Rp/Op)t[(Sp/Op)n]y(Rp/Op)m, or (Rp/Op)t[(Sp/Op)n]y(Rp/Op)m (unless otherwise specified, description of patterns of modifications and stereochemistry are from 5′ to 3′ as typically used in the art), wherein Sp indicates S configuration of a chiral linkage phosphorus of a chiral modified internucleotidic linkage, Rp indicates R configuration of a chiral linkage phosphorus of a chiral modified internucleotidic linkage, Op indicates an achiral linkage phosphorus of a natural phosphate linkage, each Np is independently Rp, or Sp, and each of m, n, t and y is independently 1-50 as described in the present disclosure. In some embodiments, a pattern of backbone chiral centers is or comprises [(Rp/Op)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises [(Rp)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises [(Op)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t[(Rp/Op)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t[(Rp)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t[(Op)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises (Sp)t[(Rp/Op)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises (Sp)t[(Rp)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises (Sp)t[(Op)n(Sp)m]y. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp)t(Np)n(Rp)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp)t(Sp)n(Rp)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp)t[(Np/Op)n]y(Rp)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp)t[(Sp/Np)n]y(Rp)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp)t[(Sp/Op)n]y(Rp)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t(Np)n(Np/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t(Sp)n(Np/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t[(Np/Op)n]y(Np/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t[(Sp/Op)n]y(Np/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Np/Op)t[(Sp/Op)n]y(Np/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp/Op)t(Np)n(Rp/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp/Op)t(Sp)n(Rp/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp/Op)t[(Np/Op)n]y(Rp/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp/Op)t[(Sp/Op)n]y(Rp/Op)m. In some embodiments, a pattern of backbone chiral centers is or comprises (Rp)(Rp/Op)t[(Sp/Op)n]y(Rp/Op)m(Rp). In some embodiments, n is 1. For example, in some embodiments, a pattern of backbone chiral centers is or comprises (Sp)t[Op(Sp)m]y; in some embodiments, a pattern of backbone chiral centers is or comprises (Sp)t[Rp(Sp)m]y. In some embodiments, y is 1. In some embodiments, m is 2 or more. In some embodiments, t is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, n is 1, and m is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, t is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, n is 1, and m is 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, there are at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 internucleotidic linkages preceding, and there are at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 internucleotidic linkages after the Rp or Op. In some embodiments, there are at least 2 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 3 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 4 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 5 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 6 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 7 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 8 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 9 internucleotidic linkages preceding and/or following. In some embodiments, there are at least 10 internucleotidic linkages preceding and/or following. In some embodiments, y is 1. In some embodiments, y is 2 or more. In some embodiments, y is 2, 3, 4, or 5. In some embodiments, y is 2. In some embodiments, y is 3. In some embodiments, y is 4. In some embodiments, y is 5. In some embodiments, a region having such a pattern of backbone chiral centers contains no 2′-modifications on its sugar moieties, wherein the 2′-modification is 2′-OR1 or 2′-O-L-, wherein R1 is not hydrogen and L comprises a carbon atom and connects to another carbon atom of the sugar moiety. In some embodiments, each sugar moiety of a region having such a pattern of backbone chiral centers is independently a natural DNA sugar moiety




embedded image


As appreciated by a person having ordinary skill in the art, for a natural DNA sugar moiety in natural DNA, C1 is connected to a base, C3 and C5 are each independently connected to internucleotidic linkages or —OH (when at the 5′- or 3′-end)). Certain benefits/advantages provided by such patterns of backbone chiral centers are described in US 20170037399, WO 2017/015555, and WO 2017/062862.


In some embodiments, y, t, n and m each are independently 1-20 as described in the present disclosure. In some embodiments, y is 1. In some embodiments, y is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, y is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, y is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, y is 1. In some embodiments, y is 2. In some embodiments, y is 3. In some embodiments, y is 4. In some embodiments, y is 5. In some embodiments, y is 6. In some embodiments, y is 7. In some embodiments, y is 8. In some embodiments, y is 9. In some embodiments, y is 10.


In some embodiments, n is 1. In some embodiments, n is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, n is 1-10. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7 or 8. In some embodiments, n is 1. In some embodiments, n is 2, 3, 4, 5, 6, 7 or 8. In some embodiments, n is 3, 4, 5, 6, 7 or 8. In some embodiments, n is 4, 5, 6, 7 or 8. In some embodiments, n is 5, 6, 7 or 8. In some embodiments, n is 6, 7 or 8. In some embodiments, n is 7 or 8. In some embodiments, n is 1. In some embodiments, n is 2. In some embodiments, n is 3. In some embodiments, n is 4. In some embodiments, n is 5. In some embodiments, n is 6. In some embodiments, n is 7. In some embodiments, n is 8. In some embodiments, n is 9. In some embodiments, n is 10.


In some embodiments, m is 0-50. In some embodiments, m is 1-50. In some embodiments, m is 1. In some embodiments, m is 2-50. In some embodiments, m is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, m is 2, 3, 4, 5, 6, 7 or 8. In some embodiments, m is 3, 4, 5, 6, 7 or 8. In some embodiments, m is 4, 5, 6, 7 or 8. In some embodiments, m is 5, 6, 7 or 8. In some embodiments, m is 6, 7 or 8. In some embodiments, m is 7 or 8. In some embodiments, m is 0. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3. In some embodiments, m is 4. In some embodiments, m is 5. In some embodiments, m is 6. In some embodiments, m is 7. In some embodiments, m is 8. In some embodiments, m is 9. In some embodiments, m is 10. In some embodiments, m is 11. In some embodiments, m is 12. In some embodiments, m is 13. In some embodiments, m is 14. In some embodiments, m is 15. In some embodiments, m is 16. In some embodiments, m is 17. In some embodiments, m is 18. In some embodiments, m is 19. In some embodiments, m is 20. In some embodiments, m is 21. In some embodiments, m is 22. In some embodiments, m is 23. In some embodiments, m is 24. In some embodiments, m is 25. In some embodiments, m is at least 2. In some embodiments, m is at least 3. In some embodiments, m is at least 4. In some embodiments, m is at least 5. In some embodiments, m is at least 6. In some embodiments, m is at least 7. In some embodiments, m is at least 8. In some embodiments, m is at least 9. In some embodiments, m is at least 10. In some embodiments, m is at least 11. In some embodiments, m is at least 12. In some embodiments, m is at least 13. In some embodiments, m is at least 14. In some embodiments, m is at least 15. In some embodiments, m is at least 16. In some embodiments, m is at least 17. In some embodiments, m is at least 18. In some embodiments, m is at least 19. In some embodiments, m is at least 20. In some embodiments, m is at least 21. In some embodiments, m is at least 22. In some embodiments, m is at least 23. In some embodiments, m is at least 24. In some embodiments, m is at least 25. In some embodiments, m is at least greater than 25.


In some embodiments, t is 1-20. In some embodiments, t is 1. In some embodiments, t is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, t is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, t is 1-5. In some embodiments, t is 2. In some embodiments, t is 3. In some embodiments, t is 4. In some embodiments, t is 5. In some embodiments, t is 6. In some embodiments, t is 7. In some embodiments, t is 8. In some embodiments, t is 9. In some embodiments, t is 10. In some embodiments, t is 11. In some embodiments, t is 12. In some embodiments, t is 13. In some embodiments, t is 14. In some embodiments, t is 15. In some embodiments, t is 16. In some embodiments, t is 17. In some embodiments, t is 18. In some embodiments, t is 19. In some embodiments, t is 20.


In some embodiments, each of t and m is independently at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, each of t and m is independently at least 3. In some embodiments, each of t and m is independently at least 4. In some embodiments, each of t and m is independently at least 5. In some embodiments, each of t and m is independently at least 6. In some embodiments, each of t and m is independently at least 7. In some embodiments, each of t and m is independently at least 8. In some embodiments, each of t and m is independently at least 9. In some embodiments, each oft and m is independently at least 10.


In some embodiments, provided oligonucleotides comprises a block, e.g., a first block, a 5′-wing, etc., that has a pattern of backbone chiral centers of or comprising a t-section, e.g., (Sp)t, (Rp)t, (Np/Op)t, (Rp/Op)t, etc., a block, e.g., a second block, a core, etc., that has a pattern of backbone chiral centers of or comprising a y- or n-section, e.g., (Np)n, (Sp)n, [(Np/Op)n]y, [(Rp/Op)n]y, [(Sp/Op)n]y, etc., and a block, e.g., a third block, a 3′-wing, etc., that has a pattern of backbone chiral centers of or comprising a m-section, e.g., (Sp)m, (Rp)m, (Np/Op)m, (Rp/Op)m, etc.


In some embodiments, a t-, y-, n-, or m-section that comprises Np or Rp, e.g., (Rp)t, (Np/Op)t, (Rp/Op)t, (Np)n, [(Np/Op)n]y, [(Rp/Op)n]y, (Rp)m, (Np/Op)m, (Rp/Op)m, etc. independently comprises at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, or 95%, or 100% Rp. In some embodiments, a t- or in-section that comprises Np or Rp independently comprises at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, or 95%, or 100% Rp. In some embodiments, provided oligonucleotides comprise at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, or 95%, or 100% Rp. In some embodiments, a percentage is at least 10%. In some embodiments, a percentage is at least 20%. In some embodiments, a percentage is at least 30%. In some embodiments, a percentage is at least 40%. In some embodiments, a percentage is at least 50%. In some embodiments, a percentage is at least 60%. In some embodiments, a percentage is at least 70%. In some embodiments, a percentage is at least 75%. In some embodiments, a percentage is at least 80%. In some embodiments, a percentage is at least 85%. In some embodiments, a percentage is at least 901%. In some embodiments, a percentage is at least 95%. In some embodiments, a percentage is 100%.


In some embodiments, each sugar moiety bonded to a Rp or Op linkage phosphorus at 3′ independently comprises a modification. In some embodiments, each sugar moiety bonded to a Rp or Op linkage phosphorus at 5′ independently comprises a modification. In some embodiments, each sugar moiety bonded to a Rp linkage phosphorus at 3′ independently comprises a modification. In some embodiments, each sugar moiety bonded to a Rp linkage phosphorus at 5′ independently comprises a modification. In some embodiments, each sugar moiety bonded to an Op linkage phosphorus at 3′ independently comprises a modification. In some embodiments, each sugar moiety bonded to an Op linkage phosphorus at 5′ independently comprises a modification. In some embodiments, each sugar moiety bonded to a Sp linkage phosphorus at 3′ independently comprises a modification. In some embodiments, each sugar moiety bonded to a Sp linkage phosphorus at 5′ independently comprises a modification. In some embodiments, each sugar moiety independently comprises a modification. In some embodiments, a modification is a 2′-modification. In some embodiments, a modification is 2′-OR, wherein R is not hydrogen. In some embodiments, a modification is 2′-OR wherein R is optionally substituted C1-6 alkyl. In some embodiments, a modification is 2′-OR, wherein R is substituted C1-6 alkyl. In some embodiments, a modification is 2′-OR, wherein R is optionally substituted C1-C6 alkyl. In some embodiments, a modification is 2′-OR, wherein R is substituted C2-6 alkyl. In some embodiments, R is —CH2CH2OMe. In some embodiments, a modification is or comprises -L- connecting two sugar carbons, e.g., those found in LNA. In some embodiments, a modification is -L- connecting C2 and C4 of a sugar moiety. In some embodiments, L is —CH2—CH(R)—, wherein R is as described in the present disclosure. In some embodiments, L is —CH2—CH(R)—, wherein R is as described in the present disclosure and is not hydrogen. In some embodiments, L is —CH2—(R)—CH(R)—, wherein R is as described in the present disclosure and is not hydrogen. In some embodiments, L is —CH2—(S)—CH(R)—, wherein R is as described in the present disclosure and is not hydrogen. In some embodiments, a block, a wing, a core, or an oligonucleotide has sugar modifications as described in the present disclosure.


In some embodiments, a provided pattern of backbone chiral centers is or comprises (Rp/Sp)-(All Rp or All Sp)-(Rp/Sp), wherein each Rp/Sp is independently Rp or Sp. In some embodiments, a provided pattern of backbone chiral centers is or comprises (Rp)-(All Sp)-(Rp). In some embodiments, a provided pattern of backbone chiral centers is or comprises (Sp)-(All Sp)-(Sp). In some embodiments, a provided pattern of backbone chiral centers is or comprises (Sp)-(All Rp)-(Sp). In some embodiments, a provided pattern of backbone chiral centers is or comprises (Rp/Sp)-(repeating (Sp)m(Rp)n)-(Rp/Sp). In some embodiments, a provided pattern of backbone chiral centers is or comprises(Rp/Sp)-(repeating SpSpRp)-(Rp/Sp).


Blocks

In some embodiments, provided oligonucleotides comprise one or more blocks, characterized by base modifications, sugar modifications, types of internucleotidic linkages, stereochemistry of linkage phosphorus, etc. In some embodiments, provided oligonucleotides comprises or are of a 5′-first block-second block-third block-3′ structure. In some embodiments, a first block is a 5′-wing. In some embodiments, a first block is 5′-end region. In some embodiments, a second block is a core. In some embodiments, a second block is a middle region between a 5′-end and a 3′-end region. In some embodiments, a third block a 3′-wing. In some embodiments, a third block is a 3′-end region. Each of a 5′-wing, 5′-end region, core, middle region, 3′-wing, and 3′-end region can independently be a block.


In some embodiments, provided oligonucleotides comprises or are of a 5′-wing-core-wing-3′, 5′-wing-core-3′ or 5′-core-wing-3′ structures. In some embodiments, a first block, a second block, a third block, a wing (e.g., a 5′-wing, a 3′-wing) and/or a core of provided oligonucleotides are each independently a block or comprise one or more blocks as described in the present disclosure.


Various blocks, 5′-wings, 3′-wings and cores can be utilized in accordance with the present disclosure, including those described in US 20150211006, US 20150211006, WO 2017015555, WO 2017015575, WO 2017062862, WO 2017160741, blocks, 5′-wings, 3′-wings and cores of each of which are incorporated herein by reference.


In some embodiments, a block is a linkage phosphorus stereochemistry block. For example, in some embodiments, a block comprises only Rp, Sp, or Op linkage phosphorus. In some embodiments, a block is a Rp block comprising only Rp linkage phosphorus. In some embodiments, a block is a Rp/Op block comprising only Rp/Op linkage phosphorus. In some embodiments, a block is a Sp/Op block comprising only Sp/Op linkage phosphorus. In some embodiments, a block is an Op block. In some embodiments, an oligonucleotide, or a region thereof (a first block, a second block, a third block, a wing, a core, etc.) comprises one or more of a Rp block, a Sp block and/or an Op block. In some embodiments, a block comprises one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more, linkage phosphorus.


In some embodiments, a block is a sugar modification block. In some embodiments, a block is a 2′-modification block wherein each sugar moiety of the block independently comprises the 2′-modification. In some embodiments, a 2′-modification is 2′-OR wherein R is as described in the present disclosure. In some embodiments, a 2′-modification is a 2′-OR wherein R is not hydrogen. In some embodiments, a 2′-modification is 2′-OMe. In some embodiments, a 2′-modification is 2′-MOE. In some embodiments, a modification is a LNA modification. In some embodiments, an oligonucleotide, or a region thereof (a first block, a second block, a third block, a wing, a core, etc.) comprises one or more sugar modification blocks, each independently of its own sugar modification. In some embodiments, a block comprises one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more, sugar moieties.


As illustrated herein, a block can be of various lengths. In some embodiments, a block is of 1-30, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleobases in length. In some embodiments, a 5′-first block-second-block-third block-3′, or a 5′-wing-core-wing-3′ is of 5-10-5, 3-10-4, 3-10-6.4-12-4, etc.


In some embodiments, an oligonucleotide or a block or region thereof (e.g., a 5′-end region, a 5′-wing, a middle region, a core region, a 3′-end region, a 3′-ring, etc.) comprises one or more, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, non-negatively charged internucleotidic linkages as described in the present disclosure. In some embodiments, a provided oligonucleotide comprises two or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, consecutive non-negatively charged internucleotidic linkages. In some embodiments, a block or region comprises two or more, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more, consecutive non-negatively charged internucleotidic linkages. In some embodiments, the number is 1. In some embodiments, the number is 2. In some embodiments, the number is 3. In some embodiments, the number is 4. In some embodiments, the number is 5. In some embodiments, the number is 6. In some embodiments, the number is 7. In some embodiments, the number is 8. In some embodiments, the number is 9. In some embodiments, the number is 10 or more. In some embodiments, each internucleotidic linkage between nucleoside units in a block, e.g., a 5′-end region, a 5′-wing, is a non-negatively charged internucleotidic linkage except the first internucleotidic linkage between two nucleoside units of the block from the 5′-end of the block. In some embodiments, each internucleotidic linkage between nucleoside units in a block, e.g., a 3′-end region, a 3′-wing, is a non-negatively charged internucleotidic linkage except the first internucleotidic linkage between two nucleoside units of the block from the 3′-end of the block. In some embodiments, each internucleotidic linkage between nucleoside units in a region, e.g., a 5′-end region, a 5′-wing, is a non-negatively charged internucleotidic linkage except the first internucleotidic linkage between two nucleoside units of the region from the 5′-end of the region. In some embodiments, each internucleotidic linkage between nucleoside units in a region, e.g., a 3′-end region, a 3′-wing, is a non-negatively charged internucleotidic linkage except the first internucleotidic linkage between two nucleoside units of the region from the Y-end of the region. In some embodiments, each internucleotidic linkage in a region or block, e.g., a 5′-end region, a 5′-wing, a middle region, a core region, a 3′-end region, a 3′-ring, etc., is independently a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage or a Rp chiral internucleotidic linkage. In some embodiments, each internucleotidic linkage in a region or block is independently a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage or a Rp phosphorothioate internucleotidic linkage. In some embodiments, about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more of internucleotidic linkages of an oligonucleotide or a region or block, e.g., a 5′-end region, a 5′-wing, a middle region, a core region, a 3′-end region, a 3′-ring, etc., is independently a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage or a Rp chiral internucleotidic linkage. In some embodiments, about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more of internucleotidic linkages of an oligonucleotide or a region or block is independently a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage or a Rp phosphorothioate internucleotidic linkage. In some embodiments, about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more of internucleotidic linkages of an oligonucleotide or a region or block is independently a non-negatively charged internucleotidic linkage or a natural phosphate internucleotidic linkage. In some embodiments, about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 901%, 95% or more of internucleotidic linkages of an oligonucleotide or a region or block is independently a non-negatively charged internucleotidic linkage. In some embodiments, the percentage is 45% or more. In some embodiments, the percentage is 50% or more. In some embodiments, the percentage is 60% or more. In some embodiments, the percentage is 70% or more. In some embodiments, the percentage is 80% or more. In some embodiments, the percentage is 90% or more. In some embodiments, a region or block is a wing. In some embodiments, a region or block is a 5′-wing. In some embodiments, a region or block is a 3′-wing. In some embodiments, a region or block is a core. As described herein, a region or block, e.g., a wing, a core, etc., can have various lengths, e.g., comprising 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more nucleobases. In some embodiments, each nucleobase is independently optionally substituted A, T, C, G, U or an optionally substituted tautomer of A, T, C, G, or U.


Length

As described in the present disclosure, provided oligonucleotides can be of various lengths. e.g., 2-200, 10-15, 10-25, 15-20, 15-25, 15-40, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 60, 70, 80, 90, 100, 150, nucleobases in length, wherein each nucleobase is independently optionally substituted A, T, C, G, or U, or an optionally substituted tautomer of A, T, C. G, or U. In some embodiments, provided oligonucleotides, e.g., oligonucleotide of a plurality in chirally controlled oligonucleotide compositions, are 15 nucleobases in length. In some embodiments, provided oligonucleotides are 16 nucleobases in length. In some embodiments, provided oligonucleotides are 17 nucleobases in length. In some embodiments, provided oligonucleotides are 18 nucleobases in length. In some embodiments, provided oligonucleotides are 19 nucleobases in length. In some embodiments, provided oligonucleotides are 20 nucleobases in length. In some embodiments, provided oligonucleotides are 21 nucleobases in length. In some embodiments, provided oligonucleotides are 22 nucleobases in length. In some embodiments, provided oligonucleotides are 23 nucleobases in length. In some embodiments, provided oligonucleotides are 24 nucleobases in length. In some embodiments, provided oligonucleotides are 25 nucleobases in length.


As described in the present disclosure, provided oligonucleotides, oligonucleotides of a plurality in chirally controlled oligonucleotide compositions, may comprise various modifications, e.g., base modifications, sugar modifications, internucleotidic linkage modifications, etc. In some embodiments, the oligonucleotide composition comprises at least one modified nucleotide, at least one modified sugar moiety, at least one morpholino moiety, at least one 2′-deoxy ribonucleotide, at least one locked nucleotide, and/or at least one bicyclic nucleotide.


Nucleobases

In some embodiments, a nucleobase is a natural nucleobase. In some embodiments, a nucleobase is a modified nucleobase (non-natural nucleobase). In some embodiments, a nucleobase, e.g., BA, in provided oligonucleotides is a natural nucleobase (e.g., adenine, cytosine, guanosine, thymine, or uracil) or a modified nucleobase derived from a natural nucleobase, e.g., optionally substituted adenine, cytosine, guanosine, thymine, or uracil, or tautomeric forms thereof. Examples include, but are not limited to, uracil, thymine, adenine, cytosine, and guanine, and tautomeric forms thereof, having their respective amino groups protected by protecting groups, e.g., one or more of —R, —C(O)R, etc. Example protecting groups, including those useful for oligonucleotide synthesis, are widely known in the art and can be utilized in accordance with the present disclosure. In some embodiments, a protected nucleobase and/or derivative is selected from nucleobases with one or more acyl protecting groups, 2-fluorouracil, 2-fluorocytosine, 5-bromouracil, 5-iodouracil, 2,6-diaminopurine, azacytosine, pyrimidine analogs such as pseudoisocytosine and pseudouracil and other modified nucleobases such as 8-substituted purines, xanthine, or hypoxanthine (the latter two being the natural degradation products). Example modified nucleobases are also disclosed in Chiu and Rana. RNA, 2003, 9, 1034-1048, Limbach et al. Nucleic Acids Research, 1994, 22, 2183-2196 and Revankar and Rao, Comprehensive Natural Products Chemistry, vol. 7, 313. In some embodiments, a modified nucleobase is substituted uracil, thymine, adenine, cytosine, or guanine. In some embodiments, a modified nucleobase is a functional replacement, e.g., in terms of hydrogen bonding and/or base pairing, of uracil, thymine, adenine, cytosine, or guanine. In some embodiments, a nucleobase is optionally substituted uracil, thymine, adenine, cytosine, 5-methylcytosine, or guanine. In some embodiments, a nucleobase is uracil, thymine, adenine, cytosine, 5-methylcytosine, or guanine.


In some embodiments, a modified base is optionally substituted adenine, cytosine, guanine, thymine, or uracil. In some embodiments, a modified nucleobase is independently adenine, cytosine, guanine, thymine or uracil, modified by one or more modifications by which:


(1) a nucleobase is modified by one or more optionally substituted groups independently selected from acyl, halogen, amino, azide, alkyl, alkenyl, alkynyl, aryl, heteroalkyl, heteroalkenyl, heteroalkynyl, heterocyclyl, heteroaryl, carboxyl, hydroxyl, biotin, avidin, streptavidin, substituted silyl, and combinations thereof:


(2) one or more atoms of a nucleobase are independently replaced with a different atom selected from carbon, nitrogen or sulfur;


(3) one or more double bonds in a nucleobase are independently hydrogenated; or


(4) one or more optionally substituted aryl or heteroaryl rings are independently inserted into a nucleobase.


Modified nucleobases also include expanded-size nucleobases in which one or more aryl rings, such as phenyl rings, have been added. Nucleic base replacements described in the Glen Research catalog (available at the Glen Research website); Krueger A T et al, Ace. Chem. Res., 2007, 40, 141-150; Kool, ET, Acc. Chem. Res., 2002, 35, 936-943; Benner S. A., et al., Nat. Rev. Genet., 2005, 6, 553-543; Romesberg, F. E., et al., Curr. Opin. Chem. Biol., 2003, 7, 723-733; Hirao, I., Curr. Opin. Chem. Biol., 2006, 10, 622-627, are contemplated as useful for oligonucleotides of the present disclosure.


In some embodiments, modified nucleobases include structures such as, but not limited to, corrin- or porphyrin-derived rings. Porphyrin-derived base replacements have been described in Morales-Rojas, H and Kool, E T, Org. Lett., 2002, 4, 4377-4380. Shown below is an example of a porphyrin-derived ring which can be used as a nucleobase replacement:




embedded image


In some embodiments, a modified nucleobase is fluorescent. Examples of such fluorescent modified nucleobases include phenanthrene, pyrene, stillbene, isoxanthine, isozanthopterin, terphenyl, terthiophene, benzoterthiophene, coumarin, lumazine, tethered stillbene, benzo-uracil, and naphtho-uracil.


In some embodiments, a modified nucleobase is a universal base or a degenerate base, e.g., 3-nitropyrrole, 5′-nitroindole, P, K, etc.


In some embodiments, other nucleosides can also be used in technologies disclosed in the present disclosure and include nucleosides that incorporate modified nucleobases, or nucleobases covalently bound to modified sugars. Some examples of nucleosides that incorporate modified nucleobases include 4-acetylcytidine; 5-(carboxyhydroxylmethyl)uridine; 2′-O-methylcytidine; 5-carboxymethylaminomethyl-2-thiouridine; 5-carboxymethylaminomethyluridine; dihydrouridine; 2′-O-methylpseudouridine; beta,D-galactosylqueosine; 2′-O-methylguanosine; N6-isopentenyladenosine; 1-methyladenosine; 1-methylpseudouridine; 1-methylguanosine; 1-methylinosine; 2,2-dimethylguanosine; 2-methyladenosine; 2-methylguanosine; N7-methylguanosine; 3-methyl-cytidine; 5-methylcytidine; 5-hydroxymethylcytidine; 5-formylcytosine; 5-carboxylcytosine; M-methyladenosine; 7-methylguanosine; 5-methylaminoethyluridine; 5-methoxyaminomethyl-2-thiouridine; beta,D-mannosylqueosine; 5-methoxycarbonylmethyluridine; 5-methoxyuridine; 2-methylthio-N6-isopentenyladenosine; N-((9-beta,D-ribofuranosyl-2-methylthiopurine-6-yl)carbamoyl)threonine; N-((9-beta,D-ribofuranosylpurine-6-yl)-N-methylcarbamoyl)threonine; uridine-5-oxyacetic acid methylester; uridine-5-oxyacetic acid (v); pseudouridine; queosine; 2-thiocytidine; 5-methyl-2-thiouridine; 2-thiouridine; 4-thiouridine; 5-methyluridine; 2′-O-methyl-5-methyluridine; and 2′-O-methyluridine.


In some embodiments, a nucleobase is optionally substituted A, T, C, G or U, wherein one or more —NH2 are independently and optionally replaced with —C(-L-R1)3, one or more —NH— are independently and optionally replaced with —C(-L-R1)2—, one or more ═N— are independently and optionally replaced with —C(-L-R1)2—, one or more ═CH— are independently and optionally replaced with ═N—, and one or more ═O are independently and optionally replaced with ═S, ═N(-L-R1), or ═C(-L-R1)2, wherein two or more -L-R1 are optionally taken together with their intervening atoms to form a 3-30 membered bicyclic or polycyclic ring having 0-10 heteroatom ring atoms. In some embodiments, a modified nucleobase is optionally substituted A, T, C, G or U, wherein one or more —NH2 are independently and optionally replaced with —C(-L-R1)3, one or more —NH— are independently and optionally replaced with —C(-L-R1)2—, one or more ═N— are independently and optionally replaced with —C(-L-R)—, one or more ═CH— are independently and optionally replaced with ═N—, and one or more ═O are independently and optionally replaced with ═S, ═N(-L-R), or ═C(-L-R1)2, wherein two or more -L-R1 are optionally taken together with their intervening atoms to form a 3-30 membered bicyclic or polycyclic ring having 0-10 heteroatom ring atoms, wherein the modified base is different than the natural A, T, C, G and U. In some embodiments, a nucleobase is optionally substituted A, T. C. G or U. In some embodiments, a modified base is substituted A, T, C. G or U, wherein the modified base is different than the natural A, T, C. G and U.


In some embodiments, a modified nucleobase may be optionally substituted. In some embodiments, a modified nucleobase contains one or more, e.g., heteroatoms, alkyl groups, or linking moieties connected to fluorescent moieties, biotin or avidin moieties, or other proteins or peptides. In some embodiments, a nucleobase or modified nucleobase comprises or is conjugated with one or more biomolecule binding moieties such as e.g., antibodies, antibody fragments, biotin, avidin, streptavidin, receptor ligands, or chelating moieties. In some embodiments, a modified nucleobase is modified by substitution with a fluorescent or biomolecule binding moiety. In some embodiments, a substituent on a nucleobase or modified nucleobase is a fluorescent moiety. In some embodiments, a substituent on a nucleobase or modified nucleobase is biotin or avidin.


Example nucleobases are also described in US 20110294124, US 20120316224, US 20140194610, US 20150211006, US 20150197540, WO 2015107425, WO/2017/015555, WO/2017/015575, and WO/2017/062862, the nucleobases of each of which is incorporated herein by reference.


Sugars

In some embodiments, oligonucleotides comprise one or more modified sugar moieties beside the natural sugar moieties. In some embodiments, a sugar is a natural sugar. In some embodiments, a sugar is a modified sugar (non-natural sugar). The most common naturally occurring nucleotides are comprised of ribose sugars linked to the nucleobases adenosine (A), cytosine (C), guanine (G), and thymine (T) or uracil (U). Also included in the present disclosure are modified nucleotides wherein an internucleotidic linkage is linked to various positions of a sugar or modified sugar. As non-limiting examples, an internucleotidic linkage can be linked to the 2′, 3′, 4′ or 5′ position of a sugar.


In some embodiments, a sugar moiety is




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a sugar moiety is




embedded image


wherein Ls is —C(R5s)2—, wherein each R5s is independently as described in the present disclosure. In some embodiments, a sugar moiety has the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a sugar moiety has the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a sugar has or is derived from the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a nucleoside has the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a nucleoside moiety has or comprises the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, Ls is —CH(R)—, wherein R is as described in the present disclosure. In some embodiments, R is —H. In some embodiments, R is not —H, and Ls is —(R)—CH(R)—. In some embodiments, R is not —H, and Ls is —(S)—CH(R)—. In some embodiments, R, as described in the present disclosure, is optionally substituted C1-6 alkyl. In some embodiments, R is methyl.


Various types of sugar modifications are known and can be utilized in accordance with the present disclosure. In some embodiments, a sugar modification is a 2′-modification (e.g. R2s (e.g., in




embedded image


In some embodiments, a 2′-modification is 2′-F. In some embodiments, a 2′-modification is 2′-OR, wherein R is not hydrogen. In some embodiments, a 2′-modification is 2′-OR, wherein R is optionally substituted C1-6 aliphatic. In some embodiments, a 2′-modification is 2′-OR, wherein R is optionally substituted C1-6 alkyl. In some embodiments, a 2′-modification is 2′-OMe. In some embodiments, a 2′-modification is 2′-MOE. In some embodiments, a 2′-modification is a LNA sugar modification (C2-O—CH2—C4). In some embodiments, a 2′-modification is (C2-O—C(R)2—C4), wherein each R is independently as described in the present disclosure. In some embodiments, a 2′-modification is (C2-O—CHR—C4), wherein R is as described in the present disclosure. In some embodiments, a 2′-modification is (C2-O—(R)—CHR—C4), wherein R is as described in the present disclosure and is not hydrogen. In some embodiments, a 2′-modification is (C2-O—(S)—CHR—C4), wherein R is as described in the present disclosure and is not hydrogen. In some embodiments, R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6 alkyl. In some embodiments, R is unsubstituted C1-6 alkyl. In some embodiments, R is methyl. In some embodiments, R is ethyl. In some embodiments, a 2′-modification is (C2-O—CHR—C4), wherein R is optionally substituted C1-6 aliphatic. In some embodiments, a 2′-modification is (C2-O—CHR—C4), wherein R is optionally substituted C1-6 alkyl. In some embodiments, a 2′-modification is (C2-O—CHR—C4), wherein R is methyl. In some embodiments, a 2′-modification is (C2-O—CHR—C4), wherein R is ethyl. In some embodiments, a 2′-modification is (C2-O—(R)—CHR—C4), wherein R is optionally substituted C1-6 aliphatic. In some embodiments, a 2′-modification is (C2-O—(R)—CHR—C4), wherein R is optionally substituted C1-6alkyl. In some embodiments, a 2′-modification is (C2-O—(R)—CHR—C4), wherein R is methyl. In some embodiments, a 2′-modification is (C2-O—(R)—CHR—C4), wherein R is ethyl. In some embodiments, a 2′-modification is (C2-O—(S)—CHR—C4), wherein R is optionally substituted C1-6 aliphatic. In some embodiments, a 2′-modification is (C2-O—(S)—CHR—C4), wherein R is optionally substituted C1-6 alkyl. In some embodiments, a 2′-modification is (C2-O—(S)—CHR—C4), wherein R is methyl. In some embodiments, a 2′-modification is (C2-O—(S)—CHR—C4), wherein R is ethyl. In some embodiments, a 2′-modification is C2-O—(R)—CH(CH2CH3)—C4. In some embodiments, a 2′-modification is C2-O—(S)H(CH2CH3)—C4. In some embodiments, a sugar moiety is a natural DNA sugar moiety. In some embodiments, a sugar moiety is a natural DNA sugar moiety modified at 2′ (2′-modification). In some embodiments, a sugar moiety is an optionally substituted natural DNA sugar moiety. In some embodiments, a sugar moiety is an 2′-substituted natural DNA sugar moiety.


Many modified sugars can be incorporated within oligonucleotides of the present disclosure. In some embodiments, a modified sugar contains one or more substituents at the 2′ position including one of the following: —F; —CF3, —CN, —N, —NO, —NO2, —OR′, —SR′, or —N(R′)2, wherein each R′ is independently as described in the present disclosure; —O—(C1-C10 alkyl), —S—(C1-C10 alkyl), —NH—(C1-C10 alkyl), or —N(C1-C10 alkyl)2; —O—(C2-C10 alkenyl), —S—(C2-C10 alkenyl), —NH—(C1-C10 alkenyl), or —N(C2-C10 alkenyl)2; —O—(C2-C10 alkynyl). —S—(C2-C10 alkynyl), —NH—(C2-C10 alkynyl), or —N(C2-C10 alkynyl)2; or —O—(C1-C10 alkylene)-O—(C1-C10 alkyl), —O—(C1-C10 alkylene)-NH—(C1-C10 alkyl) or —O—(C1-C10 alkylene)-NH(C1-C10 alkyl)2, —NH—(C1-C10 alkylene)-O—(C1-C10 alkyl), or —N(C1-C10 alkyl)-(C1-C10 alkylene)-O—(C1-C10 alkyl), wherein the alkyl, alkylene, alkenyl and alkynyl may be substituted or unsubstituted. Examples of substituents include, and are not limited to, —O(CH2)nOCH3, and —O(CH2)nNH2, wherein n is from 1 to about 10, MOE, DMAOE, and DMAEOE. Certain modified sugars are described in WO 2001/088198, WO/2017/062862, and Martin et al., Helv. Chim. Acta, 1995, 78, 486-504. In some embodiments, a modified sugar comprises one or more groups selected from a substituted silyl group, an RNA cleaving group, a reporter group, a fluorescent label, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, a group for improving the pharmacodynamic properties of an oligonucleotide, or other substituents having similar properties. In some embodiments, modifications are made atone or more of the 2′, 3′, 4′, 5′, or 6′ positions of a sugar, including the 3′ position of a sugar on the 3′-terminal nucleoside or in the 5′ position of the 5′-terminal nucleoside. In some embodiments, a RNA comprises a sugar which has, at the 2′ position, a 2′-OH, or 2∝—OR1, wherein OR1 is optionally substituted alkyl, including 2′-OMe.


In some embodiments, a 2′-modification is 2′-F.


In some embodiments, the 2′-OH of a ribose is replaced with a substituent (e.g., R2s) including one of the following: —H, —F; —CF3, —CN, —N3, —NO, —NO2, —OR′, —SR′, or —N(R′)2, wherein each R′ is independently as defined above and described herein; —O—(C1-C10 alkyl), —S—(C1-C10 alkyl), —NH—(C1-C10 alkyl), or —N(C1-C10 alkyl)2; —O—(C2-C10 alkenyl), —S—(C1-C10 alkenyl), —NH—(C1-C10 alkenyl), or —N(C1-C10 alkenyl)2; —O—(C2-C10 alkynyl), —S—(C2-C10 alkynyl), —NH—(C2-C10 alkynyl), or —N(C2-C10 alkynyl)2; or —O—(C1-C10 alkylene)-O—(C1-C10 alkyl), —O—(C1-C10 alkylene)-NH—(C1-C10 alkyl) or —O—(C1-C10 alkylene)-NH(C1-C10 alkyl)2, —NH—(C1-C10 alkylene)-O—(C1-C10 alkyl), or —N(C1-C10 alkyl)-(C1-C10 alkylene)-O—(C1-C10 alkyl), wherein the alkyl, alkylene, alkenyl and alkynyl may be substituted or unsubstituted. In some embodiments, the 2′-OH is replaced with —H (deoxyribose). In some embodiments, the 2′-OH is replaced with —F. In some embodiments, the 2′-OH is replaced with —OR′. In some embodiments, the 2′-OH is replaced with -OMe. In some embodiments, the 2′-OH is replaced with —OCH2CH2OMe.


In some embodiments, a modified sugars is a sugar in locked nucleic acids (LNAs). In some embodiments, two substituents on sugar carbon atoms are taken together to form a bivalent moiety. In some embodiments, two substituents are on two different sugar carbon atoms. In some embodiments, a formed bivalent moiety has the structure of -L- as defined herein. In some embodiments, -L- is —O—CH2—, wherein —CH2— is optionally substituted. In some embodiments, -L- is —O—CH2—. In some embodiments, -L- is —O—CH(Me)-. In some embodiments, -L- is —O—CH(Et)-. In some embodiments, -L- is between C2 and C4 of a sugar moiety. In some embodiments, a locked nucleic acid sugar has the structure indicated below, wherein R2s is —OCH2C4′-:




embedded image


In some embodiments, a modified sugar is an ENA sugar or modified ENA sugar such as those described in, e.g., Seth et al., J Am Chem Soc. 2010 Oct. 27; 132(42): 14942-14950. In some embodiments, a modified sugar is any of those found in an XNA (xenonucleic acid), for instance, arabinose, anhydrohexitol, threose, 2′fluoroarabinose, or cyclohexene.


In some embodiments, a modified sugar is one described in WO 2017/062862.


In some embodiments, modified sugars are sugar mimetics such as cyclobutyl or cyclopentyl moieties in place of pentofuranosyl. Representative United States patents that teach preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; and 5,359,044. In some embodiments, modified sugars are sugars in which the oxygen atom within the ribose ring is replaced by nitrogen, sulfur, selenium, or carbon. In some embodiments, a modified sugar is a modified ribose wherein the oxygen atom within the ribose ring is replaced with nitrogen, and wherein the nitrogen is optionally substituted with an alkyl group (e.g., methyl, ethyl, isopropyl, etc).


Non-limiting examples of modified sugars include glycerol, which form glycerol nucleic acid (GNA) analogues. In some embodiments, an GNA analogue is described in Zhang, R et al., J. Am. Chem. Soc., 2008, 130, 5846-5847; Zhang L, et al., J. Am. Chem. Soc., 2005, 127, 4174-4175 and Tsai C H et al., PNAS. 2007, 14598-14603.


In some embodiments, another example of a GNA derived analogue, flexible nucleic acid (FNA) based on the mixed acetal aminal of formyl glycerol, is described in Joyce G F et al., PNAS, 1987, 84, 4398-4402 and Heuberger B D and Switzer C, J. Am. Chem. Soc., 2008, 130, 412-413.


Additional non-limiting examples of modified sugars include hexopyranosyl (6′ to 4′), pentopyranosyl (4′ to 2′), pentopyranosyl (4′ to 3′), or tetrofuranosyl (3′ to 2′) sugars.


In some embodiments, one or more hydroxyl group in a sugar moiety is optionally and independently replaced with halogen, R′—N(R′)2, —OR′, or —SR′, wherein each R′ is independently as defined above and described herein.


In some embodiments, at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50% or more (e.g., 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more), inclusive, of the sugars in an oligonucleotide, e.g., a chirally controlled oligonucleotide, an oligonucleotide of a plurality of oligonucleotide of an oligonucleotide composition, etc. are modified. In some embodiments, sugars of purine nucleosides and in some embodiments, only purine nucleosides, are modified (e.g., about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50% or more [e.g., 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more] of the purine nucleosides are modified). In some embodiments, sugars of pyrimidine nucleosides and in some embodiments, only pyrimidine nucleosides, are modified (e.g., about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50% or more [e.g., 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or more] of the pyrimidine nucleosides are modified). In some embodiments, both purine and pyrimidine nucleosides are modified.


In some embodiments, modified sugars include those described in: A. Eschenmoser, Science (1999), 284:2118; M. Bohringer et al, Helv. Chim. Acta (1992), 75:1416-1477; M. Egli et al, J. Am. Chem. Soc. (2006), 128(33):10847-56; A. Eschenmoser in Chemical Synthesis: Gnosis to Prognosis, C. Chatgilialoglu and V. Sniekus, Ed., (Kluwer Academic, Netherlands, 1996), p. 293; K.-U. Schoning et al, Science (2000), 290:1347-1351; A. Eschenmoser et al. Helv. Chim. Acta (1992), 75:218; J. Hunziker et al. Helv. Chim. Acta (1993), 76:259; G. Otting et al, Helv. Chim. Acta (1993), 76:2701; K. Groebke et al, Helv. Chim. Acta (1998), 81:375; and A. Eschenmoser, Science (1999), 284:2118. Modifications to the 2′ modifications can be found in Verma, S. et al. Annu. Rev. Biochem. 1998, 67, 99-134 and all references therein. In some embodiments, a modified sugar is one described in WO2012/030683. In some embodiments, a modified sugar is any modified sugar described in any of: Gryaznov, S; Chen, J.-K. J. Am. Chem. Soc. 1994, 116, 3143; Hendrix et al. 1997 Chem. Eur. J. 3: 110; Hyrup et al. 1996 Bioorg. Med. Chem. 4: 5; Jepsen et al. 2004 Oligo. 14: 130-146; Jones et al. J. Org. Chem. 1993, 58, 2983; Koizumi et al. 2003 Nuc. Acids Res. 12: 3267-3273; Koshkin et al. 1998 Tetrahedron 54: 3607-3630; Kumar et al. 1998 Bioo. Med. Chem. Let. 8: 2219-2222; Lauritsen et al. 2002 Chem. Comm. 5: 530-531; Lauritsen et al. 2003 Bioo. Med. Chem. Lett. 13: 253-256; Mesmaeker et al. Angew. Chem., Int. Ed. Engl. 1994, 33, 226; Morita et al. 2001 Nucl. Acids Res. Supp. 1: 241-242; Morita et al. 2002 Bioo. Med. Chem. Lett. 12: 73-76; Morita et al. 2003 Bioo. Med. Chem. Lett. 2211-2226; Nielsen et al. 1997 Chem. Soc. Rev. 73: Nielsen et al. 1997 J. Chem. Soc. Perkins Transl. 1: 3423-3433; Obika et al. 1997 Tetrahedron Lett. 38 (50): 8735-8; Obika et al. 1998 Tetrahedron Lett. 39: 5401-5404; Pallan et al. 2012 Chem. Comm. 48: 8195-8197; Petersen et al. 2003 TRENDS Biotech. 21: 74-81; Rajwanshi et al. 1999 Chem. Commun. 1395-1396; Schultz et al. 1996 Nucleic Acids Res. 24: 2966: Seth et al. 2009 J. Med. Chem. 52: 10-13; Seth et al. 2010 J. Med. Chem. 53: 8309-8318; Seth et al. 2010 J. Org. Chem. 75: 1569-1581; Seth et al. 2012 Bioo. Med. Chem. Lett. 22: 296-299; Seth et al. 2012 Mol. Ther-Nuc. Acids. 1, e47; Seth, Punit P; Siwkowski, Andrew; Allerson, Charles R; Vasquez, Guillermo; Lee, Sam; Prakash, Thazha P; Kinberger, Garth; Migawa, Michael T; Gaus, Hans; Bhat, Balkrishen; et al. From Nucleic Acids Symposium Series (2008), 52(1), 553-554; Singh et al. 1998 Chem. Comm. 1247-1248; Singh et al. 1998 J. Org. Chem. 63: 10035-39; Singh et al. 1998 J. Org. Chem. 63: 6078-6079; Sorensen 2003 Chem. Comm. 2130-2131; Ts'o et al. Ann. N. Y. Acad. Sci. 1988, 507, 220; Van Aerschot et al. 1995 Angew. Chem. Int. Ed. Engl. 34: 1338; Vasseur et al. J. Am. Chem. Soc. 1992, 114, 4006; WO 20070900071; WO 20070900071; or WO 2016/079181.


In some embodiments, a modified sugar moiety is an optionally substituted pentose or hexose moiety. In some embodiments, a modified sugar moiety is an optionally substituted pentose moiety. In some embodiments, a modified sugar moiety is an optionally substituted hexose moiety. In some embodiments, a modified sugar moiety is an optionally substituted ribose or hexitol moiety. In some embodiments, a modified sugar moiety is an optionally substituted ribose moiety. In some embodiments, a modified sugar moiety is an optionally substituted hexitol moiety.


In some embodiments, a sugar is D-2-deoxyribose. In some embodiments, a sugar is beta-D-deoxyribofuranose. In some embodiments, a sugar moiety is a beta-D-doxyribofuranose moiety. In some embodiments, a sugar is D-ribose. In some embodiments, a sugar is beta-D-ribofuranose. In some embodiments, a sugar moiety is a beta-D-ribofuranose moiety. In some embodiments, a sugar is optionally substituted beta-D-deoxyribofuranose or beta-D-ribofuranose. In some embodiments, a sugar moiety is an optionally substituted beta-D-deoxyribofuranose or beta-D-ribofuranose moiety. In some embodiments, a sugar moiety/unit in an oligonucleotide, nucleic acid, etc. is a sugar which comprises one or more carbon atoms each independently connected to an internucleotidic linkage, e.g., optionally substituted beta-D-deoxyribofuranose or beta-D-ribofuranose whose 5′-C and/or 3′-C are each independently connected to an internucleotidic linkage (e.g., a natural phosphate linkage, a modified internucleotidic linkage, a chirally controlled internucleotidic linkage, etc.).


In some embodiments, each nucleoside of a provided oligonucleotide comprises a 2′-O-methoxyethyl sugar modification.


In some embodiments, the oligonucleotide composition comprises at least one locked nucleic acid (LNA) nucleotide. In some embodiments, the oligonucleotide composition comprises at least one modified nucleotide comprising a modified sugar moiety which is modified at the 2′-position.


In some embodiments, the oligonucleotide composition comprises modified sugar moiety which comprises a 2′-substituent selected from the group consisting of: H, OR R, halogen, SH, SR, NH2, NHR, NR2, and ON, wherein R is an optionally substituted C1-C6 alkyl, alkenyl, or alkynyl and halogen is F, Cl, Br or I.


In some embodiments, a modified nucleobase, sugar, nucleoside, nucleotide, and/or modified internucleotidic linkage is selected from those described in Ts'o et al. Ann. N. Y. Acad. Sci. 1988, 507, 220; Gryaznov, S.; Chen, J.-K. J. Am. Chem. Soc. 1994, 116, 3143; Mesmaeker et al. Angew. Chem., Int. Ed. Engl. 1994, 33, 226; Jones et al. J. Org. Chem. 1993, 58, 2983; Vasseur et al. J. Am. Chem. Soc. 1992, 114, 4006; Van Aerschot et al. 1995 Angew. Chem. Int. Ed. Engl. 34: 1338; Hendrix et al. 1997 Chem. Eur. J. 3: 110; Koshkin et al. 1998 Tetrahedron 54: 3607-3630; Hyrup et al. 1996 Bioorg. Med. Chem. 4: 5; Nielsen et al. 1997 Chem. Soc. Rev. 73; Schultz et al. 1996 Nucleic Acids Res. 24: 2966; Obika et al. 1997 Tetrahedron Lett. 38 (50): 8735-8; Obika et al. 1998 Tetrahedron Lett. 39: 5401-5404; Singh et al. 1998 Chem. Comm. 1247-1248; Kumar et al. 1998 Bioo. Med. Chem. Let. 8: 2219-2222; Nielsen et al. 1997 J. Chem. Soc. Perkins Transl. 1: 3423-3433; Singh et al. 1998 J. Org. Chem. 63: 6078-6079; Seth et al. 2010 J. Org. Chem. 75: 1569-1581; Singh et al. 1998 J. Org. Chem. 63: 10035-39; Sorensen 2003 Chem. Comm. 2130-2131; Petersen et al. 2003 TRENDS Biotech. 21: 74-81; Rajwanshi et al. 1999 Chem. Commun. 1395-1396; Jepsen et al. 2004 Oligo. 14: 130-146; Morita et al. 2001 Nucl. Acids Res. Supp. 1: 241-242; Morita et al. 2002 Bioo. Med. Chem. Lett. 12: 73-76; Morita et al. 2003 Bioo. Med. Chem. Lett. 2211-2226; Koizumi et al. 2003 Nuc. Acids Res. 12: 3267-3273; Lauritsen et al. 2002 Chem. Comm. 5: 530-531; Lauritsen et al. 2003 Bioo. Med. Chem. Lett. 13: 253-256; WO 20070900071; Seth et al., Nucleic Acids Symposium Series (2008), 52(1), 553-554; Seth et al. 2009 J. Med. Chem. 52: 10-13; Seth et al. 2012 Mol. Ther-Nuc. Acids. 1, e47; Pallan et al. 2012 Chem. Comm. 48: 8195-8197; Seth et al. 2010 J. Med. Chem. 53: 8309-8318; Seth et al. 2012 Bioo. Med. Chem. Lett. 22: 296-299; WO 2016/079181; U.S. Pat. Nos. 6,326,199; 6,066,500; and 6,440,739.


In some embodiments, sugars and nucleosides include 6′-modified bicyclic sugars and nucleosides, respectively, that have either (R) or (S)-chirality at the 6′-position, e.g., those described in U.S. Pat. No. 7,399,845. In other embodiments, sugars and nucleosides include 5′-modified bicyclic sugars and nucleosides, respectively, that have either (R) or (S)-chirality at the 5′-position, e.g., those described in US Patent Application Publication No. 20070287831.


In some embodiments, modified sugars, nucleobases, nucleosides, nucleotides, and/or internucleotidic linkages are described in U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,30; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,457,191; 5,459.255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,681,941; 5,750,692; 6,015,886; 6,147,200; 6,166,197; 6,222,025; 6,235,887; 6,380,368; 6,528,640; 6,639,062; 6,617,438; 7,045,610; 7,427,672; and 7,495,088, the sugars, nucleobases, nucleosides, nucleotides, and internucleotidic linkages of each of which are incorporated by reference.


In some embodiments, modified sugars, nucleobases, nucleosides, nucleotides, and/or internucleotidic linkages are those described in any of: Gryaznov, S; Chen, J.-K. J. Am. Chem. Soc. 1994, 116, 3143; Hendrix et al. 1997 Chem. Eur. J. 3: 110; Hyrup et al. 1996 Bioorg. Med. Chem. 4: 5; Jepsen et al. 2004 Oligo. 14: 130-146; Jones et al. J. Org. Chem. 1993, 58, 2983; Koizumi et al. 2003 Nuc. Acids Res. 12: 3267-3273; Koshkin et al. 1998 Tetrahedron 54: 3607-3630; Kumar et al. 1998 Bioo. Med. Chem. Let. 8: 2219-2222; Lauritsen et al. 2002 Chem. Comm. 5: 530-531; Lauritsen et al. 2003 Bioo. Med. Chem. Lett. 13: 253-256; Mesmaeker et al. Angew. Chem., Int. Ed. Engl. 1994, 33, 226: Morita et al. 2001 Nucl. Acids Res. Supp. 1: 241-242; Morita et al. 2002 Bioo. Med. Chem. Lett. 12: 73-76; Morita et al. 2003 Bioo. Med. Chem. Lett. 2211-2226; Nielsen et al. 1997 Chem. Soc. Rev. 73; Nielsen et al. 1997 J. Chem. Soc. Perkins Transl. 1: 3423-3433; Obika et al. 1997 Tetrahedron Lett. 38 (50): 8735-8; Obika et al. 1998 Tetrahedron Lett. 39: 5401-5404; Pallan et al. 2012 Chem. Comm. 48: 8195-8197; Petersen et al. 2003 TRENDS Biotech. 21: 74-81; Rajwanshi et al. 1999 Chem. Commun. 1395-1396; Schultz et al. 1996 Nucleic Acids Res. 24: 2966; Seth et al. 2009 J. Med. Chem. 52: 10-13; Seth et al. 2010 J. Med. Chem. 53: 8309-8318; Seth et al. 2010 J. Org. Chem. 75: 1569-1581; Seth et al. 2012 Bioo. Med. Chem. Lett. 22: 296-299; Seth et al. 2012 Mol. Ther-Nuc. Acids. 1, e47; Seth, Punit P; Siwkowski, Andrew; Allerson, Charles R; Vasquez. Guillermo; Lee, Sam; Prakash, Thazha P; Kinberger, Garth; Migawa, Michael T; Gaus, Hans; Bhat, Balkrishen; et al. From Nucleic Acids Symposium Series (2008). 52(1), 553-554; Singh et al. 1998 Chem. Comm. 1247-1248; Singh et al. 1998 J. Org. Chem. 63: 10035-39; Singh et al. 1998 J. Org. Chem. 63: 6078-6079; Sorensen 2003 Chem. Comm. 2130-2131: Ts'o et al. Ann. N. Y. Acad. Sci. 1988, 507, 220; Van Aerschot et al. 1995 Angew. Chem. Int. Ed. Engl. 34: 1338; Vasseur et al. J. Am. Chem. Soc. 1992, 114, 4006; WO 20070900071; WO 20070900071; and WO 2016/079181.


In some embodiments, modified sugars, nucleobases, nucleosides, nucleotides, and/or internucleotidic linkages include, or include those in, HNA, PNA, 2′-Fluoro N3′-P5′-phosphoramidate, LNA, beta-D-oxy-LNA, 2′-0,3′-C-linked bicyclic, PS-LNA, beta-D-thio-LNA, beta-D-amino-LNA, xylo-LNA [c], alpha-L-LNA, ENA, beta-D-ENA, amide-linked LNA, methylphosphonate-LNA, (R S)-cEt, (R, S)-cMOE, (R. S)-5′-Me-LNA, S-Me cLNA, Methylene-cLNA, 3′-Me-alpha-L-LNA, R-6′-Me-alpha-L-LNA, S-5′-Me-alpha-L-LNA, or R-5′-Me-alpha-L-LNA. Certain modified sugars, nucleobases, nucleosides, nucleotides, and/or internucleotidic linkages are described in U.S. Pat. Nos. 9,394,333, 9,744,183, 9,605,019, US 20130178612, US 20150211006, U.S. Pat. No. 9,598,458, US 20170037399, WO 2017/015555, WO 2017/062862, the modified sugars, nucleobases, nucleosides, nucleotides, and internucleotidic linkages of each of which are incorporated herein by reference.


Dystrophin

In some embodiments, the present disclosure provides technologies, e.g., oligonucleotides, compositions, methods, etc., related to the dystrophin (DMD) gene or a product encoded thereby (a transcript, a protein (e.g., various variants of the dystrophin protein), etc.). In some embodiments, the base sequence of an oligonucleotide is or comprise a sequence which sequence is, or is complementary (e.g., 85%, 90%, 95%, 100%; in many embodiments, 100%) to, a sequence in the DMD gene or a product thereof (e.g., a transcript, mRNA, etc.) (such an oligonucleotide-DMD oligonucleotide). In some embodiments, such a sequence in the DMD gene or a product thereof comprises 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20, 31, 32, 33, 34, 35 or more nucleobases. In some embodiments, such a sequence in the DMD gene or a product thereof comprises at least 10 nucleobases. In some embodiments, such a sequence in the DMD gene or a product thereof comprises at least 15 nucleobases. In some embodiments, such a sequence in the DMD gene or a product thereof comprises at least 16 nucleobases. In some embodiments, such a sequence in the DMD gene or a product thereof comprises at least 17 nucleobases. In some embodiments, such a sequence in the DMD gene or a product thereof comprises at least 18 nucleobases. In some embodiments, such a sequence in the DMD gene or a product thereof comprises at least 19 nucleobases. In some embodiments, such a sequence in the DMD gene or a product thereof comprises at least 20 nucleobases. In some embodiments, the present disclosure provides technologies, including DMD oligonucleotides and compositions and methods of use thereof, for treatment of muscular dystrophy, including but not limited to, Duchenne Muscular Dystrophy (also abbreviated as DMD) and Becker Muscular Dystrophy (BMD). In some embodiments, DMD comprises one or more mutations. In some embodiments, such mutations are associated with reduced biological functions of dystrophin protein in a subject suffering from or susceptible to muscular dystrophy.


In some embodiments, the dystrophin (DMD) gene or a product thereof, or a variant or portion thereof, may be referred to as DMD, BMD, CMD3B, DXS142, DXS164, DXS206, DXS230, DXS239, DXS268, DXS269, DXS270, DXS272, MRX85, or dystrophin; External IDs: OMIM: 300377 MGI: 94909; HomoloGene: 20856; GeneCards: DMD; In Human: Entrez: 1756; Ensembl: ENSG00000198947; UniProt: P11532; RefSeq (mRNA): NM_000109; NM_004006; NM_004007; NM_004009; NM_004010; RefSeq (protein): NP_000100; NP_003997 NP_004000; NP_004001; NP_004002; Location (UCSC): Chr X: 31.1-33.34 Mb; In Mouse: Entrez: 13405; Ensembl: ENSMUSG00000045103; UniProt: P11531; RefSeq (mRNA): NM_007868; NM_001314034; NM_001314035; NM_001314036; NM_001314037; RefSeq (protein); NP_001300963: NP_001300964; NP_001300965; NP_001300966; NP_001300967; Location (UCSC): Chr X: 82.95-85.21 Mb.


The DMD gene reportedly contains 79 exons distributed over 2.3 million bp of genetic real estate on the X chromosome; however, only approximately 14,000 bp (<1%) is reported to be used for translation into protein (coding sequence). It is reported that about 99.5% of the genetic sequence, the intronic sequences, is spliced out of the 2.3 million bp initial heteronuclear RNA transcript to provide a mature 14,000 bp mRNA that includes all key information for dystrophin protein production. In some embodiments, patients with DMD have mutation(s) in the DMD gene that prevent the appropriate construction of the wild-type DMD mRNA and/or the production of the wild-type dystrophin protein, and patients with DMD often show marked dystrophin deficiency in their muscle.


In some embodiments, a dystrophin transcript, e.g., mRNA, or protein encompasses those related to or produced from alternative splicing. For example, sixteen alternative transcripts of the dystrophin gene were reported following an analysis of splicing patterns of the DMD gene in skeletal muscle, brain and heart tissues. Sironi et al. 2002 FEBS Letters 517: 163-166.


It is reported that dystrophin has several isoforms. In some embodiments, dystrophin refers to a specific isoform. At least three full-length dystrophin isoforms have been reported, each controlled by a tissue-specific promoter. Klamut et al. 1990 Mol. Cell. Biol. 10: 193-205; Nudel et al. 1989 Nature 337: 76-78; Gorecki et al. 1992 Hum. Mol. Genet. 1: 505-510. The muscle isoform is reportedly mainly expressed in skeletal muscle but also in smooth and cardiac muscles [Bies, R D., Phelps, S. F., Cortez. M. D., Roberts, R., Caskey, C. T. and Chamberlain, J. S. 1992 Nucleic Acids Res. 20: 1725-1731], the brain dystrophin is reportedly specific for cortical neurons but can also be detected in heart and cerebellar neurons, while the Purkinje-cell type reportedly accounts for nearly all cerebellar dystrophin [Gorecki et al. 1992 Hum. Mol. Genet. 1: 505-510]. Alternative splicing reportedly provides a means for dystrophin diversification: the 3′ region of the gene reportedly undergoes alternative splicing resulting in tissue-specific transcripts in brain neurons, cardiac Purkinje fibers, and smooth muscle cells [Bies et al. 1992 Nucleic Acids Res. 20: 1725-1731; and Feener et al. 1989 Nature 338: 509-511] while 12 patterns of alternative splicing have been reported in the 5′ region of the gene in skeletal muscle [Surono et al. 1997 Biochem. Biophys. Res. Commun. 239: 895-899].


In some embodiments, a dystrophin mRNA, gene or protein is a revertant version. Among others, revertant dystrophins were reported in, for example: Hoffman et al. 1990 J. Neurol. Sci. 99:9-25; Klein et al. 1992 Am. J. Hum. Genet. 50: 950-959; and Chelly et al. 1990 Cell 63: 1239-1348; Arahata et al. 1998 Nature 333: 861-863; Bonilla et al. 1988 Cell 54: 447-452: Fanin et al. 1992 Neur. Disord. 2: 41-45; Nicholson et al. 1989 J. Neurol. Sci. 94: 137-146; Shimizu et al. 1988 Proc. Jpn. Acad. Sci. 64: 205-208; Sicinzki t al. 1989 Science 244: 1578-1580; and Sherratt et al. Am. J. Hum. Genet. 53: 1007-1015.


Various mutations in the DMD gene can and/or were reported to cause muscular dystrophy.


Muscular Dystrophy

Compositions comprising one or more DMD oligonucleotides described herein can be used to treat muscular dystrophy. In some embodiments, muscular dystrophy (MD) is any of a group of muscle conditions, diseases, or disorders that results in (increasing) weakening and breakdown of skeletal muscles over time. The conditions, diseases, or disorders differ in which muscles are primarily affected, the degree of weakness, when symptoms begin, and how quickly symptoms worsen. Many MD patients will eventually become unable to walk. In many cases muscular dystrophy is fatal. Some types are also associated with problems in other organs, including the central nervous system. In some embodiments, the muscular dystrophy is Duchenne (Duchenne's) Muscular Dystrophy (DMD) or Becker (Becker's) Muscular Dystrophy (BMD).


In some embodiments, a symptom of Duchenne Muscular Dystrophy is muscle weakness associated with muscle wasting, with the voluntary muscles being first affected, especially those of the hips, pelvic area, thighs, shoulders, and calves. Muscle weakness can also occur later, in the arms, neck, and other areas. Calves are often enlarged. Symptoms usually appear before age six and may appear in early infancy. Other physical symptoms are: awkward manner of walking, stepping, or running (in some cases, patients tend to walk on their forefeet, because of an increased calf muscle tone), frequent falls, fatigue, difficulty with motor skills (e.g., running, hopping, jumping), lumbar hyperordosis, possibly leading to shortening of the hip-flexor muscles, unusual overall posture and/or manner of walking, stepping, or running, muscle contractures of Achilles tendon and hamstrings impair functionality, progressive difficulty walking, muscle fiber deformities, pseudohypertrophy (enlarging) of tongue and calf muscles, higher risk of neurobehavioral disorders (e.g., ADHD), learning disorders (e.g., dyslexia), and non-progressive weaknesses in specific cognitive skills (e.g., short-term verbal memory), which are believed to be the result of absent or dysfunctional dystrophin in the brain, eventual loss of ability to walk (usually by the age of 12), skeletal deformities (including scoliosis in some cases), and trouble getting up from lying or sitting position.


In some embodiments, Becker muscular dystrophy (BMD) is caused by mutations that give rise to shortened but in-frame transcripts resulting in the production of truncated but partially functional protein(s). Such partially functional protein(s) were reported to retain the critical amino terminal, cysteine rich and C-terminal domains but usually lack elements of the central rod domains which were reported to be of less functional significance. England et al. 1990 Nature, 343, 180-182.


In some embodiments, BMD phenotypes range from mild DMD to virtually asymptomatic, depending on the precise mutation and the level of dystrophin produced. Yin et al. 2008 Hum. Mol. Genet. 17: 3909-3918.


In some embodiments, dystrophy patients with out-of-frame mutations are generally diagnosed with the more severe Duchenne Muscular Dystrophy, and dystrophy patients with in-frame mutations are generally diagnosed with the less severe Becker Muscular Dystrophy. However, a minority of patients with in-frame deletions are diagnosed with Duchenne Muscular Dystrophy, including those with deletion mutations starting or ending in exons 50 or 51, which encode part of the hinge region, such as deletions of exons 47 to 51, 48 to 51, and 49 to 53. Without wishing to be bound by any particular theory, the present disclosure notes that the patient-to-patient variability in disease severity despite the presence of the same exon deletion reportedly may be related to the effect of the specific deletion breakpoints on mRNA splicing efficiency and/or patterns; translation or transcription efficiency after genome rearrangement; and stability or function of the truncated protein structure. Yokota et al. 2009 Arch. Neurol. 66: 32.


Exon Skipping as a Treatment for Muscular Dystrophy

In some embodiments, a treatment for muscular dystrophy comprises the use of a DMD oligonucleotide which is capable of mediating skipping of one or more Dystrophin exons. In some embodiments, the present disclosure provides methods for treatment of muscular dystrophy comprising administering to a subject suffering therefrom or susceptible thereto an DMD oligonucleotide, or a composition comprising a DMD oligonucleotide. Particularly, among other things, the present disclosure demonstrates that chirally controlled oligonucleotide/chirally controlled oligonucleotide compositions are unexpectedly effective for modulating exon skipping compared to otherwise identical but non-chirally controlled oligonucleotide/oligonucleotide compositions. In some embodiments, the present disclosure demonstrates incorporation of one or more non-negatively charged internucleotidic linkage can greatly improve delivery and/or overall exon skipping efficiency.


In some embodiments, a treatment for muscular dystrophy employs the use of a DMD oligonucleotide, wherein the oligonucleotide is capable of providing skipping of one or more exons. Skipping of one or more (e.g., multiple) DMD exons can, for example, remove a mutated exon(s), or compensate for a mutation(s) (e.g., restoring the reading frame if the mutation is a frameshift mutation) in an exon which is not skipped. In some embodiments, a DMD oligonucleotide is capable of mediating the skipping of an exon which comprises a mutation (e.g., a frameshift, insertion, deletion, missense, or nonsense mutation, or other mutation), wherein the skipping of the exon maintains (or restores) the proper reading frame of the DMD gene, and translation produces a truncated but functional (or largely functional) DMD protein. In some embodiments, a DMD oligonucleotide compensates for an exon comprising a frameshift mutation by providing skipping of a different exon (not the one comprising the frameshift mutation), and thus restoring the reading frame of the DMD gene. In some embodiments, a patient having muscular dystrophy has a frameshift mutation in one exon of the DMD gene; and this patient is treated with a DMD oligonucleotide which does not cause skipping of the exon having the mutation, but causes skipping of a different exon, which restores the reading frame of the DMD gene, so that a functional DMD protein is produced (and, if the deleted exon is 3′ to the exon which has the frameshift mutation, this functional DMD protein will generally have an amino acid of a normal DMD protein, except for a sequence of amino acids not normally found in DMD, spanning from the frameshift mutation to the exon which is 3′ to the deleted exon).


In some embodiments, a composition comprising a DMD oligonucleotide is useful for treatment of a Dystrophin-related disorder of the central nervous system. In some embodiments, the present disclosure pertains to a method of treatment of a Dystrophin-related disorder of the central nervous system, wherein the method comprises the step of administering a therapeutically effective amount of a DMD oligonucleotide to a patient suffering from a Dystrophin-related disorder of the central nervous system. In some embodiments, a DMD oligonucleotide is administered outside the central nervous system (as non-limiting examples, intravenously or intramuscularly) to a patient suffering from a Dystrophin-related disorder of the central nervous system, and the DMD oligonucleotide is capable of passing through the blood-brain barrier into the central nervous system. In some embodiments, a DMD oligonucleotide is administered directly into the central nervous system (as non-limiting example, via intrathecal, intraventricular, intracranial, etc., delivery).


In some embodiments, a Dystrophin-related disorder of the central nervous system, or a symptom thereof, can be any one or more of: decreased intelligence, decreased long term memory, decreased short term memory, language impairment, epilepsy, autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder, learning problem, behavioral problem, a decrease in brain volume, a decrease in grey matter volume, lower white matter fractional anisotropy, higher white matter radial diffusivity, an abnormality of skull shape, or a deleterious change in the volume or structure of the hippocampus, globus pallidus, caudate putamen, hypothalamus, anterior commissure, periaqueductal gray, internal capsule, amygdala, corpus callosum, septal nucleus, nucleus accumbens, fimbria, ventricle, or midbrain thalamus. In some embodiments, a patient exhibiting muscle-related symptoms of muscular dystrophy also exhibits symptoms of a Dystrophin-related disorder of the central nervous system.


In some embodiments, a Dystrophin-related disorder of the central nervous system is related to, associated with and/or caused by an abnormality in the level, activity, expression and/or distribution of a gene product of the Dystrophin gene, such as full-length Dystrophin or a smaller isoform of Dystrophin, including, but not limited to, Dp260, Dp140, Dp116, Dp71 or Dp40. In some embodiments, a DMD oligonucleotide is administered into the central nervous system of a muscular dystrophy patient in order to ameliorate one or more systems of a Dystrophin-related disorder of the central nervous system. In some embodiments, a Dystrophin-related disorder of the central nervous system is related to, associated with and/or caused by an abnormality in the level, activity, expression and/or distribution of a gene product of the Dystrophin gene, such as full-length Dystrophin or a smaller isoform of Dystrophin, including, but not limited to, Dp260, Dp140, Dp116, Dp71 or Dp40. In some embodiments, administration of a DMD oligonucleotide to a patient suffering from a Dystrophin-related disorder of the central nervous system increases the level, activity, and/or expression and/or improves the distribution of a gene product of the Dystrophin gene.


In some embodiments, the present disclosure provides technologies for modulating dystrophin pre-mRNA splicing, whereby selected exons are excised to either remove nonsense mutations or restore the reading frame around frameshifting mutations from the mature mRNA. In some embodiments, a DMD oligonucleotide capable of skipping an exon is capable of restoring the reading frame.


As a non-limiting example, in a patient with Duchenne Muscular Dystrophy who has a deletion of exon 50, an out-of-frame transcript is generated in which exon 49 is spliced to exon 51. As a result, a stop codon is generated in exon 51, which prematurely aborts dystrophin synthesis. In some embodiments, the present disclosure provides oligonucleotides that can mediate skipping of exon 51, restore the open reading frame of the transcript, and allow the production of a truncated dystrophin similar to that in patients with Becker muscular dystrophy (BMD).


In some embodiments, in a DMD patient, a DMD gene comprises an exon comprising a mutation, and the disorder is at least partially treated by skipping of one or more exons (e.g., the exon comprising the mutation, or an exon adjacent to the exon comprising the mutation, or a set of consecutive exons, including the exon comprising the mutation).


In some embodiments, in a DMD patient, a DMD gene or transcript has a mutation in an exon(s), which is a missense or nonsense mutation and/or deletion, insertion, inversion, translocation or duplication. In some embodiments, in a DMD patient, a DMD gene or transcript has a mutation in an exon(s) which results in a frameshift, premature stop codon, or otherwise perturbation of the proper reading frame.


In some embodiments, in a treatment for muscular dystrophy, an exon of DMD is skipped, wherein the exon encodes a string of amino acids not essential for DMD protein function, or whose skipping can provide a fully or partially functional DMD protein. In some embodiments, in a treatment for muscular dystrophy, an exon of DMD is skipped, wherein the exon(s) skipped include an exon which comprises a mutation or is adjacent to (e.g., flanking) an exon comprising a mutation, or wherein multiple exons are skipped, the skipped exons optionally include an exon comprising a mutation. In some embodiments, in a treatment for muscular dystrophy, two or more exons are skipped, wherein the exons skipped include an exon which comprises a mutation or is adjacent to (e.g., flanking) an exon comprising a mutation. In some embodiments, in a treatment for muscular dystrophy, an exon comprises a frameshift mutation, and the skipping of a different exon (while leaving the exon with the frameshift mutation in place) restores the proper reading frame.


In some embodiments, in a treatment for muscular dystrophy, a DMD oligonucleotide is capable of mediating skipping of one or more DMD exons, thereby either restoring or maintaining the proper reading frame, and/or creating an artificially internally truncated DMD which provides at least partially improved or fully restored biological activity.


In some embodiments, an DMD oligonucleotide skips an exon(s) which is not exon 64 and exon 70, portions of which are reportedly important for protein function, and/or which is not first or the last exon. In some embodiments, an DMD oligonucleotide skips an exon(s), but skipping of the exon(s) does not cause deletion of one or more or all actin-binding sites in the N-terminal region.


In some embodiments, an internally truncated DMD protein produced from a dystrophin transcript with a skipped exon(s) is more functional than a terminally truncated DMD protein e.g., produced from a dystrophin transcript with an out-of-frame deletion.


In some embodiments, an internally truncated DMD protein produced from a dystrophin transcript with a skipped exon(s) is more resistant to nonsense-mediated decay, which can degrade a terminally truncated DMD protein, e.g., produced from a dystrophin transcript with an out-of-frame deletion.


In some embodiments, a treatment for muscular dystrophy employs the use of a DMD oligonucleotide, wherein the oligonucleotide is capable of providing skipping of one or more exons. Skipping of one or more (e.g., multiple) DMD exons can, for example, remove a mutated exon, or compensate for a mutation (e.g., restoring from for a frameshift mutation) in an exon which is not skipped.


In some embodiments, the present disclosure encompasses the recognition that the nature and location of a DMD mutation may be utilized to design exon-skipping strategy. In some embodiments, if a DMD patient has a mutation in an exon, skipping of the mutated exon can produce an internally truncated (internally shortened) but at least partially functional DMD protein product.


In some embodiments, a DMD patient has a mutation which alters splicing of a DMD transcript, e.g., by inactivating a site required for splicing, or activating a cryptic site so that it becomes active for splicing, or by creating an alternative (e.g., unnatural) splice site. In some embodiments, such a mutation causes production of proteins with low or no activities. In some embodiments, splicing modulation, e.g., exon skipping, suppression of such a mutation, etc., can be employed to remove or reduce effects of such a mutation, e.g., by restoring proper splicing to produce proteins with restored activities, or producing an internally truncated dystrophin protein with improved or restored activities, etc.


In some embodiments, a DMD patient has a mutation which is a duplication of one or several exons, and the present disclosure provides exon skipping technologies to delete the duplication and/or to restore the reading frame.


In some embodiments, a DMD patient has a mutation which causes the skipping of an exon, which in turn can cause a frameshift. In some embodiments, the present disclosure provides technologies that can provide skipping of an additional exon(s) to restore the reading frame. For example, deletion of exon 51, which causes a frame shift, may be addressed by skipping of exon 50 or 52, which restores the reading frame. In some embodiments, a DMD patient has a mutation in one exon which causes a frame shift, and a deletion of a different exon(s) (e.g., a different exon, or an adjacent or flanking exon(s) immediately 5′ or 3′ to the mutated exon) restores the reading frame.


In some embodiments, restoring the reading frame can convert an out-of-frame mutation to an in-frame mutation; in some embodiments, in humans, such a change can transform severe Duchenne Muscular Dystrophy into milder Becker Muscular Dystrophy.


In some embodiments, a DMD patient or a patient suspected to have DMD is analyzed for DMD genotype prior to administration of a composition comprising a DMD oligonucleotide.


In some embodiments, a DMD patient or a patient suspected to have DMD is analyzed for DMD phenotype prior to administration of a composition comprising a DMD oligonucleotide.


In some embodiments, a DMD patient is analyzed for genotype and phenotype to determine the relationship of DMD genotype and DMD phenotype prior to administration of a composition comprising a DMD oligonucleotide.


In some embodiments, a patient is genetically verified to have dystrophy prior to administration of a composition comprising a DMD oligonucleotide.


In some embodiments, analysis of DMD genotype or genetic verification of DMD or a patient comprises determining if the patient has one or more deleterious mutations in DMD.


In some embodiments, analysis of DMD genotype or genetic verification of DMD or a patient comprises determining if the patient has one or more deleterious mutations in DMD and/or analyzing DMD splicing and/or detecting splice variants of DMD, wherein a splice variant is produced by an abnormal splicing of DMD.


In some embodiments, analysis of DMD genotype or genetic verification of DMD informs the selection of a composition comprising a DMD oligonucleotide useful for treatment.


In some embodiments, an abnormal or mutant DMD gene or a portion thereof is removed or copied from a patient or a patient's cell(s) or tissue(s) and the abnormal or mutant DMD gene, or a portion thereof comprising the abnormality or mutation, or a copy thereof, is inserted into a cell. In some embodiments, this cell can be used to test various compositions comprising a DMD oligonucleotide to predict if such a composition would be useful as a treatment for the patient. In some embodiments, the cell is a myoblast or myotubule.


In some embodiments, an individual or patient can produce, prior to treatment with a DMD oligonucleotide, one or more splice variants of DMD, often each variant being produced at a very low level. In some embodiments, a method such as that described in Example 20 can be used to detect low levels of splice variants being produced in a patient prior to, during or after administration of a DMD oligonucleotide.


In some embodiments, a patient and/or the tissues thereof are analyzed for production of various splicing variants of a DMD gene prior to administration of a composition comprising a DMD oligonucleotide.


In some embodiments, the present disclosure provides methods for designing a DMD oligonucleotide (e.g., an oligonucleotide capable of mediating skipping of one or more exons of DMD). In some embodiments, the present disclosure utilizes rationale design described herein and optionally sequence walks to design oligonucleotides, e.g., for testing exon skipping in one or more assays and/or conditions. In some embodiments, an efficacious oligonucleotide is developed following rational design, including using various information of a given biological system.


In some embodiments, in a method for developing DMD oligonucleotides, oligonucleotides are designed to anneal to one or more potential splicing-related motifs and then tested for their ability to mediate exon skipping. In some embodiments, splicing-related motifs include, but are not limited to, any one or more of: an acceptor, exon recognition sequence (ERS), exonic splice enhancer (ESE) site, splicing enhancer sequence (SES), branch point sequence, and donor splice site of a target exon. Certain sequences that may be involved in splicing were reported in, for example: Disset et al. 2006 Human Mol. Gen. 15: 999-1013.


In some embodiments, software packages, such as RESCUE-ESE, ESEfinder, and the PESX server, may be utilized to predict putative ESE sites (Fairbrother et al. 2002 Science 297: 1007-1013; Cartegni et al. 2003 Nat. Struct. Biol. 120-125; Zhang and Chasin 2004 Gen. Dev. 18: 1241-1250; Smith et al. 2006 Hum. Mol. Genet. 15: 2490-2508).


In some embodiments, a DMD oligonucleotide which targets or interacts with an acceptor, exon recognition sequence (ERS), exonic splice enhancer (ESE) site, or donor splice site of a DMD exon does not interact or significantly interact with a sequence in another (e.g., off-target) gene.


In some embodiments, in a rational approach to DMD oligonucleotide design, oligonucleotides are designed with consideration of secondary structures of dystrophin transcripts, e.g., mRNA. Designed oligonucleotide can then be assessed for exon skipping. A number of effective DMD oligonucleotides have been designed using rational approaches described in the present disclosure.


In some embodiments, alternatively or additionally, sequence walk, e.g., of an exon sequence can be performed to search for efficacious DMD oligonucleotide sequences.


In some embodiments, provided methods comprise sequence walking. In some embodiments, a set of overlapping oligonucleotides is generated. In some embodiments, oligonucleotides in a set have the same length, and the 5′ ends of the oligonucleotides in the set are evenly spaced apart. In some embodiments, a set of overlapping oligonucleotides encompasses an entire exon or a portion(s) thereof. The 5′ ends of the oligonucleotides in a walk can be evenly spaced at a suitable distance, e.g., 1 base apart, 2 bases apart, 3 bases apart, etc. Among other things, the present disclosure demonstrates that sequences can be optimized and in combination with chemistry and/or stereochemistry technologies of the present disclosure, highly effective oligonucleotides (and compositions and methods of use thereof) can be prepared.


Example Technologies for Assessing Oligonucleotides and Oligonucleotide Compositions

Various technologies for assessing properties and/or activities of oligonucleotides can be utilized in accordance with the present disclosure, e.g., US 20170037399, WO 2017/015555, WO 2017/015575, WO 2017/192664, WO 2017/062862, WO 2017/192679, WO 2017/210647, etc.


For example, DMD oligonucleotides can be evaluated for their ability to mediate exon skipping in various assays, including in vitro and in vivo assays, in accordance with the present disclosure. In vitro assays can be performed in various test cells described herein or known in the art, including but not limited to, A48-50 Patient-Derived Myoblast Cells. In vivo tests can be performed in test animals described herein or known in the art, including but not limited to, a mouse, rat, cat, pig, dog, monkey, or non-human primate.


As non-limiting examples, a number of assays are described below for assessing properties/activities of DMD oligonucleotides. Various other suitable assays are available and may be utilized to assess oligonucleotide properties/activities, including those of oligonucleotides not designed for exon skipping (e.g., for oligonucleotides that may involve RNase H for reducing levels of target transcripts, assays described in US 20170037399, WO 2017/015555, WO 2017/015575, WO 2017/192664, WO 2017/192679, WO 2017/210647, etc.).


A DMD oligonucleotide can be evaluated for its ability to mediate skipping of an exon in the Dystrophin RNA, which can be tested, as non-limiting examples, using nested PCR, qRT-PCR, and/or sequencing.


A DMD oligonucleotide can be evaluated for its ability to mediate protein restoration (e.g., production of an internally truncated protein lacking the amino acids corresponding to the codons encoded in the skipped exon, which has improved functions compared to proteins (if any) produced prior to exon skipping), which can be evaluated by a number of methods for protein detection and/or quantification, such as western blot, immunostaining, etc. Antibodies to dystrophin are commercially available or if desired, can be developed for desired purposes.


A DMD oligonucleotide can be evaluated for its ability to mediate production of a stable restored protein. Stability of restored protein can be tested, in non-limiting examples, in assays for serum and tissue stability.


A DMD oligonucleotide can be evaluated for its ability to bind protein, such as albumin. Example related technologies include those described, e.g., in WO 2017/015555, WO 2017/015575, etc.


A DMD oligonucleotide can be evaluated for immuno activity, e.g., through assays for cytokine activation, complement activation. TLR9 activity, etc. Example related technologies include those described, e.g., in WO 2017/015555, WO 2017/015575, WO 2017/192679, WO 2017/210647, etc.


In some embodiments, efficacy of a DMD oligonucleotide can be tested, e.g., in in silico analysis and prediction, a cell-free extract, a cell transfected with artificial constructs, an animal such as a mouse with a human Dystrophin transgene or portion thereof, normal and dystrophic human myogenic cell lines, and/or clinical trials. It may be desirable to utilize more than one assay, as normal and dystrophic human myogenic cell lines may sometimes produce different efficacy results under certain conditions (Mitrpant et al. 2009 Mol. Ther. 17: 1418).


In some embodiments, DMD oligonucleotides can be tested in vitro in cells. In some embodiments, testing in vitro in cells involves gymnotic delivery of the oligonucleotide(s), or delivery using a delivery agent or transfectant, many of which are known in the art and may be utilized in accordance with the present disclosure.


In some embodiments, DMD oligonucleotides can be tested in vitro in normal human skeletal muscle cells (hSkMCs). See, for example, Arechavala et al. 2007 Hum. Gene Ther. 18: 798-810.


In some embodiments, DMD oligonucleotides can be tested in a muscle explant from a DMD patient. Muscle explants from DMD patients are reported in, for example, Fletcher et al. 2006 J. Gene Med. 8: 207-216; McClorey et al. 2006 Neur. Dis. 16: 583-590; and Arechavala et al. 2007 Hum. Gene Ther. 18: 798-810.


In some embodiments, cells are or comprise cultured muscle cells from DMD patients. See, for example: Aartsma-Rus et al. 2003 Hum. Mol. Genet. 8: 907-914.


In some embodiments, an individual DMD oligonucleotide may demonstrate experiment-to-experiment variability in its ability to skip an exon under certain circumstances. In some embodiments, an individual DMD oligonucleotide can demonstrate variability in its ability to skip an exon(s) depending on which cells are used, the growth conditions, and other experimental factors. To control variations, typically oligonucleotides to be tested and control oligonucleotides are assayed under the same or substantially the same conditions.


In vitro experiments also include those conducted with patient-derived myoblasts. Certain results from such experiments were described herein. In certain such experiments, cells were cultured in skeletal growth media to keep them in a dividing/immature myoblast state. The media was then changed to ‘differentiation’ media (containing insulin and 2% horse serum) concurrent with spiking oligonucleotides in the media for dosing. The cells differentiated into myotubes as they were getting dosed for a suitable period of time, e.g., a total of 4d for RNA experiments and 6d for protein experiments (such conditions referenced as ‘Od pre-differentiation’ (0d+4d for RNA, 0d+6d for protein)).


Without wishing to be bound by any particular theory, the present disclosure notes that it may be desirable to know if DMD oligonucleotides are able to enter mature myotubes and induce skipping in these cells as well as ‘immature’ cells. In some embodiments, the present disclosure provided assays to test effects of DMD oligonucleotides in myotubes. In some embodiments, a dosing schedule different from the ‘Od pre-differentiation’ was used, wherein the myoblasts were pre-differentiated into myotubes in differentiation media for several days (4d or 7d or 10d) and then DMD oligonucleotides were administered. Certain related protocols are described in Example 19.


In some embodiments, the present disclosure demonstrated that, in the pre-differentiation experiments, DMD oligonucleotides (excluding those which are PMOs) usually give about the same level of RNA skipping and dystrophin protein restoration, regardless of the number of days cells were cultured in differentiation media prior to dosing. In some embodiments, the present disclosure provides oligonucleotides that may be able to enter and be active in myoblasts and in myotubes. In some embodiments, a DMD oligonucleotide is tested in vitro in Δ45-52 DMD patient cells (also designated D45-52 or de145-52) or Δ52 DMD patient cells (also designated D52 or de152) with 0, 4 or 7 days of pre-differentiation.


In some embodiments, DMD oligonucleotides can be tested in any one or more of various animal models, including non-mammalian and mammalian models; including, as non-limiting examples, Caenorhabditis, Drosophila, zebrafish, mouse, rat, cat, dog and pig. See, for example, a review in McGreevey et al. 2015 Dis. Mod. Mech. 8: 195-213.


Example use of mdx mice is reported in, for example: Lu et al. 2003 Nat. Med. 9: 1009; Jearawiriyapaisarn et al. 2008 Mol. Ther., 16, 1624-1629; Yin et al. 2008 Hum. Mol. Genet., 17, 3909-3918; Wu et al. 2009 Mol. Ther., 17, 864-871: Wu et al. 2008 Proc. Nat Acad. Sci. USA, 105, 14814-14819; Mann et al. 2001 Proc. Nat. Acad. Sci. USA 98: 42-47; and Gebski et al. 2003 Hum. Mol. Gen. 12:1801-1811.


Efficacy of DMD oligonucleotides can be tested in dogs, such as the Golden Retriever Muscular Dystrophy (GRMD) animal model. Lu et al. 2005 Proc. Natl. Acad. Sci. USA 102:198-203; Alter et al. 2006 Nat. Med. 12:175-7; McClorey et al. 2006 Gene Ther. 13:1373-81; and Yokota et al. 2012 Nucl. Acid Ther. 22: 306.


A DMD oligonucleotide can be evaluated in vivo in a test animal for efficient delivery to various tissues (e.g., skeletal, heart and/or diaphragm muscle); this can be tested, in non-limiting examples, by hybridization ELISA and tests for distribution in animal tissue.


A DMD oligonucleotide can be evaluated in vivo in a test animal for plasma PK: this can be tested, as non-limiting examples, by assaying for AUC (area under the curve) and half-life.


In some embodiments, DMD oligonucleotides can be tested in vivo, via an intramuscular administration a muscle of a test animal.


In some embodiments, DMD oligonucleotides can be tested in vivo, via an intramuscular administration into the gastrocnemius muscle of a test animal.


In some embodiments, DMD oligonucleotides can be tested in vivo, via an intramuscular administration into the gastrocnemius muscle of a mouse.


In some embodiments, DMD oligonucleotides can be tested in vivo, via an intramuscular administration into the gastrocnemius muscle of a mouse model transgenic for the entire human dystrophin locus. See, for example: Bremmer-Bout et al. 2004 Mol. Ther. 10, 232-240.


Additional tests which can be performed to evaluate the efficacy of DMO oligonucleotides include centrally nucleated fiber counts and dystrophin-positive fiber counts, and functional grip strength analysis. See, as non-limiting examples, experimental protocols reported in: Yin et al. 2009 Hum. Mol. Genet. 18: 4405-4414.


Additional methods of testing DMD oligonucleotides include, as non-limiting example, methods reported in; Kinali et al. 2009 Lancet 8: 918; Bertoni et al. 2003 Hum. Mol. Gen. 12: 1087-1099.


Certain Embodiments of Oligonucleotides and Compositions Thereof

Among other things, the present disclosure provides oligonucleotides, and compositions and methods of use thereof, useful for targeting various genes, including products encoded thereby and/or conditions, diseases and/or disorders associated therewith. In some embodiments, the present disclosure provides oligonucleotides, and compositions and methods of use thereof, for DMD. In some embodiments, the present disclosure provides a DMD oligonucleotide, wherein the base sequence of the DMD oligonucleotide is or comprises at least 15 contiguous bases of the sequence of any DMD oligonucleotide listed herein. In some embodiments, the present disclosure provides a DMD oligonucleotide, wherein the base sequence of the DMD oligonucleotide is or comprises at least 15 contiguous bases of the sequence of any DMD oligonucleotide listed herein, and wherein the DMD oligonucleotide is less than about 50 bases long. In some embodiments, the present disclosure provides an oligonucleotide or an oligonucleotide composition which comprises a non-negatively charged internucleotidic linkage.


In some embodiments, the present disclosure provides a chirally controlled composition of a DMD oligonucleotide (a plurality of DMD oligonucleotides), wherein the base sequence of the DMD oligonucleotide is or comprises at least 15 contiguous bases of the sequence of any DMD oligonucleotide listed herein. In some embodiments, the present disclosure provides a chirally controlled composition of a DMD oligonucleotide, wherein the base sequence of the DMD oligonucleotide is or comprises at least 15 contiguous bases of the sequence of any DMD oligonucleotide listed herein, and wherein the DMD oligonucleotide is less than about 50 bases long.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide having a sequence consisting of or comprising a sequence or a 15 base portion thereof found in any oligonucleotide listed in Table A1, wherein one or more U may be optionally and independently replaced with T or vice versa.


In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein at least one internucleotidic linkage is a chirally controlled internucleotidic linkage. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein at least one chirally controlled internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein at least one chirally controlled internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein each internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, I-b-1, II-b-2, I-c-1, II-c-2, I-d-1, II-d-2, or a salt form thereof. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein at least one internucleotidic linkage has the structure of formula I-c or a salt form thereof. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein at least one internucleotidic linkage has the structure of formula I-c or a salt form thereof, and at least one internucleotidic linkage is a non-negatively charged internucleotidic linkage. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein at least one internucleotidic linkage is a chirally controlled phosphorothioate internucleotidic linkage, and at least one internucleotidic linkage is a non-negatively charged internucleotidic linkage having the structure of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. In some embodiments, the present disclosure provides a chirally controlled oligonucleotide comprising a sequence of UCAAGGAAGAUGGCAUUUCU, CUCCGGUUCUGAAGGUGUUC, or UUCUGAAGGUGUUCUUGUAC, or a portion thereof at least 15 bases long, wherein each U can be optionally and independently replaced by T, wherein each internucleotidic linkage is a phosphodiester.


In some embodiments, an oligonucleotide comprises one or more internucleotidic linkages which comprise a phosphorus modification prone to “autorelease” under certain conditions. That is, under certain conditions, a particular phosphorus modification is designed such that it self-cleaves from the oligonucleotide to provide, e.g., a phosphate diester such as those found in naturally occurring DNA and RNA. In some embodiments, such a phosphorus modification has a structure of —O-L-R1, wherein each of L and R1 is independently as described in the present disclosure.


In some embodiments, a provided oligonucleotide of the present disclosure comprises chemical modifications and/or stereochemistry that delivers desirable properties, e.g., delivery to target cells/tissues/organs, pharmacodynamics, pharmacokinetics, etc.


In some embodiments, an oligonucleotide comprises a modification at a linkage phosphorus which can be transformed to a natural phosphate linkage by one or more esterases, nucleases, and/or cytochrome P450 enzymes, including but not limited to: CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2R1, CYP2S1, CYP2U1, CYP2W1, CYP3A4, CYP3A5, CYP3A7, CYP3A43, CYP4A11, CYP4A22, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4F22, CYP4V2, CYP4X1, CYP4Z1, CYP5A1, CYP7A1, CYP7B1, CYP8A1 (prostacyclin synthase), CYP8B1 (bile acid biosynthesis), CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP19A1, CYP20A1, CYP21A2, CYP24A1, CYP26A1, CYP26B1, CYP26C1. CYP27A1 (bile acid biosynthesis), CYP27B1 (vitamin D3 1-alpha hydroxylase, activates vitamin D3), CYP27C1 (unknown function), CYP39A1 CYP46A1, and CYP51 A1 (lanosterol 14-alpha demethylase).


In some embodiments, an oligonucleotide comprises a modification at a linkage phosphorus that is a pro-drug moiety, e.g., a P-modification moiety facilitates delivery of an oligonucleotide to a desired location prior to removal. For instance, in some embodiments, a P-modification moiety results from PEGylation at the linkage phosphorus. One of skill in the relevant arts will appreciate that various PEG chain lengths are useful and that the selection of chain length will be determined in part by the result that is sought to be achieved by PEGylation. For instance, in some embodiments, PEGylation is effected in order to reduce RES uptake and extend in vivo circulation lifetime of an oligonucleotide.


In some embodiments, a PEGylation reagent for use in accordance with the present disclosure is of a molecular weight of about 300 g/mol to about 100,000 g/mol. In some embodiments, a PEGylation reagent is of a molecular weight of about 300 g/mol to about 10,000 g/mol. In some embodiments, a PEGylation reagent is of a molecular weight of about 300 g/mol to about 5,000 g/mol. In some embodiments, a PEGylation reagent is of a molecular weight of about 500 g/mol. In some embodiments, a PEGylation reagent of a molecular weight of about 1000 g/mol. In some embodiments, a PEGylation reagent is of a molecular weight of about 3000 g/mol. In some embodiments, a PEGylation reagent is of a molecular weight of about 5000 g/mol.


In certain embodiments, a PEGylation reagent is PEG500. In certain embodiments, a PEGylation reagent is PEG1000. In certain embodiments, a PEGylation reagent is PEG3000. In certain embodiments, a PEGylation reagent is PEG5000.


In some embodiments, an oligonucleotide comprises a P-modification moiety that acts as a PK enhancer, e.g., lipids, PEGylated lipids, etc.


In some embodiments, oligonucleotides of the present disclosure, e.g., DMD oligonucleotides, comprise a P-modification moiety that promotes cell entry and/or endosomal escape, such as a membrane-disruptive lipid or peptide.


In some embodiments, an oligonucleotide comprises a P-modification moiety that acts as a targeting moiety. In some embodiments, a P-modification moiety is or comprises a targeting moiety. In some embodiments, a target moiety is an entity that is associates with a payload of interest (e.g., with an oligonucleotide or oligonucleotide composition) and also interacts with a target site of interest so that the payload of interest is targeted to the target site of interest when associated with the targeting moiety to a materially greater extent than is observed under otherwise comparable conditions when the payload of interest is not associated with the targeting moiety. A targeting moiety may be, or comprise, any of a variety of chemical moieties, including, for example, small molecule moieties, nucleic acids, polypeptides, carbohydrates, etc. Targeting moieties are described, e.g., in Adarsh et al., “Organelle Specific Targeted Drug Delivery—A Review,” International Journal of Research in Pharmaceutical and Biomedical Sciences, 2011, p. 895.


Examples of such targeting moieties include, but are not limited to, proteins (e.g. Transferrin), oligopeptides (e.g., cyclic and acyclic RGD-containing oligopeptides), antibodies (monoclonal and polyclonal antibodies, e.g. IgG, IgA, IgM, IgD, IgE antibodies), sugars/carbohydrates (e.g., monosaccharides and/or oligosaccharides (mannose, mannose-6-phosphate, galactose, and the like)), vitamins (e.g., folate), or other small biomolecules. In some embodiments, a targeting moiety is a steroid molecule (e.g., bile acids including cholic acid, deoxycholic acid, dehydrocholic acid, cortisone; digoxigenin; testosterone; cholesterol; cationic steroids such as cortisone having a trimethylaminomethyl hydrazide group attached via a double bond at the 3-position of the cortisone ring, etc.). In some embodiments, a targeting moiety is a lipophilic molecule (e.g., alicyclic hydrocarbons, saturated and unsaturated fatty acids, waxes, terpenes, and polyalicyclic hydrocarbons such as adamantine and buckminsterfullerenes). In some embodiments, a lipophilic molecule is a terpenoid such as vitamin A, retinoic acid, retinal, or dehydroretinal. In some embodiments, a targeting moiety is a peptide.


In some embodiments, a P-modification moiety is a targeting moiety having the structure of -X-L-R1 wherein each of X, L, and R1 is independently as described in the present disclosure.


In some embodiments, a P-modification moiety facilitates cell specific delivery.


In some embodiments, a P-modification moiety may perform one or more than one functions. For instance, in some embodiments, a P-modification moiety acts as a PK enhancer and a targeting ligand. In some embodiments, a P-modification moiety acts as a pro-drug and an endosomal escape agent. Numerous other such combinations are possible and are included in the present disclosure.


Certain Examples of Oligonucleotides and Compostions

In some embodiments, the present disclosure provides oligonucleotides and/or oligonucleotide compositions that are useful for various purposes. e.g., modulating skipping, reducing levels of transcripts, improving levels of beneficial proteins, treating conditions, diseases and disorders, etc. In some embodiments, the present disclosure provides oligonucleotide compositions with improved properties, e.g., increased activities, reduced toxicities, etc. Among other things, oligonucleotides of the present disclosure comprise chemical modifications, stereochemistry, and/or combinations thereof which can improve various properties and activities of oligonucleotides. Non-limiting examples are listed in Table A1. In some embodiments, an oligonucleotide type is a type as defined by the base sequence, pattern of backbone linkages, pattern of backbone chiral centers and pattern of backbone phosphorus modifications of an oligonucleotide in Table A1, wherein the oligonucleotide comprises at least one chirally controlled internucleotidic linkage (at least one R or S in “Stereochemistry/Linkage”). In some embodiments, a plurality of oligonucleotides of a particular oligonucleotide type is a plurality of an oligonucleotide in Table A1 (e.g., a plurality of oligonucleotides is a plurality of WV-1095). In some embodiments, a plurality of oligonucleotides in a chirally controlled oligonucleotide composition is a plurality of an oligonucleotide in Table A1 (e.g., a plurality of oligonucleotides is a plurality of WV-1095), wherein the oligonucleotide comprises at least one chirally controlled internucleotidic linkage (at least one R or S in “Stereochemistry/Linkage”).


Table A1 lists non-limiting examples of DMD oligonucleotides. All of the oligonucleotides in Table A1 are DMD oligonucleotides, except for WV-12915 WV-12914 WV-12913, WV-12912, WV-12911, WV-12910, WV-12909, WV-12908, WV-12907, WV-12906. WV-12905. WV-12904, WV-15887, WV-24100, WV-24101, WV-24102, WV-24103, WV-24104, WV-24105, WV-24106, WV-24107, WV-24108, WV-24109, WV-24110, WV-XBD108, WV-XBD 109, WV-XBD 110, WV-XKCD108, WV-XKCD 109, WV-XKCD 110, which all target Malat-1, which is a gene target different than DMD.


In some embodiments, the present disclosure pertains to an oligonucleotide or oligonucleotide composition, wherein the base sequence of the oligonucleotide comprises at least 15 contiguous bases, with 1-3 mismatches, of the base sequence of a DMD oligonucleotide disclosed in Table A1. In some embodiments, the present disclosure pertains to an oligonucleotide or oligonucleotide composition, wherein the base sequence of the oligonucleotide comprises at least 15 contiguous bases of the base sequence of a DMD oligonucleotide disclosed in Table A1. In some embodiments, the present disclosure pertains to an oligonucleotide or oligonucleotide composition, wherein the base sequence of the oligonucleotide comprises the base sequence of a DMD oligonucleotide disclosed in Table A1. In some embodiments, the present disclosure pertains to an oligonucleotide or oligonucleotide composition, wherein the base sequence of the oligonucleotide is the base sequence of a DMD oligonucleotide disclosed in Table A1.


In some embodiments, the present disclosure pertains to an oligonucleotide or oligonucleotide composition, wherein the base sequence of the oligonucleotide comprises at least 15 contiguous bases, with 1-3 mismatches, of the base sequence of a DMD oligonucleotide disclosed in Table A1, or wherein the base sequence of the oligonucleotide comprises at least 15 contiguous bases of the base sequence of a DMD oligonucleotide disclosed in Table A1, or wherein the base sequence of the oligonucleotide comprises the base sequence of a DMD oligonucleotide disclosed in Table A1, or wherein the base sequence of the oligonucleotide is the base sequence of a DMD oligonucleotide disclosed in Table A1; and wherein the oligonucleotide is stereorandom (e.g., not chirally controlled), or the oligonucleotide is chirally controlled, and/or the oligonucleotide comprises at least one internucleotidic linkage which is chirally controlled, and/or the oligonucleotide optionally comprises a sugar modification which is a LNA, and/or the oligonucleotide comprises a sugar which is a natural deoxyribose, a 2′-OMe or a 2′-MOE. In some embodiments, the present disclosure pertains to an oligonucleotide capable of mediating skipping of a DMD exon, wherein the oligonucleotide comprises at least one LNA.


In the following table ID indicates identification or oligonucleotide number; and Description indicates the modified sequence.









TABLE A1







Example Oligonucleotides










ID
Description
Naked Base Sequence
Linkage / Stereochemistry





ONT
mU*S mC*S mA*S mA*S mG*S mG*S mA*S mA*S mG*S mA*S mU*S
UCAAGGAAGAUGGCA
SSSSSSSSSSSSSSS


-395
mG*S mG*S mC*S mA*S mU*S mU*S mU*S mC*S mU
UUUCU
SSSS





WV-
G * G * C * C * A * A * A * C * C * T * C * G * G * C * T * T * A * C * C * T
GGCCAAACCTCGGCT
XXXXX XXXXX


1093

TACCT
XXXXX XXXX





WV-
mG mG mC mC mA mA mA mC mC mU mC mG mG mC mU mU mA mC mC
GGCCAAACCUCGGCU
OOOOO OOOOO


1094
mU
UACCU
OOOOOOOOO





WV-
G * RG * RC * RC * SfA * SfA * SfA * RC * RC * fG * RC * RG * RG *
GGCCAAACCUCGGCU
RRRRRRRRRRRRR


1095
RC * fG * fG * SfA * RC * RC * fG
TACCT
RRRRRR





WV-
G * SG * SC * SC * SA * SA * SA * SC * SC * SfU * SC * SG * SG * SC * SfU *
GGCCAAACCTCGGCT
SSSSSSSSSSSSSSS


1096
SfU * SA * SC * SC * SfU
TACCT
SSSS





WV-
G * SG * SC * SC * SA * S mA mA mC mC mU mC mG mG mCT * SfU * SA *
GGCCAAACCUCGGCT
SSSSSOOOOOOOO


1097
Sc * SC * SfU
TACCT
OSSSSS





WV-
mG mG mC mCA * SA * SA * S mCC * SfU * SC * SG * S mGC * SfU * SfU * S
GGCCAAACCUCGGCT
OOOOSSSOSSSSOS


1098
mA mC mC mU
TACCU
SSOOO





WV-
G * S mGC * S mCA * S mAA * S mCC * S mUC * S mGG * S mCT * S mUA
GGCCAAACCUCGGCT
SOSOSOSOSOSOS


1099
* S mCC * S mU
UACCU
OSOSOS





WV-
mGG * S mCC * S mAA * S mAC * S mCT * S mCG * S mGC * S mUT * S
GGCCAAACCTCGGCU
OSOSOSOSOSOSO


1100
mAC * S mC mU
TACCU
SOSOSO





WV-
G * SG * S mC mCA * SA * S mA mCC * SfU * SC * S mG mGC * SfU * S mU
GGCCAAACCTCGGCT
SSOOSSOOSSSOOS


1101
mAC * SC * S mU
UACCU
SOOSS





WV-
G * SG * SC * S mC mA mAA * SC * S mC mU mCG * SG * S mC mU mUA *
GGCCAAACCUCGGCU
SSSOOOSSOOOSS


1102
SC * SC * S mU
UACCU
OOOSSS





WV-
G * SG * SC * SC * S mA mA mA mCC * SfU * SC * S mG mG mC mUT * SA
GGCCAAACCTCGGCU
SSSSOOOOSSSOO


1103
* SC * SC * S mU
TACCU
OOSSSS





WV-
G * SG * SC * S mCA * SA * SA * S mCC * SfU * SC * S mGG * SC * SfU * S
GGCCAAACCTCGGCT
SSSOSSSOSSSOSS


1104
mUA * SC * SC * S mU
UACCU
SOSSS





WV-
mG mG mC mCA * SA * SA * SC * SC * S mU mC mG mG mCT * SfU * SA *
GGCCAAACCUCGGCT
OOOOSSSSSOOOO


1105
SC * SC * S mU
TACCU
OSSSSS





WV-
G * SG * S mC mC mA mA mA mC mC mUC * S mG mGC * S mUT * SA *
GGCCAAACCUCGGCU
SSOOOOOOOOSO


1106
SC * SC * S mU
TACCU
OSOSSSS





WV-
T * C * A * A * G * G * A * A * G * A * T * G * G * C * A * T * T * T * C * T
TCAAGGAAGATGGCA
XXXXX XXXXX


1107

TTTCT
XXXXX XXXX





WV-
mU mC mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU mU
UCAAGGAAGAU
OOOOO OOOOO O


1108
mC mU
GGCAUUUCU
OOOOOOOO





WV-
T * RC * SfA * SfA * RG * RG * SfA * SfA * RG * SfA * fG * RG * RG *
TCAAGGAAGATGGCA
RRRRRRRRRRRRR


1109
RC * SfA * fG * fG * fG* RC * fG
TTTCT
RRRRRR





WV-
T * SC * SA * SA * SG * SG * SA * SA * SG * SA * SfU * SG * SG * SC * SA *
TCAAGGAAGATGGCA
SSSSSSSSSSSSSSS


1110
SfU * SfU * SfU * SC * SfU
TTTCT
SSSS





WV-
T * SC * SA * SA * SG * S mG mA mA mG mA mU mG mG mCA * SfU * SfU *
TCAAGGAAGAUGGCA
SSSSSOOOOOOOO


1111
SfU * SC * SfU
TTTCT
OSSSSS





WV-
mU mC mA mAG * SG * SA * S mAG * SA * SfU * SG * S mGC * SA * SfU * S
UCAAGGAAGATGGCA
OOOOSSSOSSSSOS


1112
mU
mU mC mU
UUUCUSSOOO





WV-
T * S mCA * S mAG * S mGA * S mAG * S mAT * S mGG * S mCA * S mUT
TCAAGGAAGATGGCA
SOSOSOSOSOSOS


1113
* S mUC * S mU
UTUCU
OSOSOS





WV-
mUC * S mAA * S mGG * S mAA * S mGA * S mUG * S mGC * S mAT * S
UCAAGGAAGAUGGCA
OSOSOSOSOSOSO


1114
mUT * S mC mU
UUTCU
SOSOSO





WV-
T * SC * S mA mAG * SG * S mA mAG * SA * SfU * S mG mGC * SA * S mU
TCAAGGAAGATGGCA
SSOOSSOOSSSOOS


1115
mUT * SC * S mU
UUTCU
SOOSS





WV-
T * SC * SA * S mA mG mGA * SA * S mG mA mUG * SG * S mC mA mUT *
TCAAGGAAGAUGGCA
SSSOOOSSOOOSS


1116
SfU * SC * S mU
UTTCU
OOOSSS





WV-
T * SC * SA * SA * S mG mG mA mAG * SA * SfU * S mG mG mC mAT * SfU
TCAAGGAAGATGGCA
SSSSOOOOSSSOO


1117
* SfU * SC * S mU
UTTCU
OOSSSS





WV-
T * SC * SA * S mAG * SG * SA * S mAG * SA * SfU * S mGG * SC * SA * S
TCAAGGAAGATGGCA
SSSOSSSOSSSOSS


1118
mUT * SfU * SC * S mU
UTTCU
SOSSS





WV-
mU mC mA mAG * SG * SA * SA * SG * S mA mU mG mG mCA * SfU * SfU *
UCAAGGAAGAUGGCA
OOOOSSSSSOOOO


1119
SfU * SC * S mU
TTTCU
OSSSSS





WV-
T * SC * S mA mA mG mG mA mA mG mAT * S mG mGC * S mAT * SfU * SfU
TCAAGGAAGATGGCA
SSOOOOOOOOSO


1120
* SC * S mU
TTTCU
OSOSSSS





WV-
G * G * C * C * A * mA mA mC mC mU mC mG mG mCT * T * A * C * C * T
GGCCAAACCUCGGCT
XXXXXOOOOOOO


1121

TACCT
OOXXXXX





WV-
mG mG mC mCA * A * A * mCC * T * C * G * mGC * T * T * mA mC mC
GGCCAAACCTCGGCT
OOOOXXXOXXXX


1122
mU
TACCU
OXXXOOO





WV-
G * mGC * mCA * mAA * mCC * mUC * mGG * mCT * mUA * mCC *
GGCCAAACCUCGGCT
XOXOXOXOXOXO


1123
mU
UACCU
XOXOXOX





WV-
mGG * mCC * mAA * mAC * mCT * mCG * mGC * mUT * mAC * mC
GGCCAAACCTCGGCU
OXOXOXOXOXOX


1124
mU
TACCU
OXOXOXO





WV-
G * G * mC mCA * A * mA mC mCT * C * mG mGC * T * mU mAC * C *
GGCCAAACCTCGGCT
XXOOXXOOOXXO


1125
mU
UACCU
OXXOOXX





WV-
G * G * C * mC mA mAA * C * mC mU mCG * G * mC mU mUA * C * C *
GGCCAAACCUCGGCU
XXXOOOXXOOOX


1126
mU
UACCU
XOOOXXX





WV-
G * G * C * C * mA mA mA mCC * T * C * mG mG mC mUT * A * C * C *
GGCCAAACCTCGGCU
XXXXOOOOXXXO


1127
mU
TACCU
OOOXXXX





WV-
G * G * C * mCA * A * A * mCC * T * C * mGG * C * T * mUA * C * C *
GGCCAAACCTCGGCT
XXXOXXXOXXXO


1128
mU
UACCU
XXXOXXX





WV-
mG mG mC mCA * A * A * C * C * mU mC mG mG mCT * T * A * C * C *
GGCCAAACCUCGGCT
OOOOXXXXXOOO


1129
mU
TACCU
OOXXXXX





WV-
G * G * mC mC mA mA mA mC mC mUC * mG mGC * mUT * A * C * C *
GGCCAAACCUCGGCU
XXOOOOOOOOXO


1130
mU
TACCU
OXOXXXX





WV-
T * C * A * A * G * mG mA mA mG mA mU mG mG mCA * T * T * T * C * T
TCAAGGAAGAUGGCA
XXXXXOOOOOOO


1131

TTTCT
OOXXXXX





WV-
mU mC mA mAG * G * A * mAG * A * T * G * mGC * A * T * mU mU mC
UCAAGGAAGATGGCA
OOOOXXXOXXXX


1132
mU
UUUCU
OXXXOOO





WV-
T * mCA * mAG * mGA * mAG * mAT * mGG * mCA * mUT * mUC *
TCAAGGAAGATGGCA
XOXOXOXOXOXO


1133
mU
UTUCU
XOXOXOX





WV-
mUC * mAA * mGG * mAA * mGA * mUG * mGC * mAT * mUT * mC
UCAAGGAAGAUGGCA
OXOXOXOXOXOX


1134
mU
UUTCU
OXOXOXO





WV-
T * C * mA mAG * G * mA mAG * A * T * mG mGC * A * mU mUT * C *
TCAAGGAAGATGGCA
XXOOXXOOXXXO


1135
mU
UUTCU
OXXOOXX





WV-
T * C * A * mA mG mGA * A * mG mA mUG * G * mC mA mUT * T * C *
TCAAGGAAGAUGGCA
XXXOOOXXOOOX


1136
mU
UTTCU
XOOOXXX





WV-
T * C * A * A * mG mG mA mAG * A * T * mG mG mC mAT * T * T * C *
TCAAGGAAGATGGCA
XXXXOOOOXXXO


1137
mU
TTTCU
OOOXXXX





WV-
T * C * A * mAG * G * A * mAG * A * T * mGG * C * A * mUT * T * C *
TCAAGGAAGATGGCA
XXXOXXXOXXXO


1138
mU
UTTCU
XXXOXXX





WV-
mU mC mA mAG * G * A * A * G * mA mU mG mG mCA * T * T * T * C *
UCAAGGAAGAUGGCA
OOOOXXXXXOOO


1139
mU
TTTCU
OOXXXXX





WV-
T * C * mA mA mG mG mA mA mG mAT * mG mGC * mAT * T * T * C *
TCAAGGAAGATGGCA
XXOOOOOOOOXO


1140
mU
TTTCU
OXOXXXX





WV-
mG * mG * mC * mC * mA * mA mA mC mC mU mC mG mG mC mU *
GGCCAAACCUCGGCU
XXXXXOOOOOOO


1141
mU * mA * mC * mC * mU
UACCU
OOXXXXX





WV-
mG mG mC mC mA * mA * mA * mC mC * mU * mC * mG * mG mC *
GGCCAAACCUCGGCU
OOOOXXXOXXXX


1142
mU * mU * mA mC mC mU
UACCU
OXXXOOO





WV-
mG * mG mC * mC mA * mA mA * mC mC * mU mC * mG mG * mC mU
GGCCAAACCUCGGCU
XOXOXOXOXOXO


1143
* mU mA * mC mC * mU
UACCU
XOXOXOX





WV-
mG mG * mC mC * mA mA * mA mC * mC mU * mC mG * mG mC * mU
GGCCAAACCUCGGCU
OXOXOXOXOXOX


1144
mU * mA mC * mC mU
UACCU
OXOXOXO





WV-
mG * mG * mC mC mA * mA * mA mC mC mU * mC * mG mG mC * mU
GGCCAAACCUCGGCU
XXOOXXOOOXXO


1145
* mU mA mC * mC * mU
UACCU
OXXOOXX





WV-
mG * mG * mC * mC mA mA mA * mC * mC mU mC mG * mG * mC mU
GGCCAAACCUCGGCU
XXXOOOXXOOOX


1146
mU mA * mC * mC * mU
UACCU
XOOOXXX





WV-
mG * mG * mC * mC * mA mA mA mC mC * mU * mC * mG mG mC mU
GGCCAAACCUCGGCU
XXXXOOOOXXXO


1147
mU * mA * mC * mC * mU
UACCU
OOOXXXX





WV-
mG * mG * mC * mC mA * mA * mA * mC mC * mU * mC * mG mG *
GGCCAAACCUCGGCU
XXXOXXXOXXXO


1148
mC * mU * mU mA * mC * mC * mU
UACCU
XXXOXXX





WV-
mG mG mC mC mA * mA * mA * mC * mC * mU mC mG mG mC mU *
GGCCAAACCUCGGCU
OOOOXXXXXOOO


1149
mU * mA * mC * mC * mU
UACCU
OOXXXXX





WV-
mG * mG * mC mC mA mA mA mC mC mU mC * mG mG mC * mU mU *
GGCCAAACCUCGGCU
XXOOOOOOOOXO


1150
mA * mC * mC * mU
UACCU
OXOXXXX





WV-
mU * mC * mA * mA * mG * mG mA mA mG mA mU mG mG mC mA *
UCAAGGAAGAUGGCA
XXXXXOOOOOOO


1151
mU * mU * mU * mC * mU
UUUCU
OOXXXXX





WV-
mU mC mA mA mG * mG * mA * mA mG * mA * mU * mG * mG mC *
UCAAGGAAGAUGGCA
OOOOXXXOXXXX


1152
mA * mU * mU mU mC mU
UUUCU
OXXXOOO





WV-
mU * mC mA * mA mG * mG mA * mA mG * mA mU * mG mG * mC
UCAAGGAAGAUGGCA
XOXOXOXOXOXO


1153
mA * mU mU * mU mC * mU
UUUCU
XOXOXOX





WV-
mU mC * mA mA * mG mG * mA mA * mG mA * mU mG * mG mC *
UCAAGGAAGAUGGCA
OXOXOXOXOXOX


1154
mA mU * mU mU * mC mU
UUUCU
OXOXOXO





WV-
mU * mC * mA mA mG * mG * mA mA mG * mA * mU * mG mG mC *
UCAAGGAAGAUGGCA
XXOOXXOOXXXO


1155
mA * mU mU mU * mC * mU
UUUCU
OXXOOXX





WV-
mU * mC * mA * mA mG mG mA * mA * mG mA mU mG * mG * mC
UCAAGGAAGAUGGCA
XXXOOOXXOOOX


1156
mA mU mU * mU * mC * mU
UUUCU
XOOOXXX





WV-
mU * mC * mA * mA * mG mG mA mA mG * mA * mU * mG mG mC
UCAAGGAAGAUGGCA
XXXXOOOOXXXO


1157
mA mU * mU * mU * mC * mU
UUUCU
OOOXXXX





WV-
mU * mC * mA * mA mG * mG * mA * mA mG * mA * mU * mG mG *
UCAAGGAAGAUGGCA
XXXOXXXOXXXO


1158
mC * mA * mU mU * mU * mC * mU
UUUCU
XXXOXXX





WV-
mU mC mA mA mG * mG * mA * mA * mG * mA mU mG mG mC mA *
UCAAGGAAGAUGGCA
OOOOXXXXXOOO


1159
mU * mU * mU * mC * mU
UUUCU
OOXXXXX





WV-
mU * mC * mA mA mG mG mA mA mG mA mU * mG mG mC * mA mU *
UCAAGGAAGAUGGCA
XXOOOOOOOOXO


1160
mU * mU * mC * mU
UUUCU
OXOXXXX





WV-
fG * fG * fC * fC * fA * fA * fA * fC * fC * fU * fC * fG * fG * fC * fU * fU *
GGCCAAACCUCGGCU
XXXXX XXXXX


1678
fA * fC * fC * fU
UACCU
XXXXX XXXX





WV-
mG * mG * fC * fC * mA * mA * mA * fC * fC * fU * fC * mG * mG * fC
GGCCAAACCUCGGCU
XXXXX XXXXX


1679
* fU * fU * mA * fC * fC * fU
UACCU
XXXXX XXXX





WV-
fG * fG * mC * mC * fA * fA * fA * mC * mC * mU * mC * fG * fG * mC
GGCCAAACCUCGGCU
XXXXX XXXXX


1680
* mU * mU * fA * mC * mC * mU
UACCU
XXXXX XXXX





WV-
mG * fG * mC * fC * mA * fA * mA * fC * mC * fU * mC * fG * mG * fC
GGCCAAACCUCGGCU
XXXXX XXXXX


1681
* mU * fU * mA * fC * mC * fU
UACCU
XXXXX XXXX





WV-
mG * mG * mC * mC * mA * mA * fA * fC * fC * fU * fC * fG * fG * fC *
GGCCAAACCUCGGCU
XXXXX XXXXX


1682
mU * mU * mA * mC * mC * mU
UACCU
XXXXX XXXX





WV-
fG * fG * fC * fC * fA * fA * mA * mC * mC * mU * mC * mG * mG * mC
GGCCAAACCUCGGCU
XXXXX XXXXX


1683
* fU * fU * fA * fC * fC * fU
UACCU
XXXXX XXXX





WV-
fG * fU * fC * fC * mA * mA * mA * fC * fC * mU * fC * fG * fG * fC * mU
GGCCAAACCUCGGCU
XXXXX XXXXX


1684
* mU * mA * fC * fC * mU
UACCU
XXXXX XXXX





WV-
mG * mG * mC * mC * fA * fA * fA * mC * mC * fu * mC * mG * mG *
GGCCAAACCUCGGCU
XXXXX XXXXX


1685
mC * fU * fU * fA * mC * mC * fU
UACCU
XXXXX XXXX





WV-
rA rG rA rA rA rU rG rC rC rA rU rC rU rU rC rC rU rU rG rA
AGAAAUGCCAUCUUC
OOOOO OOOOO


1687

CUUGA
OOOOOOOOO





WV-
fU * fC * fA * fA * fG * fG * fA * fA * fG * fA * fU * fG * fG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXX XXXXX


1709
fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * mA * mA * mG * mG * mA * mA * mG * mA * fU * mG * mG
UCAAGGAAGAUGGCA
XXXXX XXXXX


1710
* fC * mA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * fA * fA * fG * fG * fA * fA * fG * fA * mU * fG * fG * mC * fA
UCAAGGAAGAUGGCA
XXXXX XXXXX


1711
* mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mU * fC * mA * fA * mG * fG * mA * fA * mG * fA * mU * fG * mG * fC
UCAAGGAAGAUGGCA
XXXXX XXXXX


1712
* mA * fU * mU * fU * mC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * fA * fA * fG * fA * fU * fG * fG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


1713
mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


1714
mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * fC * mA * mA * fG * fG * mA * mA * fG * mA * mU * fG * fG * fC
UCAAGGAAGAUGGCA
XXXXX XXXXX


1715
* mA * mU * mU * mU * fC * mU
UUUCU
XXXXX XXXX





WV-
fU * mC * fA * fA * mG * mG * fA * fA * mG * fA* fU * mG * mG * mC
UCAAGGAAGAUGGCA
XXXXX XXXXX


1716
* fA * fU * fU * fU * mC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * mG * mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2095
mC * mA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2096
mC * mA * mU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * mA * mG * mG * mA * mA * mG * mA * mU * mG * mG
UCAAGGAAGAUGGCA
XXXXX XXXXX


2097
* mC * mA * mU * mU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2098
mG * mC * mA * mU * mU * mU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2099
mG * mC * mA * mU * mU * mU * mC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXXOXXXXXX


2100
mCfA * fU * fU * fU * fC * fU
UUUCU
XOXXXXX





WV-
fU * fC * fA * fA * fGfG mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXOOXXXXXX


2101
mCfAfU * fU * fU * fC * fU
UUUCU
XOOXXXX





WV-
fU * fC * fA * fAfGfG mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXOOOXXXXXX


2102
mCfAfUfU * fU * fC * fU
UUUCU
XOOOXXX





WV-
fU * fC * fAfAfGfG mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXOOOOXXXXXX


2103
mCfAfUfUfU * fC * fU
UUUCU
XOOOOXX





WV-
fU * fCfAfAfGfG mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XOOOOOXXXXXX


2104
mCfAfUfUfUfC * fU
UUUCU
XOOOOOX





WV-
fUfCfAfAfGfG mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
OOOOOOXXXXXX


2105
mCfAfUfUfUfCfU
UUUCU
XOOOOOO





WV-
fU * fC * fA * fA * fG * fG * fA * fA * fG * fA * mU * mG * mG *mC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2106
mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * fU * fG * fG
UCAAGGAAGAUGGCA
XXXXX XXXXX


2107
* fC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2108
mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2109
mG * mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mC * mU * mC * mC * mA * mA * mC * mA * mU * mC * mA * mA *
CUCCAACAUCAAGGA
XXXXX XXXXX


2165
mG * mG * mA * mA * mG * mA * mU * mG * mG * mC * mA * mU *
AG
XXXXX XXXXX



mU * mU * mC * mU * mA * mG
AUGGCAUUUCUAG
XXXXX XXXX





WV-
mA * mC * mC * mA * mG * mA * mG * mU * mA * mA * mC * mA *
ACCAGAGUAACAG
XXXXX XXXXX


2179
mG * mU * mC * mU * mG * mA * mG * mU * mA * mG * mG * mA *
UCUGAGUAGGAG
XXXXX XXXXX



mG

XXXX





WV-
mC * mA * mC * mC * mA * mG * mA * mG * mU * mA * mA * mC *
CACCAGAGUAACAG
XXXXX XXXXX


2180
mA * mG * mU * mC * mU * mG * mA * mG * mU * mA * mG * mG *
UCUGAGUAGGA
XXXXX XXXXX



mA

XXXX





WV-
mU * mC * mA * mC * mC * mA * mG * mA * mG * mU * mA * mA *
UCACCAGAGUAACA
XXXXX XXXXX


2181
mC * mA * mG * mU * mC * mU * mG * mA * mG * mU * mA * mG *
GUCUGAGUAGG
XXXXX XXXXX



mG

XXXX





WV-
mG * mU * mC * mA * mC * mC * mA * mG * mA * mG * mU * mA *
GUCACCAGAGUAAC
XXXXX XXXXX


2182
mA * mC * mA * mG * mU * mC * mU * mG * mA * mG * mU * mA *
AGUCUGAGUAG
XXXXX XXXXX



mG

XXXX





WV-
mG * mU * mU * mG * mU * mG * mU * mC * mA * mC * mC * mA *
GUUGUGUCACCAGA
XXXXX XXXXX


2183
mG * mA * mG * mU * mA * mA * mC * mA * mG * mU * mC * mU *
GUAACAGUCUG
XXXXX XXXXX



mG

XXXX





WV-
mG * mG * mU * mU * mG * mU * mG * mU * mC * mA * mC * mC *
GGUUGUGUCACCAG
XXXXX XXXXX


2184
mA * mG * mA * mG * mU * mA * mA * mC * mA * mG * mU * mC *
AGUAACAGUCU
XXXXX XXXXX



mU

XXXX





WV-
mA * mG * mG * mU * mU * mG * mU * mG * mU * mC * mA * mC *
AGGUUGUGUCAC
XXXXX XXXXX


2185
mC * mA * mG * mA * mG * mU * mA * mA * mC * mA * mG * mU *
CAGAGUAACAGUC
XXXXX XXXXX



mC

XXXX





WV-
mC * mA * mG * mG * mU * mU * mG * mU * mG * mU * mC * mA *
CAGGUUGUGUCA
XXXXX XXXXX


2186
mC * mC * mA * mG * mA * mG * mU * mA * mA * mC * mA * mG *
CCAGAGUAACAGU
XXXXX XXXXX



mU

XXXX





WV-
mA * mC * mA * mG * mG * mU * mU * mG * mU * mG * mU * mC *
ACAGGUUGUGUC
XXXXX XXXXX


2187
mA * mC * mC * mA * mG * mA * mG * mU * mA * mA * mC * mA *
ACCAGAGUAACAG
XXXXX XXXXX



mG

XXXX





WV-
mC * mC * mA * mC * mA * mG * mG * mU * mU * mG * mU * mG *
CCACAGGUUGUG
XXXXX XXXXX


2188
mU * mC * mA * mC * mC * mA * mG * mA * mG * mU * mA * mA *
UCACCAGAGUAAC
XXXXX XXXXX



mC

XXXX





WV-
mA * mC * mC * mA * mC * mA * mG * mG * mU * mU * mG * mU *
ACCACAGGUUGUG
XXXXX XXXXX


2189
mG * mU * mC * mA * mC * mC * mA * mG * mA * mG * mU * mA *
UCACCAGAGUAA
XXXXX XXXXX



mA

XXXX





WV-
mA * mA * mC * mC * mA * mC * mA * mG * mG * mU * mU * mG *
AACCACAGGUUGU
XXXXX XXXXX


2190
mU * mG * mU * mC * mA * mC * mC * mA * mG * mA * mG * mU *
GUCACCAGAGUA
XXXXX XXXXX



mA

XXXX





WV-
mU * mA * mA * mC * mC * mA * mC * mA * mG * mG * mU * mU *
UAACCACAGGUUG
XXXXX XXXXX


2191
mG * mU * mG * mU * mC * mA * mC * mC * mA * mG * mA * mG *
UGUCACCAGAGU
XXXXX XXXXX



mU

XXXX





WV-
mG * mU * mA * mA * mC * mC * mA * mC * mA * mG * mG * mU *
GUAACCACAGGUU
XXXXX XXXXX


2192
mU * mG * mU * mG * mU * mC * mA * mC * mC * mA * mG * mA *
GUGUCACCAGAG
XXXXX XXXXX



mG

XXXX





WV-
mA * mG * mU * mA * mA * mC * mC * mA * mC * mA * mG * mG *
AGUAACCACAGGU
XXXXX XXXXX


2193
mU * mU * mG * mU * mG * mU * mC * mA * mC * mC * mA * mG *
UGUGUCACCAGA
XXXXX XXXXX



mA

XXXX





WV-
mU * mA * mG * mU * mA * mA * mC * mC * mA * mC * mA * mG *
UAGUAACCACAGG
XXXXX XXXXX


2194
mG * mU * mU * mG * mU * mG * mU * mC * mA * mC * mC * mA *
UUGUGUCACCAG
XXXXX XXXXX



mG

XXXX





WV-
mU * mU * mA * mG * mU * mA * mA * mC * mC * mA * mC * mA *
UUAGUAACCACAG
XXXXX XXXXX


2195
mG * mG * mU * mU * mG * mU * mG * mU * mC * mA * mC * mC *
GUUGUGUCACCA
XXXXX XXXXX



mA

XXXX





WV-
mC * mU * mU * mA * mG * mU * mA * mA * mC * mC * mA * mC *
CUUAGUAACCACA
XXXXX XXXXX


2196
mA * mG * mG * mU * mU * mG * mU * mG * mU * mC * mA * mC *
GGUUGUGUCACC
XXXXX XXXXX



mC

XXXX





WV-
mC * mC * mU * mU * mA * mG * mU * mA * mA * mC * mC * mA *
CCUUAGUAACCACA
XXXXX XXXXX


2197
mC * mA * mG * mG * mU * mU * mG * mU * mG * mU * mC * mA *
GGUUGUGUCAC
XXXXX XXXXX



mC

XXXX





WV-
mU * mC * mC * mU * mU * mA * mG * mU * mA * mA * mC * mC *
UCCUUAGUAACCAC
XXXXX XXXXX


2198
mA * mC * mA * mG * mG * mU * mU * mG * mU * mG * mU * mC *
AGGUUGUGUCA
XXXXX XXXXX



mA

XXXX





WV-
mG * mU * mU * mU * mC * mC * mU * mU * mA * mG * mU * mA *
GUUUCCUUAGUAAC
XXXXX XXXXX


2199
mA * mC * mC * mA * mC * mA * mG * mG * mU * mU * mG * mU *
CACAGGUUGUG
XXXXX XXXXX



mG

XXXX





WV-
mA * mG * mU * mU * mU * mC * mC * mU * mU * mA * mG * mU *
AGUUUCCUUAGUAA
XXXXX XXXXX


2200
mA * mA * mC * mC * mA * mU * mA * mG * mG * mU * mU * mG *
CCACAGGUUGU
XXXXX XXXXX



mU

XXXX





WV-
mC * mA * mG * mU * mU * mU * mC * mC * mU * mU * mA * mG *
CAGUUUCCUUAGU
XXXXX XXXXX


2201
mU * mA * mA * mC * mC * mA * mC * mA * mG * mG * mU * mU *
AACCACAGGUUG
XXXXX XXXXX



mG

XXXX





WV-
mG * mC * mA * mG * mU * mU * mU * mC * mC * mU * mU * mA *
GCAGUUUCCUUAGU
XXXXX XXXXX


2202
mG * mU * mA * mA * mC * mC * mA * mC * mA * mG * mG * mU *
AACCACAGGUU
XXXXX XXXXX



mU

XXXX





WV-
mG * mG * mC * mA * mG * mU * mU * mU * mC * mC *mU * mU *
GGCAGUUUCCUUAG
XXXXX XXXXX


2203
mA * mG * mU * mA * mA * mC * mC * mA * mC * mA * mG * mG *
UAACCACAGGU
XXXXX XXXXX



mU

XXXX





WV-
mU * mG * mG * mC * mA * mG * mU * mU * mU * mC * mC * mU *
UGGCAGUUUCCUUA
XXXXX XXXXX


2204
mU * mA * mG * mU * mA * mA * mC * mC * mA * mC * mA * mG *
GUAACCACAGG
XXXXX XXXXX



mG

XXXX





WV-
mA * mU * mG * mG * mC * mA * mG * mU * mU * mU * mC * mC *
AUGGCAGUUUCCUU
XXXXX XXXXX


2205
mU * mU * mA * mG * mU * mA * mA * mC * mC * mA * mC * mA *
AGUAACCACAG
XXXXX XXXXX



mG

XXXX





WV-
mA * mG * mA * mU * mG * mG * mC * mA * mG * mU * mU * mU *
AGAUGGCAGUUUCCU
XXXXX XXXXX


2206
mC * mC * mU * mU * mA * mG * mU * mA * mA * mC * mC * mA *
UAGUAACCAC
XXXXX XXXXX



mC

XXXX





WV-
mG * mA * mG * mA * mU * mG * mG * mC * mA * mG * mU * mU *
GAGAUGGCAGUUUCC
XXXXX XXXXX


2207
mU * mC * mC * mU * mU * mA * mG * mU * mA * mA * mC * mC *
UUAGUAACCA
XXXXX XXXXX



mA

XXXX





WV-
mG * mG * mA * mG * mA * mU * mG * mG * mC * mA * mG * mU *
GGAGAUGGCAGUUUC
XXXXX XXXXX


2208
mU * mU * mC * mC * mU * mU * mA * mG * mU * mA * mA * mC *
CUUAGUAACC
XXXXX XXXXX



mC

XXXX





WV-
mU * mG * mG * mA * mG * mA * mU * mG * mG * mC * mA * mG *
UGGAGAUGGCAGUUU
XXXXX XXXXX


2209
mU * mU * mU * mC * mC * mU * mU * mA * mG * mU * mA * mA *
CCUUAGUAAC
XXXXX XXXXX



mC

XXXX





WV-
mU * mU * mG * mG * mA * mG * mA * mU * mG * mG * mC * mA *
UUGGAGAUGGCAGUU
XXXXX XXXXX


2210
mG * mU * mU * mU * mC * mC * mU * mU * mA * mG * mU * mA *
UCCUUAGUAA
XXXXX XXXXX



mA

XXXX





WV-
mU * mU * mU * mG * mG * mA * mG * mA * mU * mG * mG * mC *
UUUGGAGAUGGCAGU
XXXXX XXXXX


2211
mA * mG * mU * mU * mU * mC * mC * mU * mU * mA * mG * mU *
UUCCUUAGUA
XXXXX XXXXX



mA

XXXX





WV-
mA * mG * mU * mU * mU * mG * mG * mA * mG * mA * mU * mG *
AGUUUGGAGAUGGCA
XXXXX XXXXX


2212
mG * mC * mA * mG * mU * mU * mU * mC * mC * mU * mU * mA *
GUUUCCUUAG
XXXXX XXXXX



mG

XXXX





WV-
mU * mA * mG * mU * mU * mU * mG * mG * mA * mG * mA * mU *
UAGUUUGGAGAUGGC
XXXXX XXXXX


2213
mG * mG * mC * mA * mG * mU * mU * mU * mC * mC * mU * mU *
AGUUUCCUUA
XXXXX XXXXX



mA

XXXX





WV-
mC * mU * mA * mG * mU * mU * mU * mG * mG * mA * mG * mA *
CUAGUUUGGAGAUGG
XXXXX XXXXX


2214
mU * mG * mG * mC * mA * mG * mU * mU * mU * mC * mC * mU *
CAGUUUCCUU
XXXXX XXXXX



mU

XXXX





WV-
mU * mC * mU * mA * mG * mU * mU * mU * mG * mG * mA * mG *
UCUAGUUUGGAGAUG
XXXXX XXXXX


2215
mA * mU * mG * mG * mC * mA * mG * mU * mU * mU * mC * mC *
GCAGUUUCCU
XXXXX XXXXX



mU

XXXX





WV-
mU * mU * mC * mU * mA * mG * mU * mU * mU * mG * mG * mA *
UUCUAGUUUGGAGAU
XXXXX XXXXX


2216
mG * mA * mU * mG * mG * mC * mA * mG * mU * mU * mU * mC *
GGCAGUUUCC
XXXXX XXXXX



mC

XXXX





WV-
mC * mA * mU * mU * mU * mC * mU * mA * mG * mU * mU * mU *
CAUUUCUAGUUUGGA
XXXXX XXXXX


2217
mG * mG * mA * mG * mA * mU * mG * mG * mC * mA * mG * mU *
GAUGGCAGUU
XXXXX XXXXX



mU

XXXX





WV-
mG * mC * mA * mU * mU * mU * mC * mU * mA * mG * mU * mU *
GCAUUUCUAGUUUGG
XXXXX XXXXX


2218
mU * mG * mG * mA * mG * mA * mU * mG * mG * mC * mA * mG *
AGAUGGCAGU
XXXXX XXXXX



mU

XXXX





WV-
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU * mA *
AUGGCAUUUCUAGUU
XXXXX XXXXX


2219
mG * mU * mU * mU * mG * mG * mA * mG * mA * mU * mG * mG *
UGGAGAUGGC
XXXXX XXXXX



mC

XXXX





WV-
mG * mA * mA * mG * mA * mU * mG * mG * mC * mA * mU * mU *
GAAGAUGGCAUUUCU
XXXXX XXXXX


2220
mU * mC * mU * mA * mG * mU * mU * mU * mG * mG * mA * mG *
AGUUUGGAGA
XXXXX XXXXX



mA

XXXX





WV-
mA * mG * mG * mA * mA * mG * mA * mU * mG * mG * mC * mA *
AGGAAGAUGGCAUUU
XXXXX XXXXX


2221
mU * mU * mU * mC * mU * mA * mG * mU * mU * mU * mG * mG *
CUAGUUUGGA
XXXXX XXXXX



mA

XXXX





WV-
mA * mA * mG * mG * mA * mA * mG * mA * mU * mG * mG * mC *
AAGGAAGAUGGCAUU
XXXXX XXXXX


2222
mA * mU * mU * mU * mC * mU * mA * mG * mU * mU * mU * mG *
U CUAGUUUGG
XXXXX XXXXX



mG

XXXX





WV-
mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG * mG *
CAAGGAAGAUGGCAU
XXXXX XXXXX


2223
mC * mA * mU * mU * mU * mC * mU * mA * mG * mU * mU * mU *
UU CUAGUUUG
XXXXX XXXXX



mG

XXXX





WV-
mC * mA * mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
CAUCAAGGAAGAUGG
XXXXX XXXXX


2224
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU * mA * mG *
CAU UUCUAGU
XXXXX XXXXX



mU

XXXX





WV-
mA * mC * mA * mU * mC * mA * mA * mG * mG * mA * mA * mG *
ACAUCAAGGAAGAUG
XXXXX XXXXX


2225
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU * mA *
GCA UUUCUAG
XXXXX XXXXX



mG

XXXX





WV-
mA * mA * mC * mA * mU * mC * mA * mA * mG * mG * mA * mA *
AACAUCAAGGAAGAU
XXXXX XXXXX


2226
mG * mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU *
GGC AUUUCUA
XXXXX XXXXX



mA

XXXX





WV-
mC * mA * mA * mC * mA * mU * mC * mA * mA * mG * mG * mA *
CAACAUCAAGGAAGA
XXXXX XXXXX


2227
mA * mG * mA * mU * mG * mG * mC * mA * mU * mU * mU * mC *
UGG CAUUUCU
XXXXX XXXXX



mU

XXXX





WV-
mC * mU * mC * mC * mA * mA * mC * mA * mU * mC * mA * mA *
CUCCAACAUCAAGGA
XXXXX XXXXX


2228
mG * mG * mA * mA * mG * mA * mU * mG * mG * mC * mA * mU *
AGAU GGCAUU
XXXXX XXXXX



mU

XXXX





WV-
mA * mC * mC * mU * mC * mC * mA * mA * mC * mA * mU * mC *
ACCUCCAACAUCAAG
XXXXX XXXXX


2229
mA * mA * mG * mG * mA * mA * mG * mA * mU * mG * mG * mC *
GAAGAUGGCA
XXXXX XXXXX



mA

XXXX





WV-
mG * mU * mA * mC * mC * mU * mC * mC * mA * mA * mC * mA *
GUACCUCCAACAUCA
XXXXX XXXXX


2230
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
AGGAAGAUGG
XXXXX XXXXX



mG

XXXX





WV-
mA * mG * mG * mU * mA * mC * mC * mU * mC * mC * mA * mA *
AGGUACCUCCAACAU
XXXXX XXXXX


2231
mC * mA * mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
CAAGGAAGAU
XXXXX XXXXX



mU

XXXX





WV-
mA * mG * mA * mG * mC * mA * mG * mG * mU * mA * mC * mC *
AGAGCAGGUACCUCC
XXXXX XXXXX


2232
mU * mC * mC * mA * mA * mC * mA * mU * mC * mA * mA * mG *
AACAUCAAGG
XXXXX XXXXX



mG

XXXX





WV-
mC * mA * mG * mA * mG * mC * mA * mG * mG * mU * mA * mC *
CAGAGCAGGUACCUC
XXXXX XXXXX


2233
mC * mU * mC * mC * mA * mA * mC * mA * mU * mC * mA * mA *
CAACAUCAAG
XXXXX XXXXX



mG

XXXX





WV-
mC * mU * mG * mC * mC * mA * mG * mA * mG * mC * mA * mG *
CUGCCAGAGCAGGUA
XXXXX XXXXX


2234
mG * mU * mA * mC * mC * mU * mC * mC * mA * mA * mC * mA *
CCUCCAACAU
XXXXX XXXXX



mU

XXXX





WV-
mU * mC * mU * mG * mC * mC * mA * mG * mA * mG * mC * mA *
UCUGCCAGAGCAGGU
XXXXX XXXXX


2235
mG * mG * mU * mA * mC * mC * mU * mC * mC * mA * mA * mC *
ACCUCCAACA
XXXXX XXXXX



mA

XXXX





WV-
mA * mU * mC * mU * mG * mC * mC * mA * mG * mA * mG * mC *
AUCUGCCAGAGCAGG
XXXXX XXXXX


2236
mA * mG * mG * mU * mA * mC * mC * mU * mC * mC * mA * mA *
UACCUCCAAC
XXXXX XXXXX



mC

XXXX





WV-
mA * mA * mU * mC * mU * mG * mC * mC * mA * mG * mA * mG *
AAUCUGCCAGAGCAG
XXXXX XXXXX


2237
mC * mA * mG * mG * mU * mA * mC * mC * mU * mC * mC * mA *
GUACCUCCAA
XXXXX XXXXX



mA

XXXX





WV-
mA * mA * mA * mU * mC * mU * mG * mC * mC * mA * mG * mA *
AAAUCUGCCAGAGCA
XXXXX XXXXX


2238
mG * mC * mA * mG * mG * mU * mA * mC * mC * mU * mC * mC *
GGUACCUCCA
XXXXX XXXXX



mA

XXXX





WV-
mG * mA * mA * mA * mU * mC * mU * mG * mC * mC * mA * mG *
GAAAUCUGCCAGAGC
XXXXX XXXXX


2239
mA * mG * mC * mA * mG * mG * mU * mA * mC * mC * mU * mC *
AGGUACCUCC
XXXXX XXXXX



mC

XXXX





WV-
mU * mG * mA * mA * mA * mU * mC * mU * mG * mC * mC * mA *
UGAAAUCUGCCAGAG
XXXXX XXXXX


2240
mG * mA * mG * mC * mA * mG * mG * mU * mA * mC * mC * mU *
CAGGUACCUC
XXXXX XXXXX



mC

XXXX





WV-
mU * mU * mG * mA * mA * mA * mU * mC * mU * mG * mC * mC *
UUGAAAUCUGCCAGA
XXXXX XXXXX


2241
mA * mG * mA * mG * mC * mA * mG * mG * mU * mA * mC * mC *
GCAGGUACCU
XXXXX XXXXX



mU

XXXX





WV-
mC * mC * mC * mG * mG * mU * mU * mG * mA * mA * mA * mU *
CCCGGUUGAAAUCUG
XXXXX XXXXX


2242
mC * mU * mG * mC * mC * mA * mG * mA * mG * mC * mA * mG *
CCAGAGCAGG
XXXXX XXXXX



mG

XXXX





WV-
mC * mC * mA * mA * mG * mC * mC * mC * mG * mG * mU * mU *
CCAAGCCCGGUUGAA
XXXXX XXXXX


2243
mG * mA * mA * mA * mU * mC * mU * mG * mC * mC * mA * mG *
AUCUGCCAGA
XXXXX XXXXX



mA

XXXX





WV-
mU * mC * mC * mA * mA * mG * mC * mC * mC * mG * mG * mU *
UCCAAGCCCGGUUGA
XXXXX XXXXX


2244
mU * mG * mA * mA * mA * mU * mC * mU * mG * mC * mC * mA *
AAUCUGCCAG
XXXXX XXXXX



mG

XXXX





WV-
mG * mU * mC * mC * mA * mA * mG * mC * mC * mC * mG * mG *
GUCCAAGCCCGGUU
XXXXX XXXXX


2245
mU * mU * mG * mA * mA * mA * mU * mC * mU * mG * mC * mC *
GAAAUCUGCCA
XXXXX XXXXX



mA

XXXX





WV-
mU * mC * mU * mG * mU * mC * mC * mA * mA * mG * mC * mC *
UCUGUCCAAGCCCGG
XXXXX XXXXX


2246
mC * mG * mG * mU * mU * mG * mA * mA * mA * mU * mC * mU *
UUGAAAUCUG
XXXXX XXXXX



mG

XXXX





WV-
mU * mU * mC * mU * mG * mU * mC * mC * mA * mA * mG * mC *
UUCUGUCCAAGCCCG
XXXXX XXXXX


2247
mC * mC * mG * mG * mU * mU * mG * mA * mA * mA * mU * mC *
GUUGAAAUCU
XXXXX XXXXX



mU

XXXX





WV-
mG * mU * mU * mC * mU * mG * mU * mC * mC * mA * mA * mG *
GUUCUGUCCAAGCCC
XXXXX XXXXX


2248
mC * mC * mC * mG * mG * mU * mU * mG * mA * mA * mA * mU *
GGUUGAAAUC
XXXXX XXXXX



mC

XXXX





WV-
mA * mG * mU * mU * mC * mU * mG * mU * mC * mC * mA * mA *
AGUUCUGUCCAAGC
XXXXX XXXXX


2249
mG * mC * mC * mC * mG * mG * mU * mU * mG * mA * mA * mA *
CCGGUUGAAAU
XXXXX XXXXX



mU

XXXX





WV-
mA * mA * mG * mU * mU * mC * mU * mG * mU * mC * mC * mA *
AAGUUCUGUCCAA
XXXXX XXXXX


2250
mA * mG * mC * mC * mC * mG * mG * mU * mU * mG * mA * mA *
GCCCGGUUGAAA
XXXXX XXXXX



mA

XXXX





WV-
mU * mA * mA * mG * mU * mU * mC * mU * mG * mU * mC * mC *
UAAGUUCUGUCC
XXXXX XXXXX


2251
mA * mA * mG * mC * mC * mC * mG * mG * mU * mU * mG * mA *
AGCCCGGUUGAA
XXXXX XXXXX



mA

XXXX





WV-
mG * mU * mA * mA * mG * mU * mU * mC * mU * mG * mU * mC *
GUAAGUUCUGU
XXXXX XXXXX


2252
mC * mA * mA * mG * mC * mC * mC * mG * mG * mU * mU * mG *
CCAAGCCCGGUUGA
XXXXX XXXXX



mA

XXXX





WV-
mG * mG * mU * mA * mA * mG * mU * mU * mC * mU * mG * mU *
GGUAAGUUCUGUCCA
XXXXX XXXXX


2253
mC * mC * mA * mA * mG * mC * mC * mC * mG * mG * mU * mU *
AGCCCGGUUG
XXXXX XXXXX



mG

XXXX





WV-
mC * mG * mG * mU * mA * mA * mG * mU * mU * mC * mU * mG *
CGGUAAGUUCUGUCC
XXXXX XXXXX


2254
mU * mC * mC * mA * mA * mG * mC * mC * mC * mG * mG * mU *
AAGCCCGGUU
XXXXX XXXXX



mU

XXXX





WV-
mU * mC * mG * mG * mU * mA * mA * mG * mU * mU * mC * mU *
UCGGUAAGUUCUGUC
XXXXX XXXXX


2255
mG * mU * mC * mC * mA * mA * mG * mC * mC * mC * mG * mG *
CAAGCCCGGU
XXXXX XXXXX



mU

XXXX





WV-
mG * mU * mC * mG * mG * mU * mA * mA * mG * mU * mU * mC *
GUCGGUAAGUUCUGU
XXXXX XXXXX


2256
mU * mG * mU * mC * mC * mA * mA * mG * mC * mC * mC * mG *
CCAAGCCCGG
XXXXX XXXXX



mG

XXXX





WV-
mA * mG * mU * mC * mG * mG * mU * mA * mA * mG * mU * mU *
AGUCGGUAAGUUCUG
XXXXX XXXXX


2257
mC * mU * mG * mU * mC * mC * mA * mA * mG * mC * mC * mC *
UCCAAGCCCG
XXXXX XXXXX



mG

XXXX





WV-
mC * mA * mG * mU * mC * mG * mG * mU * mA * mA * mG * mU *
CAGUCGGUAAGUUCU
XXXXX XXXXX


2258
mU * mC * mU * mG * mU * mC * mC * mA * mA * mG * mC * mC *
GUCCAAGCCC
XXXXX XXXXX



mC

XXXX





WV-
mA * mA * mA * mG * mC * mC * mA * mG * mU * mC * mG * mG *
AAAGCCAGUCGGUAA
XXXXX XXXXX


2259
mU * mA * mA * mG * mU * mU * mC * mU * mG * mG * mC * mC *
GUUCUGUCCA
XXXXX XXXXX



mA

XXXX





WV-
mG * mA * mA * mA * mG * mC * mC * mA * mG * mU * mC * mG *
GAAAGCCAGUCGGUA
XXXXX XXXXX


2260
mG * mU * mA * mA * mG * mU * mU * mC * mU * mG * mU * mC *
AGUUCUGUCC
XXXXX XXXXX



mC

XXXX





WV-
mG * mU * mC * mA * mC * mC * mC * mA * mC * mC * mA * mU *
GUCACCCACCAUCAC
XXXXX XXXXX


2261
mC * mA * mC * mC * mC * mU * mC * mU * mG * mU * mG * mA *
CCUCUGUGAU
XXXXX XXXXX



mU

XXXX





WV-
mG * mG * mU * mC * mA * mC * mC * mC * mA * mC * mC * mA *
GGUCACCCACCAUCA
XXXXX XXXXX


2262
mU * mC * mA * mC * mC * mC * mU * mC * mU * mG * mU * mG *
CCCUCUGUGA
XXXXX XXXXX



mA

XXXX





WV-
mA * mA * mG * mG * mU * mC * mA * mC * mC * mC * mA * mC *
AAGGUCACCCACCAU
XXXXX XXXXX


2263
mC * mA * mU * mC * mA * mC * mC * mC * mU * mC * mU * mG *
CACCCUCUGU
XXXXX XXXXX



mU

XXXX





WV-
mC * mA * mA * mG * mG * mU * mC * mA * mC * mC * mC * mA *
CAAGGUCACCCACCA
XXXXX XXXXX


2264
mC * mC * mA * mU * mC * mA * mC * mC * mC * mU * mC * mU *
UCACCCUCUG
XXXXX XXXXX



mG

XXXX





WV-
mU * mC * mA * mA * mG * mG * mU * mC * mA * mC * mC * mC *
UCAAGGUCACCCACC
XXXXX XXXXX


2265
mA * mC * mC * mA * mU * mC * mA * mC * mC * mC * mU * mC *
AUCACCCUCU
XXXXX XXXXX



mU

XXXX





WV-
mC * mU * mC * mA * mA * mG * mG * mU * mC * mA * mC * mC *
CUCAAGGUCACCCAC
XXXXX XXXXX


2266
mC * mA * mC * mC * mA * mU * mC * mA * mC * mC * mC * mU *
CAUCACCCUC
XXXXX XXXXX



mC

XXXX





WV-
mC * mU * mU * mG * mA * mU * mC * mA * mA * mG * mC * mA *
CUUGAUCAAGCAGAG
XXXXX XXXXX


2267
mG * mA * mG * mA * mA * mA * mG * mC * mC * mA * mG * mU *
AAAGCCAGUC
XXXXX XXXXX



mC

XXXX





WV-
mA * mU * mA * mA * mC * mU * mU * mG * mA * mU * mC * mA *
AUAACUUGAUCAAGC
XXXXX XXXXX


2268
mA * mG * mC * mA * mG * mA * mG * mA * mA * mA * mG * mC *
AGAGAAAGCC
XXXXX XXXXX



mC

XXXX





WV-
mA * mG * mU * mA * mA * mC * mA * mG * mU * mC * mU * mG *
AGUAACAGUCUGAGU
XXXXX XXXXX


2273
mA * mG * mU * mA * mG * mG * mA * mG
AGGAG
XXXXX XXXX





WV-
mG * mA * mG * mU * mA * mA * mC * mA * mG * mU * mC * mU *
GAGUAACAGUCUGAG
XXXXX XXXXX


2274
mG * mA * mG * mU * mA * mG * mG * mA
UAGGA
XXXXX XXXX





WV-
mA * mG * mA * mG * mU * mA * mA * mC * mA * mG * mU * mC *
AGAGUAACAGUCUGA
XXXXX XXXXX


2275
mU * mG * mA * mG * mU * mA * mG * mG
GUAGG
XXXXX XXXX





WV-
mC * mA * mG * mA * mG * mU * mA * mA * mC * mA * mG * mU *
CAGAGUAACAGUCUG
XXXXX XXXXX


2276
mC * mU * mG * mA * mG * mU * mA * mG
AGUAG
XXXXX XXXX





WV-
mG * mU * mC * mA * mC * mC * mA * mG * mA * mG * mU * mA
GUCACCAGAGUAACA
XXXXX XXXXX


2277
mA * mC * mA * mG * mU * mC * mU * mG
GUCUG
XXXXX XXXX





WV-
mU * mG * mU * mC * mA * mC * mC * mA * mG * mA * mG * mU *
UGUCACCAGAGUAAC
XXXXX XXXXX


2278
mA * mA * mC * mA * mG * mU * mC * mU
AGUCU
XXXXX XXXX





WV-
mG * mU * mG * mU * mC * mA * mC * mC * mA * mG * mA * mG *
GUGUCACCAGAGUAA
XXXXX XXXXX


2279
mU * mA * mA * mC * mA * mG * mU *mC
CAGUC
XXXXX XXXX





WV-
mU * mG * mU * mG * mU * mC * mA * mC * mC * mA * mG * mA *
UGUGUCACCAGAGUA
XXXXX XXXXX


2280
mG * mU * mA * mA * mC * mA * mG * mU
ACAGU
XXXXX XXXX





WV-
mU * mU * mG * mU * mG * mU * mC * mA * mC * mC * mA * mG *
UUGUGUCACCAGAGU
XXXXX XXXXX


2281
mA * mG * mU * mA * mA * mC * mA * mG
AACAG
XXXXX XXXX





WV-
mG * mG * mU * mU * mG * mU * mG * mU * mC * mA * mC * mC *
GGUUGUGUCACCAGA
XXXXX XXXXX


2282
mA * mG * mA * mG * mU * mA * mA * mC
GUAAC
XXXXX XXXX





WV-
mA * mG * mG * mU * mU * mG * mU * mG * mU * mC * mA * mC *
AGGUUGUGUCACCAG
XXXXX XXXXX


2283
mC * mA * mG * mA * mG * mU * mA * mA
AGUAA
XXXXX XXXX





WV-
mC * mA * mG * mG * mU * mU * mG * mU * mG * mU * mC * mA *
CAGGUUGUGUCACCA
XXXXX XXXXX


2284
mC * mC * mA * mG * mA * mG * mU * mA
GAGUA
XXXXX XXXX





WV-
mA * mC * mA * mG * mG * mU * mU * mG * mU * mG * mU * mC *
ACAGGUUGUGUCACC
XXXXX XXXXX


2285
mA * mC * mC * mA * mG * mA * mG * mU
AGAGU
XXXXX XXXX





WV-
mC * mA * mC * mA * mG * mG * mU * mU * mG * mU * mG * mU *
CACAGGUUGUGUCAC
XXXXX XXXXX


2286
mC * mA * mC * mC * mA * mG * mA * mG
CAGAG
XXXXX XXXX





WV-
mC * mC * mA * mC * mA * mG * mG * mU * mU * mG * mU * mG *
CCACAGGUUGUGUCA
XXXXX XXXXX


2287
mU * mC * mA * mC * mC * mA * mG * mA
CCAGA
XXXXX XXXX





WV-
mA * mC * mC * mA * mC * mA * mG * mG * mU * mU * mG * mU *
ACCACAGGUUGUGUC
XXXXX XXXXX


2288
mG * mU * mC * mA * mC * mC * mA * mG
ACCAG
XXXXX XXXX





WV-
mA * mA * mC * mC * mA * mC * mA * mG * mG * mU * mU * mG *
AACCACAGGUUGUGU
XXXXX XXXXX


2289
mU * mG * mU * mC * mA * mC * mC * mA
CACCA
XXXXX XXXX





WV-
mU * mA * mA * mC * mC * mA * mC * mA * mG * mG * mU * mU *
UAACCACAGGUUGUG
XXXXX XXXXX


2290
mG * mU * mG * mU * mC * mA * mC * mC
UCACC
XXXXX XXXX





WV-
mG * mU * mA * mA * mC * mC * mA * mC * mA * mG * mG * mU *
GUAACCACAGGUUGU
XXXXX XXXXX


2291
mU * mG * mU * mG * mU * mC * mA * mC
GUCAC
XXXXX XXXX





WV-
mA * mG * mU * mA * mA * mC * mC * mA * mC * mA * mG * mG *
AGUAACCACAGGUUG
XXXXX XXXXX


2292
mU * mU * mG * mU * mG * mU * mC * mA
UGUCA
XXXXX XXXX





WV-
mC * mU * mU * mA * mG * mU * mA * mA * mC * mC * mA * mC *
CUUAGUAACCACAGG
XXXXX XXXXX


2293
mA * mG * mG * mU * mU * mG * mU * mG
UUGUG
XXXXX XXXX





WV-
mC * mC * mU * mU * mA * mG * mU * mA * mA * mC * mC * mA *
CCUUAGUAACCACAG
XXXXX XXXXX


2294
mC * mA * mG * mG * mU * mU * mG * mU
GUUGU
XXXXX XXXX





WV-
mU * mC * mC * mU * mU * mA * mG * mU * mA * mA * mC * mC *
UCCUUAGUAACCACA
XXXXX XXXXX


2295
mA * mC * mA * mG * mG * mU * mU * mG
GGUUG
XXXXX XXXX





WV-
mU * mU * mC * mC * mU * mU * mA * mG * mU * mA * mA * mC *
UUCCUUAGUAACCAC
XXXXX XXXXX


2296
mC * mA * mC * mA * mG * mG * mU * mU
AGGUU
XXXXX XXXX





WV-
mU * mU * mU * mC * mC * mU * mU * mA * mG * mU * mA * mA *
UUUCCUUAGUAACCA
XXXXX XXXXX


2297
mC * mC * mA * mC * mA * mG * mG * mU
CAGGU
XXXXX XXXX





WV-
mG * mU * mU * mU * mC * mC * mU * mU * mA * mG * mU * mA *
GUUUCCUUAGUAACC
XXXXX XXXXX


2298
mA * mC * mC * mA * mC * mA * mG * mG
ACAGG
XXXXX XXXX





WV-
mA * mG * mU * mU * mU * mC * mC * mU * mU * mA * mG * mU *
AGUUUCCUUAGUAAC
XXXXX XXXXX


2299
mA * mA * mC * mC * mA * mC * mA * mG
CACAG
XXXXX XXXX





WV-
mG * mC * mA * mG * mU * mU * mU * mC * mC * mU * mU * mA *
GCAGUUUCCUUAGUA
XXXXX XXXXX


2300
mG * mU * mA * mA * mC * mC * mA * mC
ACCAC
XXXXX XXXX





WV-
mG * mG * mC * mA * mG * mU * mU * mU * mC * mC * mU * mU *
GGCAGUUUCCUUAGU
XXXXX XXXXX


2301
mA * mG * mU * mA * mA * mC * mC * mA
AACCA
XXXXX XXXX





WV-
mU * mG * mG * mC * mA * mG * mU * mU * mU * mC * mC * mU *
UGGCAGUUUCCUUAG
XXXXX XXXXX


2302
mU * mA * mG * mU * mA * mA * mC * mC
UAACC
XXXXX XXXX





WV-
mA * mU * mG * mG * mC * mA * mG * mU * mU * mU * mC * mC *
AUGGCAGUUUCCUUA
XXXXX XXXXX


2303
mU * mU * mA * mG * mU * mA * mA * mC
GUAAC
XXXXX XXXX





WV-
mG * mA * mU * mG * mG * mC * mA * mG * mU * mU * mU * mC *
GAUGGCAGUUUCCUU
XXXXX XXXXX


2304
mC * mU * mU * mA * mG * mU * mA * mA
AGUAA
XXXXX XXXX





WV-
mA * mG * mA * mU * mG * mG * mC * mA * mG * mU * mU * mU *
AGAUGGCAGUUUCCU
XXXXX XXXXX


2305
mC * mC * mU * mU * mA * mG * mU * mA
UAGUA
XXXXX XXXX





WV-
mG * mG * mA * mG * mA * mU * mG * mG * mC * mA * mG * mU *
GGAGAUGGCAGUUUC
XXXXX XXXXX


2306
mU * mU * mC * mC * mU * mU * mA * mG
CUUAG
XXXXX XXXX





WV-
mU * mG * mG * mA * mG * mA * mU * mG * mG * mC * mA * mG *
UGGAGAUGGCAGUU
XXXXX XXXXX


2307
mU * mU * mU * mC * mC * mU * mU * mA
UCCUUA
XXXXX XXXX





WV-
mU * mU * mG * mG * mA * mG * mA * mU * mG * mG * mC * mA *
UUGGAGAUGGCAGU
XXXXX XXXXX


2308
mG * mU * mU * mU * mC * mC * mU * mU
UUCCUU
XXXXX XXXX





WV-
mU * mU * mU * mG * mG * mA * mG * mA * mU * mG * mG * mC *
UUUGGAGAUGGCAG
XXXXX XXXXX


2309
mA * mG * mU * mU * mU * mC * mC * mU
UUUCCU
XXXXX XXXX





WV-
mG * mU * mU * mU * mG * mG * mA * mG * mA * mU * mG * mG *
GUUUGGAGAUGGCA
XXXXX XXXXX


2310
mC * mA * mG * mU * mU * mU * mC * mC
GUUUCC
XXXXX XXXX





WV-
mC * mU * mA * mG * mU * mU * mU * mG * mG * mA * mG * mA *
CUAGUUUGGAGAUG
XXXXX XXXXX


2311
mU * mG * mG * mC * mA * mG * mU * mU
GCAGUU
XXXXX XXXX





WV-
mU * mC * mU * mA * mG * mU * mU * mU * mG * mG * mA * mG *
UCUAGUUUGGAGAU
XXXXX XXXXX


2312
mA * mU * mG * mG * mC * mA * mG * mU
GGCAGU
XXXXX XXXX





WV-
mA * mU * mU * mU * mC * mU * mA * mG * mU * mU * mU * mG *
AUUUCUAGUUUGGA
XXXXX XXXXX


2313
mG * mA * mG * mA * mU * mG * mG * mC
GAUGGC
XXXXX XXXX





WV-
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU * mA * mG *
UGGCAUUUCUAGUUU
XXXXX XXXXX


2314
mU * mU * mU * mG * mG * mA * mG * mA
GGAGA
XXXXX XXXX





WV-
mG * mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU *
GAUGGCAUUUCUAGU
XXXXX XXXXX


2315
mA * mG * mU * mU * mU * mG * mG * mA
UUGGA
XXXXX XXXX





WV-
mA * mG * mA * mU * mG * mG * mC * mA * mU * mU * mU * MC *
AGAUGGCAUUUCUAG
XXXXX XXXXX


2316
mU * mA * mG * mU * mU * mU * mG * mG
UUUGG
XXXXX XXXX





WV-
mA * mA * mG * mA * mU * mG * mG * mC * mA * mU * mU * mU *
AAGAUGGCAUUUCUA
XXXXX XXXXX


2317
mC * mU * mA * mG * mU * mU * mU * mG
GUUUG
XXXXX XXXX





WV-
mA * mG * mG * mA * mA * mG * mA * mU * mG * mG * mC * mA *
AGGAAGAUGGCAUU
XXXXX XXXXX


2318
mU * mU * mU * mC * mU * mA * mG * mU
UCUAGU
XXXXX XXXX





WV-
mA * mA * mG * mG * mA * mA * mG * mA * mU * mG * mG * mC *
AAGGAAGAUGGCAU
XXXXX XXXXX


2319
mA * mU * mU * mU * mC * mU * mA * mG
UUCUAG
XXXXX XXXX





WV-
mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG * mG *
CAAGGAAGAUGGCAU
XXXXX XXXXX


2320
mC * mA * mU * mU * mU * mC * mU * mA
UUCUA
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2321
mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mA * mC * mA * mU * mC * mA * mA * mG * mG * mA * mA * mG *
ACAUCAAGGAAGAUG
XXXXX XXXXX


2322
mA * mU * mG * mG * mC * mA * mU * mU
GCAUU
XXXXX XXXX





WV-
mC * mA * mA * mC * mA * mU * mC * mA * mA * mG * mG * mA *
CAACAUCAAGGAAGA
XXXXX XXXXX


2323
mA * mG * mA * mU * mG * mG * mC * mA
UGGCA
XXXXX XXXX





WV-
mU * mC * mC * mA * mA * mC * mA * mU * mC * mA * mA * mG *
UCCAACAUCAAGGAA
XXXXX XXXXX


2324
mG * mA * mA * mG * mA * mU * mG * mG
GAUGG
XXXXX XXXX





WV-
mC * mC * mU * mC * mC * mA * mA * mC * mA * mU * mC * mA *
CCUCCAACAUCAAGG
XXXXX XXXXX


2325
mA * mG * mG * mA * mA * mG * mA * mU
AAGAU
XXXXX XXXX





WV-
mA * mG * mG * mU * mA * mC * mC * mU * mC * mC * mA * mA *
AGGUACCUCCAACAU
XXXXX XXXXX


2326
mC * mA * mU * mC * mA * mA * mG * mG
CAAGG
XXXXX XXXX





WV-
mC * mA * mG * mG * mU * mA * mC * mC * mU * mC * mC * mA *
CAGGUACCUCCAACA
XXXXX XXXXX


2327
mA * mC * mA * mU * mC * mA * mA * mG
UCAAG
XXXXX XXXX





WV-
mA * mG * mA * mG * mC * mA * mG * mG * mU * mA * mC * mC *
AGAGCAGGUACCUCC
XXXXX XXXXX


2328
mU * mC * mC * mA * mA * mC * mA * mU
AACAU
XXXXX XXXX





WV-
mC * mA * mG * mA * mG * mC * mA * mG * mG * mU * mA * mC *
CAGAGCAGGUACCUC
XXXXX XXXXX


2329
mC * mU * mC * mC * mA * mA * mC * mA
CAACA
XXXXX XXXX





WV-
mC * mC * mA * mG * mA * mG * mC * mA * mG * mG * mU * mA *
CCAGAGCAGGUACCU
XXXXX XXXXX


2330
mC * mC * mU * mC * mC * mA * mA * mC
CCAAC
XXXXX XXXX





WV-
mG * mC * mC * mA * mG * mA * mG * mC * mA * mG * mG * mU *
GCCAGAGCAGGUACC
XXXXX XXXXX


2331
mA * mC * mC * mU * mC * mC * mA * mA
UCCAA
XXXXX XXXX





WV-
mU * mG * mC * mC * mA * mG * mA * mG * mC * mA * mG * mG *
UGCCAGAGCAGGUAC
XXXXX XXXXX


2332
mU * mA * mC * mC * mU * mC * mC * mA
CUCCA
XXXXX XXXX





WV-
mC * mU * mG * mC * mC * mA * mG * mA * mG * mC * mA * mG *
CUGCCAGAGCAGGUA
XXXXX XXXXX


2333
mG * mU * mA * mC * mC * mU * mC * mC
CCUCC
XXXXX XXXX





WV-
mU * mC * mU * mG * mC * mC * mA * mG * mA * mG * mC * mA *
UCUGCCAGAGCAGGU
XXXXX XXXXX


2334
mG * mG * mU * mA * mC * mC * mU * mC
ACCUC
XXXXX XXXX





WV-
mA * mU * mC * mU * mG * mC * mC * mA * mG * mA * mG * mC *
AUCUGCCAGAGCAGG
XXXXX XXXXX


2335
mA * mG * mG * mU * mA * mC * mC * mU
UACCU
XXXXX XXXX





WV-
mU * mU * mG * mA * mA * mA * mU * mC * mU * mG * mC * mC *
UUGAAAUCUGCCAGA
XXXXX XXXXX


2336
mA * mG * mA * mG * mC * mA * mG * mG
GCAGG
XXXXX XXXX





WV-
mC * mC * mC * mG * mG * mU * mU * mG * mA * mA * mA * mU *
CCCGGUUGAAAUCUG
XXXXX XXXXX


2337
mC * mU * mG * mC * mC * mA * mG * mA
CCAGA
XXXXX XXXX





WV-
mG * mC * mC * mC * mG * mG * mU * mU * mG * mA * mA * mA *
GCCCGGUUGAAAUCU
XXXXX XXXXX


2338
mU * mC * mU * mG * mC * mC * mA * mG
GCCAG
XXXXX XXXX





WV-
mA * mG * mC * mC * mC * mG * mG * mU * mU * mG * mA * mA *
AGCCCGGUUGAAAUC
XXXXX XXXXX


2339
mA * mU * mC * mU * mG * mC * mC * mA
UGCCA
XXXXX XXXX





WV-
mC * mC * mA * mA * mG * mC * mC * mC * mG * mG * mU * mU *
CCAAGCCCGGUUGAA
XXXXX XXXXX


2340
mG * mA * mA * mA * mU * mC * mU * mG
AUCUG
XXXXX XXXX





WV-
mU * mC * mC * mA * mA * mG * mC * mC * mC * mG * mG * mU *
UCCAAGCCCGGUUGA
XXXXX XXXXX


2341
mU * mG * mA * mA * mA * mU * mC * mU
AAUCU
XXXXX XXXX





WV-
mG * mU * mC * mC * mA * mA * mG * mC * mC * mC * mG * mG *
GUCCAAGCCCGGUUG
XXXXX XXXXX


2342
mU * mU * mG * mA * mA * mA * mU * mC
AAAUC
XXXXX XXXX





WV-
mU * mG * mU * mC * mC * mA * mA * mG * mC * mC * mC * mG *
UGUCCAAGCCCGGUU
XXXXX XXXXX


2343
mG * mU * mU * mG * mA * mA * mA * mU
GAAAU
XXXXX XXXX





WV-
mC * mU * mG * mU * mC * mC * mA * mA * mG * mC * mC * mC *
CUGUCCAAGCCCGGU
XXXXX XXXXX


2344
mG * mG * mU * mU * mG * mA * mA * mA
UGAAA
XXXXX XXXX





WV-
mU * mC * mU * mG * mU * mC * mC * mA * mA * mG * mC * mC *
UCUGUCCAAGCCCGG
XXXXX XXXXX


2345
mC * mG * mG * mU * mU * mG * mA * mA
UUGAA
XXXXX XXXX





WV-
mU * mU * mC * mU * mG * mU * mC * mC * mA * mA * mG * mC *
UUCUGUCCAAGCCCG
XXXXX XXXXX


2346
mC * mC * mG * mG * mU * mU * mG * mA
GUUGA
XXXXX XXXX





WV-
mG * mU * mU * mC * mU * mG * mU * mC * mC * mA * mA * mG *
GUUCUGUCCAAGCCC
XXXXX XXXXX


2347
mC * mC * mC * mG * mG * mU * mU * mG
GGUUG
XXXXX XXXX





WV-
mA * mG * mU * mU * mC * mU * mG * mU * mC * mC * mA * mA *
AGUUCUGUCCAAGCC
XXXXX XXXXX


2348
mG * mC * mC * mC * mG * mG * mU * mU
CGGUU
XXXXX XXXX





WV-
mA * mA * mG * mU * mU * mC * mU * mG * mU * mC * mC * mA *
AAGUUCUGUCCAAGC
XXXXX XXXXX


2349
mA * mG * mC * mC * mC * mG * mG * mU
CCGGU
XXXXX XXXX





WV-
mU * mA * mA * mG * mU * mU * mC * mU * mG * mU * mC * mC *
UAAGUUCUGUCCAAG
XXXXX XXXXX


2350
mA * mA * mG * mC * mC * mC * mG * mG
CCCGG
XXXXX XXXX





WV-
mG * mU * mA * mA * mG * mU * mU * mC * mU * mG * mU * mC *
GUAAGUUCUGUCCAA
XXXXX XXXXX


2351
mC * mA * mA * mG * mC * mC * mC * mG
GCCCG
XXXXX XXXX





WV-
mG * mG * mU * mA * mA * mG * mU * mU * mC * mU * mG * mU *
GGUAAGUUCUGUCCA
XXXXX XXXXX


2352
mC * mC * mA * mA * mG * mC * mC * mC
AGCCC
XXXXX XXXX





WV-
mC * mA * mG * mU * mC * mG * mG * mU * mA * mA * mG * mU *
CAGUCGGUAAGUUCU
XXXXX XXXXX


2353
mU * mC * mU * mG * mU * mC * mC * mA
GUCCA
XXXXX XXXX





WV-
mC * mC * mA * mG * mU * mC * mG * mG * mU * mA * mA * mG *
CCAGUCGGUAAGUUC
XXXXX XXXXX


2354
mU * mU * mC * mU * mG * mU * mC * mC
UGUCC
XXXXX XXXX





WV-
mC * mC * mA * mC * mC * mA * mU * mC * mA * mC * mC * mC *
CCACCAUCACCCUCU
XXXXX XXXXX


2355
mU * mC * mU * mG * mU * mG * mA * mU
GUGAU
XXXXX XXXX





WV-
mC * mC * mC * mA * mC * mC * mA * mU * mC * mA * mC * mC *
CCCACCAUCACCCUC
XXXXX XXXXX


2356
mC * mU * mC * mU * mG * mU * mG * mA
UGUGA
XXXXX XXXX





WV-
mC * mA * mC * mC * mC * mA * mC * mC * mA * mU * mC * mA *
CACCCACCAUCACCC
XXXXX XXXXX


2357
mC * mC * mC * mU * mC * mU * mG * mU
UCUGU
XXXXX XXXX





WV-
mU * mC * mA * mC * mC * mC * mA * mC * mC * mA * mU * mC *
UCACCCACCAUCACC
XXXXX XXXXX


2358
mA * mC * mC * mC * mU * mC * mU * mG
CUCUG
XXXXX XXXX





WV-
mG * mU * mC * mA * mC * mC * mC * mA * mC * mC * mA * mU *
GUCACCCACCAUCAC
XXXXX XXXXX


2359
mC * mA * mC * mC * mC * mU * mC * mU
CCUCU
XXXXX XXXX





WV-
mG * mG * mU * mC * mA * mC * mC * mC * mA * mC * mC * mA *
GGUCACCCACCAUCA
XXXXX XXXXX


2360
mU * mC * mA * mC * mC * mC * mU * mC
CCCUC
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mC * mA * mG * mA * mG * mA * mA *
UCAAGCAGAGAAAGC
XXXXX XXXXX


2361
mA * mG * mC * mC * mA * mG * mU * mC
CAGUC
XXXXX XXXX





WV-
mU * mU * mG * mA * mU * mC * mA * mA * mG * mC * mA * mG *
UUGAUCAAGCAGAGA
XXXXX XXXXX


2362
mA * mG * mA * mA * mA * mG * mC * mC
AAGCC
XXXXX XXXX





WV-
mU * S mC * S mA * R mA * R mG * R mG * R mA * R mA * R mG * R
UCAAGGAAGAUGGCA
SSRRRRRRRRRRR


2363
mA * R mU * R mG * R mG * R mC * R mA * R mU * R mU * R mU * S
UUUCU
RRRRSS



mC * S mU







WV-
mU * S mC * S mA * S mA * S mG * R mG * R mA * R mA * R mG * R
UCAAGGAAGAUGGCA
SSSSRRRRRRRRR


2364
mA * R mU * R mG * R mG * R mC * R mA * R mU * S mU * S mU * S
UUUCU
RRSSSS



mC * S mU







WV-
mU * S mC * S mA * S mA * S mG * S mG * R mA * R mA * R mG * R mA
UCAAGGAAGAUGGCA
SSSSSRRRRRRRR


2365
* R mU * R mG * R mG * R mC * R mA * S mU * S mU * S mU * S mC * S
UUUCU
RSSSSS



mU







WV-
mU * S mC mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU mU
UCAAGGAAGAUGGCA
SOOOOO OOOOO


2366
mC * S mU
UUUCU
OOOOOOOS





WV-
mU * S mC * S mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU
UCAAGGAAGAUGGCA
SSOOOOO OOOOO


2367
mU * S mC * S mU
UUUCU
OOOOOSS





WV-
mU * S mC * S mA * S mA mG mG mA mA mG mA mU mG mG mC mA mU
UCAAGGAAGAUGGCA
SSSOOOOO


2368
mU * S mU * S mC * S mU
UUUCU
OOOOO OOOSSS





WV-
mU * S mC * S mA * S mA * S mG mG mA mA mG mA mU mG mG mC mA
UCAAGGAAGAUGGCA
SSSSOOOOO


2369
mU * S mU * S mU * S mC * S mU
UUUCU
OOOOO OSSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG mA mA mG mA mU mG mG mC
UCAAGGAAGAUGGCA
SSSSSOOOOOOOO


2370
mA * S mU * S mU * S mU * S mC * S mU
UUUCU
OSSSSS





WV-
mU * mC mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU mU
UCAAGGAAGAUGGCA
XOOOOO OOOOO


2381
mC * mU
UUUCU
OOOOOOOX





WV-
mU * mU * mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU
UCAAGGAAGAUGGCA
XXOOOOO


2382
mU * mC * mU
UUUCU
OOOOO





OOOOOXX





WV-
mU * mC * mA * mA mG mG mA mA mG mA mU mG mG mC mA mU mU
UCAAGGAAGAUGGCA
XXXOOOOO


2383
* mU * mC * mU
UUUCU
OOOOO OOOXXX





WV-
mU * mC * mA * mA * mG mG mA mA mG mA mU mG mG mC mA mU *
UCAAGGAAGAUGGCA
XXXXOOOOO


2384
mU * mU * mC * mU
UUUCU
OOOOO OXXXX





WV-
mU * mC * mA * mA * mG * mG mA mA mG mA mU mG mG mC mA *
UCAAGGAAGAUGGCA
XXXXXOOOOOOO


2385
mU * mU * mU * mC * mU
UUUCU
OOXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA mA mG mA mU mG mG mC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOOOOOO


2432
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * mG mA mA mG mA mU mG mG mC mA * fU * fU *
UCAAGGAAGAUGGCA
XXXXXOOOOOOO


2433
fU * fC * fU
UUUCU
OOXXXXX





WV-
fU * fC * fA * fA * mG mG mA mA mG mA mU mG mG mC mA mU * fU *
UCAAGGAAGAUGGCA
XXXXOOOOO


2434
fU * fC * fU
UUUCU
OOOOO OXXXX





WV-
fU * fC * fA * mA mG mG mA mA mG mA mU mG mG mC mA mU mU * fU
UCAAGGAAGAUGGCA
XXXOOOOO


2435
* fC * fU
UUUCU
OOOOO OOOXXX





WV-
fU * fC * mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU mU *
UCAAGGAAGAUGGCA
XXOOOOO


2436
fC * fU
UUUCU
OOOOO





OOOOOXX





WV-
fU * mC mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU mU
UCAAGGAAGAUGGCA
XOOOOO OOOOO


2437
mC * fU
UUUCU
OOOOOOOX





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA mU mG mG mC * SfA *
UCAAGGAAGAUGGCA
SSSSSSOOOOOOO


2438
SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * S mG mA mA mG mA mU mG mG mC mA *
UCAAGGAAGAUGGCA
SSSSSOOOOOOOO


2439
SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSS





WV-
fU * SfC * SfA * SfA * S mG mG mA mA mG mA mU mG mG mC mA mU *
UCAAGGAAGAUGGCA
SSSSOOOOO


2440
SfU * SfU * SfC * SfU
UUUCU
OOOOO OSSSS





WV-
fU * SfC * SfA * S mA mG mG mA mA mG mA mU mG mG mC mA mU mU *
UCAAGGAAGAUGGCA
SSSOOOOO


2441
SfU * SfC * SfU
UUUCU
OOOOO OOOSSS





WV-
fU * SfC * S mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU
UCAAGGAAGAUGGCA
SSOOOOO OOOOO


2442
mU * SfC * SfU
UUUCU
OOOOOSS





WV-
fU * S mC mA mA mG mG mA mA mG mA mU mG mG mC mA mU mU mU
UCAAGGAAGAUGGCA
SOOOOO OOOOO


2443
mC * SfU
UUUCU
OOOOOOOS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * R mA * R mG * R mA * R mU *
UCAAGGAAGAUGGCA
SSSSSSRRRRRRRS


2444
R mG * R mG * R mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * S mG * R mA * R mA * R mG * R mA * R
UCAAGGAAGAUGGCA
SSSSSRRRRRRRR


2445
mU * R mG * R mG * R mC * R mA * SfU * SfU * SfU * SfC * SfU
UUUCU
RSSSSS





WV-
fU * SfC * SfA * SfA * S mG * R mG * R mA * R mA * R mG * R mA * R
UCAAGGAAGAUGGCA
SSSSRRRRRRRRR


2446
mU * R mG * R mG * R mC * R mA * R mU * SfU * SfU * SfC * SfU
UUUCU
RRSSSS





WV-
fU * SfC * SfA * S mA * R mG * R mG * R mA * R mA * R mG * R mA *
UCAAGGAAGAUGGCA
SSSRRRRRRRRRR


2447
R mU * R mG * R mG * R mC * R mA * R mU * R mU * SfU * SfC * SfU
UUUCU
RRRSSS





WV-
fU * SfC * S mA * R mA * R mG * R mG * R mA * R mA * R mG * R mA
UCAAGGAAGAUGGCA
SSRRRRRRRRRRR


2448
* R mU * R mG * R mG * R mC * R mA * R mU * R mU * R mU * SfC *
UUUCU
RRRRSS



SfU







WV-
fU * S mC * R mA * R mA * R mG * R mG * R mA * R mA * R mG * R
UCAAGGAAGAUGGCA
SRRRRRRRRRRRR


2449
mA * R mU * R mG * R mG * R mC * R mA * R mU * R mU * R mU * R
UUUCU
RRRRRS



mC * SfU







WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * R mG * R mA * R mU * R
UCAAGGAAGAUGGCA
SSSSSSSRRRRRSS


2526
mG * R mG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG * R mA * R mU * R
UCAAGGAAGAUGGCA
SSSSSSSSRRRSSSS


2527
mG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA * R mU * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSSRSSSSS


2528
SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA mG mA mU mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSSSSOOOOOSS


2529
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mA mU mG * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSOOOSSS


2530
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU * SfG * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSSOSSSSS


2531
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
SSSSSSXXXXXXX


2532
mG * fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * R mA * R mG * R mA
UCAAGGAAGAUGGCA
SSSSSSRRRRRRRS


2533
* R mU * R mG * R mG * R mC * S mA * S mU * S mU * S mU * S mC * S
UUUCU
SSSSS



mU







WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * S mA * R mG * R mA *
UCAAGGAAGAUGGCA
SSSSSSSRRRRRSS


2534
R mU * R mG * R mG * S mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * S mA * S mG * R mA *
UCAAGGAAGAUGGCA
SSSSSSSSRRRSSSS


2535
R mU * R mG * S mG * S mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * S mA * S mG * S mA *
UCAAGGAAGAUGGCA
SSSSSSSSSRSSSSS


2536
R mU * S mG * S mG * S mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * mA * mG * mA * mU
UCAAGGAAGAUGGCA
SSSSSSXXXXXXX


2537
* mG * mG * mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSSSS





WV-
L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU
UCAAGGAAGAUGGCA
XXXXX XXXXX


2538
* mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod013L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2578
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod014L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2579
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod005L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2580
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod015L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2581
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod016L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2582
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod017L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2583
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod018L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2584
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod019L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2585
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod006L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2586
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod020L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2587
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod021 * mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2588
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
mC * mA * mA * mA * mG * mA * mA * mG * mA * mU * mG * mG *
CAAAGAAGAUGGCAU
XXXXX XXXXX


2625
mC * mA * mU * mU * mU * mC * mU * mA * mG * mU * mU * mU *
UUCUA GUUUG
XXXXX XXXXX



mG

XXXX





WV-
mG * mC * mA * mA * mA * mG * mA * mA * mG * mA * mU * mG *
GCAAAGAAGAUGGCA
XXXXX XXXXX


2627
mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fG * fC * fA * fA * fA * fG * mA * mA * mG * mA * mU * mG * mG *
GCAAAGAAGAUGGCA
XXXXX XXXXX


2628
mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA mA mG mA mU mG mG mC *
UCAAGGAAGAUGGCA
XXXXXXOOOOOO


2660
mA * mU * mU * mU * mC * mU
UUUCU
OXXXXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA mG mA mU mG mG * mC
UCAAGGAAGAUGGCA
XXXXXXXOOOOO


2661
* mA * mU * mU * mU * mC * mU
UUUCU
XXXXXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG mA mU mG * mG *
UCAAGGAAGAUGGCA
XXXXXXXXOOOX


2662
mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA mU * mG *
UCAAGGAAGAUGGCA
XXXXX


2663
mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXOXXXXX





XXXX





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA mA mG mA mU mG mG
UCAAGGAAGAUGGCA
SSSSSSOOOOOOO


2664
mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * S mA mG mA mU mG
UCAAGGAAGAUGGCA
SSSSSSSOOOOOSS


2665
mG * S mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * S mA * S mG mA mU
UCAAGGAAGAUGGCA
SSSSSSSSOOOSSS


2666
mG * S mG * S mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * S mA * S mG * S mG * S mA * S mA * S mG * S mA
UCAAGGAAGAUGGCA
SSSSSSSSSOSSSSS


2667
mU * S mG * S mG * S mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSS





WV-
fU * fC * fA * fA * fG * fG * fA * mA mG mA mU mG mG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXXOOOOO


2668
fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * fG * fG * fA * fA * mG mA mU mG * fG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXXXOOOX


2669
fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * fG * fG * fA * fA * fG * mA mU * fG * fG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXX


2670
fU * fU * fC * fU
UUUCU
XXXXOXXXXX





XXXX





WV-
L001 * mG * mG * mC * mC * mA * mA * mA * mC * mC * mU * mC *
GGCCAAACCUCGGCU
XXXXX XXXXX


2733
mG * mG * mC * mU * mU * mA * mC * mC * mU
UACCU
XXXXX XXXXX





WV-
L001 * mG * mG * mC * mC * mA * mA * mA * mC * mC * mU * mC *
GGCCAAACCUC
XXXXX XXXXX


2734
mG * mG * mC * mU * mU * mA * mC * mC * mU * mG * mA * mA *
GGCUUACCUGAAAU
XXXXX XXXXX



mA * mU

XXXXX





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA * R mU mG mG mC *
UCAAGGAAGAUGGCA
SSSSSSOOOROOO


2737
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG * R mA * R mU * R mG
UCAAGGAAGAUGGCA
SSSSSSOORRROO


2738
mG mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA * R mG * R mA * R mU * R
UCAAGGAAGAUGGCA
SSSSSSORRRRROS


2739
mG * R mG mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * R mA * R mG mA mU mG * R
UCAAGGAAGAUGGCA
SSSSSSRROOORRS


2740
mG * R mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * R mA mG mA mU mG mG * R
UCAAGGAAGAUGGCA
SSSSSSROOOOOR


2741
mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * S mA * S mG mA mU mG * S mG
UCAAGGAAGAUGGCA
SSSSSSSSOOOSSS


2742
* S mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * S mA mG mA mU mG mG * S mC
UCAAGGAAGAUGGCA
SSSSSSSOOOOOSS


2743
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * S mA * S mG * S mA * S mU * S
UCAAGGAAGAUGGCA
SSSSSSSSSSSSSSS


2744
mG * S mG * S mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA mAfU * S mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSSSOOOOSOSS


2745
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * R mA * R mG * R mA * RfU * S
UCAAGGAAGAUGGCA
SSSSSSRRRRSRSS


2746
mG * R mG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * S mG * S mG * SfAfA mG mAfU * S mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSSSOOOOSOSS


2747
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * S mG * S mG * SfA * RfA * R mG * R mA * RfU * S
UCAAGGAAGAUGGCA
SSSSSSRRRRSRSS


2748
mG * R mG * SfC * SfA * SfU * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * S mA mG mA mU mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSSSSOOOOOSS


2749
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * S mA * R mG * R mA * R mU * R
UCAAGGAAGAUGGCA
SSSSSSSRRRRRSS


2750
mG * R mG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
TCAAGGAAGATGGCATTTCT
TCAAGGAAGATGGCA
OOOOO OOOOO


2752

TTTCT
OOOOOOOOO





WV-
mU * S mC * S mA * S mA * SfG * SfG * S mA * R mA * R mG * R mA *
UCAAGGAAGAUGGCA
SSSSSSRRRRRRRS


2783
R mU * R mG * R mG * R mC * SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * S mA * SfG * SfG * SfA * S mA * R mG * R mA * R
UCAAGGAAGAUGGCA
SSSSSSSRRRRRSS


2784
mU * R mG * R mG * SfC * SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * S mA * SfG * SfG * SfA * SfA * S mG * R mA * R mU
UCAAGGAAGAUGGCA
SSSSSSSSRRRSSSS


2785
* R mG * SfG * SfC * SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSS





WV-
mU * S mC * S mA * S mA * SfG * SfG * SfA * SfA * SfG * S mA * R mU *
UCAAGGAAGAUGGCA
SSSSSSSSSRSSSSS


2786
SfG * SfG * SfC * SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSS





WV-
mU * S mC * S mA * S mA * SfG * SfG * S mA mA mG mA mU mG mG mC
UCAAGGAAGAUGGCA
SSSSSSOOOOOOO


2787
* SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSSSS





WV-
mU * S mC * S mA * S mA * SfG * SfG * SfA * S mA mG mA mU mG mG *
UCAAGGAAGAUGGCA
SSSSSSSOOOOOSS


2788
SfC * SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * S mA * SfG * SfG * SfA * SfA * S mG mA mU mG *
UCAAGGAAGAUGGCA
SSSSSSSSOOOSSS


2789
SfU * SfC * SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * S mA * SfG * SfG * SfA * SfA * SfG * S mA mU * SfG
UCAAGGAAGAUGGCA
SSSSSSSSSOSSSSS


2790
* SfG * SfC * SfA * SfU * S mU * S mU * S mC * S mU
UUUCU
SSSS





WV-
mU * S mC * S mA * SfA * SfG * SfG * S mA * R mA * R mG * R mA * R
UCAAGGAAGAUGGCA
SSSSSSRRRRRRRS


2791
mU * R mG * R mG * R mC * SfA * SfU * SfU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * SfA * SfG * SfG * SfA * S mA * R mG * R mA * R
UCAAGGAAGAUGGCA
SSSSSSSRRRRRSS


2792
mU * R mG * R mG * SfC * SfA * SfU * SfU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * SfA * SfG * SfG * SfA * SfA * S mG * R mA * R mU *
UCAAGGAAGAUGGCA
SSSSSSSSRRRSSSS


2793
R mG * SfG * SfC * SfA * SfU * SfU * S mU * S mC * S mU
UUUCU
SSSS





WV-
mU * S mC * S mA * SfA * SfG * SfG * SfA * SfA * SfG * S mA * R mU *
UCAAGGAAGAUGGCA
SSSSSSSSSRSSSSS


2794
SfG * SfG * SfC * SfA * SfU * SfU * S mU * S mC * S mU
UUUCU
SSSS





WV-
mU * S mC * S mA * SfA * SfG * SfG * SfA * SfA * S mG mA mU mG * SfG
UCAAGGAAGAUGGCA
SSSSSSSSOOOSSS


2795
* SfU * SfA * SfU * SfU * S mU * S mC * S mU
UUUCU
SSSSS





WV-
mU * S mC * S mA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSSOSSSSS


2796
SfG * SfC * SfA * SfU * SfU * S mU * S mC * S mU
UUUCU
SSSS





WV-
fU * fC * fA * fA * fG * fG * fA * fA * mG * mA * mU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2797
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * fA * fA * mG * mA * mU * mG * fG * fC * fA
UCAAGGAAGAUGGCA
XXXXX XXXXX


2798
* fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * fA * fA * fG * mA * mU * fG * fG * fC * fA *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2799
fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * fA * mA * mG * mA * mU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2800
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * fA * fG * fG * mA * mA * mG * mA * mU * mG * mG
UCAAGGAAGAUGGCA
XXXXX XXXXX


2801
* mC * fA * fU * fU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * fA * fG * fG * fA * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2802
fC * fA * fU * fU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * fA * fG * fG * fA * fA * mG * mA * mU * mG * fG * fC
UCAAGGAAGAUGGCA
XXXXX XXXXX


2803
* fA * fU * fU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * fA * fG * fG * fA * fA * fG * mA * mU * fG * fG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2804
fA * fU * fU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * fA * fG * fG * fA * fA * mG mA mU mG * fG * fC * fA *
UCAAGGAAGAUGGCA
XXXXXXXXOOOX


2805
fU * fU * mU * mC * mU
UUUCU
XXXXXXX





WV-
mU * mC * mA * fA * fG * fG * fA * fA * fG * mA mU * fG * fG * fC * fA *
UCAAGGAAGAUGGCA
XXXXX


2806
fU * fU * mU * mC * mU
UUUCU
XXXXOXXXXX





XXXX





WV-
Mod024L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2807
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
Mod026L001 * mU * mC * mA * mA * mG * mG * mA * mA * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


2808
mA * mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * BrdU * mG * mG *
UCAAGGAAGATGGCA
XXXXX XXXXX


2812
mC * fA * fU * fU * fU * fC * fC
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * fA * fA * fG * mA * BrdU * fG * fG * fC * fA *
UCAAGGAAGATGGCA
XXXXX XXXXX


2813
fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * BrdU * mG
UCAAGGAAGATGGCA
XXXXX XXXXX


2814
* mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mA BrdU mG * SfG *
UCAAGGAAGATGGCA
SSSSSSSSOOOSSS


3017
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * fC * fA * fA * fG * fG * fA * fA * mG mA BrdU mG * fG * fC * fA * fU
UCAAGGAAGATGGCA
XXXXXXXXOOOX


3018
* fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA BrdU mG mG mC * SfA
UCAAGGAAGATGGCA
SSSSSSOOOOOOO


3019
* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * fC * fA * fA * fG * fG * mA mA mG mA BrdU mG mG mC * fA * fU *
UCAAGGAAGATGGCA
XXXXXXOOOOOO


3020
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
L001 * fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA mU mG mG mC
UCAAGGAAGAUGGCA
XSSSSSSOOOOOO


3022
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
Mod015L001 * fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA mU mG
UCAAGGAAGAUGGCA
XSSSSSSOOOOOO


3023
mG mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
Mod006L001 * fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA mU mG
UCAAGGAAGAUGGCA
XSSSSSSOOOOOO


3024
mG mC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
L001 * fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mA mU mG *
UCAAGGAAGAUGGCA
XSSSSSSSSOOOSS


3025
SfG * SfC * SfA * SfU * SfU * SfU * SfC * sfU
UUUCU
SSSSSS





WV-
Mod015L001 * fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mA mU
UCAAGGAAGAUGGCA
XSSSSSSSSOOOSS


3026
mG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod006L001 * fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mA mU
UCAAGGAAGAUGGCA
XSSSSSSSSOOOSS


3027
mG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mA mU mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSSSSSOOOOSS


3028
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
L001 * fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3029
mG * mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXXX





WV-
Mod015L001 * fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * mU *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3030
mG * mG * mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXXX





WV-
Mod006L001 * fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * mU *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3031
mG * mG * mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXXX





WV-
Mod020L001 * fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * mU *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3032
mG * mG * mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXXX





WV-
Mod019L001 * fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * mU *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3033
mG * mG * mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXXX





WV-
L001 * fU * fC * fA * fA * fG * fG * fA * fA * mG mA mU mG * fG * fC * fA
UCAAGGAAGAUGGCA
XXXXX


3034
* fU * fU * fU * fC * fU
UUUCU
XXXXOOOXXXXX





XXX





WV-
Mod015L001 * fU * fC * fA * fA * fG * fG * fA * fA * mG mA mU mG * fG *
UCAAGGAAGAUGGCA
XXXXX


3035
fC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXOOOXXXXX





XXX





WV-
Mod006L001 * fU * fC * fA * fA * fG * fG * fA * fA * mG mA mU mG * fG *
UCAAGGAAGAUGGCA
XXXXX


3036
fC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXOOOXXXXX





XXX





WV-
Mod020L001 * fU * fC * fA * fA * fG * fG * fA * fA * mG mA mU mG * fG *
UCAAGGAAGAUGGCA
XXXXX


3037
fC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXOOOXXXXX





XXX





WV-
Mod019L001 * fU * fC * fA * fA * fG * fG * fA * fA * mG mA mU mG * fG *
UCAAGGAAGAUGGCA
XXXXX


3038
fC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXOOOXXXXX





XXX





WV-
fU * fC * fA * fA * fG * fG * mA mA mG mA * mU mG mG mC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOOOXOO


3039
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA mA mG * mA * mU * mG mG mC * fA *
UCAAGGAAGAUGGCA
XXXXXXOOXXXO


3040
fU * fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA mA * mG * mA * mU * mG * mG mC *
UCAAGGAAGAUGGCA
XXXXXXOXXXXX


3041
fA * fU * fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA * mG mA mU mG * mG * mC * fA
UCAAGGAAGAUGGCA
XXXXXXXXOOOX


3042
* fU * fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA mG mA mU mG mG * mC * fA * fU
UCAAGGAAGAUGGCA
XXXXXXXOOOOO


3043
* fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA * mG mA mU mG * mG * mC * fA
UCAAGGAAGAUGGCA
XXXXXXXXOOOX


3044
* fU * fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA mG mA mU mG mG * mC * fA * fU
UCAAGGAAGAUGGCA
XXXXXXXOOOOO


3045
* fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA mA mG mAfU * mG mG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOOOOXO


3046
fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * fU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3047
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * fAfA mG mAfU * mG mG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOOOOXO


3048
fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * mG * mG * fA * fA * mG * mA * fU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3049
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * mA * mA * mG * mA * fU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3050
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * mG * fA * fA * mG * mA * fU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3051
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * fA * fA * mG mA mU mG * mG * fC * fA *
UCAAGGAAGAUGGCA
XXXXXXXXOOOX


3052
fU * fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * mG * mG * mA * mA * mG mAfU mG * mG * fC * fA
UCAAGGAAGAUGGCA
XXXXXXXXOOOX


3053
* fU * fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * mG * mG * fA * fA * mG * mA * mU * mG * mG * fC
UCAAGGAAGAUGGCA
XXXXX XXXXX


3054
* fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * mA * mA * mG * mA * fU * mG * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3055
fC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * fAfA mG mA * fU * mG mG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOOOXXO


3056
fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * mG * mG * fA * fA * mG * mA * fU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3057
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * fA * fA * mG * fA * fU * mG * mG * fC *
UCAAGGAAGAUGGCA
XXXXX XXXXX


3058
fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * mG * mG * fA * fA * mG mA mU mG mG * fC * fA * fU
UCAAGGAAGAUGGCA
XXXXXXXXOOOO


3059
* fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * mG * mG * fA * fA * mG mAfU * mG mG * fC * fA * fU
UCAAGGAAGAUGGCA
XXXXXXXXOOXO


3060
* fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * fC * fA * fA * mG * mG * mA * mA * mG mAfU * mG mG * fC * fA
UCAAGGAAGAUGGCA
XXXXXXXXOOXO


3061
* fU * fU * fU * fC * fU
UUUCU
XXXXXXX





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA mG mA mU: mG mG mC * SfA
UCAAGGAAGAUGGCA
SSSSSSOOOODOO


3070
* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA mA: mG mA: mU mG: mG mC *
UCAAGGAAGAUGGCA
SSSSSSODODODO


3071
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA: mA mG: mA mU: mG mG: mC *
UCAAGGAAGAUGGCA
SSSSSSDODODOD


3072
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA: mA mG mA mU: mG mG: mC *
UCAAGGAAGAUGGCA
SSSSSSDOOODOD


3073
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * fG:fG: mA mA mG mA mU: mG mG mC * SfA * SfU *
UCAAGGAAGAUGGCA
SSSXDDOOOODO


3074
SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
fU * SfC * SfA * SfA * mG: mG: mA mA mG mA mU: mG mG mC * SfA *
UCAAGGAAGAUGGCA
SSSXDDOOOODO


3075
SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * S mA mG mA mU: mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSSSSOOODOSS


3076
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * fG:fG:fA * S mA mG mA mU: mG mG * SfC * SfA *
UCAAGGAAGAUGGCA
SSSXDDSOOODOS


3077
SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * mG: mG:fA * S mA mG mA mU: mG mG * SfC * SfA
UCAAGGAAGAUGGCA
SSSXDDSOOODOS


3078
* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mA mU: mG * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSOODSSS


3079
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG: mA: mU: mG * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSDDDSSS


3080
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG: mA mU: mG * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSDODSSS


3081
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * fG:fG:fA * SfA * S mG mA mU: mG * SfG * SfC * SfA
UCAAGGAAGAUGGCA
SSSXDDSSOODSS


3082
* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * mG: mG:fA * SfA * S mG mA mU: mG * SfG * SfC *
UCAAGGAAGAUGGCA
SSSXDDSSOODSS


3083
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod015L001 mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
UCAAGGAAGAUGGCA
OXXXXX XXXXX


3084
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Mod019L001 mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
UCAAGGAAGAUGGCA
OXXXXX XXXXX


3085
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Mod020L001 mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
UCAAGGAAGAUGGCA
OXXXXX XXXXX


3086
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Mod015L001: mU * mC * mA * mA * mG * mG * mA * mA * mG * mA
UCAAGGAAGAUGGCA
DXXXXX XXXXX


3087
* mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Mod019L001: mU * mC * mA * mA * mG * mG * mA * mA * mG * mA
UCAAGGAAGAUGGCA
DXXXXX XXXXX


3088
* mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Mod020L001: mU * mC * mA * mA * mG * mG * mA * mA * mG * mA
UCAAGGAAGAUGGCA
DXXXXX XXXXX


3089
* mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * SfC * SfA * SfA * SfG:fG: mA mA mG mA mU: mG mG mC * SfA * SfU
UCAAGGAAGAUGGCA
SSSSDDOOOODOO


3113
* SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * S mG: mG: mA mA mG mA mU: mG mG mC * SfA *
UCAAGGAAGAUGGCA
SSSSDDOOOODOO


3114
SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG:fG:fA * S mA mG mA mU: mG * SfC * SfA *
UCAAGGAAGAUGGCA
SSSSDDSOOODOS


3115
SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * S mG: mG:fA * S mA mG mA mU: mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSDDSOOODOS


3116
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG:fG:fA * SfA * S mG mA mU: mG * SfG * SfC *
UCAAGGAAGAUGGCA
SSSSDDSSOODSSS


3117
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * S mG: mG:fA * SfA * S mG mA mU: mG * SfG * SfC *
UCAAGGAAGAUGGCA
SSSSDDSSOODSSS


3118
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU mG * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSSOOSSSS


3120
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * fC * fA * fA * fG * fG * fA * fA * fG * mA mU mG * fG * fC * fA * fU *
UCAAGGAAGAUGGCA
XXXXX


3121
fU * fU * fC * fU
UUUCU
XXXXOOXXXXXX





XX





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG * S mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


3152
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mGfA * S mUfG * S mG *
UCAAGGAAGAUGGCA
SSSSSSSSOSOSSSS


3153
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
L001 mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU *
UCAAGGAAGAUGGCA
OXXXXX XXXXX


3357
mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU * SfG *
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3358
SfG * SfC * SfA* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Mod013L001 mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
UCAAGGAAGAUGGCA
OXXXXX XXXXX


3359
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Mod013L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3360
* SfG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Mod014L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3361
* SfG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Mod005L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3362
* SfG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Mod015L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3363
* SfG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Mod020L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3364
* SfG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Mod027L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3365
* SfG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Mod029L001fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mA mU
UCAAGGAAGAUGGCA
OSSSSSSSSSOSSSS


3366
* SfG * SfG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfGfA * S mAfG * S mAfU * S mGfGfC * SfA *
UCAAGGAAGAUGGCA
SSSSSOSOSOSOOS


3463
SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfAfG * S mAfU * S mG * S mG *
UCAAGGAAGAUGGCA
SSSSSSSOSOSSSSS


3464
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mAfU * S mG * SfG *
UCAAGGAAGAUGGCA
SSSSSSSSSOSSSS5


3465
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * S mG mAfU * S mG mG *
UCAAGGAAGAUGGCA
SSSSSSSSOOSOSS


3466
SfC * SfA * SfU * SfU * SfU * SfC * SfG
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SfA * SfA * SfG * S mAfU * S mGfG *
UCAAGGAAGAUGGCA
SSSSSSSSSOSOSSS


3467
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * mA mA mG mAfU * S mG mG * SfC *
UCAAGGAAGAUGGCA
SSSSSXOOOOSOS


3468
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mA * S mA * S mG * S mA * SfU * S
UCAAGGAAGAUGGCA
SSSSSSSSSSSSSSS


3469
mG * S mG * SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * SfUfG * S mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


3470
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * SfU mG mGfC * SfA
UCAAGGAAGAUGGCA
SSSSSSOSOSOOOS


3471
* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * SfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


3472
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


3473
SfA * SfG * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfAfU * S mG mGfC * SfA
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3506
* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mAfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3507
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * SfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


3508
SfAfU * SfU * SfU * SfC * SfU
UUUCU
OSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


3509
SfAfU * SfU * SfU * SfC * SfU
UUUCU
OSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfAfU * S mG mGfC * S
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3510
mA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG* SfG* S mAfA * S mG mAfU * S mG mGfC * S
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3511
mA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfAfU * S mG mGfC * S
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3512
mAfU * SfU * SfU * SfC * SfU
UUUCU
OSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mAfU * S mG mGfC * S
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3513
mAfU * SfU * SfU * SfC * SfU
UUUCU
OSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfAfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3514
SfAfU * SfU * SfU * SfC * SfU
UUUCU
OSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mAfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


3515
SfAfU * SfU * SfU * SfC * SfU
UUUCU
OSSSS





WV-
fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXOX


3516
* fU * fC * fU
UUUCU
OXXXXXX





WV-
Mod030fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


3517
fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod031fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


3518
fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod032fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


3519
fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod033fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


3520
fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod013L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU *
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3543
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod005L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU *
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3544
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod015L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU *
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3545
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod020L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfG *
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3546
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod027L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU *
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3547
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod029L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU *
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3548
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod030fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3549
mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod032fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3550
mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod033fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3551
mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod020L001 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfG
UCAAGGAAGAUGGCA
OXSSSSSSOSOSSO


3552
* S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
Mod005L001 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU
UCAAGGAAGAUGGCA
OXSSSSSSOSOSSO


3553
* S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
Mod014L00lfU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfG *
UCAAGGAAGAUGGCA
OOSSSSSSOSOSSO


3554
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
OSSSSSS





WV-
Mod030 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S
UCAAGGAAGAUGGCA
XSSSSSSOSOSSOO


3555
mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod032 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S
UCAAGGAAGAUGGCA
XSSSSSSOSOSSOO


3556
mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod033 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfG * S
UCAAGGAAGAUGGCA
XSSSSSSOSOSSOO


3557
mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod033 * fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC *
UCAAGGAAGAUGGCA
XXXXXXXOXOXO


3558
fA * fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod020L001fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


3559
fA * fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod020L001 * fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG *
UCAAGGAAGAUGGCA
XXXXXXXOXOXO


3560
mGfC * fA * fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
L001 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG
UCAAGGAAGAUGGCA
XSSSSSSOSOSSOO


3753
mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
L00lfU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


3754
mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
L001 * fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA *
UCAAGGAAGAUGGCA
XXXXXXXOXOXO


3820
fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
L001fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA * fU
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


3821
* fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod015L001 * fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG *
UCAAGGAAGAUGGCA
XXXXXXXOXOXO


3855
mGfC * fA * fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod015L001fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


3856
fA * fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
Mod033L001 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU
UCAAGGAAGAUGGCA
XSSSSSSOSOSSOO


3971
* S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod015L001 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU
UCAAGGAAGAUGGCA
XSSSSSSOSOSSOO


4106
* S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod015L001 * SfU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA *
UCAAGGAAGAUGGCA
SSSSSSSOSOSSOO


4107
SfG * S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfG
UUUCU
SSSSSS





WV-
L001 * SfU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S
UCAAGGAAGAUGGCA
SSSSSSSOSOSSOO


4191
mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


4231
SfA * SfU * SfU * SfU * SfC
UUUC
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


4232
SfA * SfU * SfU * SfU
UUU
SSS





WV-
fC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG mGfC * SfA *
CAAGGAAGAUGGCAU
SSSSSOSOSSOOSS


4233
SfU * SfU * SfU * SfC * SfU
UUCU
SSSS





WV-
Mod020L001 mG * mG * mC * mC * mA * mA * mA * mC * mC * mU *
GGCCAAACCUCGGCU
OXXXXX XXXXX


4610
mC * mG * mG * mC * mU * mU * mA * mC * mC * mU
UACCU
XXXXX XXXX





WV-
Mod015L001 mG * mG * mC * mC * mA * mA * mA * mC * mC * mU *
GGCCAAACCUCGGCU
OXXXXX XXXXX


4611
mC * mG * mG * mC * mU * mU * mA * mC * mC * mU
UACCU
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fU * mA * mA * mG * mG * mU * mU * mU *
UUCUGUAAGGUUUU
XXXXX XXXXX


4614
mU * fU * fA * fU * fG * fU * fG
UAUGUG
XXXXX XXXX





WV-
fA * fU * fU * fU * fC * fU * mG * mU * mA * mA * mG * mG * mU *
AUUUCUGUAAGGUU
XXXXX XXXXX


4615
mU * fU * fU * fU * fA * fU * fU
UUUAUG
XXXXX XXXX





WV-
fC * fC * fA * fU * fU * fU * mC * mU * mG * mU * mA * mA * mG *
CCAUUUCUGUAAGGU
XXXXX XXXXX


4616
mG * fU * fU * fU * fU * fU * fA
UUUUA
XXXXX XXXX





WV-
fA * fU * fU * fC * fA * fU * mU * mU * mC * mU * mG * mU * mA *
AUCCAUUUCUGUAAG
XXXXX XXXXX


4617
mA * fG * fG * fU * fU * fU * fU
GUUUU
XXXXX XXXX





WV-
fC * fA * fU * fC * fC * fA * mU * mU * mU * mC * mU * mG * mU *
CAUCCAUUUCUGUAA
XXXXX XXXXX


4618
mA * fA * fG * fG * fU * fU * fU
GGUUU
XXXXX XXXX





WV-
fC * fC * fA * fU * fC * fC * mA * mU * mU * mU * mC * mU * mG *
CCAUCCAUUUCUGUA
XXXXX XXXXX


4619
mU * fA * fA * fG * fG * fU * fU
AGGUU
XXXXX XXXX





WV-
fG * fC * fC * fA * fU * fC * mC * mA * mU * mU * mU * mC * mU *
GCCAUCCAUUUCUGU
XXXXX XXXXX


4620
mG * fU * fA * fA * fG * fG * fU
AAGGU
XXXXX XXXX





WV-
fA * fG * fC * fC * fA * fU * mC * mC * mA * mU * mU * mU * mC *
AGCCAUCCAUUUCUG
XXXXX XXXXX


4621
mU * fG * fU * fA * fA * fG * fG
UAAGG
XXXXX XXXX





WV-
fC * fA * fG * fC * fC * fA * mU * mC * mC * mA * mU * mU * mU *
CAGCCAUCCAUUUCU
XXXXX XXXXX


4622
mC * fU * fG * fU * fA * fA * fG
GUAAG
XXXXX XXXX





WV-
fU * fC * fA * fG * fC * fC * mA * mU * mC * mC * mA * mU * mU *
UCAGCCAUCCAUUUC
XXXXX XXXXX


4623
mU * fC * fU * fG * fU * fA * fA
UGUAA
XXXXX XXXX





WV-
fU * fU * fC * fA * fG * fC * mC * mA * mU * mC * mC * mA * mU *
UUCAGCCAUCCAUUU
XXXXX XXXXX


4624
mU * fU * fU * fU * fG * fU * fA
CUGUA
XXXXX XXXX





WV-
fC * fU * fU * fC * fA * fG * mC * mC * mA * mU * mC * mC * mA *
CUUCAGCCAUCCAUU
XXXXX XXXXX


4625
mU * fU * fU * fC * fU * fG * fU
UCUGU
XXXXX XXXX





WV-
fA * fC * fU * fU * fC * fA * mG *mC * mC * mA * mU * mC * mC *
ACUUCAGCCAUCCAU
XXXXX XXXXX


4626
mA * fU * fU * fU * fC * fU * fG
UUCUG
XXXXX XXXX





WV-
fA * fA * fC * fU * fU * fC * mA * mG * mC * mC * mA * mU * mC *
AACUUCAGCCAUCCA
XXXXX XXXXX


4627
mC * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fC * fA * fA * fC * fU * fU * mC * mA * mG * mC * mC * mA * mU *
CAACUUCAGCCAUCC
XXXXX XXXXX


4628
mC * fC * fA * fU * fU * fU * fC
AUUUC
XXXXX XXXX





WV-
fU * fC * fA * fA * fC * fU * mU * mC * mA * mG * mC * mC * mA *
UCAACUUCAGCCAUC
XXXXX XXXXX


4629
mU * fC * fC * fA * fU * fU * fU
CAUUU
XXXXX XXXX





WV-
fA * fU * fC * fA * fA * fC * mU * mU * mC * mA * mG * mC * mC *
AUCAACUUCAGCCAU
XXXXX XXXXX


4630
mA * fU * fC * fC * fA * fU * fU
CCAUU
XXXXX XXXX





WV-
fC * fA * fU * fC * fA * fA * mC * mU * mU * mC * mA * mG * mC *
CAUCAACUUCAGCCA
XXXXX XXXXX


4631
mC * fA * fU * fC * fC * fA * fU
UCCAU
XXXXX XXXX





WV-
fA * fC * fA * fU * fC * fA * mA * mC * mU * mU * mC * mA * mG *
ACAUCAACUUCAGCC
XXXXX XXXXX


4632
mC * fC * fA * fU * fC * fC * fA
AUCCA
XXXXX XXXX





WV-
fA * fA * fC * fA * fU * fC * mA * mA * mC * mU * mU * mC * mA *
AACAUCAACUUCAGC
XXXXX XXXXX


4633
mG * fC * fC * fA * fU * fC * fC
CAUCC
XXXXX XXXX





WV-
fG * fA * fA * fA * fA * fC * mA * mU * mC * mA * mA * mC * mU *
GAAAACAUCAACUUC
XXXXX XXXXX


4634
mU * fC * fA * fG * fC * fC * fA
AGCCA
XXXXX XXXX





WV-
fC * fA * fG * fG * fA * fA * mA * mA * mC * mA * mU * mC * mA *
CAGGAAAACAUCAAC
XXXXX XXXXX


4635
mA * fC * fU * fU * fC * fA * fG
UUCAG
XXXXX XXXX


0 





WV-
fU * fU * fU * fC * fA * fG * mG * mA * mA * mA * mA * mC * mA *
UUUCAGGAAAACAUG
XXXXX XXXXX


4636
mU * fC * fA * fA * fC * fU * fU
AACUU
XXXXX XXXX





WV-
fC * fU * fC * fU * fU * fU * mC * mA * mG * mG * mA * mA * mA *
CUCUUUCAGGAAAAC
XXXXX XXXXX


4637
mA * fC * fA * fU * fC * fA * fA
AUCAA
XXXXX XXXX





WV-
fU * fU * fC * fC * fU * fC * mU * mU * mU * mC * mA * mG * mG *
UUCCUCUUUCAGGAA
XXXXX XXXXX


4638
mA * fA * fA * fA * fC * fA * fU
AACAU
XXXXX XXXX





WV-
fG * fC * fC * fA * fU * fU * mC * mC * mU * mC * mU * mU * mU *
GCCAUUCCUCUUUCA
XXXXX XXXXX


4639
mC * fA * fG * fG * fA * fA * fA
GGAAA
XXXXX XXXX





WV-
fG * fG * fC * fC * fA * fU * mU * mC * mC * mU * mC * mU * mU *
GGCCAUUCCUCUUUC
XXXXX XXXXX


4640
mU * fC * fA * fG * fG * fA * fA
AGGAA
XXXXX XXXX





WV-
fA * fG * fG * fC * fC * fA * mU * mU * mC * mC * mU * mC * mU *
AGGCCAUUCCUCUUU
XXXXX XXXXX


4641
mU * fU * fC * fA * fG * fG * fA
CAGGA
XXXXX XXXX





WV-
fC * fA * fG * fG * fC * fU * mA * mU * mU * mC * mC * mU * mC *
CAGGCCAUUCCUCUU
XXXXX XXXXX


4642
mU * fU * fU * fC * fA * fG * fG
UCAGG
XXXXX XXXX





WV-
fG * fC * fA * fG * fG * fC * mC * mA * mU * mU * mC * mC * mU *
GCAGGCCAUUCCUCU
XXXXX XXXXX


4643
mC * fU * fU * fU * fC * fA * fG
UUCAG
XXXXX XXXX





WV-
fG * fG * fC * fA * fG * fG * mC * mC * mA * mU * mU * mC * mC *
GGCAGGCCAUUCCUC
XXXXX XXXXX


4644
mU * fC * fU * fU * fU * fC * fA
UUUCA
XXXXX XXXX





WV-
fG * fG * fG * fC * fA * fG * mG * mC * mC * mA * mU * mU * mC *
GGGCAGGCCAUUCCU
XXXXX XXXXX


4645
mC * fU * fC * fU * fU * fU * fC
CUUUC
XXXXX XXXX





WV-
fA * fG * fG * fG * fC * fA * mG * mG * mC * mC * mA * mU * mU *
AGGGCAGGCCAUUCC
XXXXX XXXXX


4646
mC * fC * fU * fC * fU * fU * fU
UCUUU
XXXXX XXXX





WV-
fC * fA * fG * fG * fG * fC * mA * mG * mG * mC * mC * mA * mU *
CAGGGCAGGCCAUUC
XXXXX XXXXX


4647
mU * fC * fC * fU * fC * fU * fU
CUCUU
XXXXX XXXX





WV-
fC * fC * fA * fG * fG * fG * mC * mA * mG * mG * mC * mC * mA *
CCAGGGCAGGCCAUU
XXXXX XXXXX


4648
mU * fU * fC * fC * fU * fC * fU
CCUCU
XXXXX XXXX





WV-
fC * fC * fC * fA * fG * fG * mG * mC * mA * mG * mG * mC * mC *
CCCAGGGCAGGCCAU
XXXXX XXXXX


4649
mA * fU * fU * fC * fC * fU * fC
UCCUC
XXXXX XXXX





WV-
fC * fC * fC * fC * fA * fG * mG * mG * mC * mA * mG * mG * mC * mC
CCCCAGGGCAGGCCA
XXXXX XXXXX


4650
* fA * fU * fU * fC * fC * fU
UUCCU
XXXXX XXXX





WV-
fC * fC * fC * fC * fC * fA * mG * mG * mG * mC * mA * mG * mG * mC
CCCCCAGGGCAGGCC
XXXXX XXXXX


4651
* fC * fA * fU * fU * fC * fC
AUUCC
XXXXX XXXX





WV-
fU * fC * fC * fC * fC * fC * mA * mG * mG * mG * mC * mA * mG *
UCCCCCAGGGCAGGC
XXXXX XXXXX


4652
mG * fC * fC * fA * fU * fU * fC
CAUUC
XXXXX XXXX





WV-
fA * fU * fC * fC * fC * fC * mC * mA * mG * mG * mG * mC * mA *
AUCCCCCAGGGCAGG
XXXXX XXXXX


4653
mG * fG * fU * fC * fA * fU * fU
CCAUU
XXXXX XXXX





WV-
fC * fA * fU * fC * fC * fC * mC * mC * mA * mG * mG * mG * mC * mA
CAUCCCCCAGGGCAG
XXXXX XXXXX


4654
* fG * fG * fC * fC * fA * fU
GCCAU
XXXXX XXXX





WV-
fG * fC * fA * fU * fC * fC * mC * mC * mC * mA * mG * mG * mG * mC
GCAUCCCCCAGGGCA
XXXXX XXXXX


4655
* fA * fG * fG * fC * fC * fA
GGCCA
XXXXX XXXX





WV-
fA * fG * fC * fA * fU * fC * mC * mC * mC * mC * mA * mG * mG *
AGCAUCCCCCAGGGC
XXXXX XXXXX


4656
mG * fC * fA * fG * fG * fC * fC
AGGCC
XXXXX XXXX





WV-
fC * fA * fG * fC * fA * fU * mC * mC * mC * mC * mC * mA * mG * mG
CAGCAUCCCCCAGGG
XXXXX XXXXX


4657
* fG * fC * fA * fG * fG * fC
CAGGC
XXXXX XXXX





WV-
fU * fC * fA * fG * fC * fA * mU * mC * mC * mC * mC * mC * mA * mG
UCAGCAUCCCCCAGG
XXXXX XXXXX


4658
* fG * fG * fC * fA * fG * fG
GCAGG
XXXXX XXXX





WV-
fU * fU * fC * fA * fG * fC * mA * mU * mC * mC * mC * mC * mC * mA
UUCAGCAUCCCCCAG
XXXXX XXXXX


4659
* fG * fG * fG * fC * fA * fG
GGCAG
XXXXX XXXX





WV-
fU * fU * fU * fC * fA * fG * mC * mA * mU * mC * mC * mC * mC * mC
UUUCAGCAUCCCCCA
XXXXX XXXXX


4660
* fA * fG * fG * fG * fC * fA
GGGCA
XXXXX XXXX





WV-
fU * fU * fU * fU * fC * fA * mG * mC * mA * mU * mC * mC * mC *
AUUUCAGCAUCCCCC
XXXXX XXXXX


4661
mC * fC * fA * fG * fG * fG * fC
AGGGC
XXXXX XXXX





WV-
fG * fA * fU * fU * fU * fC * mA * mG * mC * mA * mU * mC * mC *
GAUUUCAGCAUCCCC
XXXXX XXXXX


4662
mC * fC * fC * fA * fG * fG * fG
CAGGG
XXXXX XXXX





WV-
fG * fG * fA * fU * fU * fU * mC * mA * mG * mC * mA * mU * mC *
GGAUUUCAGCAUCCC
XXXXX XXXXX


4663
mC * fC * fC * fC * fA * fG * fG
CCAGG
XXXXX XXXX





WV-
fA * fG * fG * fA * fU * fU * mU * mC * mA * mG * mC * mA * mU *
AGGAUUUCAGCAUCC
XXXXX XXXXX


4664
mC * fC * fC * fC * fC * fA * fG
CCCAG
XXXXX XXXX





WV-
fC * fA * fG * fG * fA * fU * mU * mU * mC * mA * mG * mC * mA *
CAGGAUUUCAGCAUC
XXXXX XXXXX


4665
mU * fC * fC * fC * fC * fC * fA
CCCCA
XXXXX XXXX





WV-
fU * fC * fA * fG * fG * fA * mU * mU * mU * mC * mA * mG * mC *
UCAGGAUUUCAGCAU
XXXXX XXXXX


4666
mA * fU * fC * fC * fC * fC * fC
CCCCC
XXXXX XXXX





WV-
fU * fU * fC * fA * fG * fG * mA * mU * mU * mU * mC * mA * mG *
UUCAGGAUUUCAGCA
XXXXX XXXXX


4667
mC * fA * fU * fC * fC * fC * fC
UCCCC
XXXXX XXXX





WV-
fU * fU * fU * fC * fA * fG * mG * mA * mU * mU * mU * mC * mA *
UUUCAGGAUUUCAGC
XXXXX XXXXX


4668
mG * fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fU * fU* fU * fU * fC * fA * mG * mG * mA * mU * mU * mU * mC *
UUUUCAGGAUUUCAG
XXXXX XXXXX


4669
mA * fG * fC * fA * fU * fC * fC
CAUCC
XXXXX XXXX





WV-
fU * fU * fU * fU * fU * fC * mA * mG * mG * mA * mU * mU * mU *
UUUUUCAGGAUUUCA
XXXXX XXXXX


4670
mC * fA * fG * fC * fA * fU * fC
GCAUC
XXXXX XXXX





WV-
fU * fU * fU * fU * fU * fU * mC * mA * mG * mG * mA * mU * mU *
UUUUUUCAGGAUUUC
XXXXX XXXXX


4671
mU * fC * fA * fG * fC * fA * fU
AGCAU
XXXXX XXXX





WV-
fG * fU * fU * fU * fU * fU * mU * mC * mA * mG * mG * mA * mU *
GUUUUUUCAGGAUU
XXXXX XXXXX


4672
mU * fU * fC * fA * fG * fC * fA
UCAGCA
XXXXX XXXX





WV-
fU * fG * fU * fU * fU * fU * mU * mU * mC * mA * mG * mG * mA *
UGUUUUUUCAGGAU
XXXXX XXXXX


4673
mU * fU * fU * fC * fA * fG * fC
UUCAGC
XXXXX XXXX





WV-
fC * fU * fG * fU * fU * fU * mU * mU * mU * mC * mA * mG * mG *
CUGUUUUUUCAGGAU
XXXXX XXXXX


4674
mA * fU * fU * fU * fC * fA * fG
UUCAG
XXXXX XXXX





WV-
fG * fC * fU * fG * fU * fU * mU * mU * mU * mU * mC * mA * mG *
GCUGUUUUUUCAGGA
XXXXX XXXXX


4675
mG * fA * fU * fU * fU * fC * fA
UUUCA
XXXXX XXXX





WV-
fA * fG * fC * fU * fG * fU * mU * mU * mU * mU * mU * mC * mA *
AGCUGUUUUUUCAGG
XXXXX XXXXX


4676
mG * fG * fA * fU * fU * fU * fC
AUUUC
XXXXX XXXX





WV-
fG * fA * fG * fC * fU * fG * mU * mU * mU * mU * mU * mU * mC *
GAGCUGUUUUUUCAG
XXXXX XXXXX


4677
mA * fG * fG * fA * fU * fU * fU
GAUUU
XXXXX XXXX





WV-
fU * fG * fA * fG * fC * fU * mG * mU * mU * mU * mU * mU * mU *
UGAGCUGUUUUUUCA
XXXXX XXXXX


4678
mC * fA * fG * fG * fA * fU * fU
GGAUU
XXXXX XXXX





WV-
fU * fU * fG * fA * fG * fC * mU * mG * mU * mU * mU * mU * mU *
UUGAGCUGUUUUUUC
XXXXX XXXXX


4679
mU * fC * fA * fG * fG * fA * fU
AGGAU
XXXXX XXXX





WV-
fU * fU * fU * fG * fA * fG * mC * mU * mG * mU * mU * mU * mU *
UUUGAGCUGUUUUU
XXXXX XXXXX


4680
mU * fU * fC * fA * fG * fG * fA
UCAGGA
XXXXX XXXX





WV-
fG * fU * fU * fU * fG * fA * mG * mC * mU * mG * mU * mU * mU *
GUUUGAGCUGUUUU
XXXXX XXXXX


4681
mU * fU * fU * fC * fA * fG * fG
UUCAGG
XXXXX XXXX





WV-
fU * fU * fG * fU * fU * fU * mG * mA * mG * mC * mU * mG * mU *
UUGUUUGAGCUGUU
XXXXX XXXXX


4682
mU * fU * fU * fU * fU * fC * fA
UUUUCA
XXXXX XXXX





WV-
fC * fA * fU * fU * fG * fU * mU * mU * mG * mA * mG * mC * mU *
CAUUGUUUGAGCUGU
XXXXX XXXXX


4683
mG * fU * fU * fU * fU * fU * fU
UUUUU
XXXXX XXXX





WV-
fG * fC * fA * fU * fU * fG * mU * mU * mU * mG * mA * mG * mC *
GCAUUGUUUGAGCUG
XXXXX XXXXX


4684
mU * fG * fU * fU * fU * fU * fU
UUUUU
XXXXX XXXX





WV-
fU * fG * fC * fA * fU * fU * mG * mU * mU * mU * mG * mA * mG *
UGCAUUGUUUGAGCU
XXXXX XXXXX


4685
mC * fU * fG * fU * fU * fU * fU
GUUUU
XXXXX XXXX





WV-
fC * fU * fG * fC * fA * fU * mU * mG * mU * mU * mU * mG * mA *
CUGCAUUGUUUGAGC
XXXXX XXXXX


4686
mG * fC * fU * fG * fU * fU * fU
UGUUU
XXXXX XXXX





WV-
fU * fC * fU * fG * fC * fA * mU * mU * mG * mU * mU * mU * mG *
UCUGCAUUGUUUGAG
XXXXX XXXXX


4687
mA * fG * fC * fU * fG * fU * fU
CUGUU
XXXXX XXXX





WV-
fC * fU * fC * fU * fG * fC * mA * mU * mU * mG * mU * mU * mU *
CUCUGCAUUGUUUGA
XXXXX XXXXX


4688
mG * fA * fG * fC * fU * fG * fU
GCUGU
XXXXX XXXX





WV-
fA * fC * fU * fC * fU * fG * mC * mA * mU * mU * mG * mU * mU *
ACUCUGCAUUGUUUG
XXXXX XXXXX


4689
mU * fG * fA * fG * fC * fU * fG
AGCUG
XXXXX XXXX





WV-
fU * fA * fC * fU * fC * fU * mG * mC * mA * mU * mU * mG * mU *
UACUCUGCAUUGUUU
XXXXX XXXXX


4690
mU * fU * fG * fA * fG * fC * fU
GAGCU
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fC * mU * mG * mC * mA * mU * mU * mG *
UUACUCUGCAUUGUU
XXXXX XXXXX


4691
mU * fU * fU * fG * fA * fG * fC
UGAGC
XXXXX XXXX





WV-
fC * fU * fU * fA * fC * fU * mC * mU * mG * mC * mA * mU * mU *
CUUACUCUGCAUUGU
XXXXX XXXXX


4692
mG * fU * fU * fU * fG * fA * fG
UUGAG
XXXXX XXXX





WV-
fU * fC * fU * fU * fA * fC * mU * mC * mU * mG * mC * mA * mU *
UCUUACUCUGCAUUG
XXXXX XXXXX


4693
mU * fG * fU * fU * fU * fG * fA
UUUGA
XXXXX XXXX





WV-
fA * fU * fC * fU * fU * fA * mC * mU * mC * mU * mG * mC * mA *
AUCUUACUCUGCAUU
XXXXX XXXXX


4694
mU * fU * fG * fU * fU * fU * fG
GUUUG
XXXXX XXXX





WV-
fA * fA * fU * fC * fU * fU * mA * mC * mU * mC * mU * mG * mC *
AAUCUUACUCUGCAU
XXXXX XXXXX


4695
mA * fU * fU * fG * fU * fU * fU
UGUUU
XXXXX XXXX





WV-
fC * fA * fA * fA * fU * fC * mU * mU * mA * mC * mU * mC * mU *
CAAAUCUUACUCUGC
XXXXX XXXXX


4696
mG * fC * fA * fU * fU * fG * fU
AUUGU
XXXXX XXXX





WV-
fG * fA * fU * fA * fC * fA * mA * mA * mU * mC * mU * mU * mA *
GAUACAAAUCUUACU
XXXXX XXXXX


4697
mC * fU * fC * fU * fG * fC * fA
CUGCA
XXXXX XXXX





WV-
fA * fA * fU * fU * fC * fU * mU * mU * mC * mA * mA * mC * mU *
AAUUCUUUCAACUAG
XXXXX XXXXX


4698
mA * fG * fA * fA * fU * fA * fA
AAUAA
XXXXX XXXX





WV-
fU * fG * fA * fA * fU * fU * mC * mU * mU * mU * mC * mA * mA *
UGAAUUCUUUCAACU
XXXXX XXXXX


4699
mC * fU * fA * fG * fA * fA * fU
AGAAU
XXXXX XXXX





WV-
fU * fC * fU * fG * fA * fA * mU * mU * mC * mU * mU * mU * mC *
UCUGAAUUCUUUCAA
XXXXX XXXXX


4700
mA * fA * fC * fU * fA * fG * fA
CUAGA
XXXXX XXXX





WV-
fA * fU * fU * fC * fU * fG * mA * mA * mU * mU * mC * mU * mU *
AUUCUGAAUUCUUUC
XXXXX XXXXX


4701
mU * fC * fA * fA * fC * fU * fA
AACUA
XXXXX XXXX





WV-
fU * fG * fA * fU * fU * fC * mU * mG * mA * mA * mU * mU * mC *
UGAUUCUGAAUUCUU
XXXXX XXXXX


4702
mU * fU * fU * fC * fA * fA * fC
UCAAC
XXXXX XXXX





WV-
fA * fC * fU * fG * fA * fU * mU * mC * mU * mG * mA * mA * mU *
ACUGAUUCUGAAUUC
XXXXX XXXXX


4703
mU * fC * fU * fU * fU * fC * fA
UUUCA
XXXXX XXXX





WV-
fC * fC * fA * fC * fU * fG * mA * mU * mU * mC * mU * mG * A *
CCACUGAUUCUGAAU
XXXXX XXXXX


4704
mA * fU * fU * fC * fU * fU * fU
UCUUU
XXXXX XXXX





WV-
fU * fC * fC * fC * fA * fC * mU * mG * mA * mU * mU * mC * mU *
UCCCACUGAUUCUGA
XXXXX XXXXX


4705
mG * fA * fA * fU * fU * fC * fU
AUUCU
XXXXX XXXX





WV-
fC * fA * fU * fC * fC * fC * mA * mC * mU * mG * mA * mU * mU *
CAUCCCACUGAUUCU
XXXXX XXXXX


4706
mC * fU * fG * fA * fA * fU * fU
GAAUU
XXXXX XXXX





WV-
fU * fU * fC * fA * fU * fC * mC * mC * mA * mC * mU * mG * mA *
UUCAUCCCACUGAUU
XXXXX XXXXX


4707
mU * fU * fC * fU *fG * fA * fA
CUGAA
XXXXX XXXX





WV-
fA * fC * fU * fU * fC * fA * mU * mC * mC * mC * mA * mC * mU *
ACUUCAUCCCACUGA
XXXXX XXXXX


4708
mG * fA * fU * fU * fC * fU * fG
UUCUG
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * mC * mA * mU * mC * mC * mC * mA *
GUACUUCAUCCCACU
XXXXX XXXXX


4709
mC * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fU * fU * fG * fU * fA * fC * mU * mU * mC * mA * mU * mC * mC *
UUGUACUUCAUCCCA
XXXXX XXXXX


4710
mC * fA * fC * fU * fG * fA * fU
CUGAU
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fU * mA * mC * mU * mU * mC * mA * mU *
UCUUGUACUUCAUCC
XXXXX XXXXX


4711
mC * fC * fC * fA * fC * fU * fG
CACUG
XXXXX XXXX





WV-
fG * fU * fU * fC * fU * fU * mG * mU * mA * mC * mU * mU * mC *
GUUCUUGUACUUCAU
XXXXX XXXXX


4712
mA * fU * fC * fC * fC * fA * fC
CCCAC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * mU * mU * mG * mU * mA *mC * mU *
GUGUUCUUGUACUUC
XXXXX XXXXX


4713
mU * fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fA * fG * fG * fU * fG * fU * mU * mC * mU * mU * mG * mU * mA *
AGGUGUUCUUGUACU
XXXXX XXXXX


4714
mC * fU * fU * fC * fA * fU * fC
UCAUC
XXXXX XXXX





WV-
fG * fA * fA * fG * fG * fU * mG * mU * mU * mC * mU * mU * mG *
GAAGGUGUUCUUGU
XXXXX XXXXX


4715
mU * fA * fC * fU * fU * fC * fA
ACUUCA
XXXXX XXXX





WV-
fC * fU * fG * fA * fA * fG * mG * mU * mG * mU * mU * mC * mU *
CUGAAGGUGUUCUUG
XXXXX XXXXX


4716
mU * fG * fU * fA * fC * fU * fU
UACUU
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * mA * mG * mG * mU * mG * mU * mU *
UUCUGAAGGUGUUCU
XXXXX XXXXX


4717
mC * fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fG * fG * fU * fU * fC * fU * mG * mA * mA * mG * mG * mU * mG *
GGUUCUGAAGGUGU
XXXXX XXXXX


4718
mU * fU * fU * fU * fU * fG * fU
UCUUGU
XXXXX XXXX





WV-
fC * fC * fG * fG * fU * fU * mC * mU * mG * mA * mA * mG * mG *
CCGGUUCUGAAGGUG
XXXXX XXXXX


4719
mU * fG * fU * fU * fC * fU * fU
UUCUU
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * mU * mU * mC * mU * mG * mA * mA *
CUCCGGUUCUGAAGG
XXXXX XXXXX


4720
mG * fG * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fG * fC * fC * fU * fC * fC * mG * mG * mU * mU * mC * mU * mG *
GCCUCCGGUUCUGAA
XXXXX XXXXX


4721
mA * fA * fG * fG * fU * fG * fU
GGUGU
XXXXX XXXX





WV-
fU * fU * fG * fC * fC * fU * mC * mC * mG * mG * mU * mU * mC *
UUGCCUCCGGUUCUG
XXXXX XXXXX


4722
mU * fG * fA * fA * fG * fG * fU
AAGGU
XXXXX XXXX





WV-
fU * fG * fU * fU * fG * fC * mC * mU * mC * mC * mG * mG * mU *
UGUUGCCUCCGGUUC
XXXXX XXXXX


4723
mU * fC * fU * fG * fA * fA * fG
UGAAG
XXXXX XXXX





WV-
fA * fC * fU * fG * fU * fU * mG * mC * mC * mU * mC * mC * mG *
ACUGUUGCCUCCGGU
XXXXX XXXXX


4724
mG * fU * fU * fC * fU * fG * fA
UCUGA
XXXXX XXXX





WV-
fC * fA * fA * fC * fU * fG * mU * mU * mG * mC * mC * mU * mC *
CAACUGUUGCCUCCG
XXXXX XXXXX


4725
mC * fG * fG * fU * fU * fC * fU
GUUCU
XXXXX XXXX





WV-
fU * fU * fC * fA * fA * fC * mU * mG * mU * mU * mG * mC * mC *
UUCAACUGUUGCCUC
XXXXX XXXXX


4726
mU * fC * fC * fG * fG * fU * fU
CGGUU
XXXXX XXXX





WV-
fC * fA * fU * fU * fC * fA * mA * mC * mU * mG * mU * mU * mG *
CAUUCAACUGUUGCC
XXXXX XXXXX


4727
mC * fC * fU * fC * fC * fG * fG
UCCGG
XXXXX XXXX





WV-
fU * fU * fC * fA * fU * fU * mC * mA * mA * mC * mU * mG * mU *
UUCAUUCAACUGUUG
XXXXX XXXXX


4728
mU * fG * fC * fC * fU * fC * fC
CCUCC
XXXXX XXXX





WV-
fA * fU * fU * fU * fC * fA * mU * mU * mC * mA * mA * mC * mU *
AUUUCAUUCAACUGU
XXXXX XXXXX


4729
mG * fU * fU * fG * fC * fC * fU
UGCCU
XXXXX XXXX





WV-
fA * fU * fC * fC * fU * fU * mU * mA * mA * mC * mA * mU * mU *
AUCCUUUAACAUUUC
XXXXX XXXXX


4730
mU * fC * fA * fU * fU * fC * fA
AUUCA
XXXXX XXXX





WV-
fG * fA * fA * fU * fC * fC * mU * mU * mU * mA * mA * mC * mA *
GAAUCCUUUAACAUU
XXXXX XXXXX


4731
mU * fU * fU * fC * fA * fU * fU
UCAUU
XXXXX XXXX





WV-
fU * fU * fG * fA * fA * fU * mC * mC * mU * mU * mU * mA * mA *
UUGAAUCCUUUAACA
XXXXX XXXXX


4732
mC * fA * mU * fU * fU * fC * fA
UUUCA
XXXXX XXXX





WV-
fU * fG * fU * fU * fG * fA * mA * mU * mC * mC * mU * mU * mU *
UGUUGAAUCCUUUAA
XXXXX XXXXX


4733
mA * fA * fC * fA * fU * fU * fU
CAUUU
XXXXX XXXX





WV-
fU * fG * fU * fG * fU * fU * mG * mA * mA * mU * mC * mC * mU *
UGUGUUGAAUCCUUU
XXXXX XXXXX


4734
mU * fU * fA * fA * fC * fA * fU
AACAU
XXXXX XXXX





WV-
fA * fU * fU * fG * fU * fG * mU * mU * mG * mA * mA * mU * mC *
AUUGUGUUGAAUCCU
XXXXX XXXXX


4735
mC * fU * fU * fU * fA * fA * fC
UUAAC
XXXXX XXXX





WV-
fC * fC * fA * fU * fU * fG * mU * mG * mU * mU * mG * mA * mA *
CCAUUGUGUUGAAUC
XXXXX XXXXX


4736
mU * fC * fC * fU * fU * fU * fA
CUUUA
XXXXX XXXX





WV-
fA * fG * fC * fC * fA * fU * mU * mG * mU * mG * mU * mU * mG *
AGCCAUUGUGUUGAA
XXXXX XXXXX


4737
mA * fA * fU * fC * fC * fU * fU
UCCUU
XXXXX XXXX





WV-
fC * fC * fA * fG * fC * fC * mA * mU * mU * mG * mU * mG * mU *
CCAGCCAUUGUGUUG
XXXXX XXXXX


4738
mU * fG * fA * fA * fU * fC * fC
AAUCC
XXXXX XXXX





WV-
fU * fU * fC * fC * fA * fG * mC * mC * mA * mU * mU * mG * mU *
UUCCAGCCAUUGUGU
XXXXX XXXXX


4739
mG * fU * fU * fG * fA * fA * fU
UGAAU
XXXXX XXXX





WV-
fG * fC * fU * fU * fC * fC * mA * mG * mC * mC * mA * mU * mU *
GCUUCCAGCCAUUGU
XXXXX XXXXX


4740
mG * fU * fG * fU * fU * fG * fA
GUUGA
XXXXX XXXX





WV-
fU * fA * fG * fC * fU * fU * mC * mC * mA * mG * mC * mC * mA *
UAGCUUCCAGCCAUU
XXXXX XXXXX


4741
mU * fU * fG * fU * fG * fU * fU
GUGUU
XXXXX XXXX





WV-
fC * fU * fU * fA * fG * fC * mU * mU * mC * mC * mA * mG * mC *
CUUAGCUUCCAGCCA
XXXXX XXXXX


4742
mC * fA * fU * fU * fU * fU * fG
UUGUG
XXXXX XXXX





WV-
fU * fC * fC * fU * fU * fA * mG * mC * mU * mU * mC * mC * mA *
UCCUUAGCUUCCAGC
XXXXX XXXXX


4743
mG * fC * fC * fA * fU * fU * fG
CAUUG
XXXXX XXXX





WV-
fC * fU * fU * fC * fC * fU * mU * mA * mG * mC * mU * mU * mC *
CUUCCUUAGCUUCCA
XXXXX XXXXX


4744
mC * fA * fG * fC * fC * fA * fU
GCCAU
XXXXX XXXX





WV-
fU * fU * fC * fU * fU * fC * mC * mU * mU * mA * mG * mC * mU *
UUCUUCCUUAGCUUC
XXXXX XXXXX


4745
mU * fC * fC * fA * fG * fC * fC
CAGCC
XXXXX XXXX





WV-
fG * fC * fU * fU * fC * fU * mU * mC * mC * mU * mU * mA * mG *
GCUUCUUCCUUAGCU
XXXXX XXXXX


4746
mC * fU * fU * fC * fC * fA * fG
UCCAG
XXXXX XXXX





WV-
fC * fA * fG * fC * fU * fU * mC * mU * mU * mC * mC * mU * mU *
CAGCUUCUUCCUUAG
XXXXX XXXXX


4747
mA * fG * fC * fU * fU * fC * fC
CUUCC
XXXXX XXXX





WV-
fC * fU * fC * fA * fG * fC * mU * mU * mC * mU * mU * mC * mC *
CUCAGCUUCUUCCUU
XXXXX XXXXX


4748
mU * fU * fA * fG * fC * fU * fU
AGCUU
XXXXX XXXX





WV-
fC * fU * fG * fC * fU * fC * mA * mG * mC * mU * mU * mC * mU *
CUGCUCAGCUUCUUC
XXXXX XXXXX


4749
mU * fC * fC * fU * fU * fA * fG
CUUAG
XXXXX XXXX





WV-
fA * fC * fC * fU * fG * fC * mU * mC * mA * mG * mC * mU * mU *
ACCUGCUCAGCUUCU
XXXXX XXXXX


4750
mC * fU * fU * fC * fC * fU * fU
UCCUU
XXXXX XXXX





WV-
fA * fG * fA * fC * fC * fU * mG * mC * mU * mC * mA * mG * mC *
AGACCUGCUCAGCUU
XXXXX XXXXX


4751
mU * fU * fC * fU * fU * fC * fC
CUUCC
XXXXX XXXX





WV-
fU * fA * fA * fG * fA * fC * mC * mU * mG * mC * mU * mC * mA *
UAAGACCUGCUCAGC
XXXXX XXXXX


4752
mG * fC * fU * fU * fC * fU * fU
UUCUU
XXXXX XXXX





WV-
fC * fC * fU * fA * fA * fG * mA * mC * mC * mU * mG * mC * mU *
CCUAAGACCUGCUCA
XXXXX XXXXX


4753
mC * fA * fG * fC * fU * fU * fC
GCUUC
XXXXX XXXX





WV
fG * fU * fC * fC * fU * fA * mA * mG * mA * mC * mC * mU * mG *
GUCCUAAGACCUGCU
XXXXX XXXXX


4754
mC * fU * fC * fA * fG * fC * fU
CAGCU
XXXXX XXXX





WV-
fC * fU * fG * fU * fC * fC * mU * mA * mA * mG * mA * mC * mC *
CUGUCCUAAGACCUG
XXXXX XXXXX


4755
mU * fG * fC * fU * fC * fA * fG
CUCAG
XXXXX XXXX





WV-
fG * fG * fC * fC * fU * fG * mU * mC * mC * mU * mA * mA * mG *
GGCCUGUCCUAAGAC
XXXXX XXXXX


4756
mA * fC * fC * fU * fG * fC * fU
CUGCU
XXXXX XXXX





WV-
fU * fU * fG * fG * fC * fC * mU * mG * mU * mC * mC * mU * mA *
CUGGCCUGUCCUAAG
XXXXX XXXXX


4757
mA * fG * fA * fC * fC * fU * fG
ACCUG
XXXXX XXXX





WV-
fC * fU * fC * fU * fG * fG * mC * mC * mU * mG * mU * mC * mC *
CUCUGGCCUGUCCUA
XXXXX XXXXX


4758
mU * fA * fA * fG * fA * fC * fC
AGACC
XXXXX XXXX





WV-
fG * fG * fC * fU * fC * fU * mG * mG * mC * mC * mU * mG * mU *
GGCUCUGGCCUGUCC
XXXXX XXXXX


4759
mC * fC * fU * fA * fA * fG * fA
UAAGA
XXXXX XXXX





WV-
fU * fU * fG * fG * fC * fU * mC * mU * mG * mG * mC * mC * mU *
UUGGCUCUGGCCUGU
XXXXX XXXXX


4760
mG * fU * fC * fC * fU * fA * fA
CCUAA
XXXXX XXXX





WV-
fG * fC * fU * fU * fG * fG * mC * mU * mC * mU * mG * mG * mC *
GCUUGGCUCUGGCCU
XXXXX XXXXX


4761
mC * fU * fG * fU * fC * fC * fU
GUCCU
XXXXX XXXX





WV-
fA * fA * fG * fC * fU * fU * mG * mG * mC * mU * mC * mU * mG *
AAGCUUGGCUCUGGC
XXXXX XXXXX


4762
mG * fC * fC * fU * fG * fU * fC
CUGUC
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fC * mU * mU * mG * mG * mC * mU * mC *
UCAAGCUUGGCUCUG
XXXXX XXXXX


4763
mU * fG * fG * fC * fC * fU * fG
GCCUG
XXXXX XXXX





WV-
fU * fC * fC * fU * fU * fC * mC * mA * mU * mG * mA * mC * mU *
UCCUUCCAUGACUCA
XXXXX XXXXX


4764
mC * fA * fA * fG * fC * fU * fU
AGCUU
XXXXX XXXX





WV-
fC * fC * fU * fC * fC * fU * mU * mC * mC * mA * mU * mG * mA * mC
CCUCCUUCCAUGACU
XXXXX XXXXX


4765
* fU * fC * fA * fA * fG * fC
CAAGC
XXXXX XXXX





WV-
fA * fC * fC * fC * fU * fC * mC * mU * mU * mC * mC * mA * mU * mG
ACCCUCCUUCCAUGA
XXXXX XXXXX


4766
* fA * fC * fU * fC * fA * fA
CUCAA
XXXXX XXXX





WV-
fG * fG * fA * fC * fC * fC * mU * mC * mC * mU * mU * mC * mC * mA
GGACCCUCCUUCCAU
XXXXX XXXXX


4767
* fU * fG * fA * fC * fU * fC
GACUC
XXXXX XXXX





WV-
fA * fG * fG * fG * fA * fC * mC * mC * mU * mC * mC * mU * mU *
AGGGACCCUCCUUCC
XXXXX XXXXX


4768
mC * fC * fA * fU * fG * fA * fC
AUGAC
XXXXX XXXX





WV-
fA * fU * fA * fG * fG * fG * mA * mC * mC * mC * mU * mC * mC *
AUAGGGACCCUCCUU
XXXXX XXXXX


4769
mU * fU * fC * fC * fA * fU * fG
CCAUG
XXXXX XXXX





WV-
fG * fU * fA * fU * fA * fG * mG * mG * mA * mC * mC * mC * mU *
GUAUAGGGACCCUCC
XXXXX XXXXX


4770
mC * fC * fU * fU * fC * fC * fA
UUCCA
XXXXX XXXX





WV-
fC * fU * fG * fU * fA * fU * mA * mG * mG * mG * mA * mC * mC *
CUGUAUAGGGACCCU
XXXXX XXXXX


4771
mC * fU * fC * fC * fU * fU * fC
CCUUC
XXXXX XXXX





WV-
fU * fA * fC * fU * fG * fU * mA * mU * mA * mG * mG * mG * mA *
UACUGUAUAGGGACC
XXXXX XXXXX


4772
mC * fC * fC * fU * fC * fU * fU
CUCCU
XXXXX XXXX





WV-
fU * fC * fU * fA * fC * fU * mG * mU * mA * mU * mA * mG * mG *
UCUACUGUAUAGGGA
XXXXX XXXXX


4773
mG * fA * fC * fC * fC * fU * fC
CCCUC
XXXXX XXXX





WV-
fC * fA * fU * fC * fU * fA * mC * mU * mG * mU * mA * mU * mA *
CAUCUACUGUAUAGG
XXXXX XXXXX


4774
mG * fG * fG * fA * fC * fC * fC
GACCC
XXXXX XXXX





WV-
fU * fG * fC * fA * fU * fC * mU * mA * mC * mU * mG * mU * mA *
UGCAUCUACUGUAUA
XXXXX XXXXX


4775
mU * fA * fG * fG * fG * fA * fC
GGGAC
XXXXX XXXX





WV-
fA * fU * fU * fG * fC * fA * mU * mC * mU * mA * mC * mU * mG *
AUUGCAUCUACUGUA
XXXXX XXXXX


4776
mU * fA * fU * fA * fG * fG * fG
UAGGG
XXXXX XXXX





WV-
fG * fG * fA * fU * fU * fG * mC * mA * mU * mC * mU * mA * mC *
GGAUUGCAUCUACUG
XXXXX XXXXX


4777
mU * fG * fU * fA * fU * fA * fG
UAUAG
XXXXX XXXX





WV-
fU * fU * fG * fG * fA * fU * mU * mG * mC * mA * mU * mC * mU *
UUGGAUUGCAUCUAC
XXXXX XXXXX


4778
mA * fC * fU * fG * fU * fA * fU
UGUAU
XXXXX XXXX





WV-
fU * fU * fU * fU * fG * fG * mA * mU * mU * mG * mC * mA * mU *
UUUUGGAUUGCAUCU
XXXXX XXXXX


4779
mC * fU * fA * fC * fU * fG * fU
ACUGU
XXXXX XXXX





WV-
fU * fC * fU * fU * fU * fU * mG * mG * mA * mU * mU * mG * mC *
UCUUUUGGAUUGCAU
XXXXX XXXXX


4780
mA * fU * fC * fU * fA * fC * fU
CUACU
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * mU * mU * mG * mG * mA * mU * mU *
UUUCUUUUGGAUUGC
XXXXX XXXXX


4781
mG * fC * fA * fU * fC * fU * fA
AUCUA
XXXXX XXXX





WV-
fA * fU * fU * fU * fU * fC * mU * mU * mU * mU * mG * mG * mA *
AUUUUCUUUUGGAU
XXXXX XXXXX


4782
mU * fU * fG * fC * fA * fU * fC
UGCAUC
XXXXX XXXX





WV-
fU * fG * fA * fU * fU * fU * mU * mC * mU * mU * mU * mU * mG *
UGAUUUUCUUUUGG
XXXXX XXXXX


4783
mG * fA * fU * fU * fG * fC * fA
AUUGCA
XXXXX XXXX





WV-
fU * fG * fU * fG * fA * fU * mU * mU * mU * mC * mU * mU * mU *
UGUGAUUUUCUUUU
XXXXX XXXXX


4784
mU * fG * fG * fA * fU * fU * fG
GGAUUG
XXXXX XXXX





WV-
fU * fC * fU * fG * fU * fG * mA * mU * mU * mU * mU * mC * mU *
UCUGUGAUUUUCUUU
XXXXX XXXXX


4785
mU * fU * fU * fG * fG * fA * fU
UGGAU
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fG * mU * mG * mA * mU * mU * mU * mU *
UUUCUGUGAUUUUCU
XXXXX XXXXX


4786
mC * fU * fU * fU * fU * fG * fG
UUUGG
XXXXX XXXX





WV-
fG * fG * fU * fU * fU * fC * mU * mG * mU * mG * mA * mU * mU *
GGUUUCUGUGAUUU
XXXXX XXXXX


4787
mU * fU * fC * fU * fU * fU * fU
UCUUUU
XXXXX XXXX





WV-
fU * fU * fG * fG * fU * fU * mU * mC * mU * mG * mU * mG * mA *
UUGGUUUCUGUGAU
XXXXX XXXXX


4788
mU * fU * fU * fU * fC * fU * fU
UUUCUU
XXXXX XXXX





WV-
fC * fC * fU * fU * fG * fG * mU * mU * mU * mC * mU * mG * mU *
CCUUGGUUUCUGUGA
XXXXX XXXXX


4789
mG * fA * fU * fU * fU * fU * fC
UUUUC
XXXXX XXXX





WV-
fA * fA* fC * fC * fU * fU * mG * mG * mU * mU * mU * mC * mU *
AACCUUGGUUUCUGU
XXXXX XXXXX


4790
mG * fU * fG * fA * fU * fU * fU
GAUUU
XXXXX XXXX





WV-
fC * fG * fA * fA * fC * fC * mU * mU * mG * mG * mU * mU * mU *
CUAACCUUGGUUUCU
XXXXX XXXXX


4791
mC * fU * fG * fU * fG * fA * fU
GUGAU
XXXXX XXXX





WV-
fU * fA * fC * fU * fA * fA * mC * mC * mU * mU * mG * mG * mU *
UACUAACCUUGGUUU
XXXXX XXXXX


4792
mU * fU * fC * fU * fG * fU * fG
CUGUG
XXXXX XXXX





WV-
fG * fA * fU * fA * fC * fU * mA * mU * mC * mC * mU * mU * mG *
GAUACUAACCUUGGU
XXXXX XXXXX


4793
mG * fU * fU * fU * fC * fU * fG
UUCUG
XXXXX XXXX





WV-
ChTEGfU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


4890
mGfC * SfA * SfU * SfU * SfU * SfC * SfU

UUUCUSSSSSS





WV-
L001 mG * mG * mC * mC * mA * mA * mA * mC * mC * mU * mC *
GGCCAAACCUCGGCU
OXXXXX XXXXX


6010
mG * mG * mC * mU * mU * mA * mC * mC * mU
UACCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


6137
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
Mod012L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG
UCAAGGAAGAUGGCA
OSSSSSSOSOSOSO


6409
* S mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod012L001fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


6410
fA * fU * fU * fU * fC * fU
UUUCU
XOXXXXXX





WV-
L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG * S
UCAAGGAAGAUGGCA
OSSSSSSOSOSOSO


6560
mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod012L001 mU * S mC * S mA * S mA * S mG * S mG * S mA mA * S mG
UCAAGGAAGAUGGCA
OSSSSSSOSOSOSO


6826
mA * S mU mG * S mG mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSSSS





WV-
Mod012L001 mU * mC * mA * mA * mG * mG * mA mA * mG mA * mU
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


6827
mG * mG mC * mA * mU * mU * mU * mC * mU
UUUCU
XOXXXXXX





WV-
Mod012L001 mU * mC * mA * mA * mG * mG * mA * mA * mG * mA *
UCAAGGAAGAUGGCA
OXXXXX XXXXX


6828
mU * mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Mod012L001fC * fC * fU * fU * fC * fC * mCfU * mGfA * mAfG * mGfU *
CCUUCCCUGAAGGUU
OXXXXXXOXOXO


6829
fU * fC * fC * fU * fC * fC
CCUCC
XOXXXXXX





WV-
Mod012L001 mC * mC * mU * mU * mC * mC * mC mU * mG mA * mA
CCUUCCCUGAAGGUU
OXXXXXXOXOXO


6830
mG * mG mU * mU * mC * mC * mU * mC * mC
CCUCC
XOXXXXXX





WV-
L001 mU * S mC * S mA * S mA * S mG * S mG * S mA mA * S mG mA * S
UCAAGGAAGAUGGCA
OSSSSSSOSOSOSO


7109
mU mG * S mG mC * S mA * S mU * S mU * S mU * S mC * S mU
UUUCU
SSSSSS





WV-
L001 mU * mC * mA * mA * mG * mG * mA mA * mG mA * mU mG *
UCAAGGAAGAUGGCA
OXXXXXXOXOXO


7110
mG mC * mA * mU * mU * mU * mC * mU
UUUCU
XOXXXXXX





WV-
L00lfC * fC * fU * fU * fC * fC * mCfU * mGfA * mAfU * mGfU * fU * fC
CCUUCCCUGAAGGUU
OXXXXXXOXOXO


7111
* fC * fU * fC * fC
CCUCC
XOXXXXXX





WV-
L001 mC * mC * mU * mU * mC * mC * mC mU * mG mA * mA mG *
CCUUCCCUGAAGGUU
OXXXXXXOXOXO


7112
mG mU * mU * mC * mC * mU * mC * mC
CCUCC
XOXXXXXX





WV-
fU * fC * fAfAfGfG mAfA * mG mA * fU * mG mGfC * fA * fU * fU * fU *
UCAAGGAAGAUGGCA
XXOOOOOXOXXO


7333
fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fAfA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXOXXXOXOXXO


7334
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fAfG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXOXXOXOXXO


7335
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fGfG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXOXOXOXXO


7336
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXOOXOXXO


7337
* fU * fC * fU
UUUCU
OXXXXXX





WV-
Mod020L001fU * fC * fAfAfGfG mAfA * mG mA * fU * mG mGfC * fA *
UCAAGGAAGAUGGCA
OXXOOOOOXOXX


7338
fU * fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
Mod020L001fU * fC * fAfA * fG * fG * mAfA * mG mA * fU * mG mGfC *
UCAAGGAAGAUGGCA
OXXOXXXOXOXX


7339
fA * fU * fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
Mod020L001fU * fC * fA * fAfG * fG * mAfA * mG mA * fU * mG mGfC *
UCAAGGAAGAUGGCA
OXXXOXXOXOXX


7340
fA * fU * fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
Mod020L001fU * fC * fA * fA * fGfG * mAfA * mG mA * fU * mG mGfC *
UCAAGGAAGAUGGCA
OXXXXOXOXOXX


7341
fA * fU * fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
Mod020L001fU * fC * fA * fA * fG * fG mAfA * mG mA * fU * mG mGfC *
UCAAGGAAGAUGGCA
OXXXXXOOXOXX


7342
fA * fU * fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
T * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7343
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * C * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7344
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * A * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7345
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * A * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7346
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * G * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7347
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * G * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7348
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7349
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * T * mG mGfC * fA * fU * fU
UCAAGGAAGATGGCA
XXXXXXOXOXXO


7350
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7351
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * A * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7352
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * T * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7353
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fG * T
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7354
* fU * fC * fU
UTUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7355
fU * T * fC * fU
UUTCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7356
fU * fU * C * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7357
fU * fU * fC * T
UUUCT
OXXXXXX





WV-
fU * fC * A * fA * fG * G * mAfA mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7358
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * C * fA * fA * G * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7359
* fU * fC * fU
UUUCU
OXXXXXX





WV-
T * fC * fA * A * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU * fU
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7360
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * T * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7361
* fU * T * fU
UUUTU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * A * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7362
* T * fC * fU
UUTCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGC * fA * fU * T
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7363
* fU * fC * T
UTUCT
OXXXXXX





WV-
fU * fC * A * fA * fG * G * mAfA * mG mA * fU * mG mGfC * fA * T * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7364
fU * T * fU
TUUTU
OXXXXXX





WV-
fU * fC * A * fA * fG * G * mAfA * mG mA * fU * mG mGfC * A * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7365
* T * fC * fU
UUTCU
OXXXXXX





WV-
fU * fC * A * fA * fG * G * mAfA * mG mA * fU * mG mGC * fA * fU * T *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7366
fU * fC * T
UTUCT
OXXXXXX





WV-
fU * C * fA * fA * G * fG * mAfA * mG mA * fU * mG mGfC * fA * T * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7367
fU * T * fU
TUUTU
OXXXXXX





WV-
fU * C * fA * fA * G * fG * mAfA * mG mA * fU * mG mGfC * A * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7368
* T * fC * fU
UUTCU
OXXXXXX





WV-
fU * C * fA * fA * G * fG * mAfA * mG mA * fU * mG mGC * fA * fU * T *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7369
fU * fC * T
UTUCT
OXXXXXX





WV-
T * fC * fA * A * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * T * fU *
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7370
fU * T * fU
TUUTU
OXXXXXX





WV-
T * fC * fA * A * fG * fG * mAfA * mG mA * fU * mG mGfC * A * fU * fU *
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7371
T * fC * fU
UUTCU
OXXXXXX





WV-
T * fC * fA * A * fG * fG * mAfA * mG mA * fU * mG mGC * fA * fU * T *
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7372
fU * fC * T
UTUCT
OXXXXXX





WV-
Teo * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7373
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * m5Ceo * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7374
fU * fU * fG * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * Aeo * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7375
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * Aeo * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7376
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * Geo * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7377
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * Geo * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7378
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAAeo * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7379
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * Teo * mG mGfC * fA * fU *
UCAAGGAAGATGGCA
XXXXXXOXOXXO


7380
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mG m5Ceo * fA *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7381
fU * fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * Aeo * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7382
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * Teo *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7383
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7384
Teo * fU * fC * fU
UTUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7385
fU * Teo * fC * fU
UUTCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7386
fU * fU * m5Ceo * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7387
fU * fU * fC * Teo
UUUCT
OXXXXXX





WV-
fU * fC * Aeo * fA * fG * Geo * mAfA * mG mA * fU * mG mGfC * fA * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7388
* fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * m5Ceo * fA * fA * Geo * fG * mAfA * mG mA * fU * mG mGfC * fA *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7389
fU * fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
Teo * fC * fA * Aeo * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7390
* fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * Teo *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7391
fU * fU * Teo * fU
TUUTU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * mAfA * mG mA * fU * mG mGfC * Aeo * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7392
fU * Teo * fC * fU
UUTCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * mAfA * mG mA * fU * mG mG m5Ceo * fA *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7393
fU * Teo * fU * fC * Teo
UTUCT
OXXXXXX





WV-
fU * fC * Aeo * fA * fG * Geo * mAfA * mG mA * fU * mG mGfC * fA * Teo
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7394
* fU * fU * Teo * fU
TUUTU
OXXXXXX





WV-
fU * fC * Aeo * fA * fG * Geo * mAfA * mG mA * fU * mG mGfC * Aeo *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7395
fU * fU * Teo * fC * fU
UUTCU
OXXXXXX





WV-
fU * fC * Aeo * fA * fG * Geo * mAfA * mG mA * fU * mG mG m5Ceo * fA
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7396
* fU * Teo * fU * fC * Teo
UTUCT
OXXXXXX





WV-
fU * m5Ceo * fA * fA * Geo * fG * mAfA * mG mA * fU * mG mGfC * fA *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7397
Teo * fU * fU * Teo * fU
TUUTU
OXXXXXX





WV-
fU * m5Ceo * fA * fA * Geo * fG * mAfA * mG mA * fU * mG mGfC * Aeo
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7398
* fU * fU * Teo * fC * fU
UUTCU
OXXXXXX





WV-
fU * m5Ceo * fA * fA * Geo * fG * mAfA * mG mA * fU * mG mG m5Ceo *
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


7399
fA * fU * Teo * fU * fC * Teo
UTUCT
OXXXXXX





WV-
Teo * fC * fA * Aeo * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * Teo
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7400
* fU * fU * Teo * fU
TUUTU
OXXXXXX





WV-
Teo * fC * fA * Aeo * fG * fG * mAfA * mG mA * fU * mG mGfC * Aeo * fU
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7401
* fU * Teo * fC * fU
UUTCU
OXXXXXX





WV-
Teo * fC * fA * Aeo * fG * fG * mAfA * mG mA * fU * mG mG m5Ceo * fA
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


7402
* fU * Teo * fU * fC * Teo
UTUCT
OXXXXXX





WV-
BrfU * SfC * SfA * SfA * SfG * SfU * S mAfA * S mGfA * S mUfG * S mGfC
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


7410
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Acet5fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG * S
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


7411
mGfC * SfA * SfU * SfU * SfG * SfU * SfU
UUUCU
SSSSS





WV-
BrfU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA * fU *
UCAAGGAAGAUGGCA
XXXXXXOXOXOX


7412
fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
Acet5fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXOX


7413
* fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
BrmU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG
UCAAGGAAGAUGGCA
XXXXX XXXXX


7414
* mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Acet5 mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU *
UCAAGGAAGAUGGCA
XXXXX XXXXX


7415
mG * mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fC * fU * fU * fU * fA * fA * mC * mA * mU * mU * mU * mC * mA *
CUUUAACAUUUCAUU
XXXXX XXXXX


7436
mU * fU * fC * fA * fA * fC * fU
CAACU
XXXXX XXXX





WV-
fU * fU * fA * fA * fC * fA * mU * mU * mU * mC * mA * mU * mU *
UUAACAUUUCAUUCA
XXXXX XXXXX


7437
mC * fA * fA * fC * fU * fG * fU
ACUGU
XXXXX XXXX





WV-
fA * fA * fC * fA * fU * fU * mU * mC * mA * mU * mU * mC * mA *
AACAUUUCAUUCAAC
XXXXX XXXXX


7438
mA * fC * fU * fG * fU * fU * fG
UGUUG
XXXXX XXXX





WV-
fC * fA * fU * fU * fU * fC * mA * mU * mU * mC * mA * mA * mC *
CAUUUCAUUCAACUG
XXXXX XXXXX


7439
mU * fG * fU * fU * fG * fU * fC
UUGUC
XXXXX XXXX





WV-
fU * fU * fU * fC * fA * fU * mU * mC * mA * mA * mC * mU * mG *
UUUCAUUCAACUGUU
XXXXX XXXXX


7440
mU * fU * fG * fU * fC * fU * fC
GUCUC
XXXXX XXXX





WV-
fU * fC * fA * fU * fU * fC * mA * mA * mC * mU * mG * mU * mU *
UCAUUCAACUGUUGU
XXXXX XXXXX


7441
mG * fU * fC * fU * fC * fC * fU
CUCCU
XXXXX XXXX





WV-
fA * fU * fU * fC * fA * fA * mC * mU * mG * mU * mU * mG * mU *
AUUCAACUGUUGUCU
XXXXX XXXXX


7442
mC * fU * fC * fC * fU * fG * fU
CCUGU
XXXXX XXXX





WV-
fU * fC * fA * fA * fC * fU * mG * mU * mU * mG * mU * mC * mU *
UCAACUGUUGUCUCC
XXXXX XXXXX


7443
mC * fC * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fA * fA * fC * fU * fG * fU * mU * mG * mU * mC * mU * mC * mC *
AACUGUUGUCUCCUG
XXXXX XXXXX


7444
mU * fG * fU * fU * fC * fU * fG
UUCUG
XXXXX XXXX





WV-
fC * fU * fG * fU * fU * fG * mU * mC * mU * mC * mC * mU * mG *
CUGUUGUCUCCUGUU
XXXXX XXXXX


7445
mU * fU * fC * fU * fG * fC * fA
CUGCA
XXXXX XXXX





WV-
fG * fU * fU * fG * fU * fC * mU * mC * mC * mU * mG * mU * mU *
GUUGUCUCCUGUUCU
XXXXX XXXXX


7446
mC * fU * fG * fC * fA * fG * fC
GCAGC
XXXXX XXXX





WV-
fU * fG * fU * fC * fU * fC * mC * mU * mG * mU * mU * mC * mU *
UGUCUCCUGUUCUGC
XXXXX XXXXX


7447
mG * fC * fA * fG * fC * fU * fG
AGCUG
XXXXX XXXX





WV-
fU * fC * fU * fC * fC * fU * mG * mU * mU * mC * mU * mG * mC *
UCUCCUGUUCUGCAG
XXXXX XXXXX


7448
mA * fG * fC * fU * fG * fU * fU
CUGUU
XXXXX XXXX





WV-
fU * fC * fC * fU * fG * fU * mU * mC * mU * mG * mC * mA * mG *
UCCUGUUCUGCAGCU
XXXXX XXXXX


7449
mC * fU * fG * fU * fU * fU * fU
GUUCU
XXXXX XXXX





WV-
fC * fU * fG * fU * fU * fC * mU * mG * mC * mA * mG * mC * mU *
CUGUUCUGCAGCUGU
XXXXX XXXXX


7450
mG * fU * fU * fC * fU * fU * fG
UCUUG
XXXXX XXXX





WV-
fG * fU * fU * fC * fU * fG * mC * mA * mG * mC * mU * mG * mU *
GUUCUGCAGCUGUUC
XXXXX XXXXX


7451
mU * fC * fU * fU * fG * fA * fA
UUGAA
XXXXX XXXX





WV-
fU * fC * fU * fG * fC * fA * mG * mC * mU * mG * mU * mU * mC *
UCUGCAGCUGUUCUU
XXXXX XXXXX


7452
mU * fU * fG * fA * fA * fC * fC
GAACC
XXXXX XXXX





WV-
fU * fG * fC * fA * fG * fC * mU * mG * mU * mU * mC * mU * mU *
UGCAGCUGUUCUUA
XXXXX XXXXX


7453
mG * fA * fA * fC * fC * fU * fC
ACCUC
XXXXX XXXX





WV-
fU * fG * fU * fU * fC * fU * mU * mG * mA * mA * mC * mC * mU *
UGUUCUUGAACCUCA
XXXXX XXXXX


7454
mC * fA * fU * fC * fC * fC * fA
UCCCA
XXXXX XXXX





WV-
fC * fA * fG * fC * fU * fG * mU * mU * mC * mU * mU * mG * mA *
CAGCUGUUCUUGAAC
XXXXX XXXXX


7455
mA * fC * fC * fU * fC * fA * fU
CUCAU
XXXXX XXXX





WV-
fG * fC * fU * fG * fU * fU * mC * mU * mU * mG * mA * mA * mC *
GCUGUUCUUGAACCU
XXXXX XXXXX


7456
mC * fU * fC * fA * fU * fC * fC
CAUCC
XXXXX XXXX





WV-
L001fU * fC * fAfAfGfG mAfA * mG mA * fU * mG mGfC * fA * fU * fU *
UCAAGGAAGAUGGCA
OXXOOOOOXOXX


7457
fU * fC * fU
UUUCU
OOXXXXXX





WV-
L001fU * fC * fAfA * fG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU
UCAAGGAAGAUGGCA
OXXOXXXOXOXX


7458
* fU * fU * fC * fU
UUUCU
OOXXXXXX


π





WV-
L001fU * fC * fA * fAfG * fG * mAfA * mG mA * fU * mG mGfC * fA * fU
UCAAGGAAGAUGGCA
OXXXOXXOXOXX


7459
* fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
L001fU * fC * fA * fA * fGfG * mAfA * mG mA * fU * mG mGfC * fA * fU
UCAAGGAAGAUGGCA
OXXXXOXOXOXX


7460
* fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
L001fU * fC * fA * fA * fG * fG mAfA * mG mA * fU * mG mGfC * fA * fU
UCAAGGAAGAUGGCA
OXXXXXOOXOXX


7461
* fU * fU * fC * fU
UUUCU
OOXXXXXX





WV-
mU * mC * mA * mA * mG * mG * mA mA * mG mA * mU mG * mG
UCAAGGAAGAUGGCA
XXXXXXOXOXOX


7506
mC * mA * mU * mU * mU * mC * mU
UUUCU
OXXXXXX





WV-
fC * fC * fU * fU * fC * fC * mCfU * mGfA * mAfG * mGfU * fU * fC * fC
CCUUCCCUGAAGGUU
XXXXXXOXOXOX


7507
* fU * fC * fC
CCUCC
OXXXXXX





WV-
mC * mC * mU * mU * mC * mC * mC mU * mG mA * mA mG * mG
CCUUCCCUGAAGGUU
XXXXXXOXOXOX


7508
mU * mU * mC * mC * mU * mC * mC
CCUCC
OXXXXXX





WV-
fU * RfC * RfA * RfA * RfG * RfG * R mAfA * R mGfA * R mUfG * R
UCAAGGAAGAUGGCA
RRRRRROROROR


7596
mGfC * RfA * RfU * RfU * RfU * RfC * RfU
UUUCU
ORRRRRR





WV-
fG * fC * fC * fA * fU * fU * mU * mU * mG * mU * mU * mG * mC *
GCCAUUUUGUUGCUC
XXXXX XXXXX


7677
mU * fC * fU * fU * fU * fC * fA
UUUCA
XXXXX XXXX





WV-
fA * fG * fC * fC * fA * fU * mU * mU * mU * mG * mU * mU * mG *
AGCCAUUUUGUUGCU
XXXXX XXXXX


7678
mC * fU * fC * fU * fU * fU * fC
CUUUC
XXXXX XXXX





WV-
fA * fA * fG * fC * fC * fA * mU * mU * mU * mU * mG * mU * mU *
AAGCCAUUUUGUUGC
XXXXX XXXXX


7679
mG * fC * fU * fC * fU * fU * fU
UCUUU
XXXXX XXXX





WV-
fU * fU * fG * fA * fA * fG * mC * mC * mA * mU * mU * mU * mU *
UUGAAGCCAUUUUGU
XXXXX XXXXX


7680
mG * fU * fU * fG * fC * fU * fC
UGCUC
XXXXX XXXX





WV-
fU * fA * fG * fU * fU * fG * mA * mA * mG * mC * mC * mA * mU *
UAGUUGAAGCCAUUU
XXXXX XXXXX


7681
mU * fU * fU * fG * fU * fU * fG
UGUUG
XXXXX XXXX





WV-
fA * fG * fA * fU * fA * fG * mU * mU * mG * mA * mA * mG * mC *
AGAUAGUUGAAGCCA
XXXXX XXXXX


7682
mC * fA * fU * fU * fU * fU * fG
UUUUG
XXXXX XXXX





WV-
fC * fU * fC * fA * fG * fA * mU * mA * mG * mU * mU * mG * mA *
CUCAGAUAGUUGAAG
XXXXX XXXXX


7683
mA * fG * fC * fC * fA * fU * fU
CCAUU
XXXXX XXXX





WV-
fU * fC * fA * fC * fU * fC * mA * mG * mA * mU * mA * mG * mU *
UCACUCAGAUAGUUG
XXXXX XXXXX


7684
mU * fG * fA * fA * fG * fC * fC
AAGCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fC * fA * mC * mU * mC * mA * mG * mA * mU *
GUGUCACUCAGAUAG
XXXXX XXXXX


7685
mA * fG * fU * fU * fG * fA * fA
UUGAA
XXXXX XXXX





WV-
fA * fC * fA * fG * fU * fG * mU * mC * mA * mC * mU * mC * mA *
ACAGUGUCACUCAGA
XXXXX XXXXX


7686
mG * fA * fU * fA * fG * fU * fU
UAGUU
XXXXX XXXX





WV-
fC * fA * fC * fA * fG * fU * mG * mU * mC * mA * mC * mU * mC *
CACAGUGUCACUCAG
XXXXX XXXXX


7687
mA * fG * fA * fU * fA * fG * fU
AUAGU
XXXXX XXXX





WV-
fC * fU * fU * fC * fA * fC * mA * mG * mU * mG * mU * mC * mA *
CUUCACAGUGUCACU
XXXXX XXXXX


7688
mC * fU * fC * fA * fG * fA * fU
CAGAU
XXXXX XXXX





WV-
fC * fC * fU * fU * fC * fA * mC * mA * mG * mU * mG * mU * mC *
CCUUCACAGUGUCAC
XXXXX XXXXX


7689
mA * fC * fU * fC * fA * fG * fA
UCAGA
XXXXX XXXX





WV-
fC * fU * fC * fC * fU * fU * mC * mA * mC * mA * mG * mU * mG *
CUCCUUCACAGUGUC
XXXXX XXXXX


7690
mU * fC * fA * fC * fU * fC * fA
ACUCA
XXXXX XXXX





WV-
fA * fU * fC * fU * fC * fC * mU * mU * mC * mA * mC * mA * mG *
AUCUCCUUCACAGUG
XXXXX XXXXX


7691
mU * fG * fU * fC * fA * fC * fU
UCACU
XXXXX XXXX





WV-
fC * fC * fA * fU * fC * fU * mC * mC * mU * mU * mC * mA * mC * mA
CCAUCUCCUUCACAG
XXXXX XXXXX


7692
* fG * fU * fG * fU * fC * fA
UGUCA
XXXXX XXXX





WV-
fG * fG * fC * fC * fA * fU * mC * mU * mC * mC * mU * mU * mC *
GGCCAUCUCCUUCAC
XXXXX XXXXX


7693
mA * fC * fA * fG * fU * fG * fU
AGUGU
XXXXX XXXX





WV-
fU * fU * fG * fG * fC * fC * mA * mU * mC * mU * mC * mC * mU *
UUGGCCAUCUCCUUC
XXXXX XXXXX


7694
mU * fC * fA * fC * fA * fG * fU
ACAGU
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * mC * mC * mA * mU * mC * mU * mC *
UCUUGGCCAUCUCCU
XXXXX XXXXX


7695
mC * fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * mG * mG * mC * mC * mA * mU * mC *
UUUCUUGGCCAUCUC
XXXXX XXXXX


7696
mU * fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fG * fC * fU * fU * fU * fC * mU * mU * mG * mG * mC * mC * mA *
GCUUUCUUGGCCAUC
XXXXX XXXXX


7697
mU * fC * fU * fC * fC * fU * fU
UCCUU
XXXXX XXXX





WV-
fG * fU * fG * fC * fU * fU * mU * mC * mU * mU * mG * mG * mC *
GUGCUUUCUUGGCCA
XXXXX XXXXX


7698
mC * fA * fU * fC * fU * fC * fC
UCUCC
XXXXX XXXX





WV-
fA * fG * fG * fU * fG * fC * mU * mU * mU * mC * mU * mU * mG *
AGGUGCUUUCUUGGC
XXXXX XXXXX


7699
mG * fC * fC * fA * fU * fC * fU
CAUCU
XXXXX XXXX





WV-
fG * fA * fA * fG * fG * fU * mG * mC * mU * mU * mU * mC * mU *
GAAGGUGCUUUCUUG
XXXXX XXXXX


7700
mU * fG * fG * fC * fC * fA * fU
GCCAU
XXXXX XXXX





WV-
fC * fU * fG * fA * fA * fG * mG * mU * mG * mC * mU * mU * mU *
CUGAAGGUGCUUUCU
XXXXX XXXXX


7701
mC * fU * fU * fG * fG * fC * fC
UGGCC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * mA * mG * mG * mU * mG * mC * mU *
UUCUGAAGGUGCUUU
XXXXX XXXXX


7702
mU * fU * fC * fU * fU * fG * fG
CUUGG
XXXXX XXXX





WV-
fU * fA * fU * fU * fU * fC * mU * mG * mA * mA * mG * mG * mU *
UAUUUCUGAAGGUGC
XXXXX XXXXX


7703
mG * fC * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
fA * fU * fA * fU * fU * fU * mC * mU * mG * mA * mA * mG * mG *
AUAUUUCUGAAGGU
XXXXX XXXXX


7704
mU * fG * fC * fU * fU * fU * fC
GCUUUC
XXXXX XXXX





WV-
fG * fG * fC * fA * fU * fA * mU * mU * mU * mC * mU * mG * mA *
GGCAUAUUUCUGAAG
XXXXX XXXXX


7705
mA * fG * fG * fU * fG * fC * fU
GUGCU
XXXXX XXXX





WV-
fU * fG * fG * fC * fA * fU * mA * mU * mU * mU * mC * mU * mG *
UGGCAUAUUUCUGAA
XXXXX XXXXX


7706
mA * fA * fG * fG * fU * fG * fC
GGUGC
XXXXX XXXX





WV-
fU * fC * fU * fG * fG * fC * mA * mU * mA * mU * mU * mU * mC *
UCUGGCAUAUUUCUG
XXXXX XXXXX


7707
mU * fG * fA * fA * fG * fG * fU
AAGGU
XXXXX XXXX





WV-
fU * fC * fU * fG * fA * fC * mA * mG * mA * mU * mA * mU * mU *
UCUGACAGAUAUUUC
XXXXX XXXXX


7708
mU * fC * fU * fG * fG * fC * fA
UGGCA
XXXXX XXXX





WV-
fA * fU * fU * fC * fU * fG * mA * mC * mA * mG * mA * mU * mA *
AUUCUGACAGAUAUU
XXXXX XXXXX


7709
mU * fU * fU * fC * fU * fG * fG
UCUGG
XXXXX XXXX





WV-
fC * fA * fA * fA * fU * fU * mC * mU * mG * mA * mC * mA * mG *
CAAAUUCUGACAGAU
XXXXX XXXXX


7710
mA * fU * fA * fU * fU * fU * fC
AUUUC
XXXXX XXXX





WV-
fU * fC * fU * fC * fU * fU * mC * mA * mA * mA * mU * mU * mC *
UCUCUUCAAAUUCUG
XXXXX XXXXX


7711
mU * fG * fA * fC * fA * fG * fA
ACAGA
XXXXX XXXX





WV-
fC * fU * fU * fC * fA * fA * mU * mC * mU * mC * mU * mU * mC *
CCUCAAUCUCUUCAA
XXXXX XXXXX


7712
mA * fA * fA * fU * fU * fC * fU
AUUCU
XXXXX XXXX





WV-
fG * fC * fC * fC * fC * fU * mC * mA * mA * mU * mC * mU * mC * mU
GCCCCUCAAUCUCUU
XXXXX XXXXX


7713
* fU * fC * fA * fA * fA * fU
CAAAU
XXXXX XXXX





WV-
fU * fG * fC * fC * fC * fC * mU * mC * mA * mA * mU * mC * mU * mC
UGCCCCUCAAUCUCU
XXXXX XXXXX


7714
* fU * fU * fC * fA * fA * fA
UCAAA
XXXXX XXXX





WV-
fG * fU * fG * fC * fC * fC * mC * mU * mC * mA * mA * mU * mC *
GUGCCCCUCAAUCUC
XXXXX XXXXX


7715
mU * fC * fU * fU * fC * fA * fA
UUCAA
XXXXX XXXX





WV-
fA * fG * fU * fG * fC * fC * mC * mC * mU * mC * mA * mA * mU *
AGUGCCCCUCAAUCU
XXXXX XXXXX


7716
mC * fU * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fC * fC * fA * fG * fU * fG * mC * mC * mC * mC * mU * mC * mA * mA
CCAGUGCCCCUCAAU
XXXXX XXXXX


7717
* fU * fC * fU * fC * fU * fU
CUCUU
XXXXX XXXX





WV-
fU * fU * fC * fC * fA * fU * mU * mG * mC * mC * mC * mC * mU * mC
UUCCAGUGCCCCUCA
XXXXX XXXXX


7718
* fA * fA * fU * fC * fU * fC
AUCUC
XXXXX XXXX





WV-
fU * fC * fU * fU * fC * fC * mA * mG * mU * mG * mC * mC * mC * mC
UCUUCCAGUGCCCCU
XXXXX XXXXX


7719
* fU * fC * fA * fA * fU * fC
CAAUC
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * mC * mC * mA * mG * mU * mG * mC *
UUUCUUCCAGUGCCC
XXXXX XXXXX


7720
mC * fC * fC * fU * fC * fA * fA
CUCAA
XXXXX XXXX





WV-
fA * fG * fU * fU * fU * fC * mU * mC * mC * mC * mA * mG * mU *
AGUUUCUUCCAGUGC
XXXXX XXXXX


7721
mG * fC * fC * fC * fC * fU * fC
CCCUC
XXXXX XXXX





WV-
fA * fA * fA * fG * fU * fU * mC * mC * mU * mU * mC * mC * mA *
AAAGUUUCUUCCAGU
XXXXX XXXXX


7722
mG * fU * fG * fC * fC * fC * fC
GCCCC
XXXXX XXXX





WV-
fA * fG * fG * fA * fA * fA * mG * mU * mU * mU * mC * mU * mU *
AGGAAAGUUUCUUCC
XXXXX XXXXX


7723
mC * fC * fA * fG * fU * fG * fC
AGUGC
XXXXX XXXX





WV-
fG * fG * fA * fG * fG * fA * mA * mA * mG * mU * mU * mU * mC *
GGAGGAAAGUUUCU
XXXXX XXXXX


7724
mU * fU * fC * fC * fA * fG * fU
UCCAGU
XXXXX XXXX





WV-
fC * fU * fG * fG * fG * fA * mG * mG * mA * mA * mA * mG * mU *
CUGGGAGGAAAGUU
XXXXX XXXXX


7725
mU * fU * fC * fU * fU * fC * fC
UCUUCC
XXXXX XXXX





WV-
fA * fC * fU * fG * fG * fG * mA * mG * mG * mA * mA * mA * mG *
ACUGGGAGGAAAGU
XXXXX XXXXX


7726
mU * fU * fU * fC * fU * fU * fC
UUCUUC
XXXXX XXXX





WV-
fC * fC * fA * fA * fC * fU * mG * mG * mG * mA * mG * mG * mA *
CCAACUGGGAGGAAA
XXXXX XXXXX


7727
mA * fA * fG * fU * fU * fU * fC
GUUUC
XXXXX XXXX





WV-
fC * fC * fA * fC * fC * fA * mA * mC * mU * mG * mG * mG * mA *
CCACCAACUGGGAGG
XXXXX XXXXX


7728
mG * fG * fA * fA * fA * fG * fU
AAAGU
XXXXX XXXX





WV-
fU * fU * fU * fC * fC * fA * mC * mC * mA * mA * mC * mU * mG *
UUUCCACCAACUGGG
XXXXX XXXXX


7729
mG * fG * fA * fG * fG * fA * fA
AGGAA
XXXXX XXXX





WV-
fC * fU * fU * fU * fC * fC * mA * mC * mC * mA * mA * mC * mU *
CUUUCCACCAACUGG
XXXXX XXXXX


7730
mG * fG * fG * fA * fG * fG * fA
GAGGA
XXXXX XXXX





WV-
fG * fC * fU * fU * fU * fC * mC * mA * mC * mC * mA * mA * mC *
GCUUUCCACCAACUG
XXXXX XXXXX


7731
mU * fG * fG * fG * fA * fG * fG
GGAGG
XXXXX XXXX





WV-
fC * fA * fG * fC * fU * fU * mU * mC * mC * mA * mC * mC * mA *
CAGCUUUCCACCAAC
XXXXX XXXXX


7732
mA * fC * fU * fG * fG * fG * fA
UGGGA
XXXXX XXXX





WV-
fG * fG * fC * fA * fG * fC * mU * mU * mU * mC * mC * mA * mC *
GGCAGCUUUCCACCA
XXXXX XXXXX


7733
mC * fA * fA * fC * fU * fG * fG
ACUGG
XXXXX XXXX





WV-
fU * fU * fG * fG * fC * fA * mG * mC * mU * mU * mU * mC * mC *
UUGGCAGCUUUCCAC
XXXXX XXXXX


7734
mA * fC * fC * fA * fA * fC * fU
CAACU
XXXXX XXXX





WV-
fU * fU * fU * fU * fG * fG * mC * mA * mG * mC * mU * mU * mU *
UUUUGGCAGCUUUCC
XXXXX XXXXX


7735
mC * fC * fA * fC * fC * fA * fA
ACCAA
XXXXX XXXX





WV-
fG * fC * fU * fU * fU * fU * mG * mG * mC * mA * mG * mC * mU *
GCUUUUGGCAGCUUU
XXXXX XXXXX


7736
mU * fU * fC * fC * fA * fC * fC
CCACC
XXXXX XXXX





WV-
fU * fA * fG * fC * fU * fU * mU * mU * mG * mG * mC * mA * mG *
UAGCUUUUGGCAGCU
XXXXX XXXXX


7737
mC * fU * fU * fU * fC * fC * fA
UUCCA
XXXXX XXXX





WV-
fU * fC * fU * fA * fG * fC * mU * mU * mU * mU * mG * mG * mC *
UCUAGCUUUUGGCAG
XXXXX XXXXX


7738
mA * fG * fC * fU * fU * fU * fC
CUUUC
XXXXX XXXX





WV-
fC * fU * fU * fC * fU * fA * mG * mC * mU * mU * mU * mU * mG *
CUUCUAGCUUUUGGC
XXXXX XXXXX


7739
mG * fC * fA * fG * fC * fU * fU
AGCUU
XXXXX XXXX





WV-
fU * fU * fC * fU * fU * fC * mU * mA * mG * mC * mU * mU * mU *
UUCUUCUAGCUUUUG
XXXXX XXXXX


7740
mU * fG * fG * fC * fA * fG * fC
GCAGC
XXXXX XXXX





WV-
fU * fG * fU * fU * fC * fU * mU * mC * mU * mA * mG * mC * mU *
UGUUCUUCUAGCUUU
XXXXX XXXXX


7741
mU * fU * fU * fG * fG * fC * fA
UGGCA
XXXXX XXXX





WV-
fU * fA * fU * fG * fU * fU * mC * mU * mU * mC * mU * mA * mG *
UAUGUUCUUCUAGCU
XXXXX XXXXX


7742
mC * fU * fU * fU * fU * fG * fG
UUUGG
XXXXX XXXX





WV-
fC * fA * fU * fA * fU * fG * mU * mU * mC * mU * mU * mC * mU *
CAUAUGUUCUUCUAG
XXXXX XXXXX


7743
mA * fG * fC * fU * fU * fU * fU
CUUUU
XXXXX XXXX





WV-
fU * fU * fC * fA * fU * fA * mU * mG * mU * mU * mC * mU * mU *
UUCAUAUGUUCUUCU
XXXXX XXXXX


7744
mC * fU * fA * fG * fC * fU * fU
AGCUU
XXXXX XXXX





WV-
fA * fU * fU * fC * fA * fU * mA * mU * mG * mU * mU * mC * mU *
AUUCAUAUGUUCUUC
XXXXX XXXXX


7745
mU * fC * fU * fA * fG * fC * fU
UAGCU
XXXXX XXXX





WV-
fU * fA * fU * fU * fC * fA * mU * mA * mU * mG * mU * mU * mC *
UAUUCAUAUGUUCUU
XXXXX XXXXX


7746
mU * fU * fC * fU * fA * fG * fC
CUAGC
XXXXX XXXX





WV-
fG * fU * fU * fU * fA * fU * mU * mC * mA * mU * mA * mU * mG *
GUUUAUUCAUAUGU
XXXXX XXXXX


7747
mU * fU * fC * fU * fU * fC * fU
UCUUCU
XXXXX XXXX





WV-
fA * fG * fU * fU * fU * fA * mU * mU * mC * mA * mU * mA * mU *
AGUUUAUUCAUAUG
XXXXX XXXXX


7748
mG * fU * fU * fC * fU * fU * fC
UUCUUC
XXXXX XXXX





WV-
fG * fA * fA * fG * fU * fU * mU * mA * mU * mU * mC * mA * mU *
GAAGUUUAUUCAUA
XXXXX XXXXX


7749
mA * fU * fG * fU * fU * fC * fU
UGUUCU
XXXXX XXXX





WV-
fU * fC * fG * fA * fA * fG * mU * mU * mU * mA * mU * mU * mC *
UCGAAGUUUAUUCAU
XXXXX XXXXX


7750
mA * fU * fA * fU * fG * fU * fU
AUGUU
XXXXX XXXX





WV-
fU * fU * fC * fG * fA * fA * mG * mU * mU * mU * mA * mU * mU *
UUCGAAGUUUAUUCA
XXXXX XXXXX


7751
mC * fA * fU * fA * fU * fG * fU
UAUGU
XXXXX XXXX





WV-
fU * fU * fU * fC * fG * fA * mA * mG * mU * mU * mU * mA * mU *
UUUCGAAGUUUAUUC
XXXXX XXXXX


7752
mU * fC * fA * fU * fA * fU * fG
AUAUG
XXXXX XXXX





WV-
fA * fA * fU * fU * fU * fU * mC * mG * mA * mA * mG * mU * mU *
AAUUUUCGAAGUUU
XXXXX XXXXX


7753
mU * fA * fU * fU * fC * fA * fU
AUUCAU
XXXXX XXXX





WV-
fU * fG * fA * fA * fA * fG * mU * mU * mU * mC * mG * mA * mA *
UGAAAUUUUCGAAG
XXXXX XXXXX


7754
mG * fU * fU * fU * fA * fU * fU
UUUAUU
XXXXX XXXX





WV-
fA * fC * fC * fU * fG * fA * mA * mA * mU * mU * mU * mU * mC *
ACCUGAAAUUUUCGA
XXXXX XXXXX


7755
mG * fA * fA * fG * fU * fU * fU
AGUUU
XXXXX XXXX





WV-
fG * fU * fA * fC * fC * fU * mG * mA * mA * mA * mU * mU * mU *
UUACCUGAAAUUUUC
XXXXX XXXXX


7756
mU * fC * fG * fA * fA * fG * fU
GAAGU
XXXXX XXXX





WV-
fG * fC * fU * fU * fA * fC * mC * mU * mG * mA * mA * mA * mU *
GCUUACCUGAAAUUU
XXXXX XXXXX


7757
mU * fU * fU * fC * fG * fA * fA
UCGAA
XXXXX XXXX





WV-
fC * fG * fG * fC * fU * fU * mA * mC * mC * mU * mG * mA * mA *
CGGCUUACCUGAAAU
XXXXX XXXXX


7758
mA * fU * fU * fU * fU * fC * fG
UUUCG
XXXXX XXXX





WV-
fC * fU * fC * fG * fG * fC * mU * mU * mA * mC * mC * mU * mG *
CUCGGCUUACCUGAA
XXXXX XXXXX


7759
mA * fA * fA * fU * fU * fU * fU
AUUUU
XXXXX XXXX





WV-
fA * fC * fC * fU * fC * fG * mG * mC * mU * mU * mA * mC * mC *
ACCUCGGCUUACCUG
XXXXX XXXXX


7760
mU * fG * fA * fA * fA * fU * fU
AAAUU
XXXXX XXXX





WV-
fA * fA * fA * fC * fC * fU * mC * mG * mG * mC * mU * mU * mA *
AAACCUCGGCUUACC
XXXXX XXXXX


7761
mC * fC * fU * fG * fA * fA * fA
UGAAA
XXXXX XXXX





WV-
fC * fC * fA * fA * fA * fC * mC * mU * mC * mG * mG * mC * mU *
CCAAACCUCGGCUUA
XXXXX XXXXX


7762
mU * fA * fC * fC * fU * fU * fA
CCUGA
XXXXX XXXX





WV-
fG * fC * fC * fA * fA * fA * mC * mC * mU * mC * mG * mG * mC *
GCCAAACCUCGGCUU
XXXXX XXXXX


7763
mU * fU * fA * fC * fC * fU * fG
ACCUG
XXXXX XXXX





WV-
fA * fG * fG * fC * fC * fA * mA * mA * mC * mC * mU * mC * mG *
AGGCCAAACCUCGGC
XXXXX XXXXX


7764
mG * fC * fU * fU * fA * fC * fC
UUACC
XXXXX XXXX





WV-
fA * fA * fA * fG * fG * fC * mC * mA * mA * mA * mC * mC * mU *
AAAGGCCAAACCUCG
XXXXX XXXXX


7765
mC * fG * fG * fC * fU * fU * fA
GCUUA
XXXXX XXXX





WV-
fU * fU * fA * fA * fA * fG * mG * mC * mC * mA * mA * mA * mC *
UUAAAGGCCAAACCU
XXXXX XXXXX


7766
mC * fU * fC * fG * fG * fC * fU
CGGCU
XXXXX XXXX





WV-
fG * fU * fU * fU * fA * fA * mA * mG * mG * mC * mC * mA * mA *
GUUUAAAGGCCAAAC
XXXXX XXXXX


7767
mA * fC * fC * fU * fC * fG * fG
CUCGG
XXXXX XXXX





WV-
fU * fA * fG * fU * fU * fU * mA * mA * mA * mG * mG * mC * mC *
UAGUUUAAAGGCCAA
XXXXX XXXXX


7768
mA * fA * fA * fC * fC * fU * fC
ACCUC
XXXXX XXXX





WV-
fU * fA * fU * fA * fG * fU * mU * mU * mA * mA * mA * mG * mG *
UAUAGUUUAAAGGCC
XXXXX XXXXX


7769
mC * fC * fA * fA * fA * fC * fC
AAACC
XXXXX XXXX





WV-
fA * fA * fU * fA * fU * fA * mG * mU * mU * mU * mA * mA * mA *
AAUAUAGUUUAAAG
XXXXX XXXXX


7770
mG * fG * fC * fC * fA * fA * fA
GCCAAA
XXXXX XXXX





WV-
fA * fA * fA * fA * fU * fA * mU * mA * mG * mU * mU * mU * mA *
AAAAUAUAGUUUAA
XXXXX XXXXX


7771
mA * fA * fG * fG * fC * fC * fA
AGGCCA
XXXXX XXXX





WV-
Mod028L001 * fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU
UCAAGGAAGAUGGCA
XSSSSSSOSOSSOO


8130
* S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
Mod028L001fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU *
UCAAGGAAGAUGGCA
OSSSSSSOSOSSOO


8131
S mG mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SAeofA * SGeoAeo * SfU * SGeoGeofC *
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


8230
SfA * SfG * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SAeofA * SGeoAeofU * SGeoGeofC * SfA
UCAAGGAAGAUGGCA
SSSSSSOSOOSOOS


8231
* SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SAeoAeoGeoAeoTeoGeoGeofC * SfA *
UCAAGGAAGATGGCA
SSSSSSOOOOOOO


8232
SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSSS





WV-
fU * RfC * RfA * RfA * RfG * RfG * R mAfA * R mG mA * RfU * R mG
UCAAGGAAGAUGGCA
RRRRRRORORRO


8449
mGfC * RfA * RfU * RfU * RfU * RfC * RfU
UUUCU
ORRRRRR





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8478
m5Ceo * Aeo * Teo * Teo * Teo * m5Ceo * Teo
TTTCT
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8479
m5Ceo * Aeo * Teo * Teo * Teo * m5Ceo * mU
TTTCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8480
m5Ceo * Aeo * Teo * Teo * Teo * mC * mU
TTTCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8481
m5Ceo * Aeo * Teo * Teo * mU * mC * mU
TTUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8482
m5Ceo * Aeo * Teo * mU * mU * mC * mU
TUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8483
m5Ceo * Aeo * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8484
m5Ceo * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * Geo * mC
UCAAGGAAGATGGCA
XXXXX XXXXX


8485
* mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * Geo * mG * mC
UCAAGGAAGATGGCA
XXXXX XXXXX


8486
* mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * Teo * mG * mG * mC
UCAAGGAAGATGGCA
XXXXX XXXXX


8487
* mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * Aeo * mU * mG * mG * mC
UCAAGGAAGAUGGCA
XXXXX XXXXX


8488
* mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * Geo * mA * mU * mG * mG * mC
UCAAGGAAGAUGGCA
XXXXX XXXXX


8489
* mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * Aeo * mG * mA * mU * mG * G *
UCAAGGAAGAUGGCA
XXXXX XXXXX


8490
mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fC * fA * fA * fG * fG * Aeo * mA * mG * mA * mU * mG * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


8491
mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
Teo * m5Ceo * Aeo * Aeo * Geo * Geo * Aeo * Aeo * Geo * Aeo * Teo * Geo
TCAAGGAAGATGGCA
XXXXX XXXXX


8492
* Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * m5Ceo * Aeo * Aeo * Geo * Geo * Aeo * Aeo * Geo * Aeo * Teo * Geo
UCAAGGAAGATGGCA
XXXXX XXXXX


8493
* Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * Aeo * Aeo * Geo * Geo * Aeo * Aeo * Geo * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8494
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * Aeo * Geo * Geo * Aeo * Aeo * Geo * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8495
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * Geo * Geo * Aeo * Aeo * Geo * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8496
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * Geo * Aeo * Aeo * Geo * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8497
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * Aeo * Aeo * Geo * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8498
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * Aeo * Geo * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8499
Geo * m5Ceo * fA * fU * fU * fU * fC *fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * Geo * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8500
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * Aeo * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8501
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * Teo * Geo *
UCAAGGAAGATGGCA
XXXXX XXXXX


8502
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * Geo *
UCAAGGAAGAUGGCA
XXXXX XXXXX


8503
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


8504
Geo * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


8505
mG * m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
XXXXX XXXX





WV-
Teo * m5Ceo * Aeo * Aeo * Geo * Geo * Aeo * Aeo * Geo * Aeo * Teo * Geo
TCAAGGAAGATGGCA
XXXXX XXXXX


8506
* Geo * m5Ceo * Aeo * Teo * Teo * Teo * m5Ceo * Teo
TTTCT
XXXXX XXXX





WV-
CTCCAACATCAAGGAAGATGGCATTTCTAG +all PMO
CTCCAACATCAAGGA
XXXXX XXXXX


8806

AGATGG CATTTCTAG
XXXXX XXXXX





WV-
mU * R mC * R mA * R mA * R mG * R mG * R mA * R mA * R mG * R
UCAAGGAAGAUGGCA
RRRRRRRRRRRRR


884
mA * R mU * R mG * R mG * R mC * R mA * R mU * R mU * R mU * R
UUUCU
RRRRRR



mC * R mU







WV-
mU * S mC * R mA * S mA * R mG * S mG * R mA * S mA * R mG * S mA
UCAAGGAAGAUGGCA
SRSRSRSRSRSRSR


885
* R mU * S mG * R mG * S mC * R mA * S mU * R mU * S mU * R mC * S
UUUCU
SRSRS



mU







WV-
mU * R mC * R mA * R mA * S mG * S mG * S mA * S mA * S mG * S mA
UCAAGGAAGAUGGCA
RRRSSSSSSSSSSSS


886
* S mU * S mG * S mG * S mC * S mA * S mU * S mU * R mU * R mC * R
UUUCU
SRRR



mU







WV-
mU * S mC * S mA * S mA * R mG * R mG * R mA * R mA * R mG * R
UCAAGGAAGAUGGCA
SSSRRRRRRRRRR


887
mA * R mU * R mG * R mG * R mC * R mA * R mU * R mU * S mU * S
UUUCU
RRRSSS



mC * S mU







WV-
mU * R mC * R mA * R mA * R mG * R mG * S mA * S mA * R mG * S
UCAAGGAAGAUGGCA
RRRRRSSRSSRSSR


888
mA * S mU * R mG * S mG * S mC * R mA * R mU * R mU * R mU * R
UUUCU
RRRRR



mC * R mU







WV-
mU * S mC * S mA * S mA * S mG * S mG * R mA * R mA * S mG * R mA
UCAAGGAAGAUGGCA
SSSSSRRSRRSRRS


889
* R mU * S mG * R mG * R mC * S mA * S mU * S mU * S mU * S mC * S
UUUCU
SSSSS



mU







WV-
mU * R mC * R mA * R mA * S mG * S mG * R mA * R mA * S mG * R
UCAAGGAAGAUGGCA
RRRSSRRSRRRSR


890
mA * R mU * R mG * S mG * R mC * R mA * S mU * S mU * R mU * R
UUUCU
RSSRRR



mC * R mU







WV-
mU * S mC * S mA * S mA * R mG * R mG * S mA * S mA * R mG * S mA
UCAAGGAAGAUGGCA
SSSRRSSRSSSRSS


891
* S mU * S mG * R mG * S mC * S mA * R mU * R mU * S mU * S mC * S
UUUCU
RRSSS



mU







WV-
mU * S mC * R mA * R mA * R mG * R mG * R mA * R mA * R mG * R
UCAAGGAAGAUGGCA
SRRRRRRRRRRRR


892
mA * R mC * R mG * R mG * R mC * R mA * R mU * R mU * R mU * R
UUUCU
RRRRRS



mC * S mU







WV-
mU * R mC * S mA * S mA * S mG * S mG * S mA * S mA * S mG * S mA *
UCAAGGAAGAUGGCA
RSSSSSSSSSSSSSS


893
S mU * S mG * S mG * S mC * S mA * S mU * S mU * S mU * S mC * R mU
UUUCU
SSSR





WV-
fA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG mGfC * SfA * SfU *
AAGGAAGAUGGCAU
SSSSOSOSSOOSSS


8937
SfU * SfU * SfC * SfU
UUCU
SSS





WV-
mU * S mC * R mA * S mA * S mG * R mG * R mA * S mA * S mG * R mA
UCAAGGAAGAUGGCA
SRSSRRSSRSSRRR


894
* S mU * S mG * R mG * R mC * R mA * S mU * S mU * S mU * S mC * R
UUUCU
SSSSR



mU







WV-
mU * R mC * S mA * R mA * R mG * S mG * S mA * R mA * R mG * S
UCAAGGAAGAUGGCA
RSRRSSRRSRRSSS


895
mA * R mU * R mG * S mG * S mC * S mA * R mU * R mU * R mU * R
UUUCU
RRRRS



mC * S mU







WV-
mU * S mC * S mA * R mA * R mG * R mG * R mA * R mA * R mG * R
UCAAGGAAGAUGGCA
SSRRRRRRRRSRR


896
mA * R mU * S mG * R mG * R mC * S mA * R mU * S mU * S mU * S mC
UUUCU
SRSSSS



* S mU







WV-
mU * R mC * R mA * S mA * S mG * S mG * S mA * S mA * S mG * S mA *
UCAAGGAAGAUGGCA
RRSSSSSSSSRSSR


897
S mU * R mG * S mG * S mC * R mA * S mU * R mU * R mU * R mC * R
UUUCU
SRRRR



mU







WV-
fG * fU * fA * fC * fU * fU * m5Ceo * Aeo * Teo * m5Ceo * m5Ceo *
GUACUUCATCCCACU
XXXXX XXXXX


9067
m5Ceo * Aeo * m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * m5Ceo * AeoTeo * m5Ceo m5Ceo * m5CeoAeo
GUACUUCATCCCACU
XXXXXXXOXOXO


9068
* m5CeofU * fG * fA * fU * fU * fC
GAUUC
XOXXXXX





WV-
fG * fU * fA * fC * fU * fU * m5CeoAeo * Teo m5Ceo * m5Ceo m5Ceo * Aeo
GUACUUCATCCCACU
XXXXXXOXOXOX


9069
m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
OXXXXXX





WV-
fG * fU * fA * fC * fU * fU * m5Ceo * mA * Teo * mC * m5Ceo * mC * Aeo
GUACUUCATCCCACU
XXXXX XXXXX


9070
* mC * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * m5Ceo * mATeo * mC m5Ceo * mCAeo *
GUACUUCATCCCACU
XXXXXXXOXOXO


9071
mCfU * fG * fA * fU * fU * fC
GAUUC
XOXXXXX





WV-
fG * fU * fA * fC * fU * fU * m5Ceo mA * Teo mC * m5Ceo mC * Aeo mC *
GUACUUCATCCCACU
XXXXXXOXOXOX


9072
fU * fG * fA * fU * fU * fC
GAUUC
OXXXXXX





WV-
fG * fU * fA * fC * fU * fU * mC * Aeo * mU * m5Ceo * mC * m5Ceo *
GUACUUCAUCCCACU
XXXXX XXXXX


9073
mA * m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * mC * Aeo mU * m5Ceo mC * m5Ceo mA *
GUACUUCAUCCCACU
XXXXXXXOXOXO


9074
m5CeofU * fG * fA * fU * fU * fU
GAUUC
XOXXXXX





WV-
fG * fU * fA * fC * fU * fU * mCAeo * mU m5Ceo * mC m5Ceo * mA
GUACUUCAUCCCACU
XXXXXXOXOXOX


9075
m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
OXXXXXX





WV-
fG * fU * fA * fC * fU * fU * m5Ceo * fA * Teo * fC * m5Ceo * fC * Aeo * fC
GUACUUCATCCCACU
XXXXX XXXXX


9076
* fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * m5Ceo * fATeo * fC m5Ceo * fCAeo * fCfU * fG
GUACUUCATCCCACU
XXXXXXXOXOXO


9077
* fA * fU * fU * fC
GAUUC
XOXXXXX





WV-
fG * fU * fA * fC * fU * fU * m5CeofA * TeofC * m5CeofC * AeofC * fU * fG
GUACUUCATCCCACU
XXXXXXOXOXOX


9078
* fA * fU * fU * fC
GAUUC
OXXXXXX





WV-
fG * fU * fA * fC * fU * fU * fC * Aeo * fU * m5Ceo * fC * m5Ceo * fA *
GUACUUCAUCCCACU
XXXXX XXXXX


9079
m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * fC * AeofU * m5CeofC * m5CeofA * m5CeofU
GUACUUCAUCCCACU
XXXXXXXOXOXO


9080
* fG * fA * fU * fU * fC
GAUUC
XOXXXXX





WV-
fG * fU * fA * fC * fU * fU * fCAeo * fU m5Ceo * fC m5Ceo * fA m5Ceo * fU
GUACUUCAUCCCACU
XXXXXXOXOXOX


9081
* fG * fA * fU * fU * fC
GAUUC
OXXXXXX





WV-
fG * fU * fA * fC * fU * fU * mC * fA * mU * fC * mC * fC * mA * fC * fU
GUACUUCAUCCCACU
XXXXX XXXXX


9082
* fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * mC * fA mU * fC mC * fC mA * fCfU * fG * fA
GUACUUCAUCCCACU
XXXXXXXOXOXO


9083
* fU * fU * fC
GAUUC
XOXXXXX





WV-
fG * fU * fA * fC * fU * fU * mCfA * mUfC * mCfC * mAfC * fU * fG * fA
GUACUUCAUCCCACU
XXXXXXOXOXOX


9084
* fU * fU * fC
GAUUC
OXXXXXX





WV-
fG * fU * fA * fC * fU * fU * fC * mA * fU * mC * fC * mC * fA * mC * fU
GUACUUCAUCCCACU
XXXXX XXXXX


9085
* fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fA * fC * fU * fU * fC * mAfU * mCfC * mCfA * mCfU * fG * fA
GUACUUCAUCCCACU
XXXXXXXOXOXO


9086
* fU * fU * fC
GAUUC
XOXXXXX





WV-
fG * fU * fA * fC * fU * fU * fC mA * fU mC * fC mC * fA mC * fU * fG * fA
GUACUUCAUCCCACU
XXXXXXOXOXOX


9087
* fU * fU * fC
GAUUC
OXXXXXX





WV-
Geo * Teo * Aeo * m5Ceo * Teo * Teo * m5Ceo * Aeo * Teo * m5Ceo *
GTACTTCATCCCACU
XXXXX XXXXX


9088
m5Ceo * m5Ceo * Aeo * m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
mG * mU * mA * mC * mU * Teo * m5Ceo * Aeo * Teo * m5Ceo * m5Ceo
GUACUTCATCCCACU
XXXXX XXXXX


9089
* m5Ceo * Aeo * m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
mG * mU * mA * mC * mU * mU * m5Ceo * Aeo * Teo * m5Ceo
GUACUUCATCCCACU
XXXXX XXXXX


9090
m5Ceo * m5Ceo * Aeo * m5Ceo * fU * fG * fA * fU * fU * fC
GAUUC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * Teo * Teo * Geo * Teo * Aeo * m5Ceo * Teo *
GUGUUCTTGTACTTC
XXXXX XXXXX


9091
Teo * fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * Teo * TeoGeo * TeoAeo * m5CeoTeo * TeofC *
GUGUUCTTGTACTTC
XXXXXXXOXOXO


9092
fA * fU * fC * fC * fC
AUCCC
XOXXXXX





WV-
fG * fU * fG * fU * fU * fC * TeoTeo * GeoTeo * Aeo m5Ceo * TeoTeo * fC *
GUGUUCTTGTACTTC
XXXXXXOXOXOX


9093
fA * fU * fC * fC * fC
AUCCC
OXXXXXX





WV-
fG * fU * fG * fU * fU * fc * Teo * mU * Geo * mU * Aeo * mC * Teo * mU
GUGUUCTUGUACTUC
XXXXX XXXXX


9094
* fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * Teo * mUGeo * mUAeo * mCTeo * mUfC * fA
GUGUUCTUGUACTUC
XXXXXXXOXOXO


9095
* fU * fC * fC * fC
AUCCC
XOXXXXX





WV-
fG * fU * fG * fU * fU * fC * Teo mU * Geo mU * Aeo mC * Teo mU * fC * fA
GUGUUCTUGUACTUC
XXXXXXOXOXOX


9096
* fU * fC * fC * fC
AUCCC
OXXXXXX





WV-
fU * fU * fG * fU * fU * fC * mU * Teo * mG * Teo * mA * m5Ceo * mU *
GUGUUCUTGTACUTC
XXXXX XXXXX


9097
Teo * fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * mU * Teo mG * Teo mA * m5Ceo mU * TeofC *
GUGUUCUTGTACUTC
XXXXXXXOXOXO


9098
fA * fU * fC * fC * fC
AUCCC
XOXXXXX





WV-
fG * fU * fG * fU * fU * fC * mUTeo * mGTeo * mA m5Ceo * mUTeo * fC *
GUGUUCUTGTACUTC
XXXXXXOXOXOX


9099
fA * fU * fC * fC * fC
AUCCC
OXXXXXX





WV-
fU * fU * fG * fU * fU * fC * Teo * fU * Geo * fU * Aeo * fC * Teo * fU * fC *
GUGUUCTUGUACTUC
XXXXX XXXXX


9100
fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * Teo * fUGeo * fUAeo * fCTeo * fUfC * fA * fU *
GUGUUCTUGUACTUC
XXXXXXXOXOXO


9101
fC * fC * fC
AUCCC
XOXXXXX





WV-
fG * fU * fG * fU * fU * fC * TeofU * GeofU * AeofC * TeofU * fC * fA * fU *
GUGUUCTUGUACTUC
XXXXXXOXOXOX


9102
fC * fC * fC
AUCCC
OXXXXXX





WV-
fG * fU * fG * fU * fU * fC * fU * Teo * fG * Teo * fA * m5Ceo * fU * Teo *
GUGUUCUTGTACUTC
XXXXX XXXXX


9103
fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * fU * TeofG * TeofA * m5CeofU * TeofC * fA *
GUGUUCUTGTACUTC
XXXXXXXOXOXO


9104
fG * fC * fC * fC
AUCCC
XOXXXXX





WV-
fG * fU * fG * fU * fU * fC * fUTeo * fGTeo * fA m5Ceo * fUTeo * fC * fA *
GUGUUCUTGTACUTC
XXXXXXOXOXOX


9105
fU * fC * fC * fC
AUCCC
OXXXXXX





WV-
fG * fU * fG * fU * fU * fC * mU * fU * mG * fU * mA * fC * mU * fU * fC
GUGUUCUUGUACUUC
XXXXX XXXXX


9106
* fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * mU * fU mG * fU mA * fC mU * fUfC * fA * fU
GUGUUCUUGUACUUC
XXXXXXXOXOXO


9107
* fC * fC * fC
AUCCC
XOXXXXX





WV-
fG * fU * fG * fU * fU * fC * mUfU * mGfU * mAfC * mUfU * fC * fA * fU
GUGUUCUUGUACUUC
XXXXXXOXOXOX


9108
* fC * fC * fC
AUCCC
OXXXXXX





WV-
fG * fU * fG * fU * fU * fC * fU * mU * fG * mC * fA * mC * fU * mU * fC
GUGUUCUUGUACUUC
XXXXX XXXXX


9109
* fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * fU * mUfG * mUfA * mCfU * mUfC * fA * fU
GUGUUCUUGUACUUC
XXXXXXXOXOXO


9110
* fC * fC * fC
AUCCC
XOXXXXX





WV-
fG * fU * fG * fU * fU * fC * fU mU * fG mU * fA mC * fU mU * fC * fA * fU
GUGUUCUUGUACUUC
XXXXXXOXOXOX


9111
* fC * fC * fC
AUCCC
OXXXXXX





WV-
Geo * Teo * Geo * Teo * Teo * m5Ceo * Teo * Teo * Geo * Teo * Aeo *
GTGTTCTTGTACTTCA
XXXXX XXXXX


9112
m5Ceo * Teo * Teo * fC * fA * fU * fC * fC * fC

UCCC XXXXX XXXX





WV-
mG * mU * mG * mU * mU * m5Ceo * Teo * Teo * Geo * Teo * Aeo *
GUGUUCTTGTACTTC
XXXXX XXXXX


9113
m5Ceo * Teo * Teo * fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
mG * mU * mG * mU * mU * mC * Teo * Teo * Geo * Teo * Aeo * m5Ceo
GUGUUCTTGTACTTC
XXXXX XXXXX


9114
* Teo * Teo * fC * fA * fU * fC * fC * fC
AUCCC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * Aeo * Geo * Geo * Teo * Geo * Teo * Teo *
UUCUGAAGGTGTTCU
XXXXX XXXXX


9115
m5Ceo * fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * Aeo * GeoGeo * TeoGeo * TeoTeo * m5CeofU *
UUCUGAAGGTGTTCU
XXXXXXXOXOXO


9116
fU * fG * fU * fA * fC
UGUAC
XOXXXXX





WV-
fU * fU * fC * fU * fG * fA * AeoGeo * GeoTeo * GeoTeo * Teo m5Ceo * fU *
UUCUGAAGGTGTTCU
XXXXXXOXOXOX


9117
fU * fG * fU * fA * fC
UGUAC
OXXXXXX





WV-
fU * fU * fC * fU * fG * fA * Aeo * mG * Geo * mU * Geo * mU * Teo * mC
UUCUGAAGGUGUTCU
XXXXX XXXXX


9118
* fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * Aeo * mGGeo * mUGeo * mUTeo * mCfU * fU
UUCUGAAGGUGUTCU
XXXXXXXOXOXO


9119
* fG * fU * fA * fC
UGUAC
XOXXXXX





WV-
fU * fU * fC * fU * fG * fA * Aeo mG * Geo mU * Geo mU * Teo mC * fU * fU
UUCUGAAGGUGUTCU
XXXXXXOXOXOX


9120
* fG * fU * fA * fC
UGUAC
OXXXXXX





WV-
fU * fU * fC * fU * fG * fA * mA * Geo * mG * Teo * mG * Teo * mU *
UUCUGAAGGTGTUCU
XXXXX XXXXX


9121
m5Ceo * fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * mA * Geo mG * Teo mG * Teo mU * m5CeofU
UUCUGAAGGTGTUCU
XXXXXXXOXOXO


9122
* fU * fG * fU * fA * fC
UGUAC
XOXXXXX





WV-
fU * fU * fC * fU * fG * fA * mAGeo * mGTeo * mGTeo * mU m5Ceo * fU
UUCUGAAGGTGTUCU
XXXXXXOXOXOX


9123
* fU * fG * fU * fA * fC
UGUAC
OXXXXXX





WV-
fU * fU * fC * fU * fG * fA * Aeo * fG * Geo * fU * Geo * fU * Teo * fC * fU *
UUCUGAAGGUGUTCU
XXXXX XXXXX


9124
fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fU * fU * fC * fG * fG * fA * Aeo * fGGeo * fUGeo * fUTeo * fCfU * fU * fG *
UUCUGAAGGUGUTCU
XXXXXXXOXOXO


9125
fU * fA * fC
UGUAC
XOXXXXX





WV-
fU * fU * fC * fU * fG * fA * AeofG * GeofU * GeofU * TeofC * fU * fU * fG *
UUCUGAAGGUGUTCU
XXXXXXOXOXOX


9126
fU * fA * fC
UGUAC
OXXXXXX





WV-
fU * fU * fC * fU * fG * fA * fA * Geo * fG * Teo * fG * Teo * fU * m5Ceo *
UUCUGAAGGTGTUCU
XXXXX XXXXX


9127
fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * fA * GeofG * TeofG * TeofU * m5CeofU * fU *
UUCUGAAGGTGTUCU
XXXXXXXOXOXO


9128
fG * fU * fA * fC
UGUAC
XOXXXXX





WV-
fU * fU * fC * fU * fG * fA * fAGeo * fGTeo * fGTeo * fU m5Ceo * fU * fU *
UUCUGAAGGTGTUCU
XXXXXXOXOXOX


9129
fG * fU * fA * fC
UGUAC
OXXXXXX





WV-
fU * fU * fC * fU * fG * fA * mA * fG * mG * fU * mG * fU * mU * fC * fU
UUCUGAAGGUGUUCU
XXXXX XXXXX


9130
* fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * mA * fG mG * fU mG * fU mU * fCfU * fU * fG
UUCUGAAGGUGUUCU
XXXXXXXOXOXO


9131
* fU * fA * fC
UGUAC
XOXXXXX





WV-
fU * fU * fC * fU * fG * fA * mAfG * mGfU * mGfU * mUfC * fU * fU * fG
UUCUGAAGGUGUUCU
XXXXXXOXOXOX


9132
* fU * fA * fC
UGUAC
OXXXXXX





WV-
fU * fU * fC * fU * fG * fA * fA * mG * fG * mU * fG * mU * fU * mC * fU
UUCUGAAGGUGUUCU
XXXXX XXXXX


9133
* fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fU * fU * fC * fU * fG * fA * fA * mGfG * mUfG * mUfU * mCfU * fG * fG
UUCUGAAGGUGUUCU
XXXXXXXOXOXO


9134
* fU * fA * fC
UGUAC
XOXXXXX





WV-
fU * fU * fC * fU * fG * fA * fA mG * fG mU * fG mU * fU mC * fU * fU * fG
UUCUGAAGGUGUUCU
XXXXXXOXOXOX


9135
* fU * fA * fC
UGUAC
OXXXXXX





WV-
Teo * Teo * m5Ceo * Teo * Geo * Aeo * Aeo * Geo * Geo * Teo * Geo * Teo *
TTCTGAAGGTGTTCU
XXXXX XXXXX


9136
Teo * m5Ceo * fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
mU * mU * mC * mU * mG * Aeo * Aeo * Geo * Geo * Teo * Geo * Teo *
UUCUGAAGGTGTTCU
XXXXX XXXXX


9137
Teo * m5Ceo * fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
mU * mU * mC * mU * mG * mA * Aeo * Geo * Geo * Teo * Geo * Teo *
UUCUGAAGGTGTTCU
XXXXX XXXXX


9138
Teo * m5Ceo * fU * fU * fG * fU * fA * fC
UGUAC
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * Teo * Teo * m5Ceo * Teo * Geo * Aeo * Aeo *
CUCCGGTTCTGAAGG
XXXXX XXXXX


9139
Geo * fG * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * Teo * Teo m5Ceo * TeoGeo * AeoAeo * GeofG *
CUCCGGTTCTGAAGG
XXXXXXXOXOXO


9140
fU * fG * fU * fU * fC
UGUUC
XOXXXXX





WV-
fC * fU * fC * fC * fG * fG * TeoTeo * m5CeoTeo * GeoAeo * AeoGeo * fG *
CUCCGGTTCTGAAGG
XXXXXXOXOXOX


9141
fU * fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * Teo * mU * m5Ceo * mU * Geo * mA * Aeo *
CUCCGGTUCUGAAGG
XXXXX XXXXX


9142
mG * fG * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * Teo * mU m5Ceo * mUGeo * mAAeo * mGfG
CUCCGGTUCUGAAGG
XXXXXXXOXOXO


9143
* fU * fG * fU * fU * fU
UGUUC
XOXXXXX





WV-
fC * fU * fC * fC * fG * fG * Teo mU * m5Ceo mU * Geo mA * Aeo mG * fG
CUCCGGTUCUGAAGG
XXXXXXOXOXOX


9144
* fU * fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * mU * Teo * mC * Teo * mG * Aeo * mA * Geo
CUCCGGUTCTGAAGG
XXXXX XXXXX


9145
* fG * fU * fG * fU * fU * fU
UGUUC
XXXXX XXXX


+p 





WV-
fC * fU * fC * fC * fG * fG * mU * Teo mC * Teo mG * Aeo mA * GeofG * fU
CUCCGGUTCTGAAGG
XXXXXXXOXOXO


9146
* fG * fU * fU * fC
UGUUC
XOXXXXX





WV-
fC * fU * fC * fC * fG * fG * mUTeo * mCTeo * mGAeo * mAGeo * fG * fU
CUCCGGUTCTGAAGG
XXXXXXOXOXOX


9147
* fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * Teo * fU * m5Ceo * fU * Geo * fA * Aeo * fG *
CUCCGGTUCUGAAGG
XXXXX XXXXX


9148
fG * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * Teo * fU m5Ceo * fUGeo * fAAeo * fGfG * fU *
CUCCGGTUCUGAAGG
XXXXXXXOXOXO


9149
fG * fU * fU * fC
UGUUC
XOXXXXX





WV-
fC * fU * fC * fC * fG * fG * TeofU * m5CeofU * GeofA * AeofG * fG * fU *
CUCCGGTUCUGAAGG
XXXXXXOXOXOX


9150
fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * fU * Teo * fC * Teo * fG * Aeo * fA * Geo * fG *
CUCCGGUTCTGAAGG
XXXXX XXXXX


9151
fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * fU * TeofC * TeofG * AeofA * GeofG * fU * fG *
CUCCGGUTCTGAAGG
XXXXXXXOXOXO


9152
fU * fU * fC
UGUUC
XOXXXXX





WV-
fC * fU * fC * fC * fG * fG * fUTeo * fCTeo * fGAeo * fAGeo * fG * fU * fG *
CUCCGGUTCTGAAGG
XXXXXXOXOXOX


9153
fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * mU * fU * mC * fU * mG * fA * mA * fG * fG
CUCCGGUUCUGAAGG
XXXXX XXXXX


9154
* fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * mU * fU mC * fU mG * fA mA * fGfG * fU * fG
CUCCGGUUCUGAAGG
XXXXXXXOXOXO


9155
* fU * fU * fC
UGUUC
XOXXXXX





WV 
fC * fU * fC * fC * fG * fG * mUfU * mCfU * mGfA * mAfG * fG * fU * fG
CUCCGGUUCUGAAGG
XXXXXXOXOXOX


9156
* fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * fU * mU * fC * mU * fG * mA * fA * mG * fG
CUCCGGUUCUGAAGG
XXXXX XXXXX


9157
* fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fC * fU * fC * fC * fG * fG * fU * mUfC * mUfG * mAfA * mGfG * fU * fG
CUCCGGUUCUGAAGG
XXXXXXXOXOXO


9158
* fU * fU * fC
UGUUC
XOXXXXX





WV-
fC * fU * fC * fC * fG * fG * fU mU * fC mU * fG mA * fA mG * fG * fU * fG
CUCCGGUUCUGAAGG
XXXXXXOXOXOX


9159
* fU * fU * fC
UGUUC
OXXXXXX





WV-
m5Ceo * Teo * m5Ceo * m5Ceo * Geo * Geo * Teo * Teo * 5Ceo * Teo *
CTCCGGTTCTGAAGG
XXXXX XXXXX


9160
Geo * Aeo * Aeo * Geo * fG * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
mC * mU * mC * mC * mG * Geo * Teo * Teo * m5Ceo * Teo * Geo * Aeo
CUCCGGTTCTGAAGG
XXXXX XXXXX


9161
* Aeo * Geo * fG * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
mC * mU * mC * mC * mG * mG * Teo * Teo * m5Ceo * Teo * Geo * Aeo
CUCCGGTTCTGAAGG
XXXXX XXXXX


9162
* Aeo * Geo * fG * fU * fG * fU * fU * fC
UGUUC
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * m5Ceo * m5Ceo * Aeo * Teo * m5Ceo * Teo *
UCUUGGCCATCTCCU
XXXXX XXXXX


9163
m5Ceo * m5Ceo * fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fC * fU * fG * fG * fG * m5Ceo * m5CeoAeo * Teo m5Ceo * Teo m5Ceo
UCUUGGCCATCTCCU
XXXXXXXOXOXO


9164
* m5CeofU * fU * fC * fA * fC * fA
UCACA
XOXXXXX





WV-
fU * fC * fU * fU * fG * fG * m5Ceo m5Ceo * AeoTeo * m5CeoTeo * m5Ceo
UCUUGGCCATCTCCU
XXXXXXOXOXOX


9165
m5Ceo * fU * fU * fC * fA * fC * fA
UCACA
OXXXXXX





WV-
fU * fC * fU * fU * fG * fG * m5Ceo * mC * Aeo * mU * m5Ceo * mU *
UCUUGGCCAUCUCCU
XXXXX XXXXX


9166
m5Ceo * mC * fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * m5Ceo * mCAeo * mU m5Ceo * mU m5Ceo *
UCUUGGCCAUCUCCU
XXXXXXXOXOXO


9167
mCfU * fU * fC * fA * fC * fA
UCACA
XOXXXXX





WV-
fU * fC * fU * fU * fG * fG * m5Ceo mC * Aeo mU * m5Ceo mU * m5Ceo
UCUUGGCCAUCUCCU
XXXXXXOXOXOX


9168
mC * fU * fU * fC * fA * fC * fA
UCACA
OXXXXXX





WV-
fU * fC * fU * fU * fg * fG * mC * m5Ceo * mA * Teo * mC * Teo * mC *
UCUUGGCCATCTCCU
XXXXX XXXXX


9169
m5Ceo * fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * mC * m5Ceo mA * Teo mC * Teo mC *
UCUUGGCCATCTCCU
XXXXXXXOXOXO


9170
m5CeofU * fU * fC * fA * fC * fA
UCACA
XOXXXXX





WV-
fU * fC * fU * fU * fG * fG * mC m5Ceo * mATeo * mcTeo * mC m5Ceo *
UCUUGGCCATCTCCU
XXXXXXOXOXOX


9171
fU * fU * fC * fA * fC * fA
UCACA
OXXXXXX





WV-
fU * fC * fU * fU * fG * fG * m5Ceo * fC * Aeo * fU * m5Ceo * fU * m5Ceo
UCUUGGCCAUCUCCU
XXXXX XXXXX


9172
* fC * fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * m5Ceo * fCAeo * fU m5Ceo * fU m5Ceo * fCfU
UCUUGGCCAUCUCCU
XXXXXXXOXOXO


9173
* fU * fC * fA * fC * fA
UCACA
XOXXXXX





WV-
fU * fC * fU * fU * fG * fG * m5CeofC * AeofU * m5CeofU * m5CeofC * fU
UCUUGGCCAUCUCCU
XXXXXXOXOXOX


9174
* fU * fC * fA * fC * fA
UCACA
OXXXXXX





WV-
fU * fC * fU * fU * fG * fG * fC * m5Ceo * fA * Teo * fC * Teo * fC * m5Ceo
UCUUGGCCATCTCCU
XXXXX XXXXX


9175
* fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * fC * m5CeofA * TeofC * TeofC * m5CeofU * fU
UCUUGGCCATCTCCU
XXXXXXXOXOXO


9176
* fC * fA * fC * fA
UCACA
XOXXXXX





WV-
fU * fC * fU * fU * fG * fG * fC m5Ceo * fATeo * fCTeo * fC m5Ceo * fU * fU
UCUUGGCCATCTCCU
XXXXXXOXOXOX


9177
* fC * fA * fC * fA
UCACA
OXXXXXX





WV-
fU * fC * fU * fU * fG * fG * mC * fC * mA * fU * mC * fU * mC * fC * fU
UCUUGGCCAUCUCCU
XXXXX XXXXX


9178
* fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * mC * fC mA * fG mC * fU mC * fCfU * fU * fC
UCUUGGCCAUCUCCU
XXXXXXXOXOXO


9179
* fA * fC * fA
UCACA
XOXXXXX





WV-
fU * fC * fU * fU * fG * fG * mCfC * mAfU * mCfU * mCfC * fU * fG * fC
UCUUGGCCAUCUCCU
XXXXXXOXOXOX


9180
* fA * fC * fA
UCACA
OXXXXXX





WV-
fU * fC * fU * fu * fG * fG * fC * mC * fA * mU * fC * mU * fC * mC * fU
UCUUGGCCAUCUCCU
XXXXX XXXXX


9181
* fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fG * fC * mCfA * mUfC * mUfC * mCfU * fU * fC
UCUUGGCCAUCUCCU
XXXXXXXOXOXO


9182
* fA * fC * fA
UCACA
XOXXXXX





WV-
fU * fC * fU * fU * fG * fG * fC mC * fA mU * fC mU * fC mC * fU * fU * fC
UCUUGGCCAUCUCCU
XXXXXXOXOXOX


9183
* fA * fC * fA
UCACA
OXXXXXX





WV-
Teo * m5Ceo * Teo * Teo * Geo * Geo * m5Ceo * m5Ceo * Aeo * Teo *
TCTTGGCCATCTCCUU
XXXXX XXXXX


9184
m5Ceo * Teo * m5Ceo * m5Ceo * fU * fU * fC * fA * fC * fA
CACA
XXXXX XXXX





WV-
mU * mC * mU * mU * mG * Geo * m5Ceo * m5Ceo * Aeo * Teo *
UCUUGGCCATCTCCU
XXXXX XXXXX


9185
m5Ceo * Teo * m5Ceo * m5Ceo * fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
mU * mC * mU * mU * mG * mG * m5Ceo * m5Ceo * Aeo * Teo *
UCUUGGCCATCTCCU
XXXXX XXXXX


9186
m5Ceo * Teo * m5Ceo * m5Ceo * fU * fU * fC * fA * fC * fA
UCACA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * Geo * Geo * m5Ceo * m5Ceo * Aeo * Teo *
UUUCUUGGCCATCTC
XXXXX XXXXX


9187
m5Ceo * Teo * fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * Geo * Geo m5Ceo * m5CeoAeo * Teo m5Ceo *
UUUCUUGGCCATCTC
XXXXXXXOXOXO


9188
TeofC * fC * fU * fU * fC * fA
CUUCA
XOXXXXX





WV-
fU * fU * fU * fC * fU * fU * GeoGeo * m5Ceo m5Ceo * AeoTeo * m5CeoTeo
UUUCUUGGCCATCTC
XXXXXXOXOXOX


9189
* fC * fC * fU * fU * fC * fA
CUUCA
OXXXXXX





WV-
fU * fU * fU * fC * fU * fU * Geo * mG * m5Ceo * mC * Aeo * mU *
UUUCUUGGCCAUCUC
XXXXX XXXXX


9190
m5Ceo * mU * fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * Geo * mG m5Ceo * mCAeo * mU m5Ceo *
UUUCUUGGCCAUCUC
XXXXXXXOXOXO


9191
mUfC * fC * fU * fU * fC * fA
CUUCA
XOXXXXX





WV-
fU * fU * fU * fC * fU * fU * Geo mG * m5Ceo mC * Aeo mU * m5Ceo mU *
UUUCUUGGCCAUCUC
XXXXXXOXOXOX


9192
fC * fC * fU * fU * fC * fA
CUUCA
OXXXXXX





WV-
fU * fU * fU * fC * fU * fU * mG * Geo * mC * m5Ceo * mA * Teo * mC *
UUUCUUGGCCATCTC
XXXXX XXXXX


9193
Teo * fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fG * mG * Geo mC * m5Ceo mA * Teo mC * TeofC *
UUUCUUGGCCATCTC
XXXXXXXOXOXO


9194
fC * fU * fU * fC * fA
CUUCA
XOXXXXX





WV-
fU * fU * fU * fC * fU * fU * mGGeo * mC m5Ceo * mATeo * mCTeo * fC *
UUUCUUGGCCATCTC
XXXXXXOXOXOX


9195
fC * fU * fU * fC * fA
CUUCA
OXXXXXX





WV-
fU * fU * fU * fC * fU * fU * Geo * fG * m5Ceo * fC * Aeo * fU * m5Ceo *
UUUCUUGGCCAUCUC
XXXXX XXXXX


9196
fU * fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * Geo * fG m5Ceo * fCAeo * fU m5Ceo * fUfC *
UUUCUUGGCCAUCUC
XXXXXXXOXOXO


9197
fC * fU * fU * fC * fA
CUUCA
XOXXXXX





WV-
fU * fU * fU * fC * fU * fU * GeofG * m5CeofC * AeofU * m5CeofU * fC *
UUUCUUGGCCAUCUC
XXXXXXOXOXOX


9198
fC * fU * fU * fC * fA
CUUCA
OXXXXXX





WV-
fU * fU * fU * fC * fU * fU * fG * Geo * fC * m5Ceo * fA * Teo * fC * Teo *
UUUCUUGGCCATCTC
XXXXX XXXXX


9199
fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * fG * GeofC * m5CeofA * TeofC * TeofC * fC *
UUUCUUGGCCATCTC
XXXXXXXOXOXO


9200
fU * fU * fC * fA
CUUCA
XOXXXXX





WV-
fU * fU * fU * fC * fU * fU * fGGeo * fC m5Ceo * fATeo * fCTeo * fC * fC *
UUUCUUGGCCATCTC
XXXXXXOXOXOX


9201
fU * fU * fC * fA
CUUCA
OXXXXXX





WV-
fU * fU * fU * fC * fU * fU * mG * fG * mC * fC * mA * fU * mC * fU * fC
UUUCUUGGCCAUCUC
XXXXX XXXXX


9202
* fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * mG * fG mC * fC mA * fU mC * fUfC * fC * fU
UUUCUUGGCCAUCUC
XXXXXXXOXOXO


9203
* fU * fC * fA
CUUCA
XOXXXXX





WV-
fU * fU * fU * fC * fU * fU * mGfG * mCfC * mAfU * mCfU * fC * fC * fU
UUUCUUGGCCAUCUC
XXXXXXOXOXOX


9204
* fU * fC * fA
CUUCA
OXXXXXX





WV-
fU * fU * fU * fC * fU * fU * fG * mG * fC * mC * fA * mU * fC * mU * fC
UUUCUUGGCCAUCUC
XXXXX XXXXX


9205
* fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
fU * fU * fU * fC * fU * fU * fG * mGfC * mCfA * mUfC * mUfC * fC * fU
UUUCUUGGCCAUCUC
XXXXXXXOXOXO


9206
* fU * fC * fA
CUUCA
XOXXXXX





WV-
fU * fU * fU * fC * fU * fU * fG mG * fC mC * fA mU * fC mU * fC * fC * fU
UUUCUUGGCCAUCUC
XXXXXXOXOXOX


9207
* fU * fC * fA
CUUCA
OXXXXXX





WV-
Teo * Teo * Teo * m5Ceo * Teo * Teo * Geo * Geo * m5Ceo * m5Ceo * Aeo *
TTTCTTGGCCATCTCC
XXXXX XXXXX


9208
Teo * m5Ceo * Teo * fC * fC * fU * fU * fC * fA
UUCA
XXXXX XXXX





WV-
mU * mU * mU * mC * mU * Teo * Geo * Geo * m5Ceo * m5Ceo * Aeo *
UUUCUTGGCCATCTC
XXXXX XXXXX


9209
Teo * m5Ceo * Teo * fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
mU * mU * mU * mC * mU * mU * Geo * Geo * m5Ceo * m5Ceo * Aeo *
UUUCUUGGCCATCTC
XXXXX XXXXX


9210
Teo * m5Ceo * Teo * fC * fC * fU * fU * fC * fA
CUUCA
XXXXX XXXX





WV-
Teo * S m5Ceo * SAeo * SAeo * SGeo * SGeo * SAeofA * SGeoAeo * SfU *
TCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


9222
SGeoGeofC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Teo * S m5Ceo * SAeo * SAeo * SGeo * SGeo * SAeoAeo * SGeoAeo * STeo *
TCAAGGAAGATGGCA
SSSSSSOSOSSOOS


9223
SGeoGeo m5Ceo * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Teo * S m5Ceo * SAeo * SAeo * SGeo * SGeo * SAeo * SAeo * SGeo * SAeo *
TCAAGGAAGATGGCA
SSSSSSSSSSSSSSS


9224
STeo * SGeo * SGeo * S m5Ceo * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSS





WV-
Teo * m5Ceo * Aeo * Aeo * Geo * Geo * AeofA * GeoAeo * fU * GeoGeofC *
TCAAGGAAGAUGGCA
XXXXXXOXOXXO


9225
fA * fU * fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
Teo * m5Ceo * Aeo * Aeo * Geo * Geo * AeoAeo * GeoAeo * Teo * GeoGeo
TCAAGGAAGATGGCA
XXXXXXOXOXXO


9226
m5Ceo * fA * fU * fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fC * fA * fA * fG * fG * AeofA * GeoAeo * fU * GeoGeofC * fA * fU * fU
UCAAGGAAGAUGGCA
XXXXXXOXOXXO


9227
* fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * SfU * SfU * SfU * SfG * SfG * S mC * S mA * S mG * S mC * S mU * S
UUUUGGCAGCUUUCC
SSSSSSSSSSSSSSS


9408
mU * S mU * S mC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S mC * SfA * S mG * S mC * SfU * S mU
UUUUGGCAGCUUUCC
SSSSSSSSSSSSSSS


9409
* S mU * SfC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S m5Ceo * SfA * SGeo * S m5Ceo * SfU *
UUUUGGCAGCUTTCC
SSSSSSSSSSSSSSS


9410
STeo * STeo * SfC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S mCfA * S mG mC * SfU * S mU mUfC *
UUUUGGCAGCUUUCC
SSSSSSOSOSSOOS


9411
SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S m5CeofA * SGeo m5Ceo * SfU *
UUUUGGCAGCUTTCC
SSSSSSOSOSSOOS


9412
STeoTeofC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S m5CeofA * S mG m5Ceo * SfU *
UUUUGGCAGCUTTCC
SSSSSSOSOSSOOS


9413
STeoTeofC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S m5CeofA * S mG mC * SfU *
UUUUGGCAGCUTTCC
SSSSSSOSOSSOOS


9414
STeoTeofC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * fU * fU * fU * fG * fG * mC * fA * mG * mC * fU * mU * mU * fC *
UUUUGGCAGCUUUCC
XXXXX XXXXX


9415
fC * fA * fC * fC * fA * fA
ACCAA
XXXXX XXXX





WV-
fU * fU * fU * fU * fG * fG * m5Ceo * fA * Geo * m5Ceo * fU * Teo * Teo *
UUUUGGCAGCUTTCC
XXXXX XXXXX


9416
fC * fC * fA * fC * fC * fA * fA
ACCAA
XXXXX XXXX





WV-
fU * fU * fU * fU * fG * fG * mCfA * mG mC * fU * mU mUfC * fC * fA *
UUUUGGCAGCUUUCC
XXXXXXOXOXXO


9417
fC * fC * fA * fA
ACCAA
OXXXXXX





WV-
fU * fU * fU * fU * fG * fG * m5CeofA * Geo m5Ceo * fU * TeoTeofC * fC *
UUUUGGCAGCUTTCC
XXXXXXOXOXXO


9418
fA * fC * fC * fA * fA
ACCAA
OXXXXXX





WV-
fU * fU * fU * fU * fG * fG * m5CeofA * mG m5Ceo * fU * TeoTeofC * fC *
UUUUGGCAGCUTTCC
XXXXXXOXOXXO


9419
fA * fC * fC * fA * fA
ACCAA
OXXXXXX





WV-
mU * mC * mA * mA * mG * mG * mA * mA * mG * mA * mU * mG *
UCAAGGAAGAUGGCA
XXXXX XXXXX


942
mG * mC * mA * mU * mU * mU * mC * mU
UUUCU
XXXXX XXXX





WV-
fU * fU * fU * fU * fG * fG * m5CeofA * mG mC * fU * TeoTeofC * fC * fA *
UUUUGGCAGCUTTCC
XXXXXXOXOXXO


9420
fC * fC * fA * fA
ACCAA
OXXXXXX





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mC mU * SfG * S mA mAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9422
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * STeofU * S m5CeoTeo * SfG * SAeoAeofG
CUCCGGTUCTGAAGG
SSSSSSOSOSSOOS


9423
* SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * STeofU * S m5CeoTeo * SfG * S mA
CUCCGGTUCTGAAGG
SSSSSSOSOSSOOS


9424
mAfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * STeofU * S m5Ceo mU * SfG * S mA
CUCCGGTUCUGAAGG
SSSSSSOSOSSOOS


9425
mAfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * fU * fC * fC * fG * fG * mUfU * mC mU * fG * mA mAfG * fG * fU *
CUCCGGUUCUGAAGG
XXXXXXOXOXXO


9426
fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * TeofU * m5CeoTeo * fG * AeoAeofG * fG * fU *
CUCCGGTUCTGAAGG
XXXXXXOXOXXO


9427
fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * TeofU * m5CeoTeo * fG * mA mAfG * fG * fU *
CUCCGGTUCTGAAGG
XXXXXXOXOXXO


9428
fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
fC * fU * fC * fC * fG * fG * TeofU * m5Ceo mU * fG * mA mAfG * fG * fU
CUCCGGTUCUGAAGG
XXXXXXOXOXXO


9429
* fG * fU * fU * fC
UGUUC
OXXXXXX





WV-
mG * mG * mC * mC * mA * mA * mA * mC * mC * mU * mC * mG *
GGCCAAACCUCGGCU
XXXXX XXXXX


943
mG * mC * mU * mU * mA * mC * mC * mU
UACCU
XXXXX XXXX





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SfC * SfU * S mG mA mA
CUCCGGUUCUGAAGG
SSSSSSSSSSOOOO


9511
mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfU * SfC * SfG * SfG * SfU * SfU * S mCfU * S mGfA * S mA mG
CUCCGGUUCUGAAGG
SSSSSSSSOSOSOO


9512
mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mGfA * S mA
CUCCGGUUCUGAAGG
SSSSSSSSOSOSOO


9513
mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mGfA * S mAfG *
CUCCGGUUCUGAAGG
SSSSSSSSOSOSOS


9514
S mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mGfA * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSOSSO


9515
mG mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mG * SfA * S mA
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOO


9516
mG mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mG * SfA * S mA
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOO


9517
mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOS


9518
mAfG * S mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mG * SfA * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSOSSSSO


9519
S mG mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * SfG * SfA * S mA
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOO


9520
mG mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * SfG * SfA * S mA
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOO


9521
mGfG * SfU * SfG * SfU * SfU * SfU
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * SfG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOS


9522
mAfG * S mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * SfG * SfA * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSSSSO


9523
mG mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mCfU * S mGfA * S mAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSOSOS


9524
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * mUfC * mUfG * mAfA * mGfG *
CUCCGGUUCUGAAGG
SSSSSSXOXOXOX


9525
SfU * SfG * SfU * SfU * SfC
UGUUC
OSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * S mUfC * S mUfG * S mAfA * S
CUCCGGUUCUGAAGG
SSSSSSSOSOSOSO


9534
mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * S mG * SfU * SfU * S mCfU * SfG * SfA * S mA
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOO


9535
mG mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * S mG * SfU * SfU * S mCfU * SfG * SfA * S mA
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOO


9536
mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * S mG * SfU * SfU * S mCfU * SfG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOS


9537
mAfG * S mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * S mG * SfU * SfU * S mCfU * SfG * SfA * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSOSSSSO


9538
S mG mGfU * SfG * SfU * SfU * SfC
UGUUC
OSSSS





WV-
fC * SfU * SfC * SfC * SfG * S mG * SfU * SfU * SfC * SfU * S mG mA mA
CUCCGGUUCUGAAGG
SSSSSSSSSSOOOO


9539
mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
Teo * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG mGfC
TCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


9540
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
Teo * RfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG
TCAAGGAAGAUGGCA
RSSSSSOSOSSOOS


9541
mGfU * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fA * fA * fU * fA * fU * fU * mC * mU * mU * mC * mU * mA * mA *
AAUAUUCUUCUAAA
XXXXX XXXXX


9594
mA * mG * mA * mA * mA * mG * fC * fU * fU * fA * fA * fA
GAAAGCUUAAA
XXXXX XXXXX





XXXX





WV-
fU * fC * fU * fU * fC * fU * mA * mA * mA * mG * mA * mA * mA *
UCUUCUAAAGAAAG
XXXXX XXXXX


9595
mG * mC * mU * mU * mA * mA * fA * fA * fA * fG * fU * fC
CUUAAAAAGUC
XXXXX XXXXX





XXXX





WV-
fU * fA * fA * fA * fG * fA * mA * mA * mG * mC * mU * mU * mA *
UAAAGAAAGCUUAA
XXXXX XXXXX


9596
mA * mA * mA * mA * mG * mU * fC * fU * fG * fC * fU * fA
AAAGUCUGCUA
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fG * fC * fU * mU * mA * mA * mA * mA * mA * mG *
AAAGCUUAAAAAGUC
XXXXX XXXXX


9597
mU * mC * mU * mG * mC * mU * fA * fA * fA * fA * fU * fG
UGCUAAAAUG
XXXXX XXXXX





XXXX





WV-
fU * fU * fA * fA * fA * fA * mA * mG * mU * mC * mU * mG * mC *
UUAAAAAGUCUGCUA
XXXXX XXXXX


9598
mU * mA * mA * mA * mA * mU * fG * fU * fU * fU * fU * fC
AAAUGUUUUC
XXXXX XXXXX





XXXX





WV-
fA * fA * fG * fU * fC * fU * mG * mC * mU * mA * mA * mA * mA *
AAGUCUGCUAAAAUG
XXXXX XXXXX


9599
mU * mG * mU * mU * mU * mU * fC * fA * fU * fU * fC * fC
UUUUCAUUCC
XXXXX XXXXX





XXXX





WV-
fU * fG * fC * fU * fA * fA * mA * mA * mU * mG * mU * mU * mU *
UGCUAAAAUGUUUUC
XXXXX XXXXX


9600
mU * mC * mA * mU * mU * mC * fC * fU * fA * fU * fU * fA
AUUCCUAUUA
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fU * fG * fU * mU * mU * mU * mC * mA * mU * mU *
AAAUGUUUUCAUUCC
XXXXX XXXXX


9601
mC * mC * mU * mA * mU * mU * fA * fG * fA * fU * fC * fU
UAUUAGAUCU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fU * fC * fA * mU * mU * mC * mC * mU * mA * mU *
UUUUCAUUCCUAUUA
XXXXX XXXXX


9602
mU * mA * mG * mA * mU * mC * fU * fG * fU * fC * fG * fC
GAUCUGUCGC
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fC * fC * fU * mA * mU * mU * mA * mG * mA * mU *
AUUCCUAUUAGAUCU
XXXXX XXXXX


9603
mC * mU * mG * mU * mC * mG * fC * fC * fC * fU * fA * fC
GUCGCCCUAC
XXXXX XXXXX





XXXX





WV-
fU * fA * fU * fU * fA * fG * mA * mU * mC * mU * mG * mU * mC *
UAUUAGAUCUGUCGC
XXXXX XXXXX


9604
mG * mC * mC * mC * mU * mA * fC * fC * fU * fC * fU * fU
CCUACCUCUU
XXXXX XXXXX





XXXX





WV-
fG * fA * fU * fC * fU * fG * mU * mC * mG * mC * mC * mC * mU *
GAUCUGUCGCCCUAC
XXXXX XXXXX


9605
mA * mC * mC * mU * mC * mU * fU * fU * fU * fU * fU * fC
CUCUUUUUUC
XXXXX XXXXX





XXXX





WV-
fG * fU * fC * fG * fC * fC * mC * mU * mA * mC * mC * mU * mC * mU
GUCGCCCUACCUCUU
XXXXX XXXXX


9606
* mU * mU * mU * mU * mU * fC * fU * fG * fU * fC * fU
UUUUCUGUCU
XXXXX XXXXX





XXXX





WV-
fC * fC * fU * fA * fC * fC * mU * mC * mU * mU * mU * mU * mU *
CCUACCUCUUUUUUC
XXXXX XXXXX


9607
mU * mC * mU * mG * mU * mC * fU * fG * fA * fC * fA * fG
UGUCUGACAG
XXXXX XXXXX





XXXX





WV-
fC * fU * fC * fU * fU * fU * mU * mU * mU * mC * mU * mG * mU *
CUCUUUUUUCUGUCU
XXXXX XXXXX


9608
mC * mU * mG * mA * mC * mA * fG * fC * fU * fG * fU * fU
GACAGCUGUU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fU * fC * fU * mG * mU * mC * mU * mG * mA * mC *
UUUUCUGUCUGACAG
XXXXX XXXXX


9609
mA * mG * mC * mU * mG * mU * fU * fU * fG * fC * fA * fG
CUGUUUGCAG
XXXXX XXXXX





XXXX





WV-
fU * fG * fU * fC * fU * fG * mA * mC * mA * mG * mC * mU * mG *
UGUCUGACAGCUGUU
XXXXX XXXXX


9610
mU * mU * mU * mG * mC * mA * fG * fA * fC * fC * fU * fC
UGCAGACCUC
XXXXX XXXXX





XXXX





WV-
fG * fA * fC * fA * fG * fC * mU * mG * mU * mU * mU * mG * mC *
GACAGCUGUUUGCAG
XXXXX XXXXX


9611
mA * mG * mA * mC * mC * mU * fC * fC * fU * fG * fC * fC
ACCUCCUGCC
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fU * fU * fU * mG * mC * mA * mG * mA * mC * mC *
CUGUUUGCAGACCUC
XXXXX XXXXX


9612
mU * mC * mC * mU * mG * mC * fC * fA * fC * fC * fG * fC
CUGCCACCGC
XXXXX XXXXX





XXXX





WV-
fU * fG * fC * fA * fG * fA * mC * mC * mU * mC * mC * mU * mG *
UGCAGACCUCCUGCC
XXXXX XXXXX


9613
mC * mC * mA * mC * mC * mG * fC * fA * fG * fA * fU * fU
ACCGCAGAUU
XXXXX XXXXX





XXXX





WV-
fA * fC * fC * fU * fC * fC * mU * mG * mC * mC * mA * mC * mC * mG
ACCUCCUGCCACCGC
XXXXX XXXXX


9614
* mC * mA * mG * mA * mU * fU * fC * fA * fG * fG * fC
AGAUUCAGGC
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fC * fC * fA * mC * mC * mG * mC * mA * mG * mA *
CUGCCACCGCAGAUU
XXXXX XXXXX


9615
mU * mU * mC * mA * mG * mG * fC * fU * fU * fC * fC * fC
CAGGCUUCCC
XXXXX XXXXX





XXXX





WV-
fA * fC * fC * fG * fC * fA * mG * mA * mU * mU * mC * mA * mG *
ACCGCAGAUUCAGGC
XXXXX XXXXX


9616
mG * mC * mU * mU * mC * mC * fC * fA * fA * fU * fU * fU
UUCCCAAUUU
XXXXX XXXXX





XXXX





WV-
fA * fG * fA * fU * fU * fC * mA * mG * mG * mC * mU * mU * mC *
AGAUUCAGGCUUCCC
XXXXX XXXXX


9617
mC * mC * mA * mA * mU * mU * fU * fU * fU * fC * fC * fU
AAUUUUUCCU
XXXXX XXXXX





XXXX





WV-
fC * fA * fG * fG * fC * fU * mU * mC * mC *mC * mA * mA * mU *
CAGGCUUCCCAAUUU
XXXXX XXXXX


9618
mU * mU * mU * mU * mC * mC * fU * fG * fU * fA * fG * fA
UUCCUGUAGA
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fC * fC * fA * mA * mU * mU * mU * mU * mU * mC *
UUCCCAAUUUUUCCU
XXXXX XXXXX


9619
mC * mU * mG * mU * mA * mG * fA * fA * fU * fA * fC * fU
GUAGAAUACU
XXXXX XXXXX





XXXX





WV-
fA * fA * fU * fU * fU * fU * mU * mC * mC * mU * mG * mU * mA *
AAUUUUUCCUGUAGA
XXXXX XXXXX


9620
mG * mA * mA * mU * mA * mC * fU * fG * fG * fC * fA * fU
AUACUGGCAU
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fC * fU * fG * mU * mA * mG * mA * mA * mU * mA *
UUCCUGUAGAAUACU
XXXXX XXXXX


9621
mC * mU * mG * mG * mC * mA * fU * fC * fU * fG * fU * fU
GGCAUCUGUU
XXXXX XXXXX





XXXX





WV-
fG * fU * fA * fG * fA * fA * mU * mA * mC * mU * mG * mG * mC *
GUAGAAUACUGGCAU
XXXXX XXXXX


9622
mA * mU * mC * mU * mG * mU * fU * fU * fU * fU * fG * fA
CUGUUUUUGA
XXXXX XXXXX





XXXX





WV-
fA * fU * fA * fC * fU * fG * mG * mC * mA * mU * mC * mU * mG *
AUACUGGCAUCUGUU
XXXXX XXXXX


9623
mU * mU * mU * mU * mU * mG * fA * fG * fG * fA * fU * fU
UUUGAGGAUU
XXXXX XXXXX





XXXX





WV-
fG * fG * fC * fA * fU * fC * mU * mG * mU * mU * mU * mU * mU *
GGCAUCUGUUUUUGA
XXXXX XXXXX


9624
mG * mA * mG * mG * mA * mU * fU * fG * fC * fU * fG * fA
GGAUUGCUGA
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fU * fU * fU * mU * mU * mG * mA * mG * mG * mA *
CUGUUUUUGAGGAU
XXXXX XXXXX


9625
mU * mU * mG * mC * mU * mG * fA * fA * fU * fU * fA * fU
UGCUGAAUUAU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fG * fA * fG * mG * mA * mU * mU * mG * mC * mU *
UUUGAGGAUUGCUG
XXXXX XXXXX


9626
mG * mA * mA * mU * mU * mA * fU * fU * fU * fC * fU * fU
AAUUAUUUCUU
XXXXX XXXXX





XXXX





WV-
fG * fG * fA * fU * fU * fG * mC * mU * mG * mA * mA * mU * mU *
GGAUUGCUGAAUUA
XXXXX XXXXX


9627
mA * mU * mU * mU * mC * mU * fU * fC * fU * fC * fC * fA
UUUCUUCCCCA
XXXXX XXXXX





XXXX





WV-
fG * fC * fU * fG * fA * fA * mU * mU * mA * mU * mU * mU * mC *
GCUGAAUUAUUUCUU
XXXXX XXXXX


9628
mU * mU * mC * mC * mC * mC * fA * fG * fU * fU * fG * fC
CCCCAGUUGC
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fA * fU * fU * mU * mC * mU * mU * mC * mC * mC *
AUUAUUUCUUCCCCA
XXXXX XXXXX


9629
mC * mA * mG * mU * mU * mG * fC * fA * fU * fU * fC * fA
GUUGCAUUCA
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fU * fU * fC * mC * mC * mC * mA * mG * mU * mU *
UUCUUCCCCAGUUGC
XXXXX XXXXX


9630
mG * mC * mA * mU * mU * mC * fA * fA * fU * fG * fU * fU
AUUCAAUGUU
XXXXX XXXXX





XXXX





WV-
fC * fC * fC * fC * fA * fG * mU * mU * mG * mC * mA * mU * mU *
CCCCAGUUGCAUUCA
XXXXX XXXXX


9631
mC * mA * mA * mU * mG * mU * fU * fC * fU * fG * fA * fC
AUGUUCUGAC
XXXXX XXXXX





XXXX





WV-
fG * fU * fU * fG * fC * fA * mU * mU * mC * mA * mA * mU * mG *
GUUGCAUUCAAUGUU
XXXXX XXXXX


9632
mU * mU * mC * mU * mG * mA * fC * fA * fA * fC * fA * fG
CUGACAACAG
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fC * fA * fA * mU * mG * mU * mU * mC * mU * mG *
AUUCAAUGUUCUGAC
XXXXX XXXXX


9633
mA * mC * mA * mA * mC * mA * fG * fU * fU * fU * fG * fC
AACAGUUUGC
XXXXX XXXXX





XXXX





WV-
fA * fU * fG * fU * fU * fC * mU * mG * mA * mC * mA * mA * mC *
AUGUUCUGACAACAG
XXXXX XXXXX


9634
mA * mG * mU * mU * mU * mG * fC * fC * fG * fC * fU * fG
UUUGCCGCUG
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fA * fC * fA * mA * mC * mA * mG * mU * mU * mU *
CUGACAACAGUUUGC
XXXXX XXXXX


9635
mG * mC * mC * mG * mC * mU * fG * fC * fC * fC * fA * fA
CGCUGCCCAA
XXXXX XXXXX





XXXX





WV-
fA * fA * fC * fA * fG * fU * mU * mU * mG * mC * mC * mG * mC *
AACAGUUUGCCGCUG
XXXXX XXXXX


9636
mU * mG * mC * mC * mC * mA * fA * fU * fG * fC * fC * fA
CCCAAUGCCA
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fG * fC * fC * mG * mC * mU * mG * mC * mC * mC *
UUUGCCGCUGCCCAA
XXXXX XXXXX


9637
mA * mA * mU * mG * mC * mC * fA * fU * fU * fC * fU * fG
UGCCAUCCUG
XXXXX XXXXX





XXXX





WV-
fC * fG * fC * fU * fG * fC * mC * mC * mA * mA * mU * mG * mC * mC
CGCUGCCCAAUGCCA
XXXXX XXXXX


9638
* mA * mU * mC * mC * mU * fG * fG * fA * fG * fU * fU
UCCUGGAGUU
XXXXX XXXXX





XXXX





WV-
fC * fC * fC * fA * fA * fU * mG * mC * mC * mA * mU * mC * mC * mU
CCCAAUGCCAUCCUG
XXXXX XXXXX


9639
* mG * mG * mA * mG * mU * fU * fC * fC * fU * fG * fU
GAGUUCCUGU
XXXXX XXXXX





XXXX





WV-
fU * fG * fC * fC * fA * fU * mC * mC * mU * mG * mG * mA * mG *
UGCCAUCCUGGAGUU
XXXXX XXXXX


9640
mU * mU * mC * mC * mU * mG * fU * fA * fA * fG * fA * fU
CCUGUAAGAU
XXXXX XXXXX





XXXX





WV-
fU * fC * fC * fU * fG * fG * mA * mG * mU * mU * mC * mC * mU *
UCCUGGAGUUCCUGU
XXXXX XXXXX


9641
mG * mU * mA * mA * mG * mA * fU * fA * fC * fC * fA * fA
AAGAUACCAA
XXXXX XXXXX





XXXX





WV-
fG * fA * fG * fU * fU * fC * mC * mU * mG * mU * mA * mA * mG *
GAGUUCCUGUAAGAU
XXXXX XXXXX


9642
mA * mU * mA * mC * mC * mA * fA * fA * fA * fA * fG * fG
ACCAAAAAGG
XXXXX XXXXX





XXXX





WV-
fC * fC * fU * fG * fU * fA * mA * mG * mA * mU * mA * mC * mC *
CCUGUAAGAUACCAA
XXXXX XXXXX


9643
mA * mA * mA * mA * mA * mG * fG * fC * fA * fA * fA * fA
AAAGGCAAAA
XXXXX XXXXX





XXXX





WV-
fA * fA * fG * fA * fU * fA * mC * mC * mA * mA * mA * mA * mA *
AAGAUACCAAAAAGG
XXXXX XXXXX


9644
mG * mG * mC * mA * mA * mA * fA * fC * fA * fA * fA * fA
CAAAACAAAA
XXXXX XXXXX





XXXX





WV-
fA * fC * fC * fA * fA * fA * mA * mA * mG * mG * mC * mA * mA *
ACCAAAAAGGCAAAA
XXXXX XXXXX


9645
mA * mA * mC * mA * mA * mA * fA * fA * fU * fG * fA * fA
CAAAAAUGAA
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fG * fG * fC * mA * mA * mA * mA * mC * mA * mA *
AAAGGCAAAACAAAA
XXXXX XXXXX


9646
mA * mA * mA * mU * mG * mA * fA * fG * fC * fC * fC * fC
AUGAAGCCCC
XXXXX XXXXX





XXXX





WV-
fC * fA * fA * fA * fA * fC * mA * mA * mA * mA * mA * mU * mG *
CAAAACAAAAAUGAA
XXXXX XXXXX


9647
mA * mA * mG * mC * mC * mC * fC * fA * fU * fG * fU * fC
GCCCCAUGUC
XXXXX XXXXX





XXXX





WV-
fC * fA * fA * fA * fA * fA * mU * mG * mA * mA * mG * mC * mC *
CAAAAAUGAAGCCCC
XXXXX XXXXX


9648
mC * mC * mA * mU * mG * mU * fC * fU * fU * fU * fU * fU
AUGUCUUUUU
XXXXX XXXXX





XXXX





WV-
fA * fU * fG * fA * fA * fG * mC * mC * mC * mC * mA * mU * mG *
AUGAAGCCCCAUGUC
XXXXX XXXXX


9649
mU * mC * mU * mU * mU * mU * fU * fA * fU * fU * fU * fG
UUUUUAUUUG
XXXXX XXXXX





XXXX





WV-
fG * fC * fC * fC * fC * fA * mU * mG * mU * mC * mU * mU * mU *
GCCCCAUGUCUUUUU
XXXXX XXXXX


9650
mU * mU * mA * mU * mU * mU * fG * fA * fG * fA * fA * fA
AUUUGAGAAA
XXXXX XXXXX





XXXX





WV-
fA * fU * fG * fU * fC * fU * mU * mU * mU * mU * mA * mU * mU *
AUGUCUUUUUAUUU
XXXXX XXXXX


9651
mU * mG * mA * mG * mA * mA * fA * fA * fG * fA * fU * fU
GAGAAAAGAUU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fU * fU * fA * mU * mU * mU * mG * mA * mG * mA *
UUUUUAUUUGAGAA
XXXXX XXXXX


9652
mA * mA * mA * mG * mA * mU * fU * fA * fA * fA * fC * fA
AAGAUUAAACA
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fU * fG * fA * mG * mA * mA * mA * mA * mG * mA *
AUUUGAGAAAAGAU
XXXXX XXXXX


9653
mU * mU * mA * mA * mA * mC * fA * fG * fU * fG * fU * fG
UAAACAGUGUG
XXXXX XXXXX





XXXX





WV-
fA * fG * fA * fA * fA * fA * mG * mA * mU * mU * mA * mA * mA *
AGAAAAGAUUAAAC
XXXXX XXXXX


9654
mC * mA * mG * mU * mG * mU * fG * fC * fU * fA * fC * fC
AGUGUGCUACC
XXXXX XXXXX





XXXX





WV-
fA * fG * fA * fU * fU * fA * mA * mA * mC * mA * mG * mU * mG *
AGAUUAAACAGUGU
XXXXX XXXXX


9655
mU * mG * mC * mU * mA * mC * fC * fA * fC * fA * fU * fG
GCUACCACAUG
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fC * fA * fG * mU * mG * mU * mG * mC * mU * mA *
AAACAGUGUGCUACC
XXXXX XXXXX


9656
mC * mC * mA * mC * mA * mU * fG * fC * fA * fG * fU * fU
ACAUGCAGUU
XXXXX XXXXX





XXXX





WV-
fG * fU * fG * fU * fG * fC * mU * mA * mC * mC * mA * mC * mA *
GUGUGCUACCACAUG
XXXXX XXXXX


9657
mU * mG * mC * mA * mG * mU * fU * fG * fU * fA * fC * fU
CAGUUGUACU
XXXXX XXXXX





XXXX





WV-
fU * fU * fG * fC * fC * fG * mC * mU * mG * mC * mC * mC * mA *
UUGCCGCUGCCCAAU
XXXXX XXXXX


9658
mA * mU * mG * mC * mC * mA * fU * fC * fC * fU * fG * fG
GCCAUCCUGG
XXXXX XXXXX





XXXX





WV-
fG * fC * fC * fC * fA * fA * mU * mG * mC * mC * mA * fU * fC * fC * fU
GCCCAAUGCCAUCCU
XXXXX XXXXX


9659
*fG * fG
GG
XXXXXX





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mA mG mGfU * S mGfU * SfU * SfC *
UUCUGAAGGUGUUCU
SSSSSSOOOSOSSS


9680
SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mA mG mGfU * S mG * SfU * SfU *
UUCUGAAGGUGUUCU
SSSSSSOOOSSSSS


9681
SfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mA mG mG mU * SfG * SfU * SfU *
UUCUGAAGGUGUUCU
SSSSSSOOOSSSSS


9682
SfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * SfA * S mG mGfU * S mG * SfU * SfU * S
UUCUGAAGGUGUUCU
SSSSSSSOOSSSSO


9683
mCfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * S mG * SfU * SfU * S
UUCUGAAGGUGUUCU
SSSSSSOSOSSSSO


9684
mCfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fG * SfU * SfC * SfU * SfG * SfA * S mA mGfG * SfU * S mG * SfU * SfU * S
UUCUGAAGGUGUUCU
SSSSSSOOSSSSSO


9685
mCfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * S mAfA * S mG mGfU * S mG * SfU * SfU * S
UUCUGAAGGUGUUCU
SSSSSOSOOSSSSO


9686
mCfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * S mA mAfG * S mGfU * S mG * SfU * SfU * S
UUCUGAAGGUGUUCU
SSSSSOOSOSSSSO


9687
mCfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * S mA mA mGfG * SfU * S mG * SfU * SfU * S
UUCUGAAGGUGUUCU
SSSSSOOOSSSSSO


9688
mCfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * S mAfA * S mG mGfU * S mG * SfU * SfU *
UUCUGAAGGUGUUCU
SSSSSOSOOSSSSS


9689
SfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * S mA mAfG * S mGfU * S mG * SfU * SfU *
UUCUGAAGGUGUUCU
SSSSSOOSOSSSSS


9690
SfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * S mA mA mGfG * SfU * S mG * SfU * SfU *
UUCUGAAGGUGUUCU
SSSSSOOOSSSSSS


9691
SfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fC * fU * fC * fC * fG * fG * fU * fU * mCfU * mG * fA * mA mGfG * fG *
CUCCGGUUCUGAAGG
XXXXXXXXOXXX


9699
fG * fU * fU * fC
UGUUC
OOXXXXX





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mCfU * S mG * SfA mAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9700
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mCfU * S mfG * SfA mAfG
CUCCGGUUCUGAAGG
SSSSSSSSOSSOOS


9701
* SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mC * SfU * S mG * SfA mAfG
CUCCGGUUCUGAAGG
SSSSSSOSSSSOOS


9702
* SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mCfU * S mG * SfA * S mAfG
CUCCGGUUCUGAAGG
SSSSSSOSOSSSOS


9703
* SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mCfU * S mG * SfA mA * SfG
CUCCGGUUCUGAAGG
SSSSSSOSOSSOSS


9704
* SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * S mG * S mUfU * S mCfU * S mG * SfA mAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9709
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfUfU * S mCfU * S mG * SfA mAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9710
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * SfCfU * S mG * SfA mAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9711
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mCfU * SfG * SfA mAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9712
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mCfU * S mG * SfAfAfG *
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9713
SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * S mU * S mC * S mU * S mG * S
CUCCGGUUCUGAAGG
SSSSSSSSSSSSSSS


9714
mA * S mA * S mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mC * SfU * S mG * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSSSSSSSS


9715
S mA * SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * SBrmUfG * S mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


9737
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG * S mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


9738
SfA * S BrfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG * S mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


9739
SfA * SfU * S BrfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG * S mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


9740
SfA * SfU * SfU * S BrfU * SfC * SfU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * S mUfG * S mGfC *
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


9741
SfA * SfU * SfU * SfU * SfC * S BrfU
UUUCU
SSSSS





WV-
BrfU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mGfA * SBrmUfG * S
UCAAGGAAGAUGGCA
SSSSSSOSOSOSOS


9742
mGfC * SfA * S BrfU * S BrfU * S BrfU * SfC * S BrfU
UUUCU
SSSSS





WV-
5 MSfC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mC mU * SfG * S mA
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9743
mAfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mC mU * SfG * S mA mAfG *
CUCCGGUUCUGAAGG 
SSSSSSOSOSSOOS


9744
SfG * SfU * SfG * SfU * SfU * S 5 MSfC
UGUUC
SSSSS





WV-
5 MSfC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mC mU * SfG * S mA
CUCCGGUUCUGAAGG
SSSSSSOSOSSOOS


9745
mAfG * SfG * SfU * SfG * SfU * SfU * S 5 MSfC
UGUUC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * S mG * SfU mUfC *
UUCUGAAGGUGUUCU
SSSSSSOSOSSOOS


9746
SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mA * SfG * S mGfU * S mG * SfU
UUCUGAAGGUGUUCU
SSSSSSSSOSSOOS


9747
mUfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mG * SfU * S mG * SfU
UUCUGAAGGUGUUCU
SSSSSSOSSSSOOS


9748
mUfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * S mG * SfU * S
UUCUGAAGGUGUUCU
SSSSSSOSOSSSOS


9749
mUfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * S mG * SfU mU *
UUCUGAAGGUGUUCU
SSSSSSOSOSSOSS


9750
SfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * S mA * S mAfG * S mGfU * S mG * SfU mUfC *
UUCUGAAGGUGUUCU
SSSSSSOSOSSOOS


9751
SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * SfA * SfG * S mGfU * S mG * SfU mUfC
UUCUGAAGGUGUUCU
SSSSSSSSOSSOOS


9752
* SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * SfG * SfU * S mG * SfU mUfC
UUCUGAAGGUGUUCU
SSSSSSOSSSSOOS


9753
* SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * SfG * SfU * S mUfC
UUCUGAAGGUGUUCU
SSSSSSOSOSSSOS


9754
* SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * S mG * SfUfU * SfU
UUCUGAAGGUGUUCU
SSSSSSOSOSSOSS


9755
* SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mA * S mG * S mG * S mU * S mG * S
UUCUGAAGGUGUUCU
SSSSSSSSSSSSSSS


9756
mU * S mU * S mC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mA * SfG * S mG * SfU * S mG * SfU *
UUCUGAAGGUGUUCU
SSSSSSSSSSSSSSS


9757
S mU * SfC * SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * SfAfG * S mGfU * S mG * SfU mUfC *
UUCUGAAGGUGUUCU
SSSSSSOSOSSOOS


9758
SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * SfGfU * S mG * SfU mUfC *
UUCUGAAGGUGUUCU
SSSSSSOSOSSOOS


9759
SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fG * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * SfG * SfU mUfC *
UUCUGAAGGUGUUCU
SSSSSSOSOSSOOS


9760
SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fU * SfU * SfC * SfU * SfG * SfA * S mAfG * S mGfU * S mG * SfUfUfC *
UUCUGAAGGUGUUCU
SSSSSSOSOSSOOS


9761
SfU * SfU * SfG * SfU * SfA * SfC
UGUAC
SSSSS





WV-
fA * fA * fU * fA * fU * fU * fU * fU * mU * mC * mU * mA * mA * mA *
AAUAUUCUUCUAAAG
XXXXX XXXXX


9762
mG * mA * fA * fA * fG * fC * fU * fU * fA * fA * fA
AAAGCUUAAA
XXXXX XXXXX





XXXX





WV-
fU * fC * fU * fU * fC * fU * fA * fA * mA * mG * mA * mA * mG *
UCUUCUAAAGAAAGC
XXXXX XXXXX


9763
mC * mU * fU * fA * fA * fA * fA * fA * fG * fU * fC
UUAAAAAGUC
XXXXX XXXXX





XXXX





WV-
fU * fA * fA * fA * fG * fA * fA * fA * mG * mC * mU * mU * mA * mA *
UAAAGAAAGCUUAA
XXXXX XXXXX


9764
mA * mA * fA * fG * fU * fC * fU * fG * fC * fU * fA
AAAGUCUGCUA
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fG * fC * fU * fU * fA * mA * mA * mA * mA * mG * mU *
AAAGCUUAAAAAGUC
XXXXX XXXXX


9765
mC * mU * fG * fC * fU * fA * fA * fA * fA * fU * fG
UGCUAAAAUG
XXXXX XXXXX





XXXX





WV-
fU * fU * fA * fA * fA * fA * fA * fG * mU * mC * mU * mG * mC * mU *
UUAAAAAGUCUGCUA
XXXXX XXXXX


9766
mA * mA * fA * fA * fU * fG * fU * fU * fU * fU * fC
AAAUGUUUUC
XXXXX XXXXX





XXXX





WV-
fA * fA * fG * fU * fC * fU * fG * fC * mU * mA * mA * mA * mA * mU *
AAGUCUGCUAAAAUG
XXXXX XXXXX


9767
mG * mU * fU * fU * fU * fC * fA * fU * fU * fC * fC
UUUUCAUUCC
XXXXX XXXXX





XXXX





WV-
fU * fG * fC * fU * fA * fA * fA * fA * mU * mG * mU * mU * mU * mU *
UGCUAAAAUGUUUUC
XXXXX XXXXX


9768
mC * mA * fU * fU * fC * fC * fU * fA * fU * fU * fA
AUUCCUAUUA
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fU * fG * fU * fU * fU * mU * mC * mA * mU * mU * mC *
AAAUGUUUUCAUUCC
XXXXX XXXXX


9769
mC * mU * fA * fU * fU * fA * fG * fA * fU * fC * fU
UAUUAGAUCU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fU * fC * fA * fU * fU * mC * mC * mU * mA * mU * mU *
UUUUCAUUCCUAUUA
XXXXX XXXXX


9770
mA * mG * fA * fU * fC * fU * fG * fG * fC * fG * fC
GAUCUGUCGC
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fC * fC * fU * fA * fU * mU * mA * mG * mA * mU * mC *
AUUCCUAUUAGAUCU
XXXXX XXXXX


9771
mU * mG * fU * fC * fG * fC * fC * fC * fU * fA * fC
GUCGCCCUAC
XXXXX XXXXX





XXXX





WV-
fU * fA * fU * fU * fA * fG * fA * fU * mC * mU * mG * mU * mC * mG *
UAUUAGAUCUGUCGC
XXXXX XXXXX


9772
mC * mC * fC * fU * fA * fC * fC * fU * fC * fU * fU
CCUACCUCUU
XXXXX XXXXX





XXXX





WV-
fG * fA * fU * fC * fU * fG * fU * fC * mG * mC * mC * mC * mU * mA *
GAUCUGUCGCCCUAC
XXXXX XXXXX


9773
mC * mC * fU * fC * fU * fU * fU * fU * fU * fU * fC
CUCUUUUUUC
XXXXX XXXXX





XXXX





WV-
fG * fU * fC * fG * fC * fC * fC * fU * mA * mC * mC * mU * mC * mU *
GUCGCCCUACCUCUU
XXXXX XXXXX


9774
mU * mU * fU * fU * fU * fC * fU * fG * fU * fC * fU
UUUUCUGUCU
XXXXX XXXXX





XXXX





WV-
fC * fC * fU * fA * fC * fC * fU * fC * mU * mU * mU * mU * mU * mU *
CCUACCUCUUUUUUC
XXXXX XXXXX


9775
mC * mU * fG * fU * fC * fU * fG * fA * fC * fA * fG
UGUCUGACAG
XXXXX XXXXX





XXXX





WV-
fC * fU * fC * fU * fU * fU * fU * fU * mU * mC * mU * mG * mU * mC *
CUCUUUUUUCUGUCU
XXXXX XXXXX


9776
mU * mG * fA * fC * fA * fG * fC * fU * fG * fU * fU
GACAGCUGUU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fU * fC * fU * fG * fU * mC * mU * mG * mA * mC * mA *
UUUUCUGUCUGACAG
XXXXX XXXXX


9777
mG * mC * fU * fG * fU * fU * fU * fG * fC * fA * fG
CUGUUUGCAG
XXXXX XXXXX





XXXX





WV-
fU * fG * fU * fC * fU * fG * fA * fC * mA * mG * mC * mU * mG * mU *
UGUCUGACAGCUGUU
XXXXX XXXXX


9778
mU * mU * fG * fC * fA * fG * fA * fC * fC * fU * fC
UGCAGACCUC
XXXXX XXXXX





XXXX





WV-
fG * fA * fC * fA * fG * fC * fU * fG * mU * mU * mU * mG * mC * mA *
GACAGCUGUUUGCAG
XXXXX XXXXX


9779
mG * mA * fC * fC * fU * fC * fC * fU * fG * fC * fC
ACCUCCUGCC
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fU * fU * fU * fG * fC * mA * mG * mA * mC * mC * mU *
CUGUUUGCAGACCUC
XXXXX XXXXX


9780
mC * mC * fU * fG * fC * fC * fA * fC * fC * fG * fC
CUGCCACCGC
XXXXX XXXXX





XXXX





WV-
fU * fG * fC * fA * fG * fA * fC * fC * mU * mC * mC * mU * mG * mC *
UGCAGACCUCCUGCC
XXXXX XXXXX


9781
mC * mA * fC * fC * fG * fC * fA * fG * fA * fU * fU
ACCGCAGAUU
XXXXX XXXXX





XXXX





WV-
fA * fC * fC * fU * fC * fC * fU * fG * mC * mC * mA * mC * mC * mG *
ACCUCCUGCCACCGC
XXXXX XXXXX


9782
mC * mA * fG * fA * fU * fU * fC * fA * fG * fG * fC
AGAUUCAGGC
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fC * fC * fA * fC * fC * mG * mC * mA * mG * mA * mU *
CUGCCACCGCAGAUU
XXXXX XXXXX


9783
mU * mC * fA * fG * fG * fC * fU * fU * fC * fC * fC
CAGGCUUCCC
XXXXX XXXXX





XXXX





WV-
fA * fC * fC * fG * fC * fA * fG * fA * mU * mU * mC * mA * mG * mG *
ACCGCAGAUUCAGG
XXXXX XXXXX


9784
mC * mU * fU * fC * fC * fC * fA * fA * fU * fU * fU
UUCCCAAUUU
XXXXX XXXXX





XXXX





WV 
fA * fG * fA * fU * fU * fC * fA * fG * mG * mC * mU * mU * mC * mC *
AGAUUCAGGCUUCC
XXXXX XXXXX


9785
mC * mA * fA * fU * fU * fU * fU * fU * fC * fC * fU
AAUUUUUCCU
XXXXX XXXXX





XXXX





WV-
fC * fA * fG * fG * fC * fU * fU * fC * mC * mC * mA * mA * mU * mU *
CAGGCUUCCCAAUUU
XXXXX XXXXX


9786
mU * mU * fU * fC * fC * fU * fG * fU * fA * fG * fA
UUCCUGUAGA
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fC * fC * fA * fA * fU * mU * mU * mU * mU * mC * mC *
UUCCCAAUUUUUCCU
XXXXX XXXXX


9787
mU * mG * fU * fA * fG * fA * fA * fU * fA * fC * fU
GUAGAAUACU
XXXXX XXXXX





XXXX





WV-
fA * fA * fU * fU * fU * fU * fU * fC * mC * mU * mG * mU * mA * mG *
AAUUUUUCCUGUAGA
XXXXX XXXXX


9788
mA * mA * fU * fA * fC * fU * fG * fG * fC * fA * fU
AUACUGGCAU
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fC * fU * fG * fU * fA * mG * mA * mA * mU * mA * mC *
UUCCUGUAGAAUACU
XXXXX XXXXX


9789
mU * mG * fG * fC * fA * fU * fC * fU * fG * fU * fU
GGCAUCUGUU
XXXXX XXXXX





XXXX





WV-
fG * fU * fA * fG * fA * fA * fU * fA * mC * mU * mG * mG * mC * mA *
GUAGAAUACUGGCAU
XXXXX XXXXX


9790
mU * mC * fU * fG * fU * fU * fU * fU * fU * fG * fA
CUGUUUUUGA
XXXXX XXXXX





XXXX





WV-
fA * fU * fA * fC * fU * fG * fG * fC * mA * mU * mC * mU * mG * mU *
AUACUGGCAUCUGUU
XXXXX XXXXX


9791
mU * mU * fU * fU * fG * fA * fG * fG * fA * fU * fU
UUUGAGGAUU
XXXXX XXXXX





XXXX





WV-
fG * fG * fC * fA * fU * fC * fU * fG * mU * mU * mU * mU * mU * mG *
GGCAUCUGUUUUUGA
XXXXX XXXXX


9792
mA * mG * fG * fA * fU * fU * fG * fC * fU * fG * fA
GGAUUGCUGA
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fU * fU * fU * fU * fU * mG * mA * mG * mG * mA * mU *
CUGUUUUUGAGGAU
XXXXX XXXXX


9793
mU * mG * fC * fU * fG * fA * fA * fU * fU * fA * fU
UGCUGAAUUAU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fG * fA * fG * fG * fA * mU * mU * mG * mC * mU * mG *
UUUGAGGAUUGCUG
XXXXX XXXXX


9794
mA * mA * fU * fU * fA * fU * fU * fU * fC * fU * fU
AAUUAUUUCUU
XXXXX XXXXX





XXXX





WV-
fG * fG * fA * fU * fU * fG * fC * fU * mG * mA * mA * mU * mU * mA *
GGAUUGCUGAAUUA
XXXXX XXXXX


9795
mU * mU * fU * fC * fU * fU * fC * fC * fC * fC * fA
UUUCUUCCCCA
XXXXX XXXXX





XXXX





WV-
fG * fC * fU * fG * fA * fA * fU * fU * mA * mU * mU * mU * mC * mU *
GCUGAAUUAUUUCUU
XXXXX XXXXX


9796
mU * mC * fC * fC * fC * fA * fG * fU * fU * fG * fC
CCCCAGUUGC
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fA * fU * fU * fU * fC * mU * mU * mC * mC * mC * mC *
AUUAUUUCUUCCCCA
XXXXX XXXXX


9797
mA * mG * fU * fU * fG * fC * fA * fU * fU * fC * fA
GUUGCAUUCA
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fU * fU * fC * fC * fC * mC * mA * mG * mU * mU * mG *
UUCUUCCCCAGUUGC
XXXXX XXXXX


9798
mC * mA * fU * fU * fC * fA * fA * fU * fG * fU * fU
AUUCAAUGUU
XXXXX XXXXX





XXXX





WV-
fC * fC * fC * fC * fA * fG * fU * fU * mG * mC * mA * mU * mU * mC *
CCCCAGUUGCAUUCA
XXXXX XXXXX


9799
mA * mA * fU * fG * fU * fU * fC * fU * fG * fA * fC
AUGUUCUGAC
XXXXX XXXXX





XXXX





WV-
fG * fU * fU * fG * fC * fA * fU * fU * mC * mA * mA * mU * mG * mU *
GUUGCAUUCAAUGUU
XXXXX XXXXX


9800
mU * mC * fU * fG * fA * fC * fA * fA * fC * fA * fG
CUGACAACAG
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fC * fA * fA * fU * fG * mU * mU * mC * mU * mG * mA *
AUUCAAUGUUCUGAC
XXXXX XXXXX


9801
mC * mA * fA * fC * fA * fG * fU * fU * fU * fG * fC
AACAGUUUGC
XXXXX XXXXX





XXXX





WV-
fA * fU * fG * fU * fU * fC * fU * fG * mA * mC * mA * mA * mC * mA *
AUGUUCUGACAACAG
XXXXX XXXXX


9802
mG * mU * fU * fU * fG * fC * fC * fG * fC * fU * fG
UUUGCCGCUG
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fA * fC * fA * fA * fC * mA * mG * mU * mU * mU * mG *
CUGACAACAGUUUGC
XXXXX XXXXX


9803
mC * mC * fG * fC * fU * fG * fC * fC * fC * fA * fA
CGCUGCCCAA
XXXXX XXXXX





XXXX





WV-
fA * fA * fC * fA * fG * fU * fU * fU * mG * mC * mC * mG * mC * mU *
AACAGUUUGCCGCUG
XXXXX XXXXX


9804
mG * mC * fC * fC * fA * fA * fU * fG * fC * fC * fA
CCCAAUGCCA
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fG * fC * fC * fG * fC * mU * mG* mC * mC * mC * mA *
UUUGCCGCUGCCCAA
XXXXX XXXXX


9805
mA * mU * fG * fC * fC * fA * fU * fC * fC * fU * fG
UGCCAUCCUG
XXXXX XXXXX





XXXX





WV-
fC * fG * fC * fU * fG * fC * fC * fC * mA * mA * mU * mG * mC * mC *
CGCUGCCCAAUGCCA
XXXXX XXXXX


9806
mA * mU * fC * fC * fU * fG * fG * fA * fG * fU * fU
UCCUGGAGUU
XXXXX XXXXX





XXXX





WV-
fC * fC * fC * fA * fA * fU * fG * fC * mC * mA * mU * mC * mC * mU *
CCCAAUGCCAUCCU
XXXXX XXXXX


9807
mG * mG * fA * fG * fU * fU * fC * fC * fU * fG * fU
GAGUUCCUGU
XXXXX XXXXX





XXXX





WV-
fU * fG * fC * fC * fA * fU * fC * fC * mU * mG * mG * mA * mG * mU *
UGCCAUCCUGGAGUU
XXXXX XXXXX


9808
mU * mC * fC * fU * fG * fU * fA * fA * fA * fG * fA * fU
CCUGUAAGAU
XXXXX XXXXX





XXXX





WV-
fU * fC * fC * fU * fG * fG * fA * fG * mU * mU * mC * mC * mU * mG *
UCCUGGAGUUCCUGU
XXXXX XXXXX


9809
mU * mA * fA * fG * fA * fU * fA * fC * fC * fA * fA
AAGAUACCAA
XXXXX XXXXX





XXXX





WV-
fG * fA * fG * fU * fU * fC * fC * fU * mG * mU * mA * mA * mG * mA *
GAGUUCCUGUAAGAU
XXXXX XXXXX


9810
mU * mA * fC * fC * fA * fA * fA * fA * fA * fG * fG
ACCAAAAAGG
XXXXX XXXXX





XXXX





WV-
fC * fC * fU * fG * fU * fA * fA * fG * mA * mU * mA * mC * mC * mA *
CCUGUAAGAUACCAA
XXXXX XXXXX


9811
mA * mA * fA * fA * fG * fG * fC * fA * fA * fA * fA
AAAGGCAAAA
XXXXX XXXXX





XXXX





WV-
fA * fA * fG * fA * fU * fA * fC * fC * mA * mA * mA * mA * mA * mG *
AAGAUACCAAAAAGG
XXXXX XXXXX


9812
mG * mC * fA * fA * fA * fA * fC * fA * fA * fA * fA
CAAAACAAAA
XXXXX XXXXX





XXXX





WV-
fA * fC * fC * fA * fA * fA * fA * fA * mG * mG * mC * mA * mA * mA *
ACCAAAAAGGCAAAA
XXXXX XXXXX


9813
mA * mC * fA * fA * fA * fA * fA * fU * fG * fA * fA
CAAAAAUGAA
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fG * fG * fC * fA * fA * mA * mA * mC * mA * mA * mA *
AAAGGCAAAACAAAA
XXXXX XXXXX


9814
mA * mA * fU * fG * fA * fA * fG * fC * fC * fC * fC
AUGAAGCCCC
XXXXX XXXXX





XXXX





WV-
fC * fA * fA * fA * fA * fC * fA * fA * mA * mA * mA * mU * mG * mA *
CAAAACAAAAAUGAA
XXXXX XXXXX


9815
mA * mG * fC * fC * fC * fC * fA * fU * fG * fU * fC
GCCCCAUGUC
XXXXX XXXXX





XXXX





WV-
fC * fA * fA * fA * fA * fA * fU * fG * mA * mA * mG * mC * mC * mC *
CAAAAAUGAAGCCCC
XXXXX XXXXX


9816
mC * mA * fU * fG * fU * fC * fU * fU * fU * fU * fU
AUGUCUUUUU
XXXXX XXXXX





XXXX





WV-
fA * fU * fG * fA * fA * fG * fC * fC * mC * mC * mA * mU * mG * mU *
AUGAAGCCCCAUGUC
XXXXX XXXXX


9817
mC * mU * fU * fU * fU * fU * fA * fU * fU * fU * fG
UUUUUAUUUG
XXXXX XXXXX





XXXX





WV-
fG * fC * fC * fC * fC * fA * fU * fG * mU * mC * mU * mU * mU * mU *
GCCCCAUGUCUUUUU
XXXXX XXXXX


9818
mU * mA * fU * fU * fU * fG * fA * fG * fA * fA * fA
AUUUGAGAAA
XXXXX XXXXX





XXXX





WV-
fA * fU * fG * fU * fC * fU * fU * fU * mU * mU * mA * mU * mU * mU *
AUGUCUUUUUAUUU
XXXXX XXXXX


9819
mG * mA * fG * fA * fA * fA * fA * fG * fA * fU * fU
GA GAAAAGAUU
XXXXX XXXXX





XXXX





WV-
fU * fU * fU * fU * fU * fA * fU * fU * mU * mG * mA * mG * mA * mA *
UUUUUAUUUGAGAA
XXXXX XXXXX


9820
mA * mA * fG * fA * fU * fU * fA * fA * fA * fC * fA
AA GAUUAAACA
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fU * fG * fA * fG * fA * mA * mA * mA * mG * mA * mU *
AUUUGAGAAAAGAU
XXXXX XXXXX


9821
mU * mA * fA * fA * fC * fA * fG * fU * fG * fU * fG
UAA ACAGUGUG
XXXXX XXXXX





XXXX





WV-
fA * fG * fA * fA * fA * fA * fG * fA * mU * mU * mA * mA * mA * mC *
AGAAAAGAUUAAAC
XXXXX XXXXX


9822
mA * mG * fU * fG * fU * fG * fC * fU * fA * fC * fC
AGU GUGCUACC
XXXXX XXXXX





XXXX





WV-
fA * fG * fA * fU * fU * fA * fA * fA * mC * mA * mG * mU * mG * mU *
AGAUUAAACAGUGU
XXXXX XXXXX


9823
mG * mC * fU * fA * fC * fC * fA * fC * fA * fU * fG
GCU ACCACAUG
XXXXX XXXXX





XXXX





WV-
fA * fA * fA * fC * fA * fG * fU * fG * mU * mG * mC * mU * mA * mC *
AAACAGUGUGCUACC
XXXXX XXXXX


9824
mC * mA * fC * fA * fU * fG * fC * fA * fG * fU * fU
ACA UGCAGUU
XXXXX XXXXX





XXXX





WV-
fG * fU * fG * fU * fG * fC * fU * fA * mC * mC * mA * mC * mA * mU *
GUGUGCUACCACAUG
XXXXX XXXXX


9825
mG * mC * fA * fG * fU * fU * fG * fU * fA * fU * fU
CAG UUGUACU
XXXXX XXXXX





XXXX





WV-
fG * fC * fC * fC * fA * fA * fU * fG * fC * fC * fA * fU * fC * fC * fU * fG *
GCCCAAUGCCAUCCU
XXXXX XXXXX


9826
fG
GG
XXXXXX





WV-
fC * fC * fA * fC * fA * fG * mG * mU * mU * mG * mU * mG * mU *
CCACAGGUUGUGUCA
XXXXX XXXXX


9827
mC * mA * mC * mC * mA * mG * mA * mG * mU * mA * mA * fC * fA
CC
XXXXX XXXXX



* fG * fU * fC * fU
AGAGUAACAGUCU
XXXXX XXXX





WV-
fG * fU * fG * fU * fC * fA * mC * mC * mA * mG * mA * mG * mU *
GUGUCACCAGAGUAA
XXXXX XXXXX


9828
mA * mA * mC * mA * mG * mU * mC * mU * mG * mA * mG * fU *
CA
XXXXX XXXXX



fA * fG * fG * fA * fG
GUCUGAGUAGGAG
XXXXX XXXX





WV-
fA * fG * fG * fU * fU * fG * mU * mG * mU * mC * mA * mC * mC *
AGGUUGUGUCACCAG
XXXXX XXXXX


9829
mA * mG * mA * mG * mU * mA * mA * mC * mA * mG * mU * fC *
AG
XXXXX XXXXX



fU * fG * fA * fG * fU
UAACAGUCUGAGU
XXXXX XXXX





WV-
fG * fG * fC * fA * fG * fU * mU * mU * mC * mC * mU * mU * mA *
GGCAGUUUCCUUAGU
XXXXX XXXXX


9830
mG * mU * mA * mA * mC * mC * mA * mC * mA * mG * mG * fU * fU
AACCACAGGUUGUGU
XXXXX XXXXX



* fG * fG * fG * fU

XXXXX XXXX





WV-
fA * fG * fA * fU * fG * fG * mC * mA * mG * mU * mU * mU * mC *
AGAUGGCAGUUUCCU
XXXXX XXXXX


9831
mC * mU * mU * mA * mG * mU * mA * mA * mC * mC * mA * fC * fA
U
XXXXX XXXXX



* fG * fG * fU * fU
AGUAACCACAGGUU
XXXXX XXXX





WV-
fA * fU * fG * fG * fC * fA * mU * mU * mU * mC * mU * mA * mG *
AUGGCAUUUCUAGUU
XXXXX XXXXX


9832
mU * mU * mU * mG * mG * mA * mG * mA * mU * mG * mG * fC *
UG
XXXXX XXXXX



fA * fG * fU * fU * fU
GAGAUGGCAGUUU
XXXXX XXXX





WV-
fU * fU * fA * fU * fA * fA * mC * mU * mU * mG * mA * mU * mC *
UUAUAACUUGAUCAA
XXXXX XXXXX


9833
mA * mA * mG * mC * mA * mG * mA * mG * mA * mA * mA * fG *
GCA
XXXXX XXXXX



fC * fC * fA * fG * fU
GAGAAAGCCAGU
XXXXX XXXX





WV-
fA * fU * fA * fC * fC * fU * fU * mC * mU * mG * mC * mU * mU * mG
AUACCUUCUGCUUGA
XXXXX XXXXX


9834
* mA * mU * mG * mA * mU * mC * mA * mU * mC * mU * fC * fG *
UGA
XXXXX XXXXX



fU * fU * fG * fA
UCAUCUCGUUGA
XXXXX XXXX





WV-
fU * fG * fU * fC * fA * fC * mC * mA * mG * mA * mG * mU * mA *
UGUCACCAGAGUAAC
XXXXX XXXXX


9835
mA * mC * mA * mG * mU * mC * mU * mG * mA * mG * fU * fA * fG
AGU CUGAGUAGGAG
XXXXX XXXXX



* fG * fA * fG

XXXXXXXX





WV-
fG * fU * fC * fA * fC * fC * mA * mG * mA * mG * mU * mA * mA *
GUCACCAGAGUAACA
XXXXX XXXXX


9836
mC * mA * mG * mU * mC * mU * mG * mA * mG * fU * fA * fG * fG *
GUC UGAGUAGGAG
XXXXX XXXXX



fA * fG

XXXXXXX





WV-
fU * fC * fA * fC * fC * fA * mG * mA * mG * mU * mA * mA * mC *
UCACCAGAGUAACAG
XXXXX XXXXX


9837
mA * mG * mU * mC * mU * mG * mA * mG * fU * fA * fG * fG * fA *
UCU GAGUAGGAG
XXXXX XXXXX



fG

XXXXXX





WV-
fC * fA * fC * fC * fA * fG * fA * mG * mU * mA * mA * mC * mA * mG
CACCAGAGUAACAGU
XXXXX XXXXX


9838
* mU * mC * mU * mG * mA * mG * fU * fA * fG * fG * fA * fG
CUG AGUAGGAG
XXXXX XXXXX





XXXXX





WV-
fA * fC * fC * fA * fG * fA * mG * mU * mA * mA * mC * mA * mG *
ACCAGAGUAACAGUC
XXXXX XXXXX


9839
mU * mC * mU * mG * mA * mG * fU * fA * fG * fG * fA * fG
UGA GUAGGAG
XXXXX XXXXX





XXXX





WV-
fC * fC * fA * fC * fA * fG * fG * fU * fU * fG * fU * mG * mU * mC * mA
CCACAGGUUGUGUCA
XXXXX XXXXX


9840
* mC * mC * mA * mG * fA * fG * fU * fA * fA * fC * fA * fG * fU * fC *
CCAGAGUAACAGUCU
XXXXX XXXXX



fU

XXXXX XXXX





WV-
fG * fU * fG * fU * fC * fA * fC * fC * fA * fG * fA * mG * mU * mA * mA
GUGUCACCAGAGUAA
XXXXX XXXXX


984
* mC * mA * mG * mU * fC * fU * fG * fA * fG * fU * fA * fG * fG * fA *
C
XXXXX XXXXX



fG
AGUCUGAGUAGGAG
XXXXX XXXX





WV-
fA * fG * fG * fU * fU * fG * fU * fG * fU * fC * fA * mC * mC * mA * mG
AGGUUGUGUCACCAG
XXXXX XXXXX


9842
* mA * mG * mU * mA * fA * fC * fA * fG * fU * fC * fU * fG * fA * fG *
A
XXXXX XXXXX



fu
GUAACAGUCUGAGU
XXXXX XXXX





WV-
fG * fG * fC * fA * fG * fU * fU * fU * fC * fC * fU * mU * mA * mG * mU
GGCAGUUUCCUUAGU
XXXXX XXXXX


9843
* mA * mA * mC * mC * fA * fC * fA * fG * fG * fU * fU * fG * fU * fG *
A
XXXXX XXXXX



fU
ACCACAGGUUGUGU
XXXXX XXXX





WV-
fA * fG * fA * fU * fG * fG * fC * fA * fG * fU * fU * mU * mC * mC * mU
AGAUGGCAGUUUCCU
XXXXX XXXXX


9844
* mU * mA * mG * mU * fA * fA * fC * fC * fA * fC * fA * fG * fG * fU *
UA
XXXXX XXXXX



fU
GUAACCACAGGUU
XXXXX XXXX





WV-
fA * fU * fG * fG * fC * fA * fU * fU * fU * fC * fU * mA * mG * mU * mU
AUGGCAUUUCUAG
XXXXX XXXXX


9845
* mU * mG * mG * mA * fG * fA * fU * fG * fG * fC * fA * fG * fU * fU *
UUUGGAGAUGGCAG
XXXXX XXXXX



fu
UUU
XXXXX XXXX





WV-
fU * fU * fA * fU * fA * fA * fC * fU * fU * fG * fA * mU * mC * mA * mA
UUAUAACUUGAUCA
XXXXX XXXXX


9846
* mG * mC * mA * mG * fA * fG * fA * fA * fA * fG * fC * fC * fA * fG *
AGCAGAGAAAGCCAG
XXXXX XXXXX



fU
U
XXXXX XXXX





WV-
fA * fU * fA * fC * fC * fU * fU * fC * fU * fG * fC * mU * mU * mG * mA
AUACCUUCUGCUUGA
XXXXX XXXXX


9847
* mU * mG * mA * mU * fC * fA * fU * fC * fU * fC * fG * fU * fU * fG *
UGAUCAUCUCGUUGA
XXXXX XXXXX



fA

XXXXX XXXX





WV-
fU * fG * fU * fC * fA * fC * fC * fA * fG * fA * mG * mU * mA * mA *
UGUCACCAGAGUAAC
XXXXX XXXXX


9848
mC * mA * mG * mU * fC * fU * fG * fA * fG * fU * fA * fG * fG * fA * fG
A GUCUGAGUAGGAG
XXXXX XXXXX





XXXXXXXX





WV-
fG * fU * fC * fA * fC * fC * fA * fG * fA * mG * mU * mA * mA * mC *
GUCACCAGAGUAACA
XXXXX XXXXX


9849
mA * mG * mU * fC * fU * fG * fA * fG * fU * fA * fG * fG * fA * fG
G UCUGAGUAGGAG
XXXXX XXXXX





XXXXXXX





WV-
fU * fC * fA * fC * fC * fA * fG * fA * mG * mU * mA * mA * mC * mA *
UCACCAGAGUAACAG
XXXXX XXXXX


9850
mG * mU * fC * fU * fG * fA * fG * fU * fA * fG * fG * fA * fG
U CUGAGUAGGAG
XXXXX XXXXX





XXXXXX





WV-
fC * fA * fC * fC * fA * fG * fA * mG * mU * mA * mA * mC * mA * mG
CACCAGAGUAACAGU
XXXXX XXXXX


9851
* mU * fC * fU * fG * fA * fG * fU * fA * fG * fG * fA * fG
CU GAGUAGGAG
XXXXX XXXXX





XXXXX





WV-
fA * fC * fC * fA * fG * fA * mG * mU * mA * mA * mC * mA * mG *
ACCAGAGUAACAGUC
XXXXX XXXXX


9852
mU * fC * fU * fG * fA * fG * fU * fA * fG * fG * fA * fG
U GAGUAGGAG
XXXXX XXXXX





XXXX





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


9858
mGfC * SfA * SfU * SfU * SfU * SfC * SfUL004
UUUCU
SSSSSO





WV-
fU * SfU * SfU * SfU * SfG * S mGfC * S mA mG mC * SfU * SfU * SfU *
UUUUGGCAGCUUUCC
SSSSSOSOOSSSSS


9875
SfC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * SfC * SfA * S mG mC * SfU * S mU
UUUUGGCAGCUUUCC
SSSSSSSSOSSOOS


9876
mUfC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S mCfA * SfG * S mC * SfU * S mU
UUUUGGCAGCUUUCC
SSSSSSOSSSSOOS


9877
mUfC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S mCfA * S mG mC * SfU * SfU * S
UUUUGGCAGCUUUCC
SSSSSSOSOSSSOS


9878
mUfC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fU * SfU * SfU * SfU * SfG * SfG * S mCfA * S mG mC * SfU * S mUfU *
UUUUGGCAGCUUUCC
SSSSSSOSOSSOSS


9879
SfC * SfC * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOSS


9897
mAfG * SfG * SfG * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mCfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSSSOSS


9898
mA mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SfC * SfU * S mG * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSSSSSOOS


9899
S mA mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * S mC * SfU * S mG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSSSSSOOS


9900
* S mA mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * S mGfU * SfU * SfC * SfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSOSSSSSSOO


9901
mA mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * S mGfU * SfU * S mC * SfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSOSSSSSSOO


9902
mA mGfU * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * SfC * SfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSOSSSSSOO


9903
mA mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mC * SfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSOSSSSSOO


9904
mA mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG mU * SfU * S mC * SfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSOSSSSSSSSS


9905
mA * SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mUfU * S mC * SfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSOSSSSSSSS


9906
mA * SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU mC * SfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSOSSSSSSS


9907
mA * SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mCfU * S mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSOSSSSSS


9908
mA * SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mC * SfU mG * SfA * S
CUCCGGUUCUGAAGG
SSSSSSSSSOSSSSS


9909
mA * SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mC * SfU * S mGfA * S
CUCCGGUUCUGAAGG
SSSSSSSSSSOSSSS


9910
mA * SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mC * SfU * S mG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSSSSOSSS


9911
mA * SfG * SfG * SfU * SfG * SfU * SfG * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mC * SfG * S mG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSSSSSOSS


9912
* S mAfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfG * SfC * SfC * SfG * SfG * S mU * SfG * S mC * SfU * S mG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSSSSSSOS


9913
* S mA * SfGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * S mU * SfU * S mC * SfU * S mG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSSSSSSSO


9914
* S mA * SfG * SfGfU * SfG * SfU * SfU * SfC
UGUUC
SSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * S mAfA * S mG mA * SfU * S mG
UCAAGGAAGAUGGCA
SSSSSSOSOSSOOS


10255
mGfC * SfA * SfU * SfU * SfU * SfC * S mU
UUUCU
SSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * S mAfG * S mA mU * SfA * S mG
UCACUCAGAUAGUUG
SSSSSSOSOSSOOS


10256
mUfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SfA * SfG * S mA mU * SfA * S mG
UCACUCAGAUAGUUG
SSSSSSSSOSSOOS


10257
mUfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * S mAfG * SfA * S mU * SfA * S mG
UCACUCAGAUAGUUG
SSSSSSOSSSSOOS


10258
mUfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * S mAfG * S mA mU * SfA * SfG * S
UCACUCAGAUAGUUG
SSSSSSOSOSSSOS


10259
mUfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * S mAfG * S mA mU * SfA * S mGfU *
UCACUCAGAUAGUUG
SSSSSSOSOSSOSS


10260
SfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSSSS





WV-
fG * SfC * SfA * SfA * SfA * SfG * S mAfA * S mG mA * SfU * S mG
GCAAAGAAGAUGGCA
SSSSSSOSOSSOOS


10261
mGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSSSS





WV-
fG * fC * fA * fA * fA * fG * mAfA * mG mA * fU * mG mGfC * fA * fU
GCAAAGAAGAUGGCA
XXXXXXOXOXXO


10262
* fU * fU * fC * fU
UUUCU
OXXXXXX





WV-
fU * fU * fC * fU * fU * fG * fU * fA * fC * mU * mU * mC * mA * mU *
UUCUUGUACUUCAUC
XXXXX XXXXX


10439
mC * mC * mC * mA * mC * mU * mG * fA * fU * fU * fC * fU * fG * fA *
CCACU
XXXXX XXXXX



fA * fU
GAUUCUGAAU
XXXXX XXXX





WV-
fG * fU * fG * fU * fU * fC * fU * fU * fG * mU * mA * mC * mU * mU *
GUGUUCUUGUACUUC
XXXXX XXXXX


10440
mC * mA * mU * mC * mC * mC * mA * fC * fU * fG * fA * fU * fU * fC *
AUCCC
XXXXX XXXXX



fU * fG
ACUGAUUCUG
XXXXX XXXX





WV-
fA * fA * fU * fG * fU * fG * fU * fU * fC * mU * mU * mG * mU * mA *
AAGGUGUUCUUGUAC
XXXXX XXXXX


10441
mC * mU * mU * mC * mA * mU * mC * fC * fC * fA * fC * fU * fG * fA *
UUCAU
XXXXX XXXXX



fU * fU
CCCACUGAUU
XXXXX XXXX





WV-
fC * fU * fG * fA * fA * fG * fG * fU * fG * mU * mU * mC * mU * mU *
CUGAAGGUGUUCUUG
XXXXX XXXXX


10442
mG * mU * mA * mC * mU * mU * mC * fA * fU * fC * fC * fC * fA * fC *
UACUU
XXXXX XXXXX



fU * fG
CAUCCCACUG
XXXXX XXXX





WV-
fG * fU * fU * fC * fU * fG * fA * fA * fG * mG * mU * mG * mU * mU *
GUUCUGAAGGUGUUC
XXXXX XXXXX


10443
mC * mU * mU * mG * mU * mA * mC * fU * fU * fC * fA * fU * fC * fC *
UUGUA
XXXXX XXXXX



fC * fA
CUUCAUCCCA
XXXXX XXXX





WV-
fC * fC * fG * fG * fU * fU * fC * fU * fG * mA * mA * mG * mG * mU *
CCGGUUCUGAAGGUG
XXXXX XXXXX


10444
mG * mU * mU * mC * mU * mU * mG * fU * fA * fC * fU * fU * fC * fA *
UUCUU
XXXXX XXXXX



fU * fC
GUACUUCAUC
XXXXX XXXX





WV-
fC * fC * fU * fC * fC * fG * fG * fU * fU * mC * mU * mG * mA * mA *
CCUCCGGUUCUGAAG
XXXXX XXXXX


10445
mG * mG * mU * mG * mU * mU * mC * fU * fU * fG * fU * fA * fC * fU *
GUGUU
XXXXX XXXXX



fU * fC
CUUGUACUUC
XXXXX XXXX





WV-
fU * fU * fG * fC * fC * fU * fC * fC * fG * mG * mU * mU * mC * mU *
UUGCCUCCGGUUCUG
XXXXX XXXXX


10446
mG * mA * mA * mG * mG * mU * mG * fU * fU * fC * fU * fU * fG * fU *
AAGGU
XXXXX XXXXX



fA * fC
GUUCUUGUAC
XXXXX XXXX





WV-
fC * fU * fG * fU * fU * fG * fC * fC * fU * mC * mC * mG * mG * mU *
CUGUUGCCUCCGGUU
XXXXX XXXXX


10447
mU * mC * mU * mG * mA * mA * mG * fG * fU * fG * fU * fU * fC * fU *
CUGAA
XXXXX XXXXX



fU * fG
GGUGUUCUUG
XXXXX XXXX





WV-
fC * fA * fA * fC * fU * fG * fU * fU * fG * mC * mC * mU * mC * mC *
CAACUGUUGCCUCCG
XXXXX XXXXX


10448
mG * mG * mU * mU * mC * mU * mG * fA * fA * fG * fG * fU * fG * fU *
GUUCU
XXXXX XXXXX



fU * fC
GAAGGUGUUC
XXXXX XXXX





WV-
fA * fU * fU * fC * fA * fA * fC * fU * fG * mU * mU * mG * mC * mC *
AUUCAACUGUUGCCU
XXXXX XXXXX


10449
mU * mC * mC * mG * mG * mU * mU * fC * fU * fG * fA * fA * fG * fG *
CCGGU
XXXXX XXXXX



fU * fG
UCUGAAGGUG
XXXXX XXXX





WV-
fU * fU * fC * fA * fU * fU * fC * fA * fA * mC * mU * mG * mU * mU *
UUCAUUCAACUGUUG
XXXXX XXXXX


10450
mG * mC * mC * mU * mC * mC * mG * fG * fU * fU * fC * fU * fG * fA *
CCUCC
XXXXX XXXXX



fA * fG
GGUUCUGAAG
XXXXX XXXX





WV-
fC * fA * fU * fU * fU * fC * fA * fU * fU * mC * mA * mA * mC * mU *
CAUUUCAUUCAACUG
XXXXX XXXXX


10451
mG * mU * mU * mG * mC * mC * mU * fC * fC * fG * fG * fU * fU * fC *
UUGCC
XXXXX XXXXX



fU *fG
UCCGGUUCUG
XXXXX XXXX





WV-
fU * fA * fA * fC * fA * fU * fU * fU * fC * mA * mU * mU * mC * mA *
UAACAUUUCAUUCAA
XXXXX XXXXX


10452
mA * mC * mU * mG * mU * mU * mG * fC * fC * fU * fC * fC * fG * fG *
CUGUU
XXXXX XXXXX



fU * fU
GCCUCCGGUU
XXXXX XXXX





WV-
fC * fU * fU * fU * fA * fA * fC * fA * fU * mU * mU * mC * mA * mU *
CUUUAACAUUUCAUU
XXXXX XXXXX


10453
mU * mC * mA * mA * mC * mU * mG * fU * fU * fG * fC * fC * fU * fC *
CAACU
XXXXX XXXXX



fC * fG
GUUGCCUCCG
XXXXX XXXX





WV-
fU * fA * fC * fU * fU * fC * fA * mU * mC * mC * mC * mA * mC * mU *
UACUUCAUCCCACUG
XXXXX XXXXX


10454
mG * mA * mU * fU * fC * fU * fG * fA * fA * fU * fU
AUUCU GAAUU
XXXXX XXXXX





XXXX





WV-
fU * fU * fG * fU * fA * fC * fU * mU * mC * mA * mU * mC * mC * mC *
UUGUACUUCAUCCCA
XXXXX XXXXX


10455
mA * mC * mU * fG * fA * fU * fU * fC * fU * fG * fA
CUGAU UCUGA
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fU * fU * fG * fU * mA * mC * mU * mU * mC * mA * mU *
UUCUUGUACUUCAUC
XXXXX XXXXX


10456
mC * mC * mC * fA * fC * fU * fG * fA * fU * fU * fC
CCACU GAUUC
XXXXX XXXXX





XXXX





WV-
fG * fU * fG * fU * fU * fC * fU * mU * mG * mU * mA * mC * mU * mU *
GUGUUCUUGUACUUC
XXXXX XXXXX


10457
mC * mA * mU * fC * fC * fC * fA * fC * fU * fG * fA
AUCCC ACUGA
XXXXX XXXXX





XXXX





WV-
fA * fA * fG * fG * fU * fG * fU * mU * mC * mU * mU * mG * mU * mA *
AAGGUGUUCUUGUAC
XXXXX XXXXX


10458
mC * mU * mU * fC * fA * fU * fC * fC * fC * fA * fC
UUCAU CCCAC
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fA * fA * fG * fG * mU * mG * mU * mU * mC * mU * mU *
CUGAAGGUGUUCUUG
XXXXX XXXXX


10459
mG * mU * mA * fC * fU * fU * fC * fA * fU * fC * fC
UACUU CAUCC
XXXXX XXXXX





XXXX





WV-
fG * fU * fU * fC * fU * fG * fA * mA * mG * mG * mU * mG * mU * mU *
GUUCUGAAGGUGUUC
XXXXX XXXXX


10460
mC * mU * mU * fG * fU * fA * fC * fU * fU * fC * fA
UUGUA CUUCA
XXXXX XXXXX





XXXX





WV-
fC * fC * fG * fG * fU * fU * fC * mU * mG * mA * mA * mG * mG * mU *
CCGGUUCUGAAGGUG
XXXXX XXXXX


10461
mG * mU * mU * fC * fU * fU * fG * fU * fA * fC * fU
UUCUU GUACU
XXXXX XXXXX





XXXX





WV-
fC * fC * fU * fC * fC * fG * fG * mU * mU * mC * mU * mG * mA * mA *
CCUCCGGUUCUGAAG
XXXXX XXXXX


10462
mG * mG * mU * fG * fU * fU * fC * fU * fU * fG * fU
GUGUU CUUGU
XXXXX XXXXX





XXXX





WV-
fU * fU * fG * fC * fC * fU * fC * mC * mG * mG * mU * mU * mC * mU *
UUGCCUCCGGUUCUG
XXXXX XXXXX


10463
mG * mA * mA * fG * fG * fU * fG * fU * fU * fC * fU
AAGGU GUUCU
XXXXX XXXXX





XXXX





WV-
fC * fU * fG * fU * fU * fG * fC * mC * mU * mC * mC * mG * mG * mU *
CUGUUGCCUCCGGUU
XXXXX XXXXX


10464
mU * mC * mU * fG * fA * fA * fG * fG * fU * fG * fU
CUGAA GGUGU
XXXXX XXXXX





XXXX





WV-
fC * fA * fA * fC * fU * fG * fU * mU * mG * mC * mC * mU * mC * mC *
CAACUGUUGCCUCCG
XXXXX XXXXX


10465
mG * mG * mU * fU * fC * fU * fG * fA * fA * fG * fG
GUUCU GAAGG
XXXXX XXXXX





XXXX





WV-
fA * fU * fU * fC * fA * fA * fC * mU * mG * mU * mU * mG * mC * mC *
AUUCAACUGUUGCCU
XXXXX XXXXX


10466
mU * mC * mC * fG * fG * fU * fU * fC * fU * fG * fA
CCGGU UCUGA
XXXXX XXXXX





XXXX





WV-
fU * fU * fC * fA * fU * fU * fC * mA * mA * mC * mU * mG * mU * mU *
UUCAUUCAACUGUUG
XXXXX XXXXX


10467
mG * mC * mC * fU * fC * fC * fG * fG * fU * fU * fC
CCUCC GGUUC
XXXXX XXXXX





XXXX





WV-
fC * fA * fU * fU * fU * fC * fA * mU * mU * mC * mA * mA * mC * mU *
CAUUUCAUUCAACUG
XXXXX XXXXX


10468
mG * mU * mU * fG * fC * fC * fU * fC * fC * fG * fG
UUGCC UCCGG
XXXXX XXXXX





XXXX





WV-
fU * fA * fA * fC * fA * fU * fU * mU * mC * mA * mU * mU * mC * mA *
UAACAUUUCAUUCAA
XXXXX XXXXX


10469
mA * mC * mU * fG * fU * fU * fG * fC * fC * fU * fC
CUGUU GCCUC
XXXXX XXXXX





XXXX





WV-
fC * fU * fU * fU * fA * fA * fC * mA * mU * mU * mU * mC * mA * mU *
CUUUAACAUUUCAUU
XXXXX XXXXX


10470
mU * mC * mA * fA * fC * fU * fG * fU * fU * fG * fC
CAACU GUUGC
XXXXX XXXXX





XXXX





WV-
fA * fU * fC * fC * fA * fC * fC * fU * fG * mC * mC * mU * mC * mG *
AUCCACCUGCCUCGG
XXXXX XXXXX


10487
mG * mC * mC * mU * mC * mC * mC * fA * fA * fA * fG * fU * fG * fC *
CCUCC
XXXXX XXXXX



fU * fG
CAAAGUGCUG
XXXXX XXXX





WV-
fC * fC * fU * fC * fA * fG * fG * fU * fG * mA * mU * mC * mC * mA *
CCUCAGGUGAUCCAC
XXXXX XXXXX


10488
mC * mC * mU * mG * mC * mC * mU * fC * fG * fG * fC * fC * fU * fC *
CUGCC UCGGCCUCCC
XXXXX XXXXX



fC * fC

XXXXX XXXX





WV-
fA * fA * fA * fC * fU * fC * fC * fU * fG * mA * mC * mC * mU * mC *
AAACUCCUGACCUCA
XXXXX XXXXX


10489
mA * mG * mG * mU * mG * mA * mU * fC * fC * fA * fC * fC * fU * fG *
GGUGA
XXXXX XXXXX



fC * fC
UCCACCUGCC
XXXXX XXXX





WV-
fA * fU * fU * fU * fU * fU * fA * fA * fU * mA * mG * mA * mG * mA *
AUUUUUAAUAGAGA
XXXXX XXXXX


10490
mC * mA * mG * mG * mG * mU * mU * fU * fC * fA * fC * fC * fA * fU *
CAGGGU
XXXXX XXXXX



fG * fU
UUCACCAUGU
XXXXX XXXX





WV-
fC * fU * fA * fC * fA * fG * fG * fC * fA * mC * mG * mU * mG * mC *
CUACAGGCACGUGCC
XXXXX XXXXX


10491
mC * mA * mU * mC * mA * mU * mG * fC * fC * fC * fA * fG * fC * fU *
AUCAU
XXXXX XXXXX



fA * fA
GCCCAGCUAA
XXXXX XXXX





WV-
fC * fC * fU * fC * fC * fU * fG * fU * fC * mU * mC * mA * mG * mC *
CCUCCUGUCUCAGCC
XXXXX XXXXX


10492
mC * mC * mC * mC * mC * mG * mA * fG * fU * fA * fG * fC * fA * fG *
UCCCG
XXXXX XXXXX



fG * fA
AGUAGCAGGA
XXXXX XXXX





WV-
fU * fC * fC * fG * fC * fU * fC * fA * fC * mU * mG * mC * mA * mA *
UCCGCUCACUGCAAC
XXXXX XXXXX


10493
mC * mC * mU * mC * mC * mG * mC * fC * fU * fC * fC * fC * fG * fG *
CUCCG CCUCCCGGGU
XXXXX XXXXX



fG * fU

XXXXX XXXX





WV-
fU * fC * fU * fU * fG * fU * fA * fA * fC * mC * mC * mA * mG * mG *
UCUUGUAACCCAGGC
XXXXX XXXXX


10494
mC * mU * mG * mG * mA * mG * mU * fG * fC * fA * fA * fU * fG * fG *
UGGAG
XXXXX XXXXX



fU * fG
UGCAAUGGUG
XXXXX XXXX





WV-
fA * fG * fU * fG * fA * fA * fC * fC * fC * mA * mA * mG * mG * mG *
AGUGAACCCAAGGGA
XXXXX XXXXX


10495
mA * mA * mG * mA * mU * mA * mA * fG * fU * fG * fU * fA * fU * fU *
AGAUA
XXXXX XXXXX



fA * fG
AGUGUAUUAG
XXXXX XXXX





WV-
fU * fG * fA * fU * fU * fA * fA * fU * fU * mU * mA * mC * mC * mC *
UGAUUAAUUUACCCC
XXXXX XXXXX


10496
mC * mC * mC * mA * mA * mA * mU * fA * fA * fA * fU * fC * fA * fC *
CCAAA
XXXXX XXXXX



fU * fU
UAAAUCACUU
XXXXX XXXX





WV-
fA * fC * fU * fG * fG * fC * fU * fG * fC * mC * mU * mU * mG * mC *
ACUGGCUGCCUUGCC
XXXXX XXXXX


10497
mC * mU * mC * mA * mC * mC * mU * fG * fG * fC * fU * fC * fA * fU *
UCACC
XXXXX XXXXX



fU * fU
UGUCUCAUUU
XXXXX XXXX





WV-
fG * fG * fG * fA * fU * fA * fA * fA * fG * mC * mU * mC * mC * mA *
GGGAUAAAGCUCCAG
XXXXX XXXXX


10498
mG * mU * mG * mA * mC * mC * mC * fA * fC * fA * fA * fC * fA *fG *
UGACC
XXXXX XXXXX



fC * fA
CACAACAGCA
XXXXX XXXX





WV-
fU * fU * fC * fC * fA * fG * fA * fG * fU * mU * mU * mC * mC * mC *
UUCCAGAGUUUCCCA
XXXXX XXXXX


10499
mA * mA * mG * mG * mG * mA * mU * fA * fA * fA * fG * fC * fU * fC *
AGGGA
XXXXX XXXXX



fC * fA
UAAAGCUCCA
XXXXX XXXX





WV-
fG * fG * fG * fG * fA * fA * fA * fU * fA * mA * mC * mU * mC * mU *
GGGGAAAUAACUCUG
XXXXX XXXXX


10500
mG * mA * mG * mG * mC * mA * mU * fG * fU * fA * fU * fU * fU * fU *
AGGCA
XXXXX XXXXX



fA * fC
UGUAUUUUAC
XXXXX XXXX





WV-
fC * fU * fU * fG * fA * fU * fG * fC * fU * mA * mG * mG * mG * mG *
CUUGAUGCUAGGGGA
XXXXX XXXXX


10501
mA * mA * mA * mU * mA * mA * mC * fU * fC * fU * fG * fA * fG * fG *
AAUAA
XXXXX XXXXX



fC * fA
CUCUGAGGCA
XXXXX XXXX





WV-
fA * fC * fU * fA * fG * fC * fU * fC * fC * mC * mU * mU * mG * mA *
ACUAGCUCCCUUGAU
XXXXX XXXXX


10502
mU * mG * mC * mU * mA * mG * mG * fG * fG * fA * fA * fA * fU * fA *
GCUAG
XXXXX XXXXX



fA * fC
GGGAAAUAAC
XXXXX XXXX





WV-
fC * fA * fG * fA * fG * fG * fC * fA * fG * mC * mC * mU * mG * mU *
CAGAGGCAGCCUGUA
XXXXX XXXXX


10503
mA * mU * mA * mU * mA * mA * mU * fG * fA * fC * fU * fA * fA * fG *
UAUAA
XXXXX XXXXX



fU * fG
UGACUAAUUG
XXXXX XXXX





WV-
fC * fU * fC * fC * fA * fG * fC * fU * fC * mC * mC * mA * mG * mA *
CUCCAGCUCCCAGAG
XXXXX XXXXX


10504
mG * mG * mC * mA * mG * mC * mC * fU * fG * fU * fA * fU * fA * fU *
GCAGC
XXXXX XXXXX



fA * fA
CUGUAUAUAA
XXXXX XXXX





WV-
fA * fU * fG * fC * fC * fU * fC * fC * fC * mC * mU * mC * mC * mA *
AUGCCUCCCCUCCAG
XXXXX XXXXX


10505
mG * mC * mU * mC * mC * mC * mA * fG * fA * fG * fG * fC * fA * fG *
CUCCC AGAGGCAGCC
XXXXX XXXXX



fC * fC

XXXXX XXXX





WV-
fC * fA * fG * fG * fC * fA * fA * fC * fU * mG * mA * mU * mG * mC *
CAGGCAACUGAUGCC
XXXXX XXXXX


10506
mC * mU * mC * mC * mC * mC * mU * fC * fC * fA * fG * fC * fU * fC *
UCCCC UCCAGCUCCC
XXXXX XXXXX



fC * fC

XXXXX XXXX





WV-
fA * fU * fG * fU * fG * fA * fC * fA * fG * mG * mC * mU * mA * mG *
AUGUGACAGGCUAGA
XXXXX XXXXX


10507
mA * mC * mA * mU * mA * mC * mC * fA * fG * fG * fC * fA * fA * fC *
CAUAC
XXXXX XXXXX



fU * fG
CAGGCAACUG
XXXXX XXXX





WV-
fA * fG * fU * fG * fC * fC * fA * fG * fC * mA * mU * mU * mU * mC *
AGUGCCAGCAUUUCA
XXXXX XXXXX


10508
mA * mU * mU * mG * mC * mC * mU * fG * fA * fA * fG * fG * fC * fU *
UUGCC
XXXXX XXXXX



fU * fU
UGAAGGCUUU
XXXXX XXXX





WV-
fA * fC * fC * fC * fA * fU * fC * fA * fG * mC * mC * mU * mG * mA *
ACCCAUCAGCCUGAU
XXXXX XXXXX


10509
mU * mU * mU * mC * mC * mC * mA * fG * fU * fG * fC * fC * fA * fG *
UUCCC
XXXXX XXXXX



fC * fA
AGUGCCAGCA
XXXXX XXXX





WV-
fC * fC * fA * fC * fU * fU * fC * fA * fG * mC * mA * mC * mC * mC *
CCACUUCAGCACCCA
XXXXX XXXXX


10510
mA * mU * mC * mA * mG * mC * mC * fU * fG * fA * fU * fU * fU * fC *
UCAGC
XXXXX XXXXX



fC * fC
CUGAUUUCCC
XXXXX XXXX





WV-
fU * fC * fC * fA * fU * fA * fU * fC * fC * mC * mC * mU * mC * mA *
UCCAUAUCCCCUCAU
XXXXX XXXXX


10511
mU * mC * mC * mU * mU * mG * mC * fC * fA * fC * fU * fU * fC * fA *
CCUUG CCACUUCAGC
XXXXX XXXXX



fG * fC

XXXXX XXXX





WV-
fA * fA * fU * fU * fC * fU * fU * fG * fA * mU * mC * mC * mC * mU *
AAUUCUUGAUCCCUA
XXXXX XXXXX


10512
mA * mG * mA * mA * mC * mC * mA * fA * fA * fU * fA * fU * fG * fA *
GAACC
XXXXX XXXXX



fA * fU
AAAUAUGAAU
XXXXX XXXX





WV-
fA * fA * fC * fA * fU * fC * fA * fA * fC * mA * mU * mA * mU * mA *
AACAUCAACAUAUAU
XXXXX XXXXX


10513
mU * mA * mU * mA * mA * mA * mA * fU * fU * fU * fU * fA * fA * fC *
AUAAA
XXXXX XXXXX



fU * fC
AUUUUAACUC
XXXXX XXXX





WV-
fU * fU * fA * fU * fG * fG * fC * fU * fA * mG * mG * mA * mU * mG *
UUAUGGCUAGGAUG
XXXXX XXXXX


10514
mA * mU * mG * mA * mA * mC * mA * fA * fC * fA * fG * fG * fA * fU *
AUGAAC
XXXXX XXXXX



fU * fC
AACAGGAUUC
XXXXX XXXX





WV-
fG * fU * fA * fA * fA * fU * fG * fC * fU * mA * mG * mU * mC * mU *
GUAAAUGCUAGUCUG
XXXXX XXXXX


10515
mG * mG * mA * mG * mG * mA * mG * fA * fC * fA * fU * fU * fU * fU *
GAGGA
XXXXX XXXXX



fA * fA
GACAUUUUAA
XXXXX XXXX





WV-
fG * fG * fA * fA * fA * fA * fA * fU * fA * mA * mA * mU * mA * mU *
GGAAAAAUAAAUAU
XXXXX XXXXX


10516
mA * mU * mA * mG * mU * mA * mG * fU * fA * fA * fA * fU * fG * fC *
AUAGUA
XXXXX XXXXX



fU * fA
GUAAAUGCUA
XXXXX XXXX





WV-
fG * fG * fC * fC * fA * fA * fC * fU * fU * mC * mU * mU * mU * mU *
GGCCAACUUCUUUUA
XXXXX XXXXX


10517
mA * mA * mC * mA * mA * mU * mA * fC * fC * fU * fA * fA * fG * fA *
ACAAU
XXXXX XXXXX



fA * fU
ACCUAAGAAU
XXXXX XXXX





WV-
fA * fU * fG * fU * fU * fG * fC * fU * fU * mA * mU * mU * mU * mA *
AUGUUGCUUAUUUA
XXXXX XXXXX


10518
mA * mA * mA * mA * mA * mU * mU * fA * fU * fU * fC * fA * fU * fU *
AAAAAU
XXXXX XXXXX



fG * fU
UAUUCAUUGU
XXXXX XXXX





WV-
fC * fA * fA * fA * fC * fG * fU * fU * fA * mU * mC * mU * mC * mA *
CAAACGUUAUCUCAC
XXXXX XXXXX


10519
mC * mA * mU * mU * mU * mA * mU * fG * fU * fU * fG * fC * fU * fU *
AUUUA
XXXXX XXXXX



fA * fU
UGUUGCUUAU
XXXXX XXXX





WV-
fA * fG * fA * fC * fA * fU * fU * fU * fU * mA * mA * mA * mC * mG *
AGACAUUUUAAAUG
XXXXX XXXXX


10520
mU * mA * mA * mC * mU * mU * mC * fC * fA * fA * fA * fC * fG * fU *
UAACUU
XXXXX XXXXX



fU * fA
CCAAACGUUA
XXXXX XXXX





WV-
fC * fU * fA * fG * fA * fA * fU * fA * fA * mA * mA * mG * mG * mA *
CUAGAAUAAAAGGA
XXXXX XXXXX


10521
mA * mA * mA * mA * mU * mA * mA * fA * fU * fA * fU * fA * fU * fA *
AAAAUA
XXXXX XXXXX



fG * fU
AAUAUAUAGU
XXXXX XXXX





WV-
fU * fU * fA * fU * fU * fU * fU * fA * fA * mA * mA * mA * mG * mG *
UUAUUUUAAAAAGG
XXXXX XXXXX


10522
mU * mA * mU * mC * mU * mU * mU * fG * fA * fU * fA * fC * fU * fA *
UAUCUU
XXXXX XXXXX



fA * fC
UGAUACUAAC
XXXXX XXXX





WV-
fU * fA * fU * fC * fA * fA * fA * fU * fG * mU * mA * mA * mC * mC *
UAUCAAAUGUAACCA
XXXXX XXXXX


10523
mA * mG * mU * mA * mU * mU * mU * fU * fA * fU * fU * fU * fU * fA *
GUAUU
XXXXX XXXXX



fA * fA
UUAUUUUAAA
XXXXX XXXX





WV-
fU * fA * fC * fA * fA * fU * fC * fU * fA * mU * mG * mG * mU * mA *
UACAAUCUAUGGUAU
XXXXX XXXXX


10524
mU * mA * mA * mU * mU * mU * mU * fA * fU * fC * fA * fA * fA * fU *
AAUUU
XXXXX XXXXX



fG * fU
UAUCAAAUGU
XXXXX XXXX





WV-
fU * fA * fC * fA * fU * fU * fA * fA * fA * mC * mA * mU * mC * mA *
UACAUUAAACAUCAU
XXXXX XXXXX


10525
mU * mU * mA * mA * mA * mU * mU * fA * fC * fA * fA * fU * fC * fU *
UAAAU
XXXXX XXXXX



fA * fU
UACAAUCUAU
XXXXX XXXX





WV-
fU * fG * fA * fU * fU * fU * fU * fC * fU * mG * mU * mU * mA * mA *
UGAUUUUCUGUUAA
XXXXX XXXXX


10526
mU * mA * mA * mC * mU * mU * mU * fA * fC * fA * fU * fU * fA * fA *
UAACUU
XXXXX XXXXX



fA * fC
UACAUUAAAC
XXXXX XXXX





WV-
fA * fU * fA * fA * fA * fU * fA * fU * fA * mC * mA * mA * mA * mG *
AUAAAUAUACAAAG
XXXXX XXXXX


10527
mU * mC * mU * mA * mC * mU * mG * fU * fU * fC * fA * fU * fU * fU *
UCUACU
XXXXX XXXXX



fC * fA
GUUCAUUUCA
XXXXX XXXX





WV-
fG * fG * fG * fU * fG * fA * fC * fA * fG * mU * mG * mA * mG * mA *
GGGUGACAGUGAGAC
XXXXX XXXXX


10528
mC * mU * mC * mU * mG * mU * mC * fU * fC * fU * fA * fA * fG * fA *
UCUGU
XXXXX XXXXX



fA * fA
CUCUAAGAAA
XXXXX XXXX





WV-
fA * fC * fU * fU * fU * fA * fG * fC * fC * mU * mG * mG * mG * mU *
ACUUUAGCCUGGGUG
XXXXX XXXXX


10529
mG * mA * mC * mA * mG * mU * mG * fA * fG * fA * fC * fU * fC * fU *
ACAGU
XXXXX XXXXX



fG * fU
GAGACUCUGU
XXXXX XXXX





WV-
fA * fG * fC * fC * fU * fG * fG * fG * fU * mG * mA * mC * mA * mG *
AGCCUGGGUGACAGU
XXXXX XXXXX


10530
mU * mG * mA * mG * mA * mC * mU * fC * fU * fG * fU * fC * fU * fC *
GAGAC
XXXXX XXXXX



fU * fA
UCUGUCUCUA
XXXXX XXXX





WV-
fG * fA * fU * fU * fG * fU * fG * fC * fC * mA * mC * mU * mG * mC *
GAUUGUGCCACUGCA
XXXXX XXXXX


10531
mA * mC * mU * mU * mU * mA * mG * fC * fC * fU * fG * fG * fG * fU *
CUUUA
XXXXX XXXXX



fG * fA
GCCUGGGUGA
XXXXX XXXX





WV-
fA * fG * fG * fC * fU * fC * fA * fG * fU * mG * mA * mG * mC * mU *
AGGCUCAGUGAGCUA
XXXXX XXXXX


10532
mA * mU * mG * mA * mU * mU * mG * fU * fG * fC * fC * fA * fC * fU *
UGAUU
XXXXX XXXXX



fG * fC
GUGCCACUGC
XXXXX XXXX





WV 
fG * fC * fA * fG * fG * fA * fG * fG * fA * mC * mU * mG * mC * mU *
GCAGGAGGACUGCUU
XXXXX XXXXX


10533
mU * mG * mA * mG * mC * mC * mC * fC * fA * fG * fA * fG * fU * fU *
GAGCC
XXXXX XXXXX



fC * fA
CCAGAGUUCA
XXXXX XXXX





WV-
fG * fG * fA * fG * fG * fC * fU * fG * fA * mG * mG * mC * mA * mG *
GGAGGCUGAGGCAGG
XXXXX XXXXX


10534
mG * mA * mG * mG * mA * mC * mU * fG * fC * fU * fU * fG * fA * fG *
AGGAC
XXXXX XXXXX



fC * fC
UGCUUGAGCC
XXXXX XXXX





WV-
fU * fA * fC * fU * fA * fG * fG * fG * fA * mG * mG * mC * mU * mG *
UACUAGGGAGGCUGA
XXXXX XXXXX


10535
mA * mG * mG * mC * mA * mG * mG * fA * fG * fG * fA * fC * fU * fG *
GGCAG
XXXXX XXXXX



fC * fU
GAGGACUGCU
XXXXX XXXX





WV-
fA * fC * fA * fC * fG * fC * fC * fU * fG * mG * mC * mU * mA * mG *
ACACGCCUGGCUAGU
XXXXX XXXXX


10536
mU * mA * mG * mU * mC * mC * mC * fA * fG * fC * fU * fA * fC * fU *
AGUCC
XXXXX XXXXX



fA * fG
CAGCUACUAG
XXXXX XXXX





WV-
fG * fC * fG * fU * fG * fG * fU * fG * fG * mU * mA * mC * mA * mC *
GCGUGGUGGUACACG
XXXXX XXXXX


10537
mG * mC * mC * mU * mG * mG * mC * fU * fA * fG * fU * fA * fG * fU *
CCUGG
XXXXX XXXXX



fC * fC
CUAGUAGUCC
XXXXX XXXX





WV-
fA * fG * fG * fC * fC * fA * fA * fG * fA * mG * mU * mU * mC * mA *
AGGCCAAGAGUUCAA
XXXXX XXXXX


10538
mA * mG * mA * mA * mC * mC * mC * fA * fU * fC * fU * fC * fU * fA *
GAACC
XXXXX XXXXX



fC * fA
CAUCUCUACA
XXXXX XXXX





WV-
fC * fA * fA * fG * fG * fA * fA * fG * fG * mA * mG * mA * mA * mU *
CAAGGAAGGAGAAU
XXXXX XXXXX


10539
mU * mG * mC * mU * mU * mG * mA * fG * fG * fC * fC * fA * fA * fG *
UGCUUG
XXXXX XXXXX



fA * fG
AGGCCAAGAG
XXXXX XXXX





WV-
fU * fU * fU * fG * fG * fG * fA * fG * fG * mC * mC * mA * mA * mG *
UUUGGGAGGCCAAGG
XXXXX XXXXX


10540
mG * mA * mA * mG * mG * mA * mG * fA * fA * fU * fU * fG * fC * fU *
AAGGA
XXXXX XXXXX



fU * fG
GAAUUGCUUG
XXXXX XXXX





WV-
fC * fA * fU * fG * fC * fU * fA * fA * fC * mU * mC * mA * mU * mG *
CAUGCUAACUCAUGC
XXXXX XXXXX


10541
mC * mC * mU * mG * mU * mA * mA * fU * fC * fC * fU * fA * fG * fU *
CUGUA
XXXXX XXXXX



fG * fC
AUCCUAGUGC
XXXXX XXXX





WV-
fU * fC * fA * fA * fA * fA * fG * fU * fC * mU * mA * mC * mU * mG *
UCAAAAGUCUACUGG
XXXXX XXXXX


10542
mG * mC * mU * mA * mG * mG * mC * fA * fU * fG * fC * fU * fA * fA *
CUAGG
XXXXX XXXXX



fC * fU
CAUGCUAACU
XXXXX XXXX





WV-
fC * fU * fA * fG * fG * fA * fA * fG * fG * mA * mA * mU * mU * mA *
CUAGGAAGGAAUUA
XXXXX XXXXX


10543
mA * mG * mC * mC * mC * mG * mA * fA * fU * fG * fG * fU * fU * fG *
AGCCCG
XXXXX XXXXX



fA * fC
AAUGGUUGAC
XXXXX XXXX





WV-
fA * fA * fG * fA * fU * fA * fU * fG * fA * mA * mA * mG * mA * mG *
AAGAUAUGAAAGAG
XXXXX XXXXX


10544
mU * mA * mG * mA * mC * mC * mU * fG * fU * fU * fA * fC * fU * fU *
UAGACC
XXXXX XXXXX



fU * fU
UGUUACUUUU
XXXXX XXXX





WV-
fA * fC * fC * fC * fA * fC * fU * fC * fA * mC * mC * mC * mC * mC *
ACCCACUCACCCCCA
XXXXX XXXXX


10545
mA * mU * mU * mU * mC * mU * mU * fG * fA * fU * fC * fC * fA * fG *
UUUCU
XXXXX XXXXX



fG * fG
UGAUCCAGGG
XXXXX XXXX





WV-
fA * fG * fU * fA * fC * fU * fC * fC * fU * mU * mA * mU * mU * mC *
AGUACUCCUUAUUCC
XXXXX XXXXX


10546
mC * mU * mC * mC * mC * mC * mA * fA * fU * fC * fC * fU * fG * fA *
UCCCC
XXXXX XXXXX



fU * fA
AAUCCUGAUA
XXXXX XXXX





WV-
fA * fG * fA * fA * fU * fG * fG * fG * fG * mG * mG * mA * mG * mA *
AGAAUGGGGGGAGA
XXXXX XXXXX


10547
mA * mA * mG * mU * mG * mA * mG * fA * fG * fU * fA * fC * fU * fC *
AAGUGA
XXXXX XXXXX



fC * fU
GAGUACUCCU
XXXXX XXXX





WV-
fA * fU * fU * fU * fG * fA * fG * fG * fA * mA * mA * mU * mU * mU *
AUUUGAGGAAAUUU
XXXXX XXXXX


10548
mC * mA * mG * mA * mG * mG * mA * fA * fA * fG * fA * fG * fA * fA *
CAGAGG
XXXXX XXXXX



fA * fG
AAAGAGAAAG
XXXXX XXXX





WV-
fU * fA * fG * fA * fC * fU * fA * fC * fU * mA * mA * mG * mC * mA *
UAGACUACUAAGCAG
XXXXX XXXXX


10549
mG * mA * mC * mA * mG * mA * mU * fA * fU * fU * fU * fG * fA * fG *
ACAGA
XXXXX XXXXX



fG * fA
UAUUUGAGGA
XXXXX XXXX





WV-
fU * fC * fU * fU * fU * fU * fA * fU * fC * mC * mU * mG * mA * mG *
UCUUUUAUCCUGAGG
XXXXX XXXXX


10550
mG * mA * mA * mU * mU * mA * mU * fA * fG * fA * fC * fU * fA * fC *
AAUUA
XXXXX XXXXX



fU * fA
UAGACUACUA
XXXXX XXXX





WV-
fU * fA * fA * fG * fU * fU * fU * fG * fA * mA * mG * mG * mG * mA *
UAAGUUUGAAGGGA
XXXXX XXXXX


10551
mU * mU * mA * mA * mA * mC * mG * fC * fA * fU * fG * fC * fA * fA *
UUAAAC
XXXXX XXXXX



fA * fG
GCAUGCAAAG
XXXXX XXXX





WV-
fC * fC * fU * fC * fC * fU * fA * fC * fC * mA * mU * mG * mU * mU *
CCUCCUACCAUGUUA
XXXXX XXXXX


10552
mA * mC * mU * mU * mC * mC * mC * fU * fG * fC * fU * fC * fA * fA *
CUUCC
XXXXX XXXXX



fA * fA
CUGCUCAAAA
XXXXX XXXX





WV-
fC * fA * fA * fG * fU * fG * fC * fC * fC * mA * mA * mU * mC * mU *
CAAGUGCCCAAUCUG
XXXXX XXXXX


10553
mG * mA * mU * mC * mA * mA * mC * fC * fU * fC * fC * fU * fA * fC *
AUCAA CCUCCUACCA
XXXXX XXXXX



fC * fA

XXXXX XXXX





WV-
fA * fU * fA * fG * fA * fG * fG * fG * fU * mU * mU * mU * mG * mA *
AUAGAGGGUUUUGA
XXXXX XXXXX


10554
mU * mC * mA * mA * mG * mU * mG * fC * fC * fC * fA * fA * fU * fC *
UCAAGU
XXXXX XXXXX



fU * fG
GCCCAAUCUG
XXXXX XXXX





WV-
fC * fC * fA * fU * fG * fU * fU * fG * fG * mG * mG * mG * mA * mC *
CCAUGUUGGGGGACA
XXXXX XXXXX


10555
mA * mG * mC * mU * mC * mC * mU * fA * fA * fG * fA * fA * fU * fG *
GCUCC
XXXXX XXXXX



fG * fC
UAAGAAUGGC
XXXXX XXXX





WV-
fU * fA * fU * fA * fC * fA * fU * fA * fA * mC * mU * mU * mC * mC *
UAUACAUAAUUUCCA
XXXXX XXXXX


10556
mA * mG * mG * mC * mC * mU * mG * fG * fC * fC * fA * fU * fA * fA *
GGCCU
XXXXX XXXXX



fA * fA
GGCCAUAAAA
XXXXX XXXX





WV-
fU * fG * fG * fC * fU * fA * fU * fG * fA * mC * mA * mG * mA * mG *
UGGCUAUGACAGAGA
XXXXX XXXXX


10557
mA * mU * mU * mG * mG * mC * mU * fA * fA * fA * fA * fG * fC * fU *
UUGGC
XXXXX XXXXX



fC * fA
UAAAAGCUCA
XXXXX XXXX





WV-
fU * fA * fG * fC * fA * fG * fC * fU * fC * mA * mG * mG * mU * mC *
UAGCAGCUCAGGUCC
XXXXX XXXXX


10558
mC * mC * mU * mU * mC * mG * mA * fU * fA * fA * fA * fA * fU * fG *
CUUCG
XXXXX XXXXX



fG * fC
AUAAAAUGGC
XXXXX XXXX





WV-
fA * fG * fA * fU * fU * fC * fU * fA * fU * mA * mU * mA * mU * mU *
AGAUUCUAUAUAUU
XXXXX XXXXX


10559
mA * mC * mA * mU * mA * mG * mU * fC * fA * fG * fA * fC * fC * fA *
ACAUAG
XXXXX XXXXX



fG * fG
UCAGACCAGG
XXXXX XXXX





WV-
fA * fG * fA * fA * fU * fA * fA * fC * fC * mA * mC * mA * mU * mG *
AGAAUAACCACAUGA
XXXXX XXXXX


10560
mA * mU * mU * mC * mU * mA * mU * fA * fU * fU * fU * fU * fA * fC *
UUCUA
XXXXX XXXXX



fA * fU
UAUAUUACAU
XXXXX XXXX





WV-
fC * fU * fA * fU * fC * fA * fC * fU * fG * mU * mA * mU * mG * mC *
CUAUCACUGUAUGCC
XXXXX XXXXX


10561
mC * mU * mC * mU * mC * mA * mU * fC * fU * fC * fU * fC * fC * fU *
UCUCA UCUCUCCUUC
XXXXX XXXXX



fU * fC

XXXXX XXXX





WV-
fC * fU * fA * fC * fC * fA * fG * fA * fG * mU * mC * mC * mU * mC *
CUACCAGAGUCCUCU
XXXXX XXXXX


10562
mU * mU * mG * mC * mC * mC * mU * fA * fG * fU * fC * fA * fA * fA *
UGCCC
XXXXX XXXXX



fU * fC
UAGUCAAAUC
XXXXX XXXX





WV-
fA * fU * fU * fC * fC * fU * fA * fA * fA * mC * mA * mC * mA * mG *
AUUCCUAAACACAGA
XXXXX XXXXX


10563
mA * mG * mC * mA * mC * mA * mA * fA * fC * fA * fA * fA * fA * fA *
GCACA
XXXXX XXXXX



fA * fU
AACAAAAAAU
XXXXX XXXX





WV-
fA * fA * fA * fC * fC * fA * fA * fU * fA * mU * mA * mU * mA * mU *
AAACCAAUAUAUAUA
XXXXX XXXXX


10564
mA * mA * mA * mG * mU * mG * mA * fC * fU * fA * fG * fC * fA * fU *
AAGUG
XXXXX XXXXX



fA * fC
ACUAGCAUAC
XXXXX XXXX





WV-
fC * fA * fA * fA * fG * fA * fG * fU * fG * mU * mU * mU * mU * mU *
CAAAGAGUGUUUUU
XXXXX XXXXX


10565
mG * mA * mA * mA * mG * mG * mA * fU * fG * fA * fA * fA * fU * fA *
GAAAGG
XXXXX XXXXX



fA * fA
AUGAAAUAAA
XXXXX XXXX





WV-
fG * fA * fA * fG * fA * fG * fG * fA * fA * mG * mC * mC * mU * mG *
GAAGAGGAAGCCUGU
XXXXX XXXXX


10566
mU * mG * mA * mG * mG * mU * mC * fA * fU * fC * fU * fA * fC * fA *
GAGGU
XXXXX XXXXX



fA * fG
CAUCUACAAG
XXXXX XXXX





WV-
fA * fG * fA * fC * fA * fA * fU * fU * fG * mG * mA * mA * mG * mA *
AGACAAUUGGAAGA
XXXXX XXXXX


10567
mG * mG * mA * mA * mG * mC * mC * fU * fG * fU * fG * fA * fG * fG *
GGAAGC
XXXXX XXXXX



fU * fC
CUGUGAGGUC
XXXXX XXXX





WV-
fA * fC * fC * fA * fU * fU * fU * fU * fA * mU * mU * mU * mG * mC *
ACCAUUUUAUUUGCU
XXXXX XXXXX


10568
mU * mC * mC * mC * mU * mA * mC * fC * fU * fU * fU * fU * fA * fG *
CCCUA
XXXXX XXXXX



fA * fA
CCUUUUAGAA
XXXXX XXXX





WV-
fC * fG * fG * fA * fG * fC * fA * fA * fG * mG * mG * mG * mG * mU *
CGGAGCAAGGGGGUG
XXXXX XXXXX


10569
mG * mU * mU * mG * mC * mU * mU * fU * fA * fG * fC * fC * fA * fU *
UUGCU
XXXXX XXXXX



fU * fU
UUAGCCAUUU
XXXXX XXXX





WV-
fA * fU * fC * fU * fU * fA * fG * fG * fC * mA * mC * mA * mC * mA *
AUCUUAGGCACACAG
XXXXX XXXXX


10570
mG * mA * mC * mU * mC * mA * mG * fA * fA * fA * fG * fA * fA * fC *
ACUCA
XXXXX XXXXX



fU * fU
GAAAGAACUU
XXXXX XXXX





WV-
fC * fC * fU * fU * fG * fU * fG * fA * fG * mG * mC * mU * mC * mA *
CCUUGUGAGGCUCAC
XXXXX XXXXX


10571
mC * mA * mG * mG * mC * mU * mC * fU * fC * fU * fU * fG * fU * fU *
AGGCU
XXXXX XXXXX



fA * fA
CUCUUGUUAA
XXXXX XXXX





WV-
fA * fA * fU * fC * fA * fC * fA * fG * fC * mU * mC * mU * mC * mC *
AAUCACAGCUCUCCA
XXXXX XXXXX


10572
mA * mA * mG * mG * mC * mU * mG * fU * fA * fG * fA * fC * fA * fU *
AGGCU
XXXXX XXXXX



fA * fG
GUAGACAUAG
XXXXX XXXX





WV-
fG * fA * fG * fG * fU * fG * fC * fU * fG * mC * mA * mA * mA * mG *
GAGGUGCUGCAAAGG
XXXXX XXXXX


10573
mG * mA * mG * mG * mC * mU * mG * fG * fC * fU * fG * fC * fU * fG *
AGGCU
XXXXX XXXXX



fU * fA
GGCUGCUGUA
XXXXX XXXX





WV-
fA * fC * fU * fG * fG * fC * fU * fC * fA * mA * mA * mU * mU * mU *
ACUGGCUCAAAUUUU
XXXXX XXXXX


10574
mC * mA * mA * mG * mA * mG * mU * fU * fA * fU * fA * fA * fC * fA *
AAGAG
XXXXX XXXXX



fG * fU
UUAUAACAGU
XXXXX XXXX





WV-
fU * fA * fA * fA * fU * fG * fU * fC * fA * mG * mA * mC * mC * mA *
UAAAUGUCAGACCAG
XXXXX XXXXX


10575
mG * mC * mA * mA * mG * mG * mA * fC * fA * fU * fA * fA * fA * fG *
CAAGG
XXXXX XXXXX



fA * fU
ACAUAAAGAU
XXXXX XXXX





WV-
fU * fU * fU * fU * fU * fC * fU * fA * fA * mA * mU * mA * mA * mA *
UUUUUCUAAAUAAA
XXXXX XXXXX


10576
mA * mG * mG * mA * mG * mG * mA * fG * fU * fU * fU * fU * fU * fU *
AGGAGG
XXXXX XXXXX



fC * fU
AGUUUUUUCU
XXXXX XXXX





WV-
fA * fG * fC * fC * fA * fC * fC * fG * fC * mG * mC * mC * mC * mG *
AGCCACCGCGCCCGG
XXXXX XXXXX


10577
mG * mC * mC * mU * mC * mA * mC * fC * fA * fU * fU * fC * fU * fU *
CCUCA
XXXXX XXXXX



fU * fU
CCAUUCUUUU
XXXXX XXXX





WV-
fC * fU * fG * fC * fC * fU * fC * fG * fG * mC * mC * mU * mC * mC *
CUGCCUCGGCCUCCC
XXXXX XXXXX


10578
mC * mA * mA * mA * mG * mU * mG * fC * fU * fG * fG * fG * fA * fU *
AAAGU
XXXXX XXXXX



fU * fA
GCUGGGAUUA
XXXXX XXXX





WV-
fC * fG * fU * fG * fA * fU * fC * fU * fG * mC * mC * mU * mG * mC *
CGUGAUCUGCCUGCC
XXXXX XXXXX


10579
mC * mU * mC * mG * mG * mC * mC * fU * fC * fC * fC * fA * fA * fA *
UCGGC
XXXXX XXXXX



fG * fU
CUCCCAAAGU
XXXXX XXXX





WV-
fG * fU * fA * fU * fU * fU * fU * fU * fA * mG * mU * mA * mG * mA *
GUAUUUUUAGUAGA
XXXXX XXXXX


10580
mG * mA * mC * mA * mG * mG * mG * fU * fU * fU * fC * fA * fC * fC *
GACAGG
XXXXX XXXXX



fA * fU
GUUUCACCAU
XXXXX XXXX





WV-
fG * fC * fA * fU * fG * fC * fA * fG * fC * mA * mC * mC * mA * mC *
GCAUGCAGCACCACG
XXXXX XXXXX


10581
mG * mC * mC * mA * mG * mG * mC * fU * fA * fG * fU * fU * fU * fU *
CCAGG
XXXXX XXXXX



fU * fG
CUAGUUUUUG
XXXXX XXXX





WV-
fC * fA * fA * fG * fU * fA * fG * fC * fU * mG * mG * mG * mA * mC *
CAAGUAGCUGGGACU
XXXXX XXXXX


10582
mU * mA * mC * mA * mG * mG * mC * fA * fU * fG * fC * fA * fG * fC *
ACAGG
XXXXX XXXXX



fA * fC
CAUGCAGCAC
XXXXX XXXX





WV-
fC * fC * fU * fC * fA * fG * fC * fC * fU * mC * mC * mC * mA * mA *
CCUCAGCCUCCCAAG
XXXXX XXXXX


10583
mG * mU * mA * mG * mC * mU * mG * fG * fG * fA * fC * fU * fA * fC *
UAGCU
XXXXX XXXXX



fA * fG
GGGACUACAG
XXXXX XXXX





WV-
fU * fU * fU * fG * fG * fG * fA * fG * fA * mG * mA * mC * mA * mG *
UUUGGGAGAGACAG
XXXXX XXXXX


10584
mA * mA * mA * mU * mC * mU * mG * fG * fG * fA * fU * fU * fG * fG *
AAAUCU
XXXXX XXXXX



fC * fC
GGGAUUGGCC
XXXXX XXXX





WV-
fA * fC * fC * fU * fA * fU * fU * fC * fA * mC * mU * mG * mG * mG *
ACCUAUUCACUGGGA
XXXXX XXXXX


10585
mA * mG * mG * mU * mU * mG * mU * fG * fA * fG * fG * fA * fA * fC *
GGUUG
XXXXX XXXXX



fA * fC
UGAGGAACAC
XXXXX XXXX





WV-
fU * fG * fC * fA * fG * fA * fG * fU * fG * mA * mG * mC * mA * mU *
UGCAGAGUGAGCAUG
XXXXX XXXXX


10586
mG * mG * mA * mG * mA * mA * mG * fA * fU * fA * fA * fU * fG * fA *
GAGAA
XXXXX XXXXX



fG * fU
GAUAAUGAGU
XXXXX XXXX





WV-
fG * fG * fU * fU * fU * fA * fG * fG * fU * mG * mC * mC * mU * mG *
GGUUUAGGUGCCUGU
XXXXX XXXXX


10587
mU * mU * mA * mG * mA * mU * mA * fG * fU * fG * fG * fU * fG * fC *
UAGAU
XXXXX XXXXX



fU * fA
AGUGGUGCUA
XXXXX XXXX





WV 
fA * fA * fA * fG * fG * fG * fU * fU * fU * mA * mA * mG * mA * mC *
AAAGGGUUUAAGAC
XXXXX XXXXX


10588
mA * mG * mA * mU * mU * mA * mC * fC * fU * fG * fG * fC * fU * fU *
AGAUUA
XXXXX XXXXX



fC * fU
CCUGGCUUCU
XXXXX XXXX





WV-
fC * fU * fA * fU * fC * fC * fC * fU * fC * mU * mG * mU * mG * mC *
CUAUCCCUCUGUGCA
XXXXX XXXXX


10589
mA * mU * mC * mC * mC * mC * mA * fC * fA * fC * fA * fU * fC * fC *
UCCCC ACACAUCCAU
XXXXX XXXXX



fA * fU

XXXXX XXXX





WV-
fU * fU * fA * fU * fA * fG * fG * fC * fU * mA * mG * mA * mG * mA *
UUAUAGGCUAGAGAC
XXXXX XXXXX


10590
mC * mU * mC * mA * mC * mU * mC * fA * fA * fU * fA * fA * fU * fC *
UCACU
XXXXX XXXXX



fC * fA
CAAUAAUCCA
XXXXX XXXX





WV-
fU * fA * fU * fG * fC * fU * fU * fU * fU * mU * mC * mA * mC * mC *
UAUGCUUUUUCACCC
XXXXX XXXXX


10591
mC * mU * mU * mG * mA * mC * mC * fU * fU * fC * fA * fA * fC * fU *
UUGAC
XXXXX XXXXX



fG * fU
CUUCAACUGU
XXXXX XXXX





WV-
fC * fU * fU * fG * fG * fG * fG * fU * fG * mC * mG * mC * mA * mU *
CUUGGGGUGUGCAUC
XXXXX XXXXX


10592
mC * mC * mC * mA * mC * mU * mG * fA * fG * fG *fG * fU * fA * fU *
CCACU
XXXXX XXXXX



fG * fC
GAGGGUAUGC
XXXXX XXXX





WV-
fU * fA * fC * fU * fU * fU * fA * fG * fU * mA * mC * mA * mC * mA *
UACUUUAGUACACAU
XXXXX XXXXX


10593
mU * mA * mC * mU * mU * mG * mG * fG * fA * fC * fU * fU * fU * fU *
ACUUG
XXXXX XXXXX



fU * fC
GGACUUUUUC
XXXXX XXXX





WV-
fC * fA * fA * fC * fU * fU * fA * fU * fC * mA * mU * mA * mG * mC *
CAACUUAUCAUAGCA
XXXXX XXXXX


10594
mA * mG * mG * mC * mU * mA * mC * fU * fU * fU * fA * fG * fU * fA *
GGCUA
XXXXX XXXXX



fC * fA
CUUUAGUACA
XXXXX XXXX





WV-
fA * fU * fU * fC * fC * fA * fA * fU * fU * mA * mC * mA * mA * mA *
AUUCCAAUUACAAAC
XXXXX XXXXX


10595
mC * mC * mC * mU * mU * mU * mU * fU * fC * fA * fA * fC * fU * fU *
CCUUU
XXXXX XXXXX



fA * fU
UUCAACUUAU
XXXXX XXXX





WV-
fA * fA * fA * fA * fU * fA * fU * fA * fG * mU * mC * mC * mC * mC *
AAAAUAUAGUCCCCA
XXXXX XXXXX


10596
mA * mG * mA * mA * mU * mA * mA * fU * fU * fA * fA * fA * fA * fC *
GAAUA
XXXXX XXXXX



fU * fC
AUUAAAACUC
XXXXX XXXX





WV-
fU * fA * fG * fA * fA * fA * fG * fA * fC * mC * mC * mC * mA * mC *
UAGAAAGACCCCACA
XXXXX XXXXX


10597
mA * mA * mA * mA * mC * mU * mA * fG * fU * fG * fA * fU * fU * fG *
AAACU
XXXXX XXXXX



fU * fA
AGUGAUUGUA
XXXXX XXXX





WV-
fC * fU * fC * fC * fA * fG * fC * fC * fU * mG * mG * mG * mU * mG *
CUCCAGCCUGGGUGA
XXXXX XXXXX


10598
mA * mC * mA * mG * mA * mG * mC * fA * fA * fA * fA * fC * fU * fC *
CAGAG
XXXXX XXXXX



fC * fA
CAAAACUCCA
XXXXX XXXX





WV-
fU * fU * fG * fA * fA * fC * fC * fC * fG * mG * mG * mA * mG * mG *
UUGAACCCGGGAGGC
XXXXX XXXXX


10599
mC * mA * mG * mA * mG * mG * mU * fU * fG * fC * fA * fG * fU * fG *
AGAGG
XXXXX XXXXX



fA * fG
UUGCAGUGAG
XXXXX XXXX





WV-
fA * fG * fG * fC * fU * fG * fA * fG * fG * mC * mA * mG * mG * mA *
AGGCUGAGGCAGGAG
XXXXX XXXXX


10600
mG * mA * mA * mU * mC * mA * mC * fU * fU * fG * fA * fA * fC * fC *
AAUCA
XXXXX XXXXX



fC * fG
CUUGAACCCG
XXXXX XXXX





WV-
fG * fC * fU * fA * fC * fU * fC * fA * fG * mG * mA * mG * mG * mC *
GCUACUCAGGAGGCU
XXXXX XXXXX


10601
mU * mG * mA * mG * mG * mC * mA * fG * fG * fA * fG * fA * fA * fU *
GAGGC
XXXXX XXXXX



fC * fA
AGGAGAAUCA
XXXXX XXXX





WV-
fA * fG * fC * fA * fC * fA * fC * fG * fC * mC * mU * mG * mU * mA *
AGCACACGCCUGUAA
XXXXX XXXXX


10602
mA * mU * mC * mC * mC * mA * mG * fC * fU * fA * fC * fU * fC * fA *
UCCCA
XXXXX XXXXX



fG * fG
GCUACUCAGG
XXXXX XXXX





WV-
fA * fG * fC * fC * fU * fG * fA * fC * fC * mG * mA * mC * mA * mU *
AGCCUGACCGACAUG
XXXXX XXXXX


10603
mG * mC * mU * mG * mA * mA * mA * fC * fC * fC * fA * fG * fU * fC *
CUGAA
XXXXX XXXXX



fU * fC
ACCCAGUCUC
XXXXX XXXX





WV-
fG * fU * fU * fC * fG * fA * fG * fA * fC * mC * mA * mG * mC * mC *
GUUCGAGACCAGCCU
XXXXX XXXXX


10604
mU * mG * mA * mC * mC * mG * mA * fC * fA * fU * fG * fC * fU * fG *
GACCG
XXXXX XXXXX



fA * fA
ACAUGCUGAA
XXXXX XXXX





WV-
fG * fG * fU * fC * fU * fC * fU * fG * fG * mG * mA * mG * mG * mC *
GGUCUCUGGGAGGCC
XXXXX XXXXX


10605
mC * mA * mA * mA * mG * mC * mG * fG * fG * fU * fG * fG * fA * fU *
AAAGC
XXXXX XXXXX



fC * fA
GGGUGGAUCA
XXXXX XXXX





WV-
fG * fC * fU * fC * fA * fC * fG * fC * fC * mU * mG * mU * mA * mA *
GCUCACGCCUGUAAU
XXXXX XXXXX


10606
mU * mC * mC * mC * mA * mG * mG * fU * fC * fU * fC * fU * fG * fG *
CCCAG
XXXXX XXXXX



fG * fA
GUCUCUGGGA
XXXXX XXXX





WV-
fG * fG * fU * fG * fG * fC * fU * fC * fA * mC * mG * mC * mC * mU *
GGUGGCUCACGCCUG
XXXXX XXXXX


10607
mG * mU * mA * mA * mU * mC * mC * fC * fA * fG * fG * fU * fC * fU *
UAAUC
XXXXX XXXXX



fC * fU
CCAGGUCUCU
XXXXX XXXX





WV-
fU * fU * fU * fU * fU * fA * fA * fU * fU * mA * mA * mC * mC * mC *
UUUUUAAUUAACCCU
XXXXX XXXXX


10608
mU * mG * mU * mU * mG * mC * mC * fU * fC * fC * fA * fC * fA * fA *
GUUGC
XXXXX XXXXX



fA * fG
CUCCACAAAG
XXXXX XXXX





WV-
fU * fA * fA * fA * fG * fA * fG * fC * fA * mA * mG * mG * mG * mA *
UAAAGAGCAAGGGA
XXXXX XXXXX


10609
mG * mA * mG * mA * mA * mG * mG * fU * fC * fA * fA * fA * fG * fA *
GAGAAG
XXXXX XXXXX



fA * fU
GUCAAAGAAU
XXXXX XXXX





WV-
fU * fG * fA * fU * fG * fA * fC * fA * fG * mA * mG * mG * mU * mC *
UGAUGACAGAGGUCA
XXXXX XXXXX


10610
mA * mG * mC * mC * mU * mC * mC * fC * fA * fG * fA * fA * fU * fA *
GCCUC
XXXXX XXXXX



fA * fA
CCAGAAUAAA
XXXXX XXXX





WV-
fG * fC * fA * fU * fG * fG * fG * fA * fG * mC * mC * mC * mA * mA *
GCAUGGGAGCCCAAU
XXXXX XXXXX


10611
mU * mG * mA * mU * mG * mA * mC * fA * fG * fA * fG * fG * fU * fC *
GAUGA
XXXXX XXXXX



fA * fG
CAGAGGUCAG
XXXXX XXXX





WV-
fG * fA * fA * fG * fC * fC * fA * fA * fA * mG * mG * mG * mC * mA *
GAAGCCAAAGGGCAU
XXXXX XXXXX


10612
mU * mG * mG * mG * mA * mG * mC * fC * fC * fA * fA * fU * fG * fA *
GGGAG
XXXXX XXXXX



fU * fG
CCCAAUGAUG
XXXXX XXXX





WV-
fA * fU * fA * fU * fC * fU * fU * fG * fA * mC * mC * mU * mC * mA *
AUAUCUUGACCUCAC
XXXXX XXXXX


10613
mC * mU * mU * mU * mA * mC * mC * fU * fC * fC * fU * fG * fU * fC *
UUUAC
XXXXX XXXXX



fU * fU
CUCCUGUCUU
XXXXX XXXX





WV-
fA * fA * fC * fC * fU * fC * fA * fA * fA * mG * mG * mG * mA * mG *
AACCUCAAAGGGAGG
XXXXX XXXXX


10614
mG * mG * mA * mA * mU * mU * mA * fG * fG * fA * fG * fA * fA * fU *
GAAUU
XXXXX XXXXX



fA * fA
AGGAGAAUAA
XXXXX XXXX





WV-
fG * fG * fA * fC * fA * fU * fA * fG * fU * mC * mA * mG * mC * mC *
GGACAUAGUCAGCCU
XXXXX XXXXX


10615
mU * mG * mU * mG * mG * mC * mA * fA * fC * fC * fU * fC * fA * fA *
GUGGC
XXXXX XXXXX



fA * fG
AACCUCAAAG
XXXXX XXXX





WV-
fU * fG * fA * fG * fA * fA * fA * fC * fC * mA * mC * mC * mC * mU *
UGAGAAACCACCCUG
XXXXX XXXXX


10616
mG * mA * mG * mA * mA * mG * mA * fG * fC * fA * fA * fU * fA * fA *
AGAAG
XXXXX XXXXX



fC * fC
AGCAAUAACC
XXXXX XXXX





WV-
fA * fU * fG * fA * fG * fG * fG * fG * fA * mG * mG * mG * mA * mA *
AUGAGGGGAGGGAA
XXXXX XXXXX


10617
mA * mA * mG * mU * mG * mG * mC * fC * fA * fA * fA * fA * fG * fC *
AAGUGG
XXXXX XXXXX



fA * fG
CCAAAAGCAG
XXXXX XXXX





WV-
fG * fG * fC * fC * fC * fA * fA * fG * fG * mG * mA * mU * mG * mA *
GGCCCAAGGGAUGAG
XXXXX XXXXX


10618
mG * mG * mG * mG * mA * mG * mG * fG * fA * fA * fA * fA * fG * fU *
GGGAG
XXXXX XXXXX



fG * fG
GGAAAAGUGG
XXXXX XXXX





WV-
fA * fC * fU * fA * fC * fA * fU * fC * fU * mA * mG * mG * mC * mC *
ACUACAUCUAGGCCC
XXXXX XXXXX


10619
mC * mA * mA * mG * mG * mG * mA * fU * fG * fA * fG * fG * fG * fG *
AAGGG
XXXXX XXXXX



fA * fG
AUGAGGGGAG
XXXXX XXXX





WV-
fA * fU * fA * fA * fA * fA * fC * fC * fC * mU * mU * mC * mA * mA *
AUAAAACCCUUCAAU
XXXXX XXXXX


10620
mU * mG * mU * mU * mU * mC * mC * fC * fU * fA * fC * fU * fG * fU *
GUUUC
XXXXX XXXXX



fC * fU
CCUACUGUCU
XXXXX XXXX





WV-
fA * fC * fU * fG * fC * fA * fC * fU * fC * mC * mC * mU * mC * mU *
ACUGCACUCCCUCUU
XXXXX XXXXX


10621
mU * mA * mU * mA * mA * mA * mA * fC * fC * fC * fU * fU * fC * fA *
AUAAA
XXXXX XXXXX



fA * fU
ACCCUUCAAU
XXXXX XXXX





WV-
fU * fG * fU * fA * fA * fA * fU * fU * fC * mU * mA * mC * mC * mC *
UGUAAAUUCUACCCC
XXXXX XXXXX


10622
mC * mA * mA * mU * mU * mA * mA * fA * fG * fA * fU * fU * fA * fA *
AAUUA
XXXXX XXXXX



fA * fA
AAGAUUAAAA
XXXXX XXXX





WV-
fC * fU * fC * fC * fC * fA * fG * fA * fC * mC * mC * mA * mA * mA *
CUCCCAGACCCAAAU
XXXXX XXXXX


10623
mU * mC * mU * mC * mU * mG * mU * fU * fU * fU * fA * fG * fA * fA *
CUCUG
XXXXX XXXXX



fU * fG
UUUUAGAAUG
XXXXX XXXX





WV-
fC * fC * fC * fU * fC * fA * fC * fA * fU * mC * mC * mA * mU * mA *
CCCUCACAUCCAUAA
XXXXX XXXXX


10624
mA * mG * mA * mG * mG * mC * mU * fC * fU * fA * fU * fA * fU * fC *
GAGGC
XXXXX XXXXX



fA * fU
UCUAUAUCAU
XXXXX XXXX





WV-
fC * fA * fU * fU * fU * fU * fU * fU * fG * mC * mC * mC * mU * mC *
CAUUUUUUGCCCUCA
XXXXX XXXXX


10625
mA * mC * mA * mU * mC * mC * mA * fU * fA * fA * fG * fA * fG * fG *
CAUCC
XXXXX XXXXX



fC * fU
AUAAGAGGCU
XXXXX XXXX





WV-
fU * fA * fA * fG * fC * fG * fU * fC * fA * mC * mC * mC * mA * mA *
UAAGCGUCACCCAAC
XXXXX XXXXX


10626
mC * mA * mC * mC * mU * mC * mA * fU * fA * fU * fA * fA * fU * fU *
ACCUC
XXXXX XXXXX



fA * fG
AUAUAAUUAG
XXXXX XXXX





WV-
fC * fU * fA * fC * fU * fU * fU * fA * fU * mC * mC * mC * mU * mU *
CUACUUUAUCCCUUA
XXXXX XXXXX


10627
mA * mA * mG * mC * mA * mU * mG * fA * fA * fA * fC * fC * fU * fG *
AGCAU
XXXXX XXXXX



fA * fU
GAAACCUGAU
XXXXX XXXX





WV-
fC * fC * fA * fA * fG * fA * fG * fG * fG * mA * mG * mG * mU * mA *
CCAAGAGGGAGGUAC
XXXXX XXXXX


10628
mC * mU * mA * mU * mA * mU * mA * fG * fA * fU * fU * fC * fU * fA *
UAUAU
XXXXX XXXXX



fC * fU
AGAUUCUACU
XXXXX XXXX





WV-
fG * fU * fG * fA * fG * fC * fC * fA * fC * mC * mG * mC * mG * mC *
GUGAGCCACCGCGCC
XXXXX XXXXX


10629
mC * mU * mG * mG * mC * mC * mA * fA * fC * fU * fU * fC * fU * fU *
UGGCC
XXXXX XXXXX



fU * fU
AACUUCUUUU
XXXXX XXXX





WV-
fU * fC * fG * fG * fC * fC * fU * fC * fC * mC * mA * mA * mA * mG *
UCGGCCUCCCAAAGU
XXXXX XXXXX


10630
mU * mG * mC * mU * mG * mG * mG * fA * fU * fU * fA * fC * fA * fG *
GCUGG
XXXXX XXXXX



fG * fC
GAUUACAGGC
XXXXX XXXX





WV-
fU * RfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * RmGmGfC
UCAAGGAAGAUGGCA
RSSSSSOSO


10634
* SfA * SfU * RfU * RfU * RfC * SfU
UUUCU
SROOSSRRRS





WV-
fU * SfC * RfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SRSSSSOSO


10635
* RFA * SfU * SfU * SfU * SfC * RfU
UUUCU
SSOORSSSSR





WV-
fU * SfC * SfA * RfA * RfG * SfG * SmAfA * RmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SSRRSSORO


10636
* SfA * RfU * SfU * SfU * SfC * SfU
UUUCU
SSOOSRSSSS





WV-
fU * SfC * SfA * SfA * SfG * RfG * RmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SSSSRROSO


10637
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSOOSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SmU * SmU * SmCmU * SmG * SmA *
CUCCGGUUCUGAAGG
SSSSSSSSO


10670
SmAmG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSOSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SmU * SmU * SmC * SmU * SmG *
CUCCGGUUCUGAAGG
SSSSSSSSS


10671
SmA * SmAmGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSOOSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SmU * SmU * SmCmU * SmG * SmA *
CUCCGGUUCUGAAGG
SSSSSSSSO


10672
SmAmGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSSOOSSSSS





WV-
fU * RfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
RSSSSS O S O SS O


10868
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * RmGmGfC
UCAAGGAAGAUGGCA
SSSSSS O S O SR O


10869
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10870
SfA * SfU * SfU * SfU * RfC * SfU
UUUCU
O SSSSRS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10871
SfA * SfU * SfU * RfU * SfC * SfU
UUUCU
O SSSRSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfG * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10872
SfA * SfU * RfU * SfU * SfC * SfU
UUUCU
O SSRSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10873
SfA * SfU * SfU * SfU * SfC * RfU
UUUCU
O SSSSSR





WV-
fG * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10874
RfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O RSSSSS





WV-
fU * SfC * RfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SRSSSS O S O SS O


10875
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10876
SfA * RfU * SfU * SfU * SfC * SfU
UUUCU
O SRSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * RmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SSSSSS O R O SS O


10877
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * SfA * RfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SSSRSS O S O SS O


10878
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * RfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SSRSSS O S O SS O


10879
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * RfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SSSSRS O S O SS O


10880
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * RmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGAUGGCA
SSSSSR O S O SS O


10881
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * RfU * SmGmGfC
UCAAGGAAGAUGGCA
SSSSSS O S O RS O


10882
* SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O SSSSSS





WV-
Mod012L001fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU *
UCAAGGAAGAUGGCA
O SSSSSS O S O SS


10883
SmGmGfC * SfA * SfU * SfU * SfU * SfU * SfU
UUUCU
O O SSSSSS





WV-
Mod085L001fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU *
UCAAGGAAGAUGGCA
O SSSSSS O S O SS


10884
SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O O SSSSSS





WV-
Mod086L001fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU *
UCAAGGAAGAUGGCA
O SSSSSS O S O SS


10885
SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
O O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10886
SfA * SfU * SfU * SfU * SfC * SfUL004Mod012
UUUCU
O SSSSSSO





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10887
SfA * SfU * SfU * SfU * SfC * SfUL004Mod085
UUUCU
O SSSSSSO





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
SSSSSS O S O SS O


10888
SfA * SfU * SfU * SfU * SfC * SfUL004Mod086
UUUCU
O SSSSSSO





WV-
fU * SfU * SfA * SfA * SfA * SfA * SmA * SmG * SmU * SmC * SmU *
UUAAAAAGUCUGCUA
SSSSSSSSS


11047
SmG * SmC * SmU * SfA * SfA * SfA * SfA * SfU * SfG
AAAUG
SSSSSSSSSS





WV-
fA * SfA * SfG * SfU * SfC * SfU * SmG * SmC * SmU * SmA * SmA *
AAGUCUGCUAAAAUG
SSSSSSSSS


11048
SmA * SmA * SmU * SfG * SfU * SfU * SfU * SfU * SfC
UUUUC
SSSSSSSSSS





WV-
fU * SfG * SfC * SfU * SfA * SfA * SmA * SmA * SmU * SmG * SmU *
UGCUAAAAUGUUUUC
SSSSSSSSS


11049
SmU * SmU * SmU * SfC * SfA * SfU * SfU * SfC * SfC
AUUCC
SSSSSSSSSS





WV-
fA * SfA * SfA * SfU * SfG * SfU * SmU * SmU * SmU * SmC * SmA *
AAAUGUUUUCAUUCC
SSSSSSSSS


11050
SmU * SmU * SmC * SfC * SfU * SfA * SfU * SfU * SfA
UAUUA
SSSSSSSSSS





WV-
fU * SfU * SfU * SfU * SfC * SfA * SmU * SmU * SmC * SmC * SmU *
UUUUCAUUCCUAUUA
SSSSSSSSS


11051
SmA * SmU * SmU * SfA * SfG * SfA * SfU * SfC * SfU
GAUCU
SSSSSSSSSS





WV-
fA * SfU * SfU * SfC * SfC * SfU * SmA * SmU * SmU * SmA * SmG *
AUUCCUAUUAGAUCU
SSSSSSSSS


11052
SmA * SmU * SmC * SfU * SfG * SfU * SfC * SfG * SfC
GUCGC
SSSSSSSSSS





WV-
fU * SfA * SfU * SfU * SfA * SfG * SmA * SmU * SmC * SmU * SmG *
UAUUAGAUCUGUCGC
SSSSSSSSS


11053
SmU * SmC * SmG * SfC * SfC * SfC * SfU * SfA * SfC
CCUAC
SSSSSSSSSS





WV-
fG * SfA * SfU * SfC * SfU * SfG * SmU * SmC * SmG * SmC * SmC *
GAUCUGUCGCCCUAC
SSSSSSSSS


11054
SmC * SmU * SmA * SfC * SfC * SfU * SfC * SfU * SfU
CUCUU
SSSSSSSSSS





WV-
fG * SfU * SfC * SfG * SfC * SfC * SmC * SmU * SmA * SmC * SmC *
GUCGCCCUACCUCUU
SSSSSSSSS


11055
SmU * SmC * SmU * SfU * SfU * SfU * SfU * SfU * SfC
UUUUC
SSSSSSSSSS





WV-
fC * SfC * SfU * SfA * SfC * SfC * SmU * SmC * SmU * SmU * SmU *
CCUACCUCUUUUUUC
SSSSSSSSS


11056
SmU * SmU * SmU * SfC * SfU * SfG * SfU * SfC * SfU
UGUCU
SSSSSSSSSS





WV-
fC * SfU * SfC * SfU * SfU * SfU * SmU * SmU * SmU * SmC * SmU *
CUCUUUUUUCUGUCU
SSSSSSSSS


11057
SmG * SmU * SmC * SfU * SfG * SfA * SfC * SfA * SfG
GACAG
SSSSSSSSSS





WV-
fU * SfU * SfU * SfU * SfC * SfU * SmG * SmU * SmC * SmU * SmG *
UUUUCUGUCUGACAG
SSSSSSSSS


11058
SmA * SmC * SmA * SfG * SfC * SfU * SfG * SfU * SfU
CUGUU
SSSSSSSSSS





WV-
fU * SfG * SfU * SfC * SfU * SfG * SmA * SmC * SmA * SmG * SmC *
UGUCUGACAGCUGUU
SSSSSSSSS


11059
SmU * SmG * SmU * SfU * SfU * SfG * SfC * SfA * SfG
UGCAG
SSSSSSSSSS





WV-
fG * SfA * SfC * SfA * SfG * SfC * SmU * SmG * SmU * SmU * SmU *
GACAGCUGUUUGCAG
SSSSSSSSS


11060
SmG * SmC * SmA * SfG * SfA * SfC * SfC * SfU * SfC
ACCUC
SSSSSSSSSS





WV-
fU * SfU * SfG * SfU * SfU * SfU * SmG * SmC * SmA * SmG * SmA *
CUGUUUGCAGACCUC
SSSSSSSSS


11061
SmC * SmC * SmU * SfC * SfC * SfU * SfG * SfC * SfC
CUGCC
SSSSSSSSSS





WV-
fU * SfG * SfC * SfA * SfG * SfA * SmC * SmC * SmU * SmC * SmC *
UGCAGACCUCCUGCC
SSSSSSSSS


11062
SmU * SmG * SmC * SfC * SfA * SfC * SfC * SfG * SfC
ACCGC
SSSSSSSSSS





WV-
fA * SfC * SfC * SfU * SfC * SfC * SmU * SmG * SmC * SmC * SmA *
ACCUCCUGCCACCGC
SSSSSSSSS


11063
SmC * SmC * SmG * SfC * SfA * SfG * SfA * SfU * SfU
AGAUU
SSSSSSSSSS





WV-
fC * SfU * SfG * SfC * SfC * SfA * SmC * SmC * SmG * SmC * SmA *
CUGCCACCGCAGAUU
SSSSSSSSS


11064
SmG * SmA * SmU * SfU * SfC * SfA * SfG * SfG * SfC
CAGGC
SSSSSSSSSS





WV-
fA * SfC * SfC * SfG * SfC * SfA * SmG * SmA * SmU * SmU * SmC *
ACCGCAGAUUCAGGC
SSSSSSSSS


11065
SmA * SmG * SmG * SfC * SfU * SfU * SfC * SfC * SfC
UUCCC
SSSSSSSSSS





WV-
fA * SfG * SfA * SfU * SfG * SfC * SmA * SmG * SmG * SmC * SmU *
AGAUUCAGGCUUCCC
SSSSSSSSS


11066
SmU * SmC * SmC * SfC * SfA * SfA * SfU * SfU * SfU
AAUUU
SSSSSSSSSS





WV-
fC * SfA * SfG * SfG * SfC * SfU * SmU * SmC * SmC * SmC * SmA *
CAGGCUUCCCAAUUU
SSSSSSSSS


11067
SmA * SmU * SmU * SfU * SfU * SfU * SfC * SfC * SfU
UUCCU
SSSSSSSSSS





WV-
fU * SfU * SfC * SfC * SfC * SfA * SmA * SmU * SmU * SmU * SmU *
UUCCCAAUUUUUCCU
SSSSSSSSS


11068
SmU * SmC * SmC * SfU * SfG * SfU * SfA * SfG * SfA
GUAGA
SSSSSSSSSS





WV-
fA * SfA * SfU * SfU * SfU * SfU * SmU * SmC * SmC * SmU * SmG *
AAUUUUUCCUGUAGA
SSSSSSSSS


11069
SmU * SmA * SmG * SfA * SfA * SfU * SfA * SfC * SfU
AUACU
SSSSSSSSSS





WV-
fU * SfU * SfC * SfC * SfU * SfG * SmU * SmA * SmG * SmA * SmA *
UUCCUGUAGAAUACU
SSSSSSSSS


11070
SmU * SmA * SmC * SfU * SfG * SfG * SfC * SfA * SfU
GGCAU
SSSSSSSSSS





WV-
fG * SfU * SfA * SfG * SfA * SfA * SmU * SmA * SmC * SmU * SmG *
GUAGAAUACUGGCAU
SSSSSSSSS


11071
SmG * SmC * SmA * SfU * SfC * SfU * SfG * SfU * SfU
CUGUU
SSSSSSSSSS





WV-
fA * SfG * SfA * SfC * SfU * SfG * SmG * SmC * SmA * SmU * SmC *
AUACUGGCAUCUGUU
SSSSSSSSS


11072
SmU * SmG * SmU * SfU * SfU * SfU * SfU * SfG * SfA
UUUGA
SSSSSSSSSS





WV-
fG * SfG * SfC * SfA * SfU * SfC * SmU * SmG * SmU * SmU * SmU *
GGCAUCUGUUUUUGA
SSSSSSSSS


11073
SmU * SmU * SmG * SfA * SfG * SfG * SfA * SfU * SfU
GGAUU
SSSSSSSSSS





WV-
fC * SfU * SfG * SfU * SfU * SfU * SmU * SmU * SmG * SmA * SmG *
CUGUUUUUGAGGAU
SSSSSSSSS


11074
SmG * SmA * SmU * SfU * SfG * SfC * SfU * SfG * SfA
UGCUGA
SSSSSSSSSS





WV-
fU * SfU * SfU * SfG * SfA * SfG * SmG * SmA * SmU * SmU * SmG *
UUUGAGGAUUGCUG
SSSSSSSSS


11075
SmC * SmU * SmG * SfA * SfA * SfU * SfU * SfA * SfU
AAUUAU
SSSSSSSSSS





WV-
fG * SfG * SfA * SfU * SfU * SfG * SmC * SmU * SmG * SmA * SmA *
GGAUUGCUGAAUUA
SSSSSSSSS


11076
SmU * SmU * SmA * SfU * SfU * SfU * SfC * SfU * SfU
UUUCUU
SSSSSSSSSS





WV-
fG * SfC * SfU * SfG * SfA * SfA * SmU * SmU * SmA * SmU * SmU *
GCUGAAUUAUUUCUU
SSSSSSSSS


11077
SmU * SmC * SmU * SfU * SfC * SfC * SfC * SfC * SfA
CCCCA
SSSSSSSSSS





WV-
fA * SfU * SfU * SfA * SfU * SfU * SmU * SmC * SmU * SmU * SmC *
AUUAUUUCUUCCCCA
SSSSSSSSS


11078
SmC * SmC * SmC * SfA * SfG * SfU * SfU * SfG * SfC
GUUGC
SSSSSSSSSS





WV-
fU * SfU * SfC * SfU * SfU * SfC * SmC * SmC * SmC * SmA * SmG *
UUCUUCCCCAGUUGC
SSSSSSSSS


11079
SmU * SmU * SmG * SfC * SfA * SfU * SfU * SfC * SfA
AUUCA
SSSSSSSSSS





WV-
fC * SfC * SfC * SfC * SfA * SfG * SmU * SmU * SmG * SmC * SmA *
CCCCAGUUGCAUUCA
SSSSSSSSS


11080
SmU * SmU * SmC * SfA * SfA * SfU * SfG * SfU * SfU
AUGUU
SSSSSSSSSS





WV-
fG * SfU * SfU * SfG * SfC * SfA * SmU * SmU * SmC * SmA * SmA *
GUUGCAUUCAAUGUU
SSSSSSSSS


11081
SmU * SmG * SmU * SfU * SfU * SfU * SfG * SfA * SfC
CUGAC
SSSSSSSSSS





WV-
fA * SfU * SfU * SfC * SfA * SfA * SmU * SmG * SmU * SmU * SmC *
AUUCAAUGUUCUGAC
SSSSSSSSS


11082
SmU * SmG * SmA * SfC * SfA * SfA * SfC * SfA * SfG
AACAG
SSSSSSSSSS





WV-
fA * SfU * SfG * SfU * SfU * SfC * SmU * SmG * SmA * SmC * SmA *
AUGUUCUGACAACAG
SSSSSSSSS


11083
SmA * SmC * SmA * SfG * SfU * SfU * SfU * SfG * SfC
UUUGC
SSSSSSSSSS





WV-
fC * SfU * SfG * SfA * SfC * SfA * SmA * SmC * SmA * SmG * SmU *
CUGACAACAGUUUGC
SSSSSSSSS


11084
SmU * SmU * SmG * SfC * SfC * SfG * SfC * SfU * SfG
CGCUG
SSSSSSSSSS





WV-
fA * SfA * SfC * SfA * SfG * SfU * SmU * SmU * SmG * SmC * SmC *
AACAGUUUGCCGCUG
SSSSSSSSS


11085
SmG * SmC * SmU * SfG * SfC * SfC * SfC * SfA * SfA
CCCAA
SSSSSSSSSS





WV-
fU * SfU * SfU * SfG * SfC * SfC * SmG * SmC * SmU * SmG * SmC *
UUUGCCGCUGCCCAA
SSSSSSSSS


11086
SmC * SmC * SmA * SfA * SfU * SfG * SfC * SfC * SfA
UGCCA
SSSSSSSSSS





WV-
fC * SfG * SfC * SfU * SfG * SfC * SmC * SmC * SmA * SmA * SmU *
CGCUGCCCAAUGCCA
SSSSSSSSS


11087
SmG * SmC * SmC * SfA * SfU * SfC * SfC * SfU * SfG
UCCUG
SSSSSSSSSS





WV-
fC * SfC * SfC * SfA * SfA * SfU * SmG * SmC * SmC * SmA * SmU *
CCCAAUGCCAUCCUG
SSSSSSSSS


11088
SmC * SmC * SmU * SfG * SfG * SfA * SfG * SfU * SfU
GAGUU
SSSSSSSSSS





WV-
fU * SfG * SfC * SfC * SfA * SfU * SmC * SmC * SmU * SmG * SmG *
UGCCAUCCUGGAGUU
SSSSSSSSS


11089
SmA * SmG * SmU * SfU * SfC * SfC * SfU * SfG * SfU
CCUGU
SSSSSSSSSS





WV-
fU * SfC * SfC * SfU * SfG * SfG * SmA * SmG * SmU * SmU * SmC *
UCCUGGAGUUCCUGU
SSSSSSSSS


11090
SmC * SmU * SmG * SfU * SfA * SfA * SfG * SfA * SfU
AAGAU
SSSSSSSSSS





WV-
fG * SfA * SfG * SfU * SfU * SfC * SmC * SmU * SmG * SmU * SmA *
GAGUUCCUGUAAGAU
SSSSSSSSS


11091
SmA * SmG * SmA * SfU * SfA * SfC * SfC * SfA * SfA
ACCAA
SSSSSSSSSS





WV-
fC * SfC * SfU * SfG * SfU * SfA * SmA * SmG * SmA * SmU * SmA *
CCUGUAAGAUACCAA
SSSSSSSSS


11092
SmC * SmC * SmA * SfA * SfA * SfA * SfA * SfG * SfG
AAAGG
SSSSSSSSSS





WV-
fA * SfA * SfG * SfA * SfU * SfA * SmC * SmC * SmA * SmA * SmA *
AAGAUACCAAAAAGG
SSSSSSSSS


11093
SmA * SmA * SmG * SfG * SfC * SfA * SfA * SfA * SfA
CAAAA
SSSSSSSSSS





WV-
fA * SfC * SfC * SfA * SfA * SfA * SmA * SmA * SmG * SmG * SmC *
ACCAAAAAGGCAAAA
SSSSSSSSS


11094
SmA * SmA * SmA * SfA * SfC * SfA * SfA * SfA * SfA
CAAAA
SSSSSSSSSS





WV-
fA * SfA * SfA * SfG * SfG * SfC * SmA * SmA * SmA * SmA * SmC *
AAAGGCAAAACAAAA
SSSSSSSSS


11095
SmA * SmA * SmA * SfA * SfA * SfU * SfG * SfA * SfA
AUGAA
SSSSSSSSSS





WV-
fC * SfA * SfA * SfA * SfA * SfC * SmA * SmA * SmA * SmA * SmA *
CAAAACAAAAAUGAA
SSSSSSSSS


11096
SmU * SmG * SmA * SfA * SfG * SfC * SfC * SfC * SfC
GCCCC
SSSSSSSSSS





WV-
fC * SfA * SfA * SfA * SfA * SfA * SmU * SmG * SmA * SmA * SmG *
CAAAAAUGAAGCCCC
SSSSSSSSS


11097
SmC * SmC * SmC * SfC * SfA * SfU * SfG * SfU * SfC
AUGUC
SSSSSSSSSS





WV-
fA * SfU * SfG * SfA * SfA * SfG * SmC * SmC * SmC * SmC * SmA *
AUGAAGCCCCAUGUC
SSSSSSSSS


11098
SmU * SmG * SmU * SfC * SfU * SfU * SfU * SfU * SfU
UUUUU
SSSSSSSSSS





WV-
fG * SfC * SfC * SfC * SfC * SfA * SmU * SmG * SmU * SmC * SmU *
GCCCCAUGUCUUUUU
SSSSSSSSS


11099
SmU * SmU * SmU * SfU * SfA * SfU * SfU * SfU * SfG
AUUUG
SSSSSSSSSS





WV-
fA * SfU * SfG * SfU * SfC * SfU * SmU * SmU * SmU * SmU * SmA *
AUGUCUUUUUAUUU
SSSSSSSSS


11100
SmU * SmU * SmU * SfG * SfA * SfG * SfA * SfA * SfA
GAGAAA
SSSSSSSSSS





WV-
fU * SfU * SfU * SfU * SfU * SfA * SmU * SmU * SmU * SmG * SmA *
UUUUUAUUUGAGAA
SSSSSSSSS


11101
SmG * SmA * SmA * SfA * SfA * SfG * SfA * SfU * SfU
AAGAUU
SSSSSSSSSS





WV-
fA * SfU * SfU * SfU * SfG * SfA * SmG * SmA * SmA * SmA * SmA *
AUUUGAGAAAAGAU
SSSSSSSSS


11102
SmG * SmA * SmU * SfU * SfA * SfA * SfA * SfC * SfA
UAAACA
SSSSSSSSSS





WV-
fA * SfG * SfA * SfA * SfA * SfA * SmG * SmA * SmU * SmU * SmA *
AGAAAAGAUUAAAC
SSSSSSSSS


11103
SmA * SmA * SmC * SfA * SfG * SfU * SfG * SfU * SfG
AGUGUG
SSSSSSSSSS





WV-
fA * SfG * SfA * SfU * SfU * SfA * SmA * SmA * SmC * SmA * SmG *
AGAUUAAACAGUGU
SSSSSSSSS


11104
SmU * SmG * SmU * SfG * SfC * SfU * SfA * SfC * SfC
GCUACC
SSSSSSSSSS





WV-
fA * SfA * SfA * SfC * SfA * SfG * SmU * SmG * SmU * SmG * SmC *
AAACAGUGUGCUACC
SSSSSSSSS


11105
SmU * SmA * SmC * SfC * SfA * SfC * SfA * SfU * SfG
ACAUG
SSSSSSSSSS





WV-
fU * fC * fA * fC * fU * fC * mAfG * mAmU * fA * mGmUfU * fG * fA *
UCACUCAGAUAGUUG
XXXXXX O X O


11231
fA * fG * fC * fC
AAGCC
XX O O XXXXXX





WV-
fU * fC * fA * fC * fU * fC * fA * fG * mAmU * fA * mGmUfU * fG * fA *
UCACUCAGAUAGUUG
XXXXXXXX O XX


11232
fA * fG * fC * fC
AAGCC
O O XXXXXX





WV-
fU * fC * fA * fC * fU * fC * mAfG * fA * mU * fA * mGmUfU * fG * fA *
UCACUCAGAUAGUUG
XXXXXX O XXXX


11233
fA * fG * fC * fC
AAGCC
O O XXXXXX





WV-
fU * RfC * RfA * RfC * RfU * RfC * RmAfG * RmAmU * RfA *
UCACUCAGAUAGUUG
RRRRRR O R O RR


11234
RmGmUfU * RfG * RfA * RfA * RfG * RfC * RfC
AAGCC
O O RRRRRR





WV-
fU * RfC * RfA * RfC * RfU * RfC * RfA * RfG * RmAmfU * RfA *
UCACUCAGAUAGUUG
RRRRRRRR O RR


11235
RmGmUfU * RfG * RfA * RfA * RfG * RfC * RfC
AAGCC
O O RRRRRR





WV-
fU * RfC * RfA * RfC * RfU * RfC * RmAfG * RfA * RmU * RfA *
UCACUCAGAUAGUUG
RRRRRR O RRRR


11236
RmGmUfU * RfG * RfA * RfA * RfG * RfC * RfC
AAGCC
O O RRRRRR





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fA * SmGn001mA * SfU *
UCAAGGAAGAUGGCA
SSSSSSn O Sn O


11237
SmGn001mGn001fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SSn O n O SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001SfA * SmGn001SmA * SfU *
UCAAGGAAGAUGGCA
SSSSSSnSSnSS


11238
SmGn001SmGn001SfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SnSnSSSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001RfA * SmGn001RmA * SfU *
UCAAGGAAGAUGGCA
SSSSSSnRSnRSSn


11239
SmGn001RmGn001RfC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
RnRSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fU * SmG * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSn O SSSn


11340
SmAn001mGn001fG * SfU * SfG * SfU * SfU * SfC
UGUUC
O n O SSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fU * SmG * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSn O SSSn


11341
SmAn001fG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
O SSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fU * SmG * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSn O SSSn


11342
SmAn001mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
O SSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SmAn001mU * SfA *
UCACUCAGAUAGUUG
SSSSSSn O Sn O


11343
SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSn O n O SSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SfA * SfG * SmAn001mU * SfA *
UCACUCAGAUAGUUG
SSSSSSSSn O SSn O


11344
SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
n O SSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA* SmU * SfA *
UCACUCAGAUAGUUG
SSSSSSn O SSSSn O


11345
SmGn001mUn001fU SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
n O SSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SmAn001mU * SfA *
UCACUCAGAUAGUUG
SSSSSSn O Sn O


11346
SfG * SmUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSSn O SSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SmAn001mU * SfA *
UCACUCAGAUAGUUG
SSSSSSn O Sn O


11347
SmGn001fU * SfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSn O SSSSSSS





WV-
BrfUfCfAfCfUfCmAfGfAmU fAmGmUfUfGfAfAfGfCfC
UCACUCAGAUAGUUG
SSSSSSOSSSS


11544

AAGCC
OOSSSSSS





WV-
Acet5fUfCfAfCfUfCmAfGf AmUfAmGmUfUfGfAfAfGfCfC
UCACUCAGAUAGUUG
SSSSSSOSSSS


11545

AAGCC
OOSSSSSS





WV-
BrfUfCfAfCfUfCmAfGfAmU fAmGmUfUfGfAfAfGfCfC
UCACUCAGAUAGUUG
XXXXXXOXXXX


11546

AAGCC
OOXXXXXX





WV-
Acet5fUfCfAfCfUfCmAfGf AmUfAmGmUfUfGfAfAfGfCfC
UCACUCAGAUAGUUG
XXXXXXOXXXX


11547

AAGCC
OOXXXXXX





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001 fUn001 mGn001
CUCCGGUUCUGAAGG
SSSSSSSSnXnX


12123
fAn001 mAn001mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
nXnXnX SSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fUn001mG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnXnX


12124
* SmAn001mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnXSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fU * SmGn001fA
CUCCGGUUCUGAAGG
SSSSSSSSnXS


12125
* SmAn001mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
nXSnXSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fU * SmG *
CUCCGGUUCUGAAGG
SSSSSSSSnXSS


12126
SfAn001mAn001mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
nXnXSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fU *
CUCCGGUUCUGAAGG
SSSSSSSSnXS


12127
SmGn001fAn001mAn001mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
nXnXnXSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fUn001mG *
CUCCGGUUCUGAAGG
SSSSSSSSnXnX


12128
SfAn001mAn001mG * SfG * SfU * SfG * SfG * SfU * SfC
UGUUC
SnXnXSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU *
CUCCGGUUCUGAAGG
SSSSSSSSnXnX


12129
SmCn001fUn001mGn001fA * SmAn001mG * SfG * SfU * SfG * SfU * SfU
UGUUC
nXSnXSSSSSS



* SfC







WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fAn001mGn001 mAn001
UCAAGGAAGAUGGCA
SSSSSSnXnX


12130
fUn001 mGn001 mGn001fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
nXnXnX nXnX





SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fAn001mGn001mA * SfU *
UCAAGGAAGAUGGCA
SSSSSSnXnXnXSSn


12131
SmGn001mGn001fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
XnX SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fA * SmGn001mAn001fU *
UCAAGGAAGAUGGCA
SSSSSSnXSnXnXSn


12132
SmGn001mGn001fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
XnX SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fA * SmGn001mA *
UCAAGGAAGAUGGCA
SSSSSSnXSnXSnXn


12133
SfUn001mGn001mGn001fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
XnX SSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fA *
UCAAGGAAGAUGGCA
SSSSSSnXSnXnXn


12134
SmGn001mAn001fUn001 mGn001 mGn001fC * SfA * SfU * SfU * SfU *
UUUCU
XnXnX SSSSSS



SfC * SfU







WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fAn001 mGn001mA *
UCAAGGAAGAUGGCA
SSSSSSnXnXnXS


12135
SfUn001mGn001mGn001fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
nXnXnXSSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAn001fAn001 mGn001mAn001fU *
UCAAGGAAGAUGGCA
SSSSSSnXnXnX


12136
SmGn001mGn001fC * SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
nXSnXnX SSSSSS





WV-
rGrGrCrUrUrCrArArCrUrArU rCrUrGrArGrUrGrA
GGCUUCAACUAUCUG
OOOOOOOOOOOO


12422

AGUGA
O OOOOOO





WV-
rGrArArCrArCrCrUrUrCrArG rArArCrCrGrGrArG
GAACACCUUCAGAAC
OOOOOOOOOO


12423

CGGAG
OOO OOOOOO





WV-
fA * SfU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU *
AUCAAGGAAGAUGGC
SSSSSSSOSOS


12494
SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
AUUUCU
SOOSSSS SS





WV-
fU * SfU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU *
UUCAAGGAAGAUGGC
SSSSSSSOSOS


12495
SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
AUUUCU
SOOSSSS SS





WV-
fUfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
UCAAGGAAGAUGGCA
OSSSS


12496
SfA * SfU * SfU * SfU * SfC * SfU
UUUCU
SOSOSSOOSSSS SS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001fU * SmG * SfA *
CUCCGGUUCUGAAGG
SSSSSSSSnXS


12553
SmAn001mGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnXOSSSS S





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001RfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnRS


12554
* SmAn001RmGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnROSSSS S





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001RfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnRS


12555
* SmAn001RfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnRSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001RfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnRS


12556
* SmAn001RmG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnRSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001SfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnSSS


12557
* SmAn001SmGfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SnSOSSSS S





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001SfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnSS


12558
* SmAn001SfG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnSSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001SfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnSS


12559
* SmAn001SmG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnSSSSSSS





WV-
L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU * SfA *
UCACUCAGAUAGUUG
OSSSS SSOSSSS


12566
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
OOSSSS SS





WV-
Mod092L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUAGUUG
OSSSS SSOSSSS


12567
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
OOSSSS SS





WV-
Mod093L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUAGUUG
OSSSS SSOSSSS


12568
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
OOSSSS SS





WV-
L001TTTfU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU * SfA *
TTTUCACUCAGAUAG
OOOOSSSS


12569
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
UUGAAGCC
SSOSSSS OOSSSS





SS





WV-
Mod020L001TTTfU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU
TTTUCACUCAGAUAG
OOOOSSSS


12570
* SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
UUGAAGCC
SSOSSSS OOSSSS





SS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU * SfA *
UCACUCAGAUAGUUG
SSSSSSOSSSS


12571
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfCTTTL005
AAGCCTTT
OOSSSS SSOOOO





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU * SfA *
UCACUCAGAUAGUUG
SSSSSSOSSSS


12572
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfCTTTL005Mod020
AAGCCTTT
OOSSSS SSOOOOO





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001RfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnRS


12872
* SmAn001RmGn001RfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnRnRSSSSS





WV-
fU * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001SfU * SmG * SfA
CUCCGGUUCUGAAGG
SSSSSSSSnSS


12873
* SmAn001SmGn001SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
SSnSnSSSSSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCn001fU * SmG *
CUCCGGUUCUGAAGG
SSnXSSnXSSnX


12876
SfA * SmAn001mGn001fG * SfU * SfGn001fU * SfU * SfC
UGUUC
SSSnXnXSSnXSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCn001fU * SmG *
CUCCGGUUCUGAAGG
SSnXSSnXSSnXS


12877
SfA * SmAn001fG * SfG * SfU * SfGn001fU * SfU * SfC
UGUUC
SSnXSSSnXSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCn001fU * SmG *
CUCCGGUUCUGAAGG
SSnXSSnXSSnXS


12878
SfA * SmAn001mG * SfG * SfU * SfGn001fU * SfU * SfC
UGUUC
SSnXSSSnXSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG * SfA *
CUCCGGUUCUGAAGG
SSnXSSnXSSOS


12879
SmAmGfG * SfU * SfGn001fU * SfU * SfC
UGUUC
SSOOSSnXSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG * SfA *
CUCCGGUUCUGAAGG
SSnXSSnXSSOS


12880
SmAfG * SfG * SfU * SfGn001fU * SfU * SfC
UGUUC
SSOSSSnXSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG * SfA *
CUCCGGUUCUGAAGG
SSnXSSnXSSOS


12881
SmAmG * SfG * SfU * SfGn001fU * SfU * SfC
UGUUC
SSOSSSnXSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SmUn001mU * SmCn001mU *
CUCCGGUUCUGAAGG
SSSSSSnXSnXS


12882
SmGn001mA * SmAn001mG * SfG * SfU * SfG * SfU * SfU * SfC
UGUUC
nXSnXSSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SmUn001mUn001 mCn001mUn001
CUCCGGUUCUGAAGG
SSSSSSnXnXnXnXn


12883
mGn001mAn001 mAn001mGn001fG * SfU * SfG * SfU * SfU * SfC
UGUUC
X nXnXnXSSSSS





WV-
fU * SfC * SfAn001fC * SfU * SfCn001mAn001fG * SfA * SmU * SfA *
UCACUCAGAUAGUUG
SSnXSSnXnXSSS


12884
SmGn001mUn001fU * SfG * SfA * SfAn001fG * SfC * SfC
AAGCC
SnXnXSSSnXSS





WV-
fU * SfC * SfAn001fC * SfU * SfCn001mAfG * SfA * SmU * SfA *
UCACUCAGAUAGUUG
SSnXSSnXOSSSS


12885
SmGmUfU * SfG * SfA * SfAn001fG * SfC * SfC
AAGCC
OOSSSnXSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmA * SmG * SmA * SmU * SmA *
UCACUCAGAUAGUUG
SSSSSSSSSSS


12886
SmG * SmU * SmU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SSSSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn001mG * SmAn001mU *
UCACUCAGAUAGUUG
SSSSSSnXSnX


12887
SmAn001mG * SmUn001mU * SfG * SfA * SfA * SfG * SfC * SfC
AAGCC
SnXSnX SSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn001mGn001mAn001 mUn001
UCACUCAGAUAGUUG
SSSSSSnXnXnXnXn


12888
mAn001mGn001 mUn001 mUn001fG * SfA * SfA * SfG * SfC * SfC
AAGCC
X nXnXnXSSSSS





WV-
GCGTGGTACCACGCL012mU * Geom5Ceom5CeomA * G * G * C * T * G
GCGTGGTACCACGCU
OOOOOOOOOO


12904
* G * T * T * A * T * mG * mA * mC * mU * mC
GCCA
OOOOOXOOO




GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
GCGTGG * T * A * CCACGCL012mU * Geom5Ceom5CeomA * G * G * C
GCGTGGTACCACGCU
OOOOOXXXOO


12905
* T * G * G * T * T * A * T * mG * mA * mC * mU * mC
GCCA
OOOOOXOOO




GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
G * C * G * T * G * G * T * A * C * C * A * C * G * CL012mU *
GCGTGGTACCACGCU
XXXXXXXXXXXX


12906
Geom5Ceom5CeomA * G * G * C * T * G * G * T * T * A * T * mG * mA *
GCCA
XOOXOOOXXX



mC * mU * mC
GGCTGGTTATGACUC
XXXXXXXXXXXX





WV-
GfCGfUGGTACfCAfCGfCL012mU * Geom5Ceom5CeomA * G * G * C * T
GCGUGGTACCACGCU
OOOOOOOOOOO


12907
* G * G * T * T * A * T * mG * mA * mC * mU * mC
GCCA
OOOOXOOO




GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
G * fCG * fUG * G * T * A * CfCA * fCG * fCL012mU *
GCGUGGTACCACGCU
XOXOXXXXOOXO


12908
Geom5Ceom5CeomA * G * G * C * T * G * G * T * T * A * T * mG * mA *
GCCA
XOOXOOO



mC * mU * mC
GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
G * fC * G * fU * G * G * T * A * C * fC * A * fC * G * fCL012mU *
GCGUGGTACCACGCU
XXXXXXXXXXXX


12909
Geom5Ceom5CeomA * G * G * C * T * G * G * T * T * A * T * mG * mA *
GCCA
XOOXOOO



mC * mU * mC
GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
GCGTGGTACCACGCL012BrmU * Geom5Ceom5CeomA * G * G * C * T *
GCGTGGTACCACGCU
OOOOOOOOOOO


12910
G * G * T * T * A * T * mG * mA * mC * mU * mC
GCCA
OOOOXOOO




GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
GCGTGG * T * A * CCACGCL012BrmU * Geom5Ceom5CeomA * G * G *
GCGTGGTACCACGCU
OOOOOXXXOOO


12911
C * T * G * G * T * T * A * T * mG * mA * mC * mU * mC
GCCA
OOOOXOOO




GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
G * C * G * T * G * G * T * A * C * C * A * C * G * CL012BrmU *
GCGTGGTACCACGCU
XXXXXXXXXXXX


12912
Geom5Ceo m5CeomA * G * G * C * T * G * G * T * T * A * T * mG * mA *
GCCA
XOOXOOO



mC * mU * mC
GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
GfCGfUGGTACfCAfCGfCL012BrmU * Geom5Ceom5CeomA * G * G * C
GCGUGGTACCACGCU
OOOOOOOOOOO


12913
* T * G * G * T * T * A * T * mG * mA * mC * mU * mC
GCCA
OOOOXOOO




GGCTGGTTATGACUC
XXXXXXXXXXXX





XXX





WV-
G * fCG * fUG * G * T * A * CfCA * fCG * fCL012BrmU * Geom5Ceo
GCGUGGTACCACGCU
XOXOXXXXOOXO


12914
m5CeomA * G * G * C * T * G * G * T * T * A * T * mG * mA * mC * mU
GCCA
XOOXOOOXXX



* mC
GGCTGGTTATGACUC
XXXXXXXXXXXX





WV-
G * fC * G * fU * G * G * T * A * C * fC * A * fC * G * fCL012BrmU *
GCGUGGTACCACGCU
XXXXXXXXXXXX


12915
Geom5Ceo m5CeomA * G * G * C * T * G * G * T * T * A * T * mG * mA
GCCA
XOOXOOOXXXX



mC * mU * mC
GGCTGGTTATGACUC
XXXXXXXXXXX





WV-
fC * SfU * SfC * SfC * SfU * SfG * SfU * SfU * SmCfU * SmG * SfC *
CUCCUGUUCUG
SSSSSSSSOSS


13319
SmAmGfC * SfU * SfG * SfU * SfU * SfC
CAGCUGUUC
SOOSSSSS





WV-
fC * SfU * SfC * SfC * SfU * SfG * SfU * SfU * SmCfU * SmG * SfC *
CUCCUGUUCUG
SSSSSSSSOSS


13320
SmAfG * SfC * SfU * SfG * SfU * SfU * SfC
CAGCUGUUC
SOSSSSSS





WV-
fC * SfU * SfC * SfC * SfU * SfG * SfU * SfU * SmCfU * SmG * SfC *
CUCCUGUUCUG
SSSSSSSSOSS


13321
SmAmG * SfC * SfU * SfG * SfU * SfU * SfC
CAGCUGUUC
SOSSSSSS





WV-
fC * SfU * SfC * SfC * SfU * SfG * SfU * SfU * SfC * SfU * SmG * SfC *
CUCCUGUUCUG
SSSSSSSSSSS


13322
SmAmGfC * SfU * SfG * SfU * SfU * SfC
CAGCUGUUC
SOOSSSSS





WV-
GTTGCCTCCGGTTCTGA AGGTGTTC +all PMO
GTTGCCTCCGG
OOOOOOOOOOO


13405

TTCTGAAGGTGTTC
OOOOOOOOOOOOO





WV-
CTCCGGTTCTGAAGGTGTTC +all PMO
CTCCGGTTCTG
OOOOOOOOOOO


13406

AAGGTGTTC
OOOOOOOO





WV-
TGCCTCCGGTTCTGA AGGTGTTCTTGTA +all PMO
TGCCTCCGGTT
OOOOOOOOOOO


13407

CTGAAGGTGTT
OOOOOOOOOOO




CTTGTA
OOOOO





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001RfU * SmG * SfA
CUCCGGUUC
SSSSSSSSnRS


13408
* SmAn001RfGn001RfG * SfU * SfG * SfU * SfU * SfC
UGAAGGUGUUC
SSnRnRSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCn001RfU * SmG * SfA
CUCCGGUUC
SSSSSSSSnRSSS


13409
* SmAn001RfGfG * SfU * SfG * SfU * SfU * SfC
UGAAGGUGUUC
nROSSSSS





WV-
fU * fU * fG * fu * fA * fC * fU * mU * mC * mA * mU *
UUGUACUUCAUCCCACUGAUUCUGA
XXXXXXXXXXXXXX


13594
mC * mC * mC * mA * mC * mU * fG * fA *

XXXXXnXnXnXnXnX



fUn001fUn001fCn001fUn001fGn00fA







WV-
fC * fC * fG * fG * fU * fU * fC * mU * mG * mA * mA *
CCGGUUCUGAAGGUGUUCUUGUACU
XXXXXXXXXXXXXX


13595
mG * mG * mU * mG * mU * mU * fC * fU *

XXXXXnXnXnXnXnX



fUn001fGn001fUn001fAn001fCn001fU







WV-
fUn001fUn001fGn001fUn001fAn001fC * fU * mU * mC *
UUGUACUUCAUCCCACUGAUUCUGA
nXnXnXnXnXXXXXXX


13596
mA * mU * mC * mC * mC * mA * mC * mU * fG * fA * fU

XXXXXXX XXXXXX



* fU * fC * fU * fG * fA







WV-
fCn001fCn001fGn001fGn001fUn001fU * fC * mU * mG *
CCGGUUCUGAAGGUGUUCUUGUACU
nXnXnXnXnXXXXXXX


13597
mA * mA * mG * mG * mU * mG * mU * mU * fC * fU *

XXXXXXX XXXXXX



fU * fG * fU * fA * fC * fU







WV-
fU * SfG * SfA * SfC * SfU * SfU * SmG * SmC * SmU *
UGACUUCUCAAGCUUUUCU
SSSSS SSSSS SSSSS


13701
SmC * SmA * SmA * SmG * SmC * SfU * SfU * SfU * SfU

SSSS



* SfC * SfU







WV-
fC * SfA * SfA * SfG * SfC * SfU * SmU * SmU * SmU *
CAAGCUUUUCUUUUAGUUGC
SSSSS SSSSS SSSSS


13702
SmC * SmU * SmU * SmU * SmU * SfA * SfG * SfU * SfU

SSSS



* SfG * SfC







WV-
fC * SfU * SfU * SfU * SfU * SfA * SmG * SmU * SmU *
CUUUUAGUUGCUGCUCUUUU
SSSSS SSSSS SSSSS


13703
SmG * SmC * SmU * SmG * SmC * SfU * SfC * SfU * SfU

SSSS



* SfU * SfU







WV-
fG * SfC * SfU * SfG * SfC * SfU * SmC * SmU * SmU *
GCUGCUCUUUUCCAGGUUCA
SSSSS SSSSS SSSSS


13704
SmU * SmU * SmC * SmC * SmA * SfG * SfG * SfU * SfU

SSSS



* SfC * SfA







WV-
fU * SfU * SfC * SfC * SfA * SfG * SmG * SmU * SmU *
UUCCAGGUUCAAGUGGGAUA
SSSSS SSSSS SSSSS


13705
SmC * SmA * SmA * SmG * SmU * SfG * SfG * SfG * SfA

SSSS



* SfU * SfA







WV-
fC * SfA * SfA * SfG * SfU * SfG * SmG * SmG * SmA *
CAAGUGGGAUACUAGCAAUG
SSSSS SSSSS SSSSS


13706
SmU * SmA * SmC * SmU * SmA * SfG * SfC * SfA * SfA

SSSS



* SfU * SfG







WV-
fU * SfA * SfC * SfU * SfA * SfG * SmC * SmA * SmA *
UACUAGCAAUGUUAUCUGCU
SSSSS SSSSS SSSSS


13707
SmU * SmG * SmU * SmU * SmA * SfU * SfC * SfU * SfG

SSSS



* SfC * SfU







WV-
fU * SfG * SfU * SfU * SfA * SfU * SmC * SmU * SmG *
UGUUAUCUGCUUCCUCCAAC
SSSSS SSSSS SSSSS


13708
SmC * SmU * SmU * SmC * SmC * SfU * SfC * SfC * SfA

SSSS



* SfA * SfC







WV-
fC * SfU * SfU * SfC * SfC * SfU * SmC * SmC * SmA *
CUUCCUCCAACCAUAAAACA
SSSSS SSSSS SSSSS


13709
SmA * SmC * SmC * SmA * SmU * SfA * SfA * SfA * SfA

SSSS



* SfC * SfA







WV-
fC * SfC * SfA * SfU * SfA * SfA * SmA * SmA * SmC *
CCAUAAAACAAAUUCAUUUA
SSSSS SSSSS SSSSS


13710
SmA * SmA * SmA * SmU * SmU * SfC * SfA* SfU * SfU

SSSS



* SfU * SfA







WV-
fA * SfA * SfU * SfU * SfC * SfA * SmU * SmU * SmU *
AAUUCAUUUAAAUCUCUUUG
SSSSS SSSSS SSSSS


13711
SmA * SmA * SmA * SmU * SmC * SfU * SfC * SfU * SfU

SSSS



* SfU * SfG







WV-
fA * SfA * SfU * SfC * SfU * SfC * SmU * SmU * SmU *
AAUCUCUUUGAAAUUCUGAC
SSSSS SSSSS SSSSS


13712
SmG * SmA * SmA * SmA * SmU * SfU * SfC * SfU * SfG

SSSS



* SfA * SfC







WV-
fU * SfG * SfA * SfA * SfA * SfU * SmU * SmC * SmU *
UGAAAUUCUGACAAGAUAUU
SSSSS SSSSS SSSSS


13713
SmG * SmA * SmC * SmA * SmA * SfG * SfA * SfU * SfA

SSSS



* SfU * SfU







WV-
fA * SfC * SfA * SfA * SfG * SfA * SmU * SmA * SmU *
ACAAGAUAUUCUUUUGUUCU
SSSSS SSSSS SSSSS


13714
SmU * SmC * SmU * SmU * SmU * SfU * SfG * SfU * SfU

SSSS



* SfC * SfU







WV-
fU * SfA * SfU * SfU * SfC * SfU * SmU * SmU * SmU *
UAUUCUUUUGUUCUUCUAGC
SSSSS SSSSS SSSSS


13715
SmG * SmU * SmU * SmC * SmU * SfU * SfC * SfU * SfA

SSSS



* SfG * SfC







WV-
fU * SfU * SfC * SfU * SfU * SfU * SmU * SmG * SmU *
UUCUUUUGUUCUUCUAGCCU
SSSSS SSSSS SSSSS


13716
SmU * SmC * SmU * SmU * SmC * SfU * SfA * SfG * SfC

SSSS



* SfC * SfU







WV-
fA * SfU * SfC * SfC * SfA * SfC * SmU * SmG * SmG *
AUCCACUGGAGAUUUGUCUG
SSSSS SSSSS SSSSS


13717
SmA * SmG * SmA * SmU * SmU * SfU * SfG * SfU * SfC

SSSS



* SfU * SfG







WV-
fA * SfG * SfA * SfU * SfU * SfU * SmG * SmU * SmC *
AGAUUUGUCUGCUUGAGCUU
SSSSS SSSSS SSSSS


13718
SmU * SmG * SmC * SmU * SmU * SfG * SfA * SfG * SfC

SSSS



* SfU * SfU







WV-
fU * SfG * SfC * SfU * SfU * SfG * SmA * SmG * SmC *
UGCUUGAGCUUAUUUUCAAG
SSSSS SSSSS SSSSS


13719
SmU * SmU * SmA * SmU * SmU * SfU * SfU * SfC * SfA

SSSS



* SfA * SfG







WV-
fU * SfA * SfU * SfU * SfU * SfU * SmC * SmA * SmA *
UAUUUUCAAGUUUAUCUUGC
SSSSS SSSSS SSSSS


13720
SmG * SmU * SmU * SmU * SmA * SfU * SfC * SfU * SfU

SSSS



* SfG * SfC







WV-
fU * SfU * SfU * SfA * SfU * SfC * SmU * SmU * SmG *
UUUAUCUUGCUCUUCUGGGC
SSSSS SSSSS SSSSS


13721
SmC * SmU * SmC * SmU * SmU * SfC * SfU * SfG * SfG

SSSS



* SfG * SfC







WV-
fU * SfC * SfU * SfU * SfC * SfU * SmG * SmG * SmG *
UCUUCUGGGCUUAUGGGAGC
SSSSS SSSSS SSSSS


13722
SmC * SmU * SmU * SmA * SmU * SfG * SfG * SfG * SfA

SSSS



* SfG * SfC







WV-
fU * SfU * SfA * SfU * SfG * SfG * SmG * SmA * SmG *
UUAUGGGAGCACUUACAAGC
SSSSS SSSSS SSSSS


13723
SmC * SmA * SmC * SmU * SmU * SfA * SfC * SfA * SfA

SSSS



* SfG * SfC







WV-
fG * SfC * SfA * SfC * SfU * SfU * SmA * SmC * SmA *
GCACUUACAAGCACGGGUCC
SSSSS SSSSS SSSSS


13724
SmA * SmG * SmC * SmA * SmC * SfG * SfG * SfG * SfU

SSSS



* SfC * SfC







WV-
fG * SfC * SfA * SfC * SfG * SfG * SmG * SmU * SmC *
GCACGGGUCCUCCAGUUUCA
SSSSS SSSSS SSSSS


13725
SmC * SmU * SmC * SmC * SmA * SfG * SfU * SfU * SfU

SSSS



* SfC * SfA







WV-
fU * SfC * SfC * SfA * SfG * SfU * SmU * SmU * SmC *
UCCAGUUUCAUUUAAUUGUU
SSSSS SSSSS SSSSS


13726
SmA * SmU * SmU * SmU * SmA * SfA * SfU * SfU * SfG

SSSS



* SfU * SfU







WV-
fU * SfU * SfU * SfA * SfA * SfU * SmU * SmG * SmU *
UUUAAUUGUUUGAGAAUUCC
SSSSS SSSSS SSSSS


13727
SmU * SmU * SmG * SmA * SmG * SfA * SfA * SfU * SfU

SSSS



* SfC * SfC







WV-
fG * SfA * SfG * SfA * SfA * SfU * SmU * SmC * SmC *
GAGAAUUCCCUGGCGCAGGG
SSSSS SSSSS SSSSS


13728
SmC * SmU * SmG * SmG * SmC * SfG * SfC * SfA * SfG

SSSS



* SfG * SfG







WV-
fC * SfU * SfG * SfG * SfC * SfG * SmC * SmA * SmG *
CUGGCGCAGGGGCAACUCUU
SSSSS SSSSS SSSSS


13729
SmG * SmG * SmG * SmC * SmA * SfA * SfC * SfU * SfC

SSSS



* SfU * SfU







WV-
fG * SfC * SfA * SfG * SfG * SfG * SmG * SmC * SmA *
GCAGGGGCAACUCUUCCACC
SSSSS SSSSS SSSSS


13730
SmA * SmC * SmU * SmC * SmU * SfU * SfC * SfC * SfA

SSSS



* SfU * SfC







WV-
fG * SfG * SfC * SfA * SfA * SfC * SmU * SmC * SmU *
GGCAACUCUUCCACCAGUAA
SSSSS SSSSS SSSSS


13731
SmU * SmC * SmC * SmA * SmC * SfC * SfA * SfG * SfU

SSSS



* SfA * SfA







WV-
fC * SfU * SfC * SfU * SfU * SfC * SmC * SmA * SmC *
CUCUUCCACCAGUAACUGAA
SSSSS SSSSS SSSSS


13732
SmC * SmA * SmG * SmU * SmA * SfA * SfC * SfU * SfG

SSSS



* SfA * SfA







WV-
fU * SfU * SfC * SfG * SfA * SfU * SmC * SmC * SmG *
UUCGAUCCGUAAUGAUUGUU
SSSSS SSSSS SSSSS


13733
SmU * SmA * SmA * SmU * SmG * SfA * SfU * SfU * SfG

SSSS



* SfU * SfU







WV-
fA * SfA * SfU * SfG * SfA * SfU * SmU * SmG * SmU *
AAUGAUUGUUCUAGCCUCUU
SSSSS SSSSS SSSSS


13734
SmU * SmC * SmU * SmA * SmG * SfC * SfC * SfU * SfC

SSSS



* SfU * SfU







WV-
fC * SfU * SfA * SfG * SfC * SfC * SmU * SmC * SmU *
CUAGCCUCUUGAUUGCUGGU
SSSSS SSSSS SSSSS


13735
SmU * SmG * SmA * SmU * SmU * SfG * SfC * SfU * SfG

SSSS



* SfG * SfU







WV-
fG * SfA * SfU * SfU * SfG * SfC * SmU * SmG * SmG *
GAUUGCUGGUCUUGUUUUUC
SSSSS SSSSS SSSSS


13736
SmU * SmC * SmU * SmU * SmG * SfU * SfU * SfU * SfU

SSSS



* SfU * SfC







WV-
fC * SfU * SfU * SfG * SfU * SfU * SmU * SmU * SmU *
CUUGUUUUUCAAAUUUUGGG
SSSSS SSSSS SSSSS


13737
SmC * SmA * SmA * SmA * SmU * SfU * SfU * SfU * SfG

SSSS



* SfG * SfG







WV-
fA * SfA * SfA * SfU * SfU * SfU * SmU * SmG * SmG *
AAAUUUUGGGCAGCGGUAAU
SSSSS SSSSS SSSSS


13738
SmG * SmC * SmA * SmG * SmC * SfG * SfG * SfU * SfA

SSSS



* SfA * SfU







WV-
fC * SfA * SfG * SfC * SfG * SfG * SmU * SmA * SmA *
CAGCGGUAAUGAGUUCUUCC
SSSSS SSSSS SSSSS


13739
SmU * SmG * SmA * SmG * SmU * SfU * SfC * SfU * SfU

SSSS



* SfC * SfC







WV-
fG * SfA * SfG * SfU * SfU * SfC * SmU * SmU * SmC *
GAGUUCUUCCAACUGGGGAC
SSSSS SSSSS SSSSS


13740
SmC * SmA * SmA * SmC * SmU* SfG * SfG * SfG * SfG

SSSS



* SfA * SfC







WV-
fA * SfA * SfC * SfU * SfG * SfG * SmG * SmG * SmA *
AACUGGGGACGCCUCUGUUC
SSSSS SSSSS SSSSS


13741
SmC * SmG * SmC * SmC * SmU * SfC * SfU * SfG * SfU

SSSS



* SfU * SfC







WV-
fG * SfC * SfC * SfU * SfC * SfU * SmG * SmU * SmU *
GCCUCUGUUCCAAAUCCUGC
SSSSS SSSSS SSSSS


13742
SmC * SmC * SmA * SmA * SmA * SfU * SfC * SfC * SfU

SSSS



* SfG * SfC







WV-
fU * SfG * SfU * SfU * SfC * SfC * SmA * SmA * SmA *
UGUUCAAAUCCUGCAUUGU
SSSSS SSSSS SSSSS


13743
SmU * SmC * SmC * SmU * SmG * SfC * SfA * SfU * SfU

SSSS



* SfG * SfU







WV-
fC * SfA * SfA * SfA * SfU * SfC * SmC * SmU * SmG *
CAAAUCCUGCAUUGUUGCCU
SSSSS SSSSS SSSSS


13744
SmC * SmA * SmU * SmU * SmG * SfU * SfU * SfG * SfC

SSSS



* SfC * SfU







WV-
fC * SfU * SfU * SfU * SfU * SfA * SmU * SmG * SmA *
CUUUUAUGAAUGCUUCUCCA
SSSSS SSSSS SSSSS


13745
SmA * SmU * SmG * SmC * SmU * SfU * SfC * SfU * SfC

SSSS



* SfC * SfA







WV-
fA * SfU * SfG * SfC * SfU * SfU * SmC * SmU * SmC *
AUGCUUCUCCAAGAGGCAUU
SSSSS SSSSS SSSSS


13746
SmC * SmA * SmA * SmG * SmA * SfG * SfG * SfC * SfA

SSSS



* SfU * SfU







WV-
fA * SfA * SfG * SfA * SfG * SfG * SmC * SmA * SmU *
AAGAGGCAUUGAUAUUCUCU
SSSSS SSSSS SSSSS


13747
SmU * SmG * SmA * SmU * SmA * SfU * SfU * SfC * SfU

SSSS



* SfC * SfU







WV-
fG * SfA * SfU * SfA * SfU * SfU * SmC * SmU * SmC *
GAUAUUCUCUGUUAUCAUGU
SSSSS SSSSS SSSSS


13748
SmU * SmG * SmU * SmU * SmA * SfU * SfC * SfA * SfU

SSSS



* SfG * SfU







WV-
fG * SfU * SfU * SfA * SfU * SfC * SmA * SmU * SmG *
GUUAUCAUGUGGACUUUUCU
SSSSS SSSSS SSSSS


13749
SmU * SmG * SmG * SmA * SmC * SfU * SfU * SfU * SfU

SSSS



* SfC * SfU







WV-
fG * SfG * SfA * SfC * SfU * SfU * SmU * SmU * SmC *
GGACUUUUCUGGUAUCAUCU
SSSSS SSSSS SSSSS


13750
SmU * SmG * SmG * SmU * SmA * SfU * SfC * SfA * SfU

SSSS



* SfC * SfU







WV-
fG * SfG * SfU * SfA * SfU * SfC * SmA * SmU * SmC *
GGUAUCAUCUGCAGAAUAAU
SSSSS SSSSS SSSSS


13751
SmU * SmG * SmC * SmA * SmG * SfA * SfA * SfU * SfA

SSSS



* SfA * SfU







WV-
fG * SfC * SfA * SfG * SfA * SfA * SmU * SmA * SmA *
GCAGAAUAAUCCCGGAGAAG
SSSSS SSSSS SSSSS


13752
SmU * SmC * SmC * SmC * SmG * SfG * SfA * SfG * SfA

SSSS



* SfA * SfG







WV-
fC * SfC * SfG * SfG * SfA * SmG * SmA * SmA * SmG *
CCGGAGAAGUUUCAGGGCCA
SSSSS SSSSS SSSSS


13753
SmU * SmU * SmU * SmC * SfA * SfG * SfG * SfG * SfC *

SSSS



SfC * SfA







WV-
fU * SfU * SfU * SfC * SfA * SfG * SmG * SmG * SmC *
UUUCAGGGCCAAGUCAUUUG
SSSSS SSSSS SSSSS


13754
SmC * SmA * SmA * SmG * SmU * SfC * SfA * SfU * SfU

SSSS



* SfU * SfG







WV-
fA * SfA * SfG * SfU * SfC * SfA * SmU * SmU * SmU *
AAGUCAUUUGCCACAUCUAC
SSSSS SSSSS SSSSS


13755
SmG * SmC * SmC * SmA * SmC * SfA * SfU * SfC * SfU

SSSS



* SfA * SfC







WV-
fC * SfC * SfA * SfC * SfA * SfU * SmC * SmU * SmA *
CCACAUCUACAUUUGUCUGC
SSSSS SSSSS SSSSS


13756
SmC * SmA * SmU * SmU * SmU * SfG * SfU * SfC * SfU

SSSS



* SfG * SfC







WV-
fA * SfU * SfU * SfU * SfG * SfU * SmC * SmU * SmG *
AUUUGUCUGCCACUGGCGGA
SSSSS SSSSS SSSSS


13757
SmC * SmC * SmA * SmC * SmU * SfG * SfG * SfC * SfG

SSSS



* SfG * SfA







WV-
fC * SfA * SfC * SfU * SfG * SfG * SmC * SmG * SmG *
CACUGGCGGAGGUCUUUGGC
SSSSS SSSSS SSSSS


13758
SmA * SmG * SmG * SmU * SmC * SfU * SfU * SfU * SfG

SSSS



* SfG * SfC







WV-
fG * SfC * SfG * SfG * SfA * SfG * SmG * SmU * SmC *
GCGGAGGUCUUUGGCCAACU
SSSSS SSSSS SSSSS


13759
SmU * SmU * SmU * SmG * SmG * SfC * SfC * SfA * SfA

SSSS



* SfC * SfU







WV-
fG * SfG * SfU * SfC * SfU * SfU * SmU * SmG * SmG *
GGUCUUUGGCCAACUGCUAU
SSSSS SSSSS SSSSS


13760
SmC * SmC * SmA * SmA * SmC * SfU * SfG * SfC * SfU

SSSS



* SfA * SfU







WV-
fU * SfU * SfG * SfC * SfC * SfA * SmU * SmU * SmG *
UUGCCAUUGUUUCAUCAGCU
SSSSS SSSSS SSSSS


13761
SmU * SmU * SmU * SmC * SmA * SfU * SfC * SfA * SfG

SSSS



* SfC * SfU







WV-
fU * SfU * SfU * SfC * SfA * SfU * SmC * SmA * SmG *
UUUCAUCAGCUCUUUUACUC
SSSSS SSSSS SSSSS


13762
SmC * SmU * SmC * SmU * SmU * SfU * SfU * SfA * SfC

SSSS



* SfU * SfC







WV-
fU * SfC * SfU * SfU * SfU * SfU * SmA * SmC * SmU *
UCUUUUACUCCCUUGGAGUC
SSSSS SSSSS SSSSS


13763
SmC * SmC * SmC * SmU * SmU * SfG * SfG * SfA * SfG

SSSS



* SfU * SfC







WV-
fC * SfC * SfU * SfU * SfG * SfG * SmA * SmG * SmU *
CCUUGGAGUCUUCUAGGAGC
SSSSS SSSSS SSSSS


13764
SmC * SmU * SmU * SmC * SmU * SfA * SfG * SfG * SfA

SSSS



* SfG * SfC







WV-
fU * SfU * SfC * SfU * SfA * SfG * SmG * SmA * SmG *
UUCUAGGAGCCUUUCCUUAC
SSSSS SSSSS SSSSS


13765
SmC * SmC * SmU * SmU * SmU * SfC * SfC * SfU * SfU

SSSS



* SfA * SfC







WV-
fC * SfU * SfU * SfU * SfC * SfC * SmU * SmU * SmA *
CUUUCCUUACGGGUAGCAUC
SSSSS SSSSS SSSSS


13766
SmC * SmG * SmG * SmG * SmU * SfA * SfG * SfC * SfA

SSSS



* SfU * SfC







WV-
fG * SfG * SfG * SfU * SfA * SfG * SmC * SmA * SmU *
GGGUAGCAUCCUGUAGGACA
SSSSS SSSSS SSSSS


13767
SmC * SmC * SmU * SmG * SmU * SfA * SfG * SfG * SfA

SSSS



* SfC * SfA







WV-
fC * SfU * SfG * SfU * SfA * SfG * SmG * SmA * SmC *
CUGUAGGACAUUGGCAGUUG
SSSSS SSSSS SSSSS


13768
SmA * SmU * SmU * SmG * SmG * SfC * SfA * SfG * SfU

SSSS



* SfU * SfG







WV-
fU * SfU * SfG * SfG * SfC * SfA * SmG * SmU * SmU *
UUGGCAGUUGUUUCAGCUUC
SSSSS SSSSS SSSSS


13769
SmG * SmU * SmU * SmU * SmC * SfA * SfG * SfC * SfU

SSSS



* SfU * SfC







WV-
fU * SfU * SfU * SfC * SfA * SfG * SmC * SmU * SmU *
UUUCAGCUUCUGUAAGCCAG
SSSSS SSSSS SSSSS


13770
SmC * SmU * SmG * SmU * SmA * SfA * SfG * SfC * SfC

SSSS



* SfA * SfG







WV-
fU * SfG * SfU * SfA * SfA * SfG * SmC * SmC * SmA *
UGUAAGCCAGGCAAGAAACU
SSSSS SSSSS SSSSS


13771
SmG * SmG * SmC * SmA * SmA * SfG * SfA * SfA * SfA

SSSS



* SfC * SfU







WV-
fG * SfC * SfA * SfA * SfG * SfA * SmA * SmA * SmC *
GCAAGAAACUUUUCCAGGUC
SSSSS SSSSS SSSSS


13772
SmU * SmU * SmU * SmU * SmC * SfC * SfA * SfG * SfG

SSSS



* SfU * SfC







WV-
fU * SfU * SfU * SfC * SfC * SfA * SmG * SmG * SmU *
UUUCCAGGUCCAGGGGGAAC
SSSSS SSSSS SSSSS


13773
SmC * SmC * SmA * SmG * SmG * SfG * SfG * SfG * SfA

SSSS



* SfA * SfC







WV-
fC * SfA * SfG * SfG * SfG * SfG * SmG * SmA * SmA *
CAGGGGGAACUGUUGCAGUA
SSSSS SSSSS SSSSS


13774
SmC * SmU * SmG * SmU * SmU * SfG * SfC * SfA * SfG

SSSS



* SfU * SfA







WV-
fU * SfG * SfU * SfU * SfG * SfC * SmA * SmG * SmU *
UGUUGCAGUAAUCUAUGAGU
SSSSS SSSSS SSSSS


13775
SmA * SmA * SmU * SmC * SmU * SfA * SfU * SfG * SfA

SSSS



* SfG * SfA







WV-
fA * SfU * SfC * SfU * SfA * SfU * SmG * SmA * SmG *
AUCUAUGAGUUUCUUCCAAA
SSSSS SSSSS SSSSS


13776
SmU * SmU * SmU * SmC * SmU * SfU * SfC * SfC * SfA

SSSS



* SfA * SfA







WV-
fU * SfG * SfC * SfU * SfU * SfC * SmC * SmA * SmA *
UUCUUCCAAAGCAGCCUCUC
SSSSS SSSSS SSSSS


13777
SmA * SmG * SmC * SmA * SmG * SfC * SfC * SfU * SfC

SSSS



* SfU * SfC







WV-
fG * SfC * SfA * SfG * SfC * SfC * SmU * SmC * SmU *
GCAGCCUCUCGCUCACUCAC
SSSSS SSSSS SSSSS


13778
SmC * SmG * SmC * SmU * SmC * SfA * SfC * SfU * SfC

SSSS



* SfA * SfC







WV-
fC * SfU * SfC * SfU * SfC * SfG * SmC * SmU * SmC *
CUCUCGCUCACUCACCCUGC
SSSSS SSSSS SSSSS


13779
SmA * SmC * SmU * SmC * SmA * SfC * SfC * SfC * SfU

SSSS



* SfG * SfC







WV-
fA * SfG * SfG * SfU * SfU * SfC * SmA * SmA * SmG *
AGGUUCAAGUGGGAUACUAG
SSSSS SSSSS SSSSS


13780
SmU * SmG * SmG * SmG * SmA * SfU * SfA * SfC * SfU

SSSS



* SfA * SfG







WV-
fU * SfC * SfC * SfA * SfG * SfG * SmU * SmU * SmC *
UCCAGGUUCAAGUGGGAUAC
SSSSS SSSSS SSSSS


13781
SmA * SmA * SmG * SmU * SmG * SfG * SfG * SfA * SfU

SSSS



* SfA * SfC







WV-
fU * SfU * SfG * SfC * SfU * SfG * SmG * SmU * SmC *
UUGCUGGUCUUGUUUUUCAA
SSSSS SSSSS SSSSS


13782
SmU * SmU * SmG * SmU * SmU * SfU * SfU * SfU * SfC

SSSS



* SfA * SfA







WV-
fA * SfC * SfU * SfG * SfG * SfG * SmG * SmA * SmC *
ACUGGGGACGCCUCUGUUCC
SSSSS SSSSS SSSSS


13783
SmG * SmC * SmC * SmU * SmC * SfU * SfG * SfU * SfU

SSSS



* SfC * SfC







WV-
fU * SfA * SfC * SfA * SfU * SfU * SmU * SmG * SmU *
UACAUUUGUCUGCCACUGGC
SSSSS SSSSS SSSSS


13784
SmC * SmU * SmG * SmC * SmC * SfA * SfC * SfU * SfG

SSSS



* SfG * SfC







WV-
fC * SfC * SfC * SfG * SfG * SfA * SmG * SmA * SmA *
CCCGGAGAAGUUUCAGGGCC
SSSSS SSSSS SSSSS


13785
SmG * SmU * SmU * SmU * SmC * SfA * SfG * SfG * SfG

SSSS



* SfC * SfC







WV-
fU * SfC * SfC * SfU * SfG * SfU * SmA * SmG * SmG *
UCCUGUAGGACAUUGGCAGU
SSSSS SSSSS SSSSS


13786
SmA * SmC * SmA * SmU * SmU * SfG * SfG * SfC * SfA

SSSS



* SfG * SfU







WV-
fG * SfA * SfG * SfU * SfC * SfU * SmU * SmC * SmU *
GAGUCUUCUAGGAGCCUUUC
SSSSS SSSSS SSSSS


13787
SmA * SmG * SmG * SmA * SmG * SfC * SfC * SfU * SfU

SSSS



* SfU * SfC







WV-
fC * SfU * SfU * SfG * SfA * SfG * SmC * SmU * SmU *
CUUGAGCUUAUUUUCAAGUU
SSSSS SSSSS SSSSS


13788
SmA * SmU * SmU * SmU * SmU * SfC * SfA * SfA * SfG

SSSS



* SfU * SfU 







WV-
fA * SfG * SfC * SfA * SfC * SfU * SmU * SmA * SmC *
AGCACUUACAAGCACGGGUC
SSSSS SSSSS SSSSS


13789
SmA * SmA * SmG * SmC * SmA * SfC * SfG * SfG * SfG

SSSS



* SfU * SfC







WV-
fU * SfU * SfG * SfU * SfA * SfC * SfU * SmU * SmC *
UUGUACUUCAUCCCACUGAUUCUGA
SSSSSSSSSSSSSSS


13790
SmA * SmU * SmC * SmC * SmC * SmA * SmC * SmU *

SSSSSSSSS



SfG * SfA * SfU * SfU * SfC * SfU * SfG * SfA







WV-
fU * SfU * SfU * SfU * SfA * SfC * SfU * SfU * SfC *
UUGUACUUCAUCCCACUGAUUCUGA
SSSSSSSSSOSSSS


13791
SmAfU * SfC * SfC * SfC * SmAfC * SfU * SmGfA * SfU *

OSSOSSSSSS



SfU * SfC * SfU * SfG * SfA







WV-
fU * SfU * SfG * SfU * SfA * SfC * SfU * SmUmCfA *
UUGUACUUCAUCCCACUGAUUCUGA
SSSSSSSOOSOOO


13792
SmUmCmCmCfA * SmCmUfG * SfA * SfU * SfU * SfC *

OSOOSSSSSSS



SfU * SfG * SfA







WV-
fU * SfU * SfG * SfU * SfA * SfC * SfU * SmUfC * SmAfU
UUGUACUUCAUCCCACUGAUUCUGA
SSSSSSSOSOSOSO


13793
* SmCfC * SmCfA * SmCfU * SmGfA * SfU * SfU * SfC *

SOSOSSSSSS



SfU * SfG * SfA







WV-
fU * SfU * SfG * SfU * SfA * SfC * SfU * SfU * SmCfA *
UUGUACUUCAUCCCACUGAUUCUGA
SSSSSSSSOSOSOS


13794
SmUfC * SmCfC * SmAfC * SmUfG * SfA * SfU * SfU *

OSOSSSSSSS



SfC * SfU * SfG * SfA







WV-
fC * SfC * SfG * SfG * SfU * SfG * SfC * SmU * SmG *
CCGGUUCUGAAGGUGUUCUUGUACU
SSSSSSSSSSSSSSS


13795
SmA * SmA * SmG * SmG * SmU * SmG * SmU * SmU *

SSSSSSSSS



SfC * SfU * SfU * SfG * SfU * SfA * SfC * SfC







WV-
fC * SfC * SfG * SfG * SfU * SfU * SfC * SfU *
CCGGUUCUGAAGGUGUUCUUGUACU
SSSSSSSSOOOOO


13796
SmGmAmAmGmGfU * SmGfU * SfU * SfC * SfU * SfU *

SOSSSSSSSSS



SfG * SfU * SfA * SfC * SfU







WV-
fC * SfC * SfG * SfG * SfU * SfU * SfC * SmUfG * SfA *
CCGGUUCUGAAGGUGUUCUUGUACU
SSSSSSSOSSSSSO


13797
SfA * SfG * SfG * SmUfG * SmUmUmCfU * SfU * SfG *

SOOOSSSSSS



SfU * SfA * SfC * SfU







WV-
fC * SfC * SfG * SfG * SfU * SfU * SfC * SmUfG * SmAfA
CCGGUUCUGAAGGUGUUCUUGUACU
SSSSSSSOSOSOS


13798
* SmGfG * SmUfG * SmUfU * SmCfU * SfU * SfG * SfU *

OSOSOSSSSSS



SfA * SfC * SfU







WV-
fC * SfC * SfG * SfG * SfU * SfU * SfC * SfU * SmGfA *
CCGGUUCUGAAGGUGUUCUUGUACU
SSSSSSSSOSOSO


13799
SmAfG * SmGfU * SmGfU * SmU * SfC * SfU * SfU * SfG

SOSSSSSSSSS



SfU * SfA * SfC * SfU







WV-
fU * SfU * SfU * SfG * SfC * SfC * SfG * SfC * SmUfG *
UUUGCCGCUGCCCAAUGCCA
SSSSSSSSOSSS


13810
SmC * SfC * SmCmAfA * SfU * SfG * SfC * SfC * SfA

OOSSSSS





WV-
fU * SfU * SfU * SfG * SfC * SfC * SfG * SfC * SmUfG *
UUUGCCGCUGCCCAAUGCCA
SSSSSSSSOSSS


13811
SmC * SfC * SmCfA * SfA * SfU * SfG * SfC * SfC * SfA

OSSSSSS





WV-
fU * SfU * SfU * SfG * SfC * SfC * SfG * SfC *
UUUGCCGCUGCCCAAUGCCA
SSSSSSSSnXSSS


13812
SmUn001fG * SmC * SfC * SmCn001mAn001fA * SfU *

nXnXSSSSS



SfG * SfC * SfC * SfA







WV-
fU * SfU * SfU * SfG * SfC * SfC * SfG * SfC *
UUUGCCGCUGCCCAAUGCCA
SSSSSSSSnXSSS


13813
SmUn001fG * SmC * SfC * SmCn001fA * SfA * SfU * SfG

nXSSSSSS



* SfC * SfC * SfA







WV-
fU * SfU * SfUn001fG * SfC * SfCn001fG * SfC * SmUfG *
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXSSOSS


13814
SmC * SfC * SmCmAfA * SfU * SfGn001fC * SfC * SfA

SOOSSnXSS





WV-
fU * SfU * SfUn001fG * SfC * SfCn001fG * SfC * SmUfG *
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXSSOSS


13815
SmC * SfC * SmCfA * SfA * SfU * SfGn001fC * SfC * SfA

SOSSSnXSS





WV-
fU * SfU * SfUn001fG * SfC * SfCn001fG * SfC *
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXSSnXSSS


13816
SmUn001fG * SmC * SfC * SmCn001mAn001fA * SfU *

nXnXSSnXSS



SfGn001fC * SfC * SfA







WV-
fU * SfU * SfUn001fG * SfC * SfCn001fG * SfC *
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXSSnXSSS


13817
SmUn001fG * SmC * SfC * SmCn001fA * SfA * SfU
*
nXSSSnXSS



SfGn001fC * SfC * SfA







WV-
fU * SfG * SfC * SfC * SfA * SfU * SfC * SfC * SmUfG *
UGCCAUCCUGGAGUUCCUGU
SSSSSSSSOSSS


13818
SmG * SfA * SmGmUfU * SfC * SfC * SfU * SfG * SfU

OOSSSSS





WV-
fU * SfG * SfC * SfC * SfA * SfU * SfC * SfC * SmUfG *
UGCCAUCCUGGAGUUCCUGU
SSSSSSSSOSSS


13819
SmG * SfA * SmGfU * SfU * SfU * SfC * SfU * SfG * SfU

OSSSSSS





WV 
fU * SfG * SfC * SfC * SfA * SfU * SfC * SfC *
UGCCAUCCUGGAGUUCCUGU
SSSSSSSSnXSSS


13820
SmUn001fG * SmG * SfA * SmGn001mUn001fU * SfC *

nXnXSSSSS



SfC * SfU * SfG * SfU







WV-
fU * SfG * SfC * SfC * SfA * SfU * SfC * SfC *
UGCCAUCCUGGAGUUCCUGU
SSSSSSSSnXSSS


13821
SmUn001fG * SmG * SfA * SmGn001fU * SfU * SfC * SfC

nXSSSSSS



* SfU * SfG * SfU







WV-
fU * SfG * SfCn001fC * SfA * SfUn001fC * SfC * SmUfG *
UGCCAUCCUGGAGUUCCUGU
SSnXSSnXSSOSSSO


13822
SmG * SfA * SmGmUfU * SfC * SfCn001fU * SfG * SfU

OSSnXSS





WV-
fU * SfG * SfCn001fC * SfA * SfUn001fC * SfC * SmUfG *
UGCCAUCCUGGAGUUCCUGU
SSnXSSnXSSOSSSO


13823
SmG * SfA * SmGfU * SfU * SfC * SfCn001fU * SfG * SfU

SSSnXSS





WV-
fU * SfG * SfCn001fC * SfA * SfUn001fC * SfC *
UGCCAUCCUGGAGUUCCUGU
SSnXSSnXSSnXSSS


13824
SmUn001fG * SmG * SfA * SmGn001mUn001fU * SfC *

nXnXSSnXSS



SfCn001fU * SfG * Sfu







WV-
fU * SfG * SfCn001fC * SfA * SfUn001fC * SfC *
UGCCAUCCUGGAGUUCCUGU
SSnXSSnXSSnXSSS


13825
SmUn001fG * SmG * SfA * SmGn001fU * SfU * SfC *

nXSSSnXSS



SfCn001fU * SfG * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG *
UCCGGUUCUGAAGGUGUUC
SSSSSSSOSSS


13826
SfA * SmAmGfG * SfU * SfG * SfU * SfU * SfC

OOSSSSS





WV-
fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUU
SSSSSSSSOSSS


13827
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU

OOSSSS





WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG *
UCCGGUUCUGAAGGUGUU
SSSSSSSOSSS OOSSSS


13828
SfA * SmAmGfG * SfU * SfG * SfU * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSS


13835
SfA * SmAmGfG * SfU * SfG * SfU * SfU * SfC * SfU

OOSSSSSS





WV-
fC * SfC * SfU * SfC * SfC * SfG * SfG * SfU * SfU *
CCUCCGGUUCUGAAGGUGUU
SSSSSSSSSOSSS


13836
SmCfU * SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU

OOSSSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnXSSnXSSOS


13857
SmGn001fA * SmAfG * SfG * SfU * SfGn001fU * SfU *

nXSOSSSnXSS



SfC







WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUU
SSnXSSnXSSOSS


13858
SmG * SfA * SmAfG * SfG * SfU * SfGn001fU * SfU

SOSSSnXS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUU
SSnXSSnXSSOS


13859
SmGn001fA * SmAfG * SfG * SfU * SfGn001fU * SfU

nXSOSSSnXS





WV-
fU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG
UCCGGUUCUGAAGGUGUUC
SnXSSnXSSOSSSO


13860
* SfA * SmAfG * SfG * SfU * SfGn001fU * SfU * SfC

SSSnXSS





WV-
fU * SfCn001fC * SfG * SfGn001fU * SffU * SmCfU *
UCCGGUUCUGAAGGUGUUC
SnXSSnXSSOSnX


13861
SmGn001fA * SmAfG * SfG * SfU * SfGn001fU * SfU *

SOSSSnXSS



SfC







WV-
fU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG
UCCGGUUCUGAAGGUGUU
SnXSSnXSSOSSS


13862
* SfA * SmAfG * SfG * SfU * SfGn001fU * SfU

OSSSnXS





WV-
fU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUU
SnXSSnXSSOSnX


13863
SmGn001fA * SmAfG * SfG * SfU * SfGn001fU * SfU

SOSSSnXS





WV-
fC * SfG * SfCn001RfC * SfG * SfGn001RfU * SfU *
CUCCGGUUCUGAAGGUGUUC
SSnRSSnRSSOSS


13864
SmCfU * SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU

SOSSSnRSS



* SfU * SfC







WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU *
CUCCGGUUCUGAAGGUGUUC
SSnRSSnRSSOS


13865
SmCfU * SmGn001RfA * SmAfG * SfG * SfU *

nRSOSSSnRSS



SfGn001RfU * SfU * SfC







WV-
fA * SfC * SfA * SfA * SfG * SfU * SmU * SmC * SmU *
ACAAGUUCUCCUUCUGGAAA
SSSSS SSSSS SSSSS


13963
SmC * SmC * SmU * SmU * SmC * SfU * SfG * SfG * SfA

SSSS



* SfA * SfA







WV-
fC * SfU * SfU * SfC * SfU * SfG * SmG * SmA * SmA *
CUUCUGGAAAGGUUCCAACA
SSSSS SSSSS SSSSS


13964
SmA * SmG * SmG * SmU * SmU * SfC * SfC * SfA * SfA

SSSS



* SfC * SfA







WV-
fG * SfG * SfU * SfU * SfC * SfC * SmA * SmA * SmC *
GGUUCCAACAUAAAGCCGAA
SSSSS SSSSS SSSSS


13965
SmA * SmU * SmA * SmA * SmA * SfG * SfC * SfC * SfG

SSSS



* SfA * SfA







WV-
fA * SfA * SfA * SfG * SfC * SfC * SmG * SmA * SmA *
AAAGCCGAAAUACACACUGC
SSSSS SSSSS SSSSS


13966
SmA * SmU * SmA * SmC * SmA * SfC * SfA * SfC * SfU

SSSS



* SfG * SfC







WV-
fA * SfC * SfA * SfC * SfA * SfC * SmU * SmG * SmC *
ACACACUGCCCCAAAGCCAC
SSSSS SSSSS SSSSS


13967
SmC * SmC * SmC * SmA * SmA * SfA * SfG * SfC * SfC

SSSS



* SfA * SfC







WV-
fC * SfA * SfA * SfA * SfG * SfC * SmC * SmA * SmC *
CAAAGCCACAAAACACCUUG
SSSSS SSSSS SSSSS


13968
SmA * SmA * SmA * SmA * SmC * SfA * SfC * SfC * SfU

SSSS



* SfU * SfG







WV-
fA * SfA * SfC * SfA * SfC * SfC * SmU * SmU * SmG *
AACACCUUGCUGUUACGAUG
SSSSS SSSSS SSSSS


13969
SmC * SmU * SmG * SmU * SmU * SfA * SfC * SfG * SfA

SSSS



* SfG * SfG







WV-
fG * SfU * SfU * SfA * SfC * SfG * SmA * SmU * SmG *
GUUACGAUGCUUCCCUCUGU
SSSSS SSSSS SSSSS


13970
SmC * SmU * SmU * SmC * SmC * SfC * SfU * SfC * SfU

SSSS



* SfG * SfU







WV-
fU * SfC * SfC * SfC * SfU * SfC * SmU * SmG * SmU *
UCCCUCUGUCACAGAUUCAA
SSSSS SSSSS SSSSS


13971
SmC * SmA * SmC * SmA * SmG * SfA * SfU * SfU * SfC

SSSS



* SfA * SfA







WV-
fC * SfA * SfG * SfA * SfU * SfU * SmC * SmA * SmA *
CAGAUUCAAUUAUAUUUUGC
SSSSS SSSSS SSSSS


13972
SmU * SmU * SmA * SmU * SmA * SfU * SfU * SfU * SfU

SSSS



* SfA * SfC







WV-
fA * SfU * SfA * SfU * SfU * SfU * SmU * SmG * SmC *
AUAUUUUGCAGUUUAUCAGA
SSSSS SSSSS SSSSS


13973
SmA * SmG * SmU * SmU * SmU * SfA * SfU * SfC * SfA

SSSS



* SfG * SfA







WV-
fU * SfU * SfU * SfA * SfU * SfC * SmA * SmG * SmA *
UUUAUCAGAUAAACCAGCUC
SSSSS SSSSS SSSSS


13974
SmU * SmA * SmA * SmA * SmC * SfC * SfA * SfG * SfC

SSSS



* SfU * SfC







WV-
fA * SfA * SfC * SfC * SfA * SfG * SmC * SmU * SmC *
AACCAGCUCCGUCCAGGCAA
SSSSS SSSSS SSSSS


13975
SmC * SmG * SmU * SmC * SmC * SfA * SfG * SfG * SfC

SSSS



* SfA * SfA







WV-
fU * SfC * SfC * SfA * SfG * SfG * SmC * SmA * SmA *
UCCAGGCAAACUCUCUCAUC
SSSSS SSSSS SSSSS


13976
SmA * SmC * SmU * SmC * SmU * SfC * SfU * SfC * SfA

SSSS



* SfU * SfC







WV-
fU * SfC * SfU * SfC * SfU * SfC * SmA * SmU * SmC *
UCUCUCAUCCUGACACAAAA
SSSSS SSSSS SSSSS


13977
SmC * SmU * SmG * SmA * SmC * SfA * SfC * SfA * SfA

SSSS



* SfA * SfA







WV-
fG * SfA * SfC * SfA * SfC * SfA * SmA * SmA * SmA *
GACACAAAAAGUCCAUAGCA
SSSSS SSSSS SSSSS


13978
SmA * SmG * SmU * SmC * SmC * SfA * SfU * SfA * SfG

SSSS



* SfC * SfA







WV-
fU * SfC * SfC * SfA * SfU * SfA * SmG * SmC * SmA *
UCCAUAGCACCGUGCUCUAA
SSSSS SSSSS SSSSS


13979
SmC * SmC * SmG * SmU * SmG * SfC * SfU * SfC * SfU

SSSS



* SfA * SfA







WV-
fG * SfU * SfG * SfC * SfU * SfC * SmU * SmA * SmA *
GUGCUCUAAUAUUAUCAUUA
SSSSS SSSSS SSSSS


13980
SmU * SmA * SmU * SmU * SmA * SfU * SfC * SfA * SfU

SSSS



* SfU * SfA







WV-
fU * SfU * SfA * SfU * SfC * SfA * SmU * SmU * SmA *
UUAUCAUUAUGAUAAUUUUC
SSSSS SSSSS SSSSS


13981
SmU * SmG * SmA * SmU * SmA * SfA * SfU * SfU * SfU

SSSS



* SfU * SfC







WV-
fA * SfU * SfA * SfA * SfU * SfU * SmU * SmU * SmC *
AUAAUUUUCUUUCUAGUAAU
SSSSS SSSSS SSSSS


13982
SmU * SmU * SmU * SmC * SmU * SfA * SfG * SfU * SfA

SSSS



* SfA * SfU







WV-
fA * SfA * SfU * SfG * SfA * SfU * SmG * SmA * SmC *
AAUGAUGACAACAACAGUCA
SSSSS SSSSS SSSSS


13983
SmA * SmA * SmC * SmA * SmA * SfC * SfA * SfG * SfU

SSSS



* SfC * SfA







WV-
fC * SfA * SfA * SfC * SfA * SfG * SmU * SmC * SmA *
CAACAGUCAAAAGUAAUUUC
SSSSS SSSSS SSSSS


13984
SmA * SmA * SmA * SmG * SmU * SfA * SfA * SfU * SfU

SSSS



* SfU * SfC







WV-
fA * SfG * SfU * SfA * SfA * SfU * SmU * SmU * SmC *
AGUAAUUUCCAUCACCCUUC
SSSSS SSSSS SSSSS


13985
SmC * SmA * SmU * SmC * SmA * SfC * SfC * SfC * SfU

SSSS



* SfU * SfC







WV-
fU * SfC * SfA * SfC * SfC * SfC * SmU * SmU * SmC *
UCACCCUUCAGAACCUGAUC
SSSSS SSSSS SSSSS


13986
SmA * SmG * SmA * SmA * SmC * SfC * SfU * SfG * SfA

SSSS



* SfU * SfC







WV-
fA * SfA * SfC * SfC * SfU * SfG * SmA * SmU * SmC *
AACCUGAUCUUUAAGAAGUU
SSSSS SSSSS SSSSS


13987
SmU * SmU * SmU * SmA * SmA * SfG * SfA * SfA * SfG

SSSS



* SfU * SfU







WV-
fU * SfA * SfA * SfG * SfA * SfA * SmG * SmU * SmU *
UAAGAAGUUAAAGAGUCCAG
SSSSS SSSSS SSSSS


13988
SmA * SmA * SmA * SmG * SmA * SfG * SfU * SfC * SfC

SSSS



* SfA * SfG







WV-
fA * SfG * SfA * SfG * SfU * SfC * SmC * SmA * SmG *
AGAGUCCAGAUGUGCUGAAG
SSSSS SSSSS SSSSS


13989
SmA * SmU * SmG * SmU * SmG * SfC * SfU * SfG * SfA

SSSS



* SfA * SfG







WV-
fG * SfU * SfG * SfC * SfU * SfG * SmA * SmA * SmG *
GUGCUGAAGAUAAAUACAAU
SSSSS SSSSS SSSSS


13990
SmA * SmU * SmA * SmA * SmA * SfU * SfA * SfC * SfA

SSSS



* SfA * SfU







WV-
fU * SfA * SfA * SfA * SfU * SfA * SmC * SmA * SmA *
UAAAUACAAUUUCGAAAAAA
SSSSS SSSSS SSSSS


13991
SmU * SmU * SmU * SmC * SmG * SfA * SfA * SfA * SfA

SSSS



* SfA * SfA







WV-
fA * SfC * SfA * SfA * SfU * SfU * SmU * SmC * SmG *
ACAAUUUCGAAAAAACAAAU
SSSSS SSSSS SSSSS


13992
SmA * SmA * SmA * SmA * SmA * SfA * SfC * SfA * SfA

SSSS



* SfA * SfU







WV-
fU * SfC * SfG * SfA * SfA * SfA * SmA * SmA * SmA *
UCGAAAAAACAAAUCAAAGA
SSSSS SSSSS SSSSS


13993
SmC * SmA * SmA * SmA * SmU * SfC * SfA * SfA * SfA

SSSS



* SfG * SfA







WV-
fA * SfA * SfA * SfC * SfA * SfA * SmA * SmU * SmC *
AAACAAAUCAAAGACUUACC
SSSSS SSSSS SSSSS


13994
SmA * SmA * SmA * SmG * SmA * SfC * SfU * SfU * SfA

SSSS



* SfC * SfC







WV-
fA * SfU * SfC * SfA * SfA * SfA * SmG * SmA * SmC *
AUCAAAGACUUACCUUAAGA
SSSSS SSSSS SSSSS


13995
SmU * SmU * SmA * SmC * SmC * SfU * SfU * SfA * SfA

SSSS



* SfG * SfA







WV-
fG * SfA * SfC * SfU * SfU * SfA * SmC * SmC * SmU *
GACUUACCUUAAGAUACCAU
SSSSS SSSSS SSSSS


13996
SmU * SmA * SmA * SmG * SmA * SfU * SfA * SfC * SfC

SSSS



* SfA * SfU







WV-
fU * SfU * SfA * SfC * SfC * SfU * SmU * SmA * SmA *
UUACCUUAAGAUACCAUUUG
SSSSS SSSSS SSSSS


13997
SmG * SmA * SmU * SmA * SmC * SfC * SfA * SfU * SfU

SSSS



* SfU * SfG







WV-
fU * SfA * SfC * SfC * SfU * SfU * SmA * SmA * SmG *
UACCUUAAGAUACCAUUUGU
SSSSS SSSSS SSSSS


13998
SmA * SmU * SmA * SmC * SmC * SfA * SfU * SfU * SfU

SSSS



* SfG * SfU







WV-
fA * SfC * SfC * SfU * SfU * SfA * SmA * SmG * SmA *
ACCUUAAGAUACCAUUUGUA
SSSSS SSSSS SSSSS


13999
SmU * SmA * SmC * SmC * SmA * SfU * SfU * SfU * SfG

SSSS



* SfU * SfA







WV-
fC * SfC * SfU * SfU * SfA * SfA * SmG * SmA * SmU *
CCUUAAGAUACCAUUUGUAU
SSSSS SSSSS SSSSS


14000
SmA * SmC * SmC * SmA * SmU * SfU * SfU * SfG * SfU

SSSS



* SfA * SfU







WV-
fG * SfA * SfU * SfA * SfC * SfC * SmA * SmU * SmU*
GAUACCAUUUGUAUUUAGCA
SSSSS SSSSS SSSSS


14001
SmU * SmG * SmU * SmA * SmU * SfU * SfU * SfA * SfG

SSSS



* SfC * SfA







WV-
fA * SfU * SfU * SfU * SfG * SfU * SmA * SmU * SmU *
AUUUGUAUUUAGCAUGUUCC
SSSSS SSSSS SSSSS


14002
SmU * SmA * SmG * SmC * SmA * SfU * SfG * SfU * SfU

SSSS



* SfC * SfC







WV-
fA * SfU * SfU * SfU * SfA * SfG * SmC * SmA * SmU *
AUUUAGCAUGUUCCCAAUUC
SSSSS SSSSS SSSSS


14003
SmG * SmU * SmU * SmC * SmC * SfC * SfA * SfA * SfU

SSSS



* SfU * SfC







WV-
fC * SfA * SfU * SfG * SfU * SfU * SmC * SmC * SmC *
CAUGUUCCCAAUUCUCAGGA
SSSSS SSSSS SSSSS


14004
SmA * SmA * SmU * SmU * SmC * SfU * SfC * SfA * SfG

SSSS



* SfG * SfA







WV-
fC * SfC * SfC * SfA * SfA * SfU * SmU * SmC * SmU *
CCCAAUUCUCAGGAAUUUGU
SSSSS SSSSS SSSSS


14005
SmC * SmA * SmG * SmG * SmA * SfA * SfU * SfU * SfU

SSSS



* SfG * SfU







WV-
fU * SfC * SfU * SfC * SfA * SfG * SmG * SmA * SmA *
UCUCAGGAAUUUGUGUCUUU
SSSSS SSSSS SSSSS


14006
SmU * SmU * SmU * SmG * SmU * SfG * SfU * SfC * SfU

SSSS



* SfU * SfU







WV-
fG * SfA * SfA * SfU * SfU * SfU * SmG * SmU * SmG *
GAAUUUGUGUCUUUCUGAGA
SSSSS SSSSS SSSSS


14007
SmU * SmC * SmU * SmU * SmU * SfC * SfU * SfG * SfA

SSSS



* SfG * SfA







WV-
fG * SfU * SfG * SfU * SfC * SfU * SmU * SmU * SmC *
GUGUCUUUCUGAGAAACUGU
SSSSS SSSSS SSSSS


14008
SmU * SmG * SmA * SmG * SmA * SfA * SfA * SfC * SfU

SSSS



* SfG * SfU







WV-
fU * SfU * SfC * SfU * SfG * SfA * SmG * SmA * SmA *
UUCUGAGAAACUGUUCAGCU
SSSSS SSSSS SSSSS


14009
SmA * SmC * SmU * SmG * SmU * SfU * SfC * SfA * SfG

SSSS



* SfC * SfU







WV-
fG * SfA * SfA * SfA * SfC * SfU * SmG * SmU * SmU *
GAAACUGUUCAGCUUCUGUU
SSSSS SSSSS SSSSS


14010
SmC * SmA * SmG * SmC * SmU * SfU * SfC * SfU * SfG

SSSS



* SfU * SfU







WV-
fG * SfU * SfU * SfC * SfA * SfG * SmC * SmU * SmU *
GUUCAGCUUCUGUUAGCCAC
SSSSS SSSSS SSSSS


14011
SmC * SmU * SmG * SmU * SmU * SfA * SfG * SfC * SfC

SSSS



* SfA * SfC







WV-
fC * SfU * SfU * SfC * SfU * SfG * SmU * SmU * SmA *
CUUCUGUUAGCCACUGAUUA
SSSSS SSSSS SSSSS


14012
SmG * SmC * SmC * SmA * SmC * SfU * SfG * SfA * SfU

SSSS



* SfU * SfA







WV-
fU * SfU * SfA * SfG * SfC * SfC * SmA * SmC * SmU *
UUAGCCACUGAUUAAAUAUC
SSSSS SSSSS SSSSS


14013
SmG * SmA * SmU * SmU * SmA * SfA * SfA * SfU * SfA

SSSS



* SfU * SfC







WV-
fA * SfC * SfU * SfG * SfA * SfU * SmU * SmA * SmA *
ACUGAUUAAAUAUCUUUAUA
SSSSS SSSSS SSSSS


14014
SmA * SmU * SmA * SmU * SmC * SfU * SfU * SfU * SfA

SSSS



* SfU * SfA







WV-
fA * SfU * SfC * SfU * SfU * SfU * SmA * SmU * SmA *
AUCUUUAUAUCAUAAUGAAA
SSSSS SSSSS SSSSS


14015
SmU * SmC * SmA * SmU * SmA * SfA * SfU * SfG * SfA

SSSS



* SfA * SfA







WV-
fA * SfU * SfA * SfA * SfU * SfG * SmA * SmA * SmA *
AUAAUGAAAACGCCGCCAUU
SSSSS SSSSS SSSSS


14016
SmA * SmC * SmG * SmC * SmC * SfG * SfC * SfC * SfA

SSSS



* SfU * SfU







WV-
fG * SfC * SfC * SfG * SfC * SfC * SmA * SmU * SmU *
GCCGCCAUUUCUCAACAGAU
SSSSS SSSSS SSSSS


14017
SmU * SmC * SmU * SmC * SmA * SfA * SfC * SfA * SfG

SSSS



* SfA * SfU







WV-
fU * SfC * SfA * SfA * SfC * SfA * SmG * SmA * SmU *
UCAACAGAUCUGUCAAAUCG
SSSSS SSSSS SSSSS


14018
SmC * SmU * SmG * SmU * SmC * SfA * SfA * SfA * SfU

SSSS



* SfC * SfG







WV-
fU * SfG * SfA * SfA * SfG * SfA * SmU * SmA * SmA *
UGAAGAUAAAUACAAUUUCG
SSSSS SSSSS SSSSS


14019
SmA * SmU * SmA * SmC * SmA * SfA * SfU * SfU * SfU

SSSS



* SfC * SfG







WV-
fA * SfU * SfU * SfU * SfC * SfG * SmA * SmA * SmA *
AUUUCGAAAAAACAAAUCAA
SSSSS SSSSS SSSSS


14020
SmA * SmA * SmA * SmC * SmA * SfA * SfA * SfU * SfC

SSSS



* SfA * SfA







WV-
fA * SfA * SfA * SfA * SfA * SfA * SmC * SmA * SmA *
AAAAAACAAAUCAAAGACUU
SSSSS SSSSS SSSSS


14021
SmA * SmU * SmC * SmA * SmA * SfA * SfG * SfA * SfC

SSSS



* SfU * SfU







WV-
fC * SfA * SfA * SfA * SfU * SfC * SmA * SmA * SmA *
CAAAUCAAAGACUUACCUUA
SSSSS SSSSS SSSSS


14022
SmG * SmA * SmC * SmU * SmU * SfA * SfC * SfC * SfU

SSSS



* SfU * SfA







WV-
fA * SfA * SfA * SfG * SfA * SfC * SmU * SmU * SmA *
AAAGACUUACCUUAAGAUAC
SSSSS SSSSS SSSSS


14023
SmC * SmC * SmU * SmU * SmA * SfA * SfG * SfA * SfU

SSSS



* SfA * SfC







WV-
fU * SfA * SfA * SfG * SfA * SfU * SmA * SmC * SmC *
UAAGAUACCAUUUGUAUUUA
SSSSS SSSSS SSSSS


14024
SmA * SmU * SmU * SmU * SmG * SfU * SfA * SfU * SfU

SSSS



* SfU * SfA







WV-
fA * SfC * SfC * SfA * SfU * SfU * SmU * SmG * SmU *
ACCAUUUGUAUUUAGCAUGU
SSSSS SSSSS SSSSS


14025
SmA * SmU * SmU * SmU * SmA * SfG * SfC * SfA * SfU

SSSS



* SfG * SfU







WV-
fU * SfG * SfU * SfA * SfU * SfU * SmU * SmA * SmG *
UGUAUUUAGCAUGUUCCCAA
SSSSS SSSSS SSSSS


14026
SmC * SmA * SmU * SmG * SmU * SfU * SfC * SfC * SfC

SSSS



* SfA * SfA







WV-
fU * SfG * SfC * SfU * SfG * SfA * SmA * SmG * SmA *
UGCUGAAGAUAAAUACAA
SSSSS SSSSS SSSSS SS


14027
SmU * SmA * SmA * SfA * SfU * SfA * SfC * SfA * SfA







WV-
fA * SfA * SfA * SfU * SfA * SfC * SmA * SmA * SmU *
AAAUACAAUUUCGAAAAA
SSSSS SSSSS SSSSS SS


14028
SmU * SmU * SmC * SfG * SfA * SfA * SfA * SfA * SfA







WV-
fC * SfA * SfA * SfU * SfU * SfU * SmC * SmG * SmA *
CAAUUUCGAAAAAACAAA
SSSSS SSSSS SSSSS SS


14029
SmA * SmA * SmA * SfA * SfA * SfC * SfA * SfA * SfA







WV-
fC * SfG * SfA * SfA * SfA * SfA * SmA * SmA * SmC *
CGAAAAAACAAAUCAAAG
SSSSS SSSSS SSSSS SS


14030
SmA * SmA * SmA * SfU * SfC * SfA * SfA * SfA * SfG







WV-
fA * SfA * SfC * SfA * SfA * SfA * SmU * SmC * SmA *
AACAAAUCAAAGACUUAC
SSSSS SSSSS SSSSS SS


14031
SmA * SmA * SmG * SfA * SfC * SfU * SfU * SfA * SfC







WV-
fU * SfC * SfA * SfA * SfA * SfG * SmA * SmC * SmU *
UCAAAGACUUACCUUAAG
SSSSS SSSSS SSSSS SS


14032
SmU * SmA * SmC * SfC * SfU * SfU * SfA * SfA * SfG







WV-
fA * SfC * SfU * SfU * SfA * SfC * SmC * SmU * SmU *
ACUUACCUUAAGAUACCA
SSSSS SSSSS SSSSS SS


14033
SmA * SmA * SmG * SfA * SfU * SfA * SfC * SfC * SfA







WV-
fU * SfA * SfC * SfC * SfU * SfU * SmA * SmA * SmG *
UACCUUAAGAUACCAUUU
SSSSS SSSSS SSSSS SS


14034
SmA * SmU * SmA * SfC * SfC * SfA * SfU * SfU * SfU







WV-
fA * SfC * SfC * SfU * SfU * SfA * SmA * SmG * SmA *
ACCUUAAGAUACCAUUUG
SSSSS SSSSS SSSSS SS


14035
SmU * SmA * SmC * SfC * SfA * SfU * SfU * SfU * SfG







WV-
fC * SfC * SfU * SfU * SfA * SfA * SmG * SmA * SmU *
CCUUAAGAUACCAUUUGU
SSSSS SSSSS SSSSS SS


14036
SmA * SmC * SmC * SfA * SfU * SfU * SfU * SfG * SfU







WV-
fC * SfU * SfU * SfA * SfA * SfG * SmA * SmU * SmA *
CUUAAGAUACCAUUUGUA
SSSSS SSSSS SSSSS SS


14037
SmC * SmC * SmA * SfU * SfU * SfU * SfG * SfU * SfA







WV-
fA * SfU * SfA * SfC * SfC * SfA * SmU * SmU * SmU *
AUACCAUUUGUAUUUAGC
SSSSS SSSSS SSSSS SS


14038
SmG * SmU * SmA * SfU * SfU * SfU * SfA * SfG * SfC







WV-
fU * SfU * SfU * SfG * SfU * SfA * SmU * SmU * SmU *
UUUGUAUUUAGCAUGUUC
SSSSS SSSSS SSSSS SS


14039
SmA * SmG * SmC * SfA * SfU * SfG * SfU * SfU * SfC







WV-
fU * SfU * SfU * SfA * SfG * SfC * SmA * SmU * SmG *
UUUAGCAUGUUCCCAAUU
SSSSS SSSSS SSSSS SS


14040
SmU * SmU * SmC * SfC * SfC * SfA * SfA * SfU * SfU







WV-
fA * SfU * SfG * SfU * SfU * SfC * SmC * SmC * SmA *
AUGUUCCCAAUUCUCAGG
SSSSS SSSSS SSSSS SS


14041
SmA * SmU * SmU * SfC * SfU * SfC * SfA * SfG * SfG







WV-
fC * SfC * SfA * SfA * SfU * SfU * SmC * SmU * SmC *
CCAAUUCUCAGGAAUUUG
SSSSS SSSSS SSSSS SS


14042
SmA * SmG * SmG * SfA * SfA * SfU * SfU * SfU * SfG







WV-
fC * SfU * SfC * SfA * SfG * SfG * SmA * SmA * SmU *
CUCAGGAAUUUGUGUCUU
SSSSS SSSSS SSSSS SS


14043
SmU * SmU * SmG * SfU * SfG * SfU * SfC * SfU * SfU







WV-
fA * SfA * SfU * SfU * SfU * SfG * SmU * SmG * SmU *
AAUUUGUGUCUUUCUGAG
SSSSS SSSSS SSSSS SS


14044
SmC * SmU * SmU * SfU * SfC * SfU * SfG * SfA * SfG







WV-
fU * SfG * SfU * SfC * SfU * SfU * SmU * SmC * SmU *
UGUCUUUCUGAGAAACUG
SSSSS SSSSS SSSSS SS


14045
SmG * SmA * SmG * SfA * SfA * SfA * SfC * SfU * SfG







WV-
fU * SfC * SfU * SfG * SfA * SfG * SmA * SmA * SmA *
UCUGAGAAACUGUUCAGC
SSSSS SSSSS SSSSS SS


14046
SmC * SmU * SmG * SfU * SfU * SfC * SfA * SfG * SfC







WV-
fA * SfA * SfA * SfC * SfU * SfG * SmU * SmU * SmC *
AAACUGUUCAGCUUCUGU
SSSSS SSSSS SSSSS SS


14047
SmA * SmG * SmC * SfU * SfU * SfC * SfU * SfG * SfU







WV-
fU * SfU * SfC * SfA * SfG * SfC * SmU * SmU * SmC *
UUCAGCUUCUGUUAGCCA
SSSSS SSSSS SSSSS SS


14048
SmU * SmG * SmU * SfU * SfA * SfG * SfC * SfC * SfA







WV-
fU * SfU * SfC * SfU * SfG * SfU * SmU * SmA * SmG *
UUCUGUUAGCCACUGAUU
SSSSS SSSSS SSSSS SS


14049
SmC * SmC * SmA * SfC * SfU * SfG * SfA * SfU * SfU







WV-
fU * SfA * SfG * SfC * SfC * SfA * SmC * SmU * SmG *
UAGCCACUGAUUAAAUAU
SSSSS SSSSS SSSSS SS


14050
SmA * SmU * SmU * SfA * SfA * SfA * SfU * SfA * SfU







WV-
fG * SfA * SfA * SfG * SfA * SfU * SmA * SmA * SmA *
GAAGAUAAAUACAAUUUC
SSSSS SSSSS SSSSS SS


14051
SmU * SmA * SmC * SfA * SfA * SfU * SfU * SfU * SfC







WV-
fU * SfU * SfU * SfC * SfG * SfA * SmA * SmA * SmA *
UUUCGAAAAAACAAAUCA
SSSSS SSSSS SSSSS SS


14052
SmA * SmA * SmC * SfA * SfA * SfA * SfU * SfC * SfA







WV-
fA * SfA * SfA * SfA * SfA * SfC * SmA * SmA * SmA *
AAAAACAAAUCAAAGACU
SSSSS SSSSS SSSSS SS


14053
SmU * SmC * SmA * SfA * SfA * SfG * SfA * SfC * SfU







WV-
fA * SfA * SfA * SfU * SfC * SfA * SmA * SmA * SmG *
AAAUCAAAGACUUACCUU
SSSSS SSSSS SSSSS SS


14054
SmA * SmC * SmU * SfU * SfA * SfC * SfC * SfU * SfU







WV-
fA * SfA * SfG * SfA * SfC * SfU * SmU * SmA * SmC *
AAGACUUACCUUAAGAUA
SSSSS SSSSS SSSSS SS


14055
SmC * SmU * SmU * SfA * SfA * SfG * SfA * SfU * SfA







WV-
fA * SfA * SfG * SfA * SfU * SfA * SmC * SmC * SmA *
AAGAUACCAUUUGUAUUU
SSSSS SSSSS SSSSS SS


14056
SmU * SmU * SmU * SfG * SfU * SfA * SfU * SfU * SfU







WV-
fC * SfC * SfA * SfU * SfU * SfU * SmG * SmU * SmA *
CCAUUUGUAUUUAGCAUG
SSSSS SSSSS SSSSS SS


14057
SmU * SmU * SmU * SfA * SfG * SfC * SfA * SfU * SfG







WV-
fG * SfU * SfA * SfU * SfU * SfU * SmA * SmG * SmC *
GUAUUUAGCAUGUUCCCA
SSSSS SSSSS SSSSS SS


14058
SmA * SmU * SmG * SfU * SfU * SfC * SfC * SfC * SfA







WV-
fA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
AGGAAGAUGGCAUUUCU
SSSOSOSS OOSSSSSS


14107
SfA * SfU * SfU * SfU * SfC * SfU







WV-
fG * SfG * SmAfA * SmGmA * SfU * SmGmGfC * SfA *
GGAAGAUGGCAUUUCU
SSOSOSS OOSSSSSS


14108
SfU * SfU * SfU * SfC * SfU







WV-
fG * SmAfA * SmGmA * SfU * SmGmGfC * SfA * SfU *
GAAGAUGGCAUUUCU
SOSOSSO OSSSSSS


14109
SfU * SfU * SfC * SfU







WV-
mAfA * SmGmA * SfU * SmGmGfC * SfA * SfU * SfU *
AAGAUGGCAUUUCU
OSOSSOOSSSSSS


14110
SfU * SfC * SfU







WV-
fA * SmGmA * SfU * SmGmGfC * SfA * SfU * SfU * SfU *
AGAUGGCAUUUCU
SOSSOOSSSSSS


14111
SfC * SfG







WV-
mGmA * SfU * SmGmGfC * SfA * SfU * SfU * SfU * SfC *
GAUGGCAUUUCU
OSSOOSSSSSS


14112
SfU







WV-
mA * SfU * SmGmGfC * SfA * SfU * SfU * SfU * SfC *
AUGGCAUUUCU
SSOOSSSSSS


14113
SfU







WV-
fU * SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SOOSSSSSS


14114








WV-
mGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
GGCAUUUCU
OOSSSSSS


14115








WV-
mGfC * SfA * SfU * SfU * SfU * SfC * SfU
GCAUUUCU
OSSSSSS


14116








WV-
fC * SfA * SfU * SfU * SfU * SfC * SfU
CAUUUCU
SSSSSS


14117








WV-
fA * SfU * SfU * SfU * SfC * SfU
AUUUCU
SSSSS


14118








WV-
fU * SfU * SfC * SfU
UUCU
SSS


14119








WV-
fU * SfC * SfU
UCU
SS


14120








WV-
fC * RfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU *
CAAGGAAGAUGGCAUUUCU
RSSSSOSOSS


14121
SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU

OOSSSSSS





WV-
fA * RfA * SfG * SfG * SmAfA * SmGmA * SfU *
AAGGAAGAUGGCAUUUCU
RSSSOSOSS


14122
SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU

OOSSSSSS





WV-
fA * RfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC *
AGGAAGAUGGCAUUUCU
RSSOSOSS OOSSSSSS


14123
SfA * SfU * SfU * SfU * SfC * SfU







WV-
fG * RfG * SmAfA * SmGmA * SfU * SmGmGfC * SfA *
GGAAGAUGGCAUUUCU
RSOSOSSOOSSSSSS


14124
SfU * SfU * SfU * SfC * SfU







WV-
fG * RmAfA * SmGmA * SfU * SmGmGfC * SfA * SfU *
GAAGAUGGCAUUUCU
ROSOSSOOSSSSSS


14125
SfU * SfU * SfC * SfU







WV-
fA * RmGmA * SfU * SmGmGfC * SfA * SfU * SfU * SfU *
AGAUGGCAUUUCU
ROSSOOSSSSSS


14126
SfC * SfU







WV-
mA * RfU * SmGmGfC * SfA * SfU * SfU * SfU * SfC *
AUGGCAUUUCU
RSOOSSSSSS


14127
SfU







WV-
fU * RmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
ROOSSSSSS


14128








WV-
fC * RfA * SfU * SfU * SfU * SfC * SfU
CAUUUCU
RSSSSS


14129








WV-
fA * RfU * SfU * SfU * SfC * SfU
AUUUCU
RSSSS


14130








WV-
fU * RfU * SfC * SfU
UUCU
RSS


14131








WV-
fU * RfC * SfU
UCU
RS


14132








WV-
Mod097L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG *
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSS


14332
SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *

OOSSSSSS



SfC * SfC







WV-
Mod059L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG *
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSS


14333
SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *

OOSSSSSS



SfC * SfC







WV-
Mod070L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG *
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSS


14334
SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *

OOSSSSSS



SfC * SfC







WV-
Mod057L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG *
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSS


14335
SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *

OOSSSSSS



SfC * SfC







WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnXSSnXSSOS


14342
SmG * SfA * SmAfGfG * SfU * SfGn001fU * SfU * SfC

SSOOSSnXSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnXSSnXSSOS


14343
SmGn001fA * SmAfGfG * SfU * SfGn001fU * SfU * SfC

nXSOOSSnXSS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU *
CUCCGGUUCUGAAGGUGUUC
SSnRSSnRSSOS


14344
SmCfU * SmG * SfA * SmAfGfG * SfU * SfGn001RfU *

SSOOSSnRSS



SfU * SfC







WV-
fC * SfU * SfCn001RfC * SfG * SfGn001fU * SfU *
CUCCGGUUCUGAAGGUGUUC
SSnRSSnRSSOS


14345
SmCfU * SmGn001RfA * SmAfGfG * SfU * SfGn001RfU *

nRSOOSSnRSS



SfU * SfC







WV-
Mod098L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG *
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSS


14346
SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *

OOSSSSSS



SfC * SfC







WV-
Mod099L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG *
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSS


14347
SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *

OOSSSSSS



SfC * SfC







WV-
Mod100L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG *
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSS


14348
SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *

OOSSSSSS



SfC * SfC







WV-
fU * SfC * SfAn001fA * SfG * SfGn001mAfA * SmGmA *
UCAAGGAAGAUGGCAUUUCU
SSnXSSnXOSOS


14522
SfU * SmGmGfC * SfA * SfU * SfUn001fU * SfC * SfU

SOOSSSnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfGn001mAfA * SmGmA *
UCAAGGAAGAUGGCAUUUCU
SSnXSSnXOSOS


14523
SfU * SmGmGfCn001fA * SfU * SfUn001fU * SfC * SfU

SOOnXSSnXSS





WV-
fU * SfU * SfU * SfG * SfC * SfC * SmGfC * SmUmG *
UUUGCCGCUGCCCAAUGCCA
SSSSSSOSOSS


14524
SfC * SmCmCmA * SfA * SfU * SfG * SfC * SfC * SfA

OOSSSSSS





WV-
fU * SfU * SfUn001fG * SfC * SfCn001mGfC * SmUmG * 
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXOSOSS


14525
SfC * SmCmCmA * SfA * SfU * SfGn001fC * SfC * SfA

OOSSSnXSS





WV-
fU * SfU * SfUn001fG * SfC * SfCn001mGfC * SmUmG *
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXOSOSS


14526
SfC * SmCmCmAn001fA * SfU * SfGn001fC * SfC * SfA

OOnXSSnXSS





WV-
fU * SfG * SfC * SfC * SfA * SfU * SmCfC * SmUmG
*UGCCAUCCUGGAGUUCCUGU
SSSSSSOSOSS


14527
SfG * SmAmGfU * SfU * SfC * SfC * SfU * SfG * SfU

OOSSSSSS





WV-
fU * SfG * SfCn001fC * SfA * SfUn001mCfC * SmUmG * 
UGCCAUCCUGGAGUUCCUGU
SSnXSSnXOSOS


14528
SfG * SmAmGfU * SfU * SfC * SfCn001fU * SfG * SfU

SOOSSSnXSS





WV-
fU * SfG * SfCn001fC * SfA * SfUn001mCfC * SmUmG *
UGCCAUCCUGGAGUUCCUGU
SSnXSSnXOSOS


14529
SfG * SmAmGfUn001fU * SfC * SfCn001fU * SfG * SfU

SOOnXSSnXSS





WV-
fU * SfC * SfAn001fC * SfU * SfCn001mAfG * SfA * SmU
UCACUCAGAUAGUUGAAGCC
SSnXSSnXOSSSS


14530
* SfA * SmGmUfUn001fG * SfA * SfAn001fG * SfC * SfC

OOnXSSnXSS





WV-
fU * SfU * SfU * SfG * SfC * SfC * SmGfC * SmUmG
*UUUGCCGCUGCCCAAUGCCA
SSSSSSOSOSS


14531
SfC * SmCmCfA * SfA * SfU * SfG * SfC * SfC * SfA

OOSSSSSS





WV-
fU * SfU * SfUn001fG * SfC * SfCn001mGfC * SmUmG *
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXOSOSS


14532
SfC * SmCmCfA * SfA * SfU * SfGn001fC * SfC * SfA

OOSSSnXSS





WV-
fU * SfU * SfUn001fG * SfC * SfCn001mGfC * SmUmG *
UUUGCCGCUGCCCAAUGCCA
SSnXSSnXOSOSS


14533
SfC * SmCmCfAn001fA * SfU * SfGn001fC * SfC * SfA

OOnXSSnXSS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU *
CUCCGGUUCUGAAGGUGUU
SSnRSSnRSSOSSS


14565
SmCfU * SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU

OSSSnRS



* SfU







WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU *
CUCCGGUUCUGAAGGUGUU
SSnRSSnRSSOSS


14566
SmCfU * SmG * SfA * SmAfGfG * SfU * SfGn001RfU *

SOOSSnRS



SfU







WV-
fU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SnRSSnRSSOS


14773
SmAmGfG * SfU * SfGn001RfU * SfU * SfC * SfU
AGGUGUUCU
SSOOSSnRSSS





WV-
fU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SnRSSnRSSOS


14774
SmAmGfG * SfUn001RfG * SfU * SfUn001RfC * SfU
AGGUGUUCU
SSOOSnRSSnRS





WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSSSSSSOSSS


14775
SmAfGfG * SfU * SfG * SfU * SfU * SfC * SfU
AGGUGUUCU
OOSSSSSS





WV-
fU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SnRSSnRSSOS


14776
SmAfGfG * SfU * SfGn001RfU * SfU * SfC * SfU
AGGUGUUCU
SSOOSSnRSSS





WV-
fU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SnRSSnRSSOS


14777
SmAfGfG * SfUn001RfG * SfU * SfUn001RfC * SfU
AGGUGUUCU
SSOOSnRSSnRS





WV-
fU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SnRSSnRSSOS


14778
SmAmGfG * SfU * SfG * SfUn001RfU * SfC * SfU
AGGUGUUCU
SSOOSSSnRSS





WV-
fU * SfC * SfCn001RfG * SfG * SfUn001RfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSnRSSnRSO


14779
SmAmGfG * SfU * SfG * SfUn001RfU * SfC * SfU
AGGUGUUCU
SSSOOSSSnRSS





WV-
fU * SfC * SfCn001RfG * SfG * SfUn001RfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSnRSSnRSO


14790
SmAmGfG * SfU * SfGn001fU * SfU * SfC * SfU
AGGUGUUCU
SSSOOSSnXSSS





WV-
fU * SfC * SfCn001RfG * SfG * SfUn001RfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSnRSSnRSO


14791
SmAmGfG * SfU * SfGn001RfU * SfU * SfC * SfU
AGGUGUUCU
SSSOOSSnRSSS





WV-
BrfU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA * SmU * SfA *
UCACUCAGAUA
SSSSSSnXSSSS


15052
SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
Acet5fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA * SmU *
UCACUCAGAUA
SSSSSSnXSSSS


15053
SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
Mod102L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUA
OSSSSSSOSSS


15074
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SOOSSSSSS





WV-
Mod103L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUA
OSSSSSSOSSS


15075
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SOOSSSSSS





WV-
Mod104L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUA
OSSSSSSOSSS


15076
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SOOSSSSSS





WV-
fC * SfU * SfCn001SfC * SfG * SfGn001RfU * SfU * SmCfU * SmG *
CUCCGGUUCUGA
SSnSSSnRSSOS


15143
SfA * SmAfGfG * SfU * SfGn001RfU * SfU * SfC
AGGUGUUC
SSOOSSnRSS





WV-
fC * SfU * SfCn001SfC * SfG * SfGn001SfU * SfU * SmCfU * SmG *
CUCCGGUUCUGA
SSnSSSnSSSOSSS


15322
SfA * SmAfGfG * SfU * SfGn001SfU * SfU * SfC
AGGUGUUC
OOSSnSSS





WV-
fC * fU * fCn001SfC * fG * fGn001SfU * fU * mCfU * mG * fA *
CUCCGGUUCUGA
XXnSXXnSXXO


15323
mAfGfG * fU * fGn001SfU * fU * fC
AGGUGUUC
XXXOOXXnSXX





WV-
fC * fU * fCn001RfC * fG * fGn001RfU * fU * mCfU * mG * fA *
CUCCGGUUCUGA
XXnRXXnRXXO


15324
mAfGfG * fU * fGn001RfU * fU * fC
AGGUGUUC
XXXOOXXnRXX





WV-
fC * fU * fCn001fC * fG * fGn001fU * fU * mCfU * mG * fA * mAfGfG
CUCCGGUUCUGA
XXnXXXnXXXO


15325
* fU * fGn001fU * fU * fC
AGGUGUUC
XXXOOXXnXXX





WV-
fU * SfC * SfCn001SfG * SfG * SfUn001SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSnSSSnSSOSSS


15326
SmAmGfG * SfU * SfGn001SfU * SfU * SfC * SfU
AGGUGUUCU
OOSSnSSSS





WV-
fU * fC * fCn001SfG * fG * fUn001SfU * mCfU * mG * fA * mAmGfG
UCCGGUUCUGA
XXnSXXnSX


15327
* fU * fGn001SfU * fU * fC * fU
AGGUGUUCU
OXXXOOXX nSXXX





WV-
fU * fC * fCn001RfG * fG * fUn001RfU * mCfU * mG * fA * mAmGfG
UCCGGUUCUGA
XXnRXXnRX


15328
* fU * fGn001RfU * fU * fC * fU
AGGUGUUCU
OXXXOOXX nRXXX





WV-
fU * fC * fUn001fG * fG * fUn001fU * mCfU * mG * fA * mAmGfU *
UCCGGUUCUGA
XXnXXXnXXO


15329
fU * fGn001fU * fU * fC * fU
AGGUGUUCU
XXXOOXXnXXXX





WV-
fC * SfU * SfCn001SfC * SfG * SfGn001SfU * SfU * SmCfU * SmG *
CUCCGGUUCUGA
SSnSSSnSSSOSSS


15330
SfA * SmAfG * SfG * SfU * SfGn001SfU * SfU * SfC
AGGUGUUC
OSSSnSSS





WV-
fC * fU * fCn001SfC * fG * fGn001SfU * fU * mCfU * mG * fA * mAfG
CUCCGGUUCUGA
XXnSXXnSXXO


15331
* fG * fU * fGn001SfU * fU * fC
AGGUGUUC
XXXOXXXnSXX





WV-
fC * fU * fCn001RfC * fG * fGn001RfU * fU * mCfU * mG * fA *
CUCCGGUUCUGA
XXnRXXnRXXO


15332
mAfG * fG * fU * fGn001RfU * fU * fC
AGGUGUUC
XXXOXXXnRXX





WV-
fC * fU * fCn001fC * fG * fGn001fU * fU * mCfU * mG * fA * mAfG *
CUCCGGUUCUGA
XXnXXXnXXXO


15333
fG * fU * fGn001fU * fU * fC
AGGUGUUC
XXXOXXXnXXX





WV-
fU * SfC * SfCn001RfG * SfG * SfUn001RfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSnRSSnRSO


15334
SmAmGfG * SfU * SfG * SfUn001fU * SfC * SfU
AGGUGUUCU
SSSOOSSSnXSS





WV-
fU * SfC * SfCn001SfG * SfG * SfUn001SfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSnSSSnSSOSSS


15335
SmAmGfG * SfU * SfG * SfUn001SfU * SfC * SfU
AGGUGUUCU
OOSSSnSSS





WV-
L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA * SmU *
UCACUCAGAUA
OSSSSSSnXSSSS


15336
SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
Mod059L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAUA
OSSSSSSnXSSSS


15337
SmU * SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
Mod098L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAUA
OSSSSSSnX SSSS


15338
SmU * SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
L001L005fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA * SmU
UCACUCAGAUA
OOSSSSSSnX SSSS


15366
* SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
Mod1051L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUA
OSSSSSSOSSS


15367
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SOOSSSSSS





WV-
Mod074L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUA
OSSSSSSOSSS


15368
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SOOSSSSSS





WV-
fU * SfC * SfCn001RfG * SfG * SfUn001RfU * SmCfU * SmG * SfA *
UCCGGUUCUGA
SSnRSSnRSO


15369
SmAmGfG * SfU * SfG * SfU * SfU * SfC * SfU
AGGUGUUCU
SSSOOSSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SfA * SmGfA * SmU * SfA *
UCACUCAGAUA
SSSSSSSOSSS


15588
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
OOSSSSSS





WV-
fU * SfU * SfAn001fC * SfU * SfCn001fA * SmGfA * SmU * SfA *
UCACUCAGAUA
SSnXSSnXSOSS


15589
SmGmUfU * SfG * SfA * SfAn001fG * SfC * SfC
GUUGAAGCC
SOOSSSnXSS





WV-
Mod098L001fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
CUCCGGUUCUGA
OSSSSSSSSOSSS


15646
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU * SfC
AGGUGUUC
OOSSSSS





WV-
Mod098L001fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU
CUCCGGUUCUGA
OSSnXSSnXSSOSSS


15647
* SmG * SfA * SmAfG * SfG * SfU * SfGn001fU * SfU * SfC
AGGUGUUC
OSSSnXSS





WV-
Mod106fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA * SmU *
UCACUCAGAUA
SSSSSSnXSSSS


15844
SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
Mod107fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA * SmU *
UCACUCAGAUA
SSSSSSnXSSSS


15845
SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
Mod071L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAUA
OSSSSSSnXSSSS


15846
SmU * SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnXSSSSSS





WV-
L00lfC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG *
CUCCGGUUCUGA
OSSSSSSSSOSSS


15847
SfA * SmAmGfG * SfU * SfG * SfU * SfU * SfC
AGGUGUUC
OOSSSSS





WV-
Mod071L001fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
CUCCGGUUCUGA
OSSSSSSSSOSSS


15848
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU * SfC
AGGUGUUC
OOSSSSS





WV-
Mod102L001fC * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
CUCCGGUUCUGA
OSSSSSSSSOSSS


15849
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU * SfC
AGGUGUUC
OOSSSSS





WV-
L001fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG *
CUCCGGUUCUGA
OSSnXSSnXSSOSSS


15850
SfA * SmAfG * SfG * SfU * SfGn001fU * SfU * SfC
AGGUGUUC
OSSSnXSS





WV-
Mod071L001fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU
CUCCGGUUCUGA
OSSnXSSnXSSOSSS


15851
* SmG * SfA * SmAfG * SfG * SfU * SfGn001fU * SfU * SfC
AGGUGUUC
OSSSnXSS





WV-
Mod102L001fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU
CUCCGGUUCUGA
OSSnXSSnXSSOSSS


15852
* SmG * SfA * SmAfG * SfG * SfU * SfGn001fU * SfU * SfC
AGGUGUUC
OSSSnXSS





WV-
fU * SfC * SfAn001fC * SfU * SfC * SfA * SmGfA * SmU * SfA *
UCACUCAGAUA
SSnXSSSS OSSS


15853
SmGmUfUn001fG * SfA * SfAn001fG * SfC * SfC
GUUGAAGCC
OOnXSSnXSS





WV-
fU * SfC * SfAn001fC * SfU * SfCn001fA * SmGfA * SmU * SfA *
UCACUCAGAUA
SSnXSSnXSOSSS


15854
SmGmUfUn001fG * SfA * SfAn001fG * SfC * SfC
GUUGAAGCC
OOnXSSnXSS





WV-
fU * SfC * SfAn001fC * SfU * SfCn001fA * SmGfA * SmU * SfA *
UCACUCAGAUA
SSnXSSnXSOSSS


15855
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
OOSSSSSS





WV-
fG * SfC * SfA * SfC * SfU * SfC * SfA * SmGfA * SmU * SfA *
UCACUCAGAUA
SSSSSSSOSSS


15856
SmGmUfUn001fG * SfA * SfAn001fG * SfC * SfC
GUUGAAGCC
OOnXSSnXSS





WV-
fU * SfC * SfAn001fC * SfU * SfC * SmAfG * SfA * SmU * SfA *
UCACUCAGAUA
SSnXSSSOSSS


15857
SmGmUfUn001fG * SfA * SfAn001fG * SfC * SfC
GUUGAAGCC
SOOnXSSnXSS





WV-
fU * SfC * SfAn001fC * SfU * SfCn001mAfG * SfA * SmU * SfA *
UCACUCAGAUA
SSnXSSnXOSSSS


15858
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
OOSSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU * SfA *
UCACUCAGAUA
SSSSSSOSSS


15859
SmGmUfUn001fG * SfA * SfAn001fG * SfC * SfC
GUUGAAGCC
SOOnXSSnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfG * SmAfA * SmGmA * SfU *
UCAAGGAAGAU
SSnXSSSOSOSSO


15860
SmGmGfCn001fA * SfU * SfUn001fU * SfC * SfU
GGCAUUUCU
OnXSSnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfGn001mAfA * SmGmA * SfU *
UCAAGGAAGAU
SSnXSSnXOSOSS


15861
SmGmGfC * SfA * SfU * SfU * SfU * SfC * SfU
GGCAUUUCU
OOSSSSSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU *
UCAAGGAAGAU
SSSSSSOSOSSOO


15862
SmGmGfCn001fA * SfU * SfUn001fU * SfC * SfU
GGCAUUUCU
nXSSnXSS





WV-
Mod071L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU *
UCACUCAGAUA
O SSSSSSO SSSSOO


15882
SfA * SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SSSSSS





WV-
fC * SfU * SfCn002 RfC * SfG * SfGn002 RfU * SfU * SmCfU * SmG *
CUCCGGUUCUGAAG
SSnR SSnR


15883
SfA * SmAfGfG * SfU * SfGn002 RfG * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
mU * SGeon002 m5Ceon002 m5Ceon002 mA * SG * SG * RC * ST *
UGCCAGGCTGG
SnXnXnXSS RSSRSSR


15884
SG * RG * ST * ST * RA * ST * SmG * SmA * SmC * SmU * SmC
TTATGACUC
SSSSSS





WV-
mU * SGeon002 Rm5Ceon002 Rm5Ceon002 RmA * SG * SG * RC * ST
UGCCAGGCTGG
SnRnRnR SSRSSRSSR


15885
* SG * RG * ST * ST * RA * ST * SmG * SmA * SmC * SmU * SmC
TTATGACUC
SSSSSS





WV-
fC * SfU * SfCn002 fC * SfG * SfGn002 fU * SfU * SmCfU * SmG *
CUCCGGUUCUGAAG
SSnXSSnXSSOSSSOOSS


15886
SfA * SmAfGfG * SfU * SfGn002 fU * SfU * SfC
GUGUUC
nXSS





WV-
fCn001 fUn001 fCn001 fCn001 fGn001 fGn001 fUn001 fUn001
CUCCGGUUCUGAAG
nXnXnXnXnX


15912
mCfUn001 mGn001 fAn001 mAfGfGn001 fUn001 fGn001 fUn001
GUGUUC
nXnXnXOnXnXnX



fCn001 fC

OOnXnXnXnXnX





WV-
fCn001 fUn001 fCn001 fCn001 fGn001 fGn001 fUn001 fUn001 mCn001
CUCCGGUUCUGAAG
nXnXnXnXnX nXnX


15913
fUn001 mGn001 fAn001 mAn001 fGn001 fGn001 fUn001 fGn001
GUGUUC
nXnXnX nXnXnXnXnX



fUn001 fUn001 fC

nXnXnXnX





WV-
fA * SfU * SfU * SfU * SfA * SfG * SfC * SfA * SmU * SfG * SmU *
AUUUAGCAUGUU
SSSS SSSS SSSS


15927
SfU * SmC * SfC * SfC * SfA * SfA * SfU * SfU * SfC
CCCAAUUC
SSSSSSS





WV-
fA * SfU * SfUn001 fU * SfA * SfGn001 fC * SfA * SmUn001 fG * SmU
AUUUAGCAUGUU
SSnXSSnXSSnX SSSnX


15928
* SfU * SmCn001 fC * SfC * SfA * SfAn001 fU * SfU * SfC
CCCAAUUC
SSSnXSS





WV-
fA * SfU * SfUn001 fU * SfA * SfGn001 fC * SfA * SmU * SfG * SmU
AUUUAGCAUGUU
SSnXSSnX SSSSSSnX


15929
* SfU * SmCn001 fC * SfC * SfA * SfAn001 fU * SfU * SfC
CCCAAUUC
SSSnXSS





WV-
fA * SfU * SfUn001 fU * SfA * SfGn001 fC * SfA * SmU * SfG * SmU
AUUUAGCAUGUU
SSnXSSnX SSSS


15930
* SfU * SmC * SfC * SfC * SfA * SfAn001 fU * SfU * SfC
CCCAAUUC
SSSSSSnXSS





WV-
fA * SfG * SfU * SfU * SfA * SfUn001 fC * SfA * SmUn001 fG * SmU
AUUUAGCAUGUU
SSSSSnXSSnX SSSnX


15931
* SfU * SmCn001 fC * SfC * SfA * SfA * SfU * SfU * SfC
CCAAUUC
SSSSSS





WV-
fA * SfU * SfUn001 fU * SfA * SfG * SfC * SfA * SmU * SfG * SmU *
AUUUAGCAUGUU
SSnX SSSS SSSSSnX


15932
SfU * SmCn001 fC * SfC * SfA * SfAn001 fU * SfU * SfC
CCCAAUUC
SSSnXSS





WV-
fA * SfU * SfUn001 fU * SfA * SfG * SfC * SfA * SmU * SfG * SmU *
AUUUAGCAUGUU
SSnX SSSS SSSS


15933
SfU * SmC * SfC * SfC * SfA * SfAn001 fU * SfU * SfC
CCCAAUUC
SSSSSnXSS





WV-
fA * SfU * SfUn001 fU * SfA * SfGn001 fC * SfA * SmU * SfG * SmU
AUUUAGCAUGUU
SSnXSSnX SSSS SSSS


15934
* SfU * SmC * SfC * SfC * SfA * SfA * SfU * SfU * SfC
CCCAAUUC
SSSSS





WV-
fA * SfU * SfU * SfU * SfA * SfG * SfC * SfA * SmU * SfG * SmU *
AUUUAGCAUGUU
SSSS SSSS SSSSnX


15935
SfU * SmCn001 fC * SfC * SfA * SfAn001 fU * SfU * SfC
CCCAAUUC
SSSnXSS





WV-
mA * SmU * SmU * SmU * SmA * SmG * SmC * SmA * SmU * SmG *
AUUUAGCAUGUU
SSSS SSSS SSSS


15936
SmU * SmU * SmC * SmC * SmC * SmA * SmA * SmU * SmU * SmC
CCCAAUUC
SSSSSSS





WV-
mA * SmU * SmUn001 mU * SmA * SmGn001 mC * SmA * SmUn001
AUUUAGCAUGUU
SSnXSSnXSSnX SSSnX


15937
mG * SmU * SmU * SmCn001 mC * SmC * SmA * SmAn001 mU *
CCCAAUUC
SSSnXSS



SmU * SmC







WV-
Aeo * STeo * STeo * STeo * SAeo * SGeo * Sm5Ceo * SAeo * STeo *
ATTTAGCATGTT
SSSS SSSS SSSS


15938
SGeo * STeo * STeo * Sm5Ceo * Sm5Ceo * Sm5Ceo * SAeo * SAeo *
CCCAATTC
SSSSSSS



STeo * STeo * Sm5Ceo







WV-
Aeo * STeo * STeon001 Teo * SAeo * SGeon001 m5Ceo * SAeo *
ATTTAGCATGTT
SSnXSSnXSSnX SSSnX


15939
STeon001 Geo * STeo * STeo * Sm5Ceon001 m5Ceo * Sm5Ceo * SAeo
CCCAATTC
SSSnXSS



* SAeon001 Teo * STeo * Sm5Ceo







WV-
fG * SfC * SfAn001 fU * SfG * SfUn001 fU * SfC * SmCn001 fC * SmA
GCAUGUUCCC
SSnXSSnXSSnX SSSnX


15940
* SfA * SmUn001 fU * SfC * SfU * SfCn001 fA * SfG * SfG
AAUUCUCAGG
SSSnXSS





WV-
fA * SfG * SfCn001 fA * SfU * SfGn001 fU * SfU * SmCn001 fC * SmC
AGCAUGUU CC
SSnXSSnXSSnX SSSnX


15941
* SfA * SmAn001 fU * SfU * SfC * SfUn001 fC * SfA * SfG
CAAUUCUCAG
SSSnXSS





WV-
fU * SfA * SfGn001 fC * SfA * SfUn001 fG * SfU * SmUn001 fC * SmC
UAGCAUGUU
SSnXSSnXSSnX SSSnX


15942
* SfC * SmAn001 fA * SfU * SfU * SfCn001 fU * SfC * SfA
CCCAAUUCUCA
SSSnXSS





WV-
fU * SfU * SfAn001 fG * SfC * SfAn001 fU * SfG * SmUn001 fU * SmC
UUAGCAUGUU
SSnXSSnXSSnX SSSnX


15943
* SfC * SmCn001 fA * SfA * SfU * SfUn001 fC * SfU * SfC
CCCAAUUCUC
SSSnXSS





WV-
fU * SfU * SfUn001 fA * SfG * SfCn001 fA * SfU * SmGn001 fU * SmU
UUUAGCAUGUU
SSnXSSnXSSnX SSSnX


15944
* SfC * SmCn001 fC * SfA * SfA * SfUn001 fU * SfC * SfU
CCCAAUUCU
SSSnXSS





WV-
fU * SfA * SfUn001 fU * SfU * SfAn001 fG * SfC * SmAn001 fU * SmG
UAUUUAGCAUGUU
SSnXSSnXSSnX SSSnX


15945
* SfU * SmUn001 fC * SfC * SfC * SfAn001 fA * SfU * SfU
CCCAAUU
SSSnXSS





WV-
fG * SfG * SfAn001 fU * SfU * SfUn001 fA * SfG * SmCn001 fA * SmU
GUAUUUAGCA UGUU
SSnXSSnXSSnX SSSnX


15946
* SfC * SmUn001 fU * SfC * SfC * SfCn001 fA * SfA * SfU
CCCAAU
SSSnXSS





WV-
fU * SfG * SfUn001 fA * SfU * SfUn001 fU * SfA * SmGn001 fC * SmA
UGUAUUUAGCA
SSnXSSnXSSnX SSSnX


15947
* SfU * SmGn001 fU * SfU * SfC * SfCn001 fC * SfA * SfA
UGUU CCCAA
SSSnXSS





WV-
fU * SfU * SfGn001 fU * SfA * SfUn001 fU * SfU * SmAn001 fG * SmC
UUGUAUUUAGCAUGU
SSnXSSnXSSnX SSSnX


15948
* SfA * SmUn001 fG * SfU * SfU * SfCn001 fC * SfC * SfA
U CCCA
SSSnXSS





WV-
fU * SfU * SfUn001 fG * SfU * SfAn001 fU * SfU * SmUn001 fA *
UUUGUAUUU
SSnXSSnXSSnX SSSnX


15949
SmG * SfC * SmAn001 fU * SfG * SfU * SfUn001 fC * SfC * SfC
AGCAUGUU CCC
SSSnXSS





WV-
fG * SfC * SfU * SfG * SfC * SfU * SfC * SfU * SmU * SfU * SmU *
GCUGCUCUUU
SSSS SSSS SSSS


15950
SfC * SmC * SfA * SfG * SfG * SfU * SfU * SfC * SfA
UCCAGGUUCA
SSSSSSS





WV-
fC * SfU * SfU * SfC * SfC * SfU * SfC * SfC * SmA * SfA * SmC *
CUUCCUCCAACCA
SSSS SSSS SSSS


15951
SfC * SmA * SfU * SfA * SfA * SfA * SfA * SfC * SfA
UAAAACA
SSSSSSS





WV-
fA * SfG * SfG * SfU * SfU * SfC * SfA * SfA * SmG * SfU * SmG *
AGGUUCAAGU
SSSS SSSS SSSS


15952
SfG * SmG * SfA * SfU * SfA * SfC * SfU * SfA * SfG
GGGAUACUAG
SSSSSSS





WV-
fG * SfC * SfA * SfC * SfU * SfU * SfA * SfC * SmA * SfA * SmG *
GCACUUACAAG
SSSS SSSS SSSS


15953
SfC * SmA * SfC * SfG * SfG * SfG * SfU * SfC * SfC
CACGGGUCC
SSSSSSS





WV-
fG * SfG * SfC * SfA * SfA * SfC * SfU * SfC * SmU * SfU * SmC *
GGCAACUCUU
SSSS SSSS SSSS


15954
SfC * SmA * SfC * SfC * SfA * SfG * SfU * SfA * SfA
CCACCAGUAA
SSSSSSS





WV-
fG * SfA * SfG * SfU * SfU * SfC * SfU * SfU * SmC * SfC * SmA *
GAGUUCUUCC
SSSS SSSS SSSS


15955
SfA * SmC * SfU * SfG * SfG * SfG * SfG * SfA * SfC
AACUGGGGAC
SSSSSSS





WV-
fG * SfG * SfU * SfA * SfU * SfC * SfA * SfU * SmC * SfU * SmG *
GGUAUCAUCU
SSSS SSSS SSSS


15956
SfC * SmA * SfG * SfA * SfA * SfU * SfA * SfA * SfU
GCAGAAUAAU
SSSSSSS





WV-
fU * SfU * SfU * SfC * SfA * SfG * SfG * SfG * SmC * SfC * SmA *
UUUCAGGGCCA
SSSS SSSS SSSS


15957
SfA * SmG * SfU * SfC * SfA * SfU * SfU * SfU * SfG
AGUCAUUUG
SSSSSSS





WV-
fC * SfC * SfA * SfC * SfA * SfU * SfC * SfU * SmA * SfC * SmA *
CCACAUCUACAU
SSSS SSSS SSSS


15958
SfU * SmU * SfU * SfG * SfU * SfC * SfU * SfG * SfC
UUGUCUGC
SSSSSSS





WV-
fC * SfU * SfU * SfU * SfC * SfC * SfU * SfU * SmA * SfC * SmG *
CUUUCCUUACG
SSSS SSSS SSSS


15959
SfG * SmG * SfU * SfA * SfG * SfC * SfA * SfU * SfC
GGUAGCAUC
SSSSSSS





WV-
fU * SfU * SfC * SfU * SfU * SfC * SfC * SfA * SmA * SfA * SmG *
UUCUUCC
SSSS SSSS SSSS


15960
SfC * SmA * SfG * SfC * SfC * SfU * SfC * SfU * SfC
AAAGCAGCCUCUC
SSSSSSS





WV-
fU * SfC * SfC * SfU * SfG * SfU * SfA * SfG * SmG * SfA * SmC *
UCCUGUAGGA
SSSS SSSS SSSS


15961
SfA * SmU * SfU * SfG * SfG * SfC * SfA * SfG * SfU
CAUUGGCAGU
SSSSSSS





WV-
fG * SfC * SfUn001 fG * SfC * SfUn001 fC * SfU * SmUn001 fU * SmU
GCUGCUCUUU
SSnXSSnXSSnX SSSnX


15962
* SfC * SmCn001 fA * SfG * SfG * SfUn001 fU * SfC * SfA
UCCAGGUUCA
SSSnXSS





WV-
fC * SfU * SfUn001 fC * SfC * SfUn001 fC * SfC * SmAn001 fA * SmC
CUUCCUCCAACCA
SSnXSSnXSSnX SSSnX


15963
* SfC * SmAn001 fU * SfA * SfA * SfAn001 fA * SfC * SfA
UAAAACA
SSSnXSS





WV-
fA * SfG * SfGn001 fU * SfU * SfCn001 fA * SfA * SmGn001 fU * SmG
AGGUUCAAGU
SSnXSSnXSSnX SSSnX


15964
* SfG * SmGn001 fA * SfU * SfA * SfCn001 fU * SfA * SfG
GGGAUACUAG
SSSnXSS





WV-
fG * SfC * SfAn001 fC * SfU * SfUn001 fA * SfC * SmAn001 fA * SmG
GCACUUACAAG
SSnXSSnXSSnX SSSnX


15965
* SfC * SmAn001 fC * SfG * SfG * SfGn001 fU * SfC * SfC
CACGGGUCC
SSSnXSS





WV-
fG * SfG * SfCn001 fA * SfA * SfCn001 fU * SfC * SmUn001 fU * SmC
GGCAACUCUU
SSnXSSnXSSnX SSSnX


15966
* SfC * SmAn001 fC * SfC * SfA * SfGn001 fU * SfA * SfA
CCACCAGUAA
SSSnXSS





WV-
fG * SfA * SfGn001 fU * SfU * SfCn001 fU * SfU * SmCn001 fC * SmA
GAGUUCUUCC
SSnXSSnXSSnX SSSnX


15967
* SfA * SmCn001 fU * SfG * SfG * SfGn001 fG * SfA * SfC
AACUGGGGAC
SSSnXSS





WV-
fG * SfG * SfUn001 fA * SfU * SfCn001 fA * SfU * SmCn001 fU * SmG
GGUAUCAUCU
SSnXSSnXSSnX SSSnX


15968
* SfC * SmAn001 fG * SfA * SfA * SfUn001 fA * SfA * SfU
GCAGAAUAAU
SSSnXSS





WV-
fU * SfU * SfUn001 fC * SfA * SfGn001 fG * SfG * SmCn001 fC * SmA
UUUCAGGGCCA
SSnXSSnXSSnX SSSnX


15969
* SfA * SmGn001 fU * SfC * SfA * SfUn001 fU * SfU * SfG
AGUCAUUUG
SSSnXSS





WV-
fC * SfC * SfAn001 fC * SfA * SfUn001 fC * SfU * SmAn001 fC * SmA
CCACAUCUACAU
SSnXSSnXSSnX SSSnX


15970
* SfU * SmUn001 fU * SfG * SfU * SfCn001 fU * SfG * SfC
UUGUCUGC
SSSnXSS





WV-
fC * SfU * SfUn001 fU * SfC * SfCn001 fU * SfU * SmAn001 fC * SmG
CUUUCCUUACG
SSnXSSnXSSnX SSSnX


15971
* SfG * SmGn001 fU * SfA * SfG * SfCn001 fA * SfU * SfC
GGUAGCAUC
SSSnXSS





WV-
fU * SfU * SfCn001 fU * SfU * SfCn001 fC * SfA * SmAn001 fA * SmG
UUCUUCC
SSnXSSnXSSnX SSSnX


15972
* SfC * SmAn001 fG * SfC * SfC * SfUn001 fC * SfU * SfC
AAAGCAGCCUCUC
SSSnXSS





WV-
fU * SfC * SfCn001 fU * SfG * SfUn001 fA * SfG * SmGn001 fA * SmC
UCCUGUAGGA
SSnXSSnXSSnX SSSnX


15973
* SfA * SmUn001 fU * SfG * SfG * SfCn001 fA * SfG * SfU
CAUUGGCAGU
SSSnXSS





WV-
L00lfC * SfU * SfCn001 RfC * SfG * SfGn001 RfU * SfU * SmCfU *
CUCCGGUUCUGAAG
OSSnR SSnR


16004
SmG * SfA * SmAfGfG * SfU * SfGn001 RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
Mod071L001fC * SfU * SfCn001 RfC * SfG * SfGn001 RfU * SfU *
CUCCGGUUCUGAAG
OSSnR SSnR


16005
SmCfU * SmG * SfA * SmAfGfG * SfU * SfCn001 RfU * SfU * SfC
GUGUC
SSOSSSOOSSnR SS





WV-
fC * SfU * SfCn003RfC * SfG * SfGn003RfU * SfU * SmCfU * SmG *
CUCCGGUUCUGAAG
SSnR SSnR


16006
SfA * SmAfGfG * SfU * SfGn003RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
fC * SfU * SfCn004RfC * SfG * SfGn004RfU * SfU * SmCfU * SmG *
CUCCGGUUCUGAAG
SSnR SSnR


16007
SfA * SmAfGfG * SfU * SfGn004RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn003fG * SfA * SmU * SfA *
UCACUCAGAUA
SSSSSSnX SSSSnXnX


16008
SmGn003mUn003fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SSSSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn004fG * SfA * SmU * SfA *
UCACUCAGAUA
SSSSSSnX SSSSnXnX


16009
SmGn004mUn004fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SSSSSS





WV-
L001L005fC * SfU * SfCn001 RfC * SfG * SfGn001 RfU * SfU *
CUCCGGUUCUGAAG
OOSSnR SSnR


16010
SmCfU * SmG * SfA * SmAfGfG * SfU * SfGn001 RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
Mod107fC * SfU * SfCn001 RfC * SfG * SfUn001 RfU * SfU * SmCfU *
CUCCGGUUCUGAAG
SSnR SSnR


16011
SmG * SfA * SmAfGfG * SfU * SfGn001 RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
Mod108L001fC * SfU * SfCn001 RfC * SfG * SfGn001 RfU * SfU *
CUCCGGUUCUGAAG
OSSnR SSnR


16366
SmCfU * SmG * SfA * SmAfGfG * SfU * SfGn001 RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
fC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG * SfA * SmAmGfG *
CCGGUUCUGAAG
SSSSSSOSSSOO


16367
SfU * SfG * SfU * SfU * SfC * SfU
GUGUUCU
SSSSSS





WV-
fU * SfCn001 RfC * SfG * SfGn001 RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGAAG
SnRSSnR


16368
SmAfG * SfG * SfU * SfGn001 RfU * SfU * SfC
GUGUUC
SSOSSSOSSSnR SS





WV-
fU * SfCn001 RfC * SfG * SfGn001 RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGAAG
SnRSSnR


16369
SmAfGfG * SfU * SfGn001 RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
fC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG * SfA * SmAmGfG *
CCGGUUCUGAAG
SSSSSSOSSSOO SSSSS


16370
SfU * SfG * SfU * SfU * SfC
GUGUUC






WV-
fU * SfCn001 RfC * SfG * SfGn001 RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGAAG
SnRSSnR


16371
SmAfG * SfG * SfU * SfGn001 RfU * SfU
GUGUU
SSOSSSOSSSnRS





WV-
fU * SfCn001 RfC * SfG * SfGn001 RfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUGAAG
SnRSSnR


16372
SmAfGfG * SfU * SfUn001 RfU * SfU
GUGUU
SSOSSSOOSSnRS





WV-
Mod105L001fC * SfU * SfCn001 RfC * SfG * SfGn001 RfU * SfU *
CUCCGGUUCUGAAG
OSSnR SSnR


16499
SmCfU * SmG * SfA * SmAfGfG * SfU * SfGn001 RfU * SfU * SfC
GUGUUC
SSOSSSOOSSnR SS





WV-
mU * mC * mA * mC * mU * mC * mA * mG * mA * mU * mA * mG *
UCACUCAGAUA
XXXXX XXXXX


16500
mU * mU * mG * mA * mA * mG * mC * mC
GUUGAAGCC
XXXXX XXXX





WV-
fU * fA * fA * fG * fG * mAfA * mGmA * fU * mGmGfC * fA * fU * fU
CAAGGAAGA UGG
XXXXX


16501
* fU * fC * fU
CAUUUCU
OXOXXOOXXXXX X





WV-
fA * fA * fG * fG * mAfA * mGmA * fU * mGmGfC * fA * mU * fU * fU * fU
AAGGAAGA UG
XXXXOXOXXOOXXXX


16502
* fC * fU
GCAUUUCU
X X





WV-
fUfC * fA * fA * fG * fG * mAfA * mGmA * fU * mGmGfC * fA * fU *
UCAAGGAAGA
OXXXXX


16503
fU * fU * fC * fU
UGGCAUUUCU
OXOXXOOXXXXX X





WV-
fU * fU * fC * fA * fA * fG * fG * mAfA * mGmA * fU * mGmGfC * fA
UUCAAGGAAGA
XXXXX


16504
* fU * fU * fU * fC * fU
UGGCAUUUCU
XXOXOXXOOXXXXX





X





WV-
Mod105L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001 fG * SfA *
UCACUCAGAUA
O SSSSSSnX SSSSnXnX


16505
SmU * SfA * SmGn001 mUn001 fU * SfG * SfA * SfA * SfG * SfC *
GUUGAAGCC
SSSSSS



SfC







WV-
Mod108L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001 fG * SfA *
UCACUCAGAUA
O SSSSSSnX SSSSnXnX


16506
SmU * SfA * SmGn001 mUn001 fU * SfG * SfA * SfA * SfG * SfC *
GUUGAAGCC
SSSSSS



SfC







WV-
Mod099L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001 fG * SfA *
UCACUCAGAUA
O SSSSSSnX SSSSnXnX


16507
SmU * SfA * SmGn001 mUn001 fU * SfG * SfA * SfA * SfG * SfC *
GUUGAAGCC
SSSSSS



SfC







WV-
Mod102L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAU
OSSSS SSnXSS


17765
SmU * SfA * SmGn001 mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AGUUGAAGCC
SSnXnXS SSSSS





WV-
fU * SfC * SfAn001RfC * SfU * SfCn001RmAfG * SfA * SmU * SfA *
UCACUCAGAU
SSnRSS nR OSSSS


17774
SmGmUfU * SfG * SfA * SfAn001RfG * SfC * SfC
AGUUGAAGCC
OOSS SnRSS





WV-
L001fU * SfC * SfAn001RfC * SfU * SfCn001RmAfG * SfA * SmU *
UCACUCAGAU
OSSnRS SnROSS SSOOS


17775
SfA * SmGmUfU * SfG * SfA * SfAn001RfG * SfC * SfC
AGUUGAAGCC
SSnRSS





WV-
fU * SfC * SfAn001SfC * SfU * SfCn001SmAfG * SfA * SmU * SfA *
UCACUCAGAU
SSnSSSnS OSSSS


17801
SmGmUfU * SfG * SfA * SfAn001SfG * SfC * SfC
AGUUGAAGCC
OOSSSnS SS





WV-
fU * SfC * SfAn001RfC * SfU * SfC * SmAn001RfG * SfA * SmU * SfA
UCACUCAGAU
SSnRSS SnRSSS SOOSS


17802
* SmGmUfU * SfG * SfA * SfAn001RfG * SfC * SfC
AGUUGAAGCC
SnRSS





WV-
fU * SfC * SfAn001RfC * SfU * SfCn001RmA * SfG * SfA * SmU * SfA
UCACUCAGAU
SSnRSS nR SSSSS OOSS


17803
* SmGmUfU * SfG * SfA * SfAn001RfG * SfC * SfC
AGUUGAAGCC
SnRSS





WV-
Mod007L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAU
OSSSS SSnXSS


17831
SmU * SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AGUUGAAGCC
SSnXnXS SSSSS





WV-
Mod027L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAU
OSSSS SSnXSS


17832
SmU * SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AGUUGAAGCC
SSnXnXS SSSSS





WV-
Mod028L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAU
OSSSS SSnXSS


17833
SmU * SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AGUUGAAGCC
SSnXnXS SSSSS





WV-
Mod029L001fU * SfC * SfA * SfC * SfU * SfC * SmAn001fG * SfA *
UCACUCAGAU
OSSSS SSnXSS


17834
SmU * SfA * SmGn001mUn001fU * SfG * SfA * SfA * SfG * SfC * SfC
AGUUGAAGCC
SSnXnXS SSSSS





WV-
fG * SfG * SfU * SfU * SmCfU * SmG * SfA * SmAmGfG * SfU * SfG *
GGUUCUGAAG
SSSSO SSSOO SSSSS S


17835
SfU * SfU * SfC * SfU
GUGUUCU






WV-
fUfC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG * SfA *
UCCGGUUCUG
OSSSS SSOSS SOOSS


17836
SmAmGfG * SfU * SfG * SfU * SfU * SfC * SfU
AAGGUGUUCU
SSSS





WV-
fG * SfU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU * SmG * SfA *
GUCCGGUUCU
SSSSS SSSOS SSOOS


17837
SmAmGfG * SfU * SfG * SfU * SfU * SfC * SfU
GAAGGUGUUCU
SSSSS





WV-
fCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA *
CCGGUUCUGA
nRSSnRS SOSSS


17838
SmAfGfG * SfU * SfGn001RfU * SfU * SfC
AGGUGUUC
OOSSnRSS





WV-
fCfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA
CUCCGGUUCU
OSnRSSnR SSOSS


17839
* SmAfGfG * SfU * SfGn001RfU * SfU * SfC
GAAGGUGUUC
SOOSSnRSS





WV-
fC * SfC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CCUCCGGUUC
SSSnRS SnRSSO SSSOO


17840
SmG * SfA * SmAfGfG * SfU * SfGn001RfU * SfU * SfC
UGAAGGUGUUC
SSnRSS





WV-
fCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA * SmAfG
CCGGUUCUGA
nRSSnRS SOSSS


17841
* SfG * SfU * SfGn001RfU * SfU * SfC
AGGUGUUC
OSSSnRSS





WV-
fCfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU * SmG * SfA
CUCCGGUUCU
OSnRSSnR SSOSS


17842
* SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC
GAAGGUGUUC
SOSSSnRSS





WV-
fC * SfC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CCUCCGGUUC
SSSnRS


17843
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC
UGAAGGUGUUC
SnRSSOSSSOSSSnRSS





WV-
rC rA rG rA rG rU rA rA rC rA rG rU rC rU rG rA rG rU rA rG rG rU rU
CAGAGUAACA
OOOOO OOOOO


17844
rU rU rA rG rA rG rC rU rA
GUCUGAGUAG
OOOOO OOOOO




GUUUUAGAGC UA
OOOOO OOOOO O





WV-
rG rA rG rU rA rA rC rA rG rU rC rU rG rA rG rU rA rG rG rU rU rU rU
GAGUAACAGU
OOOOO OOOOO


17845
rA rG rA rG rC rU rA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OOOO





WV-
rG * rA * rG * rU * rA * rA * rC * rA * rG rU rC rU rG rA rG rU rA
GAGUAACAGU
XXXXX XXXOO


17846
rG rG rU rU rU rU * rA * rG * rA * rG * rC * rU * rA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOXXXXXXX





WV-
rG * rA * rG * rU * rA * rA * rC * rA * rG * rU * rC * rU * rG *
GAGUAACAGU
XXXXX XXXXX


17847
rA * rG * rU * rA * rG * rG * rU * rU * rU * rU * rA * rG * rA *
CUGAGUAGGU
XXXXX XXXXX



rG * rC * rU * rA
UUUAGAGCUA
XXXXX XXXX





WV-
mGmAmGmUmAmAmCmA rG rU rC rU rG rA rG rU rA rG rG rU rU
GAGUAACAGU
OOOOO OOOOO


17848
rUmUmAmGmAmGmCmUmA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OOOO





WV-
mG * mA * mG * mU * mA * mA * mC * mA * rG rU rC rU rG rA rG
GAGUAACAGU
XXXXX XXXOO


17849
rU rA rG rG rU rU rUmU * mA * mG * mA * mG * mC * mU * mA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOXXXXXXX





WV-
mG * mA * mG * mU * mA * mA * mC * mA * rG * rU * rC * rU *
GAGUAACAGU
XXXXX XXXXX


17850
rG * rA * rG * rU * rA * rG * rG * rU * rU * rU * mU * mA * mG *
CUGAGUAGGU
XXXXX XXXXX



mA * mG * mC * mU * mA
UUUAGAGCUA
XXXXX XXXX





WV-
fGfAfGfUfAfAfCfA rG rU rC rU rG rA rG rU rA rG rG rU rU
GAGUAACAGU
OOOOO OOOOO


17851
rUfUfAfGfAfGfCfUfA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OOOO





WV-
fG * fA * fG * fU * fA * fA * fC * fA * rG rU rC rU rG rA rG rU rA rG
GAGUAACAGU
XXXXX XXXOO


17852
rG rU rU rUfU * fA* fG * fA * fG * fC * fU * fA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOXXXXXXX





WV-
fG * fA * fG * fU * fA * fA * fC * fA * rG * rU * rC * rU * rG * rA *
GAGUAACAGU
XXXXX XXXXX


17853
rG * rU * rA * rG * rG * rU * rU * rU * fU * fA * fG * fA * fG * fC
CUGAGUAGGU
XXXXX XXXXX



* fU * fA
UUUAGAGCUA
XXXXX XXXX





WV-
rG rA rG rU rAn001 rAn001 rCn001 rAn001 rG rU rC rU rG rA rG rU rA
GAGUAACAGU
OOOOnX nXnXnXOO


17854
rG rG rU rU rU rU rA rG rA rGn001 rCn001 rUn001 rA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OnXnXnX





WV-
rG rA rG rU rA rA rC rA rG rU rC rU rG rA rG rU rA rG rG rU rU rU rU
GAGUAACAGU
OOOOO OOOOO


17855
rA rG rA rGn001 rCn001 rUn001 rA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OnXnXnX





WV-
rG rA rG rU rAn001 rAn001 rCn001 rAn001 rG rU rC rU rG rA rG rU rA
GAGUAACAGU
OOOOnX nXnXnXOO


17856
rG rG rU rU rU rU rA rG rA rG rC rU rA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OOOO





WV-
rG rA rG rU rA rAn001 rC rAn001 rG rU rC rU rG rA rG rU rA rG rG rU
GAGUAACAGU
OOOOO nXOnXOO


17857
rU rU rU rA rG rA rGn001 rC rUn001 rA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OnXOnX





WV-
rG rA rG rU rAn001 rA rCn001 rA rG rU rC rU rG rA rG rU rA rG rG rU
GAGUAACAGU
OOOOnX OnXOOO


17858
rU rU rU rA rG rA rG rCn001 rUn001 rA
CUGAGUAGGU
OOOOO OOOOO




UUUAGAGCUA
OOOOO OOnXnX





WV-
fU * SfC * SfAn001fA * SfG * SfG * SmA * SfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS SSSOS SOOnXS


17859
SmGmGfCn001fA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfG * SmAfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS SOSOS SOSnXS


17860
SmGmG * SfCn001fA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfG * SmA * SfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS SSSOS SOSnXS


17861
SmGmG * SfCn001fA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfG * SfA * SfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS SSSOS SOSnXS


17862
SmGfG * SfCn001fA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfGn001mA * SfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS nXSSOS SOOSS


17863
SmGmGfC * SfA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfGn001mAfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS nXOSOS SOSSS


17864
SmGmG * SfC * SfA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfGn001mA * SfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS nXSSOS SOSSS


17865
SmGmG * SfC * SfA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-
fU * SfC * SfAn001fA * SfG * SfGn001fA * SfA * SmGmA * SfU *
UCAAGGAAGA
SSnXSS nXSSOS SOSSS


17866
SmGfG * SfC * SfA * SfU * SfUn001fU * SfC * SfU
UGGCAUUUCU
SnXSS





WV-17881
fG fA fG fUn001 fA fA fCn001 fA rG rU rC rU rG rA rG rU
GAGUAACAGUCUGAGUA
XXXnXX XnXXO OOOOO



rA rG rG rU rU rU fU fA fGn001 fA fG fCn001 fU fA
GGUU UUAGAGCUA
OOOOO OOOXX nXXXnXX





WV-17882
fG fA fG fUn001 fA fA fCn001 fA rG rU rC rU rG rA rG rU
GAGUAACAGUCUGAGUA
XXXnXX XnXXO OOOOO



rA rG rG rU rU rUn001 fU fA fGn001 fA fG fCn001 fU fA
GGUU UUAGAGCUA
OOOOO OOnXXX nXXXnXX





WV-17883
fG fA fG fUn001 fA fA fCn001 fA rG rU rC rU rG rA rG rU
GAGUAACAGUCUGAGUA
XXXnXX XnXXO OOOOO



rA rG rGn001 rU rU rUn001 fU fA fUn001 fA fG fCn001 fU
GGUU UUAGAGCUA
OOOOnX OOnXXX



fA

nXXXnXX





WV-18853
fC fC fUn001 fA fC fCn001 fC fU mA fU mG fU mAn001 fC
CCUACCCUAUGUACAUC
SSnXSS nXSSSS SSnXSS



fA fU fCn001 fG fU fU
GUU
SnXSS





WV-18854
fC fC fUn001 fA fU fGn001 fU fA mC fA mU fC mGn001 fU
CCUAUGUACAUCGUUCU
SSnXSS nXSSSS SSnXSS



fU fC fUn001 fG fC fU
GCU
SnXSS





WV-18855
fG fU fAn001 fC fA fUn001 fC fG mU fU mC fU mGn001 fC
GUACAUCGUUCUGCUUC
SSnXSS nXSSSS SSnXSS



fU fU fCn001 fU fG fA
UGA
SnXSS





WV-18856
fU fC fGn001 fU fU fCn001 fU fG mC fU mU fC mUn001 fG
UCGUUCUGCUUCUGAAC
SSnXSS nXSSSS SSnXSS



fA fA fCn001 fU fG fC
UGC
SnXSS





WV-18857
fU fC fUn001 fG fC fUn001 fU fC mU fG mA fA mCn001 fU
UCUGCUUCUGAACUGCU
SSnXSS nXSSSS SSnXSS



fG fC fUn001 fG fG fA
GGA
SnXSS





WV-18858
fU fU fCn001 fU fG fAn001 fA fC mU fG mC fU mGn001 fG
UUCUGAACUGCUGGAAA
SSnXSS nXSSSS SSnXSS



fA fA fAn001 fG fU fC
GUC
SnXSS





WV-18859
fA fA fCn001 fU fG fCn001 fU fG mG fA mA fA mGn001 fU
AACUGCUGGAAAGUCGC
SSnXSS nXSSSS SSnXSS



fC fG fCn001 fC fU fC
CUC
SnXSS





WV-18860
fA fA fGn001 fU fC fGn001 fC fC mU fC mC fA mAn001 fU
AAGUCGCCUCCAAUAGG
SSnXSS nXSSSS SSnXSS



fA fG fGn001 fU fG fC
UGC
SnXSS





WV-18861
fG fC fCn001 fU fC fCn001 fA fA mU fA mG fG mUn001 fG
GCCUCCAAUAGGUGCCU
SSnXSS nXSSSS SSnXSS



fC fC fUn001 fG fC fC
GCC
SnXSS





WV-18862
fC fA fAn001 fU fA fGn001 fG fU mG fC mC fU mGn001 fC
CAAUAGGUGCCUGCCGG
SSnXSS nXSSSS SSnXSS



fC fG fGn001 fC fU fU
CUU
SnXSS





WV-18863
fU fG fUn001 fG fC fCn001 fU fG mC fC mG fG mCn001 fU
GGUGCCUGCCGGCUUAA
SSnXSS nXSSSS SSnXSS



fU fA fAn001 fU fU fC
UUC
SnXSS





WV-18864
fC fU fGn001 fC fU fGn001 fG fC mU fU mA fA mUn001 fU
CUGCCGGCUUAAUUCAU
SSnXSS nXSSSS SSnXSS



fC fA fUn001 fC fA fU
CAU
SnXSS





WV-18865
fG fG fCn001 fU fU fAn001 fA fU mU fC mA fU mCn001 fA
GGCUUAAUUCAUCAUCU
SSnXSS nXSSSS SSnXSS



fU fC fUn001 fU fU fC
UUC
SnXSS





WV-18866
fA fA fUn001 fU fC fAn001 fU fC mA fU mC fU mUn001 fU
AAUUCAUCAUCUUUCAG
SSnXSS nXSSSS SSnXSS



fC fA fGn001 fC fU fG
CUG
SnXSS





WV-18867
fA fU fCn001 fA fU fCn001 fU fU mU fC mA fG mCn001 fU
AUCAUCUUUCAGCUGUA
SSnXSS nXSSSS SSnXSS



fG fU fAn001 fG fC fC
GCC
SnXSS





WV-18868
fC fU fUn001 fU fC fAn001 fG fC mU fG mU fA mGn001 fC
CUUUCAGCUGUAGCCAC
SSnXSS nXSSSS SSnXSS



fC fA fCn001 fA fC fC
ACC
SnXSS





WV-18869
fA fG fCn001 fU fG fUn001 fA fG mC fC mA fC mAn001 fC
AGCUGUAGCCACACCAG
SSnXSS nXSSSS SSnXSS



fC fA fGn001 fA fA fG
AAG
SnXSS





WV-18870
fU fA fGn001 fC fC fAn001 fC fA mC fC mA fG mAn001 fA
UAGCCACACCAGAAGUU
SSnXSS nXSSSS SSnXSS



fG fU fUn001 fC fC fU
CCU
SnXSS





WV-18871
fA fC fAn001 fC fC fAn001 fG fA mA fG mU fU mCn001 fC
ACACCAGAAGUUCCUGC
SSnXSS nXSSSS SSnXSS



fU fG fCn001 fA fG fA
AGA
SnXSS





WV-18872
fA fG fAn001 fA fG fUn001 fU fC mC fU mG fC mAn001 fG
AGAAGUUCCUGCAGAGA
SSnXSS nXSSSS SSnXSS



fA fG fAn001 fA fA fG
AAG
SnXSS





WV-18873
fU fC fCn001 fU fG fCn001 fA fG mA fG mA fA mAn001 fG
UCCUGCAGAGAAAGGUG
SSnXSS nXSSSS SSnXSS



fG fU fGn001 fC fA fG
CAG
SnXSS





WV-18874
fC fA fGn001 fA fG fAn001 fA fA mG fG mU fG mCn001 fA
CAGAGAAAGGUGCAGAC
SSnXSS nXSSSS SSnXSS



fG fA fCn001 fG fC fU
GCU
SnXSS





WV-18875
fA fA fAn001 fG fG fUn001 fG fC mA fG mA fC mGn001 fC
AAAGGUGCAGACGCUUC
SSnXSS nXSSSS SSnXSS



fU fU fCn001 fC fA fC
CAC
SnXSS





WV-18876
fU fG fCn001 fA fG fAn001 fC fG mC fU mU fC mCn001 fA
UGCAGACGCUUCCACUG
SSnXSS nXSSSS SSnXSS



fC fU fGn001 fG fU fC
GUC
SnXSS





WV-18877
fA fC fGn001 fC fU fUn001 fC fC mA fC mU fG mGn001 fU
ACGCUUCCACUGGUCAG
SSnXSS nXSSSS SSnXSS



fC fA fGn001 fA fA fC
AAC
SnXSS





WV-18878
fU fC fCn001 fA fC fUn001 fG fG mU fC mA fG mAn001 fA
UCCACUGGUCAGAACUG
SSnXSS nXSSSS SSnXSS



fC fU fGn001 fG fC fU
GCU
SnXSS





WV-18879
fU fG fGn001 fU fC fAn001 fG fA mA fC mU fG mGn001 fC
UGGUCAGAACUGGCUUC
SSnXSS nXSSSS SSnXSS



fU fU fCn001 fC fA fA
CAA
SnXSS





WV-18880
fA fG fAn001 fA fC fUn001 fG fG mC fU mU fC mCn001 fA
AGAACUGGCUUCCAAAU
SSnXSS nXSSSS SSnXSS



fA fA fCn001 fG fG fG
GGG
SnXSS





WV-18881
fU fG fGn001 fC fU fUn001 fC fC mA fA mA fU mGn001 fG
UGGCUUCCAAAUGGGAC
SSnXSS nXSSSS SSnXSS



fG fA fCn001 fC fU fG
CUG
SnXSS





WV-18882
fA fG fGn001 fC fA fCn001 fG fA mG fG mC fU mUn001 fA
AGGCACGAGGCUUAAAA
SSnXSS nXSSSS SSnXSS



fA fA fAn001 fA fU fG
AUG
SnXSS





WV-18883
fG fG fCn001 fA fC fGn001 fA fG mG fC mU fU mAn001 fA
GGCACGAGGCUUAAAAA
SSnXSS nXSSSS SSnXSS



fA fA fAn001 fU fG fU
UGU
SnXSS





WV-18884
fG fC fAn001 fC fG fAn001 fG fG mC fU mU fA mAn001 fA
GCACGAGGCUUAAAAAU
SSnXSS nXSSSS SSnXSS



fA fA fUn001 fG fU fC
GUC
SnXSS





WV-18885
fC fA fCn001 fG fA fGn001 fG fC mU fU mA fA mAn001 fA
CACGAGGCUUAAAAAUG
SSnXSS nXSSSS SSnXSS



fA fU fGn001 fU fC fC
UCC
SnXSS





WV-18886
fA fC fGn001 fA fG fGn001 fC fU mU fA mA fA mAn001 fA
ACGAGGCUUAAAAAUGU
SSnXSS nXSSSS SSnXSS



fU fG fUn001 fC fC fU
CCU
SnXSS





WV-18887
fC fG fAn001 fG fG fCn001 fU fU mA fA fA mAn001 fU
CGAGGCUUAAAAAUGUC
SSnXSS nXSSSS SSnXSS



fG fU fCn001 fC fU fA
CUA
SnXSS





WV-18888
fG fA fGn001 fG fC fUn001 fU fA mA fA mA fA mUn001 fG
GAGGCUUAAAAAUGUCC
SSnXSS nXSSSS SSnXSS



fU fC fCn001 fU fA fC
UAC
SnXSS





WV-18889
fA fG fGn001 fC fU fUn001 fA fA mA fA mA fU mGn001 fU
AGGCUUAAAAAUGUCCU
SSnXSS nXSSSS SSnXSS



fC fC fUn001 fA fC fC
ACC
SnXSS





WV-18890
fG fG fCn001 fU fU fAn001 fA fA mA fA mU fG mUn001 fC
GGCUUAAAAAUGUCCUA
SSnXSS nXSSSS SSnXSS



fC fU fAn001 fC fC fC
CCC
SnXSS





WV-18891
fG fC fUn001 fU fA fAn001 fA fA mA fU mG fU mCn001 fC
GCUUAAAAAUGUCCUAC
SSnXSS nXSSSS SSnXSS



fU fA fCn001 fC fC fU
CCU
SnXSS





WV-18892
fC fU fUn001 fA fA fAn001 fA fA mU fG mU fC mCn001 fU
CUUAAAAAUGUCCUACC
SSnXSS nXSSSS SSnXSS



fA fC fCn001 fC fU fA
CUA
SnXSS





WV-18893
fU fU fAn001 fA fA fAn001 fA fU mG fU mC fC mUn001 fA
UUAAAAAUGUCCUACCC
SSnXSS nXSSSS SSnXSS



fC fC fCn001 fU fA fU
UAU
SnXSS





WV-18894
fU fA fAn001 fA fA fAn001 fU fG mU fC mC fU mAn001 fC
UAAAAAUGUCCUACCCU
SSnXSS nXSSSS SSnXSS



fC fC fUn001 fA fU fG
AUG
SnXSS





WV-18895
fA fA fAn001 fA fA fUn001 fG fU mC fC mU fA mCn001 fC
AAAAAUGUCCUACCCUA
SSnXSS nXSSSS SSnXSS



fC fU fAn001 fU fG fU
UGU
SnXSS





WV-18896
fA fA fAn001 fA fU fGn001 fU fC mC fU mA fC mCn001 fC
AAAAUGUCCUACCCUAU
SSnXSS nXSSSS SSnXSS



fU fA fUn001 fG fU fA
GUA
SnXSS





WV-18897
fA fA fAn001 fU fG fUn001 fU fC mU fA mC fC mCn001 fU
AAAUGUCCUACCCUAUG
SSnXSS nXSSSS SSnXSS



fA fU fGn001 fU fA fC
UAC
SnXSS





WV-18898
fA fA fUn001 fG fU fCn001 fC fU mA fC mC fC mUn001 fA
AAUGUCCUACCCUAUGU
SSnXSS nXSSSS SSnXSS



fU fG fUn001 fA fC fA
ACA
SnXSS





WV-18899
fA fU fGn001 fU fC fCn001 fU fA mC fC mC fU mAn001 fU
AUGUCCUACCCUAUGUA
SSnXSS nXSSSS SSnXSS



fG fU fAn001 fC fA fU
CAU
SnXSS





WV-18900
fU fG fUn001 fC fC fUn001 fA fC mC fC mU fA mAn001 fG
UGUCCUACCCUAUGUAC
SSnXSS nXSSSS SSnXSS



fU fA fCn001 fA fU fC
AUC
SnXSS





WV-18901
fG fU fCn001 fC fU fAn001 fC fC mC fU mA fU mGn001 fU
GUCCUACCCUAUGUACA
SSnXSS nXSSSS SSnXSS



fA fC fAn001 fU fC fG
UCG
SnXSS





WV-18902
fU fC fCn001 fU fA fCn001 fC fC mU fA mU fG mUn001 fA
UCCUACCCUAUGUACAU
SSnXSS nXSSSS SSnXSS



fC fA fUn001 fC fG fU
CGU
SnXSS





WV-18903
fC fU fAn001 fC fC fCn001 fU fA mU fG mU fA mCn001 fA
CUACCCUAUGUACAUCG
SSnXSS nXSSSS SSnXSS



fU fC fGn001 fU fU fC
UUC
SnXSS





WV-18904
fU fA fCn001 fC fC fUn001 fA fU mG fU mA fC mAn001 fU
UACCCUAUGUACAUCGU
SSnXSS nXSSSS SSnXSS



fC fG fUn001 fU fC fU
UCU
SnXSS





WV-18905
fU fU fCn001 fG fA fAn001 fA fA mA fA mC fA mAn001 fA
UUCGAAAAAACAAAUCA
SSnXSS nXSSSS SSnXSS



fU fC fAn001 fA fA fG
AAG
SnXSS





WV-18906
fU fC fGn001 fA fA fAn00l fA fA mA fC mA fA mAn001 fU
UCGAAAAAACAAAUCAA
SSnXSS nXSSSS SSnXSS



fC fA fAn001 fA fG fA
AGA
SnXSS





WV-18907
fC fG fAn001 fA fA fAn001 fA fA mC fA mA fA mUn001 fC
CGAAAAAACAAAUCAAA
SSnXSS nXSSSS SSnXSS



fA fA fAn00l fG fA fC
GAC
SnXSS





WV-18908
fG fA fAn001 fA fA fAn001 fA fC mA fA mA fU mCn001 fA
GAAAAAACAAAUCAAAG
SSnXSS nXSSSS SSnXSS



fA fA fGn001 fA fC fU
ACU
SnXSS





WV-18909
fA fA fAn001 fA fA fAn001 fC fA mA fA mU fC mAn001 fA
AAAAAACAAAUCAAAGA
SSnXSS nXSSSS SSnXSS



fA fG fAn001 fC fU fU
CUU
SnXSS





WV-18910
fA fA fAn001 fA fA fCn001 fA fA mA fU mC fA mAn001 fA
AAAAACAAAUCAAAGAC
SSnXSS nXSSSS SSnXSS



fG fA fCn001 fU fU fA
UUA
SnXSS





WV-18911
fA fA fAn001 fA fC fAn001 fA fA mU fC mA fA mAn001 fG
AAAACAAAUCAAAGACU
SSnXSS nXSSSS SSnXSS



fA fC fUn001 fU fA fC
UAC
SnXSS





WV-18912
fA fA fAn001 fC fA fAn001 fA fU mC fA mA fA mGn001 fA
AAACAAAUCAAAGACUU
SSnXSS nXSSSS SSnXSS



fC fU fUn001 fA fC fC
ACC
SnXSS





WV-18913
fA fA fCn001 fA fA fAn001 fU fC mA fA mA fG mAn001 fC
AACAAAUCAAAGACUUA
SSnXSS nXSSSS SSnXSS



fU fU fAn001 fC fC fU
CCU
SnXSS





WV-18914
fA fC fAn001 fA fA fUn001 fC fA mA fA mG fA mCn001 fU
ACAAAUCAAAGACUUAC
SSnXSS nXSSSS SSnXSS



fU fA fCn001 fC fU fU
CUU
SnXSS





WV-18915
fC fA fAn001 fA fU fCn001 fA fA mA fG mA fC mUn001 fU
CAAAUCAAAGACUUACC
SSnXSS nXSSSS SSnXSS



fA fC fCn001 fU fU fA
UUA
SnXSS





WV-18916
fA fA fAn001 fU fC fAn001 fA fA mG fA mC fU mUn001 fA
AAAUCAAAGACUUACCU
SSnXSS nXSSSS SSnXSS



fC fC fUn001 fU fA fA
UAA
SnXSS





WV-18917
fA fA fUn001 fC fA fAn001 fA fG mA fC mU fU mAn001 fC
AAUCAAAGACUUACCUU
SSnXSS nXSSSS SSnXSS



fC fU fUn001 fA fA fG
AAG
SnXSS





WV-18918
fA fU fCn001 fA fA fAn001 fG fA mC fU mU fA mCn001 fC
AUCAAAGACUUACCUUA
SSnXSS nXSSSS SSnXSS



fU fU fAn001 fA fG fA
AGA
SnXSS





WV-18919
fU fC fAn001 fA fA fGn001 fA fC mU fU mA fC mCn001 fU
UCAAAGACUUACCUUAA
SSnXSS nXSSSS SSnXSS



fU fA fAn001 fG fA fU
GAU
SnXSS





WV-18920
fC fA fAn001 fA fG fAn00l fC fU mU fA fC fC mUn001 fU
CAAAGACUUACCUUAAG
SSnXSS nXSSSS SSnXSS



fA fA fGn001 fA fU fA
AUA
SnXSS





WV-18921
fA fA fAn00l fG fA fCn001 fU fU mA fC mC fU mUn001 fA
AAAGACUUACCUUAAGA
SSnXSS nXSSSS SSnXSS



fA fG fAn001 fU fA fC
UAC
SnXSS





WV-18922
fA fA fGn001 fA fC fUn001 fU fA mC fC mU fU mAn001 fA
AAGACUUACCUUAAGAU
SSnXSS nXSSSS SSnXSS



fG fA fUn001 fA fC fC
ACC
SnXSS





WV-18923
fA fG fAn001 fC fU fUn001 fA fC mC fU mU fA mAn001 fG
AGACUUACCUUAAGAUA
SSnXSS nXSSSS SSnXSS



fA fU fAn001 fC fC fA
CCA
SnXSS





WV-18924
fG fA fCn001 fU fU fAn001 fC fC mU fU mA fA mGn001 fA
GACUUACCUUAAGAUAC
SSnXSS nXSSSS SSnXSS



fU fA fCn001 fC fA fU
CAU
SnXSS





WV-18925
fA fC fUn001 fU fA fCn001 fC fU mU fA mA fG mAn001 fU
ACUUACCUUAAGAUACC
SSnXSS nXSSSS SSnXSS



fA fC fCn001 fA fU fU
AUU
SnXSS





WV-18926
fC fU fUn001 fA fC fCn001 fU fU mA fA mG fA mUn001 fA
CUUACCUUAAGAUACCA
SSnXSS nXSSSS SSnXSS



fC fC fAn001 fU fU fU
UUU
SnXSS





WV-18927
fU fU fAn001 fC fC fUn001 fU fA mA fG mA fU mAn001 fC
UUACCUUAAGAUACCAU
SSnXSS nXSSSS SSnXSS



fC fA fUn001 fU fU fG
UUG
SnXSS





WV-18928
fU fA fCn001 fC fU fUn001 fA fA mG fA mU fA mCn001 fC
UACCUUAAGAUACCAUU
SSnXSS nXSSSS SSnXSS



fA fU fUn001 fU fG fU
UGU
SnXSS





WV-18929
fA fG fGn001 fC fA fAn001 fA fA mC fA mA fA mAn001 fA
AGGCAAAACAAAAAUGA
SSnXSS nXSSSS SSnXSS



fU fG fAn001 fA fG fC
AGC
SnXSS





WV-18930
fG fC fAn001 fA fA fAn001 fC fA mA fA mA fA mUn001 fG
GCAAAACAAAAAUGAAG
SSnXSS nXSSSS SSnXSS



fA fA fGn001 fC fC fC
CCC
SnXSS





WV-18931
fA fA fAn001 fA fC fAn001 fA fA mA fA mU fG mAn001 fA
AAAACAAAAAUGAAGCC
SSnXSS nXSSSS SSnXSS



fG fC fCn001 fC fC fA
CCA
SnXSS





WV-18932
fA fA fCn001 fA fA fAn001 fA fA mU fG mA fA mGn001 fC
AACAAAAAUGAAGCCCC
SSnXSS nXSSSS SSnXSS



fC fC fCn001 fA fU fG
AUG
SnXSS





WV-18933
fC fA fAn001 fA fA fAn001 fU fG mA fA mG fC mCn001 fC
CAAAAAUGAAGCCCCAU
SSnXSS nXSSSS SSnXSS



fC fA fUn001 fG fU fC
GUC
SnXSS





WV-18934
fA fA fAn001 fA fU fGn001 fA fA mG fC mC fC mCn001 fA
AAAAUGAAGCCCCAUGU
SSnXSS nXSSSS SSnXSS



fU fG fUn001 fC fU fU
CUU
SnXSS





WV-18935
fA fA fUn001 fG fA fAn001 fG fC mC fC mC fA mUn001 fG
AAUGAAGCCCCAUGUCU
SSnXSS nXSSSS SSnXSS



fU fC fUn001 fU fU fU
UUU
SnXSS





WV-18936
fA fU fGn001 fA fA fGn001 fC fC mC fC mA fU mGn001 fU
AUGAAGCCCCAUGUCUU
SSnXSS nXSSSS SSnXSS



fC fU fUn001 fU fU fU
UUU
SnXSS





WV-18937
fG fA fAn001 fG fC fCn001 fC fC mA fU mG fU mCn001 fU
GAAGCCCCAUGUCUUUU
SSnXSS nXSSSS SSnXSS



fU fU fUn001 fU fA fU
UAU
SnXSS





WV-18938
fA fG fCn001 fC fC fCn001 fA fU mG fU mC fU mUn001 fU
AGCCCCAUGUCUUUUUA
SSnXSS nXSSSS SSnXSS



fU fU fAn001 fU fU fU
UUU
SnXSS





WV-18939
fC fC fCn001 fC fA fUn001 fG fU mC fU mU fU mUn001 fU
CCCCAUGUCUUUUUAUU
SSnXSS nXSSSS SSnXSS



fA fU fUn001 fU fG fA
UGA
SnXSS





WV-18940
fU fG fAn001 fA fG fCn001 fC fC mC fA mU fG mUn001 fC
UGAAGCCCCAUGUCUUU
SSnXSS nXSSSS SSnXSS



fU fU fUn001 fU fU fA
UUA
SnXSS





WV-18941
fA fA fGn001 fC fC fCn001 fC fA mU fG mU fC mUn001 fU
AAGCCCCAUGUCUUUUU
SSnXSS nXSSSS SSnXSS



fU fU fUn001 fA fU fU
AUU
SnXSS





WV-18942
fG fC fCn001 fC fC fAn001 fU fG mU fC mU fU mUn001 fU
GCCCCAUGUCUUUUUAU
SSnXSS nXSSSS SSnXSS



fU fA fUn001 fU fU fG
UUG
SnXSS





WV-18944
fU fC fA fC fU fC mAn001 fG fA mU fA mGn001 mUn001
UCACUCAGAUAGUUGAA
XXXXX XnXXXX XnXnXXX



fU fG fA fA fG fC fC
GCC
XXXX





WV-18945
fU fC fAn001 fC fU fCn001 mA fG fA mU fA mG mU fU fG
UCACUCAGAUAGUUGAA
XXnXXX nXOXXX



fA fAn001 fG fC fC
GCC
XOOXXX nXXX





WV-18983
fC fC fU fA fC fC fC fU mA fU mG fU mA fC fA fU fC fG
CCUACCCUAUGUACAUC
SSSSS SSSSS SSSSS SSSS



fU fU
GUU






WV-18984
fC fC fU fA fU fG fU fA mC fA mU fC mG fU fU fC fU fG
CCUAUGUACAUCGUUCU
SSSSS SSSSS SSSSS SSSS



fC fU
GCU






WV-18985
fG fU fA fC fA fU fC fG mU fU mC fU mG fC fU fU fC fU
GUACAUCGUUCUGCUUC
SSSSS SSSSS SSSSS SSSS



fG fA
UGA






WV-18986
fU fC fG fU fU fC fU fG mC fU mU fC mU fG fA fA fC fU
UCGUUCUGCUUCUGAAC
SSSSS SSSSS SSSSS SSSS



fG fC
UGC






WV-18987
fU fC fU fG fC fU fU fC mU fG mA fA mC fU fG fC fU fG
UCUGCUUCUGAACUGCU
SSSSS SSSSS SSSSS SSSS



fG fA
GGA






WV-18988
fU fU fC fU fG fA fA fC mU fG mC fU mG fG fA fA fA fG
UUCUGAACUGCUGGAAA
SSSSS SSSSS SSSSS SSSS



fU fC
GUC






WV-18989
fA fA fC fU fG fC fU fG mG fA mA fA mG fU fC fG fC fC
AACUGCUGGAAAGUCGC
SSSSS SSSSS SSSSS SSSS



fU fC
CUC






WV-18990
fA fA fG fU fC fG fC fC mU fC mC fA mA fU fA fG fG fU
AAGUCGCCUCCAAUAGG
SSSSS SSSSS SSSSS SSSS



fG fC
UGC






WV-18991
fG fC fC fU fC fC fA fA mU fA mG fG mU fG fC fC fU fG
GCCUCCAAUAGGUGCCU
SSSSS SSSSS SSSSS SSSS



fC fC
GCC






WV-18992
fC fA fA fU fA fG fG fU mG fC mC fU mG fC fC fG fG fC
CAAUAGGUGCCUGCCGG
SSSSS SSSSS SSSSS SSSS



fU fU
CUU






WV-18993
fG fG fU fG fC fC fU fG mC fC mG fG mC fU fU fA fA fU
GGUGCCUGCCGGCUUAA
SSSSS SSSSS SSSSS SSSS



fU fC
UUC






WV-18994
fC fU fG fC fC fG fG fC mU fU mA fA mU fU fC fA fU fC
CUGCCGGCUUAAUUCAU
SSSSS SSSSS SSSSS SSSS



fA fU
CAU






WV-18995
fG fG fC fU fU fA fA fU mU fC mA fU mC fA fU fC fU fU
GGCUUAAUUCAUCAUCU
SSSSS SSSSS SSSSS SSSS



fU fC
UUC






WV-18996
fA fA fU fU fC fA fU fC mA fU mC fU mU fU fC fA fG fC
AAUUCAUCAUCUUUCAG
SSSSS SSSSS SSSSS SSSS



fU fG
CUG






WV-18997
fA fU fC fA fU fC fU fU mU fC mA fG mC fU fG fU fA fG
AUCAUCUUUCAGCUGUA
SSSSS SSSSS SSSSS SSSS



fC fC
GCC






WV-18998
fC fU fU fU fC fA fG fC mU fG mU fA mG fC fC fA fC fA
CUUUCAGCUGUAGCCAC
SSSSS SSSSS SSSSS SSSS



fC fC
ACC






WV-18999
fA fG fC fU fG fU fA fG mC fC mA fC mA fC fC fA fG fA
AGCUGUAGCCACACCAG
SSSSS SSSSS SSSSS SSSS



fA fG
AAG






WV-19000
fU fA fG fC fC fA fC fA mC fC mA fG mA fA fG fU fU fC
UAGCCACACCAGAAGUU
SSSSS SSSSS SSSSS SSSS



fC fU
CCU






WV-19001
fA fC fA fC fC fA fG fA mA fG mU fU mC fC fU fG fC fA
ACACCAGAAGUUCCUGC
SSSSS SSSSS SSSSS SSSS



fG fA
AGA






WV-19002
fA fG fA fA fG fU fU fC mC fU mG fC mA fG fA fG fA fA
AGAAGUUCCUGCAGAGA
SSSSS SSSSS SSSSS SSSS



fA fG
AAG






WV-19003
fU fC fC fU fG fC fA fG mA fG mA fA mA fG fG fU fG fC
UCCUGCAGAGAAAGGUG
SSSSS SSSSS SSSSS SSSS



fA fG
CAG






WV-19004
fC fA fG fA fG fA fA fA mG fG mU fG mC fA fG fA fC fG
CAGAGAAAGGUGCAGAC
SSSSS SSSSS SSSSS SSSS



fC fU
GCU






WV-19005
fA fA fA fG fG fU fG fC mA fG mA fC mG fC fU fU fC fC
AAAGGUGCAGACGCUUC
SSSSS SSSSS SSSSS SSSS



fA fC
CAC






WV-19006
fU fG fC fA fG fA fC fG mC fU mU fC mC fA fC fU fG fG
UGCAGACGCUUCCACUG
SSSSS SSSSS SSSSS SSSS



fU fC
GUC






WV-19007
fA fC fG fC fU fU fC fC mA fC mU fG mG fU fC fA fG fA
ACGCUUCCACUGGUCAG
SSSSS SSSSS SSSSS SSSS



fA fC
AAC






WV-19008
fU fC fC fA fC fU fG fG mU fC mA fG mA fA fC fU fG fG
UCCACUGGUCAGAACUG
SSSSS SSSSS SSSSS SSSS



fC fU
GCU






WV-19009
fU fG fG fU fC fA fG fA mA fC mU fG mG fC fU fU fC fC
UGGUCAGAACUGGCUUC
SSSSS SSSSS SSSSS SSSS



fA fA
CAA






WV-19010
fA fG fA fA fC fU fG fG mC fU mU fC mC fA fA fA fU fG
AGAACUGGCUUCCAAAU
SSSSS SSSSS SSSSS SSSS



fG fG
GGG






WV-19011
fU fG fG fC fU fU fC fC mA fA mA fU mG fG fG fA fC fC
UGGCUUCCAAAUGGGAC
SSSSS SSSSS SSSSS SSSS



fU fG
CUG






WV-19012
fA fG fG fC fA fC fG fA mG fG mC fU mU fA fA fA fA fA
AGGCACGAGGCUUAAAA
SSSSS SSSSS SSSSS SSSS



fU fG
AUG






WV-19013
fG fG fC fA fC fG fA fG mG fC mU fU mA fA fA fA fA fU
GGCACGAGGCUUAAAAA
SSSSS SSSSS SSSSS SSSS



fG fU
UGU






WV-19014
fG fC fA fC fG fA fG fG mC fU mU fA mA fA fA fA fU fG
GCACGAGGCUUAAAAAU
SSSSS SSSSS SSSSS SSSS



fU fC
GUC






WV-19015
fC fA fC fG fA fG fG fC mU fU mA fA mA fA fA fU fG fU
CACGAGGCUUAAAAAUG
SSSSS SSSSS SSSSS SSSS



fC fC
UCC






WV-19016
fA fC fG fA fG fG fC fU mU fA mA fA mA fA fU fG fU fC
ACGAGGCUUAAAAAUGU
SSSSS SSSSS SSSSS SSSS



fC fU
CCU






WV-19017
fC fG fA fG fG fC fU fU mA fA mA fA mA fU fG fU fC fC
CGAGGCUUAAAAAUGUC
SSSSS SSSSS SSSSS SSSS



fU fA
CUA






WV-19018
fG fA fG fG fC fU fU fA mA fA mA fA mU fG fU fC fC fU
GAGGCUUAAAAAUGUCC
SSSSS SSSSS SSSSS SSSS



fA fC
UAC






WV-19019
fA fG fG fC fU fU fA fA mA fA mA fU mG fU fC fC fU fA
AGGCUUAAAAAUGUCCU
SSSSS SSSSS SSSSS SSSS



fC fC
ACC






WV-19020
fG fG fC fU fU fA fA fA mA fA mU fG mU fC fC fU fA fC
GGCUUAAAAAUGUCCUA
SSSSS SSSSS SSSSS SSSS



fC fC
CCC






WV-19021
fG fC fU fU fA fA fA fA mA fU mG fU mC fC fU fA fC fC
GCUUAAAAAUGUCCUAC
SSSSS SSSSS SSSSS SSSS



fC fU
CCU






WV-19022
fC fU fU fA fA fA fA fA mU fG mU fC mC fU fA fC fC fC
CUUAAAAAUGUCCUACC
SSSSS SSSSS SSSSS SSSS



fU fA
CUA






WV-19023
fU fU fA fA fA fA fA fU mG fU mC fC mU fA fC fC fC fU
UUAAAAAUGUCCUACCC
SSSSS SSSSS SSSSS SSSS



fA fU
UAU






WV-19024
fU fA fA fA fA fA fU fG mU fC mC fU mA fC fC fC fU fA
UAAAAAUGUCCUACCCU
SSSSS SSSSS SSSSS SSSS



fU fG
AUG






WV-19025
fA fA fA fA fA fU fG fU mC fC mU fA mC fC fC fU fA fU
AAAAAUGUCCUACCCUA
SSSSS SSSSS SSSSS SSSS



fG fU
UGU






WV-19026
fA fA fA fA fU fG fU fC mC fU mA fC mC fC fU fA fU fG
AAAAUGUCCUACCCUAU
SSSSS SSSSS SSSSS SSSS



fU fA
GUA






WV-19027
fA fA fA fU fG fU fC fC mU fA mC fC mC fU fA fU fG fU
AAAUGUCCUACCCUAUG
SSSSS SSSSS SSSSS SSSS



fA fC
UAC






WV-19028
fA fA fU fG fU fC fC fU mA fC mC fC mU fA fU fG fU fA
AAUGUCCUACCCUAUGU
SSSSS SSSSS SSSSS SSSS



fC fA
ACA






WV-19029
fA fU fG fU fC fC fU fA mC fC mC fU mA fU fG fU fA fC
AUGUCCUACCCUAUGUA
SSSSS SSSSS SSSSS SSSS



fA fU
CAU






WV-19030
fU fG fU fC fC fU fA fC mC fC mU fA mU fG fU fA fC fA
UGUCCUACCCUAUGUAC
SSSSS SSSSS SSSSS SSSS



fU fC
AUC






WV-19031
fG fU fC fC fU fA fC fC mC fU mA fU mG fU fA fC fA fG
GUCCUACCCUAUGUACA
SSSSS SSSSS SSSSS SSSS



fC fG
UCG






WV-19032
fU fC fC fU fA fC fC fC mU fA mU fG mU fA fC fA fU fC
UCCUACCCUAUGUACAU
SSSSS SSSSS SSSSS SSSS



fG fU
CGU






WV-19033
fC fU fA fC fC fC fU fA mU fG mU fA mC fA fU fC fG fU
CUACCCUAUGUACAUCG
SSSSS SSSSS SSSSS SSSS



fU fC
UUC






WV-19034
fU fA fC fC fC fU fA fU mG fU mA fC mA fU fC fG fU fU
UACCCUAUGUACAUCGU
SSSSS SSSSS SSSSS SSSS



fC fU
UCU






WV-19801
fC fC fU fU fC fC mC fU fG mA fA mG mG fU fU fC fC fU
CCUUCCCUGAAGGUUCC
XXXXX XOXXX XOOXX



fC fC
UCC
XXXX





WV-19802
fC fC fU fU fC fC mC fU fG mA fA mG mG fU fU fC fC fU
CCUUCCCUGAAGGUUCC
SSSSS SOSSS SOOSS SSSS



fC fC
UCC






WV-19803
fC fC fU fU fC fC mCn001 fU fG mA fA mGn001 mGn001
CCUUCCCUGAAGGUUCC
XXXXX XnXXXX XnXnXXX



fU fU fC fC fU fC fC
UCC
XXXX





WV-19804
fC fC fU fU fC fC mCn001 fU fG mA fA mGn001 mGn001
CCUUCCCUGAAGGUUCC
SSSSS SnXSSS SnXnXSS



fU fU fC fC fU fC fC
UCC
SSSS





WV-19805
fC fC fUn001 fU fC fCn001 mC fU fG mA fA mG mG fU fU
CCUUCCCUGAAGGUUCC
XXnXXX nXOXXX XOOXX



fC fCn001 fU fC fC
UCC
XnXXX





WV-19806
fC fC fUn001 R fU fC fCn001 R mC fU fG mA fA mG mG fU
CCUUCCCUGAAGGUUCC
SSnRSS nROSSS SOOSS



fU fC fCn001 R fU fC fC
UCC
SnRSS





WV-19886
fC fU fUn001 fC fU fGn001 fC fC mA fA mC fU mU fU fU
CUUCUGCCAACUUUUAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fA fU
CAU
SnXSS





WV-19887
fU fU fCn001 fU fG fCn001 fC fA mA fC mU fU mU fU fA
UUCUGCCAACUUUUAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fU fU
AUU
SnXSS





WV-19888
fU fC fUn001 fG fC fCn001 fA fA mC fU mU fU mU fA fU
UCUGCCAACUUUUAUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fU fU fU
UUU
SnXSS





WV-19889
fC fU fGn001 fC fC fAn001 fA fC mU fU mU fU mA fU fC
CUGCCAACUUUUAUCAU
SSnXSS nXSSSS SSSSS



fA fUn001 fU fU fU
UUU
SnXSS





WV-19890
fU fG fCn001 fC fA fAn001 fC fU mU fU mU fA mU fC fA
UGCCAACUUUUAUCAUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fU fU
UUU
SnXSS





WV-19891
fG fC fCn001 fA fA fCn001 fU fU mU fU mA fU mC fA fU
GCCAACUUUUAUCAUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fU fU
UUU
SnXSS





WV-19892
fC fC fAn001 fA fC fUn001 fU fU mU fA mU fC mA fU fU
CCAACUUUUAUCAUUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fU fC
UUC
SnXSS





WV-19893
fC fA fAn001 fC fU fUn001 fU fU mA fU mC fA mU fU fU
CAACUUUUAUCAUUUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fC fU
UCU
SnXSS





WV-19894
fA fA fCn001 fU fU fUn001 fU fA mU fC mA fU mU fU fU
AACUUUUAUCAUUUUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fC fU fC
CUC
SnXSS





WV-19895
fA fC fUn001 fU fU fUn001 fA fU mC fA mU fU mU fU fU
ACUUUUAUCAUUUUUUC
SSnXSS nXSSSS SSSSS



fU fCn001 fU fC fA
UCA
SnXSS





WV-19896
fC fU fUn001 fU fU fAn001 fU fC mA fU mU fU mU fU fU
CUUUUAUCAUUUUUUCU
SSnXSS nXSSSS SSSSS



fC fUn001 fC fA fU
CAU
SnXSS





WV-19897
fU fU fUn001 fU fA fUn001 fC fA mU fU mU fU mU fU fC
UUUUAUCAUUUUUUCUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fU fA
AUA
SnXSS





WV-19898
fU fU fUn001 fA fU fCn001 fA fU mU fU mU fU mU fC fU
UUUAUCAUUUUUUCUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fU fA fC
UAC
SnXSS





WV-19899
fU fU fAn001 fU fC fAn001 fU fU mU fU mU fU mC fU fC
UUAUCAUUUUUUCUCAU
SSnXSS nXSSSS SSSSS



fA fUn001 fA fC fC
ACC
SnXSS





WV-19900
fU fA fUn001 fC fA fUn001 fU fU mU fU mU fC mU fC fA
UAUCAUUUUUUCUCAUA
SSnXSS nXSSSS SSSSS



fU fAn001 fC fC fU
CCU
SnXSS





WV-19901
fA fU fCn001 fA fU fUn001 fU fU mU fU mC fU mC fA fU
AUCAUUUUUUCUCAUAC
SSnXSS nXSSSS SSSSS



fA fCn001 fC fU fU
CUU
SnXSS





WV-19902
fU fC fAn001 fU fU fUn001 fU fU mU fC mU fC mA fU fA
UCAUUUUUUCUCAUACC
SSnXSS nXSSSS SSSSS



fC fCn001 fU fU fC
UUC
SnXSS





WV-19903
fC fA fUn001 fU fU fUn001 fU fU mC fU mC fA mU fA fC
CAUUUUUUCUCAUACCU
SSnXSS nXSSSS SSSSS



fC fUn001 fU fC fU
UCU
SnXSS





WV-19904
fA fG fUn001 fU fU fUn001 fU fC mU fC mA fU mA fC fC
AUUUUUUCUCAUACCUU
SSnXSS nXSSSS SSSSS



fU fUn001 fC fU fG
CUG
SnXSS





WV-19905
fU fU fUn001 fU fU fUn001 fC fU mC fA mU fA mC fC fU
UUUUUUCUCAUACCUUC
SSnXSS nXSSSS SSSSS



fU fCn001 fU fG fC
UGC
SnXSS





WV-19906
fU fU fUn001 fU fU fCn001 fU fC mA fU mA fC mC fU fU
UUUUUCUCAUACCUUCU
SSnXSS nXSSSS SSSSS



fC fUn001 fG fC fU
GCU
SnXSS





WV-19907
fU fU fUn001 fU fC fUn001 fC fA mU fA mC fC mU fU fC
UUUUCUCAUACCUUCUG
SSnXSS nXSSSS SSSSS



fU fGn001 fC fU fU
CUU
SnXSS





WV-19908
fU fU fUn001 fC fU fCn001 fA fU mA fC mC fU mU fC fU
UUUCUCAUACCUUCUGC
SSnXSS nXSSSS SSSSS



fG fCn001 fU fU fG
UUG
SnXSS





WV-19909
fU fU fCn001 fU fC fAn001 fU fA mC fC mU fU mC fU fG
UUCUCAUACCUUCUGCU
SSnXSS nXSSSS SSSSS



fC fUn001 fU fG fA
UGA
SnXSS





WV-19910
fU fC fUn001 fC fA fUn001 fA fC mC fU mU fC mU fG fC
UCUCAUACCUUCUGCUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fA fU
GAU
SnXSS





WV-19911
fC fU fCn001 fA fU fAn001 fC fC mU fU mC fU mG fC fU
CUCAUACCUUCUGCUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fA fU fG
AUG
SnXSS





WV-19912
fU fC fAn001 fU fA fCn001 fC fU mU fC mU fG mC fU fU
UCAUACCUUCUGCUUGA
SSnXSS nXSSSS SSSSS



fG fAn001 fU fG fA
UGA
SnXSS





WV-19913
fC fA fUn001 fA fC fCn001 fU fU mC fU mG fC mU fU fG
CAUACCUUCUGCUUGAU
SSnXSS nXSSSS SSSSS



fA fUn001 fG fA fU
GAU
SnXSS





WV-19914
fA fU fAn001 fC fC fUn001 fU fC mU fG mC fU mU fG fA
AUACCUUCUGCUUGAUG
SSnXSS nXSSSS SSSSS



fU fGn001 fA fU fC
AUC
SnXSS





WV-19915
fU fA fCn001 fc fU fUn001 fC fU mG fC mU fU mG fA fU
UACCUUCUGCUUGAUGA
SSnXSS nXSSSS SSSSS



fG fAn001 fU fC fA
UCA
SnXSS





WV-19916
fA fC fCn001 fU fU fCn001 fU fG mC fU mU fG mA fU fG
ACCUUCUGCUUGAUGAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fA fU
CAU
SnXSS





WV-19917
fC fC fUn001 fU fC fUn001 fG fC mU fU mG fA mU fG fA
CCUUCUGCUUGAUGAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fU fC
AUC
SnXSS





WV-19918
fC fU fUn001 fC fU fGn001 fC fU mU fG mA fU mG fA fU
CUUCUGCUUGAUGAUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fU fC fU
UCU
SnXSS





WV-19919
fU fU fCn001 fU fG fCn001 fU fU mG fA mU fG mA fU fC
UUCUGCUUGAUGAUCAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fU fC
CUC
SnXSS





WV-19920
fU fC fUn001 fG fC fUn001 fU fG mA fU mG fA mU fC fA
UCUGCUUGAUGAUCAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fU fC fG
UCG
SnXSS





WV-19921
fC fU fGn001 fC fU fUn001 fG fA mU fG mA fU mC fA fU
CUGCUUGAUGAUCAUCU
SSnXSS nXSSSS SSSSS



fC fUn001 fC fG fU
CGU
SnXSS





WV-19922
fU fU fCn001 fU fU fGn001 fA fU mG fA mU fC mA fU fC
UGCUUGAUGAUCAUCUC
SSnXSS nXSSSS SSSSS



fU fCn001 fG fU fU
GUU
SnXSS





WV-19923
fG fC fUn001 fU fG fAn001 fU fG mA fU mC fA mU fC fU
GCUUGAUGAUCAUCUCG
SSnXSS nXSSSS SSSSS



fC fGn001 fU fU fG
UUG
SnXSS





WV-19924
fC mU fUn001 fG fA fU fUn001 fG fA mU fC mA fU mC fU fC
CUUGAUGAUCAUCUCGU
SSnXSS nXSSSS SSSSS



fG fUn001 fU fG fA
UGA
SnXSS





WV-19925
fU fU fGn001 fA fU fGn001 fA fU mC fA mU fC mU fC fG
UUGAUGAUCAUCUCGUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fA fU
GAU
SnXSS





WV-19926
fU fG fAn001 fU fG fAn001 fU fC mA fU mC fU mC fG fU
UGAUGAUCAUCUCGUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fA fU fA
AUA
SnXSS





WV-19927
fG fA fUn001 fG fA fUn001 fC fA mU fC mU fC mG fU fU
GAUGAUCAUCUCGUUGA
SSnXSS nXSSSS SSSSS



fG fAn001 fU fA fU
UAU
SnXSS





WV-19928
fA fU fGn001 fA fU fCn001 fA fU mC fU mC fG mU fU fG
AUGAUCAUCUCGUUGAU
SSnXSS nXSSSS SSSSS



fA fUn001 fA fU fC
AUC
SnXSS





WV-19929
fU fG fAn001 fU fC fAn001 fU fC mU fC mG fU mU fG fA
UGAUCAUCUCGUUGAUA
SSnXSS nXSSSS SSSSS



fU fAn001 fU fC fC
UCC
SnXSS





WV-19930
fG fA fUn001 fC fA fUn001 fC fU mC fG mU fU mG fA fU
GAUCAUCUCGUUGAUAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fC fU
CCU
SnXSS





WV-19931
fA fU fCn001 fA fU fCn001 fU fC mG fU mU fG mA fU fA
AUCAUCUCGUUGAUAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fC fU fC
CUC
SnXSS





WV-19932
fU fC fAn001 fU fC fUn001 fC fG mU fU mG fA mU fA fU
UCAUCUCGUUGAUAUCC
SSnXSS nXSSSS SSSSS



fC fCn001 fU fC fA
UCA
SnXSS





WV-19933
fC fA fUn001 fC fu fCn001 fG fU mU fG mA fU mA fU fC
CAUCUCGUUGAUAUCCU
SSnXSS nXSSSS SSSSS



fC fUn001 fC fA fA
CAA
SnXSS





WV-19934
fA fU fCn001 fU fC fGn001 fU fU mG fA mU fA mU fC fC
AUCUCGUUGAUAUCCUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fA fG
AAG
SnXSS





WV-19935
fU fC fUn001 fC fG fUn001 fU fG mA fU mA fU mC fC fU
UCUCGUUGAUAUCCUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fA fG fG
AGG
SnXSS





WV-19936
fC fU fCn001 fG fU fUn001 fG fA mU fA mU fC mC fU fC
CUCGUUGAUAUCCUCAA
SSnXSS nXSSSS SSSSS



fA fAn001 fG fG fU
GGU
SnXSS





WV-19937
fU fC fGn001 fU fU fGn001 fA fU mA fU mC fC mU fC fA
UCGUUGAUAUCCUCAAG
SSnXSS nXSSSS SSSSS



fA fGn001 fG fU fC
GUC
SnXSS





WV-19938
fC fG fUn001 fU fG fAn001 fU fA mU fC mC fU mC fA fA
CGUUGAUAUCCUCAAGG
SSnXSS nXSSSS SSSSS



fG fGn001 fU fC fA
UCA
SnXSS





WV-19939
fG fU fUn001 fG fA fUn001 fA fU mC fC mU fC mA fA fG
GUUGAUAUCCUCAAGGU
SSnXSS nXSSSS SSSSS



fG fUn001 fC fA fC
CAC
SnXSS





WV-19940
fU fU fGn001 fA fU fAn001 fU fC mC fU mC fA mA fG fG
UUGAUAUCCUCAAGGUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fC fC
ACC
SnXSS





WV-19941
fU fG fAn001 fU fA fUn001 fC fC mU fC mA fA mG fG fU
UGAUAUCCUCAAGGUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fC fC fC
CCC
SnXSS





WV-19942
fG fA fUn001 fA fU fCn001 fC fU mC fA mA fG mG fU fC
GAUAUCCUCAAGGUCAC
SSnXSS nXSSSS SSSSS



fA fCn001 fC fC fA
CCA
SnXSS





WV-19943
fA fU fAn001 fU fC fCn001 fU fC mA fA mG fG mU fC fA
AUAUCCUCAAGGUCACC
SSnXSS nXSSSS SSSSS



fC fUn001 fC fA fC
CAC
SnXSS





WV-19944
fU fA fUn001 fC fC fUn001 fC fA mA fG mG fU mC fA fC
UAUCCUCAAGGUCACCC
SSnXSS nXSSSS SSSSS



fC fCn001 fA fC fC
ACC
SnXSS





WV-19945
fA fU fCn001 fC fU fCn001 fA fA mG fG mU fC mA fC fC
AUCCUCAAGGUCACCCA
SSnXSS nXSSSS SSSSS



fC fAn001 fC fC fA
CCA
SnXSS





WV-19946
fU fC fCn001 fU fC fAn001 fA fG mG fU mC fA mC fC fC
UCCUCAAGGUCACCCACC
SSnXSS nXSSSS SSSSS



fA fCn001 fC fA fU
AU
SnXSS





WV-19947
fC fC fUn001 fC fA fAn001 fG fG mU fC mA fC mC fC fA
CCUCAAGGUCACCCACCA
SSnXSS nXSSSS SSSSS



fC fCn001 fA fU fC
UC
SnXSS





WV-19948
fC fU fCn001 fA fA fGn001 fG fU mC fA mC fC mC fA fC
CUCAAGGUCACCCACCA
SSnXSS nXSSSS SSSSS



fC fAn001 fU fC fA
UCA
SnXSS





WV-19949
fU fC fAn001 fA fG fGn001 fU fC mA fC mC fC mA fC fC
UCAAGGUCACCCACCAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fA fC
CAC
SnXSS





WV-19950
fC fA fAn001 fG fG fUn001 fC fA mC fC mC fA mC fC fA
CAAGGUCACCCACCAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fC fC
ACC
SnXSS





WV-19951
fA fA fGn001 fG fU fCn001 fA fC mC fC mA fC mC fA fU
AAGGUCACCCACCAUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fC fC fC
CCC
SnXSS





WV-19952
fA fG fGn001 fU fC fAn001 fC fC mC fA mC fC mA fU fC
AGGUCACCCACCAUCACC
SSnXSS nXSSSS SSSSS



fA fCn001 fC fC fU
CU
SnXSS





WV-19953
fG fG fUn001 fC fA fCn001 fC fC mA fC mC fA mU fC fA
GGUCACCCACCAUCACCC
SSnXSS nXSSSS SSSSS



fC fCn001 fC fU fC
UC
SnXSS





WV-19954
fG fU fCn001 fA fC fCn001 fC fA mC fC mA fU mC fA fC
GUCACCCACCAUCACCCU
SSnXSS nXSSSS SSSSS



fC fCn001 fU fC fU
CU
SnXSS





WV-19955
fU fC fAn001 fC fC fCn001 fA fC mC fA mU fC mA fC fC
UCACCCACCAUCACCCUC
SSnXSS nXSSSS SSSSS



fC fUn001 fC fU fG
UG
SnXSS





WV-19956
fC fA fCn001 fC fC fAn001 fC fC mA fU mC fA mC fC fC
CACCCACCAUCACCCUCU
SSnXSS nXSSSS SSSSS



fU fCn001 fU fG fU
GU
SnXSS





WV-19957
fA fC fCn001 fC fA fCn001 fC fA mU fC mA fC mC fC fU
ACCCACCAUCACCCUCUG
SSnXSS nXSSSS SSSSS



fC fUn001 fG fU fG
UG
SnXSS





WV-19958
fC fC fCn001 fA fC fCn001 fA fU mC fA mC fC mC fU fC
CCCACCAUCACCCUCUGU
SSnXSS nXSSSS SSSSS



fU fGn001 fU fG fA
GA
SnXSS





WV-19959
fC fC fAn001 fC fC fAn001 fU fC mA fC mC fC mU fC fU
CCACCAUCACCCUCUGUG
SSnXSS nXSSSS SSSSS



fG fUn001 fG fA fU
AU
SnXSS





WV-19960
fC fA fCn001 fC fA fUn001 fC fA mC fC mC fU mC fU fG
CACCAUCACCCUCUGUG
SSnXSS nXSSSS SSSSS



fU fGn001 fA fU fU
AUU
SnXSS





WV-19961
fA fC fCn001 fA fU fUn001 fA fC mC fC mU fC mU fG fU
ACCAUCACCCUCUGUGA
SSnXSS nXSSSS SSSSS



fG fAn001 fU fU fU
UUU
SnXSS





WV-19962
fC fC fAn001 fU fC fAn001 fC fC mC fU mC fU mG fU fG
CCAUCACCCUCUGUGAU
SSnXSS nXSSSS SSSSS



fA fUn001 fU fU fU
UUU
SnXSS





WV-19963
fC fA fUn001 fC fA fCn001 fC fC mU fC mU fG mU fG fA
CAUCACCCUCUGUGAUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fU fA
UUA
SnXSS





WV-19964
fA fU fCn001 fA fC fCn001 fC fU mC fU mG fU mG fA fU
AUCACCCUCUGUGAUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fA fU
UAU
SnXSS





WV-19965
fU fC fAn001 fC fC fCn001 fU fC mU fG mU fG mA fU fU
UCACCCUCUGUGAUUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fA fU fA
AUA
SnXSS





WV-19966
fC fA fCn001 fC fC fUn001 fC fU mG fU mG fA mU fU fU
CACCCUCUGUGAUUUUA
SSnXSS nXSSSS SSSSS



fU fAn001 fU fA fA
UAA
SnXSS





WV-19967
fA fC fCn001 fC fU fCn001 fU fG mU fG mA fU mU fU fU
ACCCUCUGUGAUUUUAU
SSnXSS nXSSSS SSSSS



fA fUn001 fA fA fC
AAC
SnXSS





WV-19968
fC fC fCn001 fU fC fUn001 fG fU mG fA mU fU mU fU fA
CCCUCUGUGAUUUUAUA
SSnXSS nXSSSS SSSSS



fU fAn001 fA fC fU
ACU
SnXSS





WV-19969
fC fC fUn001 fC fU fGn001 fU fG mA fU mU fU mU fA fU
CCUCUGUGAUUUUAUAA
SSnXSS nXSSSS SSSSS



fA fAn001 fC fU fU
CUU
SnXSS





WV-19970
fC fU fCn001 fU fG fUn001 fG fA mU fU mU fU mA fU fA
CUCUGUGAUUUUAUAAC
SSnXSS nXSSSS SSSSS



fA fCn001 fU fU fG
UUG
SnXSS





WV-19971
fU fC fUn001 fG fU fGn001 fA fU mU fU mU fA mU fA fA
UCUGUGAUUUUAUAACU
SSnXSS nXSSSS SSSSS



fC fUn001 fU fG fA
UGA
SnXSS





WV-19972
fC fU fGn001 fU fG fAn001 fU fU mU fU mA fU mA fA fC
CUGUGAUUUUAUAACUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fA fU
GAU
SnXSS





WV-19973
fU fG fUn001 fG fA fUn001 fU fU mU fA mU fA mA fC fU
UGUGAUUUUAUAACUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fA fU fC
AUC
SnXSS





WV-19974
fG fU fGn001 fA fU fUn001 fU fU mA fU mA fA mC fU fU
GUGAUUUUAUAACUUGA
SSnXSS nXSSSS SSSSS



fG fAn001 fU fC fA
UCA
SnXSS





WV-19975
fU fG fAn001 fU fU fUn001 fU fA mU fA mA fC mU fU fG
UGAUUUUAUAACUUGAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fA fA
CAA
SnXSS





WV-19976
fG fA fUn001 fU fU fUn001 fA fU mA fA mC fU mU fG fA
GAUUUUAUAACUUGAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fA fG
AAG
SnXSS





WV-19977
fA fU fUn001 fU fU fAn001 fU fA mA fC mU fU mG fA fU
AUUUUAUAACUUGAUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fA fG fC
AGC
SnXSS





WV-19978
fU fU fUn001 fU fA fUn001 fA fA mC fU mU fG mA fU fC
UUUUAUAACUUGAUCAA
SSnXSS nXSSSS SSSSS



fA fAn001 fG fC fA
GCA
SnXSS





WV-19979
fU fU fUn001 fA fU fAn001 fA fC mU fU mG fA mU fC fA
UUUAUAACUUGAUCAAG
SSnXSS nXSSSS SSSSS



fA fGn001 fC fA fG
CAG
SnXSS





WV-19980
fU fU fAn001 fU fA fAn001 fC fU mU fG mA fU mC fA fA
UUAUAACUUGAUCAAGC
SSnXSS nXSSSS SSSSS



fG fCn001 fA fG fA
AGA
SnXSS





WV-19981
fU fA fUn001 fA fA fCn001 fU fU mG fA mU fC mA fA fG
UAUAACUUGAUCAAGCA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fA fG
GAG
SnXSS





WV-19982
fA fU fAn001 fA fC fUn001 fU fG mA fU mC fA mA fG fC
AUAACUUGAUCAAGCAG
SSnXSS nXSSSS SSSSS



fA fGn001 fA fG fA
AGA
SnXSS





WV-19983
fU fA fAn001 fC fU fUn001 fG fA mU fC mA fA mG fC fA
UAACUUGAUCAAGCAGA
SSnXSS nXSSSS SSSSS



fG fAn001 fG fA fA
GAA
SnXSS





WV-19984
fA fA fCn001 fU fU fGn001 fA fU mC fA mA fG mC fA fG
AACUUGAUCAAGCAGAG
SSnXSS nXSSSS SSSSS



fA fGn001 fA fA fA
AAA
SnXSS





WV-19985
fA fC fUn001 fU fG fAn001 fU fC mA fA mG fC mA fG fA
ACUUGAUCAAGCAGAGA
SSnXSS nXSSSS SSSSS



fG fAn001 fA fA fG
AAG
SnXSS





WV-19986
fC fU fUn001 fG fA fUn001 fC fA mA fG mC fA mG fA fG
CUUGAUCAAGCAGAGAA
SSnXSS nXSSSS SSSSS



fA fAn001 fA fG fC
AGC
SnXSS





WV-19987
fU fU fGn001 fA fU fCn001 fA fA mG fC mA fG mA fG fA
UUGAUCAAGCAGAGAAA
SSnXSS nXSSSS SSSSS



fA fAn001 fG fC fC
GCC
SnXSS





WV-19988
fU fG fAn001 fU fC fAn001 fA fG mC fA mG fA mG fA fA
UGAUCAAGCAGAGAAAG
SSnXSS nXSSSS SSSSS



fA fGn001 fC fC fA
CCA
SnXSS





WV-19989
fG fA fUn001 fC fA fAn001 fG fC mA fG mA fG mA fA fA
GAUCAAGCAGAGAAAGC
SSnXSS nXSSSS SSSSS



fG fCn001 fC fA fG
CAG
SnXSS





WV-19990
fA fU fCn001 fA fA fGn001 fC fA mG fA mG fA mA fA fG
AUCAAGCAGAGAAAGCC
SSnXSS nXSSSS SSSSS



fC fCn001 fA fG fU
AGU
SnXSS





WV-19991
fU fC fAn001 fA fG fCn001 fA fG mA fG mA fA mA fG fC
UCAAGCAGAGAAAGCCA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fU fC
GUC
SnXSS





WV-19992
fC fA fAn001 fG fC fAn001 fG fA mG fA mA fA mG fC fC
CAAGCAGAGAAAGCCAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fC fG
UCG
SnXSS





WV-19993
fA fA fGn001 fC fA fGn001 fA fG mA fA mA fG mC fC fA
AAGCAGAGAAAGCCAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fC fG fG
CGG
SnXSS





WV-19994
fA fG fCn001 fA fG fAn001 fG fA mA fA mG fC mC fA fG
AGCAGAGAAAGCCAGUC
SSnXSS nXSSSS SSSSS



fU fCn001 fG fG fU
GGU
SnXSS





WV-19995
fG fC fAn001 fG fA fGn001 fA fA mA fG mC fC mA fG fU
GCAGAGAAAGCCAGUCG
SSnXSS nXSSSS SSSSS



fC fGn001 fG fU fA
GUA
SnXSS





WV-19996
fC fA fGn001 fA fG fAn001 fA fA mG fC mC fA mG fU fC
CAGAGAAAGCCAGUCGG
SSnXSS nXSSSS SSSSS



fG fGn001 fU fA fA
UAA
SnXSS





WV-19997
fA fG fAn001 fG fA fAn001 fA fG mC fC mA fG mU fC fG
AGAGAAAGCCAGUCGGU
SSnXSS nXSSSS SSSSS



fG fUn001 fA fA fG
AAG
SnXSS





WV-19998
fG fA fGn001 fA fA fAn001 fG fC mC fA mG fU mC fG fG
GAGAAAGCCAGUCGGUA
SSnXSS nXSSSS SSSSS



fU fAn001 fA fG fU
AGU
SnXSS





WV-19999
fA fG fAn001 fA fA fGn001 fC fC mA fG mU fC mG fG fU
AGAAAGCCAGUCGGUAA
SSnXSS nXSSSS SSSSS



fA fAn001 fG fU fU
GUU
SnXSS





WV-20000
fG fA fAn001 fA fG fCn001 fC fA mG fU mC fG mG fU fA
GAAAGCCAGUCGGUAAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fU fC
UUC
SnXSS





WV-20001
fA fA fAn001 fG fC fCn001 fA fG mU fC mG fG mU fA fA
AAAGCCAGUCGGUAAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fU fC fU
UCU
SnXSS





WV-20002
fA fA fGn001 fC fC fAn001 fG fU mC fG mG fU mA fA fG
AAGCCAGUCGGUAAGUU
SSnXSS nXSSSS SSSSS



fU fUn001 fC fU fG
CUG
SnXSS





WV-20003
fA fG fCn001 fC fA fGn001 fU fC mG fG mU fA mA fG fU
AGCCAGUCGGUAAGUUC
SSnXSS nXSSSS SSSSS



fU fCn001 fU fG fU
UGU
SnXSS





WV-20004
fG fC fCn001 fA fG fUn001 fC fG mG fU mA fA mG fU fU
GCCAGUCGGUAAGUUCU
SSnXSS nXSSSS SSSSS



fC fUn001 fG fU fC
GUC
SnXSS





WV-20005
fC fC fAn001 fG fU fCn001 fG fG mU fA mA fG mU fU fC
CCAGUCGGUAAGUUCUG
SSnXSS nXSSSS SSSSS



fU fGn001 fU fC fC
UCC
SnXSS





WV-20006
fC fA fGn001 fU fC fGn001 fG fU mA fA mG fU mU fC fU
CAGUCGGUAAGUUCUGU
SSnXSS nXSSSS SSSSS



fG fUn001 fC fC fA
CCA
SnXSS





WV-20007
fA fG fUn001 fC fG fGn001 fU fA mA fG mU fU mC fU fG
AGUCGGUAAGUUCUGUC
SSnXSS nXSSSS SSSSS



fU fCn001 fC fA fA
CAA
SnXSS





WV-20008
fG fU fCn001 fG fG fUn001 fA fA mG fU mU fC mU fG fU
GUCGGUAAGUUCUGUCC
SSnXSS nXSSSS SSSSS



fC fCn001 fA fA fG
AAG
SnXSS





WV-20009
fU fC fGn001 fG fU fAn001 fA fG mU fU mC fU mG fU fC
UCGGUAAGUUCUGUCCA
SSnXSS nXSSSS SSSSS



fC fAn001 fA fG fC
AGC
SnXSS





WV-20010
fC fG fGn001 fU fA fAn001 fG fU mU fC mU fG mU fC fC
CGGUAAGUUCUGUCCAA
SSnXSS nXSSSS SSSSS



fA fAn001 fG fC fC
GCC
SnXSS





WV-2001
fG fG fUn001 fA fA fGn001 fU fU mC fU mG fU mC fC fA
GGUAAGUUCUGUCCAAG
SSnXSS nXSSSS SSSSS



fA fGn001 fC fC fC
CCC
SnXSS





WV-20012
fG fU fAn001 fA fG fUn001 fU fC mU fG mU fC mC fA fA
GUAAGUUCUGUCCAAGC
SSnXSS nXSSSS SSSSS



fG fCn001 fC fC fG
CCG
SnXSS





WV-20013
fG fA fAn001 fG fU fUn001 fC fU mG fU mC fC mA fA fG
UAAGUUCUGUCCAAGCC
SSnXSS nXSSSS SSSSS



fC fCn001 fC fG fG
CGG
SnXSS





WV-20014
fA fA fGn001 fU fU fCn001 fU fG mU fC mC fA mA fG fC
AAGUUCUGUCCAAGCCC
SSnXSS nXSSSS SSSSS



fC fCn001 fG fG fU
GGU
SnXSS





WV-20015
fA fG fUn001 fU fC fUn001 fG fU mC fC mA fA mG fC fC
AGUUCUGUCCAAGCCCG
SSnXSS nXSSSS SSSSS



fC fGn001 fG fU fU
GUU
SnXSS





WV-20016
fG fU fUn001 fC fU fGn001 fU fC mC fA mA fG mC fC fC
GUUCUGUCCAAGCCCGG
SSnXSS nXSSSS SSSSS



fG fGn001 fU fU fG
UUG
SnXSS





WV-20017
fU fU fCn001 fU fG fUn001 fC fC mA fA mG fC mC fC fG
UUCUGUCCAAGCCCGGU
SSnXSS nXSSSS SSSSS



fG fUn001 fU fG fA
UGA
SnXSS





WV-20018
fU fC fUn001 fG fU fCn001 fC fA mA fG mC fC mC fG fG
UCUGUCCAAGCCCGGUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fA fA
GAA
SnXSS





WV-20019
fC fU fGn001 fU fC fCn001 fA fA mG fC mC fC mG fU fU
CUGUCCAAGCCCGGUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fA fA fA
AAA
SnXSS





WV-20020
fU fG fUn001 fC fC fAn001 fA fG mC fC mC fG mG fU fU
UGUCCAAGCCCGGUUGA
SSnXSS nXSSSS SSSSS



fG fAn001 fA fA fU
AAU
SnXSS





WV-20021
fG fU fCn001 fC fA fAn001 fG fC mC fC mG fG mU fU fG
GUCCAAGCCCGGUUGAA
SSnXSS nXSSSS SSSSS



fA fAn001 fA fU fC
AUC
SnXSS





WV-20022
fU fC fCn001 fA fA fGn001 fC fC mC fG mG fU mU fG fA
UCCAAGCCCGGUUGAAA
SSnXSS nXSSSS SSSSS



fA fAn001 fU fC fU
UCU
SnXSS





WV-20023
fC fC fAn001 fA fG fCn001 fC fC mG fG mU fU mG fA fA
CCAAGCCCGGUUGAAAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fU fG
CUG
SnXSS





WV-20024
fC fA fAn001 fG fC fCn001 fC fG mG fU mU fG mA fA fA
CAAGCCCGGUUGAAAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fU fG fC
UGC
SnXSS





WV-20025
fA fA fGn001 fC fC fCn001 fG fG mU fU mG fA mA fA fU
AAGCCCGGUUGAAAUCU
SSnXSS nXSSSS SSSSS



fC fUn001 fG fC fC
GCC
SnXSS





WV-20026
fA fG fCn001 fC fC fGn001 fG fU mU fG mA fA mA fU fC
AGCCCGGUUGAAAUCUG
SSnXSS nXSSSS SSSSS



fU fGn001 fC fC fA
CCA
SnXSS





WV-20027
fG fC fCn001 fC fG fGn001 fU fU mG fA mA fA mU fC fU
GCCCGGUUGAAAUCUGC
SSnXSS nXSSSS SSSSS



fG fCn001 fC fA fG
CAG
SnXSS





WV-20028
fC fC fCn001 fG fG fUn001 fU fG mA fA mA fU mC fU fG
CCCGGUUGAAAUCUGCC
SSnXSS nXSSSS SSSSS



fC fCn001 fA fG fA
AGA
SnXSS





WV-20029
fC fC fGn001 fG fU fUn001 fG fA mA fA mU fC mU fG fC
CCGGUUGAAAUCUGCCA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fA fG
GAG
SnXSS





WV-20030
fC fG fGn001 fU fU fGn001 fA fA mA fU mC fU mG fC fC
CGGUUGAAAUCUGCCAG
SSnXSS nXSSSS SSSSS



fA fGn001 fA fG fC
AGC
SnXSS





WV-20031
fG fG fUn001 fU fG fAn001 fA fA mU fC mU fG mC fC fA
GGUUGAAAUCUGCCAGA
SSnXSS nXSSSS SSSSS



fG fAn001 fG fC fA
GCA
SnXSS





WV-20032
fG fU fUn001 fG fA fAn001 fA fU mC fU mG fC mC fA fG
GUUGAAAUCUGCCAGAG
SSnXSS nXSSSS SSSSS



fA fGn001 fC fA fG
CAG
SnXSS





WV-20033
fU fU fGn001 fA fA fAn001 fU fC mU fG mC fC mA fG fA
UUGAAAUCUGCCAGAGC
SSnXSS nXSSSS SSSSS



fG fCn001 fA fG fG
AGG
SnXSS





WV-20034
fU fG fAn001 fA fA fUn001 fC fU mG fC mC fA mG fA fG
UGAAAUCUGCCAGAGCA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fG fU
GGU
SnXSS





WV-20035
fG fA fAn001 fA fU fCn001 fU fG mC fC mA fG mA fG fC
GAAAUCUGCCAGAGCAG
SSnXSS nXSSSS SSSSS



fA fGn001 fG fU fA
GUA
SnXSS





WV-20036
fA fA fAn001 fU fC fUn001 fG fC mC fA mG fA mG fC fA
AAAUCUGCCAGAGCAGG
SSnXSS nXSSSS SSSSS



fG fGn001 fU fA fC
UAC
SnXSS





WV-20037
fA fA fUn001 fC fU fGn001 fC fC mA fG mA fG mC fA fG
AAUCUGCCAGAGCAGGU
SSnXSS nXSSSS SSSSS



fG fUn001 fA fC fC
ACC
SnXSS





WV-20038
fA fU fCn001 fU fG fCn001 fC fA mG fA mG fC mA fG fG
AUCUGCCAGAGCAGGUA
SSnXSS nXSSSS SSSSS



fU fAn001 fC fC fU
CCU
SnXSS





WV-20039
fU fC fUn001 fG fC fCn001 fA fG mA fG mC fA mG fG fU
UCUGCCAGAGCAGGUAC
SSnXSS nXSSSS SSSSS



fA fCn001 fC fU fC
CUC
SnXSS





WV-20040
fC fU fGn001 fC fC fAn001 fG fA mG fC mA fG mG fU fA
CUGCCAGAGCAGGUACC
SSnXSS nXSSSS SSSSS



fC fCn001 fU fC fC
UCC
SnXSS





WV-20041
fU fG fCn001 fC fA fGn001 fA fG mC fA mG fG mU fA fC
UGCCAGAGCAGGUACCU
SSnXSS nXSSSS SSSSS



fC fUn001 fC fC fA
CCA
SnXSS





WV-20042
fG fC fCn001 fA fG fAn001 fG fC mA fG mG fU mA fC fC
GCCAGAGCAGGUACCUC
SSnXSS nXSSSS SSSSS



fU fCn001 fC fA fA
CAA
SnXSS





WV-20043
fC fC fAn001 fG fA fGn001 fC fA mG fG mU fA mC fC fU
CCAGAGCAGGUACCUCC
SSnXSS nXSSSS SSSSS



fC fCn001 fA fA fC
AAC
SnXSS





WV-20044
fC fA fGn001 fA fG fCn001 fA fG mG fU mA fC mC fU fC
CAGAGCAGGUACCUCCA
SSnXSS nXSSSS SSSSS



fC fAn001 fA fC fA
ACA
SnXSS





WV-20045
fA fG fAn001 fG fC fAn001 fG fG mU fA mC fC mU fC fC
AGAGCAGGUACCUCCAA
SSnXSS nXSSSS SSSSS



fA fAn001 fC fA fU
CAU
SnXSS





WV-20046
fG fA fGn001 fC fA fGn001 fG fU mA fC mC fU mC fC fA
GAGCAGGUACCUCCAAC
SSnXSS nXSSSS SSSSS



fA fCn001 fA fU fC
AUC
SnXSS





WV-20047
fA fG fCn001 fA fG fGn001 fU fA mC fC mU fC mC fA fA
AGCAGGUACCUCCAACA
SSnXSS nXSSSS SSSSS



fC fAn001 fU fC fA
UCA
SnXSS





WV-20048
fG fC fAn001 fG fG fUn001 fA fC mC fU mC fC mA fA fC
GCAGGUACCUCCAACAU
SSnXSS nXSSSS SSSSS



fA fUn001 fC fA fA
CAA
SnXSS





WV-20049
fC fA fGn001 fG fU fAn001 fC fC mU fC mC fA mA fC fA
CAGGUACCUCCAACAUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fA fG
AAG
SnXSS





WV-20050
fA fG fGn001 fU fA fCn001 fC fU mC fC mA fA mC fA fU
AGGUACCUCCAACAUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fA fG fG
AGG
SnXSS





WV-20051
fG fG fUn001 fA fC fCn001 fU fC mC fA mA fC mA fU fC
GGUACCUCCAACAUCAA
SSnXSS nXSSSS SSSSS



fA fAn001 fG fG fA
GGA
SnXSS





WV-20052
fG fU fAn001 fC fC fUn001 fC fC mA fA mC fA mU fC fA
GUACCUCCAACAUCAAG
SSnXSS nXSSSS SSSSS



fA fGn001 fG fA fA
GAA
SnXSS





WV-20053
fU fA fCn001 fC fU fCn001 fC fA mA fC mA fU mC fA fA
UACCUCCAACAUCAAGG
SSnXSS nXSSSS SSSSS



fG fGn001 fA fA fG
AAG
SnXSS





WV-20054
fA fC fCn001 fU fC fCn001 fA fA mC fA mU fC mA fA fG
ACCUCCAACAUCAAGGA
SSnXSS nXSSSS SSSSS



fG fAn001 fA fG fA
AGA
SnXSS





WV-20055
fC fC fUn001 fC fC fAn001 fA fC mA fU mC fA mA fG fG
CCUCCAACAUCAAGGAA
SSnXSS nXSSSS SSSSS



fA fAn001 fG fA fU
GAU
SnXSS





WV-20056
fC fU fCn001 fC fA fAn001 fC fA mU fC mA fA mG fG fA
CUCCAACAUCAAGGAAG
SSnXSS nXSSSS SSSSS



fA fGn001 fA fU fG
AUG
SnXSS





WV-20057
fU fC fCn001 fA fA fCn001 fA fU mC fA mA fG mG fA fA
UCCAACAUCAAGGAAGA
SSnXSS nXSSSS SSSSS



fG fAn001 fU fG fG
UGG
SnXSS





WV-20058
fC fC fAn001 fA fC fAn001 fU fC mA fA mG fG mA fA fG
CCAACAUCAAGGAAGAU
SSnXSS nXSSSS SSSSS



fA fUn001 fG fG fC
GGC
SnXSS





WV-20059
fC fA fAn001 fC fA fUn001 fC fA mA fG mG fA mA fG fA
CAACAUCAAGGAAGAUG
SSnXSS nXSSSS SSSSS



fU fGn001 fG fC fA
GCA
SnXSS





WV-20060
fA fA fCn001 fA fU fCn001 fA fA mG fG mA fA mG fA fU
AACAUCAAGGAAGAUGG
SSnXSS nXSSSS SSSSS



fG fGn001 fC fA fU
CAU
SnXSS





WV-20061
fA fC fAn001 fU fC fAn001 fA fG mG fA mA fG mA fU fG
ACAUCAAGGAAGAUGGC
SSnXSS nXSSSS SSSSS



fG fCn001 fA fU fU
AUU
SnXSS





WV-20062
fC fA fUn001 fC fA fAn001 fG fG mA fA mG fA mU fG fG
CAUCAAGGAAGAUGGCA
SSnXSS nXSSSS SSSSS



fC fAn001 fU fU fU
UUU
SnXSS





WV-20063
fA fU fCn001 fA fA fGn001 fG fA mA fG mA fU mG fG fC
AUCAAGGAAGAUGGCAU
SSnXSS nXSSSS SSSSS



fA fUn001 fU fU fC
UUC
SnXSS





WV-20064
fU fC fAn001 fA fG fGn001 fA fA mG fA mU fG mG fC fA
UCAAGGAAGAUGGCAUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fC fU
UCU
SnXSS





WV-20065
fC fA fAn001 fG fG fAn001 fA fG mA fU mG fG mC fA fU
CAAGGAAGAUGGCAUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fC fU fA
CUA
SnXSS





WV-20066
fA fA fGn001 fG fA fAn001 fG fA mU fG mG fC mA fU fU
AAGGAAGAUGGCAUUUC
SSnXSS nXSSSS SSSSS



fU fCn001 fU fA fG
UAG
SnXSS





WV-20067
fA fG fGn001 fA fA fGn001 fA fU mG fG mC fA mU fU fU
AGGAAGAUGGCAUUUCU
SSnXSS nXSSSS SSSSS



fC fUn001 fA fG fU
AGU
SnXSS





WV-20068
fG fG fAn001 fA fG fAn001 fU fG mG fC mA fU mU fU fC
GGAAGAUGGCAUUUCUA
SSnXSS nXSSSS SSSSS



fU fAn001 fG fU fU
GUU
SnXSS





WV-20069
fG fA fAn001 fG fA fUn001 fG fG mC fA mU fU mU fC fU
GAAGAUGGCAUUUCUAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fU fU
UUU
SnXSS





WV-20070
fA fA fGn001 fA fU fGn001 fG fC mA fU mU fU mC fU fA
AAGAUGGCAUUUCUAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fU fU fG
UUG
SnXSS





WV-20071
fA fG fAn001 fU fG fGn001 fC fA mU fU mU fC mU fA fG
AGAUGGCAUUUCUAGUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fG fG
UGG
SnXSS





WV-20072
fG fA fUn001 fG fG fCn001 fA fU mU fU mC fU mA fG fU
GAUGGCAUUUCUAGUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fG fA
GGA
SnXSS





WV-20073
fA fU fGn001 fG fC fAn001 fU fU mU fC mU fA mG fU fU
AUGGCAUUUCUAGUUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fG fA fG
GAG
SnXSS





WV-20074
fU fG fGn001 fC fA fUn001 fU fU mC fU mA fG mU fU fU
UGGCAUUUCUAGUUUGG
SSnXSS nXSSSS SSSSS



fG fGn001 fA fG fA
AGA
SnXSS





WV-20075
fG fG fCn001 fA fU fUn001 fU fC mU fA mG fU mU fU fG
GGCAUUUCUAGUUUGGA
SSnXSS nXSSSS SSSSS



fG fAn001 fG fA fU
GAU
SnXSS





WV-20076
fG fC fAn001 fU fU fUn001 fC fU mA fG mU fU mU fG fG
GCAUUUCUAGUUUGGAG
SSnXSS nXSSSS SSSSS



fA fGn001 fA fU fG
AUG
SnXSS





WV-20077
fC fA fUn001 fU fU fCn001 fU fA mG fU mU fU mG fG fA
CAUUUCUAGUUUGGAGA
SSnXSS nXSSSS SSSSS



fG fAn001 fU fG fG
UGG
SnXSS





WV-20078
fA fU fUn001 fU fC fUn001 fA fG mU fU mU fG mG fA fG
AUUUCUAGUUUGGAGAU
SSnXSS nXSSSS SSSSS



fA fUn001 fG fG fC
GGC
SnXSS





WV-20079
fU fU fUn001 fC fU fAn001 fG fU mU fU mG fG mA fG fA
UUUCUAGUUUGGAGAUG
SSnXSS nXSSSS SSSSS



fU fGn001 fG fC fA
GCA
SnXSS





WV-20080
fU fU fCn001 fU fA fGn001 fU fU mU fG mG fA mG fA fU
UUCUAGUUUGGAGAUGG
SSnXSS nXSSSS SSSSS



fG fGn001 fC fA fG
CAG
SnXSS





WV-20081
fU fC fUn001 fA fG fUn001 fU fU mG fG mA fG mA fU fG
UCUAGUUUGGAGAUGGC
SSnXSS nXSSSS SSSSS



fG fCn001 fA fG fU
AGU
SnXSS





WV-20082
fC fU fAn001 fG fU fUn001 fU fG mG fA mG fA mU fG fG
CUAGUUUGGAGAUGGCA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fU fU
GUU
SnXSS





WV-20083
fU fA fGn001 fU fU fUn001 fG fG mA fG mA fU mG fG fC
UAGUUUGGAGAUGGCAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fU fU
UUU
SnXSS





WV-20084
fA fG fUn001 fU fU fGn001 fG fA mG fA mU fG mG fC fA
AGUUUGGAGAUGGCAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fU fU fC
UUC
SnXSS





WV-20085
fG fU fUn001 fU fG fGn001 fA fG mA fU mG fG mC fA fG
GUUUGGAGAUGGCAGUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fC fC
UCC
SnXSS





WV-20086
fU fU fUn001 fG fG fAn001 fG fA mU fG mG fC mA fG fU
UUUGGAGAUGGCAGUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fC fC fU
CCU
SnXSS





WV-20087
fU fU fGn001 fG fA fGn001 fA fU mG fG mC fA mG fU fU
UUGGAGAUGGCAGUUUC
SSnXSS nXSSSS SSSSS



fU fCn001 fC fU fU
CUU
SnXSS





WV-20088
fU fG fGn001 fA fG fAn001 fU fG mG fC mA fG mU fU fU
UGGAGAUGGCAGUUUCC
SSnXSS nXSSSS SSSSS



fC fCn001 fU fU fA
UUA
SnXSS





WV-20089
fG fG fAn001 fG fA fUn001 fG fG mC fA mG fU mU fU fC
GGAGAUGGCAGUUUCCU
SSnXSS nXSSSS SSSSS



fC fUn001 fU fA fG
UAG
SnXSS





WV-20090
fG fA fGn001 fA fU fGn001 fG fC mA fG mU fU mU fC fC
GAGAUGGCAGUUUCCUU
SSnXSS nXSSSS SSSSS



fU fUn001 fA fG fU
AGU
SnXSS





WV-20091
fA fG fAn001 fU fG fGn001 fC fA mG fU mU fU mC fC fU
AGAUGGCAGUUUCCUUA
SSnXSS nXSSSS SSSSS



fU fAn001 fG fU fA
GUA
SnXSS





WV-20092
fG fA fUn001 fG fG fCn001 fA fG mU fU mU fC mC fU fU
GAUGGCAGUUUCCUUAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fA fA
UAA
SnXSS





WV-20093
fA fU fGn001 fG fC fAn001 fG fU mU fU mC fC mU fU fA
AUGGCAGUUUCCUUAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fA fA fC
AAC
SnXSS





WV-20094
fU fG fGn001 fC fA fGn001 fU fU mU fC mC fU mU fA fG
UGGCAGUUUCCUUAGUA
SSnXSS nXSSSS SSSSS



fU fAn001 fA fC fC
ACC
SnXSS





WV-20095
fG fG fCn001 fA fG fUn001 fU fU mC fC mU fU mA fG fU
GGCAGUUUCCUUAGUAA
SSnXSS nXSSSS SSSSS



fA fAn001 fC fC fA
CCA
SnXSS





WV-20096
fG fC fAn001 fG fU fUn001 fU fC mC fU mU fA mG fU fA
GCAGUUUCCUUAGUAAC
SSnXSS nXSSSS SSSSS



fA fCn001 fC fA fC
CAC
SnXSS





WV-20097
fC fA fGn001 fU fU fUn001 fC fC mU fU mA fG mU fA fA
CAGUUUCCUUAGUAACC
SSnXSS nXSSSS SSSSS



fC fCn001 fA fC fA
ACA
SnXSS





WV-20098
fA fG fUn001 fU fU fCn001 fC fU mU fA mG fU mA fA fC
AGUUUCCUUAGUAACCA
SSnXSS nXSSSS SSSSS



fC fAn001 fC fA fG
CAG
SnXSS





WV-20099
fG fU fUn001 fU fC fCn001 fU fU mA fG mU fA mA fC fC
GUUUCCUUAGUAACCAC
SSnXSS nXSSSS SSSSS



fA fCn001 fA fG fG
AGG
SnXSS





WV-20100
fU fU fUn001 fC fC fUn001 fU fA mG fU mA fA mC fC fA
UUUCCUUAGUAACCACA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fG fU
GGU
SnXSS





WV-20101
fU fU fCn001 fC fU fUn001 fA fG mU fA mA fC mC fA fC
UUCCUUAGUAACCACAG
SSnXSS nXSSSS SSSSS



fA fGn001 fG fU fU
GUU
SnXSS





WV-20102
fU fC fCn001 fU fU fAn001 fG fU mA fA mC fC mA fC fA
UCCUUAGUAACCACAGG
SSnXSS nXSSSS SSSSS



fG fGn001 fU fU fG
UUG
SnXSS





WV-20103
fC fC fUn001 fU fA fGn001 fU fA mA fC mC fA mC fA fG
CCUUAGUAACCACAGGU
SSnXSS nXSSSS SSSSS



fG fUn001 fU fG fU
UGU
SnXSS





WV-20104
fC fU fUn001 fA fG fUn001 fA fA mC fC mA fC mA fG fG
CUUAGUAACCACAGGUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fU fG
GUG
SnXSS





WV-20105
fU fU fAn001 fG fU fAn001 fA fC mC fA mC fA mG fG fU
UUAGUAACCACAGGUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fU fG fU
UGU
SnXSS





WV-20106
fU fA fGn001 fU fA fAn001 fC fC mA fC mA fG mG fU fU
UAGUAACCACAGGUUGU
SSnXSS nXSSSS SSSSS



fG fUn001 fG fU fC
GUC
SnXSS





WV-20107
fA fG fUn001 fA fA fCn001 fC fA mC fA mG fG mU fU fG
AGUAACCACAGGUUGUG
SSnXSS nXSSSS SSSSS



fU fGn001 fU fC fA
UCA
SnXSS





WV-20108
fG fU fAn001 fA fC fCn001 fA fC mA fG mG fU mU fG fU
GUAACCACAGGUUGUGU
SSnXSS nXSSSS SSSSS



fG fUn001 fC fA fC
CAC
SnXSS





WV-20109
fU fA fAn001 fC fC fAn001 fC fA mG fG mU fU mG fU fG
UAACCACAGGUUGUGUC
SSnXSS nXSSSS SSSSS



fU fCn001 fA fC fC
ACC
SnXSS





WV-20110
fA fA fCn001 fC fA fCn001 fA fG mG fU mU fG mU fG fU
AACCACAGGUUGUGUCA
SSnXSS nXSSSS SSSSS



fC fAn001 fC fC fA
CCA
SnXSS





WV-20111
fA fC fCn001 fA fC fAn001 fG fG mU fU mG fU mG fU fC
ACCACAGGUUGUGUCAC
SSnXSS nXSSSS SSSSS



fA fCn001 fC fA fG
CAG
SnXSS





WV-20112
fC fC fAn001 fC fA fGn001 fG fU mU fG mU fG mU fC fA
CCACAGGUUGUGUCACC
SSnXSS nXSSSS SSSSS



fC fCn001 fA fG fA
AGA
SnXSS





WV-20113
fC fA fCn001 fA fG fGn001 fU fU mG fU mG fU mC fA fC
CACAGGUUGUGUCACCA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fA fG
GAG
SnXSS





WV-20114
fA fC fAn001 fG fG fUn001 fU fG mU fG mU fC mA fC fC
ACAGGUUGUGUCACCAG
SSnXSS nXSSSS SSSSS



fA fGn001 fA fG fU
AGU
SnXSS





WV-20115
fC fA fGn001 fG fU fUn001 fG fU mG fU mC fA mC fC fA
CAGGUUGUGUCACCAGA
SSnXSS nXSSSS SSSSS



fG fAn001 fG fU fA
GUA
SnXSS





WV-20116
fA fG fGn001 fU fU fGn001 fU fG mU fC mA fC mC fA fG
AGGUUGUGUCACCAGAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fA fA
UAA
SnXSS





WV-20117
fG fG fUn001 fU fG fUn001 fG fU mC fA mC fC mA fG fA
GGUUGUGUCACCAGAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fA fA fC
AAC
SnXSS





WV-20118
fG fU fUn001 fG fU fUn001 fU fC mA fC mC fA mG fA fG
GUUGUGUCACCAGAGUA
SSnXSS nXSSSS SSSSS



fU fAn001 fA fC fA
ACA
SnXSS





WV-20119
fU fU fGn001 fU fG fUn001 fC fA mC fC mA fG mA fG fU
UUGUGUCACCAGAGUAA
SSnXSS nXSSSS SSSSS



fA fAn001 fC fA fG
CAG
SnXSS





WV-20120
fU fG fUn001 fG fU fCn001 fA fC mC fA mG fA mG fU fA
UGUGUCACCAGAGUAAC
SSnXSS nXSSSS SSSSS



fA fCn001 fA fG fU
AGU
SnXSS





WV-20121
fG fU fUn001 fU fC fAn001 fC fC mA fG mA fG mU fA fA
GUGUCACCAGAGUAACA
SSnXSS nXSSSS SSSSS



fC fAn001 fG fU fC
GUC
SnXSS





WV-20122
fU fG fUn001 fC fA fCn001 fC fA mG fA mG fU mA fA fC
UGUCACCAGAGUAACAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fC fU
UCU
SnXSS





WV-20123
fG fU fCn001 fA fC fCn001 fA fG mA fG mU fA mA fC fA
GUCACCAGAGUAACAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fC fU fG
CUG
SnXSS





WV-20124
fU fC fAn001 fC fC fAn001 fG fA mG fU mA fA mC fA fG
UCACCAGAGUAACAGUC
SSnXSS nXSSSS SSSSS



fU fCn001 fU fG fA
UGA
SnXSS





WV-20125
fC fA fCn001 fC fA fGn001 fA fG mU fA mA fC mA fG fU
CACCAGAGUAACAGUCU
SSnXSS nXSSSS SSSSS



fC fUn001 fG fA fG
GAG
SnXSS





WV-20126
fA fC fCn001 fA fG fAn001 fG fU mA fA mC fA mG fU fC
ACCAGAGUAACAGUCUG
SSnXSS nXSSSS SSSSS



fU fGn001 fA fG fU
AGU
SnXSS





WV-20127
fC fC fAn001 fG fA fGn001 fU fA mA fC mA fG mU fC fU
CCAGAGUAACAGUCUGA
SSnXSS nXSSSS SSSSS



fG fAn001 fG fU fA
GUA
SnXSS





WV-20128
fC fA fGn001 fA fG fUn001 fA fA mC fA mG fU mC fU fG
CAGAGUAACAGUCUGAG
SSnXSS nXSSSS SSSSS



fA fGn001 fU fA fG
UAG
SnXSS





WV-20129
fA fG fAn001 fG fU fAn001 fA fC mA fG mU fC mU fG fA
AGAGUAACAGUCUGAGU
SSnXSS nXSSSS SSSSS



fG fUn001 fA fG fG
AGG
SnXSS





WV-20130
fG fA fGn001 fU fA fAn001 fC fA mG fU mC fU mG fA fG
GAGUAACAGUCUGAGUA
SSnXSS nXSSSS SSSSS



fU fAn001 fG fG fA
GGA
SnXSS





WV-20131
fA fG fUn001 fA fA fCn001 fA fG mU fC mU fG mA fG fU
AGUAACAGUCUGAGUAG
SSnXSS nXSSSS SSSSS



fA fGn001 fG fA fG
GAG
SnXSS





WV-20132
fG fU fAn001 fA fC fAn001 fG fU mC fU mG fA mG fU fA
GUAACAGUCUGAGUAGG
SSnXSS nXSSSS SSSSS



fG fGn001 fA fG fC
AGC
SnXSS





WV-20133
fU fA fAn001 fC fA fGn001 fU fC mU fG mA fG mU fA fG
UAACAGUCUGAGUAGGA
SSnXSS nXSSSS SSSSS



fG fAn001 fG fC fU
GCU
SnXSS





WV-20134
fA fA fCn001 fA fG fUn001 fC fU mG fA mG fU mA fG fG
AACAGUCUGAGUAGGAG
SSnXSS nXSSSS SSSSS



fA fGn001 fC fU fA
CUA
SnXSS





WV-20135
fA fC fAn001 fG fU fCn001 fU fG mA fG mU fA mG fG fA
ACAGUCUGAGUAGGAGC
SSnXSS nXSSSS SSSSS



fG fCn001 fU fA fA
UAA
SnXSS





WV-20136
fC fA fGn001 fU fC fUn001 fG fA mG fU mA fG mG fA fG
CAGUCUGAGUAGGAGCU
SSnXSS nXSSSS SSSSS



fC fUn001 fA fA fA
AAA
SnXSS





WV-20137
fA fG fUn001 fC fG fGn001 fA fG mU fA mG fG mA fG fC
AGUCUGAGUAGGAGCUA
SSnXSS nXSSSS SSSSS



fU fAn001 fA fA fA
AAA
SnXSS





WV-20138
fG fU fCn001 fU fG fAn001 fG fU mA fG mG fA mG fC fU
GUCUGAGUAGGAGCUAA
SSnXSS nXSSSS SSSSS



fA fAn001 fA fA fU
AAU
SnXSS





WV-20139
fU fC fUn001 fG fA fGn001 fU fA mG fG mA fG mC fU fA
UCUGAGUAGGAGCUAAA
SSnXSS nXSSSS SSSSS



fA fAn001 fA fU fA
AUA
SnXSS





WV-20140
fC fU fGn001 fA fG fUn001 fA fG mG fA mG fC mU fA fA
CUGAGUAGGAGCUAAAA
SSnXSS nXSSSS SSSSS



fA fAn001 fU fA fU
UAU
SnXSS





WV-20141
fU fG fAn001 fG fU fAn001 fG fG mA fG mC fU mA fA fA
UGAGUAGGAGCUAAAAU
SSnXSS nXSSSS SSSSS



fA fUn001 fA fU fU
AUU
SnXSS





WV-20142
fG fA fGn001 fU fA fGn001 fG fA mG fC mU fA mA fA fA
GAGUAGGAGCUAAAAUA
SSnXSS nXSSSS SSSSS



fU fAn001 fU fU fU
UUU
SnXSS





WV-20143
fA fG fUn001 fA fG fGn001 fA fG mC fU mA fA mA fA fU
AGUAGGAGCUAAAAUAU
SSnXSS nXSSSS SSSSS



fA fUn001 fU fU fU
UUU
SnXSS





WV-20144
fG fU fAn001 fG fG fAn001 fG fC mU fA mA fA mA fU fA
GUAGGAGCUAAAAUAUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fU fG
UUG
SnXSS





WV-20145
fU fA fGn001 fG fA fGn001 fC fU mA fA mA fA mU fA fU
UAGGAGCUAAAAUAUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fG fG
UGG
SnXSS





WV-20146
fA fG fGn001 fA fG fCn001 fU fA mA fA mA fU mA fU fU
AGGAGCUAAAAUAUUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fG fG
GGG
SnXSS





WV-20147
fG fG fAn001 fG fC fUn001 fA fA mA fA mU fA mU fU fU
GGAGCUAAAAUAUUUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fG fG fU
GGU
SnXSS





WV-20148
fG fA fGn001 fC fU fAn001 fA fA mA fU mA fU mU fU fU
GAGCUAAAAUAUUUUGG
SSnXSS nXSSSS SSSSS



fG fGn001 fG fU fU
GUU
SnXSS





WV-20149
fA fG fCn001 fU fA fAn001 fA fA mU fA mU fU mU fU fG
AGCUAAAAUAUUUUGGG
SSnXSS nXSSSS SSSSS



fG fGn001 fU fU fU
UUU
SnXSS





WV-20150
fG fC fUn001 fA fA fAn001 fA fU mA fU mU fU mU fG fG
GCUAAAAUAUUUUGGGU
SSnXSS nXSSSS SSSSS



fG fUn001 fU fU fU
UUU
SnXSS





WV-20151
fC fU fAn001 fA fA fAn001 fU fA mU fU mU fU mG fG fG
CUAAAAUAUUUUGGGUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fU fU
UUU
SnXSS





WV-20152
fU fA fAn001 fA fA fUn001 fA fU mU fU mU fG mG fG fU
UAAAAUAUUUUGGGUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fU fG
UUG
SnXSS





WV-20153
fA fA fAn001 fA fU fAn001 fU fU mU fU mG fG mG fU fU
AAAAUAUUUUGGGUUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fU fG fC
UGC
SnXSS





WV-20154
fA fA fAn001 fU fA fUn001 fU fU mU fG mG fG mU fU fU
AAAUAUUUUGGGUUUUU
SSnXSS nXSSSS SSSSS



fU fUn001 fG fC fA
GCA
SnXSS





WV-20155
fA fA fUn001 fA fU fUn001 fU fU mG fG mG fU mU fU fU
AAUAUUUUGGGUUUUUG
SSnXSS nXSSSS SSSSS



fU fGn001 fC fA fA
CAA
SnXSS





WV-20156
fA fU fAn001 fU fU fUn001 fU fG mG fG mU fU mU fU fU
AUAUUUUGGGUUUUUGC
SSnXSS nXSSSS SSSSS



fG fCn001 fA fA fA
AAA
SnXSS





WV-20157
fU fA fUn001 fU fU fUn001 fG fG mG fU mU fU mU fU fG
UAUUUUGGGUUUUUGCA
SSnXSS nXSSSS SSSSS



fC fAn001 fA fA fA
AAA
SnXSS





WV-20158
fA fU fUn001 fU fU fGn001 fG fG mU fU mU fU mU fG fC
AUUUUGGGUUUUUGCAA
SSnXSS nXSSSS SSSSS



fA fAn001 fA fA fA
AAA
SnXSS





WV-20159
fU fU fUn001 fU fG fGn001 fG fU mU fU mU fU mG fC fA
UUUUGGGUUUUUGCAAA
SSnXSS nXSSSS SSSSS



fA fAn001 fA fA fG
AAG
SnXSS





WV-20160
fU fU fUn001 fG fG fGn001 fU fU mU fU mU fG mC fA fA
UUUGGGUUUUUGCAAAA
SSnXSS nXSSSS SSSSS



fA fAn001 fA fG fG
AGG
SnXSS





WV-20314
fU fU fC fG fA fA fA fA mA fA mC fA mA fA fU fC fA fA
UUCGAAAAAACAAAUCA
SSSSS SSSSS SSSSS SSSS



fA fG
AAG






WV-20315
fU fC fG fA fA fA fA fA mA fC mA fA mA fU fC fA fA fA
UCGAAAAAACAAAUCAA
SSSSS SSSSS SSSSS SSSS



fG fA
AGA






WV-20316
fC fG fA fA fA fA fA fA mC fA mA fA mU fC fA fA fA fG
CGAAAAAACAAAUCAAA
SSSSS SSSSS SSSSS SSSS



fA fC
GAC






WV-20317
fG fA fA fA fA fA fA fC mA fA mA fU mC fA fA fA fG fA
GAAAAAACAAAUCAAAG
SSSSS SSSSS SSSSS SSSS



fC fU
ACU






WV-20318
fA fA fA fA fA fA fC fA mA fA mU fC mA fA fA fG fA fC
AAAAAACAAAUCAAAGA
SSSSS SSSSS SSSSS SSSS



fU fU
CUU






WV-20319
fA fA fA fA fA fC fA fA mA fU mC fA mA fA fG fA fC fU
AAAAACAAAUCAAAGAC
SSSSS SSSSS SSSSS SSSS



fU fA
UUA






WV-20320
fA fA fA fA fC fA fA fA mU fC mA fA mA fG fA fC fU fU
AAAACAAAUCAAAGACU
SSSSS SSSSS SSSSS SSSS



fA fC
UAC






WV-20321
fA fA fA fC fA fA fA fU mC fA mA fA mG fA fC fU fU fA
AAACAAAUCAAAGACUU
SSSSS SSSSS SSSSS SSSS



fC fC
ACC






WV-20322
fA fA fC fA fA fA fU fC mA fA mA fG mA fC fU fU fA fC
AACAAAUCAAAGACUUA
SSSSS SSSSS SSSSS SSSS



fC fU
CCU






WV-20323
fA fC fA fA fA fU fC fA mA fA mG fA mC fU fU fA fC fC
ACAAAUCAAAGACUUAC
SSSSS SSSSS SSSSS SSSS



fU fU
CUU






WV-20324
fC fA fA fA fU fC fA fA mA fG mA fC mU fU fA fC fC fU
CAAAUCAAAGACUUACC
SSSSS SSSSS SSSSS SSSS



fU fA
UUA






WV-20325
fA fA fA fU fC fA fA fA mG fA mC fU mU fA fC fC fU fU
AAAUCAAAGACUUACCU
SSSSS SSSSS SSSSS SSSS



fA fA
UAA






WV-20326
fA fA fU fC fA fA fA fG mA fC mU fU mA fC fC fU fU fA
AAUCAAAGACUUACCUU
SSSSS SSSSS SSSSS SSSS



fA fG
AAG






WV-20327
fA fU fC fA fA fA fG fA mC fU mU fA mC fC fU fU fA fA
AUCAAAGACUUACCUUA
SSSSS SSSSS SSSSS SSSS



fG fA
AGA






WV-20328
fU fC fA fA fA fG fA fC mU fU mA fC mC fU fU fA fA fG
UCAAAGACUUACCUUAA
SSSSS SSSSS SSSSS SSSS



fA fU
GAU






WV-20329
fC fA fA fA fG fA fC fU mU fA mC fC mU fU fA fA fG fA
CAAAGACUUACCUUAAG
SSSSS SSSSS SSSSS SSSS



fU fA
AUA






WV-20330
fA fA fA fG fA fC fU fU mA fC mC fU mU fA fA fG fA fU
AAAGACUUACCUUAAGA
SSSSS SSSSS SSSSS SSSS



fA fC
UAC






WV-20331
fA fA fG fA fC fU fU fA mC fC mU fU mA fA fG fA fU fA
AAGACUUACCUUAAGAU
SSSSS SSSSS SSSSS SSSS



fC fC
ACC






WV-20332
fA fG fA fC fU fU fA fC mC fU mU fA mA fG fA fU fA fC
AGACUUACCUUAAGAUA
SSSSS SSSSS SSSSS SSSS



fC fA
CCA






WV-20333
fG fA fC fU fU fA fC fC mU fU mA fA mG fA fU fA fC fC
GACUUACCUUAAGAUAC
SSSSS SSSSS SSSSS SSSS



fA fU
CAU






WV-20334
fA fC fU fU fA fC fC fU mU fA mA fG mA fU fA fC fC fA
ACUUACCUUAAGAUACC
SSSSS SSSSS SSSSS SSSS



fU fU
AUU






WV-20335
fC fU fU fA fC fC fU fU mA fA mG fA mU fA fC fC fA fU
CUUACCUUAAGAUACCA
SSSSS SSSSS SSSSS SSSS



fU fU
UUU






WV-20336
fU fU fA fC fC fU fU fA mA fG mA fU mA fC fC fA fU fU
UUACCUUAAGAUACCAU
SSSSS SSSSS SSSSS SSSS



fU fG
UUG






WV-20337
fU fA fC fC fU fU fA fA mG fA mU fA mC fC fA fU fU fU
UACCUUAAGAUACCAUU
SSSSS SSSSS SSSSS SSSS



fG fU
UGU






WV-20338
fA fG fG fC fA fA fA fA mC fA mA fA mA fA fU fG fA fA
AGGCAAAACAAAAAUGA
SSSSS SSSSS SSSSS SSSS



fG fC
AGC






WV-20339
fG fC fA fA fA fA fC fA mA fA mA fA mU fG fA fA fG fC
GCAAAACAAAAAUGAAG
SSSSS SSSSS SSSSS SSSS



fC fC
CCC






WV-20340
fA fA fA fA fC fA fA fA mA fA mU fG mA fA fG fC fC fC
AAAACAAAAAUGAAGCC
SSSSS SSSSS SSSSS SSSS



fC fA
CCA






WV-20341
fA fA fC fA fA fA fA fA mU fG mA fA mG fC fC fC fC fA
AACAAAAAUGAAGCCCC
SSSSS SSSSS SSSSS SSSS



fU fG
AUG






WV-20342
fC fA fA fA fA fA fU fG mA fA mG fC mC fC fC fA fU fG
CAAAAAUGAAGCCCCAU
SSSSS SSSSS SSSSS SSSS



fU fC
GUC






WV-20343
fA fA fA fA fU fG fA fA mG fC mC fC mC fA fU fG fU fC
AAAAUGAAGCCCCAUGU
SSSSS SSSSS SSSSS SSSS



fU fU
CUU






WV-20344
fA fA fU fG fA fA fG fC mC fC mC fA mU fG fU fC fU fU
AAUGAAGCCCCAUGUCU
SSSSS SSSSS SSSSS SSSS



fU fU
UUU






WV-20345
fA fU fG fA fA fG fC fC mC fC mA fU mG fU fC fU fU fU
AUGAAGCCCCAUGUCUU
SSSSS SSSSS SSSSS SSSS



fU fU
UUU






WV-20346
fG fA fA fG fC fC fC fC mA fU mG fU mC fU fU fU fU fU
GAAGCCCCAUGUCUUUU
SSSSS SSSSS SSSSS SSSS



fA fU
UAU






WV-20347
fA fG fC fC fC fC fA fU mG fU mC fU mU fU fU fU fA fU
AGCCCCAUGUCUUUUUA
SSSSS SSSSS SSSSS SSSS



fU fU
UUU






WV-20348
fC fC fC fC fA fU fG fU mC fU mU fU mU fU fA fU fU fU
CCCCAUGUCUUUUUAUU
SSSSS SSSSS SSSSS SSSS



fG fA
UGA






WV-20349
fU fG fA fA fG fC fC fC mC fA mU fG mU fC fU fU fU fU
UGAAGCCCCAUGUCUUU
SSSSS SSSSS SSSSS SSSS



fU fA
UUA






WV-20350
fA fA fG fC fC fC fC fA mU fG mU fC mU fU fU fU fU fA
AAGCCCCAUGUCUUUUU
SSSSS SSSSS SSSSS SSSS



fU fU
AUU






WV-20351
fG fC fC fC fC fA fU fG mU fC mU fU mU fU fU fA fU fU
GCCCCAUGUCUUUUUAU
SSSSS SSSSS SSSSS SSSS



fU fG
UUG






WV-20352
fC fU fG fC fA fU mA mU mU mC mA mA mA mG fG fA fC
CUGCAUAUUCAAAGGAC
SSSSS SSSSS SSSSS SSSS



fA fC fC
ACC






WV-20353
fC fU fG fC fA fU mU mG mU mU mU mU mG mG fC fC fU
CUGCAUUGUUUUGGCCU
SSSSS SSSSS SSSSS SSSS



fC fU fG
CUG






WV-20354
fA fU fA fA fA fG mC mC mG mA mA mA mU mA fC fA fC
AUAAAGCCGAAAUACAC
SSSSS SSSSS SSSSS SSSS



fA fC fU
ACU






WV-20355
fG fC fU fG fU fU mA mC mG mA mU mG mC mU fU fC fC
GCUGUUACGAUGCUUCC
SSSSS SSSSS SSSSS SSSS



fC fU fC
CUC






WV-20356
fC fU fU fC fC fC mU mC mU mG mU mC mA mC fA fG fA
CUUCCCUCUGUCACAGA
SSSSS SSSSS SSSSS SSSS



fU fU fC
UUC






WV-20357
fC fA fG fA fU fA mA mA mC mC mA mG mC mU fC fC fG
CAGAUAAACCAGCUCCG
SSSSS SSSSS SSSSS SSSS



fU fC fC
UCC






WV-20358
fC fU fC fC fG fU mC mC mA mG mG mC mA mA fA fC fU
CUCCGUCCAGGCAAACU
SSSSS SSSSS SSSSS SSSS



fC fU fC
CUC






WV-20359
fG fG fC fA fA fA mC mU mC mU mC mU mC mA fU fC fC
GGCAAACUCUCUCAUCC
SSSSS SSSSS SSSSS SSSS



fU fG fA
UGA






WV-20360
fC fU fC fU fC fU mC mA mU mC mC mU mG mA fC fA fC
CUCUCUCAUCCUGACAC
SSSSS SSSSS SSSSS SSSS



fA fA fA
AAA






WV-20361
fC fA fA fA fC fU mC mU mC mU mC mA mU mC fC fU fG
CAAACUCUCUCAUCCUG
SSSSS SSSSS SSSSS SSSS



fA fC fA
ACA






WV-20362
fG fC fU fC fU fA mA mU mA mU mU mA mU mC fA fU fU
GCUCUAAUAUUAUCAUU
SSSSS SSSSS SSSSS SSSS



fA fU fG
AUG






WV-20363
fA fU fA fG fC fA mC mC mG mU mG mC mU mC fU fA fA
AUAGCACCGUGCUCUAA
SSSSS SSSSS SSSSS SSSS



fU fA fU
UAU






WV-20364
fC fC fG fU fG fC mU mC mU mA mA mU mA mU fU fA fU
CCGUGCUCUAAUAUUAU
SSSSS SSSSS SSSSS SSSS



fC fA fU
CAU






WV-20365
fU fA fU fG fA fU mA mA mU mU mU mU mC mU fU fU
UAUGAUAAUUUUCUUUC
SSSSS SSSSS SSSSS SSSS



fC fU fA fG
UAG






WV-20366
fC fU fU fU fC fU mA mG mU mA mA mU mA mU fA fA
CUUUCUAGUAAUAUAAU
SSSSS SSSSS SSSSS SSSS



fU fG fA fU
GAU






WV-20367
fU fA fA fU fU fU mU mC mU mU mU mC mU mA fG fU
UAAUUUUCUUUCUAGUA
SSSSS SSSSS SSSSS SSSS



fA fA fU fA
AUA






WV-20368
fA fC fA fA fC fA mA mC mA mG mU mC mA mA fA fA fG
ACAACAACAGUCAAAAG
SSSSS SSSSS SSSSS SSSS



fU fA fA
UAA






WV-20369
fA fA fU fA fU fA mA mU mG mA mU mG mA mC fA fA
AAUAUAAUGAUGACAAC
SSSSS SSSSS SSSSS SSSS



fC fA fA fC
AAC






WV-20370
fU fG fA fU fG fA mC mA mA mC mA mA mC mA fG fU fC
UGAUGACAACAACAGUC
SSSSS SSSSS SSSSS SSSS



fA fA fA
AAA






WV-20371
fU fA fA fU fU fU mC mC mA mU mC mA mC mC fC fU fU
UAAUUUCCAUCACCCUU
SSSSS SSSSS SSSSS SSSS



fC fA fG
CAG






WV-20372
fC fA fC fC fC fU mU mC mA mG mA mA mC mC fU fG fA
CACCCUUCAGAACCUGA
SSSSS SSSSS SSSSS SSSS



fU fC fU
UCU






WV-20373
fU fC fC fA fU fC mA mC mC mC mU mU mC mA fG fA fA
UCCAUCACCCUUCAGAA
SSSSS SSSSS SSSSS SSSS



fC fC fU
CCU






WV-20374
fA fC fC fU fG fA mU mC mU mU mU mA mA mG fA fA fG
ACCUGAUCUUUAAGAAG
SSSSS SSSSS SSSSS SSSS



fU fU fA
UUA






WV-20375
fC fA fC fC fC fU mU mC mA mG mA mA mC mC fU fG fA
CACCCUUCAGAACCUGA
SSSSS SSSSS SSSSS SSS



fU fC
UC






WV-20376
fC fA fG fA fA fC mC mU mG mA mU mC mU mU fU fA fA
CAGAACCUGAUCUUUAA
SSSSS SSSSS SSSSS SSSS



fG fA fA
GAA






WV-20377
fA fG fA fG fU fC mC mA mG mA mU mG mU mG fC fU fG
AGAGUCCAGAUGUGCUG
SSSSS SSSSS SSSSS SSS



fA fA
AA






WV-20378
fC fU fG fA fA fG mA mU mA mA mA mU mA mC fA fA
CUGAAGAUAAAUACAAU
SSSSS SSSSS SSSSS SSSS



fU fu fU fC
UUC






WV-20379
fU fG fU fG fC fU mG mA mA mG mA mU mA mA fA fU
UGUGCUGAAGAUAAAUA
SSSSS SSSSS SSSSS SSSS



fA fC fA fA
CAA






WV-20380
fA fC fA fA fU fU mU mC mG mA mA mA mA mA fA fC fA
ACAAUUUCGAAAAAACA
SSSSS SSSSS SSSSS SSS



fA fA
AA






WV-20381
fC fU fG fA fA fG mA mU mA mA mA mU mA mC fA fA
CUGAAGAUAAAUACAAU
SSSSS SSSSS SSSSS SSS



fU fU fU
UU






WV-20382
fU fA fA fA fU fA mC mA mA mU mU mU mC mG fA fA
UAAAUACAAUUUCGAAA
SSSSS SSSSS SSSSS SSS



fA fA fA
AA






WV-20383
fA fC fU fU fA fC mC mU mU mA mA mG mA mU fA fC fC
ACUUACCUUAAGAUACC
SSSSS SSSSS SSSSS SSSS



fA fU fU
AUU






WV-20384
fA fA fU fC fA fA mA mG mA mC mU mU mA mC fC fU fU
AAUCAAAGACUUACCUU
SSSSS SSSSS SSSSS SSSS



fA fA fG
AAG






WV-20385
fA fA fG fA fC fU mU mA mC mC mU mU mA mA fG fA fU
AAGACUUACCUUAAGAU
SSSSS SSSSS SSSSS SSSS



fA fC fC
ACC






WV-20386
fA fU fU fC fU fC mA mG mG mA mA mU mU mU fG fU
AUUCUCAGGAAUUUGUG
SSSSS SSSSS SSSSS SSSS



fG fU fC fU
UCU






WV-20387
fC fA fU fG fU fU mC mC mC mA mA mU mU mC fU fC fA
CAUGUUCCCAAUUCUCA
SSSSS SSSSS SSSSS SSS



fG fG
GG






WV-20388
fC fC fC fA fA fU mU mC mU mC mA mG mG mA fA fU fU
CCCAAUUCUCAGGAAUU
SSSSS SSSSS SSSSS SSS



fU fG
UG






WV-20389
fC fU fU fU fC fU mG mA mG mA mA mA mC mU fG fU fU
CUUUCUGAGAAACUGUU
SSSSS SSSSS SSSSS SSSS



fC fA fG
CAG






WV-20390
fA fG fG fA fA fU mU mU mG mU mG mU mC mU fU fU
AGGAAUUUGUGUCUUUC
SSSSS SSSSS SSSSS SSSS



fC fU fG fA
UGA






WV-20391
fU fG fU fG fU fC mU mU mU mC mU mG mA mG fA fA
UGUGUCUUUCUGAGAAA
SSSSS SSSSS SSSSS SSSS



fA fC fU fG
CUG






WV-20392
fC fU fU fU fA fU mA mU mC mA mU mA mA mU fG fA
CUUUAUAUCAUAAUGAA
SSSSS SSSSS SSSSS SSSS



fA fA fA fC
AAC






WV-20393
fC fA fC fU fG fA mU mU mA mA mA mU mA mU fC fU fU
CACUGAUUAAAUAUCUU
SSSSS SSSSS SSSSS SSSS



fU fA fU
UAU






WV-20789
L001 fU fC fA fA fG fG mA fA mG fA mU fG mG fC fA fU
UCAAGGAAGAUGGCAUU
ORRRR RRORO ROROR



fU fU fC fU
UCU
RRRRR





WV-20790
Mod012L001 fU fC fA fA fG fG mA fA mG fA mU fG mG
UCAAGGAAGAUGGCAUU
ORRRR RRORO ROROR



fC fA fU fU fU fC fU
UCU
RRRRR





WV-21210
Mod118L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-21211
Mod119L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-21212
Mod120L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-21217
fC fU fCn001 R fC fG fGn001 R fU fU mC
CUCCGGUUC
SSnRSS nRSS





WV-21218
fU fC fAn001 R fC fU fCn001 R mA fG fA mU fA mG mU
UCACUCAGAUAGUUGAA
SSnRSS nROSSS SOSSS



fU fG fA fAn001 R fG fC fC
GCC
SnRSS





WV-21245
fU fC fAn001 R fC fU fCn001 R mA fG fA mU fA mG mU
UCACUCAGAUAGUUGAA
SSnRSS nROSSS SSOSS



fU fG fA fAn001 R fG fC fC
GCC
SnRSS





WV-21257
fC fG fGn001 R fU fU mC fU mG fA mA fG fG fU fGn001 R
CGGUUCUGAAGGUGUUC
SSnRSS OSSSO SSSnRS S



fU fU fC







WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA
UCAAGGAAGAUGGCAUUUCG
SSSSSSOSOSSOOSSSSSS


24310
* SfU * SmGmGfC * SfA * SfU * SfU * SfU * SfC *





SmG







WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA
UCAAGGAAGAUGGCACCCCG
SSSSSSOSOSSOOSSSSSS


24311
* SfU * SmGmGfC * SfA * SfC * SfC * SfC * SfC *





SfG







WV-
fU * SfC * SfG * SfA * SfG * SfA * SmAfA * SmGmA
UCGAGAAAGAUGGCAUUUCU
SSSSSSOSOSSOOSSSSSS


24463
* SfU * SmGmGfC * SfA * SfU * SfU * SfU * SfC *





SfU







WV-
fU * SfU * SfA * SfA * SfG * SfG * SmAfA * SmGmA
UUAAGGAAGAUGGCAUUCCU
SSSSSSOSOSSOOSSSSSS


24464
* SfU * SmGmGfC * SfA * SfU * SfU * SfC * SfC *





SfU







WV-
fU * RfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
RSSSSSSOSSSOOSSSSSS


25439
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * RfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SRSSSSSOSSSOOSSSSSS


25440
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * RfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSRSSSSOSSSOOSSSSSS


25441
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * RfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSRSSSOSSSOOSSSSSS


25442
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * RfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSRSSOSSSOOSSSSSS


25443
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * RfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSRSOSSSOOSSSSSS


25444
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * RmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSROSSSOOSSSSSS


25445
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSORSSOOSSSSSS


25446
RmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSRSOOSSSSSS


25447
SmG * RfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSROOSSSSSS


25448
SmG * SfA * RmAmGfG * SfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSSOORSSSSS


25449
SmG * SfA * SmAmGfG * RfU * SfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSSOOSRSSSS


25450
SmG * SfA * SmAmGfG * SfU * RfG * SfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSSOOSSRSSS


25451
SmG * SfA * SmAmGfG * SfU * SfG * RfU * SfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSSOOSSSRSS


25452
SmG * SfA * SmAmGfG * SfU * SfG * SfU * RfU *





SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSSOOSSSSRS


25453
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





RfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUCU
SSSSSSSOSSSOOSSSSSR


25454
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfC * RfU







WV-
fC * SfG * SfG * SfU * SfU * SmCfU * SmG * SfA *
CGGUUCUGAAGGUGUUCU
SSSSSOSSSOOSSSSSS


25455
SmAmGfG * SfU * SfG * SfU * SfU * SfC * SfU







WV-
fU * SfU * SfC * SfC * SfG * SfG * SfU * SfU *
UUCCGGUUCUGAAGGUGUUCU
SSSSSSSSOSSSOOSSSSSS


25456
SmCfU * SmG * SfA * SmAmGfG * SfU * SfG * SfU *





SfU * SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SfU *
UCCGGUUUCUGAAGGUGUUCU
SSSSSSSSOSSSOOSSSSSS


25457
SmCfU * SmG * SfA * SmAmGfG * SfU * SfG * SfU *





SfU * SfC * SfU







WV-
fU * SfC * SfC * SfG * SfG * SfU * SfU * SmCfU *
UCCGGUUCUGAAGGUGUUUCU
SSSSSSSOSSSOOSSSSSSS


25458
SmG * SfA * SmAmGfG * SfU * SfG * SfU * SfU *





SfU * SfC * SfU







WV 
fU * SfC * SfC * SfG * SfG * SfU * SmCfU * SmG *
UCCGGUCUGAAGGUGUUCU
SSSSSSOSSSOOSSSSSS


25459
SfA * SmAmGfG * SfU * SfG * SfU * SfU * SfC * SfU







WV-
lT * SfC * SlA * SfC * SfU * SfC * SmAfG * SfA *
TCACUCAGAUAGUUGAAGCC
SSSSSSOSSSSOOSSSSSS


25536
SmU * SfA * SmGmUfU * SfG * SfA * SfA * SfG *





SfC * SfC







WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA *
UCACUCAGAUAGUUGAAGCC
SSSSSSOSSSSOOSSSSSS


25537
SmU * SfA * SmGmUfU * SfG * SfA * SfA * SlG * SfC





* SfC







WV-
lT * SfC * SlA * SfC * SfU * SfC * SmAfG * SfA *
TCACUCAGAUAGUUGAAGCC
SSSSSSOSSSSOOSSSSSS


25538
SmU * SfA * SmGmUfU * SfG * SfA * SfA * SlG * SfC





* SfC







WV-
fU * SfC * SfA * SfC * SfU * SfC * SlAfG * SfA * SmU
UCACUCAGAUAGTUGAAGCC
SSSSSSOSSSSOOSSSSSS


25539
* SfA * SfGlTfU * SfG * SfA * SfA * SfG * SfC * SfC







WV-
fU * SfC * SfA * SfC * SfU * SfC * SlAfG * SfA * SmU
UCACUCAGAUAGTTGAAGCC
SSSSSSOSSSSOOSSSSSS


25540
* SfA * SlGlTlT * SfG * SfA * SfA * SfG * SfC * SfC







WV-
fU * SfC * SfA * SfC * SfU * SfC * S1An001RfG * SfA
UCACUCAGAUAGTTGAAGCC
SSSSSSnRSSSSnRnRSSSSSS


25541
* SmU * SfA * SlGn001RlTn001RlT * SfG * SfA * SfA





* SfG * SfC * SfC







WV-
lT * SfC * SlA * SfC * SfU * SfC * SmAn001RfG * SfA
TCACUCAGAUAGUUGAAGCC
SSSSSSnRSSSSnRnRSSSSSS


25542
* SmU * SfA * SmGn001RmUn001RfU * SfG * SfA *





SfA * SfG * SfC * SfC







WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn001RfG *
UCACUCAGAUAGUUGAAGCC
SSSSSSnRSSSSnRnRSSSSSS


25543
SfA * SmU * SfA * SmGn001RmUn001RfU * SfG *





SfA * SfA * SlG * SfC * SfC







WV-
lT * SfC * SlA * SfC * SfU * SfC * SmAn001RfG * SfA
TCACUCAGAUAGUUGAAGCC
SSSSSSnRSSSSnRnRSSSSSS


25544
* SmU * SfA * SmGn001RmUn001RfU * SfG * SfA *





SfA * SlG * SfC * SfC







WV-
L001fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA
UCACUCAGAUAGUUGAAGCC
OSSSSSSOSSSSOSSSSSSS


27163
* SmU * SfA * SmGmU * SfU * SfG * SfA * SfA * SfG





* SfC * SfC







WV-
L001fU * SfC * SfAn001RfC * SfU * SfCn001RmAfG *
UCACUCAGAUAGUUGAAGCC
OSSnRSSnROSSSSOSSSSnRSS


27164
SfA * SmU * SfA * SmGmU * SfU * SfG * SfA *





SfAn001RfG * SfC * SfC







WV-19790
Mod020L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19791
Mod015L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19792
Mod109L001 fU fC fA fC fU fC mAn00l fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19793
Mod110L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19794
Mod111L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19795
Mod112L001 fU fC fA fC fU fC mAn00l fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19796
Mod113L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19797
Mod114L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-19798
Mod115L001 fU fC fA fC fU fC mAn001 fG fA mU fA
UCACUCAGAUAGUUGAA
OSSSS SSnXSS SSnXnXS



mGn001 mUn001 fU fG fA fA fG fC fC
GCC
SSSSS





WV-15883
fC * SfU * SfCn002RfC * SfG * SfGn002RfU * SfU * SmCfU
CUCCGGUUCUGAAGGUG
SSnR SSnR SSOSSS OOSSnR



* SmC * SfA * SmAfGfG * SfU * SfGn002RfU * SfU * SfC
UUC
SS





WV-15884
mU * SGeon002m5Ceon002m5Ceon002mA * SG * SG * RC
UGCCAGGCTGGTTATGAC
SnX nX nX SSRSSR



* ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC *
UC
SSRSSSSSS



SmU * SmC







WV-15885
mU * SGeon002Rm5Ceon002Rm5Ceon002RmA * SG * SG *
UGCCAGGCTGGTTATGAC
SnR nR nR SSRSSR



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
SSRSSSSSS



SmC * SmU * SmC







WV-15886
fC * SfU * SfCn002fC * SfG * SfUn002fU * SfU * SmCfU *
CUCCGGUUCUGAAGGUG
SSnX SSnX SSOSSS OOSSnX



SmG * SfA * SmAfGfG * SfU * SfUn002fU * SfU * SfC
UUC
SS





WV-15887
mU * SGeon002Sm5Ceon002Sm5Ceon002SmA * SG * SG *
UGCCAGGCTGGTTATGAC
SnS nS nS SSRSSR



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
SSRSSSSSS



SmC * SmU * SmC







WV-16006
fCfUfCn003RfCfGfGn003RfUfUmCfUmGfAmAfGfGfUfGn0
CUCCGGUUCUGAAGGUG
SSnR SSnR SSOSSS 



03RfUfUfC
UUC
OOSSnR SS





WV-16008
fUfCfAfCfUfCmAn003fGfAmUfAmGn003mUn003fUfGfAfA
UCACUCAGAUAGUUGAA
SSSSSSnX SSSSnX 



fGfCfC
GCC
nX SSSSSS





WV-16007
fCfUfCn004RfCfGfGn004RfUfUmCfU
CUCCGGUUCUGAAGGUG
SSnR SSnR SSOSSS 



mGfAmAfGfGfUGn004RfUfUfC
UUC
OOSSnR SS





WV-16009
fUfCfAfCfUfCmAn004fGfAmUfAmG
UCACUCAGAUAGUUGAA
SSSSSS nX SSSSnX



n004mUn004fUfGfAfAfGfCfC
GCC
nX SSSSSS





WV-24088
fU * SfC * SfA * SfC * SfU * SfC * SmAn005fG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nX SSSS 



SmU * SfA * SmGn005mUn005fU * SfG * SfA * SfA * SfG *
GCC
nX nX



SfC * SfC

SSSSS S





WV-24089
fU * SfC * SfA * SfC * SfU * SfC * SmAn005RfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nR SSSS 



SmU * SfA * SmGn005RmUn005RfU * SfG * SfA * SfA *
GCC
nR nR



SfG * SfC * SfC

SSSSS S





WV-24090
fU * SfU * SfA * SfC * SfU * SfC * SmAn005SfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nS SSSS 



SmU * SfA * SmGn005SmUn005SfU * SfG * SfA * SfA *
GCC
nS nS



SfG * SfC * SfC

SSSSS S





WV-24100
mU * SGeon005m5Ceon005m5Ceon005mA * SG * SG * RC
UGCCAGGCTGGTTATGAC
S nX nX nX SSRSS 



* ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC *
UC
RSSRSS



SmU * SmC

SSSS





WV-24101
mU * SGeon005Rm5Ceon005Rm5Ceon005RmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nR nR nR SSRSS 



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-24102
mU * SGeon005Sm5Ceon005Sm5Ceon005SmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nS nS nS SSRSS 



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-24091
fU * SfC * SfA * SfC * SfU * SfC * SmAn006fG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nX SSSS 



SmU * SfA * SmGn006mUn006fU * SfG * SfA * SfA * SfG *
GCC
nX nX



SfC * SfC

SSSSS S





WV-24092
fU * SfC * SfA * SfC * SfU * SfC * SmAn006RfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nR SSSS 



SmU * SfA * SmGn006RmUn006RfU * SfG * SfA * SfA *
GCC
nR nR



SfG * SfC * SfC

SSSSS S





WV-24093
fU * SfC * SfA * SfC * SfU * SfC * SmAn006SfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nS SSSS 



SmU * SfA * SmGn006SmUn006SfU * SfG * SfA * SfA *
GCC
nS nS



SfG * SfC * SfC

SSSSS S





WV-24103
mU * SGeon006m5Ceon006m5Ceon006mA * SG * SG * RC
UGCCAGGCTGGTTATGAC
S nX nX nX SSRSS 



* ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC *
UC
RSSRSS



SmU * SmC

SSSS





WV-24104
mU * SGeon006Rm5Ceon006Rm5Ceon006RmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nR nR nR SSRSS 



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-24105
mU * SGeon006Sm5Ceon006Sm5Ceon006SmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nS nS nS SSRSS 



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-24094
fU * SfC * SfA * SfC * SfU * SfC * SmAn007fG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nX SSSS 



SmU * SfA * SmGn007mUn007fU * SfG * SfA * SfA * SfG *
GCC
nX nX



SfC * SfC

SSSSS S





WV-24095
fU * SfC * SfA * SfC * SfU * SfC * SmAn007RfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nR SSSS 



SmU * SfA * SmGn007RmUn0071RfU * SfG * SfA * SfA *
GCC
nR nR



SfG * SfC * SfC

SSSSS S





WV-24096
fU * SfC * SfA * SfC * SfU * SfC * SmAn007SfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nS SSSS 



SmU * SfA * SmGn007SmUn007SfU * SfG * SfA * SfA *
GCC
nS nS



SfG * SfU * SfC

SSSSS S





WV-24106
mU * SGeon007Rm5Ceon007Rm5Ceon007RmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nR nR nR SSRSS 



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-24107
mU * SGeon007Sm5Ceon007Sm5Ceon007SmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nS nS nS SSRSS 



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-24097
fU * SfC * SfA * SfC * SfU * SfC * SmAn008fG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nX SSSS 



SmU * SfA * SmGn008mUn008fU * SfG * SfA * SfA * SfG *
GCC
nX nX



SfC * SfC

SSSSS S





WV-24098
fU * SfC * SfA * SfC * SfU * SfC * SmAn008RfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nR SSSS 



SmU * SfA * SmGn008RmUn008RfU * SfG * SfA * SfA *
GCC
nR nR



SfG * SfC * SfC

SSSSS S





WV-24099
fU * SfC * SfA * SfC * SfU * SfC * SmAn008SfG * SfA *
UCACUCAGAUAGUUGAA
SSSSS S nS SSSS 



SmU * SfA * SmGn008SmUn008SfU * SfG * SfA * SfA *
GCC
nS nS



SfG * SfC * SfC

SSSSS S





WV-24108
mU * SGeon008m5Ceon008m5Ceon008mA * SG * SG * RC
UGCCAGGCTGGTTATGAC
S nX nX nX SSRSS 



* ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC *
UC
RSSRSS



SmU * SmC

SSSS





WV-24109
mU * SGeon008Rm5Ceon008Rm5Ceon008RmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nR nR nR SSRSS 



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-24110
mU * SGeon008Sm5Ceon008Sm5Ceon008SmA * SG * SG *
UGCCAGGCTGGTTATGAC
S nS nS nS SSRSS  



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
UC
RSSRSS



SmC * SmU * SmC

SSSS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG
CUCCGGUUCUGAAGGUGUUC
SSnX SSnX SSOSS


12880
* SfA * SmAfG * SfG * SfU * SfGn001fU * SfU * SfC

SOSSSnX SS





WV-
fC * SfU * SfCn001fC * SfG * SfGn001fU * SfU * SmCfU * SmG
CUCCGGUUCUGAAGGUGUUC
SSnX SSnX SSOSS


12880
* SfA * SmAfG * SfG * SfU * SfGn001fU * SfU * SfC

SOSSSnX SS





WV-
fGn001RfU
GU
nR


21219








WV-
fCn001RfC
CC
nR


21226








WV-
fGn001SfU
GU
nS


21252








WV-
fCn001SfC
CC
nS


21253








WV-
fGn001RmA
GA
nR


21258








WV-
fC * RfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
RSnR SSnR SSOSS


21374
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SOSSSnR SS





WV-
fC * SfU * RfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SRnR SSnR SSOSS


21375
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SOSSSnR SS





WV-
fC * SfU * SfCn001SfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnS SSnR SSOSS


21376
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SOSSSnR SS





WV-
fC * SfU * SfCn001RfC * RfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR RSnR SSOSS


21377
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SOSSSnR SS





WV-
fC * SfU * SfCn001RfC * SfG * RfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSRnR SSOSS


21378
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SOSSSnR SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001SfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnS SSOSS


21379
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SOSSSnR SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * RfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR


21380
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

RSOSSSO SS SnR





SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * RmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR


21381
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SROSSSO SS SnR





SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR


21382
RmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SSORSSOSS SnR





SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR


21383
SmG * RfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

SSOSRSOSSSnR SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR SSOSS


21384
SmG * SfA * RmAfG * SfG * SfU * SfGn001RfU * SfU * SfC

ROSSSnR SS





WV 
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR SSOSS


21385
SmG * SfA * SmAfG * RfG * SfU * SfGn001RfU * SfU * SfC

SORSSnR SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR SSOSS


21386
SmG * SfA * SmAfG * SfG * RfU * SfGn001RfU * SfU * SfC

SOSRSnR SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR SSOSS


21387
SmG * SfA * SmAfG * SfG * SfU * RfGn001RfU * SfU * SfC

SOSSRnR SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR SSOSS


21388
SmG * SfA * SmAfG * SfG * SfU * SfGn001SfU * SfU * SfC

SOSSSnS SS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR SSOSS


21389
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * RFU * SfC

SOSSSnR RS





WV-
fC * SfU * SfCn001RfC * SfG * SfGn001RfU * SfU * SmCfU *
CUCCGGUUCUGAAGGUGUUC
SSnR SSnR SSOSS


21390
SmG * SfA * SmAfG * SfG * SfU * SfGn001RfU * SfU * RfC

SOSSSnR SR





WV-
fC * SfU * SfUn001fA * SfA * SfGn001fA * SfU * SmA * SfC *
CUUAAGAUACCAUUUGUAUU
SSnX SSnX SSSSS


21578
SmC * SfA * SmU * SfU * SfU * SfG * SfUn001fA * SfU * SfU

SSSSS nX SS





WV-
fU * SfU * SfAn001fA * SfG * SfAn001fU * SfA * SmC * SfC *
UUAAGAUACCAUUUGUAUUU
SSnX SSnX SSSSS


21579
SmA * SfU * SmU * SfU * SfG * SfU * SfAn001fU * SfU * SfU

SSSSS nX SS





WV-
fU * SfA * SfAn001fG * SfA * SfUn001fA * SfC * SmC * SfA *
UAAGAUACCAUUUGUAUUUA
SSnX SSnX SSSSS


21580
SmU * SfU * SmU * SfG * SfU * SfA * SfUn001fU * SfU * SfA

SSSSS nX SS





WV-
fA * SfA * SfGn001fA * SfU * SfAn001fC * SfC * SmA * SfU *
AAGAUACCAUUUGUAUUUAG
SSnX SSnX SSSSS


21581
SmU * SfU * SmG * SfU * SfA * SfU * SfUn001fU * SfA * SfG

SSSSS nX SS





WV-
fA * SfG * SfAn001fU * SfA * SfCn001fC * SfA * SmU * SfU *
AGAUACCAUUUGUAUUUAGC
SSnX SSnX SSSSS


21582
SmU * SfG * SmU * SfA * SfU * SfU * SfUn001fA * SfG * SfC

SSSSS nX SS





WV-
fG * SfA * SfUn001fA * SfC * SfCn001fA * SfU * SmU * SfU *
GAUACCAUUUGUAUUUAGCA
SSnX SSnX SSSSS


21583
SmG * SfU * SmA * SfU * SfU * SfU * SfAn001fG * SfC * SfA

SSSSS nX SS





WV-
fA * SfU * SfAn001fC * SfC * SfAn001fU * SfU * SmU * SfG *
AUACCAUUUGUAUUUAGCAU
SSnX SSnX SSSSS


21584
SmU * SfA * SmU * SfU * SfU * SfA * SfGn001fC * SfA * SfU

SSSSS nX SS





WV-
fU * SfA * SfCn001fC * SfA * SfUn001fU * SfU * SmG * SfU *
UACCAUUUGUAUUUAGCAUG
SSnX SSnX SSSSS


21585
SmA * SfU * SmU * SfU * SfA * SfG * SfCn001fA * SfU * SfG

SSSSS nX SS





WV-
fA * SfC * SfCn001fA * SfU * SfUn001fU * SfG * SmU * SfA *
ACCAUUUGUAUUUAGCAUGU
SSnX SSnX SSSSS


21586
SmU * SfU * SmU * SfA * SfG * SfC * SfAn001fU * SfG * SfU

SSSSS nX SS





WV-
fC * SfC * SfAn001fU * SfU * SfUn001fG * SfU * SmA * SfU *
CCAUUUGUAUUUAGCAUGUU
SSnX SSnX SSSSS


21587
SmU * SfU * SmA * SfG * SfC * SfA * SfUn001fG * SfU * SfU

SSSSS nX SS





WV-
fC * SfA * SfUn001fU * SfU * SfGn001fU * SfA * SmU * SfU *
CAUUUGUAUUUAGCAUGUUC
SSnX SSnX SSSSS


21588
SmU * SfA * SmG * SfC * SfA * SfU * SfGn001fU * SfU * SfC

SSSSS nX SS





WV-
fA * SfU * SfUn001fU * SfG * SfUn001fA * SfU * SmU * SfU *
AUUUGUAUUUAGCAUGUUCC
SSnX SSnX SSSSS


21589
SmA * SfG * SmC * SfA * SfU * SfG * SfUn001fU * SfC * SfC

SSSSS nX SS





WV-
fU * SfU * SfUn001fG * SfU * SfAn001fU * SfU * SmU * SfA *
UUUGUAUUUAGCAUGUUCCC
SSnX SSnX SSSSS


21590
SmG * SfC * SmA * SfU * SfG * SfU * SfUn001fC * SfC * SfC

SSSSS nX SS





WV-
fU * SfU * SfGn001fU * SfA * SfUn001fU * SfU * SmA * SfG *
UUGUAUUUAGCAUGUUCCCA
SSnX SSnX SSSSS


21591
SmC * SfA * SmU * SfG * SfU * SfU * SfCn001fC * SfC * SfA

SSSSS nX SS





WV-
fU * SfG * SfUn001fA * SfU * SfUn001fU * SfA * SmG * SfC *
UGUAUUUAGCAUGUUCCCAA
SSnX SSnX SSSSS


21592
SmA * SfU * SmG * SfU * SfU * SfC * SfCn001fC * SfA * SfA

SSSSS nX SS





WV-
fG * SfU * SfAn001fU * SfU * SfUn001fA * SfG * SmC * SfA *
GUAUUUAGCAUGUUCCCAAU
SSnX SSnX SSSSS


21593
SmU * SfG * SmU * SfU * SfC * SfC * SfCn001fA * SfA * SfU

SSSSS nX SS





WV-
fU * SfA * SfUn001fU * SfU * SfAn001fG * SfC * SmA * SfU *
UAUUUAGCAUGUUCCCAAUU
SSnX SSnX SSSSS


21594
SmG * SfU * SmU * SfC * SfC * SfC * SfAn001fA * SfU * SfU

SSSSS nX SS





WV-
fU * SfU * SfUn001fA * SfG * SfCn001fA * SfU * SmG * SfU *
UUUAGCAUGUUCCCAAUUCU
SSnX SSnX SSSSS


21595
SmU * SfC * SmC * SfC * SfA * SfA * SfUn001fU * SfC * SfU

SSSSS nX SS





WV-
fU * SfU * SfAn001fG * SfC * SfAn001fU * SfG * SmU * SfU *
UUAGCAUGUUCCCAAUUCUC
SSnX SSnX SSSSS


21596
SmC * SfC * SmC * SfA * SfA * SfU * SfUn001fC * SfU * SfC

SSSSS nX SS





WV-
fU * SfA * SfGn001fC * SfA * SfUn001fG * SfU * SmU * SfC *
UAGCAUGUUCCCAAUUCUCA
SSnX SSnX SSSSS


21597
SmC * SfC * SmA * SfA * SfU * SfU * SfCn001fU * SfU * SfA

SSSSS nX SS





WV-
fA * SfG * SfCn001fA * SfU * SfGn001fU * SfG * SmC * SfC *
AGCAUGUUCCCAAUUCUCAG
SSnX SSnX SSSSS


71598
SmC * SfA * SmA * SfU * SfU * SfC * SfUn001fC * SfA * SfG

SSSSS nX SS





WV-
fG * SfC * SfAn001fU * SfG * SfUn001fU * SfC * SmC * SfC *
GCAUGUUCCCAAUUCUCAGG
SSnX SSnX SSSSS


21599
SmA * SfA * SmU * SfU * SfC * SfU * SfCn001fA * SfG * SfG

SSSSS nX SS





WV-
fC * SfA * SfUn001fG * SfU * SfUn001fC * SfC * SmC * SfA *
CAUGUUCCCAAUUCUCAGGA
SSnX SSnX SSSSS


21600
SmA * SfU * SmU * SfC * SfU * SfC * SfAn001fG * SfG * SfA

SSSSS nX SS





WV-
fA * SfU * SfGn001fU * SfU * SfCn001fC * SfC * SmA * SfA *
AUGUUCCCAAUUCUCAGGAA
SSnX SSnX SSSSS


21601
SmU * SfU * SmC * SfU * SfC * SfA * SfGn001fG * SfA * SfA

SSSSS nX SS





WV-
fU * SfG * SfUn001fU * SfC * SfCn001fC * SfA * SmA * SfU *
UGUUCCCAAUUCUCAGGAAU
SSnX SSnX SSSSS


21602
SmU * SfC * SmU * SfC * SfA * SfG * SfGn001fA * SfA * SfU

SSSSS nX SS





WV-
fG * SfU * SfUn001fC * SfC * SfCn001fA * SfA * SmU * SfU *
GUUCCCAAUUCUCAGGAAUU
SSnX SSnX SSSSS


21603
SmC * SfU * SmC * SfA * SfG * SfG * SfAn001fA * SfU * SfU

SSSSS nX SS





WV-
fU * SfU * SfCn001fC * SfC * SfAn001fA * SfU * SmU * SfC *
UUCCCAAUUCUCAGGAAUUU
SSnX SSnX SSSSS


21604
SmU * SfC * SmA * SfG * SfG * SfA * SfAn001fU * SfU * SfU

SSSSS nX SS





WV-
fU * SfC * SfCn001fC * SfA * SfAn001fU * SfU * SmC * SfU *
UCCCAAUUCUCAGGAAUUUG
SSnX SSnX SSSSS


21605
SmC * SfA * SmG * SfG * SfA * SfA * SfUn001fU * SfU * SfG

SSSSS nX SS





WV-
fC * SfC * SfCn001fA * SfA * SfUn001fU * SfC * SmU * SfC *
CCCAAUUCUCAGGAAUUUGU
SSnX SSnX SSSSS


21606
SmA * SfG * SmG * SfA * SfA * SfU * SfUn001fU * SfG * SfU

SSSSS nX SS





WV-
fC * SfC * SfAn001fA * SfU * SfUn001fC * SfU * SmC * SfA *
CCAAUUCUCAGGAAUUUGUG
SSnX SSnX SSSSS


21607
SmG * SfG * SmA * SfA * SfU * SfU * SfUn001fG * SfU * SfG

SSSSS nX SS





WV-
fC * SfA * SfAn001fU * SfU * SfCn001fU * SfC * SmA * SfG *
CAAUUCUCAGGAAUUUGUGU
SSnX SSnX SSSSS


21608
SmG * SfA * SmA * SfU * SfU * SfU * SfGn001fU * SfG * SfU

SSSSS nX SS





WV-
fA * SfA * SfUn001fU * SfC * SfUn001fC * SfA * SmG * SfG *
AAUUCUCAGGAAUUUGUGUC
SSnX SSnX SSSSS


21609
SmA * SfA * SmU * SfU * SfU * SfG * SfUn001fG * SfU * SfC

SSSSS nX SS





WV-
fA * SfU * SfUn001fC * SfU * SfCn001fA * SfG * SmG * SfA *
AUUCUCAGGAAUUUGUGUCU
SSnX SSnX SSSSS


21610
SmA * SfU * SmU * SfU * SfG * SfU * SfGn001fU * SfC * SfU

SSSSS nX SS





WV-
fU * SfU * SfCn001fU * SfC * SfAn001fG * SfG * SmA * SfA *
UUCUCAGGAAUUUGUGUCUU
SSnX SSnX SSSSS


21611
SmU * SfU * SmU * SfG * SfU * SfG * SfUn001fC * SfU * SfU

SSSSS nX SS





WV-
fU * SfC * SfUn001fC * SfA * SfGn001fG * SfA * SmA * SfU *
UCUCAGGAAUUUGUGUCUUU
SSnX SSnX SSSSS


21612
SmU * SfU * SmG * SfU * SfG * SfU * SfCn001fU * SfU * SfU

SSSSS nX SS





WV-
fC * SfU * SfCn001fA * SfG * SfGn001fA * SfA * SmU * SfU *
CUCAGGAAUUUGUGUCUUUC
SSnX SSnX SSSSS


21613
SmU * SfG * SmU * SfG * SfU * SfC * SfUn001fU * SfU * SfC

SSSSS nX SS





WV-
fU * SfC * SfAn001fG * SfG * SfAn001fA * SfU * SmU * SfU *
UCAGGAAUUUGUGUCUUUCU
SSnX SSnX SSSSS


21614
SmG * SfU * SmG * SfU * SfC * SfU * SfUn001fU * SfC * SfU

SSSSS nX SS





WV-
fC * SfA * SfGn001fG * SfA * SfAn001fU * SfU * SmU * SfG *
CAGGAAUUUGUGUCUUUCUG
SSnX SSnX SSSSS


21615
SmU * SfG * SmU * SfC * SfU * SfU * SfUn001fC * SfU * SfG

SSSSS nX SS





WV-
fA * SfG * SfGn001fA * SfA * SfUn001fU * SfU * SmG * SfU *
AGGAAUUUGUGUCUUUCUGA
SSnX SSnX SSSSS


21616
SmG * SfU * SmC * SfU * SfU * SfU * SfCn001fU * SfG * SfA

SSSSS nX SS





WV-
fG * SfG * SfAn001fA * SfU * SfUn001fU * SfG * SmU * SfG *
GGAAUUUGUGUCUUUCUGAG
SSnX SSnX SSSSS


21617
SmU * SfC * SmU * SfU * SfU * SfC * SfUn001fG * SfA * SfG

SSSSS nX SS





WV-
fG * SfA * SfAn001fU * SfU * SfUn001fG * SfU * SmG * SfU *
GAAUUUGUGUCUUUCUGAGA
SSnX SSnX SSSSS


21618
SmC * SfU * SmU * SfU * SfC * SfU * SfGn001fA * SfG * SfA

SSSSS nX SS





WV-
fA * SfA * SfUn001fU * SfU * SfGn001fU * SfG * SmU * SfC *
AAUUUGUGUCUUUCUGAGAA
SSnX SSnX SSSSS


21619
SmU * SfU * SmU * SfC * SfU * SfG * SfAn001fG * SfA * SfA

SSSSS nX SS





WV-
fA * SfU * SfUn001fU * SfG * SfU001fG * SfU * SmC * SfU *
AUUUGUGUCUUUCUGAGAAA
SSnX SSnX SSSSS


21620
SmU * SfU * SmC * SfU * SfG * SfA * SfGn001fA * SfA * SfA

SSSSS nX SS





WV-
fU * SfU * SfUn001fG * SfU * SfGn001fU * SfC * SmU * SfU *
UUUGUGUCUUUCUGAGAAAC
SSnX SSnX SSSSS


21621
SmU * SfC * SmU * SfG * SfA * SfG * SfAn001fA * SfA * SfC

SSSSS nX SS





WV-
fU * SfU * SfGn001fU * SfG * SfUn001fC * SfU * SmU * SfU *
UUGUGUCUUUCUGAGAAACU
SSnX SSnX SSSSS


21622
SmC * SfU * SmG * SfA * SfG * SfA * SfAn001fA * SfC * SfU

SSSSS nX SS





WV-
fU * SfG * SfUn001fG * SfU * SfCn001fU * SfU * SmU * SfC *
UGUGUCUUUCUGAGAAACUG
SSnX SSnX SSSSS


21623
SmU * SfG * SmA * SfG * SfA * SfA * SfAn001fC * SfU * SfG

SSSSS nX SS





WV-
fG * SfU * SfGn001fU * SfC * SfUn001fU * SfU * SmC * SfU *
GUGUCUUUCUGAGAAACUGU
SSnX SSnX SSSSS


21624
SmG * SfA * SmG * SfA * SfA * SfA * SfCn001fU * SfG * SfU

SSSSS nX SS





WV-
fU * SfG * SfUn001fC * SfU * SfUn001fU * SfC * SmU * SfG *
UGUCUUUCUGAGAAACUGUU
SSnX SSnX SSSSS


21625
SmA * SfG * SmA * SfA * SfA * SfC * SfUn001fG * SfU * SfU

SSSSS nX SS





WV-
fG * SfU * SfCn001fU * SfU * SfUn001fC * SfU * SmG * SfA *
GUCUUUCUGAGAAACUGUUC
SSnX SSnX SSSSS


21626
SmG * SfA * SmA * SfA * SfC * SfU * SfGn001fU * SfU * SfC

SSSSS nX SS





WV-
fU * SfC * SfUn001fU * SfU * SfCn001fU * SfG * SmA * SfG *
UCUUUCUGAGAAACUGUUCA
SSnX SSnX SSSSS


21627
SmA * SfA * SmA * SfC * SfU * SfG * SfUn001fU * SfC * SfA

SSSSS nX SS





WV-
fC * SfU * SfUn001fU * SfC * SfUn001fG * SfA * SmG * SfA *
CUUUCUGAGAAACUGUUCAG
SSnX SSnX SSSSS


21628
SmA * SfA * SmC * SfU * SfG * SfU * SfUn001fC * SfA * SfG

SSSSS nX SS





WV-
fU * SfU * SfUn001fC * SfU * SfGn001fA * SfG * SmA * SfA *
UUUCUGAGAAACUGUUCAGC
SSnX SSnX SSSSS


21629
SmA * SfC * SmU * SfG * SfU * SfU * SfCn001A * SfG * SfC

SSSSS nX SS





WV-
fU * SfU * SfCn001fU * SfG * SfAn001fG * SfA * SmA * SfA *
UUCUGAGAAACUGUUCAGCU
SSnX SSnX SSSSS


21630
SmC * SfU * SmG * SfU * SfU * SfC * SfAn001fG * SfC * SfU

SSSSS nX SS





WV-
fU * SfC * SfUn001fG * SfA * SfGn001fA * SfA * SmA * SfC *
UCUGAGAAACUGUUCAGCUU
SSnX SSnX SSSSS


21631
SmU * SfG * SmU * SfU * SfC * SfA * SfGn001fC * SfU * SfU

SSSSS nX SS





WV-
fC * SfU * SfGn001fA * SfG * SfAn001fA * SfA * SmC * SfU *
CUGAGAAACUGUUCAGCUUC
SSnX SSnX SSSSS


21632
SmG * SfU * SmU * SfC * SfA * SfG * SfCn001fU * SfU * SfC

SSSSS nX SS





WV-
fU * SfG * SfAn001fG * SfA * SfAn001fA * SfC * SmU * SfG *
UGAGAAACUGUUCAGCUUCU
SSnX SSnX SSSSS


21633
SmU * SfU * SmC * SfA * SfG * SfC * SfUn001fU * SfC * SfU

SSSSS nX SS





WV-
fG * SfA * SfGn001fA * SfA * SfAn001fC * SfU * SmG * SfU *
GAGAAACUGUUCAGCUUCUG
SSnX SSnX SSSSS


21634
SmU * SfC * SmA * SfG * SfC * SfU * SfUn001fC * SfU * SfG

SSSSS nX SS





WV-
fA * SfG * SfAn001fA * SfA * SfCn001fU * SfG * SmU * SfU *
AGAAACUGUUCAGCUUCUGU
SSnX SSnX SSSSS


21635
SmC * SfA * SmG * SfC * SfU * SfU * SfCn001fU * SfG * SfU

SSSSS nX SS





WV-
fG * SfA * SfAn001fA * SfC * SfUn001fG * SfU * SmU * SfC *
GAAACUGUUCAGCUUCUGUU
SSnX SSnX SSSSS


21636
SmA * SfG * SmC * SfU * SfU * SfC * SfUn001fG * SfU * SfU

SSSSS nX SS





WV-
fA * SfA * SfAn001fC * SfU * SfGn001fU * SfU * SmC * SfA *
AAACUGUUCAGCUUCUGUUA
SSnX SSnX SSSSS


21637
SmG * SfC * SmU * SfU * SfC * SfU * SfGn001fU * SfU * SfA

SSSSS nX SS





WV-
fA * SfA * SfCn001fU * SfG * SfUn001fU * SfC * SmA * SfG *
AACUGUUCAGCUUCUGUUAG
SSnX SSnX SSSSS


21638
SmC * SfU * SmU * SfC * SfU * SfG * SfUn001fU * SfA * SfG

SSSSS nX SS





WV-
fA * SfC * SfUn001fG * SfU * SfUn001fC * SfA * SmG * SfC *
ACUGUUCAGCUUCUGUUAGC
SSnX SSnX SSSSS


21639
SmU * SfU * SmC * SfU * SfG * SfU * SfUn001fA * SfG * SfC

SSSSS nX SS





WV-
fC * SfU * SfGn001fU * SfU * SfCn001fA * SfG * SmC * SfU *
CUGUUCAGCUUCUGUUAGCC
SSnX SSnX SSSSS


21640
SmU * SfC * SmU * SfG * SfU * SfU * SfAn001fG * SfC * SfC

SSSSS nX SS





WV-
fU * SfG * SfUn001fU * SfC * SfAn001fG * SfC * SmU * SfU *
UGUUCAGCUUCUGUUAGCCA
SSnX SSnX SSSSS


21641
SmC * SfU * SmG * SfU * SfU * SfA * SfGn001fC * SfC * SfA

SSSSS nX SS





WV-
fG * SfU * SfUn001fC * SfA * SfGn001fC * SfU * SmU * SfC *
GUUCAGCUUCUGUUAGCCAC
SSnX SSnX SSSSS


21642
SmU * SfG * SmU * SfU * SfA * SfG * SfCn001fC * SfA * SfC

SSSSS nX SS





WV-
fU * SfU * SfCn001fA * SfG * SfCn001fU * SfU * SmC * SfU *
UUCAGCUUCUGUUAGCCACU
SSnX SSnX SSSSS


21643
SmG * SfU * SmU * SfA * SfG * SfC * SfCn001A * SfC * SfU

SSSSS nX SS





WV-
fU * SfC * SfAn001fG * SfC * SfUn001fU * SfC * SmU * SfG *
UCAGCUUCUGUUAGCCACUG
SSnX SSnX SSSSS


21644
SmU * SfU * SmA * SfG * SfC * SfC * SfAn001fC * SfG * SfG

SSSSS nX SS





WV-
fC * SfA * SfGn001fC * SfU * SfUn001fC * SfU * SmG * SfU *
CAGCUUCUGUUAGCCACUGA
SSnX SSnX SSSSS


21645
SmU * SfA * SmG * SfC * SfC * SfA * SfCn001fU * SfG * SfA

SSSSS nX SS





WV-
fA * SfG * SfCn001fU * SfU * SfCn001fU * SfG * SmU * SfU *
AGCUUCUGUUAGCCACUGAU
SSnX SSnX SSSSS


21646
SmA * SfG * SmC * SfC * SfA * SfC * SfUn001fG * SfA * SfU

SSSSS nX SS





WV-
fG * SfC * SfUn001fU * SfC * SfUn001fG * SfU * SmU * SfA *
GCUUCUGUUAGCCACUGAUU
SSnX SSnX SSSSS


21647
SmG * SfC * SmC * SfA * SfC * SfU * SfGn001fA * SfU * SfU

SSSSS nX SS





WV-
fC * SfU * SfUn001fC * SfU * SfGn001fU * SfU * SmA * SfG *
CUUCUGUUAGCCACUGAUUA
SSnX SSnX SSSSS


21648
SmC * SfC * SmA * SfC * SfU * SfG * SfAn001fU * SfU * SfA

SSSSS nX SS





WV-
fU * SfU * SfCn001fU * SfG * SfUn001fU * SfA * SmG * SfC *
UUCUGUUAGCCACUGAUUAA
SSnX SSnX SSSSS


21649
SmC * SfA * SmC * SfU * SfG * SfA * SfUn001fU * SfA * SfA

SSSSS nX SS





WV-
fU * SfC * SfUn001fG * SfU * SfUn001fA * SfG * SmC * SfC *
UCUGUUAGCCACUGAUUAAA
SSnX SSnX SSSSS


21650
SmA * SfC * SmU * SfG * SfA * SfU * SfUn001fA * SfA * SfA

SSSSS nX SS





WV-
fC * SfU * SfGn001fU * SfU * SfAn001fG * SfC * SmC * SfA *
CUGUUAGCCACUGAUUAAAU
SSnX SSnX SSSSS


21651
SmC * SfU * SmG * SfA * SfU * SfU * SfAn001fA * SfA * SfU

SSSSS nX SS





WV-
fU * SfG * SfUn001fU * SfA * SfGn001fC * SfC * SmA * SfC *
UGUUAGCCACUGAUUAAAUA
SSnX SSnX SSSSS


21652
SmU * SfG * SmA * SfU * SfU * SfA * SfAn001fA * SfU * SfA

SSSSS nX SS





WV-
fG * SfU * SfUn001fA * SfG * SfCn001fC * SfA * SmC * SfU *
GUUAGCCACUGAUUAAAUAU
SSnX SSnX SSSSS


21653
SmG * SfA * SmU * SfU * SfA * SfA * SfAn001fU * SfA * SfU

SSSSS nX SS





WV-
fU * SfU * SfAn001fG * SfC * SfCn001fA * SfC * SmU * SfG *
UUAGCCACUGAUUAAAUAUC
SSnX SSnX SSSSS


21654
SmA * SfU * SmU * SfA * SfA * SfA * SfUn001fA * SfU * SfC

SSSSS nX SS





WV-
fU * SfA * SfGn001fC * SfC * SfAn001fC * SfU * SmG * SfA *
UAGCCACUGAUUAAAUAUCU
SSnX SSnX SSSSS


21655
SmU * SfU * SmA * SfA * SfA * SfU * SfAn001fU * SfC * SfU

SSSSS nX SS





WV-
fA * SfG * SfCn001fC * SfA * SfCn001fU * SfG * SmA * SfU *
AGCCACUGAUUAAAUAUCUU
SSnX SSnX SSSSS


21656
SmU * SfA * SmA * SfA * SfU * SfA * SfUn001fC * SfU * SfU

SSSSS nX SS





WV-
fG * SfC * SfCn001fA * SfC * SfUn001fG * SfA * SmU * SfU *
GCCACUGAUUAAAUAUCUUU
SSnX SSnX SSSSS


21657
SmA * SfA * SmA * SfU * SfA * SfU * SfCn001fU * SfU * SfU

SSSSS nX SS





WV-
fC * SfC * SfAn001fC * SfU * SfGn001fA * SfU * SmU * SfA *
CCACUGAUUAAAUAUCUUUA
SSnX SSnX SSSSS


21658
SmA * SfA * SmU * SfA * SfU * SfC * SfUn001fU * SfU * SfA

SSSSS nX SS





WV-
fC * SfA * SfCn001fU * SfG * SfAn001fU * SfU * SmA * SfA *
CACUGAUUAAAUAUCUUUAU
SSnX SSnX SSSSS


21659
SmA * SfU * SmA * SfU * SfC * SfU * SfUn001fU * SfA * SfU

SSSSS nX SS





WV-
fA * SfC * SfUn001fG * SfA * SfUn001fU * SfA * SmA * SfA *
ACUGAUUAAAUAUCUUUAUA
SSnX SSnX SSSSS


21660
SmU * SfA * SmU * SfC * SfU * SfU * SfUn001fA * SfU * SfA

SSSSS nX SS





WV-
fC * SfU * SfGn001fA * SfU * SfUn001fA * SfA * SmA * SfU *
CUGAUUAAAUAUCUUUAUAU
SSnX SSnX SSSSS


21661
SmA * SfU * SmC * SfU * SfU * SfU * SfAn001fU * SfA * SfU

SSSSS nX SS





WV-
fU * SfG * SfAn001fU * SfU * SfAn001fA * SfA * SmU * SfA *
UGAUUAAAUAUCUUUAUAUC
SSnX SSnX SSSSS


21662
SmU * SfC * SmU * SfU * SfU * SfA * SfUn001fA * SfU * SfC

SSSSS nX SS





WV-
fG * SfA * SfUn001fU * SfA * SfAn001fA * SfU * SmA * SfU *
GAUUAAAUAUCUUUAUAUCA
SSnX SSnX SSSSS


21663
SmC * SfU * SmU * SfU * SfA * SfU * SfAn001fU * SfC * SfA

SSSSS nX SS





WV-
fA * SfU * SfUn001fA * SfA * SfAn001fU * SfA * SmU * SfC *
AUUAAAUAUCUUUAUAUCAU
SSnX SSnX SSSSS


21664
SmU * SfU * SmU * SfA * SfU * SfA * SfUn001fC * SfA * SfU

SSSSS nX SS





WV-
fU * SfU * SfAn001fA * SfA * SfUn001fA * SfU * SmC * SfU *
UUAAAUAUCUUUAUAUCAUA
SSnX SSnX SSSSS


21665
SmU * SfU * SmA * SfU * SfA * SfU * SfCn001fA * SfU * SfA

SSSSS nX SS





WV-
fU * SfA * SfAn001fA * SfU * SfAn001fU * SfC * SmU * SfU *
UAAAUAUCUUUAUAUCAUAA
SSnX SSnX SSSSS


21666
SmU * SfA * SmU * SfA * SfU * SfC * SfAn001fU * SfA * SfA

SSSSS nX SS





WV-
fA * SfA * SfAn001fU * SfA * SfUn001fC * SfU * SmU * SfU *
AAAUAUCUUUAUAUCAUAAU
SSnX SSnX SSSSS


21667
SmA * SfU * SmA * SfU * SfC * SfA * SfUn001fA * SfA * SfU

SSSSS nX SS





WV-
fA * SfA * SfUn001fA * SfU * SfCn001fU * SfU * SmU * SfA *
AAUAUCUUUAUAUCAUAAUG
SSnX SSnX SSSSS


21668
SmU * SfA * SmU * SfC * SfA * SfU * SfAn001fA * SfU * SfG

SSSSS nX SS





WV-
fA * SfU * SfAn001fU * SfC * SfUn001fU * SfU * SmA * SfU *
AUAUCUUUAUAUCAUAAUGA
SSnX SSnX SSSSS


21669
SmA * SfU * SmC * SfA * SfU * SfA * SfAn001fU * SfG * SfA

SSSSS nX SS





WV-
fU * SfA * SfUn001fC * SfU * SfUn001fU * SfA * SmU * SfA *
UAUCUUUAUAUCAUAAUGAA
SSnX SSnX SSSSS


21670
SmU * SfC * SmA * SfU * SfA * SfA * SfUn001fG * SfA * SfA

SSSSS nX SS





WV-
fA * SfU * SfCn001fU * SfU * SfUn001fA * SfU * SmA * SfU *
AUCUUUAUAUCAUAAUGAAA
SSnX SSnX SSSSS


21671
SmC * SfA * SmU * SfA * SfA * SfU * SfUn001fA * SfA * SfA

SSSSS nX SS





WV-
fU * SfC * SfUn001fU * SfU * SfAn001fU * SfA * SmU * SfC *
UCUUUAUAUCAUAAUGAAAA
SSnX SSnX SSSSS


21672
SmA * SfU * SmA * SfA * SfU * SfG * SfAn001fA * SfA * SfA

SSSSS nX SS





WV-
fC * SfU * SfUn001fU * SfA * SfUn001fA * SfU * SmC * SfA *
CUUUAUAUCAUAAUGAAAAC
SSnX SSnX SSSSS


21673
SmU * SfA * SmA * SfU * SfG * SfA * SfAn001fA * SfA * SfC

SSSSS nX SS





WV-
fC * SfU * SfGn001fA * SfA * SfUn001fU * SfA * SmU * SfU *
CUGAAUUAUUUCUUCCCCAG
SSnX SSnX SSSSS


21723
SmU * SfC * SmU * SfU * SfC * SfC * SfCn001fC * SfA * SfG

SSSSS nX SS





WV-
fU * SfG * SfAn001fA * SfU * SfUn001fA * SfU * SmU * SfU *
UGAAUUAUUUCUUCCCCAGU
SSnX SSnX SSSSS


21724
SmC * SfU * SmU * SfC * SfC * SfC * SfCn001fA * SfG * SfU

SSSSS nX SS





WV-
fG * SfA * SfAn001fU * SfU * SfAn001fU * SfU * SmU * SfC *
GAAUUAUUUCUUCCCCAGUU
SSnX SSnX SSSSS


21725
SmU * SfU * SmC * SfC * SfC * SfC * SfAn001fG * SfU * SfU

SSSSS nX SS





WV-
fA * SfA * SfUn001fU * SfA * SfUn001fU * SfU * SmC * SfU *
AAUUAUUUCUUCCCCAGUUG
SSnX SSnX SSSSS


21726
SmU * SfC * SmC * SfU * SfC * SfA * SfGn001fU * SfU * SfG

SSSSS nX SS





WV-
fA * SfU * SfUn001fA * SfU * SfUn001fU * SfC * SmU * SfU *
AUUAUUUCUUCCCCAGUUGC
SSnX SSnX SSSSS


21727
SmC * SfC * SmC * SfC * SfA * SfG * SfUn001fU * SfG * SfC

SSSSS nX SS





WV-
fU * SfU * SfAn001fU * SfU * SfUn001fC * SfU * SmU * SfC *
UUAUUUCUUCCCCAGUUGCA
SSnX SSnX SSSSS


21728
SmC * SfC * SmC * SfA * SfG * SfU * SfUn001fG * SfC * SfA

SSSSS nX SS





WV-
fU * SfA * SfUn001fU * SfU * SfCn001fU * SfU * SmC * SfC *
UAUUUCUUCCCCAGUUGCAU
SSnX SSnX SSSSS


21729
SmC * SfC * SmA * SfG * SfU * SfU * SfGn001fC * SfA * SfU

SSSSS nX SS





WV-
fA * SfU * SfUn001fU * SfC * SfUn001fU * SfC * SmC * SfC *
AUUUCUUCCCCAGUUGCAUU
SSnX SSnX SSSSS


21730
SmC * SfA * SmG * SfU * SfU * SfG * SfCn001fA * SfU * SfU

SSSSS nX SS





WV-
fU * SfU * SfUn001fC * SfU * SfUn001fC * SfC * SmC * SfC *
UUUCUUCCCCAGUUGCAUUC
SSnX SSnX SSSSS


21731
SmA * SfG * SmU * SfU * SfG * SfC * SfAn001fU * SfU * SfC

SSSSS nX SS





WV-
fU * SfU * SfCn001fU * SfU * SfCn001fC * SfU * SmC * SfA *
UUCUUCCCCAGUUGCAUUCA
SSnX SSnX SSSSS


21732
SmG * SfU * SmU * SfG * SfC * SfA * SfUn001fU * SfC * SfA

SSSSS nX SS





WV-
fU * SfC * SfUn001fU * SfC * SfCn001fC * SfC * SmA * SfG *
UCUUCCCCAGUUGCAUUCAA
SSnX SSnX SSSSS


21733
SmU * SfU * SmG * SfC * SfA * SfU * SfUn001fC * SfA * SfA

SSSSS nX SS





WV-
fC * SfU * SfUn001fC * SfC * SfCn001fC * SfA * SmG * SfU *
CUUCCCCAGUUGCAUUCAAU
SSnX SSnX SSSSS


21734
SmU * SfG * SmC * SfA * SfU * SfU * SfCn001fA * SfA * SfU

SSSSS nX SS





WV-
fU * SfU * SfCn001fC * SfC * SfCn001fA * SfG * SmU * SfU *
UUCCCCAGUUGCAUUCAAUG
SSnX SSnX SSSSS


21735
SmG * SfC * SmA * SfU * SfU * SfC * SfAn001fA * SfU * SfG

SSSSS nX SS





WV-
fU * SfC * SfCn001fC * SfC * SfAn001fG * SfU * SmU * SfG *
UCCCCAGUUGCAUUCAAUGU
SSnX SSnX SSSSS


21736
SmC * SfA * SmU * SfU * SfC * SfA * SfAn001fU * SfG * SfU

SSSSS nX SS





WV-
fC * SfC * SfCn001fC * SfA * SfGn001fU * SfU * SmG * SfC *
CCCCAGUUGCAUUCAAUGUU
SSnX SSnX SSSSS


21737
SmA * SfU * SmU * SfC * SfA * SfA * SfUn001fG * SfU * SfU

SSSSS nX SS





WV-
fC * SfC * SfCn001fA * SfG * SfUn001fU * SfG * SmC * SfA *
CCCAGUUGCAUUCAAUGUUC
SSnX SSnX SSSSS


21738
SmU * SfU * SmC * SfA * SfA * SfU * SfUn001fU * SfU * SfC

SSSSS nX SS





WV-
fC * SfC * SfAn001fG * SfU * SfUn001fG * SfC * SmA * SfU *
CCAGUUGCAUUCAAUGUUCU
SSnX SSnX SSSSS


21739
SmU * SfC * SmA * SfA * SfU * SfG * SfUn001fU * SfC * SfU

SSSSS nX SS





WV-
fC * SfA * SfGn001fU * SfU * SfGn001fC * SfA * SmU * SfU *
CAGUUGCAUUCAAUGUUCUG
SSnX SSnX SSSSS


21740
SmC * SfA * SmA * SfU * SfG * SfU * SfUn001fC * SfU * SfG

SSSSS nX SS





WV-
fA * SfG * SfUn001fU * SfG * SfCn001fA * SfU * SmU * SfC *
AGUUGCAUUCAAUGUUCUGA
SSnX SSnX SSSSS


21741
SmA * SfA * SmU * SfG * SfU * SfU * SfCn001fU * SfG * SfA

SSSSS nX SS





WV-
fG * SfU * SfUn001fG * SfC * SfAn001fU * SfU * SmC * SfA *
GUUGCAUUCAAUGUUCUGAC
SSnX SSnX SSSSS


21742
SmA * SfU * SmG * SfU * SfU * SfC * SfUn001fG * SfA * SfC

SSSSS nX SS





WV-
fU * SfU * SfUn001fC * SfA * SfUn001fU * SfC * SmA * SfA *
UUGCAUUCAAUGUUCUGACA
SSnX SSnX SSSSS


21743
SmU * SfG * SmU * SfU * SfC * SfU * SfGn001fA * SfC * SfA

SSSSS nX SS





WV-
fU * SfG * SfCn001fA * SfU * SfUn001fC * SfA * SmA * SfU *
UGCAUUCAAUGUUCUGACAA
SSnX SSnX SSSSS


21744
SmG * SfU * SmU * SfC * SfU * SfG * SfAn001fC * SfA * SfA

SSSSS nX SS





WV-
fG * SfC * SfAn001fU * SfU * SfCn001fA * SfA * SmU * SfG *
GCAUUCAAUGUUCUGACAAC
SSnX SSnX SSSSS


21745
SmU * SfU * SmC * SfU * SfG * SfA * SfCn001fA * SfA * SfC

SSSSS nX SS





WV-
fC * SfA * SfUn001fU * SfC * SfAn001fA * SfU * SmG * SfU *
CAUUCAAUGUUCUGACAACA
SSnX SSnX SSSSS


21746
SmU * SfC * SmU * SfG * SfA * SfC * SfAn001fA * SfC * SfA

SSSSS nX SS





WV-
fA * SfU * SfUn001fC * SfA * SfAn001fU * SfG * SmU * SfU *
AUUCAAUGUUCUGACAACAG
SSnX SSnX SSSSS


21747
SmC * SfU * SmG * SfA * SfA * SfA * SfAn001fC * SfA * SfG

SSSSS nX SS





WV-
fU * SfU * SfCn001fA * SfA * SfUn001fG * SfU * SmU * SfC *
UUCAAUGUUCUGACAACAGU
SSnX SSnX SSSSS


21748
SmU * SfG * SmA * SfC * SfA * SfA * SfCn001fA * SfG * SfU

SSSSS nX SS





WV-
fU * SfC * SfAn001fA * SfU * SfGn001fU * SfU * SmC * SfU *
UCAAUGUUCUGACAACAGUU
SSnX SSnX SSSSS


21749
SmG * SfA * SmC * SfA * SfA * SfC * SfAn001fG * SfU * SfU

SSSSS nX SS





WV-
fC * SfA * SfAn001fU * SfG * SfUn001fU * SfC * SmU * SfG *
CAAUGUUCUGACAACAGUUU
SSnX SSnX SSSSS


21750
SmA * SfC * SmA * SfA * SfC * SfA * SfGn001fU * SfU * SfU

SSSSS nX SS





WV-
fA * SfA * SfUn001fG * SfU * SfUn001fC * SfU * SmG * SfA *
AAUGUUCUGACAACAGUUUG
SSnX SSnX SSSSS


21751
SmC * SfA * SmA * SfC * SfA * SfG * SfUn001fU * SfU * SfG

SSSSS nX SS





WV-
fA * SfU * SfGn001fU * SfU * SfCn001fU * SfG * SmA * SfC *
AUGUUCUGACAACAGUUUGC
SSnX SSnX SSSSS


21752
SmA * SfA * SmC * SfA * SfG * SfU * SfUn001fU * SfG * SfC

SSSSS nX SS





WV-
fU * SfG * SfUn001fU * SfC * SfUn001fG * SfA * SmC * SfA *
UGUUCUGACAACAGUUUGCC
SSnX SSnX SSSSS


21753
SmA * SfC * SmA * SfG * SfU * SfU * SfUn001fG * SfC * SfC

SSSSS nX SS





WV-
fG * SfU * SfUn001fC * SfU * SfGn001fA * SfC * SmA * SfA *
GUUCUGACAACAGUUUGCCG
SSnX SSnX SSSSS


21754
SmC * SfA * SmG * SfU * SfU * SfU * SfGn001fC * SfC * SfG

SSSSS nX SS





WV-
fU * SfU * SfCn001fU * SfG * SfAn001fC * SfA * SmA * SfC *
UUCUGACAACAGUUUGCCGC
SSnX SSnX SSSSS


21755
SmA * SfG * SmU * SfU * SfU * SfG * SfCn001fC * SfG * SfC

SSSSS nX SS





WV-
fU * SfC * SfUn001fG * SfA * SfCn0001fA * SfA * SmC * SfA *
UCUGACAACAGUUUGCCGCU
SSnX SSnX SSSSS


21756
SmG * SfU * SmU * SfU * SfG * SfC * SfCn001fG * SfU * SfU

SSSSS nX SS





WV-
fC * SfU * SfGn001fA * SfC * SfAn001fA * SfC * SmA * SfG *
CUGACAACAGUUUGCCGCUG
SSnX SSnX SSSSS


21757
SmU * SfU * SmU * SfG * SfC * SfC * SfGn001fC * SfU * SfG

SSSSS nX SS





WV-
fU * SfG * SfAn001fC * SfA * SfAn001fC * SfA * SmG * SfU *
UGACAACAGUUUGCCGCUGC
SSnX SSnX SSSSS


21758
SmU * SfU * SmG * SfC * SfC * SfG * SfCn00lfU * SfG * SfC

SSSSS nX SS





WV-
fG * SfA * SfCn001fA * SfA * SfCn001fA * SfG * SmU * SfU *
GACAACAGUUUGCCGCUGCC
SSnX SSnX SSSSS


21759
SmU * SfG * SmC * SfC * SfG * SfC * SfUn001fG * SfC * SfC

SSSSS nX SS





WV-
fA * SfC * SfAn001fA * SfC * SfAn001fG * SfU * SmU * SfU *
ACAACAGUUUGCCGCUGCCC
SSnX SSnX SSSSS


21760
SmG * SfC * SmC * SfG * SfC * SfU * SfGn001fC * SfC * SfC

SSSSS nX SS





WV-
fC * SfA * SfAn001fC * SfA * SfGn001fU * SfU * SmU * SfG *
CAACAGUUUGCCGCUGCCCA
SSnX SSnX SSSSS


21761
SmC * SfC * SmG * SfC * SfU * SfG * SfCn001fC * SfC * SfA

SSSSS nX SS





WV-
fA * SfA * SfCn001fA * SfG * SfUn001fU * SfU * SmG * SfC *
AACAGUUUGCCGCUGCCCAA
SSnX SSnX SSSSS


21762
SmC * SfG * SmC * SfU * SfG * SfC * SfUn001fC * SfA * SfA

SSSSS nX SS





WV-
fA * SfC * SfAn001fG * SfU * SfUn001fU * SfG * SmC * SfC *
ACAGUUUGCCGCUGCCCAAU
SSnX SSnX SSSSS


21763
SmG * SfC * SmU * SfG * SfC * SfC * SfCn001fA * SfA * SfU

SSSSS nX SS





WV-
fC * SfA * SfGn001fU * SfU * SfUn001fG * SfC * SmC * SfG *
CAGUUUGCCGCUGCCCAAUG
SSnX SSnX SSSSS


21764
SmC * SfU * SmG * SfC * SfC * SfC * SfAn001fA * SfU * SfG

SSSSS nX SS





WV-
fA * SfG * SfUn001fU * SfU * SfGn001fC * SfC * SmG * SfC *
AGUUUGCCGCUGCCCAAUGC
SSnX SSnX SSSSS


21765
SmU * SfG * SmC * SfC * SfC * SfA * SfAn001fU * SfG * SfC

SSSSS nX SS





WV-
fG * SfU * SfUn001fU * SfG * SfCn001fC * SfG * SmC * SfU *
GUUUGCCGCUGCCCAAUGCC
SSnX SSnX SSSSS


21766
SmG * SfC * SmC * SfC * SfA * SfA * SfUn001fG * SfC * SfC

SSSSS nX SS





WV-
fU * SfU * SfUn001fG * SfC * SfCn001fG * SfC * SmU * SfG *
UUUGCCGCUGCCCAAUGCCA
SSnX SSnX SSSSS


21767
SmC * SfC * SmC * SfA * SfA * SfU * SfGn001fC * SfC * SfA

SSSSS nX SS





WV-
fU * SfU * SfGn001fC * SfC * SfGn001fC * SfU * SmG * SfC *
UUGCCGCUGCCCAAUGCCAU
SSnX SSnX SSSSS


21768
SmC * SfC * SmA * SfA * SfU * SfG * SfCn001fC * SfA * SfU

SSSSS nX SS





WV-
fU * SfG * SfCn001fC * SfG * SfCn001fU * SfG * SmC * SfC *
UGCCGCUGCCCAAUGCCAUC
SSnX SSnX SSSSS


21769
SmC * SfA * SmA * SfU * SfG * SfC * SfCn001fA * SfU * SfC

SSSSS nX SS





WV-
fG * SfC * SfCn001fG * SfC * SfUn001fG * SfC * SmC * SfC *
GCCGCUGCCCAAUGCCAUCC
SSnX SSnX SSSSS


21770
SmA * SfA * SmU * SfG * SfC * SfC * SfAn001fU * SfC * SfC

SSSSS nX SS





WV-
fC * SfC * SfGn001fC * SfU * SfGn001fC * SfC * SmC * SfA *
CCGCUGCCCAAUGCCAUCCU
SSnX SSnX SSSSS


21771
SmA * SfU * SmG * SfC * SfC * SfA * SfUn001fC * SfC * SfU

SSSSS nX SS





WV-
fA * SfU * SfUn001fU * SfU * SfGn001fG * SfG * SmC * SfA *
AUUUUGGGCAGCGGUAAUGA
SSnX SSnX SSSSS


21772
SmG * SfC * SmG * SfG * SfU * SfA * SfAn001fU * SfG * SfA

SSSSS nX SS





WV-
fU * SfU * SfUn001fU * SfG * SfGn001fG * SfC * SmA * SfG *
UUUUGGGCAGCGGUAAUGAG
SSnX SSnX SSSSS


21773
SmC * SfG * SmG * SfU * SfA * SfA * SfUn001fG * SfA * SfG

SSSSS nX SS





WV-
fU * SfU * SfUn001fG * SfG * SfGn001fC * SfA * SmG * SfC *
UUUGGGCAGCGGUAAUGAGU
SSnX SSnX SSSSS


21774
SmG * SfG * SmU * SfA * SfA * SfU * SfGn001fA * SfG * SfU

SSSSS nX SS





WV-
fU * SfU * SfGn001fG * SfG * SfCn001fA * SfG * SmC * SfG *
UUGGGCAGCGGUAAUGAGUU
SSnX SSnX SSSSS


21775
SmG * SfU * SmA * SfA * SfU * SfG * SfAn001fG * SfU * SfU

SSSSS nX SS





WV-
fU * SfG * SfGn001fG * SfC * SfAn001fG * SfC * SmG * SfG *
UGGGCAGCGGUAAUGAGUUC
SSnX SSnX SSSSS


21776
SmU * SfA * SmA * SfU * SfG * SfA * SfGn00fU * SfU * SfC

SSSSS nX SS





WV-
fG * SfG * SfGn001fC * SfA * SfGn001fC * SfG * SmG * SfU *
GGGCAGCGGUAAUGAGUUCU
SSnX SSnX SSSSS


21777
SmA * SfA * SmU * SfG * SfA * SfG * SfUn001fU * SfC * SfU

SSSSS nX SS





WV-
fG * SfG * SfCn001fA * SfG * SfCn001fG * SfG * SmU * SfA *
GGCAGCGGUAAUGAGUUCUU
SSnX SSnX SSSSS


21778
SmA * SfU * SmG * SfA * SfG * SfU * SfUn001fC * SfU * SfU

SSSSS nX SS





WV-
fG * SfC * SfAn001fG * SfC * SfGn001fG * SfU * SmA * SfA *
GCAGCGGUAAUGAGUUCUUC
SSnX SSnX SSSSS


21779
SmU * SfG * SmA * SfG * SfU * SfU * SfCn001fU * SfU * SfC

SSSSS nX SS





WV-
fC * SfA * SfGn001fC * SfG * SfGn001fU * SfA * SmA * SfU *
CAGCGGUAAUGAGUUCUUCC
SSnX SSnX SSSSS


21780
SmG * SfA * SmG * SfU * SfU * SfC * SfUn001fU * SfC * SfC

SSSSS nX SS





WV-
fA * SfG * SfCn001fG * SfG * SfUn001fA * SfA * SmU * SfG *
AGCGGUAAUGAGUUCUUCCA
SSnX SSnX SSSSS


21781
SmA * SfG * SmU * SfU * SfC * SfU * SfUn001fC * SfC * SfA

SSSSS nX SS





WV-
fG * SfC * SfGn001fG * SfU * SfAn001fA * SfU * SmG * SfA *
GCGGUAAUGAGUUCUUCCAA
SSnX SSnX SSSSS


21782
SmG * SfU * SmU * SfC * SfU * SfU * SfCn001fC * SfA * SfA

SSSSS nX SS





WV-
fC * SfG * SfGn001fU * SfA * SfAn001fU * SfG * SmA * SfG *
CGGUAAUGAGUUCUUCCAAC
SSnX SSnX SSSSS


21783
SmU * SfU * SmC * SfU * SfU * SfC * SfCn001fA * SfA * SfC

SSSSS nX SS





WV-
fG * SfG * SfUn001fA * SfA * SfUn001fG * SfA * SmG * SfU *
GGUAAUGAGUUCUUCCAACU
SSnX SSnX SSSSS


21784
SmU * SfC * SmU * SfU * SfC * SfC * SfAn001fA * SfC * SfU

SSSSS nX SS





WV-
fG * SfU * SfAn001fA * SfU * SfGn001fA * SfG * SmU * SfU *
GUAAUGAGUUCUUCCAACUG
SSnX SSnX SSSSS


21785
SmC * SfU * SmU * SfC * SfC * SfA * SfAn001fC * SfU * SfG

SSSSS nX SS





WV-
fU * SfA * SfAn001fU * SfG * SfAn001fG * SfU * SmU * SfC *
UAAUGAGUUCUUCCAACUGG
SSnX SSnX SSSSS


21786
SmU * SfU * SmC * SfC * SfA * SfA * SfCn001fU * SfG * SfG

SSSSS nX SS





WV-
fA * SfA * SfUn001fG * SfA * SfGn001fU * SfU * SmC * SfU *
AAUGAGUUCUUCCAACUGGG
SSnX SSnX SSSSS


21787
SmU * SfC * SmC * SfA * SfA * SfC * SfUn001fG * SfG * SfG

SSSSS nX SS





WV-
fA * SfU * SfGn001fA * SfG * SfUn001fU * SfC * SmU * SfU *
AUGAGUUCUUCCAACUGGGG
SSnX SSnX SSSSS


21788
SmC * SfC * SmA * SfA * SfC * SfU * SfGn001fG * SfG * SfG

SSSSS nX SS





WV-
fU * SfG * SfAn001fG * SfU * SfUn001fC * SfU * SmU * SfC *
UGAGUUCUUCCAACUGGGGA
SSnX SSnX SSSSS


21789
SmC * SfA * SmA * SfC * SfU * SfG * SfGn001fG * SfG * SfA

SSSSS nX SS





WV-
fG * SfA * SfGn001fU * SfU * SfCn001fU * SfU * SmC * SfC *
GAGUUCUUCCAACUGGGGAC
SSnX SSnX SSSSS


21790
SmA * SfA * SmC * SfU * SfG * SfG * SfGn001fG * SfA * SfC

SSSSS nX SS





WV-
fA * SfG * SfUn001fU * SfC * SfUn001fU * SfC * SmC * SfA *
AGUUCUUCCAACUGGGGACG
SSnX SSnX SSSSS


21791
SmA * SfC * SmU * SfG * SfG * SfG * SfGn001fA * SfG * SfG

SSSSS nX SS





WV-
fG * SfU * SfUn001fC * SfU * SfUn001fC * SfC * SmA * SfA *
GUUCUUCCAACUGGGGACGC
SSnX SSnX SSSSS


21792
SmC * SfU * SmG * SfG * SfG * SfG * SfAn001fC * SfG * SfC

SSSSS nX SS





WV-
fU * SfU * SfCn001fU * SfU * SfCn001fC * SfA * SmA * SfC *
UUCUUCCAACUGGGGACGCC
SSnX SSnX SSSSS


21793
SmU * SfG * SmG * SfG * SfG * SfA * SfCn001fG * SfC * SfC

SSSSS nX SS





WV-
fU * SfC * SfUn001fU * SfC * SfCn001fA * SfA * SmC * SfU *
UCUUCCAACUGGGGACGCCU
SSnX SSnX SSSSS


21794
SmG * SfG * SmG * SfG * SfA * SfC * SfGn001fC * SfC * SfU

SSSSS nX SS





WV-
fC * SfU * SfUn001fC * SfC * SfAn001fA * SfC * SmU * SfG *
CUUCCAACUGGGGACGCCUC
SSnX SSnX SSSSS


21795
SmG * SfG * SmG * SfA * SfC * SfG * SfCn001fC * SfU * SfC

SSSSS nX SS





WV-
fU * SfU * SfCn001fC * SfA * SfAn001fC * SfU * SmG * SfG *
UUCCAACUGGGGACGCCUCU
SSnX SSnX SSSSS


21796
SmG * SfG * SmA * SfC * SfG * SfC * SfCn001fU * SfC * SfU

SSSSS nX SS





WV-
fU * SfC * SfCn001fA * SfA * SfCn001fU * SfG * SmG * SfG *
UCCAACUGGGGACGCCUCUG
SSnX SSnX SSSSS


21797
SmG * SfA * SmC * SfG * SfC * SfC * SfUn001fC * SfU * SfG

SSSSS nX SS





WV-
fC * SfC * SfAn001fA * SfC * SfUn001fG * SfG * SmG * SfG *
CCAACUGGGGACGCCUCUGU
SSnX SSnX SSSSS


21798
SmA * SfC * SmG * SfC * SfC * SfU * SfCn001fU * SfG * SfU

SSSSS nX SS





WV-
fC * SfA * SfAn001fC * SfU * SfGn001fG * SfG * SmG * SfA *
CAACUGGGGACGCCUCUGUU
SSnX SSnX SSSSS


21799
SmC * SfG * SmC * SfC * SfU * SfC * SfUn001fG * SfU * SfU

SSSSS nX SS





WV-
fA * SfA * SfCn001fU * SfG * SfGn001fG * SfG * SmA * SfC *
AACUGGGGACGCCUCUGUUC
SSnX SSnX SSSSS


21800
SmG * SfC * SmC * SfU * SfC * SfU * SfGn001fU * SfU * SfC

SSSSS nX SS





WV-
fA * SfC * SfUn001fG * SfG * SfGn001fG * SfA * SmC * SfG *
ACUGGGGACGCCUCUGUUCC
SSnX SSnX SSSSS


21801
SmC * SfC * SmU * SfC * SfU * SfG * SfUn001fU * SfC * SfC

SSSSS nX SS





WV-
fC * SfU * SfGn001fG * SfG * SfGn001fA * SfC * SmG * SfC *
CUGGGGACGCCUCUGUUCCA
SSnX SSnX SSSSS


21802
SmC * SfU * SmC * SfU * SfG * SfU * SfUn001fC * SfC * SfA

SSSSS nX SS





WV-
fU * SfG * SfGn001fG * SfG * SfAn001fC * SfG * SmC * SfC *
UGGGGACGCCUCUGUUCCAA
SSnX SSnX SSSSS


21803
SmU * SfC * SmU * SfG * SfU * SfU * SfCn001fC * SfA * SfA

SSSSS nX SS





WV-
fG * SfG * SfGn001fG * SfA * SfCn001fG * SfC * SmC * SfU *
GGGGACGCCUCUGUUCCAAA
SSnX SSnX SSSSS


21804
SmC * SfU * SmG * SfU * SfU * SfC * SfCn001fA * SfA * SfA

SSSSS nX SS





WV-
fG * SfG * SfGn001fA * SfC * SfGn001fC * SfC * SmU * SfC *
GGGACGCCUCUGUUCCAAAU
SSnX SSnX SSSSS


21805
SmU * SfG * SmU * SfU * SfC * SfC * SfAn001fA * SfA * SfU

SSSSS nX SS





WV-
fG * SfG * SfAn001fC * SfG * SfCn001fC * SfU * SmC * SfU *
GGACGCCUCUGUUCCAAAUC
SSnX SSnX SSSSS


21806
SmG * SfU * SmU * SfC * SfC * SfA * SfAn001fA * SfU * SfC

SSSSS nX SS





WV-
fG * SfA * SfCn001fG * SfC * SfCn001fU * SfC * SmU * SfG *
GACGCCUCUGUUCCAAAUCC
SSnX SSnX SSSSS


21807
SmU * SfU * SmC * SfC * SfA * SfA * SfAn001fU * SfC * SfC

SSSSS nX SS





WV-
fA * SfC * SfGn001fC * SfC * SfUn001fC * SfU * SmG * SfU *
ACGCCUCUGUUCCAAAUCCU
SSnX SSnX SSSSS


21808
SmU * SfC * SmC * SfA * SfA * SfA * SfUn001fC * SfC * SfU

SSSSS nX SS





WV-
fC * SfG * SfCn001fC * SfU * SfCn001fU * SfG * SmU * SfU *
CGCCUCUGUUCCAAAUCCUG
SSnX SSnX SSSSS


21809
SmC * SfC * SmA * SfA * SfA * SfU * SfCn001fC * SfU * SfG

SSSSS nX SS





WV-
fG * SfC * SfCn001fU * SfC * SfUn001fG * SfU * SmU * SfC *
GCCUCUGUUCCAAAUCCUGC
SSnX SSnX SSSSS


21810
SmC * SfA * SmA * SfA * SfU * SfC * SfCn001fU * SfG * SfC

SSSSS nX SS





WV-
fC * SfC * SfUn001fC * SfU * SfGn001fU * SfU * SmC * SfC *
CCUCUGUUCCAAAUCCUGCA
SSnX SSnX SSSSS


21811
SmA * SfA * SmA * SfU * SfC * SfC * SfUn001fG * SfC * SfA

SSSSS nX SS





WV-
fC * SfU * SfCn001fU * SfG * SfUn001fU * SfC * SmC * SfA *
CUCUGUUCCAAAUCCUGCAU
SSnX SSnX SSSSS


21812
SmA * SfA * SmU * SfC * SfC * SfU * SfGn001fC * SfA * SfU

SSSSS nX SS





WV-
fU * SfC * SfUn001fG * SfU * SfUn001fC * SfC * SmA * SfA *
UCUGUUCCAAAUCCUGCAUU
SSnX SSnX SSSSS


21813
SmA * SfU * SmC * SfC * SfU * SfG * SfCn001fA * SfU * SfU

SSSSS nX SS





WV-
fC * SfU * SfGn001fU * SfU * SfCn001fC * SfA * SmA * SfA *
CUGUUCCAAAUCCUGCAUUG
SSnX SSnX SSSSS


21814
SmU * SfC * SmC * SfU * SfG * SfC * SfAn001fU * SfU * SfG

SSSSS nX SS





WV-
fU * SfG * SfUn001fU * SfC * SfCn001fA * SfA * SmA * SfU *
UGUUCCAAAUCCUGCAUUGU
SSnX SSnX SSSSS


21815
SmC * SfC * SmU * SfG * SfC * SfA * SfUn001fU * SfG * SfU

SSSSS nX SS





WV-
fG * SfU * SfUn001fC * SfC * SfAn001fA * SfA * SmU * SfC *
GUUCCAAAUCCUGCAUUGUU
SSnX SSnX SSSSS


21816
SmC * SfU * SmG * SfC * SfA * SfU * SfUn001fG * SfU * SfU

SSSSS nX SS





WV-
fU * SfU * SfCn001fC * SfA * SfAn001fA * SfU * SmC * SfC *
UUCCAAAUCCUGCAUUGUUG
SSnX SSnX SSSSS


21817
SmU * SfG * SmC * SfA * SfU * SfU * SfUn001fU * SfU * SfG

SSSSS nX SS





WV-
fU * SfC * SfCn001fA * SfA * SfAn001fU * SfC * SmC * SfU *
UCCAAAUCCUGCAUUGUUGC
SSnX SSnX SSSSS


21818
SmG * SfC * SmA * SfU * SfU * SfG * SfUn001fU * SfG * SfC

SSSSS nX SS





WV-
fU * SfC * SfAn001RfC * SfU * SfCn001RmA * SfG * SfA *
UCACUCAGAUAGUUGAAGCC
SSnR SSnR SSSSS


22753
SmU * SfA * SmG * SmU * SfU * SfG * SfA * SfAn001RfG *

SSSSS nR SS



SfC * SfC







WV-
L009n001L009n001L009n001L009fU * SfC * SfA * SfC * SfU *
UCACUCAGAUAGUUGAAGCC
nX nX nX OSSSSS


23576
SfC * SmAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA *

SOSS SSOOSSSSS



SfA * SfG * SfC * SfC

S





WV-
L009n001L009n001L009n001fU * SfC * SfA * SfC * SfU * SfC *
UCACUCAGAUAGUUGAAGCC
nX nX nX SSSSS


23577
SmAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA *

SOSS SSOOSSSSS



SfG * SfC * SfC

S





WV-
L009n001L009n001L009n001L009fU * SfC * SfAn001fC * SfU *
UCACUCAGAUAGUUGAAGCC
nX nX nX OSSnX


23578
SfCn001mAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA *

SSnX



SfAn001fG * SfC * SfC

OSSSSOOSSSnX SS





WV-
L009n001L009n001L009n001fU * SfC * SfAn001fC * SfU *
UCACUCAGAUAGUUGAAGCC
nX nX nX SSnX


23579
SfCn001mAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA *

SSnX



SfAn001fG * SfC * SfC

OSSSSOOSSSnX SS





WV-
L010n001L010n001L010n001L009fU * SfC * SfA * SfC * SfU *
UCACUCAGAUAGUUGAAGCC
nX nX nX OSSSSS


23936
SfC * SmAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA *

SOSS SSOOSSSSS



SfA * SfG * SfC * SfC

S





WV-
L010n001L010n001L010n001fU * SfC * SfA * SfC * SfU * SfC *
UCACUCAGAUAGUUGAAGCC
nX nX nX SSSSS


23937
SmAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA * SfA *

SOSS SSOOSSSSS



SfG * SfC * SfC

S





WV-
L010n001L010n001L010n001L009fU * SfC * SfAn001fC * SfU *
UCACUCAGAUAGUUGAAGCC
nX nX nX OSSnX


23938
SfCn001mAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA *

SSnX



SfAn001fG * SfC * SfC

OSSSSOOSSSnX SS





WV-
L010n001L010n001L010n001fU * SfC * SfAn001fC * SfU *
UCACUCAGAUAGUUGAAGCC
nX nX nX SSnX


23939
SfCn001mAfG * SfA * SmU * SfA * SmGmUfU * SfG * SfA *

SSnX OSSSSO



SfAn001fG * SfC * SfC

OSSSnX SS





WV-
mU * SGeon009m5Ceon009m5Ceon009mA * SG * SG * RC * ST
UGCCAGGCTGGTTATGACUC
S nX nX nX SSRSS


XBD108
* SG * RG * ST * ST * RA * ST * SmG * SmA * SmC * SmU *

RSSRSS SSSS



SmC







WV-XBD
mU * SGeon009Rm5Ceon009Rm5Ceon009RmA * SG * SG * RC
UGCCAGGCTGGTTATGACUC
S nR nR nR SSRSS


109
* ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC *

RSSRSS SSSS



SmU * SmC







WV-XBD
mU * SGeon009Sm5Ceon009Sm5Ceon009SmA * SG * SG * RC *
UGCCAGGCTGGTTATGACUC
S nS nS nS SSRSS


110
ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC * SmU

RSSRSS SSSS



* SmC







WV-
mU * SGeon010m5Ceon010m5Ceon010mA * SG * SG * RC * ST
UGCCAGGCTGGTTATGACUC
S nX nX nX SSRSS


XKCD108
* SG * RG * ST * ST * RA * ST * SmG * SmA * SmC * SmU *

RSSRSS SSSS



SmC







WV-
mU * SGeon010Rm5Ceon010Rm5Ceon010RmA * SG * SG * RC
UGCCAGGCTGGTTATGACUC
S nR nR nR SSRSS


XKCD
* ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC *

RSSRSS SSSS


109
SmU * SmC







WV-
mU * SGeon010Sm5Ceon010Sm5Ceon010SmA * SG * SG * RC *
UGCCAGGCTGGTTATGACUC
S nS nS nS SSRSS


XKCD
ST * SG * RG * ST * ST * RA * ST * SmG * SmA * SmC * SmU

RSSRSS SSSS


110
* SmC







WV-3519
Mod032fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA
UCAAGGAAGA
O XXXXX XOXOX



* fU * fU * fU * fC * fU
UGGCAUUUCU
OXO XXXXX X





WV-3518
Mod031fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA
UCAAGGAAGA
O XXXXX XOXOX



* fu * fU * fU * fC * fU
UGGCAUUUCU
OXO XXXXX X





WV-3517
Mod030fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA
UCAAGGAAGA
O XXXXX XOXOX



* fU * fU * fU * fC * fU
UGGCAUUUCU
OXO XXXXX X





WV-3516
fU * fC * fA * fA * fG * fG * mAfA * mGfA * mUfG * mGfC * fA * fU *
UCAAGGAAGA
XXXXX XOXOX



fU * fU * fC * fU
UGGCAUUUCU
OXO XXXXX X





WV-3515
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmAfU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOO



SfAfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SOOSOSSSS





WV-3514
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGfAfU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOO



SfAfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SOOSOSSSS





WV-3513
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmAfU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOO



SmAfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SOOSOSSSS





WV-3512
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGfAU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOO



SmAfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SOOSOSSSS





WV-3511
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmAfU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOO SOO



SmA * SfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SSSSS S





WV-3510
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGfAfU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOO SOO



SmA * SfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SSSSS S





WV-3509
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGA
SSSSS SOSOS



* SfAfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SOOSOSSSS





WV-3508
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGfA * SfU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOS



SfAfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SOOSOSSSS





WV-3507
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmAfU * SmGmGfC *
UCAAGGAAGA
SSSSS SOSOO SOO



SfA * SfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SSSSS S





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn011fG * SfA * SmU * SfA *
UCACUCAGAUA
SSSSS SnXSSSS


27250
SmGn011mUn011fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
nXnX SSSSS S





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAn010fG * SfA * SmU * SfA *
UCACUCAGAUA
SSSSS


27249
SmGn010mUn010fU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SnXSSSSnXnX SSSSS





S





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGA
SSSSS SOSOS SOO


24086
* SfA * SfU * SfU * SfU * SfC * SfG
UGGCAUUUCG
SSSSS S





WV-
fG * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
GCAAGGAAGAU
SSSSS SOSOS SOO


24085
* SfA * SfU * SfU * SfU * SfC * SfU
GGCAUUUCU
SSSSS S





WV-
fU * SfG * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmG *
UCAAGGAAGA
SSSSS SOSOS SO


22919
SfC * SfA * SfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SSSSS SS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmG *
UCAAGGAAGA
SSSSS SOSOS SSO


22918
SmGfC * SfA * SfU * SfU * SfU * SfC * SfU
UGGCAUUUCU
SSSSS S





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmG
UCAAGGAAGA UG
SSSSS SOSOS S


22765








WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGA
SSSSS SOSOS SOOS


22764
* SfA
UGGCA






WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGA
SSSSS SOSOS


22763
* SfA * SfU
UGGCAU
SOOSS





WV-
fU * SfC * SfA * SfA * SfG * SfG * SmAfA * SmGmA * SfU * SmGmGfC
UCAAGGAAGA
SSSSS SOSOS


22762
* SfA * SfU * SfU
UGGCAUU
SOOSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmA * SfG * SfA * SmU * SfA * SmG
UCACUCAGAUA
SSSSS SSSSS


22752
* SmU * SfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SSSSS SSSS





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmA * SfG * SfA * SmU * SfA *
UCACUCAGAUA
SSSSS SSSSS SOO


22751
SmGmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SSSSS S





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU * SfA * SmG *
UCACUCAGAUA
SSSSS SO SSSSS O


22750
SmUfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SSSSS S





WV-
fU * SfC * SfA * SfC * SfU * SfC * SmAfG * SfA * SmU * SfA * SmGmU
UCACUCAGAUA
SSSSS SOSSSSO


22749
* SfU * SfG * SfA * SfA * SfG * SfC * SfC
GUUGAAGCC
SSSSS SS





WV-
fA * SfU * SfC * SfA * SfU * SfU * SfU * SfU * SmU * SfU * SmC * SfU *
AUCAUUUUUU
SSSSS SSSSS


21502
SmC * SfA * SfU * SfA * SfC * SfC * SfU * SfU
CUCAUACCUU
SSSSS SSSS





WV-
fU * SfA * SfU * SfC * SfA * SfU * SfU * SfU * SmU * SfU * SmU * SfC *
UAUCAUUUUU
SSSSS SSSSS


21501
SmU * SfC * SfA * SfU * SfA * SfC * SfC * SfU
UCUCAUACCU
SSSSS SSSS





WV-
fU * SfU * SfA * SfU * SfC * SfA * SfU * SfU * SmU * SfU * SmU * SfU *
UUAUCAUUUUU
SSSSS SSSSS


21500
SmC * SfU * SfC * SfA * SfU * SfA * SfC * SfC
UCUCAUACC
SSSSS SSSS





WV-
fU * SfU * SfU * SfA * SfU * SfC * SfA * SfU * SmU * SfU * SmU * SfU *
UUUAUCAUUUU
SSSSS SSSSS


21499
SmU * SfC * SfU * SfC * SfA * SfU * SfA * SfC
UUCUCAUAC
SSSSS SSSS





WV-
fU * SfU * SfU * SfU * SfA * SfU * SfC * SfA * SmU * SfU * SmU * SfU *
UUUUAUCAUUUU
SSSSS SSSSS


21498
SmU * SfU * SfC * SfU * SfC * SfA * SfU * SfA
UUCUCAUA
SSSSS SSSS





WV-
fC * SfU * SfU * SfU * SfU * SfA * SfU * SfC * SmA * SfU * SmU * SfU *
CUUUUAUCAUUU
SSSSS SSSSS


21497
SmU * SfU * SfU * SfC * SfU * SfC * SfA * SfU
UUUCUCAU
SSSSS SSSS





WV-
fA * SfC * SfU * SfU * SfU * SfU * SfA * SfU * SmC * SfA * SmU * SfU *
ACUUUUAUCAUU
SSSSS SSSSS


21496
SmU * SfU * SfU * SfU * SfC * SfU * SfC * SfA
UUUUCUCA
SSSSS SSSS





WV-
fA * SfA * SfC * SfU * SfU * SfU * SfU * SfA * SmU * SfC * SmA * SfU *
AACUUUUAUCAU
SSSSS SSSSS


21495
SmU * SfU * SfU * SfU * SfU * SfC * SfU * SfC
UUUUUCUC
SSSSS SSSS





WV-
fC * SfA * SfA * SfC * SfU * SfU * SfU * SfU * SmA * SfU * SmC * SfA *
CAACUUUUAUCAU
SSSSS SSSSS


21494
SmU * SfU * SfU * SfU * SfU * SfU * SfC * SfU
UUUUUCU
SSSSS SSSS





WV-
fC * SfC * SfA * SfA * SfC * SfU * SfU * SfU * SmU * SfA * SmU * SfC *
CCAACUUUUAU
SSSSS SSSSS


21493
SmA * SfU * SfU * SfU * SfU * SfU * SfU * SfU
CAUUUUUUC
SSSSS SSSS





WV-
fG * SfC * SfC * SfA * SfA * SfC * SfU * SfU * SmU * SfU * SmA * SfU *
GCCAACUUUUA
SSSSS SSSSS


21492
SmC * SfA * SfU * SfU * SfU * SfU * SfU * SfU
UCAUUUUUU
SSSSS SSSS





WV-
fU * SfG * SfC * SfC * SfA * SfA * SfC * SfU * SmU * SfU * SmU * SfA *
UGCCAACUUUU
SSSSS SSSSS


21491
SmU * SfC * SfA * SfU * SfU * SfU * SfU * SfU
AUCAUUUUU
SSSSS SSSS





WV-
fC * SfU * SfG * SfC * SfC * SfA * SfA * SfC * SmU * SfU * SmU * SfU *
CUGCCAACUUUU
SSSSS SSSSS


21490
SmA * SfU * SfC * SfA * SfU * SfU * SfU * SfU
AUCAUUUU
SSSSS SSSS





WV-
fU * SfC * SfU * SfG * SfC * SfC * SfA * SfA * SmC * SfU * SmU * SfU *
UCUGCCAACUUU
SSSSS SSSSS


21489
SmU * SfA * SfU * SfC * SfA * SfU * SfU * SfU
UAUCAUUU
SSSSS SSSS





WV-
fU * SfU * SfC * SfU * SfG * SfC * SfC * SfA * SmA * SfC * SmU * SfU *
UUCUGCCAACUU
SSSSS SSSSS


21488
SmU * SfU * SfA * SfU * SfC * SfA * SfU * SfU
UUAUCAUU
SSSSS SSSS





WV-
fC * SfU * SfU * SfC * SfU * SfG * SfC * SfC * SmA * SfA * SmC * SfU *
CUUCUGCCAACU
SSSSS SSSSS


21487
SmU * SfU * SfU * SfA * SfU * SfC * SfA * SfU
UUUAUCAU
SSSSS SSSS





WV-
fC * SfU * SfCfC * SfG * SfGfU * SfU * SmCfU * SmG * SfA * SmAfG *
CUCCGGUUCUGA
SSOSS OSSOS SSOSS


21373
SfG * SfU * SfGfU * SfU * SfC
AGGUGUUC
SOSS










In Table A1 (including Table A1.1., Table A1.2, Table A1.3, etc.):


Spaces in Table A1 are utilized for formatting and readability, e.g., OXXXXX XXXXX XXXXX XXXX illustrates the same stereochemistry as OXXXXXXXXXXXXXXXXXXX *S and *S both indicate phosphorothioate internucleotidic linkage wherein the linkage phosphorus has Sp configuration; etc.


All oligonucleotides listed in Tables A1 are single-stranded. As described in the present application, they may be used as a single strand, or as a strand to form complexes with one or more other strands.


Some sequences, due to their length, are divided into multiple lines.


ID: Identification number for an oligonucleotide.


WV-8806, WV-13405, WV-13406 and WV-13407 are fully PMO (morpholino oligonucleotides; [all PMO] in Table).


Abbreviations in Tables:

m5Ceo:5-Methyl 2′-Methoxyethyl C




embedded image


5MS: 5′-(S)—CH3 modification of sugar moieties;


5MSfC: 2′-F-5′-(S)-methyl C (in oligonucleotides




embedded image


wherein in BA is nucleobase C and R2s is —F, and the 5′ and 3′ positions independently connect to —OH, internucleotidic linkages, linkers/linkages-H, linkers/linkages-Mod, etc. Nucleoside form is




embedded image


wherein in BA is nucleobase C and R2s is —F);


C6:C6 amino linker (L001, —NH—(CH2)6— wherein —NH— is connected to Mod (e.g., through —C(O)— in Mod) or —H, and —(CH2)6— is connected to the 5′-end (or 3′-end if indicated) of oligonucleotide chain through, e.g., phosphodiester (—O—P(O)(OH)—O—. May exist as a salt form. May be illustrated in the Tables as O or PO), phosphorothioate (—O—P(O)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as * if the phosphorothioate not chirally controlled; *S, S or Sp, if chirally controlled and has an Sp configuration, and *R, R, or Rp, if chirally controlled and has an Rp configuration), or phosphorodithioate (—O—P(S)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as PS2 or : or D) linkage. May also be referred to as C6 linker or C6 amine linker); or D: Phosphodithioate (Phosphorodithioate), represented by D or a colon(:);


n001: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n001R, or n001S));


n002: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n002R, or n002S));


n003: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n003R. or n003S));


n004: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n004R, or n004S));


n005: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n005R, or n005S));


n006: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n006R, or n006S):


n007: non-negatively charged linkage




embedded image


(which is stereorandom at linkage phosphorus unless otherwise indicated (e.g., as n007R or n007S));


n008: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n008R, or n008S));


n009: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n009R, or n009S));


n010: non-negatively charged linkage




embedded image


(which is stereorandom unless otherwise indicated (e.g., as n010R, or n010S));


n001R: n001 being chirally controlled and having the Rp configuration;


n002R: n002 being chirally controlled and having the Rp configuration;


n003R: n003 being chirally controlled and having the Rp configuration;


n004R: n004 being chirally controlled and having the Rp configuration;


n005R: n005 being chirally controlled and having the Rp configuration;


n006R: n006 being chirally controlled and having the Rp configuration:


n007R: n007 being chirally controlled and having the Rp configuration;


n008R: n008 being chirally controlled and having the Rp configuration;


n009R: n009 being chirally controlled and having the Rp configuration;


n010R: n010 being chirally controlled and having the Rp configuration;


n001S: n001 being chirally controlled and having the Sp configuration:


n002S: n002 being chirally controlled and having the Sp configuration;


n003S: n003 being chirally controlled and having the Sp configuration:


n004S: n004 being chirally controlled and having the Sp configuration;


n005S: n005 being chirally controlled and having the Sp configuration;


n006S: n006 being chirally controlled and having the Sp configuration;


n007S: n007 being chirally controlled and having the Sp configuration;


n008S: n008 being chirally controlled and having the Sp configuration;


n009S: n009 being chirally controlled and having the Sp configuration:


n010S: n010 being chirally controlled and having the Sp configuration; nO, nX: in Linkage/Stereochemistry, nO or nX indicates a stereorandom n001; nR: in Linkage/Stereochemistry, nR indicates a linkage, e.g., n001, n002, n003, n004, n005, n006, n007, n008, n009, etc., being chirally controlled and having the Rp configuration (e.g., for n001, n001R in Description);


nS: in Linkage/Stereochemistry, nS indicates a linkage, e.g., n001, n002, n003, n004, n005, n006, n007, n008, n009, etc., being chirally controlled and having the Sp configuration (e.g., for n001, n001R in Description):


BrfU: a nucleoside unit wherein the nucleobase is BrU




embedded image


and wherein the sugar has a 2′-F (f) modification




embedded image


BrmU: a nucleoside unit wherein the nucleobase is BrU




embedded image


and wherein the sugar has a 2′-OMe (m) modification




embedded image


BrdU: a nucleoside unit wherein the nucleobase is BrU




embedded image


and wherein the sugar is 2-deoxyribose (as widely found in natural DNA; 2′-deoxy (d))




embedded image


L004: linker having the structure of —NH(CH2)4CH(CH2OH)CH2—, wherein —NH— is connected to Mod (e.g., through —C(O)— in Mod) or —H, and the —CH2— connecting site is connected to a linkage, e.g., phosphodiester (—O—P(O)(OH)—O—. May exist as a salt form. May be illustrated in the Tables as O or PO), phosphorothioate (—O—P(O)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as * if the phosphorothioate not chirally controlled; *S, S, or Sp, if chirally controlled and has an Sp configuration, and *R. R, or Rp, if chirally controlled and has an Rp configuration), or phosphorodithioate (—O—P(S)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as PS2 or : or D) linkage, at the 5′- or 3′-end of an oligonucleotide chain as indicated. For example, an asterisk immediately preceding a L004 (e.g., *L004) indicates that the linkage is a phosphorothioate linkage, and the absence of the indication of any other linkage immediately preceding L004 indicates that the linkage is a phosphodiester linkage. For example, in WV-9858, which terminates in fUL004, the linker L004 is connected (via the —CH2— site) to the phosphodiester linkage at the 3′ position at the 3′-terminal sugar (which is 2′-F and connected to the nucleobase U), and the L004 linker is connected via —NH— to —H; similarly, in WV-10886, WV-10887, and WV-10888, the L004 linker is connected (via the —CH2— site) to the phosphodiester linkage at the 3′ position of the 3′-terminal sugar, and the L004 is connected via —NH— to Mod012 (WV-10886), Mod085 (WV-10887) or Mod086 (WV-10888);


L005: linker having the structure of —NH(CH2)5C(O)N(CH2CH2OH)CH2CH2—, wherein —NH— is connected to Mod (e.g., through —C(O)— in Mod) or —H, and the —CH2— connecting site is connected to a linkage, e.g., phosphodiester (—O—P(O)(OH)—O—. May exist as a salt form. May be illustrated in the Tables as O or PO), phosphorothioate (—O—P(O)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as * if the phosphorothioate not chirally controlled; *S, S, or Sp, if chirally controlled and has an Sp configuration, and *R, R, or Rp, if chirally controlled and has an Rp configuration), or phosphorodithioate (—O—P(S)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as PS2 or : or D) linkage, at the 5′- or 3′-end of an oligonucleotide chain as indicated. For example, an asterisk immediately preceding a L005 (e.g., *L005) indicates that the linkage is a phosphorothioate linkage, and the absence of the indication of any other linkage immediately preceding L005 indicates that the linkage is a phosphodiester linkage. For example, in WV-12571, L005 is connected to —H (no Mod following L005; via the —NH— site) and the phosphodiester linkage at the 3′ position of the 3′-terminal sugar (via the —CH2— site); and in WV-12572, L005 is connected to Mod020 (via the —NH— site) and the phosphodiester linkage at the 3′ position of the 3′-terminal sugar (via the —CH2— site); L001L005: linker having the structure of —NH(CH2), C(O)N(CH2CH2—, —P(O)(OH)—O—(CH2)6NH—)CH2CH2—, wherein each of the two —NH— is independently connected to Mod (e.g., through —C(O)—) or —H, and the —CH2— connecting site is connected to a linkage, e.g., phosphodiester (—O—P(O)(OH)—O—. May exist as a salt form. May be illustrated in the Tables as O or PO), phosphorothioate (—O—P(O)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as * if the phosphorothioate not chirally controlled: *S, S. or Sp, if chirally controlled and has an Sp configuration, and *R. R, or Rp, if chirally controlled and has an Rp configuration), or phosphorodithioate (—O—P(S)(SH)—O—. May exist as a salt form. May be illustrated in the Tables as PS2 or: or D) linkage at the 5′- or 3′-end of an oligonucleotide chain as indicated.


eo: 2′-MOE (2′-OCH2CH2OCH3) modification on the preceding nucleoside (e.g., Aeo(




embedded image


wherein BA is nucleobase A));


F, f: 2′-F modification on the following nucleoside (e.g., fA




embedded image


wherein BA is nucleobase A));


m: 2′-OMe modification on the following nucleoside (e.g., m A




embedded image


wherein BA is nucleobase A));


r: 2′-OH on the following nucleoside (e.g., rA




embedded image


wherein BA is nucleobase A, as existed in natural RNA));


L012: internucleotidic linkage having the structure of —O—P(O)[O(CH2)2O(CH2)2O(CH2)2OH]—O—. May be illustrated as OO in the Tables;


*, PS: Phosphorothioate:

PS2, : D: phosphorodithioate (e.g., WV-3078, wherein a colon (:) indicates a phosphorodithioate);


*R, R, Rp: Phosphorothioate in Rp conformation;


*S, S, Sp: Phosphorothioate in Sp conformation;


X: Phosphorothioate stereorandom;




embedded image


NA: Not Applicable;

O, PO: phosphodiester (phosphate). When no internucleotidic linkage is specified between two nucleoside units, the internucleotidic linkage is a phosphodiester linkage (natural phosphate linkage). When used to indicate linkage between Mod and a linker, e.g., L001, O may indicate —C(O)— (connecting Mod and L001, for example:


Mod013L001fU*SfC*SfA*SfA*SfG*SfG*SmAfA*SmGmA*SfU*SmGmGfC*SfA*SfU*SfU*SfU*SfC *SfU (Description), OOSSSSSSOSOSSOOSSSSSS (Linkage/Stereochemistry). Note the second 0 in OOSSSSSSOSOSSOOSSSSSS (Linkage/Stereochemistry) represents phosphodiester linkage connecting L001 and the 5′-O— of the 5′-terminal sugar of the oligonucleotide chain (see illustrations below. Alternatively, the 5′-O— may be considered part of the phosphodiester linkage (or another type of linkage such as a phosphorothioate linkage), in which case the phosphodiester linkage (or another type of linkage such as phosphorothioate linkage) is connected to the 5′ position of the 5′-terminal sugar of the oligonucleotide chain). In some instances, “O” for —C(O)— (connecting Mod and L001) is omitted (e.g., for Mod013L001fU*SfC*SfA*SfA*SfG*SfG*SmAfA*SmGmA*SfU*SmGmGfC*SfA*SfU*SfU*SfU*SfC*SfU, “Linkage/Stereochemistry” OSSSSSSOSOSSOOSSSSSS);


Various Mods:

Mod001 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Lauric (in Mod013). Myristic (in Mod014). Palmitic (in Mod005), Stearic (in Mod015), Oleic (in Mod016). Linoleic (in Mod017), alpha-Linoleinc (in Mod018), gamma-Linolenic (in Mod019), DHA (in Mod006), Turbinaric (in Mod020), Dilinoleic (in Mod021), TriG1cNAc (in Mod024). TrialphaMannose (in Mod026), MonoSulfonamide (in Mod 027), TriSulfonamide (in Mod029), Lauric (in Mod030), Myristic (in Mod031). Palmitic (in Mod032), and Stearic (in Mod033): Lauric acid (for Mod013), Myristic acid (for Mod014), Palmitic acid (for Mod005), Stearic acid (for Mod015), Oleic acid (for Mod016). Linoleic acid (for Mod017), alpha-Linolenic acid (for Mod018), gamma-Linolenic acid (for Mod019), docosahexaenoic acid (for Mod006), Turbinaric acid (for Mod020), alcohol for Dilinoleyl (for Mod021), acid for TriG1cNAc (for Mod024), acid for TrialphaMannose (for Mod026), acid for MonoSulfonamide (for Mod 027), acid for TriSulfonamide (for Mod029), Lauryl alcohol (for Mod030). Myristyl alcohol (for Mod031). Palmityl alcohol (for Mod032), and Stearyl alcohol (for Mod033), respectively, conjugated to oligonucleotide chains, e.g., through an amide group, a linker (e.g., C6 amino linker, (L001)), and/or a linkage group (e.g., phosphodiester linkage (PO), phosphorothioate linkage (PS), etc.): e.g., Mod013 (Lauric acid with C6 amino linker and PO or PS), Mod014 (Myristic acid with C6 amino linker and PO or PS), Mod005 (Palmitic acid with C6 amino linker and PO or PS), Mod015 (Stearic acid with C6 amino linker and PO or PS), Mod016 (Oleic acid with C6 amino linker and PO or PS), Mod017 (Linoleic acid with C6 amino linker and PO or PS), Mod018 (alpha-Linolenic acid with C6 amino linker and PO or PS), Mod019 (gamma-Linolenic acid with C6 amino linker and PO or PS), Mod006 (DHA with C6 amino linker and PO or PS), Mod020 (Turbinaric acid with C6 amino linker and PO or PS), Mod021 (alcohol (see below) with PO or PS), Mod024 (acid (see below) with C6 amino linker and PO or PS), Mod026 (acid (see below) with C6 amino linker and PO or PS), Mod027 (acid (see below) with C6 amino linker and PO or PS), Mod029 (acid (see below) with C6 amino linker and PO or PS), Mod030 (Lauryl alcohol with PO or PS), Mod031 (Myristyl alcohol with PO or PS), Mod032 (Palmityl alcohol with PO or PS), and Mod033 (Stearyl alcohol with PO or PS), with PO or PS for each oligonucleotide indicated in Table A1. For example, WV-3557 Steary alcohol conjugated to oligonucleotide chain of WV-3473 via PS: Mod033*fU*SfC*SfA*SfA*SfG*SfG*SmAfA*SmGmA*SfU*SmGmGfC*SfA*SfU*SfU*SfU*SfC*Sf U (Description), XSSSSSSOSOSSOOSSSSSS (Stereochemistry); and


WV-4106 Stearic acid conjugated to oligonucleotide chain of WV-3473 via amide group, C6, and PS: Mod015L001*fU*SfC*SfA*SfA*SfG*SfG*SmAfA*SmGmA*SfU*SmGmGfC*SfA*SfU*SfU*SfU*Sf C*SfU (Description), XSSSSSSOSOSSOOSSSSSS (Stereochemistry). Certain moieties for conjugation, and example reagents (many of which were previously known and are commercially available or can be readily prepared using known technologies in accordance with the present disclosure, e.g., Laurie acid (for Mod013), Myristic acid (for Mod014), Palmitic acid (for Mod005), Stearic acid (for Mod015), Oleic acid (for Mod016). Linoleic acid (for Mod017), alpha-Linolenic acid (for Mod018), gamma-Linolenic acid (for Mod019), docosahexaenoic acid (for Mod006), Turbinaric acid (for Mod2), alcohol for Dilinoleyl (for Mod021), Lauryl alcohol (for Mod030), Myristyl alcohol (for Mod031), Palmityl alcohol (for Mod032). Stearyl alcohol (for Mod033), etc.) are listed below. Certain example moieties (e.g., lipid moieties, targeting moiety, etc.) and/or example preparation reagents (e.g., acids, alcohols, etc.) for conjugation to oligonucleotide chains include the below with a non-limiting example of a linker; Mod005 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and Palmitic acid:




embedded image


Mod005L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod006 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and DHA:




embedded image


Mod006L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod009 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod012 (with —C(O)— connecting to e.g. —NH— of a linker such as L001:




embedded image


Mod013 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and Lauric acid:




embedded image


Mod013L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod014 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and Myristic acid:




embedded image


Mod014L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod015 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and Stearic acid:




embedded image


Mod015L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod016 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and Oleic acid:




embedded image


Mod016L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod017 (with —C(O)— connecting to e.g., —NH— of a linker such as L001) and Linoleic acid:




embedded image


Mod 017L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod018 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and alpha-Linolenic acid:




embedded image


Mod018L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod019 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and gamma-Linolenic acid:




embedded image


Mod019L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod020 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and Turbinaric acid:




embedded image


Mod020L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod021 (with PO or PS connecting to 5′-O— of an oligonucleotide chain) and alcohol:




embedded image


Mod024 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and acid:




embedded image


Mod024L001(with PO or PS connecting to 5′-O—of an oligonucleotide chain):




embedded image


Mod026 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and acid:




embedded image


Mod026L001(with PO or PS connecting to 5′-O—of an oligonucleotide chain):




embedded image


Mod027 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001) and acid:




embedded image


Mod027L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod028 (with —C(O)— connecting to, e.g., —NH— of a linker such a L001):




embedded image


Mod029 (with —C(O)— connecting to, e.g. —NH— of a linker such as L00) and acid:




embedded image


Mod029L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod030 (with PO or PS connecting to 5′-O— of an oligonucleotide chain) and Lauryl alcohol:




embedded image


Mod031 (with PO or PS connecting to 5′-O— of an oligonucleotide chain) and Myristyl alcohol:




embedded image


Mod032 (with PO or PS connecting to 5′-O— of an oligonucleotide chain) and Palmityl alcohol:




embedded image


Mod033 (with PO or PS connecting to 5′-O— of an oligonucleotide chain) and Stearyl alcohol:




embedded image


Mod053 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod 070 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod071 (with —C(O)— connecting to e.g., —NH— of a linker such as L001):




embedded image


Mod086 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod092 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod093 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod007 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod050 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod043 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod057 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod058(with—C(O)-connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod059 (with —C(O)— connecting to, e.g., —NH— of a linker such as(L001):




embedded image


Mod066 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod074 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod085 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod091L001 (with PO PS connecting to 5′-O— of a oligonucleotide chain):




embedded image


(e.g., in WV-11114, X=O (PO) and connecting to 5′-O— of the oligonucleotide chain)


Mod097 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod098 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod099 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod100 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod102 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod103 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod104 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod105 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod106 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


(e.g., in WV-15844, X=O (PO) and connecting to 5′-O— of the oligonucleotide chain)


Mod107 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


(e.g., in WV-15845 and WV-16011, X=O(PO) and connecting to 5′-O— of the oligonucleotide chain)


Mod108 (with —C(O)— connecting to, e.g., —NH— of a linker such as L001):




embedded image


Mod109:



embedded image


Mod109L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


(e.g., in WV-19792, X=O)
Mod110:



embedded image


Mod110L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


(e.g., in WV-19793, X=O)
Mod111:



embedded image


Mod 111L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod 112:



embedded image


Mod112L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod113:



embedded image


Mod 113L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod 114:



embedded image


Mod114L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod115:



embedded image


Mod115L001(with PO or PS connecting to 5-O— of an oligonucleotide chain):




embedded image


Mod118:



embedded image


Mod118L001 with PO or PS connecting to 5′-O— of an oligonucleotide chain:




embedded image


Mod 119L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


Mod120:



embedded image


Mod120L001 (with PO or PS connecting to 5′-O— of an oligonucleotide chain):




embedded image


L009n001009n001L009n001L009: connected to the 5-position of the 5′ terminal sugar of an oligonucleotide chain (e.g., for WV-23576 and WV-23578, sugar of fU) through a phosphodiester:




embedded image


L009n001L009n001L009n001: connected to the 5-position of the 5′ terminal sugar of an oligonucleotide chain (e.g., for WV-23577 and WV-23579, sugar of fU) through n001:




embedded image


L010n001L010n001L010n001L009: connected to the 5′-position of the 5′ terminal sugar of an oligonucleotide chain (e.g., for WV-23936 and WV-23938, sugar of fU) through a phosphodiester:




embedded image


L010n001L10n001L10n001: connected to the 5′-position of the 5′ terminal sugar of an oligonucleotide chain (e.g., for WV-23937 and WV-23939, sugar of fU) through n001:




embedded image


In some embodiments, some functional groups are optionally protected, e.g., for Mod024 and/or Mod 026, the hydroxyl groups are optionally protected as AcO—, before and/or during conjugation to oligonucleotide chains, and the functional groups, e.g., hydroxyl groups, can be deprotected, for example, during oligonucleotide cleavage and/or deprotection:




embedded image


Applicant notes that presented in Table A1 are example ways of presenting structures of provided oligonucleotides, for example, WV-3546 (Mod020L001fU*SfC*SfA*SfA*Sf*Sf*SmAfA*SmGmA*SfU*SmGmGfC*SfA*SfU*SfU*SfU*Sf C*SfU) can be presented as a lipid moiety (Mod020,




embedded image


connected via —C(O)-(OOSSSSSSOSOSSOOSSSSSS, which “O” may be omitted as in Table A1) to the —NH— of —NH—(CH2)6—, wherein the —(CH2)6— is connected to the 5′-end of the oligonucleotide chain via a phosphodiester linkage (OOSSSSSSOSOSSOOSSSSSS). One having ordinary skill in the art understands that a provided oligonucleotide can be presented as combinations of lipid, linker and oligonucleotide chain units in many different ways, wherein in each way the combination of the units provides the same oligonucleotide. For example, WV-3546, can be considered to have a structure of Ac-[-LLD-(RLD)a]b, wherein a is 1, b is 1, and have a lipid moiety RLD of




embedded image


connected to its oligonucleotide chain (Ac) unit through a linker LLD having the structure of —C(O)—NH—(CH2)6—OP(═O)(OH)—O—, wherein —C(O)— is connected to RLD, and —O— is connected to Ac (as 5′-O— of the oligonucleotide chain); one of the many alternative ways is that RLD is




embedded image


and LLD is —NH—(CH2)6—OP(═O)(OH)—O—, wherein —NH— is connected to RLD, and —O— is connected to Ac (as 5′-O— of the oligonucleotide chain).


In some embodiments, each phosphorothioate internucleotidic linkage of an oligonucleotide is independently a chirally controlled internucleotidic linkage. In some embodiments, a provided oligonucleotide composition is a chirally controlled oligonucleotide composition of an oligonucleotide type listed in Table A1, wherein each phosphorothioate internucleotidic linkage of the oligonucleotide is independently a chirally controlled internucleotidic linkage.


In some embodiments, the present disclosure provides compositions comprising or consisting of a plurality of provided oligonucleotides (e.g., chirally controlled oligonucleotide compositions). In some embodiments, all oligonucleotides of the plurality are of the same type, i.e., all have the same base sequence, pattern of backbone linkages, pattern of backbone chiral centers, and pattern of backbone phosphorus modifications. In some embodiments, all oligonucleotides of the same type are structural identical. In some embodiments, provided compositions comprise oligonucleotides of a plurality of oligonucleotides types, typically in controlled amounts. In some embodiments, a provided chirally controlled oligonucleotide composition comprises a combination of two or more provided oligonucleotide types.


In some embodiments, an oligonucleotide composition of the present disclosure is a chirally controlled oligonucleotide composition, wherein the sequence of the oligonucleotides of its plurality comprises or consists of a base sequence listed in Table A1.


In some experiments, provided oligonucleotides can provide surprisingly high activities, e.g., when compared to those of Drisapersen and/or Eteplirsen. For example, chirally controlled oligonucleotide compositions of WV-887, WV-892, WV-896, WV-1714, WV-2444, WV-2445, WV-2526, WV-2527, WV-2528, and WV-2530, and many others, each showed a superior capability, in some embodiments many fold higher, to mediate skipping of an exon in dystrophin, compared to Drisapersen and/or Eteplirsen. Certain data are provided in the present disclosure as examples.


In some embodiments, the present disclosure pertains to a composition comprising a chirally controlled oligonucleotide selected from any DMD oligonucleotide listed herein, or any DMD oligonucleotide having a base sequence comprising at least 15 consecutive bases of any DMD oligonucleotide listed herein.


In some embodiments, a provided oligonucleotide is no more than 25 bases long. In some embodiments, a provided oligonucleotide is no more than 25 to 60 bases long. In some embodiments, a U can be replaced with T, or vice versa.


In some embodiments, when assaying example oligonucleotides in mice, oligonucleotides (e.g., WV-3473, WV-3545, WV-3546, WV-942, etc.) are intravenous injected via tail vein in male C57BL/10ScSndmdmdx mice (4-5 weeks old), at tested amounts, e.g., 10 mg/kg, 30 mg/kg, etc. In some embodiments, tissues are harvested at tested times, e.g., on Day, e.g., 2, 7 and/or 14, etc., after injection, in some embodiments, fresh-frozen in liquid nitrogen and stored in −80° C. until analysis.


Various assays can be used to assess oligonucleotide levels in accordance with the present disclosure. In some embodiments, hybrid-ELISA is used to quantify oligonucleotide levels in tissues using test article serial dilution as standard curve: for example, in an example procedure, maleic anhydride activated 96-well plate (Pierce 15110) was coated with 50 μl of capture probe at 500 nM in 2.5% NaHCO3 (Gibco, 25080-094) for 2 hours at 37° C. The plate was then washed 3 times with PBST (PBS+0.1% Tween-20), and blocked with 5% fat free milk-PBST at 37° C. for 1 hour. Test article oligonucleotide was serial diluted into matrix. This standard together with original samples were diluted with lysis buffer (4 M Guanidine; 0.33% N-Lauryl Sarcosine; 25 mM Sodium Citrate; 10 mM DTT) so that oligonucleotide amount in all samples is less than 100 ng/mL. 20 μl of diluted samples were mixed with 180 μl of 333 nM detection probe diluted in PBST, then denatured in PCR machine (65° C., 10 min, 95° C. 15 min, 4° C. ∞). 50 μl of denatured samples were distributed in blocked ELISA plate in triplicates, and incubated overnight at 4° C. After 3 washes of PBST, 1:2000 streptavidin-AP in PBST was added, 50 μl per well and incubated at room temperature for 1 hour. After extensive wash with PBST, 100 μl of AttoPhos (Promega S1000) was added, incubated at room temperature in dark for 10 min and read on plate reader (Molecular Device, M5) fluorescence channel: Ex435 nm, Em555 nm. Oligonucleotides in samples were calculated according to standard curve by 4-parameter regression.


In some embodiments, provided oligonucleotides are stable in both plasma and tissue homogenates.


Additional Embodiments and Examples of Oligonucleotides and Compositions, Including Dystrophin (DMD) Oligonucleotides and Compositions

Among other things, the present disclosure provides oligonucleotides, compositions, and methods for, modulating splicing, reducing target levels, treating various conditions, disorders, diseases, etc. For example, in some embodiments, the present disclosure provides dystrophin (DMD) oligonucleotides and/or DMD oligonucleotide compositions that are useful for various purposes. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 23 in the mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 44 in the human or mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 46 in the human or mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 47 in the human or mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 51 in the human or mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 52 in the human or mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 53 in the human or mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 54 in the human or mouse DMD gene. In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of exon 55 in the human or mouse DMD gene.


In some embodiments, a DMD oligonucleotide and/or composition is capable of mediating skipping of multiple exons in the human or mouse DMD gene.


In some embodiments, a provided oligonucleotide, e.g., a DMD oligonucleotide, comprises a modification. In some embodiments, a DMD oligonucleotide comprises a sugar modification. In some embodiments, a DMD oligonucleotide comprises a sugar modification at the 2′ position. In some embodiments, a DMD oligonucleotide comprises a sugar modification at the 2′ position selected from 2′-F, 2′-OMe and 2′-MOE.


In some embodiments, a DMD oligonucleotide comprises a 2′-F, 2′-OMe and/or 2′-MOE. In some embodiments, a DMD oligonucleotide comprises a 2′-F. In some embodiments, in a DMD oligonucleotide, each sugar comprises a 2′-F.


In some embodiments, a DMD oligonucleotide comprises a 2′-OMe. In some embodiments, in a DMD oligonucleotide, each sugar comprises a 2′-OMe. In some embodiments, a DMD oligonucleotide comprises a 2′-MOE. In some embodiments, in a DMD oligonucleotide, each sugar comprises a 2′-MOE.


In some embodiments, a provided oligonucleotide, e.g., a DMD oligonucleotide comprises a 2′-OMe and a 2′-F. In some embodiments, a provided oligonucleotide, e.g., a DMD oligonucleotide, comprises a pattern of 2′ sugar modifications, wherein the pattern comprises a sequence selected from: fm, mf, ffm, fffm, ffffm, fffffm, ffffffm, fffffffm, ffffffffm, fffffffffim, mf, mff, mff, mffff, mfffff, mffffff, mfffffff, mffffff, fmf, fmmf, fmmmf, fmmmmf, fmmmmmf, fmmmmmmf, fmmmmmmmf, fmmmmmmmmf, fmmmmmmmmmf, ffffffmmmmmmmmffffff, fffffmmmmmmmmmmmfffff, ffffmmmmmmmmmmmmmffff, fffmmmmmmmmmmmmfff, ffmmmmmmmmmmmmmmmmff, fmmmmmmmmmmmmmmmmmmf, ffffffffffmmmmmmmmmm, fffffmmmmmmmmffffff, ffffmmmmmmmmmmfffff, fffmmmmmmmmmmmmffff, ffmmmmmmmmmmmmmmfff, fmmmmmmmmmmmmmmmmff, mmmmmmmmmmmmmmmmmmf, fffffffffmmmmmmmmmm, ffffmmmmmmmmffffff, fffmmmmmmmmmmfffff, ffmmmmmmmmmmmmffff, fmmmmmmmmmmmmmmfff, mmmmmmmmmmmmmmmmff, mmmmmmmmmmmmmmmmmf, ffffffffmmmmmmmmmm, fffmmmmmmmmffffff, ffmmmmmmmmmmfffff, fmmmmmmmmmmmmffff, mmmmmmmmmmmmmmfff, mmmmmmmmmmmmmmmff, mmmmmmmmmmmmmmmmf, fffffffmmmmmmmmmm, ffmmmmmmmmffffff, fmmmmmmmmmmfffff, mmmmmmmmmmmmffff, mmmmmmmmmmmmmfff, mmmmmmmmmmmmmmff, mmmmmmmmmmmmmmmf, ffffffmmmmmmmmmm, fmmmmmmmmffffff, mmmmmmmmmmfffff, mmmmmmmmmmmffff, mmmmmmmmmmmmfff, mmmmmmmmmmmmmff, mmmmmmmmmmmmmmf, fffffmmmmmmmmmm, mmmmmmmmffffff, mmmmmmmmmfffff, mmmmmmmmmmffff, mmmmmmmmmmmfff, mmmmmmmmmmmmff, mmmmmmmmmmmmmf, ffffmmmmmmmmmm, ffffffmmmmmmmmfffff, fffffmmmmmmmmmmffff, ffffmmmmmmmmmmmmfff, fffmmmmmmmmmmmmmmff, ffmmmmmmmmmmmmmmmmf, fmmmmmmmmmmmmmmmmmm, ffffffffffmmmmmmmmm, ffffffmmmmmmmmffff, fffffmmmmmmmmmmmfff, ffffmmmmmmmmmmmmff, fffmmmmmmmmmmmmmmf, ffmmmmmmmmmmmmmmmm, fmmmmmmmmmmmmmmmmm, ffffffffffmmmmmmmm, ffffffmmmmmmmmfff, fffffmmmmmmmmmmff, ffffmmmmmmmmmmmmf, fffmmmmmmmmmmmmmm, ffmmmmmmmmmmmmmmm, fmmmmmmmmmmmmmmmm, ffffffffffmmmmmmm, ffffffmmmmmmmmff, fffffmmmmmmmmmmf, ffffmmmmmmmmmmmm, fffmmmmmmmmmmmmm, ffmmmmmmmmmmmmm, fmmmmmmmmmmmmmmm, ffffffffffmmmmmm, ffffffmmmmmmmmf, fffffmmmmmmmmmm, ffffmmmmmmmmmmm, fffmmmmmmmmmmmm, ffmmmmmmmmmmmmm, fmmmmmmmmmmmmm, ffffffffffmmmmm, ffffffmmmmmmm, fffffmmmmmmmmm, ffffmmmmmmmmmm, fffmmmmmmmmmm, ffmmmmmmmmmmmm, fmmmmmmmmmmmmm, ffffffffffmmmm, ffffffmmmmmmm, fffffmmmmmmmm, ffffmmmmmmmmm, fffmmmmmmmmmm, ffmmmmmmmmmmm, fmmmmmmmmmmmm, ffffffffffmmm, ffffffmmmmmm, fffffmmmmmmm, ffffmmmmmmmm, fffmmmmmmmmm, ffmmmmmmmmmm, fmmmmmmmmmmm, ffffffffffmm, ffffffmmmmm, fffffmmmmmm, ffffmmmmmmm, fffmmmmmmmm, ffmmmmmmmmm, fmmmmmmmmmm, ffffffffffm, mmmmmmmmmmfffffffff, ffffffmmmmmmmmmmmmmm, mmmmmmmmmmmmmmffffff, ffmmmmmmmfmmfmfffff, mmffffffffmffmfmmmmm, mfmfmfmfmfmfinfmfmfmf, mmmmmmffffffffmmmmmm, ffffffmmmmmmmmffffff, mfmmffmfnmfffmmmmfn, fmffmmffmffmmmffffmf, fmff, mffm, fmffm, mfmmf, fmmf, fmffmm, mfnmff, mmff, fmmff, mmffm, fmffmmf, mfmmffm, mfmm, mfmmf, mfnmff, fmffmmf, mfmmffm, mmffm, ffmmf, fmfff, mfffm, fmfffm, fmfffmm, mfmmfff, mmfff, fmmfff, mmfffm, fmfffmmf, mfmmfffm, mfmm, mfmmf, mfmmfff, fmfffmmf, mfmmfffm, mmfffm, fffmmf, mfmmmf, fmmmf, fmffmmm, mfmmmff, mmmff, fmmff, mmmffm, fmfmmmf, mfmmmffm, mfmmm, mfmmmf, mfmmmff, fmffmmmf, mfmmmffm, mmmffm, ffmmmf, or any portion thereof comprising at least five consecutive modifications, wherein f is 2′-F and m is 2′-OMe.


In some embodiments, a provided oligonucleotide, e.g., a DMD oligonucleotide, comprises a pattern which comprises any of O, OO, OOO, OOOO, OOOOO, OOOOOO, OOOOOOO, OOOOOOOO, OOOOOOOOO, OOOOOOOOOO, OOOOOOOOOOO, S, SS, SSS, SSSS, SSSSS, SSSSSS, SSSSSSS, SSSSSSSS, SSSSSSSSS, SSSSSSSSSS, SSSSSSSSSSS, X, XX, XXX, XXXX, XXXXX, XXXXXX, XXXXXXX, XXXXXXXX, XXXXXXXXX, XXXXXXXXXX, XXXXXXXXXXX, R, RR, RRR. RRRR, RRRRR, RRRRRR, RRRRRRR, RRRRRRRR, RRRRRRRRR, RRRRRRRRRR, RRRRRRRRRRR, OSOOO, OSOO, OSO, SOOO, OXOOO, OXOO, OXO, XOO, ROOOR, ROROR, ROROR, ROORR, RROOR, ROOR, OOR, RRROR, RRRO, RROR, ROR, SOOOR, ROOOS, ROOO, ROO, RO, OOOS, SOOOS, SOOO, SOOSS, SOSOS, SOSO, OSOS, SOS, SSOOS, SSOO, SSO, SOO, SSSOS, SSSO, SOS, XOOOX, XOOO, XOO, XO, OOOX, OOX, OX SOOOS, SOOO, SOO, SO, OOOS, OOS, XXXXXXXXXXXXX, XXXXXXXXXXXX, XXXXXXXXXXX, XXXXXXXXXX, XXXXXXXXX, XXXXXXXX, XXXXXXX, XXXXXX, XXXXX, XXXX, SSSSRSSRSS, SSSSRSSRS, SSSSRSSR, SSSSRSS, SSSSRS, SSSS, SSS, SSSRSSRSS, SSRSSRSS, SRSSRSS, RSSRSS, SSRSS, SSRS, SSSRSSRSSS, SSRSSRSSS, SSSRSSRSS, SSRSSRSSSS, SRSSRSSSS, SSRSSRSSS, SSRSSSSSSS, SRSSSSSSS, SSRSSSSSS, SSSSSSRSSS, SSSSSRSSS, SSSSSSRSS, SSO, SOS, OSO, OSSO, SSOS, SSOSS, SSOSSO, SSOSSOS, SSOSSOSS, XO, XXO, XOX, XXOX, XXOXX, XXXOXX, XXXOX, XXOXX, XXXOXXX, XXOXXO, XXOXX, XXOXXOX, or XXOXXOXX, or any portion thereof comprising at least 5 consecutive internucleotidic linkages, wherein X is a stereorandom phosphorothioate linkage, S is a phosphorothioate linkage of the Sp configuration, and R is a phosphorothioate linkage of the Rp configuration.


Various oligonucleotides, including DMD oligonucleotides, having these modifications and patterns thereof, or portions thereof, are described in the present disclosure, including those listed in Table A1.


In some embodiments, a DMD oligonucleotide comprises a non-negatively charged internucleotidic linkage. Non-limiting examples of such an oligonucleotide include, inter alia: WV-11237, WV-11238, WV-11239, WV-11340, WV-11341, WV-11342, WV-11343, WV-11344, WV-11345, WV-11346, WV-11347, WV-12123, WV-12124, WV-12125, WV-12126, WV-12127, WV-12128, WV-12129, WV-12130, WV-12131, WV-12132, WV-12133, WV-12134, WV-12135, WV-12136, WV-12553, WV-12554, WV-12555, WV-12556, WV-12557, WV-12558, WV-12559, WV-12872, WV-12873, WV-12876, WV-12877, WV-12878, WV-12879, WV-12880, WV-12881, WV-12882, WV-12883, WV-12884, WV-12885, WV-12887, WV-12888, WV-13408, WV-13409, WV-13594, WV-13595, WV-13596, WV-13597, WV-13812, WV-13813, WV-13814, WV-13815, WV-13816, WV-13817, WV-13820, WV-13821, WV-13822, WV-13823, WV-13824, WV-13825, WV-13857, WV-13858, WV-13859, WV-13860, WV-13861, WV-13862, WV-13863, WV-13864, WV-13865, WV-14342, WV-14343, WV-14344, WV-14345, WV-14522, WV-14523, WV-14525, WV-14526, WV-14528, WV-14529, WV-14530, WV-14532, WV-14533, WV-14565, WV-14566, WV-14773, WV-14774, WV-14776, WV-14777, WV-14778, WV-14779, WV-14790, WV-14791, WV-15052, WV-15053, WV-15143, WV-15322, WV-15323, WV-15324, WV-15325, WV-15326, WV-15327, WV-15328, WV-15329, WV-15330, WV-15331, WV-15332, WV-15333, WV-15334, WV-15335, WV-15336, WV-15337, WV-15338, WV-15366, WV-15369, WV-15589, WV-15647, WV-15844, WV-15845, WV-15846, WV-15850, WV-15851, WV-15852, WV-15853, WV-15854, WV-15855, WV-15856, WV-15857, WV-15858, WV-15859, WV-15860, WV-15861, WV-15862, WV-15912, WV-15913, WV-15928, WV-15929, WV-15930, WV-15931, WV-15932, WV-15933, WV-15934, WV-15935, WV-15937, WV-15939, WV-15940, WV-15941, WV-15942, WV-15943, WV-15944, WV-15945, WV-15946, WV-15947, WV-15948, WV-15949, WV-15962, WV-15963, WV-15964, WV-15965, WV-15966, WV-15967, WV-15968, WV-15969, WV-15970, WV-15971, WV-15972, WV-15973, WV-16004, WV-16005, WV-16010, WV-16011, WV-16366, WV-16368, WV-16369, WV-16371, WV-16372, WV-16499, WV-16505, WV-16506, WV-16507, WV-17765, WV-17774, WV-17775, WV-17801, WV-17802, WV-17803, WV-17831, WV-17832, WV-17833, WV-17834, WV-17838, WV-17839, WV-17840, WV-17841, WV-17842, WV-17843, WV-17854, WV-17855, WV-17856, WV-17857, WV-17858, WV-17859, WV-17860, WV-17861, WV-17862, WV-17863, WV-17864, WV-17865, WV-17866, WV-17881, WV-17882, WV-17883, WV-18853, WV-18854, WV-18855, WV-18856, WV-18857, WV-18858, WV-18859, WV-18860, WV-18861, WV-18862, WV-18863, WV-18864, WV-18865, WV-18866, WV-18867, WV-18868, WV-18869, WV-18870, WV-18871, WV-18872, WV-18873, WV-18874, WV-18875, WV-18876, WV-18877, WV-18878, WV-18879, WV-18880, WV-18881, WV-18882, WV-18883, WV-18884, WV-18885, WV-18886, WV-18887, WV-18888, WV-18889, WV-18890, WV-18891, WV-18892, WV-18893, WV-18894, WV-18895, WV-18896, WV-18897, WV-18898, WV-18899, WV-18900, WV-18901, WV-18902, WV-18903, WV-18904, WV-18905, WV-18906, WV-18907, WV-18908, WV-18909, WV-18910, WV-18911, WV-18912, WV-18913, WV-18914, WV-18915, WV-18916, WV-18917, WV-18918, WV-18919, WV-18920, WV-18921, WV-18922, WV-18923, WV-18924, WV-18925, WV-18926, WV-18927, WV-18928, WV-18929, WV-18930, WV-18931, WV-18932, WV-18933, WV-18934, WV-18935, WV-18936, WV-18937, WV-18938, WV-18939, WV-18940, WV-18941, WV-18942, WV-18944, WV-18945, WV-19790, WV-19791, WV-19792, WV-19793, WV-19794, WV-19795, WV-19796, WV-19797, WV-19798, WV-19803, WV-19804, WV-19805, WV-19806, WV-19886, WV-19887, WV-19888, WV-19889, WV-19890, WV-19891, WV-19892, WV-19893, WV-19894, WV-19895, WV-19896, WV-19897, WV-19898, WV-19899, WV-19900, WV-19901, WV-19902, WV-19903, WV-19904, WV-19905, WV-19906, WV-19907, WV-19908, WV-19909, WV-19910, WV-19911, WV-19912, WV-19913, WV-19914, WV-19915, WV-19916, WV-19917, WV-19918, WV-19919, WV-19920, WV-19921, WV-19922, WV-19923, WV-19924, WV-19925, WV-19926, WV-19927, WV-19928, WV-19929, WV-19930, WV-19931, WV-19932, WV-19933, WV-19934, WV-19935, WV-19936, WV-19937, WV-19938, WV-19939, WV-19940, WV-19941, WV-19942, WV-19943, WV-19944, WV-19945, WV-19946, WV-19947, WV-19948, WV-19949, WV-19950, WV-19951, WV-19952, WV-19953, WV-19954, WV-19955, WV-19956, WV-19957, WV-19958, WV-19959, WV-19960, WV-19961, WV-19962, WV-19963, WV-19964, WV-19965, WV-19966, WV-19967, WV-19968, WV-19969, WV-19970, WV-19971, WV-19972, WV-19973, WV-19974, WV-19975, WV-19976, WV-19977, WV-19978, WV-19979, WV-19980, WV-19981, WV-19982, WV-19983, WV-19984, WV-19985, WV-19986, WV-19987, WV-19988, WV-19989, WV-19990, WV-19991, WV-19992, WV-19993, WV-19994, WV-19995, WV-19996, WV-19997, WV-19998, WV-19999, WV-20000, WV-20001, WV-20002, WV-20003, WV-20004, WV-20005, WV-20006, WV-20007, WV-20008, WV-20009, WV-20010, WV-20011, WV-20012, WV-20013, WV-20014, WV-20015, WV-20016, WV-20017, WV-20018, WV-20019, WV-20020, WV-20021, WV-20022, WV-20023, WV-20024, WV-20025, WV-20026, WV-20027, WV-20028, WV-20029, WV-20030, WV-20031, WV-20032, WV-20033, WV-20034, WV-20035, WV-20036, WV-20037, WV-20038, WV-20039, WV-20040, WV-20041, WV-20042, WV-20043, WV-20044, WV-20045, WV-20046, WV-20047, WV-20048, WV-20049, WV-20050, WV-20051, WV-20052, WV-20053, WV-20054, WV-20055, WV-20056, WV-20057, WV-20058, WV-20059, WV-20060, WV-20061, WV-20062, WV-20063, WV-20064, WV-20065, WV-20066, WV-20067, WV-20068, WV-20069, WV-20070, WV-20071, WV-20072, WV-20073, WV-20074, WV-20075, WV-20076, WV-20077, WV-20078, WV-20079, WV-20080, WV-20081, WV-20082, WV-20083, WV-20084, WV-20085, WV-20086, WV-20087, WV-20088, WV-20089, WV-20090, WV-20091, WV-20092, WV-20093, WV-20094, WV-20095, WV-20096, WV-20097, WV-20098, WV-20099, WV-20100, WV-20101, WV-20102, WV-20103, WV-20104, WV-20105, WV-20106, WV-20107, WV-20108, WV-20109, WV-20110, WV-20111, WV-20112, WV-20113, WV-20114, WV-20115, WV-20116, WV-20117, WV-20118, WV-20119, WV-20120, WV-20121, WV-20122, WV-20123, WV-20124, WV-20125, WV-20126, WV-20127, WV-20128, WV-20129, WV-20130, WV-20131, WV-20132, WV-20133, WV-20134, WV-20135, WV-20136, WV-20137, WV-20138, WV-20139, WV-20140, WV-20141, WV-20142, WV-20143, WV-20144, WV-20145, WV-20146, WV-20147, WV-20148, WV-20149, WV-20150, WV-20151, WV-20152, WV-20153, WV-20154, WV-20155, WV-20156, WV-20157, WV-20158, WV-20159, WV-20160, WV-21210, WV-21211, WV-21212, WV-21217, WV-21218, WV-21219, WV-21226, WV-21245, WV-21252, WV-21253, WV-21257, WV-21258, WV-21374, WV-21375, WV-21376, WV-21377, WV-21378, WV-21379, WV-21380, WV-21381, WV-21382, WV-21383, WV-21384, WV-21385, WV-21386, WV-21387, WV-21388, WV-21389, WV-21390, WV-21578, WV-21579, WV-21580, WV-21581, WV-21582, WV-21583, WV-21584, WV-21585, WV-21586, WV-21587, WV-21588, WV-21589, WV-21590, WV-21591, WV-21592, WV-21593, WV-21594, WV-21595, WV-21596, WV-21597, WV-21598, WV-21599, WV-21600, WV-21601, WV-21602, WV-21603, WV-21604, WV-21605, WV-21606, WV-21607, WV-21608, WV-21609, WV-21610, WV-21611, WV-21612, WV-21613, WV-21614, WV-21615, WV-21616, WV-21617, WV-21618, WV-21619, WV-21620, WV-21621, WV-21622, WV-21623, WV-21624, WV-21625, WV-21626, WV-21627, WV-21628, WV-21629, WV-21630, WV-21631, WV-21632, WV-21633, WV-21634, WV-21635, WV-21636, WV-21637, WV-21638, WV-21639, WV-21640, WV-21641, WV-21642, WV-21643, WV-21644, WV-21645, WV-21646, WV-21647, WV-21648, WV-21649, WV-21650, WV-21651, WV-21652, WV-21653, WV-21654, WV-21655, WV-21656, WV-21657, WV-21658, WV-21659, WV-21660, WV-21661, WV-21662, WV-21663, WV-21664, WV-21665, WV-21666, WV-21667, WV-21668, WV-21669, WV-21670, WV-21671, WV-21672, WV-21673, WV-21723, WV-21724, WV-21725, WV-21726, WV-21727, WV-21728, WV-21729, WV-21730, WV-21731, WV-21732, WV-21733, WV-21734, WV-21735, WV-21736, WV-21737, WV-21738, WV-21739, WV-21740, WV-21741, WV-21742, WV-21743, WV-21744, WV-21745, WV-21746, WV-21747, WV-21748, WV-21749, WV-21750, WV-21751, WV-21752, WV-21753, WV-21754, WV-21755, WV-21756, WV-21757, WV-21758, WV-21759, WV-21760, WV-21761, WV-21762, WV-21763, WV-21764, WV-21765, WV-21766, WV-21767, WV-21768, WV-21769, WV-21770, WV-21771, WV-21772, WV-21773, WV-21774, WV-21775, WV-21776, WV-21777, WV-21778, WV-21779, WV-21780, WV-21781, WV-21782, WV-21783, WV-21784, WV-21785, WV-21786, WV-21787, WV-21788, WV-21789, WV-21790, WV-21791, WV-21792, WV-21793, WV-21794, WV-21795, WV-21796, WV-21797, WV-21798, WV-21799, WV-21800, WV-21801, WV-21802, WV-21803, WV-21804, WV-21805, WV-21806, WV-21807, WV-21808, WV-21809, WV-21810, WV-21811, WV-21812, WV-21813, WV-21814, WV-21815, WV-21816, WV-21817, WV-21818, WV-22753, WV-23576, WV-23577, WV-23578, WV-23579, WV-23936, WV-23937, WV-23938, and WV-23939.


Example Dystrophin Oligonucleotides and Compositions for Exon Skipping of Exon 23

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for mediating skipping of exon 23 in mouse DMD. Non-limiting examples include oligonucleotides and compositions of WV-10256, WV-10257, WV-10258, WV-10259, WV-10260, WV-1093, WV-1094, WV-1095, WV-1096, WV-1097. WV-1098, WV-1099, WV-1100, WV-1101, WV-1102, WV-1103, WV-1104, WV-1105, WV-1106, WV-1121, WV-1122, WV-1123, WV-11231, WV-11232, WV-11233, WV-11234, WV-11235, WV-11236, WV-1124, WV-1125, WV-1126, WV-1127, WV-1128, WV-1129, WV-1130, WV-11343, WV-11344, WV-11345, WV-11346, WV-11347, WV-1141, WV-1142, WV-1143, WV-1144, WV-1145, WV-1146, WV-1147, WV-1148, WV-1149, WV-1150, WV-1678. WV-1679, WV-1680, WV-1681, WV-1682, WV-1683, WV-1684, WV-1685, WV-2733, WV-2734, WV-4610, WV-4611, WV-4614, WV-4615, WV-4616, WV-4617, WV-4618, WV-4619, WV-4620, WV-4621, WV-4622, WV-4623, WV-4624, WV-4625, WV-4626, WV-4627, WV-4628, WV-4629, WV-4630, WV-4631, WV-4632, WV-4633, WV-4634, WV-4635, WV-4636, WV-4637, WV-4638, WV-4639, WV-4640, WV-4641, WV-4642. WV-4643, WV-4644, WV-4645, WV-4646, WV-4647, WV-4648, WV-4649, WV-4650, WV-4651, WV-4652, WV-4653, WV-4654, WV-4655, WV-4656, WV-4657, WV-4658, WV-4659, WV-4660, WV-4661, WV-4662, WV-4663, WV-4664, WV-4665, WV-4666, WV-4667, WV-4668, WV-4669, WV-4670, WV-4671, WV-4672. WV-4673, WV-4674, WV-4675, WV-4676, WV-4677, WV-4678, WV-4679, WV-4680, WV-4681, WV-4682, WV-4683, WV-4684, WV-4685, WV-4686, WV-4687, WV-4688, WV-4689, WV-4690, WV-4691, WV-4692, WV-4693, WV-4694, WV-4695, WV-4696, WV-4697, WV-6010, WV-7677, WV-7678, WV-7679, WV-7680, WV-7681, WV-7682, WV-7683, WV-7684, WV-7685, WV-7686, WV-7687, WV-7688, WV-7689, WV-7690, WV-7691, WV-7692. WV-7693. WV-7694, WV-7695, WV-7696, WV-7697, WV-7698, WV-7699, WV-7700, WV-7701, WV-7702, WV-7703, WV-7704, WV-7705, WV-7706, WV-7707, WV-7708, WV-7709, WV-7710, WV-7711, WV-7712, WV-7713, WV-7714, WV-7715, WV-7716, WV-7717, WV-7718, WV-7719, WV-7720, WV-7721, WV-7722. WV-7723, WV-7724, WV-7725, WV-7726, WV-7727, WV-7728, WV-7729, WV-7730, WV-7731, WV-7732, WV-7733, WV-7734, WV-7735, WV-7736, WV-7737. WV-7738. WV-7739, WV-7740, WV-7741, WV-7742, WV-7743, WV-7744, WV-7745, WV-7746, WV-7747, WV-7748, WV-7749, WV-7750, WV-7751, WV-7752, WV-7753, WV-7754, WV-7755, WV-7756, WV-7757, WV-7758, WV-7759, WV-7760, WV-7761, WV-7762, WV-7763, WV-7764, WV-7765, WV-7766, WV-7767. WV-7768, WV-7769, WV-7770, WV-7771, WV-9163, WV-9164, WV-9165, WV-9166, WV-9167, WV-9168, WV-9169, WV-9170, WV-9171, WV-9172, WV-9173, WV-9174, WV-9175, WV-9176, WV-9177, WV-9178, WV-9179, WV-9180, WV-9181, WV-9182, WV-9183, WV-9184, WV-9185, WV-9186, WV-9187, WV-9188, WV-9189, WV-9190, WV-9191, WV-9192, WV-9193, WV-9194, WV-9195, WV-9196, WV-9197, WV-9198, WV-9199, WV-9200. WV-9201. WV-9202, WV-9203, WV-9204, WV-9205, WV-9206, WV-9207, WV-9208, WV-9209, WV-9210, WV-9408, WV-9409, WV-9410, WV-9411, WV-9412, WV-9413, WV-9414, WV-9415, WV-9416, WV-9417, WV-9418, WV-9419, WV-9420, WV-943, WV-9875, WV-9876, WV-9877, WV-9878, and WV-9879, and other oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


In some embodiments, a DMD oligonucleotide is capable of mediating skipping of exon 23. Non-limiting examples of such DMD oligonucleotides include: WV-12566, WV-12567, WV-12568, WV-12884, WV-12885, WV-12886, WV-12887, WV-12888, WV-12571, and WV-12572, and other DMD oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Exon skipping of DMD exon 23 and other exons may be assayed in patient-derived cell lines and in cells from the mdx mouse model (which carries a nonsense point mutation in the in-frame exon 23 (Sicinski et al. 1989 Science 244: 1578-1580). By skipping exon 23 the nonsense mutation is bypassed while the reading frame is maintained). Additional strains of mdx mice, including the mdx2cv, mdx4cv and mdx5cv alleles were reported by Wha Bin Im et al. 1996 Hum. Mol. Gen. 5: 1149-1153.


Data showing the capability of various DMD oligonucleotides to mediate skipping of exon 23 is shown herein, inter alia, in Table 1A.1, Table 1A.2, Table 1A.3, and Table 25C.1 to Table 25C.5.


Example Dystrophin Oligonucleotides and Compositions Targeting Exon 44 and Adjoining Intronic Region 3′ to Exon 44

In some embodiments, a DMD oligonucleotide targets DMD exon 44 or the adjoining intronic region 3′ to DMD exon 44.


In some embodiments, a DMD oligonucleotide targets DMD exon 44 or the adjoining intronic region 3′ to DMD exon 44, and the oligonucleotide is capable of mediating multiple exon skipping (e.g., of exons 45 to 55, or 45 to 57).


Reportedly, a phenomenon known as back-splicing can occur, in which, for example, a portion of the 3′ end of exon 55 interacts with a portion of the 5′ end of exon 45, forming a circular RNA (circRNA), which can thus skip multiple exons, e.g., all exons from exon 45 to 55, inclusive. The phenomenon can also reportedly occur between exon 57 and exon 45, skipping multiple exons, e.g., all exons from exon 45 to 57, inclusive. Back-splicing is described in the literature, e.g., in Suzuki et al. 2016 Int. J. Mol. Sci. 17.


Without wishing to be bound by any particular theory, the present disclosure suggests that it may be possible for a DMD oligonucleotide targeting DMD exon 44 or the adjoining intronic region 3′ to exon 44 may be able to mediate splicing of exons 45 to 55, or of exons 45 to 57, which exons are excised as a single piece of circular RNA (circRNA) designated 45-55 (or 55-45) or 45-57 (or 5745), respectively.


Several oligonucleotides were designed to target exon 44 or intron 44, or which straddle exon 44 and intron 44. In some embodiments, oligonucleotides designed to target exon 44 or intron 44, or which straddle exon 44 and intron 44 are tested to determine if they can increase the amount of backslicing and/or multiple-exon skipping.


In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for mediating exon skipping in human DMD, wherein the base sequence of the oligonucleotide is a sequence of exon 44 or intron 44, or a portion of both exon 44 and intron 44. Non-limiting examples include oligonucleotides and compositions of WV-13963, WV-13964, WV-13965, WV-13966, WV-13967, WV-13968, WV-13969, WV-13970, WV-13971, WV-13972, WV-13973, WV-13974, WV-13975, WV-13976, WV-13977, WV-13978, WV-13979, WV-13980, WV-13981, WV-13982, WV-13983, WV-13984, WV-13985, WV-13986, WV-13987, WV-13988, WV-13989, WV-13990, WV-13991, WV-13992, WV-13993, WV-13994, WV-13995, WV-13996, WV-13997, WV-13998, WV-13999, WV-14000, WV-14001, WV-14002, WV-14003, WV-14004, WV-14005, WV-14006, WV-14007, WV-14008, WV-14009, WV-14010, WV-14011, WV-14012, WV-14013, WV-14014, WV-14015, WV-14016, WV-14017, WV-14018, WV-14019, WV-14020, WV-14021, WV-14022, WV-14023, WV-14024, WV-14025, WV-14026, WV-14027, WV-14028, WV-14029, WV-14030, WV-14031, WV-14032, WV-14033, WV-14034, WV-14035, WV-14036, WV-14037, WV-14038, WV-14039, WV-14040, WV-14041, WV-14042, WV-14043, WV-14044, WV-14045, WV-14046, WV-14047, WV-14048, WV-14049, WV-14050, WV-14051, WV-14052, WV-14053, WV-14054, WV-14055, WV-14056, WV-14057, and WV-14058, and other oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Data showing the capability of various DMD oligonucleotides targeting exon 44 or the adjacent intron 3′ to exon 44 are shown in Table 22A.2 and Table 22A.3.









TABLE 1A.1







Example data of certain oligonucleotides














Oligo-








nucleotide
10
3.33
1.11
0.37
0.12


















WV-7684
4.2
2.1
1
0.2
0.1




4.1
2.1
0.9
0.2
0.1




5.2
3.2
1.5
0
0




5.1
3.3
1.1
0
0



WV-12886
27.7
17.5
10
5
2.4




28
17.6
9.8
5
2.3




29.8
22.8
13.1

3.7




32.7
21.5
11.9

3.5



WV-11231
3.8
2.1
1.4
0.4
0.3




3.8
2.1
1.3
0.5
0.3




5.3
2.7
1.4
0.7
0.2




5.1
2.4
1.6
0.8
0.2



WV-10258
24.5
19.9
9.5
4.8
2.8




25.3
20.1
9.1
4.8
2.7




24.4
19.4
13.2
6.2
3.4




24.2
19.7
13.6
6.3
3.5



WV-11345
29.2
24.9
15.9
12.1
5




30.2
24.9
15.5
11.9
5.1




30.8
25.8
17.8




32.3
25.3
17.6



WV-12885
26.8
23.3
16.5
8
2.8




27.5
23
17.2
8.2
3.8




32.3
25.8
16.3

6.1




30.7
27.1
16.3

6.3



WV-15589
22.2
14.8
11.2
4.6
2.2




21.7
15
12.3
4.4
2.3




24.1
11.3
11.4




23.5
8.6
10.8










Oligonucleotides to DMD exon 23 were tested in vitro for their ability to induce skipping of exon 23.


H2K cells were dosed with oligonucleotide in differentiation media for 4 days. RNA was extracted with Trizol, pre-amp then treated with TaqMan with multiplexed reading of skipped and total DMD transcript; absolute quantification was via standard curve g-Blocks. In these and various other studies, numbers indicate amount of skipping (i.e., skipping efficiency; or the percentage of skipping as a percentage of total mRNA transcript).


Oligonucleotides were tested at 10, 3.33, 1.11, 0.37, or 0.12 uM.









TABLE 1A.2







Activity of certain oligonucleotides










PBS
WV-11345
WV-17774
WV-18945










Quadriceps














0.01
0.01
28.61
30.25
3.93
3.92
2.1
1.53


0.01
0.12
26.34
24.53
10.82
10.73
1.16
0.91


0.15
0.06
40.29
36.57
14.79
13.47
2.04
0.92




30
30.05
10.13
6.19
5.05
3.97




23.24
25.18
13.92
14.36
2.4
1.77







Gastrocnemius














0.02
0.02
22.27
13.18
36.41
33.55
2.46
1.95


0.02
0.01
14.74
8.03
18.02
19.55
0.6
0.27


0.09
0.11
11.12
3.68
16.17
15.44
0.36
0.41




22.82
28.29
11.22
10.94
0.72
0.75




18.09
15.66
28.85
27.9
0.61
3.14







Diaphram














0.04
0.03
27.05
24
7.11
4.07
0.72
0.82


0.01
1.13
16.22
16.2
18.1
18.6
0.81
0.68


0.04
0.09
15.16
13.23
9.66
10.02
0.33
0.32




33.66
36.52
4.55
4.86
0.63
0.21




20.03
20.55
8.38
9.46
0.56
0.91







Tibialis














0.01
0.01
34.34
35.04
16.2
15.77
0
0


0
0
28.7
23.07
42.94
42.97


0.04
0.02
7.87
9.87
12.1
14.51




17.01
14.68
15.16
13.91




45.6
41.54









In this study, in vivo skipping activity was measured in MDX mouse model after single IV dose.


MDX mice received single IV dose of 150 mg/kg. Necropsied flash frozen tissues (Quadriceps, Diaphragm, etc.) were pulverized and RNA extracted with Trizol. Skipping efficiency was determined by multiplex TaqMan assay for ‘total’ and ‘exon-23 skipped’ DMD transcripts, normalized to gBlock standard curves.


Numbers indicate amount of skipping DMD exon 23 (as a percentage of total mRNA, where 100 would represent 100% skipped).









TABLE 1A.3







Activity of certain oligonucleotides













10 uM
3.3 uM
1.1 uM
0.3 uM
0.1 uM
















WV-
32.1
17.7
11.1
3.9
1.9


10258
33.2
19.4
13
4.6
2.1



29
18.5
11.5
11.1
6.4



29
18.6
12.4
11.3
6


WV-
6.8
7.6
0.7
1.6
0.1


11233
6.9
7.8
0.5
1.3
0



11.1
1.3
1.6
0.6
0.7



11
1.3
1.6
0.4
0.7


WV-


11345



42
29.3
16.6
8.1
5



40
27.4
17.4
8.2
4.7


WV-


18944



7.7
4
1.4
1
0.7



8
4
1.7
1
0.8


WV-
44.5
38.2
26.7
11.9
6.6


17774
45.2
37.5
26.3
12.5
6.6



44
37.2
26.7
14.7
4.8



44.7
35.6
27.2
13.2
4.5


WV-
14.1
11.6
5
1.9
1.5


18945
14.3
11.2
4.8
2
1.5



21.4
11.4
4.7
2.4
2.6



21.3
11.1
4.7
2.3
3


Mock
0.2

0.6
0



0.3

0.8
0



2.5
0
0.3
2.5
1.2



2
0
0.4
2.5
1.1









Oligonucleotides were tested in vitro for ability to skip DMD exon 23.


Oligonucleotides were tested at 10, 3.3., 1.1, 0.3, and 0.1 uM.


Numbers indicate amount of skipping DMD exon 23 (as a percentage of total mRNA, where 100 would represent 100% skipped).


Example Dystrophin Oligonucleotides and Compositions for Exon Skipping of Exon 45

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for mediating skipping of exon 45 in DMD (e.g., of mouse, human, etc.).


In some embodiments, a provided DMD oligonucleotide and/or composition is capable of mediating skipping of exon 45. Non-limiting examples of such DMD oligonucleotides and compositions include those of: WV-11047, WV-11048, WV-11049, WV-11050, WV-11051, WV-11052, WV-11053, WV-11054, WV-11055, WV-11056, WV-11057, W4V-11058, WV-11059, WV-11060, WV-11061, WV-11062, WV-11063, WV-11064, WV-11065, WV-11066, WV-11067, WV-11068, WV-11069, WV-11070, WV-11071, WV-11072, WV-11073, WV-11074, WV-11075, WV-11076, WV-11077, WV-11078, WV-11079, WV-11080, WV-11081, WV-11082, WV-11083, WV-11084, WV-11085, WV-11086, WV-11087, WV-11088, WV-11089, WV-11090, WV-11091, WV-11092, WV-11093, WV-11094, WV-11095, WV-11096, WV-11097, WV-11098, WV-11099, WV-11100, WV-11101, WV-11102, WV-11103, WV-11104, WV-11105, WV-9594, WV-9595, WV-9596, WV-9597, WV-9598, WV-9599, WV-9600, WV-9601, WV-9602, WV-9603, WV-9604, WV-9605, WV-9606, WV-9607, WV-9608. WV-9609, WV-9610, WV-9611, WV-9612, WV-9613, WV-9614, WV-9615, WV-9616, WV-9617, WV-9618, WV-9619, WV-9620, WV-9621, WV-9622, WV-9623, WV-9624, WV-9625, WV-9626, WV-9627, WV-9628, WV-9629, WV-9630, WV-9631, WV-9632, WV-9633, WV-9634, WV-9635, WV-9636, WV-9637, WV-9638, WV-9639, WV-9640, WV-9641, WV-9642, WV-9643, WV-9644, WV-9645, WV-9646, WV-9647, WV-9648, WV-9649, WV-9650. WV-9651. WV-9652, WV-9653, WV-9654, WV-9655, WV-9656, WV-9657, WV-9658. WV-9659. WV-9762. WV-9763, WV-9764, WV-9765, WV-9766, WV-9767, WV-9768, WV-9769, WV-9770, WV-9771, WV-9772, WV-9773, WV-9774, WV-9775, WV-9776, WV-9777, WV-9778, WV-9779, WV-9780, WV-9781, WV-9782, WV-9783, WV-9784, WV-9785, WV-9786, WV-9787, WV-9788, WV-9789, WV-9790, WV-9791. WV-9792, WV-9793, WV-9794, WV-9795, WV-9796, WV-9797, WV-9798, WV-9799, WV-9800, WV-9801, WV-9802, WV-9803, WV-9804, WV-9805, WV-9806, WV-9807, WV-9808, WV-9809, WV-9810, WV-9811, WV-9812, WV-9813, WV-9814, WV-9815, WV-9816, WV-9817, WV-9818, WV-9819, WV-9820, WV-9821, WV-9822, WV-9823, WV-9824, WV-9825, and WV-9826, and other DMD oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


As shown in various tables from Table 1 to Table 22 (and parts thereof), various DMD oligonucleotides comprising various patterns of modifications were testing for skipping of various exons. The Tables show test results of certain DMD oligonucleotides. To assay exon skipping of DMD, certain DMD oligonucleotides were tested in vitro in Δ52 human patient-derived myoblast cells (also designated DEL52) and/or Δ45-52 human patient-derived myoblast cells (human cells wherein the exon 52 or exons 45-52 were already deleted, also designated DEL45-52). Unless noted otherwise, in various experiments, oligonucleotides were delivered gymnotically. In the tables, generally, 100.00 would represent 1000% skipping and 0.0 would represent 0% skipping. Various DMD oligonucleotides are described in detail in Table A1.


Table 1A.4, below, shows example data of some DMD oligonucleotides in skipping exon 45. Procedure: A48-50 (De148-50 or D48-50) myoblasts were treated with 10 uM oligonucleotides for 4 days in differentiation media.









TABLE 1A.4





Example data of certain oligonucleotides.





















WV-11047
0.024
0.009
0.012
0.016



WV-11051
0.022
0.024
0.046
0.014



WV-11052
0.024
0.032
0.014
0.026



WV-11053
0.027
0.009
0.017
0.023



WV-11054
0.029
0.038
0.035
0.028



WV-11055
0.030
0.025
0.016
0.033



WV-11056
0.029
0.043
0.018
0.031



WV-11057
0.000
0.015
0.000
0.032



WV-11058
0.044
0.029
0.049
0.024



WV-11059
0.025
0.041
0.049
0.024



WV-11062
0.218
0.175
0.151
0.231



WV-11063
0.472
0.730
0.456
0.594



WV-11064
0.297
0.307
0.334
0.345



WV-11065
0.651
0.630
0.675
0.544



WV-11066
0.124
0.087
0.137
0.153



WV-11067
0.183
0.210
0.238
0.224



WV-11068
0.212
0.266
0.244
0.406



WV-11069
0.389
0.715
0.407
0.744



WV-11070
1.677
1.473
1.483
1.677



WV-11071
0.385
0.362
0.413
0.310



WV-11072
0.146
0.250
0.142
0.268



WV-11073
0.709
0.876
0.721
0.835



WV-11074
2.015
2.207
1.992
2.527



WV-11075
0.254
0.238
0.157
0.220



WV-11076
0.000
2.715
0.000
2.315



WV-11077
1.568
1.414
1.388
1.308



WV-11078
3.915
3.122
4.175
3.076



WV-11079
7.178
8.083
8.257
6.955



WV-11080
1.467
1.202
1.726
1.155



WV-11081
9.279
4.780
10.244
4.512



WV-11082
3.377
2.646
3.242
2.256



WV-11083
3.964
2.631
4.001
2.419



WV-11084
11.336
7.481
13.752
8.270



WV-11085
1.818
0.679
1.787
2.003



WV-11086
16.017
15.215
17.207
15.191



WV-11087
1.104
0.766
1.728
1.030



WV-11088
14.320
12.940
14.287
10.746



WV-11089
16.126
13.507
15.515
15.389



WV-11090
1.148
0.596
1.405
0.647



WV-11091
0.105
0.069
0.311
0.049



WV-11092
0.094
0.066
0.111
0.066



WV-11093
0.123
0.060
0.087
0.037



WV-11094
0.054
0.062
0.060
0.038



WV-11095
0.317
0.064
0.241
0.109



WV-11096
0.062
0.061
0.096
0.059



WV-11098
0.026
0.033
0.032
0.024



WV-11100
0.015
0.012
0.014
0.011



WV-11101
0.000
0.021
0.000
0.011



WV-11102
0.019
0.030
0.025
0.017



WV-11103
0.017
0.023
0.014
0.029



WV-11104
0.053
0.050
0.067
0.035



WV-11105
0.017
0.033
0.034
0.051



Mock
0.050
0.018
0.010
0.037



Mock
0.019
0.023
0.009
0.023











Numbers represent level of skipping, wherein 100 would represent 100% skipping and 0 would represent 0% skipping. For various data described herein, “Mock” is a negative control, in which water was used instead of an oligonucleotide.


Table 1B.1, and 1B.2 Example data of certain oligonucleotides.


The Tables below show example data of some DMD oligonucleotides in skipping exon 45. Procedure: Δ48-50 (De148-50 or DEL48-50 or D48-50) myoblasts were treated with 10 or 3 uM oligonucleotides for 4 days in differentiation media.


Oligonucleotides were dosed at 10 μM and 3 μM for 4 days in DEL48-50 Myoblasts. Certain oligonucleotides comprise a non-negatively charged internucleotidic linkage, as detailed in Table A1.









TABLE 1B.1







Example data of certain oligonucleotides.










10 um
3 um



















WV-13810
7.0
6.5
7.1
6.5
2.7
2.8
2.5
2.3


WV-13811
8.4
8.0
9.1
9.5
3.3
3.2
2.4
2.8


WV-13812
22.8
21.1
22.9
23.7
9.2
9.2
10.0
9.7


WV-13813
19.4
19.9
20.1
20.2
7.6
8.1
7.5
7.4


WV-13814
13.6
13.6
13.5
13.3
5.1
4.3
4.9
4.9


WV-13815
26.9
25.6
23.9
24.3
9.0
8.9
8.2
8.6


WV-13816
37.0
35.0
31.8
33.8
14.0
14.5
14.6
12.0


WV-13817
52.7
55.4
54.3
54.2
24.9
26.1
21.9
21.7


WV-14531
2.9
2.7
2.8
2.9
0.7
0.9
1.0
1.2


WV-14532
4.3
4.3
3.8
4.1
1.4
1.3
1.1
1.0


WV-14533
7.9
7.6
7.3
7.9
1.9
2.1
2.4
2.1


WV-11086
18.3
20.1
18.4
18.4
7.9
7.7
7.6
8.1
















TABLE 1B.2







Example data of certain oligonucleotides.










10 uM
3 uM



















WV-13818
3.2
2.8
3.2
2.9
0.9
0.8
1.1
1.2


WV-13819
3.8
3.8
3.0
2.9
1.0
0.9
0.9
1.0


WV-13820
6.6
6.7
6.4
6.3
3.2
3.0
2.9
3.0


WV-13821
7.4
6.5
7.4
6.9
2.2
1.9
2.5
1.9


WV-13822
9.5
9.5
8.1
8.6
3.4
3.5
3.4
3.9


WV-13823
10.4
10.9
11.2
10.5
4.2
5.0
4.1
4.4


WV-13824
17.1
16.3
16.1
15.6
8.1
7.6
7.1
7.0


WV-13825
20.1
19.3
22.5
20.6
9.9
9.8
9.0
9.6


WV-14527
2.2
1.9
1.4
2.0
0.7
0.7
0.9
0.7


WV-14528
2.3
2.2
2.5
2.4
1.0
0.9
1.0
1.0


WV-14529
5.2
1.8
2.0
2.0
0.7
0.7
0.8
0.8


WV-11089
2.6
2.7
2.9
2.5
0.9
0.9
1.4
1.3










Additional data related to multiple exon skipping mediated by DMD oligonucleotides which target DMD exon 45 are shown in Table 22A.1.


Example Dystrophin Oligonucleotides and Compositions which Target Exon 46

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for targeting exon 46 and/or mediating skipping of exon 46 in human DMD. Non-limiting examples include oligonucleotides and compositions of WV-13701, WV-13702, WV-13703, WV-13704, WV-13705, WV-13706, WV-13707, WV-13708, WV-13709, WV-13710, WV-13711, WV-13712, WV-13713, WV-13714, WV-13715, WV-13716, WV-13780, and WV-13781, and other oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


In some embodiments, DMD oligonucleotides are first tested for single exon skipping to select suitable oligonucleotides, then tested combinatorially (in combination with another DMD oligonucleotide) for multi-exon skipping.


In some embodiments, DMD oligonucleotides targeting DMD exon 46, 47, 52, 54 or 55 are first tested for single exon skipping to select suitable oligonucleotides, then tested combinatorially (in combination with another DMD oligonucleotide) for multi-exon skipping.









TABLE 2A





Example data of certain oligonucleotides. Numbers


indicate percentage of exon 46 skipping.





















WV-13701
0.3
0.3
0.5
0.4



WV-13702
0.3
0.4
0.5
0.3



WV-13703
0.9
0.9
1.1
0.8



WV-13704


9.7
5.4



WV-13705
4.9
5.1
5.9
3.4



WV-13706


4.6
4.8



WV-13707
8.5
7.4
5.2
5.1



WV-13708
9.4
10.8
6.0
5.6



WV-13709
8.8
12.1
8.1
4.9



WV-13710
0.1
0.1
0.1
0.1



WV-13711
0.1
0.1
0.0
0.1



WV-13712
3.4
4.7
2.4
2.4



WV-13713
0.5

0.7
0.5



WV-13714
0.6

0.5
0.4



WV-13715
0.9

0.6
0.7



WV-13716
1.5
3.9
1.1
2.8



WV-13780
10.1
5.2

6.1



WV-13781
7.7
6.4

5.0



Mock
0.0
0.0
0.0
0.0



Mock
0.0


0.0










Example Dystrophin Oligonucleotides and Compositions which Target Exon 47

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for targeting exon 47 and/or mediating skipping of exon 47 in human DMD. Non-limiting examples include oligonucleotides and compositions of exon 47 oligos include: WV-13717, WV-13718, WV-13719, WV-13720, WV-13721, WV-13722, WV-13723, WV-13724, WV-13725, WV-13726, WV-13727, WV-13728, WV-13729, WV-13730, WV-13731, WV-13732, WV-13788, and WV-13789, and other oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides









TABLE 3A





Example data of certain oligonucleotides. Numbers


represent percentage of exon 47 skipping.



















WV-13717
0.0
0.0



WV-13718
0.0
0.0



WV-13719
0.0
0.0



WV-13720
0.0
0.0



WV-13721
0.0
0.0



WV-13722
0.0
0.0



WV-13723
0.5
0.5



WV-13724
1.4
1.8



WV-13725
0.6
0.4



WV-13726
0.0
0.0



WV-13727
1.1
1.1



WV-13728
1.1
1.1



WV-13729
0.2
0.2



WV-13730
0.5
0.6



WV-13731
1.6
1.8



WV-13732
0.1
0.6










Example Dystrophin Oligonucleotides and Compositions for Exon Skipping of Exon 51

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for mediating skipping of exon 51 in DMD (e.g., of mouse, human, etc.).


In some embodiments, a provided DMD oligonucleotide and/or composition is capable of mediating skipping of exon 51. Non-limiting examples of such DMD oligonucleotides and compositions include those of: ONT-395, WV-10255, WV-10261, WV-10262, WV-10634, WV-10635, WV-10636, WV-10637, WV-10868, WV-10869, WV-10870, WV-10871, WV-10872, WV-10873, WV-10874, WV-10875, WV-10876, WV-10877, WV-10878, WV-10879, WV-10880, WV-10881, WV-10882, WV-10883, WV-10884, WV-10885, WV-10886, WV-10887, WV-10888, WV-1107, W4V-1108, WV-1109, WV-1110, WV-1111, WV-1112, WV-1113, WV-1114, WV-1115, WV-1116, WV-1117, WV-1118, WV-1119, WV-1120, WV-11237, WV-11238, WV-11239, WV-1131, WV-1132, WV-1133, WV-1134, WV-1135, WV-1136, WV-1137, WV-1138, WV-1139, WV-1140, WV-1151, WV-1152, WV-1153, WV-1154, WV-1155, WV-1156, WV-1157, WV-1158, WV-1159, WV-1160, WV-1709, WV-1710, WV-1711, WV-1712, WV-1713, WV-1714, WV-1715, WV-1716, WV-2095, WV-2096, WV-2097, WV-2098, WV-2099, WV-2100, WV-2101, WV-2102, WV-2103, WV-2104. WV-2105. WV-2106, WV-2107, WV-2108, WV-2109, WV-2165, WV-2179, WV-2180, WV-2181, WV-2182, WV-2183, WV-2184, WV-2185, WV-2186, WV-2187, WV-2188, WV-2189, WV-2190, WV-2191, WV-2192, WV-2193, WV-2194, WV-2195, WV-2196, WV-2197, WV-2198, WV-2199, WV-2200, WV-2201, WV-2202. WV-2203, WV-2204, WV-2205, WV-2206, WV-2207, WV-2208, WV-2209, WV-2210, WV-2211, WV-2212, WV-2213, WV-2214, WV-2215, WV-2216, WV-2217, WV-2218, WV-2219, WV-2220, WV-2221, WV-2222, WV-2223, WV-2224, WV-2225, WV-2226, WV-2227, WV-2228, WV-2229, WV-2230, WV-2231, WV-2232, WV-2233, WV-2234, WV-2235, WV-2236, WV-2237, WV-2238, WV-2239, WV-2240, WV-2241, WV-2242, WV-2243, WV-2244. WV-2245. WV-2246, WV-2247, WV-2248, WV-2249, WV-2250, WV-2251, WV-2252, WV-2253, WV-2254, WV-2255, WV-2256, WV-2257, WV-2258, WV-2259, WV-2260, WV-2261, WV-2262, WV-2263, WV-2264, WV-2265, WV-2266, WV-2267, WV-2268, WV-2273, WV-2274, WV-2275, WV-2276, WV-2277, WV-2278. WV-2279, WV-2280, WV-2281, WV-2282, WV-2283, WV-2284, WV-2285, WV-2286, WV-2287, WV-2288, WV-2289, WV-2290, WV-2291, WV-2292, WV-2293, WV-2294, WV-2295, WV-2296, WV-2297, WV-2298, WV-2299, WV-2300, WV-2301, WV-2302, WV-2303, WV-2304, WV-2305, WV-2306, WV-2307, WV-2308, WV-2309, WV-2310, WV-2311, WV-2312, WV-2313, WV-2314, WV-2315, WV-2316, WV-2317, WV-2318, WV-2319, WV-2320, WV-2321, WV-2322, WV-2323, WV-2324, WV-2325, WV-2326, WV-2327, WV-2328, WV-2329. WV-2330. WV-2331, WV-2332, WV-2333, WV-2334, WV-2335, WV-2336, WV-2337, WV-2338, WV-2339, WV-2340, WV-2341, WV-2342, WV-2343, WV-2344, WV-2345, WV-2346, WV-2347, WV-2348, WV-2349, WV-2350, WV-2351, WV-2352, WV-2353, WV-2354, WV-2361, WV-2362, WV-2363, WV-2364, WV-2365. WV-2366, WV-2367, WV-2368, WV-2369, WV-2370, WV-2381, WV-2382, WV-2383, WV-2384, WV-2385, WV-2432, WV-2433, WV-2434, WV-2435, WV-2436, WV-2437, WV-2438, WV-2439, WV-2440, WV-2441, WV-2442, WV-2443, WV-2444, WV-2445, WV-2446, WV-2447, WV-2448, WV-2449, WV-2526, WV-2527, WV-2528, WV-2529, WV-2530, WV-2531, WV-2532, WV-2533, WV-2534, WV-2535, WV-2536, WV-2537, WV-2538, WV-2578. WV-2579. WV-2580, WV-2581, WV-2582, WV-2583, WV-2584, WV-2585, WV-2586, WV-2587, WV-2588, WV-2625, WV-2627, WV-2628, WV-2660, WV-2661, WV-2662, WV-2663, WV-2664, WV-2665, WV-2666, WV-2667, WV-2668, WV-2669, WV-2670, WV-2737, WV-2738, WV-2739, WV-2740, WV-2741, WV-2742. WV-2743, WV-2744, WV-2745, WV-2746, WV-2747, WV-2748, WV-2749, WV-2750, WV-2752, WV-2783, WV-2784, WV-2785, WV-2786, WV-2787, WV-2788, WV-2789, WV-2790, WV-2791, WV-2792, WV-2793, WV-2794, WV-2795, WV-2796, WV-2797, WV-2798, WV-2799, WV-2800, WV-2801, WV-2802, WV-2803, WV-2804, WV-2805, WV-2806, WV-2807, WV-2808, WV-2812, WV-2813, WV-2814, WV-3017, WV-3018, WV-3019, WV-3020, WV-3022, WV-3023, WV-3024, WV-3025, WV-3026, WV-3027, WV-3028, WV-3029, WV-3030. WV-3031. WV-3032, WV-3033, WV-3034, WV-3035, WV-3036, WV-3037, WV-3038, WV-3039, WV-3040, WV-3041, WV-3042, WV-3043, WV-3044, WV-3045, WV-3046, WV-3047, WV-3048, WV-3049, WV-3050, WV-3051, WV-3052, WV-3053, WV-3054, WV-3055, WV-3056, WV-3057, WV-3058, WV-3059, WV-3060. WV-3061, WV-3070, WV-3071, WV-3072, WV-3073, WV-3074, WV-3075, WV-3076, WV-3077, WV-3078, WV-3079, WV-3080, WV-3081, WV-3082, WV-3083, WV-3084, WV-3085, WV-3086, WV-3087, WV-3088, WV-3089, WV-3113, WV-3114, WV-3115, WV-3116, WV-3117, WV-3118, WV-3120, WV-3121, WV-3152, WV-3153, WV-3357, WV-3358, WV-3359, WV-3360, WV-3361, WV-3362, WV-3363, WV-3364, WV-3365, WV-3366, WV-3463. WV-3464. WV-3465, WV-3466, WV-3467, WV-3468, WV-3469, WV-3470, WV-3471, WV-3472, WV-3473, WV-3506, WV-3507, WV-3508, WV-3509, WV-3510, WV-3511, WV-3512, WV-3513, WV-3514, WV-3515, WV-3516, WV-3517, WV-3518, WV-3519, WV-3520, WV-3543, WV-3544, WV-3545, WV-3546, WV-3547. WV-3548, WV-3549, WV-3550, WV-3551, WV-3552, WV-3553, WV-3554, WV-3555, WV-3556, WV-3557, WV-3558, WV-3559, WV-3560, WV-3753, WV-3754, WV-3820, WV-3821, WV-3855, WV-3856, WV-3971, WV-4106, WV-4107, WV-4191, WV-4231, WV-4232, WV-4233, WV-4890, WV-6137, WV-6409, WV-6410, WV-6560, WV-6826, WV-6827, WV-6828, WV-7109, WV-7110, WV-7333, WV-7334, WV-7335, WV-7336, WV-7337, WV-7338, WV-7339, WV-7340, WV-7341, WV-7342, WV-7343, WV-7344, WV-7345, WV-7346, WV-7347. WV-7348. WV-7349, WV-7350, WV-7351, WV-7352, WV-7353, WV-7354, WV-7355, WV-7356, WV-7357, WV-7358, WV-7359, WV-7360, WV-7361, WV-7362, WV-7363, WV-7364, WV-7365, WV-7366, WV-7367, WV-7368, WV-7369, WV-7370, WV-7371, WV-7372, WV-7373, WV-7374, WV-7375, WV-7376, WV-7377. WV-7378, WV-7379, WV-7380, WV-7381, WV-7382, WV-7383, WV-7384, WV-7385, WV-7386, WV-7387, WV-7388, WV-7389, WV-7390, WV-7391, WV-7392, WV-7393, WV-7394, WV-7395, WV-7396, WV-7397, WV-7398, WV-7399, WV-7400, WV-7401, WV-7402, WV-7410, WV-7411, WV-7412, WV-7413, WV-7414, WV-7415, WV-7457, WV-7458, WV-7459, WV-7460, WV-7461, WV-7506, WV-7596, WV-8130, WV-8131, WV-8230, WV-8231. WV-8232. WV-8449, WV-8478, WV-8479, WV-8480, WV-8481, WV-8482, WV-8483, WV-8484, WV-8485, WV-8486, WV-8487, WV-8488, WV-8489, WV-8490, WV-8491, WV-8492, WV-8493, WV-8494, WV-8495, WV-8496, WV-8497, WV-8498, WV-8499, WV-8500, WV-8501, WV-8502, WV-8503, WV-8504, WV-8505. WV-8506, WV-8806, WV-884, WV-885, WV-886, WV-887, WV-888, WV-889, WV-890, WV-891, WV-892, WV-893, WV-894, WV-895, WV-896, WV-897, WV-9222, WV-9223, WV-9224, WV-9225, WV-9226, WV-9227, WV-942, WV-9540, WV-9541, WV-9737, WV-9738, WV-9739, WV-9740, WV-9741, WV-9742, WV-9827, WV-9828, WV-9829, WV-9830, WV-9831, WV-9832, WV-9833, WV-9834, WV-9835, WV-9836, WV-9837, WV-9838, WV-9839, WV-9840, WV-9841, WV-9842, WV-9843, WV-9844, WV-9845, WV-9846, WV-9847, WV-9848, WV-9849. WV-9850. WV-9851, WV-9852, WV-9858, and WV-8937, and other DMD oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Additional non-limiting examples of such DMD oligonucleotides and compositions include those of: WV-2444, WV-2528, WV-2531, WV-2578, WV-2579, WV-2580, WV-2581, WV-2669, WV-2745, WV-3032, WV-3152, WV-3153, WV-3360, WV-3363, WV-3364, WV-3465, WV-3466, WV-3470, WV-3472, WV-3473, WV-3507, WV-3545, WV-3546, WV-3552, WV-4106, WV-4231, WV-4232, WV-4233, WV-887, WV-896, WV-942, and other DMD oligonucleotides having abase sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Additional non-limiting examples of such DMD oligonucleotides and compositions include those of: WV-12494, WV-12130, WV-12131, WV-12132, WV-12133, WV-12134, WV-12135, WV-12136, WV-12496, WV-12495, WV-12123, WV-12124, WV-12125, WV-12126, WV-12127, WV-12128, WV-12129, WV-12553, WV-12554, WV-12555, WV-12556, WV-12557, WV-12558, WV-12559, WV-12872, WV-12873, WV-12876, WV-12877, WV-12878, WV-12879, WV-12880, WV-12881, WV-12882, and WV-12883, and other DMD oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


In some embodiments, the sequence of the region of interest for exon 51 skipping differs between the mouse and human.


Various assays can be utilized to assess oligonucleotides for exon skipping in accordance with the present disclosure. In some embodiments, in order to test the efficacy of a particular combination of chemistry and stereochemistry of an oligonucleotide intended for exon 51 skipping in human, a corresponding oligonucleotide can be prepared which has the mouse sequence, and then tested in mouse. The present disclosure recognizes that in the human and mouse homologs of exon 51, a few differences exist (underlined below):









M GTGGTTACTAAGGAAACTGTCATCTCCAAACTAGAAATGCCATCTTC





TTTGCTGTTGGAGH GTGGTTACTAAGGAAACTGCCATCTCCAAACTAG





AAATGCCATCTTCCTTGATGTTGGAG.







where M is Mouse, nt 7571-7630; and H is Human, nt 7665-7724.


Because of these differences, slightly different DMD oligonucleotides for skipping exon 51 can be prepared for testing in mouse and human. As a non-limiting example, the following DMD oligonucleotide sequences can be used for testing in human and mouse:











HUMAN DMD oligonucleotide sequence: 



UCAAGGAAGAUGGCAUUCU



MOUSE DMD oligonucleotide sequence: 



GCAAAGAAGAUGGCAUUUCU







Mismatches between human and mouse are underlined.


A DMD oligonucleotide intended for treating a human subject can be constructed with a particular combination of base sequence (e.g., UCAAGGAAGAUGGCAUUUCU), and a particular pattern of chemistry, internucleotidic linkages, stereochemistry, and additional chemical moieties (if any). Such a DMD oligonucleotide can be tested in vitro in human cells or in vivo in human subjects, but may have limited suitability for testing in mouse, for example, because base sequences of the two have mismatches.


A corresponding DMD oligonucleotide can be constructed with the corresponding mouse base sequence (GCAAAGAAGAUGGCAUUUCU) and the same pattern of chemistry, internucleotidic linkages, stereochemistry, and additional chemical moieties (if any). Such an oligonucleotide can be tested in vivo in mouse. Several DMD oligonucleotides comprising the mouse base sequence were constructed and tested.


In some embodiments, a human DMD exon skipping oligonucleotide can be tested in a mouse which has been modified to comprise a DMD gene comprising the human sequence.


Various DMD oligonucleotides comprising various patterns of modifications are described herein. The Tables below show test results of certain DMD oligonucleotides. To assay exon skipping of DMD, DMD oligonucleotides were tested in vitro in Δ52 human patient-derived myoblast cells and/or Δ45-52 human patient-derived myoblast cells (human cells wherein the exon 52 or exons 45-52 were already deleted). Unless noted otherwise, in various experiments, oligonucleotides were delivered gymnotically.









TABLE 4A







Example data of certain oligonucleotides.










10 uM
3 uM



















WV-942
1.0
2.2
1.5
0.2
0.5
0.2



WV-1709
8.5
12.9
7.7
3.3
5.8
3.7



WV-1710
4.1
6.1
4.7
1.1
2.5
1.3



WV-1711
4.4
5.8
3.7
1.1
2.4
1.4



WV-1712
2.6
4.4
3.1
0.9
2.0
1.7



WV-1713
2.1
3.5
2.3
0.6
1.6
0.3



WV-1714
7.8
10.5
10.2
2.3
4.1
2.3



WV-1715
2.2
3.8
3.3
0.8
1.8
1.1



WV-1716
2.1
3.5
2.4
0.9
1.8
0.9











DMD oligonucleotides were tested in vitro at 10 uM and 3 uM, in triplicates. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown. Full descriptions of the oligonucleotides tested in this Table (and other Tables) are provided in Table A1.


In Table 4B, below, additional data of DMD oligonucleotides for skipping exon 51 were presented.









TABLE 4B







Example data of certain oligonucleotides.











10 uM
3 uM

















WV-942
1.0
2.2
1.5
0.2
0.5
0.2


WV-1714
7.8
10.5
10.2
2.3
4.1
2.3


WV-2444
22.2
26.7
28.6
9.1
12.6
11.9


WV-2445
17.1
20.7
18.7
7.0
9.7
9.1


WV-2528
32.4
34.6
39.3
16.9
19.9
22.3


WV-2529
3.2
5.8
6.1
2.2
4.5
3.0


WV-2530
18.6
21.1
25.4
7.6
11.5
11.4










DMD oligonucleotides were tested at 10 uM and 3 uM, in triplicates. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.


In Table 4C, below, additional data of DMD oligonucleotides for skipping exon 51 were presented.









TABLE 4C





Example data of certain oligonucleotides.




















WV-942
WV-887
WV-1714
WV-2438




















10
uM
1.1
0.7
5.1
3.9
3.6
3.7
9.3
9.3


3
uM
0.5
0.3
1.0
2.2
1.6
1.5
3.9
3.1


1
uM
0.2
0.2
0.6
0.7
0.6
0.3
1.4
1.1















WV-2439
WV-2444
WV-2445
Mock




















10
uM
3.2
2.1
12.9
14.3
9.7
8.9
0.4
0.1


3
uM
0.8
0.7
4.7
4.1
3.3
3.5
0.1
0.1


1
uM
0.4
0.3
1.4
1.0
1.1
1.0
0.1










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.


In Table 4D, below, additional data of DMD oligonucleotides for skipping exon 51 were presented.


Table 4D. Example data of certain oligonucleotides.









TABLE 4D







Example data of certain oligonucleotides.










10 uM

















WV-942
0.6
0.6
0.6
0.6



WV-2660
0.2
0.3
0.1
0.1



WV-2661
0.4
0.4



WV-2662
0.2
0.2
0.1
0.1



WV-2663
0.5
0.5
0.4
0.5



WV-2670
5.1
5.2
6.2
7.3











Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.


In Table 5, below, additional data of DMD oligonucleotides for skipping exon 51 were presented.









TABLE 5







Example data of certain oligonucleotides.











10 uM
3 uM
1 uM
















Mock
0.0
0.1
0.0



WV-2531
21.7
8.7
3.2



WV-3152
26.1
15.3
5.7



WV-2745
24.0
10.7
4.8



WV-3463
6.6
3.0
0.8



WV-3464
16.1
6.2
2.4



WV-3465
16.4
6.0
1.8



WV-3466
13.0
5.7
2.0



WV-3467
12.6
5.8
2.6



WV-3469
14.2
6.0
1.5



WV-3470
24.9
11.9
6.4



WV-3471
4.9
1.6
1.0



WV-3472
20.1
12.4
7.2



WV-3473
24.9
11.4
7.6



WV-942
3.3
2.1
0.7











Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 6







Example data of certain oligonucleotides.










5 uM
1 uM















WV-942
.2




PMO
.1



WV-6137
1
.9



WV-7333
.3
.2



WV-7334
.7
.4



WV-7335
1.7
.4



WV-7336
2.2
.6



WV-7337
1.7
.4



WV-7343
1.4
.5



WV-7344
2.8
.7



WV-7345
2.9
1



WV-7346
1.9
.7



WV-7347
1.2
.5



WV-7348
2.5
1



WV-7349
3
.6



WV-7350
3.1
1



WV-7351
1.7
.6



WV-7352
2.7
.8



WV-7353
2.8
.2



WV-7354
2.2
.3



WV-7355
2.7
1.6



WV-7356
3.3
1.2



WV-7357
2.7
1.1



WV-7358
2.2
.6



WV-7359
.7
.3



WV-7360
.6
.5



WV-7361
2.8
.8



WV-7362
4.1
.8



WV-7363
2
.7











Numbers represent skipping efficiency wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown. Numbers are approximate. Oligonucleotides were delivered gymnotically to Δ48-50 patient-derived myoblasts (4 days post-differentiation). The oligonucleotide designated as “PMO” in this table and other tables related to skipping of DMD exon 51 is WV-8806 CTCCAACATCAAGGAAGATGGCATTTCTAG, which is fully PMO (Morpholino).


In Table 7, below, additional data of DMD oligonucleotides for skipping exon 51 were presented.









TABLE 7





Example data of certain oligonucleotides.



















Mock
.1




WV-942
.2



PMO
.1



WV-7364
2
.5



WV-7365
1.8
.5



WV-7366
1.1
5.7



WV-7367
.2
.3



WV-7368
.4
.4



WV-7369
.4
.2



WV-7370
.2
.3



WV-7371
.3
.2



WV-7372
.3



WV-7373
.5
1.3



WV-7374
.3
.4



WV-7375
.2
.8



WV-7376
.2
.5



WV-7377
.3
.5



WV-7378
.4



WV-7379
7.8
1



WV-7380
2.8
.3



WV-7381
4.1
.2



WV-7382
1.3
.1



WV-7383
1.7
.3



WV-7384
2.8
.4



WV-7385

1.8



WV-7386
4
1.6



WV-7387
3
1.8



WV-7388
1.2
.7



WV-7389
.5
.4



WV-7390
1
.5











Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown. Numbers are approximate.


In some embodiments, the present disclosure pertains to metabolites of any oligonucleotide, e.g., DMD oligonucleotide, disclosed herein, or any combination thereof. In some embodiments, a metabolite of an oligonucleotide, e.g., a DMD oligonucleotide is the result of an oligonucleotide, e.g., a DMD oligonucleotide being acted upon by a nuclease (e.g., an exonuclease or endonuclease or other enzymes, including those may chemically process one or more modifications of an oligonucleotide). In some embodiments, a “metabolite” of an oligonucleotide, e.g., a DMD oligonucleotide is not the physical product of such an oligonucleotide being metabolized or physically treated with a nuclease, but rather a compound which corresponds chemically to a product of an oligonucleotide being metabolized or treated with an enzyme. e.g., a nuclease. In some embodiments, metabolite of an oligonucleotide, e.g., a DMD oligonucleotide, is chemically synthesized, without any metabolic process, and optionally administered to a subject.


In some embodiments, a metabolite is a truncation of an oligonucleotide on the 5′ end and/or 3′ end by one or two nucleotides or nucleosides. In some embodiments, the present disclosure provides an oligonucleotide, e.g., DMD oligonucleotide which corresponds to an oligonucleotide, e.g., DMD oligonucleotide listed herein, but is truncated at the 5′ end by one or two nucleotides. In some embodiments, the present disclosure provides an oligonucleotide, e.g., a DMD oligonucleotide which corresponds to an oligonucleotide, e.g., a DMD oligonucleotide listed herein, but is truncated at the 3′ end by one or two nucleotides. In some embodiments, the present disclosure provides an oligonucleotide, e.g., a DMD oligonucleotide which corresponds to an oligonucleotide, e.g., a DMD oligonucleotide listed herein, but is truncated at the 3′ end and 5′ end by one or two nucleotides. Among other things, such oligonucleotides may perform various of biological functions, e.g., such DMD oligonucleotides can mediate skipping of exon 23, 45, 51, 53, or any other DMD exon.


In some embodiments, the present disclosure pertains to a DMD oligonucleotide which has the base sequence of a DMD oligonucleotide listed herein, except that the base sequence is shorter on the 5′ end by one or two bases. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which has the base sequence of a DMD oligonucleotide listed herein, except that the base sequence is shorter on the 3′ end by one or two bases. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which has the base sequence of a DMD oligonucleotide disclosed herein, except that the base sequence is shorter on the 3′ end and the 5′ end by one or two bases. Such DMD oligonucleotides, among other things, can mediate skipping of exon 23, 45, 51, 53, or any other DMD exon.


In some embodiments, a metabolite of a DMD oligonucleotide has removed from the oligonucleotide an additional moiety (e.g., a lipid or other conjugated moiety).


In some embodiments, an oligonucleotide of the present disclosure may be a metabolite of another oligonucleotide. For example, several oligonucleotides may be metabolite of WV-3473, for example, WV-4231 (3′n-1, truncated at the 3′ end by one nucleotide), WV-4232 (3′ n-2), WV-4233 (5′ n-1), etc. Example data of such “metabolite” oligonucleotides were presented in Table 9 below (at 1, 3 and 10 uM, in replicates). Generally, an oligonucleotide can be used independently whether or not it can be a metabolite of another oligonucleotide.









TABLE 9







Example data of certain oligonucleotides.










Oligonucleotide
10 uM
3 uM
1 uM
















PMO
2.4
1.6
0.4
1.1
0.4
0.6


WV-3473
78.8
73.5
62.5
59.8
38.8
38.8


WV-4231 (3′ n-1)
83.8
71.4
65.0
67.2
44.4
43.0


WV-4232 (3′ n-2)
48.5
66.5
42.2
57.5

30.0


WV-4233 (5′ n-1)
54.2
45.9
37.1
31.6
18.6
14.5










Results of replicate experiments are shown. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown. In this and other tables PMO is a Morpholino oligonucleotide control.


In some embodiments, the present disclosure pertains to DMD oligonucleotides corresponding to any DMD oligonucleotide to exon 51 or any other exon listed herein (e.g., in Table A1), but which are truncated by one, two or more nucleotides on the 5′ end and/or 3′ end.


In some embodiments, the length of a provided oligonucleotide, e.g., a DMD oligonucleotide, is 15 to 45 bases. In some embodiments, the length of a provided oligonucleotide, e.g., a DMD oligonucleotide, is 20 to 45 bases. In some embodiments, the length of a provided oligonucleotide, e.g., a DMD oligonucleotide, is 20 to 40 bases. In some embodiments, the length of a provided oligonucleotide, e.g., a DMD oligonucleotide, is 35 bases. In some embodiments, the length of a provided oligonucleotide, e.g., a DMD oligonucleotide, is 20 to 25 bases.


In some experiments, lengths of DMD oligonucleotides for skipping exon 51 are 20 or 25 bases.


Tables 10A and 10B. Example data of certain oligonucleotides.


Table 10A shows data of 20-mers for skipping DMD exon 51: Table 10B shows data of 25-mers for skipping DMD exon 51. Sequences are provided in Table A1. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 10A





20-mers



















untreated
WV-2313
WV-2314
WV-2315
WV-2316



















0.1
0.1
1.0
1.4
1.7
1.6
2.0
2.0
4.6
2.5














WV-2317
WV-2318
WV-2319
WV-2320
WV-942



















1.7
1.1
4.3
4.3
5.0
6.5
2.9
3.7
3.9
3.4
















TABLE 10B





25-mers





















WV-2223
WV-2224

WV-2225

WV-2226

















15.7
14.8
6.6
7.3
13.4
16.1
7.7
7.7
















WV-2227
WV-2228

WV-2229

WV-2230

















9.8
9.7
15.7
15.6
8.5
8.9
12.9
13.4










Additional data are provided.









TABLE 10C







Example data of certain oligonucleotides.














10 uM

3 uM

1 uM



















WV-2531
21.7
25.1
8.7
10.6
3.2
4.6



WV-3152
26.1
21.7
15.3
10.7
5.7
4.1



WV-3472
20.1
16.3
12.4
8.5
7.2
3.8



WV-3473
24.9
38.4
11.4
11.2
7.6
6.5



WV-942
3.3
0.2
2.1

0.7
0.1











Oligonucleotides were tested in vitro at 10, 3 and 1 μM. Results of replicate experiments are shown. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 10D







Example data of certain oligonucleotides.











10 uM
3 uM
1 uM




















WV-1714
5.8
6.2
8.1
2.4
3.0
2.7
0.7
0.7
2.0


WV-3030
29.9
27.2
35.2
6.2
5.6
5.6
0.6
0.6
1.6


WV-3032
31.7
29.3
37.9
7.8
6.4
7.7
1.2
1.1
1.1


WV-2669
3.1
3.1
4.1
1.4
1.7
1.7
0.6
0.7
0.8


WV-3035
13.2
16.4
17.6
1.9
2.5
2.8
1.0
1.1
0.8










Oligonucleotides were tested in vitro at 10, 3 and 1 μM. Results of replicate experiments are shown. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 10E







Example data of certain oligonucleotides.














10 uM

3 uM

1 uM



















WV-2531
24.7
21.7
11.0
8.7
4.8
3.2



WV-3360

25.1
12.9
10.1

3.3



WV-3363

24.0

7.7

3.4



WV-3364
72.8
45.5
17.2
9.8

4.0











Oligonucleotides were tested in vitro at 10, 3 and 1 μM. Results of replicate experiments are shown. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 10F







Example data of certain oligonucleotides.











10 uM
3 uM
1 uM
















Mock
0.0
0.1
0.0



WV-2531
21.7
8.7
3.2



WV-3360
25.1
10.1
3.3



WV-3363
24.0
7.7
3.4



WV-3364
45.5
9.8
4.0











Oligonucleotides were tested in vitro at 10, 3 and 1 μM. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 10G







Example data of certain oligonucleotides.











10 uM
3 uM
1 uM




















WV-1714
5.8
6.2
8.1
2.4
3.0
2.7
0.7
0.7
2.0


WV-3030
29.9
27.2
35.2
6.2
5.6
5.6
0.6
0.6
1.6


WV-3032
31.7
29.3
37.9
7.8
6.4
7.7
1.2
1.1
1.1


WV-2669
3.1
3.1
4.1
1.4
1.7
1.7
0.6
0.7
0.8


WV-3035
13.2
16.4
17.6
1.9
2.5
2.8
1.0
1.1
0.8










Oligonucleotides were tested in vitro at 10, 3 and 1 M. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency, results from replicate experiments are shown.









TABLE 10H





Example data of certain oligonucleotides.


















10 uM, 15% serum
10 uM 5% serum



















Mock
0.0
0.1


0.0
0.1




WV-942
1.0
1.0
0.2
0.2
0.7
0.5
0.4
0.4


WV-2578
3.2


2.2
2.4
2.3
2.2
0.9


WV-2579


3.1
2.9


2.5
2.5


WV-2580
2.5
2.9
2.4
3.1
6.8
6.4
2.8
3.2


WV-2581
3.3
3.6
3.9
3.7
4.4
5.8
5.8
5.4















10 uM 5% serum

10 uM 5% serum




20 mg/ml BSA

4 mg/ml BSA



















Mock
0.1
0.1


0.1
0.1




WV-942
0.7
0.6
1.4
1.3
0.2
0.3
0.6
0.5


WV-2578
0.9
0.5
0.5
0.6
0.6
0.6
0.5
0.7


WV-2579
0.1
0.1
0.5
0.3
0.1
0.1
0.5
0.4


WV-2580
0.4
0.3
0.2
0.2


0.2
0.1


WV-2581
0.2
0.2
0.4
0.4
0.2
0.2
0.1
0.1















3 uM 15% serum

3 uM 5% serum



















Mock
0.0
0.0


0.0
0.0




WV-942
0.1
0.0
0.3
0.3
0.1
0.1
0.2
0.2


WV-2578
0.5
0.3
0.3
0.4
0.3
0.5
0.6
0.2


WV-2579
0.6
0.5
1.8
1.5
0.5
0.4
0.3
0.3


WV-2580
1.0
1.0
0.5
0.6
1.2
1.0
0.5
0.7


WV-2581
0.0
0.0
0.6
0.6
0.4
0.5
0.8
0.7















3 uM 5% serum

3 uM 5% serum




20 mg/ml BSA

4 mg/ml BSA



















Mock
0.0
0.0


0.0
0.0




WV-942
0.1
0.1
0.1
0.1
0.1
0.1
0.4
0.3


WV-2578
0.2
0.2
0.2
0.3
0.2
0.1
0.1


WV-2579
0.4
0.4
0.2
0.2
0.1
0.1
0.2
0.2


WV-2580
0.2
0.2
0.2
0.3
0.0
0.0
0.3
0.3


WV-2581
0.0
0.0
0.3
0.3
0.1
0.1
0.1
0.1













10 uM, 15% serum
10 uM 5% serum



















Mock
0.0
0.1


0.0
0.1




WV-942
1.0
1.0
0.2
0.2
0.7
0.5
0.4
0.4


WV-2578
3.2


2.2
2.4
2.3
2.2
0.9


WV-2579


3.1
2.9


2.5
2.5


WV-2580
2.5
2.9
2.4
3.1
6.8
6.4
2.8
3.2


WV-2581
3.3
3.6
3.9
3.7
4.4
5.8
5.8
5.4















10 uM 5% serum

10 uM 5% serum




20 mg/ml BSA

4 mg/ml BSA



















Mock
0.1
0.1


0.1
0.1




WV-942
0.7
0.6
1.4
1.3
0.2
0.3
0.6
0.5


WV-2578
0.9
0.5
0.5
0.6
0.6
0.6
0.5
0.7


WV-2579
0.1
0.1
0.5
0.3
0.1
0.1
0.5
0.4


WV-2580
0.4
0.3
0.2
0.2


0.2
0.1


WV-2581
0.2
0.2
0.4
0.4
0.2
0.2
0.1
0.1















3 uM 15% serum

3 uM 5% serum



















Mock
0.0
0.0


0.0
0.0




WV-942
0.1
0.0
0.3
0.3
0.1
0.1
0.2
0.2


WV-2578
0.5
0.3
0.3
0.4
0.3
0.5
0.6
0.2


WV-2579
0.6
0.5
1.8
1.5
0.5
0.4
0.3
0.3


WV-2580
1.0
1.0
0.5
0.6
1.2
1.0
0.5
0.7


WV-2581
0.0
0.0
0.6
0.6
0.4
0.5
0.8
0.7















3 uM 5% serum

3 uM 5% serum




20 mg/ml BSA

4 mg/ml BSA



















Mock
0.0
0.0


0.0
0.0




WV-942
0.1
0.1
0.1
0.1
0.1
0.1
0.4
0.3


WV-2578
0.2
0.2
0.2
0.3
0.2
0.1
0.1


WV-2579
0.4
0.4
0.2
0.2
0.1
0.1
0.2
0.2


WV-2580
0.2
0.2
0.2
0.3
0.0
0.0
0.3
0.3


WV-2581
0.0
0.0
0.3
0.3
0.1
0.1
0.1
0.1










Oligonucleotides were tested in vitro at 10 and 3 □M. In this table, in some cases, serum and/or BSA were added to test the effect on exon skipping. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 10I







Example data of certain oligonucleotides.











10 uM
3 uM
1 uM
















Mock
0.0
0.1
0.0



WV-2531
21.7
8.7
3.2



WV-3152
26.1
15.3
5.7



WV-2745
24.0
10.7
4.8



WV-3463
6.6
3.0
0.8



WV-3464
16.1
6.2
2.4



WV-3465
16.4
6.0
1.8



WV-3466
13.0
5.7
2.0



WV-3467
12.6
5.8
2.6



WV-3469
14.2
6.0
1.5



WV-3470
24.9
11.9
6.4



WV-3471
4.9
1.6
1.0



WV-3472
20.1
12.4
7.2



WV-3473
24.9
11.4
7.6



WV-942
3.3
2.1
0.7











Oligonucleotides were tested in vitro at 10.3 and 1 M. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency, results from replicate experiments are shown.









TABLE 10J







Example data of certain oligonucleotides.














10 uM

3 uM

1 uM



















WV-2531
32.9
32.0
16.9
16.7
6.2
6.2



WV-3360
27.2
26.5
13.4
14.2
6.0
5.9



WV-3361
28.9
28.0
16.7
16.1
6.3
6.0



WV-3362
34.3
32.9
16.2
15.5
6.1
5.8



WV-3363
33.2
33.6
16.4
16.0
6.7
6.4



WV-3364
47.9
47.6
14.2
14.0
6.4
6.5



WV-3365
25.6
24.2
14.7
14.2
6.9
6.4



WV-3366
34.6
34.0
21.1
19.8
8.0
7.4



WV-942
0.6
0.6
0.3
0.3
0.1
0.1



Mock
0.0
0.0
0.1
0.1
0.1
0.0











Oligonucleotides were tested in vitro at 10, 3 and 1 μM. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.









TABLE 10K







Example data of certain oligonucleotides.










Activity relative to WV-942















WV-942
1.1
0.9



Mock
0.1
0.0



WV-2526
18.4
15.3



WV-2527
17.0
16.3



WV-2528
34.6
27.2



WV-2529
3.7
2.8



WV-2530
17.0
16.9



WV-2533
4.1
3.6



WV-2534
2.0
1.2



WV-2535
0.4
0.2



WV-2536
0.2
0.1



WV-2537
1.1
1.0











Olignucleotides were tested in vitro at 10 μM. Is table, numbers represent skipping efficiency relative to WV-942 (ave): results from replicate experiments are shown.









TABLE 10L





Example data of certain oligonucleotides.

















Activity relative to WV-942 at 10 uM
















WV-942
0.8
1.8
1.2



WV-1709
7.1
10.7
6.5



WV-1710
3.4
5.1
3.9



WV-1711
3.6
4.9
3.1



WV-1712
2.1
3.7
2.6



WV-1713
1.8
2.9
1.9



WV-1714
6.5
8.8
8.5



WV-1715
1.8
3.1
2.7



WV-1716
1.7
2.9
2.0



WV-2444
18.5
22.2
23.8



WV-2445
14.2
17.2
15.6



WV-2528
27.0
28.8
32.7



WV-2529
2.7
4.8
5.1



WV-2530
15.5
17.6
21.2













Activity relative to WV-942 at 3 uM
















WV-942
0.7
1.7
0.6



WV-1709
10.9
19.5
12.2



WV-1710
3.6
8.3
4.3



WV-1711
3.6
8.1
4.6



WV-1712
3.0
6.7
5.8



WV-1713
2.0
5.3
0.9



WV-1714
7.5
13.8
7.8



WV-1715
2.6
5.8
3.6



WV-1716
3.2
6.1
3.1



WV-2444
30.3
41.9
39.7



WV-2445
23.4
32.3
30.2



WV-2528
56.3
66.3
74.4



WV-2529
7.5
15.0
10.0



WV-2530
25.2
38.4
37.8











Oligonucleotides were tested in vitro at 10 and 3 μM. In this table, numbers represent skipping efficiency relative to WV-942 (ave): results from replicate experiments are shown.


In some embodiments, an oligonucleotide, e.g., a DMD)oligonucleotide, can be tested in vivo for capability to skip an exon in a tissue in alive animal; in some embodiments, a tissue is gastrocnemius, triceps, quadriceps, diaphragm, and/or heart. In some embodiments, alive animal is a mouse, rat, monkey, dog, or non-human primate. In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide, is capable of mediating skipping e.g., of exon 23, 45, 51, 53, or any other DMD exon. Various DMD oligonucleotides were shown to mediate skipping of DMD exon 51 in a tissue in anon-human primate (NHP), wherein the tissue was gastrocnemius, triceps, quadriceps, diaphragm, or heart.


In some embodiments, the present disclosure pertains to methods of administering oligonucleotides. e.g., DMD oligonucleotides, wherein the timeline of pre-differentiation (of myoblast cells to myotubules) and treatment with the oligonucleotide are suitably altered. In some embodiments, in a test in vitro, an oligonucleotide, e.g., a DMD oligonucleotide to exon 51, was tested with treatment of day or 4 day.









TABLE 11A







Example data of certain oligonucleotides.












Oligonucleotide
Group A
Group B
Group C
















PMO
1.3
0.6
3.3



WV-3473
29.3
23.1
81.6











Numbers represent skipping efficiency wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency. PMO is a Morpholino having the sequence of CTCCAACATCAAGGAAGATGGCGTTTCTAG.

















Group A
Group B
Group C





















Pre-differentiation
1 day
2 day
0 day



ASO treatment
1 day
1 day
4 days



Wash-out

2 days


2 days













Example 19 describes various timelines for experiments suitable for testing oligonucleotides, e.g., DMD oligonucleotides e.g. in patient-derived myoblasts in vitro.









TABLE 11B





Example data of certain oligonucleotides.

















Conc.




(uM)
WV-942
PMO



















0.3
0.2
0.0
0.1
0.1

0.5
0.4
0.1
0.0


1
0.6
0.1
0.2
0.1

0.1
0.1
0.1
0.3


3
0.1
0.1
0.1
0.2
0.2
0.5
0.3
0.7
0.2


10
0.5
0.3
0.1
0.8
0.7
1.3
0.8
1.6
0.4


30
0.0
1.0
0.5
2.0
3.4
5.5
2.3
0.9
1.7












Conc.




(uM)
WV-3473
WV-3545






















0.3
5.1
4.7
1.9
8.7
1.4
3.9
6.4
3.0
4.2
0.9
1.1
2.9


1
15.6
8.5
13.8
5.7
6.2
12.9
13.9
11.7
2.8
5.6
5.2
12.0


3
24.4
25.1
7.7
14.7
18.5
27.3
22.6
21.3
16.9
16.9

23.5


10
36.8
38.1
17.3
31.9
33.8
46.9
49.0
51.7
42.9
34.1
31.0
42.1


30
67.7

49.0
47.6
51.6
69.4
91.2
88.9
89.9
83.7
79.8
84.7











Conc.



(uM)
WV-3546
















0.3
6.0
0.7
1.1
0.7
1.6
7.1


1
8.2
12.2
14.2
4.7
5.4
11.1


3
31.5



15.9
29.6


10
62.1
59.1
74.0
49.9
43.6
65.1


30
98.9
98.8
97.4
97.4
95.6
98.1










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency. PMO is a control oligonucleotide which is a Morpholino corresponding to Eteplirsen. WV-942 is an oligonucleotide corresponding to Drisapersen. Oligonucleotides were delivered gymnotically.









TABLE 11C





Example data of certain oligonucleotides.


















Conc.





(uM)
WV-942
PMO
WV-3473



















0.3
0.2
0.0
0.1
0.4
0.1
0.0
5.1
4.7
1.9


1
0.6
0.1
0.2
0.1
0.1
0.3
15.6
8.5
13.8


3
0.1
0.1
0.1
0.3
0.7
0.2
24.4
25.1
7.7


10
0.5
0.3
0.1
0.8
1.6
0.4
36.8
38.1
17.3


30
0.0
1.0
0.5
2.3
0.9
1.7
67.7

49.0













Conc.





(uM)
WV-3545
WV-3546
WV-3543



















0.3
6.4
3.0
4.2
6.0
0.7
1.1
5.1
2.1
4.6


1
13.9
11.7
2.8
8.2
12.2
14.2
8.2
2.8
9.2


3
22.6
21.3
16.9
31.5


17.9
21.6
18.8


10
49.0
51.7
42.9
62.1
59.1
74.0
26.7
28.9
31.2


30
91.2
88.9
89.9
98.9
98.8
97.4
83.2
82.5
75.5













Conc.





(uM)
WV-3544
WV-3554
WV-4107



















0.3
5.6
3.0
3.1
2.2
2.0
4.0
1.1
1.0
0.8


1
12.4
9.8
12.0
12.6
4.5
8.4
3.9
2.3
4.0


3
22.7
23.9
15.7
18.6
15.7
18.3
15.7
14.1
13.5


10
37.8
32.0
35.1
42.3
36.8
33.0
70.0
53.6
64.3


30
80.4
81.3
79.1
86.4
91.1
84.3
93.6
92.0
93.0










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency. PMO is a control oligonucleotide which is a Morpholino corresponding to Eteplirsen. WV-942 is an oligonucleotide corresponding to Drisapersen. Oligonucleotides were delivered gymnotically.


In some embodiments, an oligonucleotide comprises a derivative of U. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD comprises a derivative of U. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD and comprises a derivative of U and at least one chirally controlled internucleotidic linkage. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD and comprises a derivative of U and at least one chirally controlled phosphorothioate internucleotidic linkage. In some embodiments, a derivative of U is BrU or Acet5




embedded image


In some embodiments, an oligonucleotide comprises BrU. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD comprises BrU. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD and comprises BrU and at least one chirally controlled internucleotidic linkage. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD and comprises BrU and at least one chirally controlled phosphorothioate internucleotidic linkage.


In some embodiments, an oligonucleotide comprises Acct5U. In some embodiments, Acet5U is also designated AcetU or acetU. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD comprises Acet5U. In some embodiments, in an oligonucleotide, e.g., DMD oligonucleotide, any U or T can be optionally replaced by Acet5U (e.g., in a first wing, a core, a second wing, or anywhere in the oligonucleotide). In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD comprises an Acet5mU nucleoside unit, wherein the base is Acet5U and the sugar is the common natural RNA sugar wherein the 2′-OH is replaced with 2′-OMe. In some embodiments, an oligonucleotide comprises an Acet5fU nucleoside unit, wherein the base is Acet5U and the sugar is the common natural RNA sugar wherein the 2′-OH is replaced with 2′-F. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD and comprises Acet5U and at least one chirally controlled internucleotidic linkage. In some embodiments, an oligonucleotide capable of mediating skipping of an exon of DMD and comprises Acet5U and at least one chirally controlled phosphorothioate internucleotidic linkage.


As shown in Table 11D, Table 11E, and Table A1, certain oligonucleotides, e.g., DMD oligonucleotides, were designed and constructed comprising BrU or acet5U. In some oligonucleotides, the nucleoside at the 5′ end comprises BrU or acet5U. In some embodiments, oligonucleotides comprise a BrfU nucleoside unit, wherein the base is BrU and the sugar is the common natural RNA sugar wherein the 2′-OH is replaced with 2′-F. In some oligonucleotides, the oligonucleotide comprises a BrdU nucleoside unit, wherein the base is BrU and the sugar is 2-deoxyribose (common natural DNA sugar). In some embodiments, any U or T can be replaced by BrU (e.g., in a first wing, a core, a second wing, or anywhere within an oligonucleotide). In some embodiments, in an oligonucleotide, e.g., a DMD oligonucleotide, any number of U or T can be replaced by BrU and/or Acet5U.


In some embodiments, an oligonucleotide comprises an acet5fU nucleoside unit, wherein the base is acet5U and the sugar is the common natural RNA sugar wherein the 2′-OH is replaced with 2′-F.


Table 11D shows data of various DMD oligonucleotides which mediate skipping of exon 51, including oligonucleotide WV-7410, which comprises BrfU, and WV-7413, which comprises acet5fU. Percentage was measured using RT-qPCR. Gymnotic delivery of 10 μM and 3 μM oligonucleotides in Δ48-50 patient derived myoblasts (4 days post-differentiation). The experiment was done in technical replicates.









TABLE 11D







Example data of certain oligonucleotides.












WV-3152
WV-3516
WV-7410
WV-7413















10 μM
39
10
49
11


 3 μM
20
6
34
6










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency. Approximate numbers are provided.


In some embodiments, the present disclosure provides oligonucleotides, e.g., various DMD oligonucleotides, that comprise BrdU at or near the center of the oligonucleotides (e.g., in a core region, middle region, etc.). In some embodiments, example such oligonucleotides include WV-2812, WV-2813, and WV-2814. Certain exon skipping data of these oligonucleotides were presented below.









TABLE 11E







Example data of certain oligonucleotides.












10 uM

3 uM

















WV-1714
0.035
0.034
0.012
0.013



WV-2812
0.094
0.095
0.023
0.024



WV-942
0.004
0.004
0.001
0.001



WV-2814
0.004
0.005
0.002
0.002



WV-2813
0.041
0.042
0.017
0.017











Numbers represent skipping efficiency, wherein 1.000 would represent 100% skipping and 0.0 represents 0% efficiency. Approximate numbers are provided.









TABLE 11F







Example data of certain oligonucleotides.










10 uM
3 uM



















WV-9738
44.7
44.0
46.1
45.4
26.6
25.9
25.6
24.4


WV-9739
51.8
49.9
53.2
50.9
32.3
35.4
31.0
33.2


WV-9740
49.9
48.8
47.8
46.1
32.5
30.3
29.0
29.6


WV-9741
36.1
37.8
35.0
35.6
23.5
22.3
21.4
24.6


WV-9742
53.4
54.8
59.1
56.8
41.7
40.4
37.6
40.3


WV-7410
64.8
63.9
65.4
67.0
45.1
43.5
43.9
40.6


WV-7410
66.0
67.2
64.7
64.5
44.9
40.3
33.7
31.7


WV-3152
47.0
45.7
47.1
45.0
28.3
30.2
25.3
22.6


WV-3516
12.5
12.5
9.7
10.4
5.0
4.9
5.2
4.6


MOCK
0.5
0.3
0.5
0.3
0.5
0.6
0.8
0.4


MOCK
0.6
0.4
0.5
0.5
0.6
0.6
0.3
0.4


MOCK
0.3
0.3
0.6
0.2
0.4
0.4
0.2
0.6










Additional DMD oligonucleotides for skipping Exon 51 were constructed. Various DMD oligonucleotides comprise BrU. In some cases, a BrU is attached to a sugar which is 2′-F modified (BrfU). D48-50 myoblasts were dosed at 10 uM and 3 uM in differentiation media for 4 days. Percentage of skipping is shown, wherein 100 would represent 100% skipping and 0 would represent 0% skipping.









TABLE 11G







Activity of certain oligonucleotides















10
3.3
1.1

10
3.3
1.1


















WV-
20.8
9
4.1
WV-
36.9
10.4
4.7


3152
22
10
4.9
14522
27.4
10.4
4.2



17.3
9.3
3.2

21
12.6
5.6



21.3
7.2
4.4

26.5
10.4
5.7


WV-
27.4
13.2
12.7
WV-
27.2
8.1
6.2


15860
30.4
15.4
9
14523
28.3
8.5
4.9



33
14.2
6

18.4
9.1
3.6



33.4
16.9
5.9

18.7
9.6
4.4


WV-
26.6
9.2
5.6
Mock
0.21


15861
28.5
6.1
5.4

0.35



34.1
8.2
5.2

0.48



29.9
11.1
4

0.24


WV-
30.7

7.8


15862
33.3

7.2



21.9
15.1
6.8



26.4
13.2
7.2










Activity of various DMD exon 51 oligonucleotides was tested in vitro.


Numbers indicate amount of skipping DMD exon 23 (as a percentage of total mRNA, where 100 would represent 100% skipped).


Amounts tested were: 10, 3.3 and 1.1 uM.









TABLE 11H







Activity of certain oligonucleotides















10
3.3
1.1

10
3.3
1.1



uM
uM
uM

uM
uM
uM


















Mock
0.2
0.3
0.2
WV-
37.6
22.6
9



0.3
0.2
0.3
17861
38.8
22.5
8.9



0.2
0
0.2

40.7
24.4
13.2



0.2
0.6
0.2

41.7
25.4
11.6


WV-
3.1
1.6
0.7
WV-
38.4
18.9
8.1


7336
8.9
1.8
0.1
17862
34.1
19.6
9



5.4
1.4
0.9

34.8
26
10



4.9
1.5
0.7

36.1
21.4
9.5


WV-
32.4
26.5
7.5
WV-
32.7
18.2
9.2


3152
27.2
22.2
8.4
17863
35.1
18.9
9.3



28
14.5
7.6

34.8
18.2
8.6



26.8
14.8
7.3

30.7
17
9


WV-
43.3
25.7
10.2
WV-
37.3
23.6
11.7


15860
37.9
23.8
9.6
17864
41.4
23.3
10.6



38.4
24.5
11.2

39.9
20.6
17.5



42.4
21.9
11

38.8
21.7
10.2


WV-
42.3
26.7
16.3
WV-
35.9
16.5
9.3


17859
41.3
26
16.8
17865
34
16.7
7.5



39.9
22.9
15.5

34.4
17.5
11.9



48.6
23.6
14.9

34.1
17.8
9.8


WV-
38.1
19.3
11.7
WV-
48.7
28.4
17.7


17860
35.3
19.2
12
17866
43.3
28.6
13.1



41
28.2
16.4

44.5
24.8
15.4



40.4
21.9
11.1

45.1
30.5
16.3










Oligonucleotides for skipping DMD exon 51 were tested in vitro.


Numbers indicate amount of skipping DMD exon 23 (as a percentage of total mRNA, where 100 would represent 100% skipped).


Concentrations of oligonucleotides used: 10, 3.3 and 1.1 uM.









TABLE 11I







Activity of certain oligonucleotides










10 uM
3.3 uM















Mock
0
0




0
0




0
0




0
0



WV-
15.9
7



20034
17.1
8.4




16.1
7.3




15.3
7.2



WV-
29.7
18.3



20037
27.2
17.5




26.6
19.4




29.2
18.4



WV-
9.6
4.9



20040
9.1
5.2




11.4
3.5




10.9
2.9



WV-
20.2
9.6



20043
20.4
9.8




18.9
9.8




21
10.4



WV-
28.5
14.7



20046
29.8
14.2




29.2
15.8




26.6
14.5



WV-
20.9
11.6



20049
18.6
12.2




18.4
11.7



WV-
28.8
18.8



20052
30.1
18.6




29.6
20.1



WV-
26.8
17



20055
25.3
16.6




24.1
17



WV-
14.6
4.8



20058
12
3.7




12.6
3.5



WV-
35.8
26.5



20061
39.3
24.2




39.9
22.8



WV-
26.5
17.6



20064
24.5
16.4




27.5
17.1



WV-
15.7
8.3



20067
16.8
9.3




17.3
8.6




16.3
8.7



WV-
41.3
26.4



20070
31.7
22.3




39.7
27.2




38.4
26.9



WV-
30.9
21.1



20073
26.9
17.9




31.1
20.2




30.7
22.2



WV-
23.2
16.8



20076
18.9
11.4




21.8
16.9




22.8
15.8



WV-
35.7
24.8



3152
33.5
24.9




32.1
25.3



WV-
41.9
27.5



15860
43.6
30.7




42.4
30











Oligonucleotides for skipping DMD exon 51 were tested in vitro.


Numbers indicate amount of skipping DMD exon 23 (as a percentage of total mRNA, where 100 would represent 100% skipped).


Concentrations of oligonucleotides used: 10 and 3.3 uM.









TABLE 11J





Activity of certain oligonucleotides





















WV-3152
19
20
12
14



WV-15860
29
31
26
23



WV-20140
1
1
1
1



WV-20139
3
3
2
2



WV-20138


2
3



WV-20137
4
5



WV-20136



WV-20135
5
5
5
5



WV-20134
5
6
5
4



WV-20133
17
17
13
13



WV-20132
8
8
6
6



WV-20131
14
16
12
12



WV-20130
10
9
8
8



WV-20129
12
14
11
11



WV-20128
9
9
8
8



WV-20127


8
8



WV-20126
7
8
8
7



WV-20125
8
8
8
8



WV-20124
22
21
21
21



WV-20123
13
13
14
12



WV-20122
11
12
12
11



WV-20121
21
22
22
21



WV-20120
28
30
32
33



WV-20119
52
50



WV-20118
39
37
27
26



WV-20117
18
17
15
18



WV-20116
20
20
17
17



WV-20115
8
8
8
6



WV-20114
19
20
15
14



WV-20113
20
18
17
15



WV-20112
16
15
12
12



WV-20111
31
30
33
31



WV-20110
14
14
14
12



WV-20109
20
21
25
24



WV-20108
27
25
22
22



WV-20107
20
19
16
14



WV-20106
44
42
34
37



WV-20105
23
22
18
18



WV-20104
41
40
33
28



WV-20103
48
52
53
53



WV-20102
54
52
55
59



WV-20101
38
39
38
43



WV-20100
52
51
48
50



WV-20099
53
51
47
48



WV-20098
46
44
45
46



WV-20097
47
46
51
48



WV-20096
45
41
42
43



WV-20095
43
41
50
47



WV-20094
55
50
57
55



WV-20093
35
34
35
38



WV-20092
25
26
25
25



WV-20091
28
27
30
32



WV-20090
21
19
22
22



WV-20089
8
7
8
9



WV-20088
22
21
26
25



WV-20087
28
28
33
32



WV-20086
25
25
27
26



WV-20085
33
31
30
31



WV-20084
21
22
21
21



WV-20083
21
21
19
17



WV-20082
42
37
32
30



WV-20081
41
41
30
30



WV-20080
49
44
26
25



WV-20079
42
38
53
51



WV-20078
27
28
36
35



WV-20077
10
10
10
10



WV-20076
45
45
45
41



WV-20075
40
31
37
42



WV-20074
55
57
53
56



WV-20073
51
55
51
50



WV-20072
41
36
37
36



WV-20071
42
40
44
46



WV-20070
18
18
25
25



WV-20069
11
11
10
9



WV-20068
20
17
20
18



WV-20067
12
9
11
11



WV-20066
12
11
13
12



WV-20065
16
15
16
14



WV-20064
37
35
37
36



WV-20063
19

24
22



WV-20062
6
6
7
7



WV-20061
24
23
26
24



WV-20060
16
17
16
17



WV-20059
55
42
62
67



WV-20058
28
30
33
33



WV-20057
37
38
37
34



WV-20056
35
34
33
35



WV-20055


40
40



WV-20054
25
25
35
36



WV-20053
43
45
46
46



WV-20052
47
47
53
46



WV-20051
30
33
30
30



WV-20050
29
28
28
26



WV-20049
41
41
38
38



WV-20049
24
23
22
21











Oligonucleotides for skipping DMD exon 51 were tested in vitro.


Oligonucleotides were dosed 4d at 10 uM.


Numbers indicate amount of skipping DMD exon 51 (as a percentage of total mRNA, where 100 would represent 100% skipped).


Example Dystrophin Oligonucleotides and Compositions Which Target Exon 52

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for targeting exon 52 and/or mediating skipping of exon 52 in human DMD. Non-limiting examples include oligonucleotides and compositions of Exon 52 oligos include: WV-13733, WV-13734, WV-13735, WV-13736, WV-13737, WV-13738, WV-13739, WV-13740, WV-13741, WV-13742, WV-13743, and WV-13744, WV-13782, and WV-13783, and other oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.









TABLE 12A





Example data of certain oligonucleotides.



















WV-13733
0.3
0.2



WV-13734
0.0
0.0



WV-13735
1.6
0.3



WV-13736
3.9
1.3



WV-13737
0.7
0.4



WV-13738
0.0
0.0



WV-13739
28.3
29.3



WV-13740
29.9
33.3



WV-13741
1.6
1.6



WV-13742
12.9
14.1



WV-13743
0.9
1.0



WV-13744
0.6
0.7



WV-13782
0.1
0.1



WV-13783
0.8
0.0



Mock
0.0
0.0



Mock
0.1
0.1











Skipping efficiency of various DMD olignucleotides, tested for skipping of DMD exon 52.


Example Dystrophin Oligonucleotides and Compositions for Exon Skipping of Exon 53

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for mediating skipping of exon 53 in DMD (e.g., of mouse, human, etc.).


In some embodiments, an oligonucleotide, e.g., a human DMD exon 53 skipping oligonucleotide can be tested in a mouse which has been modified to comprise a DMD gene comprising the human exon 53 sequence.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide, is capable of mediating skipping of exon 53. Non-limiting examples of such oligonucleotides include: WV-10439, WV-10440, WV-10441, WV-10442, WV-10443, WV-10444, WV-10445, WV-10446, WV-10447, WV-10448, WV-10449, WV-10450, WV-10451, WV-10452, WV-10453, WV-10454, WV-10455, WV-10456, WV-10457, WV-10458, WV-10459, WV-10460, WV-10461, WV-10462, WV-10463, WV-10464, WV-10465, WV-10466, WV-10467, WV-10468, WV-10469, WV-10470, WV-10487, WV-10488, WV-10489, WV-10490, WV-10491, WV-10492, WV-10493, WV-10494, WV-10495, WV-10496, WV-10497, WV-10498, WV-10499, WV-10500, WV-10501, WV-10502, WV-10503, WV-10504, WV-10505, WV-10506, WV-10507, WV-10508, WV-10509, WV-10510, WV-10511, WV-10512, WV-10513, WV-10514, WV-10515, WV-10516, WV-10517, WV-10518, WV-10519, WV-10520, WV-10521, WV-10522, WV-10523, WV-10524, WV-10525, WV-10526, WV-10527, WV-10528, WV-10529, WV-10530, WV-10531, WV-10532, WV-10533, WV-10534, WV-10535, WV-10536, WV-10537, WV-10538, WV-10539, WV-10540, WV-10541, WV-10542, WV-10543, WV-10544, WV-10545, WV-10546, WV-10547, WV-10548, WV-10549, WV-10550, WV-10551, WV-10552, WV-10553, WV-10554, WV-10555, WV-10556, WV-10557, WV-10558, WV-10559, WV-10560, WV-10561, WV-10562, WV-10563, WV-10564, WV-10565, WV-10566, WV-10567, WV-10568, WV-10569, WV-10570, WV-10571, WV-10572, WV-10573, WV-10574, WV-10575, WV-10576, WV-10577, WV-10578, WV-10579, WV-10580, WV-10581, WV-10582, WV-10583, WV-10584, WV-10585, WV-10586, WV-10587, WV-10588, WV-10589, WV-10590, WV-10591, WV-10592, WV-10593, WV-10594, WV-10595, WV-10596, WV-10597, WV-10598, WV-10599, WV-10600, WV-10601, WV-10602, WV-10603, WV-10604, WV-10605, WV-10606, WV-10607, WV-10608, WV-10609, WV-10610, WV-10611, WV-10612, WV-10613, WV-10614, WV-10615, WV-10616, WV-10617, WV-10618, WV-10619, WV-10620, WV-10621, WV-10622, WV-10623, WV-10624, WV-10625, WV-10626, WV-10627, WV-10628, WV-10629, WV-10630, WV-10670, WV-10671, WV-10672, WV-11340, WV-11341, WV-11342, WV-11544, WV-11545, WV-11546, WV-11547, WV-13835, WV-13864, WV-14344, WV-4698, WV-4699, WV-4700, WV-4701, WV-4702, WV-4703, WV-4704, WV-4705, WV-4706, WV-4707, WV-4708, WV-4709, WV-4710, WV-4711, WV-4712, WV-4713, WV-4714, WV-4715, WV-4716, WV-4717, WV-4718, WV-4719, WV-4720, WV-4721, WV-4722, WV-4723, WV-4724, WV-4725, WV-4726, WV-4727, WV-4728, WV-4729, WV-4730, WV-4731, WV-4732, WV-4733, WV-4734, WV-4735, WV-4736, WV-4737, WV-4738, WV-4739, WV-4740, WV-4741, WV-4742, WV-4743, WV-4744, WV-4745, WV-4746, WV-4747, WV-4748, WV-4749, WV-4750, WV-4751, WV-4752, WV-4753, WV-4754, WV-4755, WV-4756, WV-4757, WV-4758, WV-4759, WV-4760, WV-4761, WV-4762, WV-4763, WV-4764, WV-4765, WV-4766, WV-4767, WV-4768, WV-4769, WV-4770, WV-4771, WV-4772, WV-4773, WV-4774, WV-4775, WV-4776, WV-4777, WV-4778, WV-4779, WV-4780, WV-4781, WV-4782, WV-4783, WV-4784. WV-4785, WV-4786, WV-4787, WV-4788, WV-4789, WV-4790, WV-4791, WV-4792, WV-4793, WV-9067, WV-9068, WV-9069, WV-9070, WV-9071, WV-9072, WV-9073, WV-9074, WV-9075, WV-9076, WV-9077, WV-9078, WV-9079, WV-9080, WV-9081, WV-9082, WV-9083, WV-9084, WV-9085, WV-9086, WV-9087, WV-9088, WV-9089, WV-9090, WV-9091, WV-9092, WV-9093, WV-9094, WV-9095, WV-9096, WV-9097, WV-9098, WV-9099, WV-9100, WV-9101, WV-9102, WV-9103, WV-9104, WV-9105, WV-9106, WV-9107, WV-9108, WV-9109, WV-9110, WV-9111, WV-9112, WV-9113, WV-9114, WV-9115, WV-9116, WV-9117, WV-9118, WV-9119, WV-9120, WV-9121, WV-9122, WV-9123, WV-9124, WV-9125, WV-9126, WV-9127, WV-9128, WV-9129. WV-9130, WV-9131, WV-9132, WV-9133, WV-9134, WV-9135, WV-9136, WV-9137, WV-9138, WV-9139, WV-9140, WV-9141, WV-9142, WV-9143, WV-9144, WV-9145, WV-9146, WV-9147, WV-9148, WV-9149, WV-9150, WV-9151, WV-9152, WV-9153, WV-9154, WV-9155, WV-9156, WV-9157, WV-9158, WV-9159, WV-9160, WV-9161, WV-9162, WV-9422, WV-9423, WV-9424, WV-9425, WV-9426, WV-9427, WV-9428, WV-9429, WV-9511, WV-9512, WV-9513, WV-9514, WV-9515, WV-9516, WV-9517, WV-9518, WV-9519, WV-9520. WV-9521, WV-9522, WV-9523, WV-9524, WV-9525, WV-9534, WV-9535, WV-9536, WV-9537, WV-9538, WV-9539, WV-9680, WV-9681, WV-9682, WV-9683, WV-9684, WV-9685, WV-9686, WV-9687, WV-9688, WV-9689, WV-9690, WV-9691, WV-9699, WV-9700, WV-9701, WV-9702, WV-9703, WV-9704, WV-9709, WV-9710, WV-9711, WV-9712, WV-9713, WV-9714, WV-9715, WV-9743, WV-9744, WV-9745, WV-9746, WV-9747, WV-9748, WV-9749, WV-9750, WV-9751, WV-9752, WV-9753, WV-9754, WV-9755, WV-9756, WV-9757, WV-9758, WV-9759, WV-9760, WV-9761, WV-9897, WV-9898, WV-9899, WV-9900, WV-9901, WV-9902, WV-9903, WV-9904, WV-9905, WV-9906, WV-9907, WV-9908, WV-9909, WV-9910, WV-9911, WV-9912, WV-9913. WV-9914. WV-7436, WV-7437, WV-7438, WV-7439, WV-7440, WV-7441, WV-7442, WV-7443, WV-7444, WV-7445, WV-7446, WV-7447, WV-7448, WV-7449, WV-7450, WV-7451, WV-7452, WV-7453, WV-7454, WV-7455, and WV-7456, and other DMD oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Additional examples of such DMD oligonucleotides include: WV-9422, WV-9425, WV-9426, WV-9517, WV-9519, WV-9521, WV-9522, WV-9524, WV-9710, WV-9714, WV-9715, WV-9743, WV-9744, WV-9745, WV-9746, WV-9747, WV-9748, WV-9749, WV-9750, WV-9751, WV-9756. WV-9757, WV-9758, WV-9759, WV-9760, WV-9761, WV-9897, WV-9898, WV-9899, WV-9900, WV-9906, and WV-9912, and other DMD oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Non-limiting examples of such DMD oligonucleotides also include: WV-12123, WV-12124, WV-12125, WV-12126, WV-12127 WV-12128, WV-12129, WV-12553, WV-12554, WV-12555, WV-12556, WV-12557, WV-12558, WV-12559, WV-12872, WV-12873, WV-12876, WV-12877, WV-12878, WV-12879, WV-12880, WV-12881, WV-12882 and WV-12883 and other DMD oligonuclotides having abase sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Results of various experiments for skipping Dystrophin exon 53 are described in the present disclosure. For example, data from a sequence identification screen are shown below, in Table









TABLE 13A







Example data of certain oligonucleotides.











Oligonucleotide
Replicate 1
Replicate 2















WV-4698
1.9
2.1



WV-4699
2.0
2.2



WV-4700
2.8
3.0



WV-4701
3.7
2.9



WV-4702
2.9
2.7



WV-4703
1.8
2.4



WV-4704
3.2
3.4



WV-4705
3.7
4.3



WV-4706
2.6
2.6



WV-4707
3.2
3.6



WV-4708
4.8
6.0



WV-4709
6.6
5.2



WV-4710
3.9
4.6



WV-4711
5.4
6.7



WV-4712
5.3
6.4



WV-4713
5.8
8.0



WV-4714
2.9
3.6



WV-4715
3.3
4.3



WV-4716
3.8
4.3



WV-4717
6.8
7.0



WV-4718
4.3
5.0



WV-4719
5.5
6.0



WV-4720
7.7
8.6



WV-4721
2.7
3.8



WV-4722
3.8
4.6



WV-4723
3.4
5.6



WV-4724
3.5
4.7



WV-4725
4.9
6.3



WV-4726
4.2
4.4



WV-4727
2.7
4.9



WV-4728
2.6
5.6



WV-4729
3.9
4.1



WV-4730
2.4
3.3



WV-4731
1.8
2.5



WV-4732
1.8
2.3



WV-4733
2.3
2.1



WV-4734
2.0
2.0



WV-4735
2.5
2.7



WV-4736
2.7
3.0



WV-4737
3.2
3.1



WV-4738
3.1
3.5



WV-4739
2.6
2.4



WV-4740
4.4
3.6



WV-4741
3.7
4.1



WV-4742
4.5
4.9



WV-4743
5.0
5.2



WV-4744
3.6
4.7



WV-4745
4.1
0.0



WV-4746
2.9
2.0



WV-4747
2.5
3.5



WV-4748
2.1
1.7



WV-4749
2.4
2.4



WV-4750
2.3
2.9



WV-4751
1.9
2.5



WV-4752
2.2
1.6



WV-4753
1.6
2.0



WV-4754
1.7
2.0



WV-4755
1.7
1.9



WV-4756
1.7
1.5



WV-4757
1.6
1.9



WV-4758
1.6
2.0



WV-4759
1.6
1.6



WV-4760
1.8
1.8



WV-4761
1.9
1.6



WV-4762
1.2
1.3



WV-4763
0.9
2.0



WV-4764
3.0
2.7



WV-4765
3.4
3.2



WV-4766
2.5
2.3



WV-4767
2.5
2.7



WV-4768
2.3
2.7



WV-4769
2.4
2.4



WV-4770
2.8
2.8



WV-4771
2.3
2.9



WV-4772
4.0
2.5



WV-4773
3.2
1.8



WV-4774
3.0
2.3



WV-4775
4.4
3.3



WV-4776
3.1
3.8



WV-4777
4.5
2.1



WV-4778
0.0
2.0



WV-4779
2.8
3.4



WV-4780
3.2
3.5



WV-4781
2.9
3.2



WV-4782
1.8
2.9



WV-4783
2.1
2.6



WV-4784
2.4
2.4



WV-4785
3.4
3.6



WV-4786
1.8
1.6



WV-4787
2.9
2.7



WV-4788
2.8
3.1



WV-4789
4.3
4.0



WV-4790
3.9
2.6



WV-4791
2.2
2.2



WV-4792
2.5
3.2



WV-4793
2.4
2.6



Mock
1.3
1.6











Skipping efficiency of various DMD oligonucleotides, tested for skipping of DMD exon 53 in vitro in Delta 52 human myoblast cells. Oligonucleotides tested were 6-8-6 gapmers (2′-F-2-OMe-2′-F), wherein each internucleotidic linkage is a stereorandom phosphorothioate. Numbers represent skipping efficiency wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency, results from replicate experiments are shown.


A number of oligonucleotides were generated and tested for efficacy in skipping DMD Exon 53 in vitro in human patient-derived myoblast cells; certain results are shown below in Tables 13B to 21 (A and B). Oligonucleotides were used at concentrations of 3 and 10 uM, in two replicates (R1 and R2). Numbers indicate the percentage of skipping of DMD exon 53, wherein 0.0 would indicate no skipping, and 100.0 would indicate 1001% skipping. Several base sequences were tested in combination with a variety of chemical formats. For example, in some embodiments, abase sequence is GUACUUCAUCCCACUGAUUC, GUGUUCTTGTACTTCAUCCC, UUCUGAAGGTGTFCUUGUAC, or CUCCGTCTGAAGGUGUUC, wherein U is optionally substituted with T and vice versa. Various chemical formats were utilized, including, e.g. gapmers (for example, 6-8-6 wing-core-wing gapmers). In some embodiments, both wings are 2-F, while the core was all 2′-MOE, alternating 2′-MOE/2-OMe, alternating 2-OMe/2′-MOE, alternating 2-MOE/2′-F, alternating 2-F/2′-MOE, alternating 2′-Me/2′-F. and alternating 2-F/2′-Me, etc. In some embodiments, the first wing was 2′-MOE or 2′-M and the second wing was 2′-F (a type of asymmetrical gapmers). In some embodiments, each internucleotidic linkage is a stereorandom phosphorothioate. In some embodiments, some alternating phosphorothioate linkages are replaced by phosphodiester linkages. In some embodiments, 5′-methyl 2-MOE Cis used. Descriptions of certain oligonucleotides tested are provided in Table A1.









TABLE 13B







Example data of certain oligonucleotides.












Replicate 1

Replicate 2














Oligonucleotide
10 uM
3 uM
10 uM
3 uM

















WV-9067
6.6

1.9
1.8



WV-9068
6.5

1.5
1.6



WV-9069
6.9
1.8
1.7
1.5



WV-9070
2.9
3.2
2.6
1.9



WV-9071
2.9
1.9
2.0
1.4



WV-9072
9.6
2.4
2.4
1.5



WV-9073
8.6
3.3
2.7
2.1



WV-9074
8.3
2.4
2.5
1.9



WV-9075
7.0
2.1
2.1
2.0



WV-9076
9.6
3.0
3.1
2.0



WV-9077
6.3
1.7
2.0
1.5



WV-9078
6.1
2.3
2.2
1.9



WV-9079
10.0
3.9
3.6
2.3



WV-9080
7.6
3.1
2.8
2.6



WV-9081
5.7
2.2
1.9
1.6



WV-9082
11.2
6.1
6.4
3.2



WV-9083
6.0
1.9
2.1
1.6



WV-9084
6.6
2.4
2.9
2.1



WV-9085
0.0
7.5
7.6
3.4



WV-9086
7.5
3.4
3.1
2.0



WV-9087
7.1
2.4
2.1
1.7



WV-9088
9.0
3.0
2.6
1.6



WV-9089
8.2
2.5
2.3
1.9



WV-9090
0.0
2.3
2.2
1.6



WV-9091
9.9
4.7
3.7
3.2



WV-9092
9.0
3.4
3.4
2.0



WV-9093
8.7
2.9
3.2
2.0



WV-9094
11.9
6.0
5.2
3.1



WV-9095
7.5
3.4
2.6
2.5



WV-9096
10.1
4.0
4.0
2.9



WV-9097
10.7
5.7
4.5
2.8



WV-9098
8.5
3.6
2.9
2.3



WV-9099
8.1
2.9
2.4
2.4



WV-9100
12.7
6.0
4.7
2.9



WV-9101
7.6
2.9
3.1
2.0



WV-9102
9.9
4.0
3.6
2.5



WV-9103
12.6
6.9
6.1
3.0



WV-9104
11.3
3.7
4.3
2.1



WV-9105
6.5
2.9
2.3
2.4



WV-9106
15.1
7.7
5.5
4.3



WV-9107
7.8
2.5
2.2
2.6



WV-9108
11.3
3.3
3.5
2.2



WV-9109
16.1
10.6
8.9
4.1



WV-9110
8.8
3.5
3.4
1.7



WV-9111
7.3
3.4
2.5
1.7



WV-9112
11.5
4.6
3.4
2.2



WV-9113
10.6
4.2
3.1
2.3



WV-9114
10.8
4.9
4.1
2.6



WV-9115
8.4
0.0
2.5
2.1



WV-9116
7.5
0.0
1.6
1.8



WV-9117
6.8
0.0
2.0
1.5



WV-9118
9.3
0.0
2.7
2.1



WV-9119
7.2
0.6
2.0
2.0



WV-9120
8.5
6.1
2.5
2.0



WV-9121
11.8
5.7
3.9
2.5



WV-9122
8.6
4.0
2.4
2.4



WV-9123
10.7
5.2
2.0
2.0



WV-9124
11.0
5.3
3.6
3.2



WV-9125
8.7
3.5
2.3
2.2



WV-9126
10.5
3.4
3.4
2.4



WV-9127
8.5
3.4
2.7
2.5



WV-9128
8.2
2.9
2.0
2.2



WV-9129
7.5
2.6
1.6
1.7



WV-9130
12.6
0.0
5.4
2.7



WV-9131
7.6
2.3
2.2
1.8



WV-9132
8.4
0.7
3.4
2.3



WV-9133
16.2
7.0
6.9
3.2



WV-9134
8.5
3.9
3.0
1.9



WV-9135
12.5
2.8
2.9
1.7



WV-9136
8.7
4.1
3.1
2.2



WV-9137
7.5
2.5
1.7
1.6



WV-9138
7.2
2.7
2.1
1.7



WV-9139
9.3
5.3
5.1
2.8



WV-9140
8.0
3.1
2.5
2.1



WV-9141
7.7
3.3
2.9
1.8



WV-9142
11.9
6.4
6.0
3.2



WV-9143
7.0
3.2
3.9
1.8



WV-9144
9.8
4.0
3.6
2.7



WV-9145
13.0
6.6
5.3
2.6



WV-9146
7.9
3.7
3.4
1.9



WV-9147
8.2
3.9
3.1
2.0



WV-9148
15.0
8.8
6.4
3.3



WV-9149
6.9
2.9
2.3
3.1



WV-9150
10.8
6.9
5.6
1.9



WV-9151
12.9
7.2
5.1
2.7



WV-9152
8.4
3.4
2.6
1.5



WV-9153
7.2
3.9
2.9
1.7



WV-9154
21.5
14.1
12.4
4.3



WV-9155
6.9
3.3
2.5
1.6



WV-9156
11.0
6.4
4.9
2.4



WV-9157
16.7
10.5
9.7
3.9



WV-9158
7.7
3.7
2.3
1.7



WV-9159
7.7
3.1
3.3
1.5



WV-9160
8.0
3.1
2.8
1.8



WV-9161
8.4
4.5
3.2
2.2



WV-9162
8.9
4.5
4.7
2.2



Mock
2.4



Mock
2.1



WV-9746
2.5
2.5
4.6
3.4



WV-9747
3.0
3.1
5.5
4.8



WV-9748
4.9
2.5
4.3
4.0



WV-9749
2.9
2.7
4.5
4.1



WV-9750
3.2
2.5
4.4
3.8



WV-9751
3.5
2.7
4.7
4.8



WV-9758
1.7
1.9
2.1
3.5



WV-9759
2.6
3.6
2.8
6.1



WV-9760
3.1
3.9
3.4
4.8



WV-9761
3.0
4.8
4.6
7.2



WV-9756
3.9
4.4
5.3
8.4



WV-9757
3.7
4.3
6.8
8.1



WV-9517
3.3
2.7
7.1
5.3



WV-9519
2.4
2.1
5.1
4.6



WV-9521
2.4
2.5
6.3
4.9



WV-9522
2.6
2.3
5.8
4.3



WV-9715
4.6
5.7
10.5
4.2



WV-9714
4.5
3.4
9.0
8.5



WV-9422
2.1
2.0
6.2
4.3



WV-9743
4.1
2.4
7.3
6.2



WV-9744
3.4
1.9
4.4
5.1



WV-9745
2.7
2.4
5.6
6.2



Mock
2.4
1.8
1.7
2.5











Efficacy of DMD Exon 53 skipping of various DMD oligonucleotides in vitro. Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency. Results from replicate experiments are shown.









TABLE 14







Example data of certain oligonucleotides.












3 uM-R1
3 uM-R2
10 uM-R1
10 uM-R2















WV-9746
2.5
2.5
4.6
3.4


WV-9747
3.0
3.1
5.5
4.8


WV-9748
4.9
2.5
4.3
4.0


WV-9749
2.9
2.7
4.5
4.1


WV-9750
3.2
2.5
4.4
3.8


WV-9751
3.5
2.7
4.7
4.8


WV-9758
1.7
1.9
2.1
3.5


WV-9759
2.6
3.6
2.8
6.1


WV-9760
3.1
3.9
3.4
4.8


WV-9761
3.0
4.8
4.6
7.2


WV-9756
3.9
4.4
5.3
8.4


WV-9757
3.7
4.3
6.8
8.1


WV-9517
3.3
2.7
7.1
5.3


WV-9519
2.4
2.1
5.1
4.6


WV-9521
2.4
2.5
6.3
4.9


WV-9522
2.6
2.3
5.8
4.3


WV-9715
4.6
5.7
10.5
4.2


WV-9714
4.5
3.4
9.0
8.5


WV-9422
2.1
2.0
6.2
4.3


WV-9743
4.1
2.4
7.3
6.2


WV-9744
3.4
1.9
4.4
5.1


WV-9745
2.7
2.4
5.6
6.2


Mock
2.4
1.8
1.7
2.5










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments (RI and 1R2) are shown.









TABLE 15







Example data of certain oligonucleotides.










10 uM
3 uM















WV-9897
7.4
4.8



WV-9898
11.8
4.6



WV-9899
10.1
4.1



WV-9900
10.3
4.7



WV-9901
5.7
2.5



WV-9902
8.8
3.5



WV-9903
7.3
3.4



WV-9904
6.9
3.0



WV-9905
6.7
3.1



WV-9906
12.1
5.0



WV-9907
11.1
3.8



WV-9908
12.6
5.1



WV-9909
11.3
3.9



WV-9910
9.8
4.3



WV-9911
3.5
4.0



WV-9912
11.3
4.7



WV-9913
10.3
3.9



WV-9914
9.4
2.8



WV-9747
7.6
3.4



WV-9749
6.4
3.6



WV-9750
6.0
3.5



WV-9758
3.5
2.5



WV-9517
9.6
4.1



Mock
2.5
2.6











Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency.


Additional oligonucleotides were generated and tested for skipping DMD exon 53 in vitro in cells. Certain data are shown below in Table 16. Oligonucleotides were used at concentrations of 3 and 10 uM, in two replicates. Numbers indicate the percentage of skipping of DMD exon 53. As shown, oligonucleotides can have different base sequences in combination with a variety of chemical formats. In some embodiments, oligonucleotides tested were 20-mers, each having a gapmer format of wing-core-wing, wherein each wing was 2′-F, and the core was 2′-OMe or a mixture of 2′-OMe and 2′-F. In some embodiments, each internucleotidic linkage was a chirally controlled phosphorothioate internucleotidic linkage in Sp configuration. In some embodiments, oligonucleotides comprise one or more natural phosphate linkages. In some embodiments, oligonucleotides of the present disclosure comprise one or more 5′-methyl 2′-F C (5MSfC,




embedded image


nucleoside is




embedded image


wherein BA is nucleobase C, R2s is —F).









TABLE 16







Example data of certain oligonucleotides.












Group A (3 uM)

Group B (10 uM)

















WV-9746
8.0
7.5
13.7
7.5



WV-9747
10.2
9.3
17.4
9.3



WV-9748
8.8
8.2
14.1
8.2



WV-9749
9.9
8.7
15.8
8.7



WV-9750
10.0
9.3
17.3
9.3



WV-9751
9.3
8.4
14.5
8.4



WV-9758
6.9
6.1
8.8
6.1



WV-9759
7.5
7.7
11.3
7.7



WV-9760
8.1
7.3
10.2
7.3



WV-9761
7.3
8.2
12.7
8.2



WV-9756
10.9
10.3
20.2
10.3



WV-9757
22.7
10.1
32.1
10.1



WV-9517
10.3
9.2
20.1
9.2



WV-9519
8.8
8.1
16.2
8.1



WV-9521
9.2
8.0
16.0
8.0



WV-9522
9.5
8.8
17.7
8.8



WV-9715
14.3
12.3
26.9
12.3



WV-9714
13.2
11.3
23.7
11.3



WV-9422
8.3
7.3
16.6
7.3



WV-9743
9.8
7.8
20.1
7.8



WV-9744
7.6
6.7
12.9
6.7



WV-9745
9.6
7.4
17.0
7.4



Mock
4.7
4.9
5.2











Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments are shown.


A number of DMD oligonucleotides were also designed, constructed and tested for efficacy in skipping DMD Exon 53 in vitro in differentiated myoblast cells. Certain data are shown

  • below in Table 17. Oligonucleotides were delivered gymnotically at concentrations of 3 and 10 μM, in two biological replicates (R1 and R2). Numbers indicate the percentage of skipping of DMD exon 53, as determined by RT-qPCR.









TABLE 17







Example data of certain oligonucleotides.












3 uM-R1
3 uM-R2
10 uM-R1
10 uM-R2















WV-9422
2.1
2.0
6.2
4.3


WV-9743
4.1
2.4
7.3
6.2


WV-9744
3.4
1.9
4.4
5.1


WV-9745
2.7
2.4
5.6
6.2


Mock
2.4
1.8
1.7
2.5










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments (R1 and R2) are shown.


A number of oligonucleotides were designed, constructed and tested for efficacy in skipping DMD Exon 53 in vitro in Δ52 differentiated myoblast cells. Certain data were shown below in Table 18. In an example procedure, cells were pre-differentiated for 4 days and oligonucleotides were delivered gymnotically for 4 days. Differentiation medium was DMEM, 2% horse serum and 10 μg/ml insulin. In some embodiments, with certain oligonucleotides, without pre-differentiating these cells, skipping efficiency was relatively low. Oligonucleotides were delivered gymnotically at concentrations of 1, 3 and 10 μM, in biological replicates (R1 and R2). Numbers indicate the percentage of skipping of DMD exon 53, as determined by RT-qPCR. PMO53 is an oligonucleotide also designated as WV-13405, HumDMDEx53, or PMO (in DMD exon 53 experiments), or PMO SR which has abase sequence of GTTGCCTCCGGTTCTGAAGGTGTC and is fully PMO (Morpholino). “-” indicates that no data were available for that particular sample.









TABLE 18







Example data of certain oligonucleotides.
















30 uM-
30 uM-
10 uM-
10 uM-
3 uM-
3 uM-
1 uM-
1 uM-



R1
R2
R1
R2
R1
R2
R1
R2



















WV-9714


52.1
31.0
25.0
21.7
7.9
9.2


WV-9715




12.6
7.3
11.1
8.7


WV-9517




20.5
20.4
7.3
6.9


WV-9519


39.0
30.5
15.1
13.3
5.3
6.6


WV-9521


43.2
10.2
16.9
15.1
5.1
5.2


WV-9747
83.0
87.5
50.7
46.6
17.0
19.5
6.4
6.2


WV-9748
66.4
68.2
42.9
33.2
14.5
10.2
4.8
3.9


WV-9749
76.8
80.2
39.2
35.4
18.5
13.0
5.7
23.5


WV-9897




26.0
25.3
8.3
8.4


WV-9898




22.8
23.6
8.5
7.9


WV-9900


46.7
45.7
25.5
21.8
7.4
7.9


WV-9899


28.7

27.2
26.1
8.8
8.8


WV-9906




37.9

9.7
9.8


WV-9912




22.5

8.8
9.7


WV-9524

14.6

32.9
15.2
14.5
5.4
6.9


PMO53
112.8
105.4
53.7
49.3
20.4
19.9
6.9
10.4


Mock
2.2
1.7
2.2
1.5
1.6
1.8
2.0
2.0










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping relative to control and 0.0 would represent 0% efficiency; results from replicate experiments (R1 and R2) are shown.


A number of DMD oligonucleotides were designed, constructed and tested for efficacy in skipping DMD Exon 53 in vitro in Δ45-52 differentiated myoblast cell. Certain results, normalized to SFSR9 are shown below in Table 19. Oligonucleotides were delivered gymnotically at concentrations of 13 and 10 μM, in biological replicates (R1 and R2). Numbers indicate the percentage of skipping of DMD exon 53, as determined by RT-qPCR.









TABLE 19







Example data of certain oligonucleotides.














10 uM-
10 uM-
3 uM-
3 uM-
1 uM-
1 uM-



R1
R2
R1
R2
R1
R2

















MOCK
0.8
0.8
0.8
0.8
0.9
0.9


MOCK
0.7
0.7
0.8
0.8
0.8
0.8


PMO
18.0
18.0
5.6
5.7
3.8
4.0


PMO
19.3
17.9
9.6
9.4
3.1
3.1


WV-9517
39.4
42.3
16.0
16.1
5.3
5.2


WV-9517
43.8
42.9
18.5
17.5
5.5
5.7


WV-9519
33.7
28.5
14.3
13.3
4.5
4.5


WV-9519
27.6
27.9
12.4
11.3
4.1
4.1


WV-9897
30.8
31.1
11.7
12.5
3.9
3.8


WV-9897
32.3
30.7
12.0
11.9
4.6
4.7


WV-9714
46.8
42.8
21.5
20.6
4.5
4.1


WV-9714
46.5
48.1
25.4
25.6
4.2
2.9


WV-9747
31.1
31.8
12.0
12.5
4.7
4.7


WV-9747
27.6
28.0
10.5
11.1
3.5
3.7


WV-9748
21.7
21.7
7.9
8.0
3.3
3.2


WV-9748
21.1
20.9
8.5
8.1
3.1
3.1


WV-9749
23.2
24.2
10.1
9.4
3.7
3.7


WV-9749
25.3
24.6
10.7
10.5
3.7
3.9


WV-9897
53.2
53.1
24.5
24.4
5.4
5.5


WV-9897
48.3
48.7
22.8
22.8
4.8
4.8


WV-9898
46.5
46.8
21.1
21.1
5.2
5.4


WV-9898
46.3
46.4
23.4
23.8
5.0
4.6


WV-9899
45.4
44.1
19.5
19.5
4.8
5.0


WV-9899
44.9
44.0
21.4
21.2
5.5
5.6


WV-9900
34.9
35.0
19.5
19.6
5.0
5.3


WV-9900
30.2
31.5
17.6
17.6
4.4
4.4


WV-9906
42.9
44.6
18.0
19.0
2.9
3.1


WV-9906
37.5
36.3
17.5
18.2
2.8
3.2


WV-9912
39.8
41.6
19.6
17.7
5.0
4.4


WV-9912
41.6
40.8
21.3
19.9
4.2
4.2










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency; results from replicate experiments (R1 and R2) are shown.


Additional testing of oligonucleotides was performed, and the results were shown below in Tables 20 and 21.









TABLE 20







Example data of certain oligonucleotides.














10 uM
10 uM
3 uM
3 uM
1 uM
1 uM

















WV-9517
34.6
35.6
17.0
19.4
6.7
7.8


WV-9897
43.8

26.8
27.3
9.7
9.8


WV-9898
42.7
30.3
22.8
26.7
8.5
9.3


WV-9899
45.0

16.4
26.8
10.0
8.6


WV-10670
32.4
32.9
15.2
18.2
7.2
8.0


WV-10671
28.7
30.9
14.7
16.1
6.7
8.0


WV-10672
25.6
28.1
11.8
12.2
5.0
5.0


PMO
40.8
36.0
19.1
18.6
10.7
11.7


Mock
1.1
1.9
1.8
1.9
1.7
2.5










Numbers represent skipping efficiency, wherein 100.0 would represent 100% skipping and 0.0 represents 0% efficiency, results from replicate experiments are shown.









TABLE 21





Example data of certain oligonucleotides.







A.















WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-


9422
9425
9426
9517
9519
9521
9522
9524
9536





a) 8,
a) 8
a) 3
a) 10,
a) 9,
a) 8,
a) 8,
a) 9
a) 7


c) 4


c) 6
c) 4
c) 5
c) 5





WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-


9700
9701
9702
9703
9704
9709
9710
9711
9713





a) 4
a) 4
a) 6
a) 8
a) 7
a) 4
a) 6
a) 6
a) 4





WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-


9714
9715
9746
9747
9748
9749
9750
9751
9756





a) 13,
a) 15,
c) 4
c) 4
c) 4
c) 4
c) 4
c) 4
c) 7


c) 9
c) 9

















WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-


9757
9758
9759
9760
9761
9743
9744
9745





c) 7
c) 2
c) 4
c) 4
c) 6
c) 6
c) 4
c) 6










B.













WV-
WV-
WV-
WV-
WV-



9422
9425
9426
9429
9517







b) 4
b) 2
b) 2
b) 1
b) 5











Oligonucleotides were tested in vitro in delta 52 cells. A, Exon skipping at 10 uM is shown. B, protein restoration. Different replicates or experiments are designated as a), b), and c).


Additional DMD oligonucleotides were tested for their ability to mediate skipping of a DMD exon as shown below. Full PMO (Morpholino)oligonucleotides have the following sequences:













PMO SR
WV-13405
GTTGCCTCCGGTTCTGAAGGTGTTC



PMO WV
WV-13406
CTCCGGTTCTGAAGGTGTTC



PMO
WV-13407
TGCCTCCGGTTCTGAAGGTGTTCTTGTA







WV-13407 is also designated PMO NS.









TABLE 21C







Example data of certain oligonucleotides.










10 uM
3 uM



















Mock
0.1
0.2
0.1
0.1
0.1
0.1
0.1
0.1


PMO SR
1.8
1.6
1.1
0.9
0.5
0.5
0.5
0.4


PMO WV
0.8
1.0
1.0
1.1
0.4
0.4
0.5
0.3


PMO
2.3
2.5
1.8
1.8
1.0
0.9
0.6
0.6


WV-10454
5.5
6.1
4.5
3.9
1.3
1.3
0.9
0.7


WV-10455
10.5
13.8
7.3
7.8
2.1
2.8
2.0
2.5


WV-10456
7.2
7.4
5.6
5.0
1.4
1.5
1.7
1.3


WV-10457
9.8
14.2
8.4
9.0
3.8
2.9
3.2
2.9


WV-10458
6.6
5.4
5.6
5.2
1.2
1.1
1.1
1.2


WV-10459
2.4
2.8
2.7
2.5
1.0
1.0
0.5
0.5


WV-10460
7.9
6.0
7.6
7.5
1.9
1.8
1.4
1.4


WV-10461
14.9
11.3


5.7
6.0
2.4
3.7


WV-10462
1.6
2.4
3.4
3.1
0.8
0.8
0.7
0.9


WV-10463
2.6
3.2
2.9
2.7
0.7
0.7
0.7
0.7


WV-10464
1.2
1.1
0.2
0.1
0.4
0.3
0.2
0.3


WV-10465
2.3
1.8


0.6
0.7
0.7
0.7


WV-10466
8.6
9.1
3.9
2.6
1.8
1.6
1.9
1.6


WV-10467
3.2
0.8
1.4
1.1
4.1
4.3
3.3
2.9


WV-10468




2.1
2.0


WV-10469
3.2
3.1
4.8
4.2
0.6
0.6
1.0
0.0


WV-9699
4.6
3.2
2.8
2.4
0.8
0.9
0.7
0.5


WV-9898
19.4
19.0
17.6
18.2
5.4
6.2
5.9
5.4










Numbers represent skipping efficiency, wherein 100 would represent 100% skipping and 0 would represent 0% skipping. Replicate data is shown.


In some embodiments, oligonucleotides, e.g., DMD oligonucleotides, are designed to target Intronic Splice Enhancer elements, e.g., for DMD oligonucleotides for exon 53 skipping, elements within 4kb of Exon53. In some embodiments, provided oligonucleotides are 30-mers. Example data for certain such oligonucleotides are presented in Table 21D.









TABLE 21D





Example data of certain oligonucleotides.





















WV-10490
1.6
1.6
1.8
1.9



WV-10491
1.6
1.7
1.7
1.5



WV-10492
1.4
1.5
1.6
1.4



WV-10493


0.9
0.6



WV-10494
1.4
1.5
1.3
1.6



WV-10495



WV-10496
1.8
1.5
1.8
1.7



WV-10497
1.6
1.6
1.5
1.7



WV-10498
0.7
0.7
2.0
1.8



WV-10499
1.5
1.4
1.7
1.6



WV-10500
0.8
1.3
0.9
0.6



WV-10501
1.2
1.7
1.3
1.4



WV-10502
1.4
1.4
1.5
1.4



WV-10503

1.5
1.0
1.7



WV-10504


1.6
1.8



WV-10505
1.5
1.2
1.9
1.5



WV-10506
0.8
0.8
1.4
1.3



WV-10507
1.4
1.1
0.9
1.4



WV-10508
1.5
1.4
1.8
1.7



WV-10509
1.2
1.5
1.4
1.6



WV-10510
1.3
1.7
1.0
1.6



WV-10511
0.5
0.9
0.8
1.2



WV-10512
1.3
1.5
1.7
1.7



WV-10513
1.5
1.6
1.6
1.7



WV-10514
1.1

1.7
1.8



WV-10515
2.0
1.9
1.9
1.9



WV-10516
8.3
8.7
9.1
8.0



WV-10517
0.5
0.5
1.7
1.5



WV-10518
1.7
1.5
1.5
1.7



WV-10519
1.8
1.6
1.8
1.8



WV-10520
2.1
1.8
1.8
1.7



WV-10521
3.3
3.1
2.6
3.4



WV-10522
1.9
2.0
1.7
2.1



WV-10523
2.3
2.1
1.9
1.9



WV-10524
1.8
1.9
2.1
2.0



WV-10525
2.0
2.1
1.1
1.6



WV-10526
1.7
1.9
1.8
1.7



WV-10527
1.1
1.3
1.4
1.5



WV-10528
1.6
1.6
1.7
1.4



WV-10529
1.6
1.1



WV-10530
0.9
1.7
1.7
1.6



WV-10531
1.2
1.5
1.0
1.3



WV-10532
1.4
1.6
1.6
1.5



WV-10533
1.4
0.5
1.5
1.5



WV-10534
1.3
1.4
1.7
1.6



WV-10535
0.9
0.6
1.7
1.6



WV-10536
1.5
1.0
1.4
1.3



WV-10537
1.4
1.6
1.6
1.4



WV-9517
44.5
42.5
41.6
43.2



WV-9699
13.0
12.7
9.8
9.3



Mock
1.6
1.7
1.4
1.3











Results: Gymnotic delivery of 1 μM Intron ASO's in Δ45-52 patient derived myoblasts (4 days post-differentiation). Done in biological replicates. Numbers represent percentage of exon skipping, as determined by RT-qPCR.









TABLE 21E







Example data of certain oligonucleotides.













Conc.
10
3.33
1.11
0.3704
0.1235
0
















WV-13405
35.2
23.1
9.0
4.0
2.2
1.0


(PMO)
36.3
23.1
8.7
4.0
2.3
1.2



33.1
20.6
8.3
3.3
2.1
1.0



33.7
20.7
8.3
3.2
2.2
1.2


WV-9898
31.2
22.2
8.6
1.7
1.3
1.1



30.4
22.5
10.3
1.5
1.2
0.9



49.6
23.3
6.2
1.7
1.4
1.2



48.3
22.3
5.5
1.5
1.6
1.5


WV-12880
73.1
53.5
38.4
10.3
4.5
1.0



72.1
54.3
37.6
10.3
4.8
1.1



69.3
51.5
24.4
5.5
3.5
1.2



69.6
52.6
23.7
6.2
3.2
1.0


WV-9517
40.4
28.1
3.5
2.1
1.4
1.0



39.8
28.2
1.2
2.1
1.3
1.0



29.3
18.1
5.5
1.8
1.3
1.6



28.9
17.4
4.9
1.7
1.3
1.4


WV-9897
21.2
20.0
3.9
1.6
2.1
1.3



23.6
18.5
3.7
1.9
2.1
1.2



39.5
18.7
5.1
1.7
2.0
1.5



40.9
18.5
5.2
1.6
1.8
1.0


WV-12887
79.7
59.4
44.2
9.6
5.5
0.9



78.7
58.8
44.1
9.6
5.6
0.9



76.1
61.0
38.1
12.3
6.7
1.1



75.0
61.3
31.9
9.8
5.1
1.1










Δ45-52 DMD patient derived myoblasts, with 7d of pre-differentiation, were treated with oligonucleotides in muscle differentiation medium at indicated concentrations under free uptake condition before being collected and analyzed for RNA skipping efficiency (4d dosing) by qPCR. Relative (SRSF9 normalization) quantification. Oligonucleotides were tested at a concentration of 0 to 10 μM. Results of replicate experiments are shown. Some of the oligonucleotides tested comprise anon-negatively charged internucleotidic linkage (WV-12887 and WV-12880).









TABLE 21F







Example data of certain oligonucleotides.










10 uM
3.3 uM



















Mock
0.3
0.3
0.3
0.4
0.3
0.3
0.3
0.3


WV-13405
4.3
4.5
4.2
4.7
1.2
1.1
1.8
1.9


(PMO)


WV-9517
15.0
14.2


5.6
5.8
8.7
9.3


WV-11340
32.4
33.7
35.9
36.9
15.4
13.0
15.9
15.0


WV-12873
38.7
37.5
39.6
39.2
13.6
11.7
17.0
14.5


WV-12872
44.9
41.9
44.1
46.5
15.7
17.5
15.7
19.5


WV-13408
49.0
48.7
50.2
50.3
21.6
22.0
23.0
24.5


WV-12553
18.3
20.7
18.7
24.1
7.4
7.6
9.7
8.4


WV-12557
40.0
39.2
33.8
35.9
15.3
15.5
23.6
23.9


WV-12554
38.8
39.0
43.5
44.9
15.1
14.0
20.5
20.3


WV-13409
34.6
38.4
39.1
40.3
14.7
12.9
18.9
16.5


WV-9898
24.1
22.0


7.9
7.7
9.9
8.5


WV-11342
30.4
34.5
31.3
31.9
14.3
14.4
14.1
13.3


WV-12559
44.3
41.8


16.6
16.5
17.4
19.4


WV-12556
42.5
43.0
39.7
43.3
16.1
17.1
18.8
17.1


WV-9897
20.8
17.9


6.0
5.4
6.8
4.8


WV-11341
36.6
39.4


17.8
16.8
18.2
19.3


WV-12558
41.5
39.4
36.0

18.2
15.1
18.5
16.7


WV-12555
44.3
43.6


20.5
19.0
20.2
22.1


WV12880
41.1
43.2
46.1
45.1
27.4
24.6
25.9
29.1


WV-12877
51.5
53.3


26.2
27.1
30.2
30.7


WV-12125
47.3
49.4
37.8
35.1
21.3
20.6
24.0
23.5


WV-12127
40.0
40.6
41.2
39.7
19.9
15.5
18.3
18.0


WV-12129
33.5
35.0
24.4
24.4
13.9
10.7
14.4
13.7










Δ45-52 DMD patient derived myoblasts were treated with oligos in muscle differentiation medium at indicated concentrations for 4d under free uptake conditions and analyzed for RNA skipping efficiency by qPCR.









TABLE 21G







Example data of certain oligonucleotides.









Oligo Conc




[uM]
10 uM
3.3 uM


















Mock
0.6
0.6
0.6
0.8
0.7
0.6
1.0
0.8


WV-13405
6.9
7.4
10.1
10.9
2.2
1.9
4.1
4.4


(PMO)


WV-9517
24.2
22.0
11.5
33.7
9.3
9.8
19.8
20.6


WV-11340
50.8
54.1
61.6
63.9
30.1
22.0
33.2
30.6


WV-12872
70.6
66.4
71.0
74.6
24.7
29.2
27.9
38.9


WV-12873
60.8
59.5
62.9
62.8
20.4
15.3
33.5
24.5


WV-13408
73.5
72.3
75.8
75.6
35.6
35.7
42.2
46.3


WV-12553
32.7
39.1
38.0
51.3
13.7
14.6
22.7
18.9


WV-12557
65.2
64.4
76.7
80.4
26.3
27.1
45.3
45.6


WV-12554
61.0
61.5
69.5
71.7
27.0
22.9
38.5
37.6


WV-13409
57.2
63.6
66.2
69.3
23.6
18.9
34.4
28.4


WV-9898
45.1
40.3
16.3
14.4
13.2
12.1
20.8
16.1


WV-11342
49.9
58.1
57.9
60.0
27.4
27.8
30.3
27.4


WV-12559
72.4
68.4
50.8
56.1
33.3
32.8
35.5
42.5


WV-12556
70.5
71.0
68.4
73.5
31.0
33.5
42.0
37.0


WV-9897
42.0
34.9

41.2
10.2
8.0
17.9
9.4


WV-11341
61.6
67.2
74.1
74.4
37.0
33.8
40.8
42.9


WV-12558
71.6
68.0
66.3

35.6
27.1
40.5
35.5


WV-12555
70.2
68.9
56.0
61.7
35.2
32.4
40.1
45.0


WV12880
58.8
63.0
68.5
66.5
44.4
36.6
44.8
52.1


WV-12877
77.9
80.2
69.5
75.6
46.3
48.2
55.8
58.4


WV-12125
71.1
74.1
83.6
80.4
36.5
34.8
45.6
44.3


WV-12127
61.9
64.0
67.8
66.2
35.0
23.3
35.5
34.7


WV-12129
52.7
55.8
63.1
63.6
23.8
14.7
26.5
24.1










Δ45-52 DMD patient derived myoblasts, with 7 differentiation, were treated with oligos in muscle differentiation medium at indicated concentrations for 4d under free uptake conditions and analyzed for RNA skipping efficiency by qPCR.









TABLE 21H





Example data of certain oligonucleotides.






















WV-
27.2
WV-
74.4
WV-
45.0



12553
30.1
12124
67.6
12127
42.3




32.1

67.7

43.2



WV-
63.6
WV-
65.8
WV-
50.2



11341
55.0
12125
74.2
12129
53.3




55.7

92.6

51.2



WV-
51.7
WV-
65.8
WV-
60.6



11342
54.0
12126
57.9
12882
66.9




50.8

55.8

68.6



WV-
81.1
WV-
65.2
WV-
76.0



12555

12880
63.9
12878
75.1




76.2

60.9

78.1



WV-
73.4
WV-
61.9
WV-
67.0



12556
75.1
12881
60.3
12876
62.0




66.9

57.7

66.4



WV-
59.9
WV-
59.5



12558
78.8
12123
55.1




66.0

49.9



WV-
68.3
WV-
78.9



12559
76.3
12877
78.0




73.3

83.1



WV-
59.9



9897
59.6




58.6



WV-
44.7



9898
39.1




46.3











Full length oligonucleotide stability at 5 day timepoint in Human Liver homogenate was tested. Numbers are replicates and represent percentage of full-length oligonucleotide remaining, wherein 100 would represent 100% oligonucleotide remaining (complete stability) and 0 would represent 0% oligonucleotide remaining (complete instability). Some nucleotides tested comprise anon-negatively charged internucleotidic linkage.









TABLE 21I





Example data of certain oligonucleotides.




















Oligo Conc
WV-
WV-
WV-
WV-



[uM]
9517
13826
13827
13835
Mock





 10 uM
45.7
46.5
23.1
40.5
1.2



46.3
45.8
22.9
58.8
1.1



49.3
46.8
26.8
54.5
1.3



48.5
50.3
28.1
55.2
1.2


3.3 uM
18.1
20.3
7.9
24.6
1



17
19.5
8.3
25.3
1.1



22.6
19.7
8.8
26.6
1.1



22.8
20.2
8.3
27.2
1.1


1.1 uM
6
7
2.9
7.9
1



6
6.2
2.7
7.4
1.2



6.9
7.3
0.7
9.6
0.9



6.6
6.8
0.9
9.1
0.7


















WV-
WV-
WV-
WV-





9517
12880
13864
14344
MOCK







 10 uM
36.1
60.2
66.8
47.9
0.9




38.3
62.0
67.0
46.8
1.0




44.5
60.9
68.7
56.8
1.2




43.9
59.2
69.6
56.3
1.0



3.3 uM
15.4
38.3
45.3
25.1
0.9




15.8
37.3
45.6
27.0
0.9




18.8
37.9
50.5
39.2
1.0




18.8
39.6
49.3
38.9
1.0



1.1 uM
4.7
15.8
21.5
12.2
0.6




4.9
14.4
22.6
12.4
0.9




6.4
18.5
24.9
17.2
1.1




6.2
16.2
13.2
17.1
0.9



0.3 uM
2.2
5.0
6.6
5.7
0.8




1.8
5.0
5.9
5.7
0.9




2.7
7.4
8.2
7.2
1.0




2.7
7.5
8.2
6.9
1.0











Numbers indicate amount of skipping relative to control.









TABLE 21I.1







Example data of certain oligonucleotides.













10 uM
3.3 uM
1.1 uM
0.3 uM
0.1 uM
















Mock
1.1
1.2

0.8
1.0



1.0
1.1
2.0
0.9
1.0



1.1
0.7
1.1
1.0
1.1



1.2
0.7
1.1
0.9
1.0


Wv-
44.8
28.6
18.1
9.5
4.0


13405
44.8
23.4
17.4
8.7
4.0


(PMO)
51.2
26.5
11.4
5.1
3.7



50.8
25.6
11.2
5.5
3.6


WV-
35.9
18.3
6.5
2.2
1.9


9517
36.6
17.3
6.4
2.1
1.9



40.2
23.4
5.5
2.7
1.7



38.7
25.6
5.9
2.2
1.8


Wv-
57.3
36.3
16.4
4.8
7.5


12880
55.8
37.0
18.1
2.8
4.7



57.5
35.9
16.6
8.0
7.4



58.9
33.0
16.5
7.2
6.8


WV-
68.1
45.1
22.6
10.5
7.4


13864
68.0
44.5
23.0
12.0
5.6



67.5
43.1
24.3
8.4
6.0



64.8
44.5
19.9
3.3
6.1


WV-
40.2
21.5
6.3
2.8
2.0


13835
39.4
20.3
9.7
2.5
2.0



50.0
21.0
5.5
3.2
2.0



47.7
20.6
6.0
3.3
2.2


WV-
41.4
25.9
7.4
4.7
0.7


14791
40.3
24.8
5.8
4.0
0.5



40.1
24.9
9.1
4.3
3.9



41.3
27.2
8.9
4.6
3.5


WV-
50.1
28.6
13.6
6.4
3.8


14344
47.4
28.6
8.8
5.8
4.7



54.9
46.1
18.0
11.4
6.6



55.7
38.3
18.7
11.8
6.0










Skipping efficiency of various DMD oligonucleotides, tested for skipping of DMD exon 53. Numbers represent skipping of exon 53.


Δ45-52 patient myoblasts were differentiated for 7 days, then treated with oligonucleotide for 4d under gymnotic conditions in differentiation media. RNA was harvested by Trizol extraction and skipping analyzed by TaqMan.









TABLE 21I.2







Example data of certain oligonucleotides.













10 uM
3.3 uM
1.1 uM
0.3 uM
0.1 uM
















Mock
0.7
0.6
0.6
0.6
0.7



0.7
0.7
0.6
0.6
0.7



0.6
0.6
0.6
0.7
0.7



0.5
0.5
0.7
0.6
0.7


Wv-
9.4
1.5
3.4
1.1
0.8


13405
9.3
1.4
3.1
1.1
0.8


(PMO)
6.6
2.8
1.5
0.9
0.8



6.3
2.6
1.5
1.0
0.8


WV-
29.3
8.4
2.6
1.0
0.7


9517
28.7
9.2
3.0
1.1
0.8



16.6
6.6
2.3
1.1
0.7



16.9
6.8
2.2
1.1
0.9


WV-
37.9
17.7
9.6
3.4
1.3


12880
38.8
19.9
9.1
3.3
1.4



31.4
16.1
7.9
3.3
1.6



31.6
16.8
8.0
3.0
1.5


WV-
55.9
28.6
11.7
4.3
2.0


13864
54.3
27.8
11.6
4.6
2.0



43.4
22.2
10.7
4.2
2.0



43.0
22.7
9.8
3.8
2.1


WV-
38.7
11.6
2.9
1.3
0.9


13835
37.2
11.0
2.9
1.3
0.8



42.3
13.1
3.5
1.2
0.9



41.5
10.0
3.1
1.3
0.9


WV-
26.3
12.1
5.2
1.9
1.3


14791
24.8
11.2
4.7
2.1
1.1



28.0
13.0
5.2
2.2
1.2



27.6
12.4
4.9
2.1
1.4


WV-
36.2
17.8
8.0
2.7
1.7


14344
37.4
17.0
7.1
2.7
1.8



37.4
22.3
9.8
3.7
1.7



36.6
22.6
9.9
3.7
1.5










Skipping efficiency of various DMD oligonucleotides, tested for skipping of DMD exon 53. Numbers represent skipping of exon 53.


Δ45-52 patient myoblasts were treated with oligonucleotide for 4d(4 days) under gymnotic conditions in differentiation media. RNA was harvested by Trizol extraction and ski ping analyzed by TaqMan.


Several oligonucleotides (including WV-9517, WV-13864, WV-13835, and WV-14791) were tested at various concentrations up to 30 uM for TLR9 activation in vitro in HEK-blue-TLR9 cells (16 hour gymnotic uptake). WV-13864 and WV-14791 comprise a chirally controlled non-negatively charged internucleotidic linkage in the Rp configuration. WV-9517, WV-13864, WV-13835, and WV-14791 did not exhibit significant TLR9 activation (less than 2-fold TLR9 induction; data not shown). WV-13864 and WV-14791 also exhibited negligible signal up to 30 uM in PBMC cytokine release assay compared to water (data not shown).


Example Dystrophin Oligonucleotides and Compositions which Target Exon 54

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for targeting exon 54 and/or mediating skipping of exon 54 in human DMD. Non-limiting examples include oligonucleotides and compositions of Exon 54 oligos include: WV-13745, WV-13746, WV-13747, WV-13748, WV-13749, WV-13750, WV-13751, WV-13752, WV-13753, WV-13754, WV-13755, WV-13756, WV-13757, WV-13758, WV-13759, WV-13760, WV-13784, and WV-13785, and other oligonucleotides having a base sequence which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.









TABLE 21J





Example data of certain oligonucleotides.





















WV-13745
0.2
0.3
0.2
0.0



WV-13746
0.6
0.6
0.4
0.4



WV-13747
0.4
0.5
0.4
0.4



WV-13748
1.1
1.2
0.7
0.9



WV-13749
2.5
2.1
1.7
1.8



WV-13750
1.9
2.1
1.4
1.4



WV-13751
4.3
5.1
4.4
5.7



WV-13752
0.0
0.0
3.1
3.9



WV-13753
0.0
0.0
0.0
0.0



WV-13754
6.0

1.4
1.7



WV-13755
1.1
1.2
0.5
0.5



WV-13756
4.7
5.0
2.3
2.4



WV-13757
1.9
2.1
1.1
1.4



WV-13758
2.0
2.2
0.9
1.2



WV-13759
0.7
0.7
0.4
0.2



WV-13760
0.7
0.6
0.3
0.5



WV-13784
0.0
0.0
0.0
0.0



WV-13785
0.0
0.0
0.0
0.0



Mock
0.0

0.0



Mock
0.0

0.0











Skipping efficiency of various DMD oligonucleotides, tested for skipping of DMD exon 54.


Example Dystrophin Oligonucleotides and Compositions which Target Exon 55

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for targeting exon 55 and/or mediating skipping of exon 55 in human DMD. Non-limiting examples include oligonucleotides and compositions of Exon 55 oligos include: WV-13761, WV-13762, WV-13763, WV-13764, WV-13765, WV-13766, WV-13767, WV-13768, WV-13769, WV-13770, WV-13771, WV-13772, WV-13773, WV-13774, WV-13775, WV-13776, WV-13777, WV-13778, WV-13779, WV-13786, and WV-13787, and other oligonucleotides having a base sequence (naked sequence) which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


In some embodiments, two or more oligonucleotides capable of skipping or targeting exon 44, 46, 47, 51, 52, 53, 54 and/or 55 can be used in any combination to mediate multiple exon skipping.









TABLE 21K





Example data of certain oligonucleotides.





















WV-13761
0.5
0.5
0.3
0.4



WV-13762
0.3
0.2
0.1
0.1



WV-13763
0.2
0.2
0.2
0.2



WV-13764
0.1
0.1
0.1
0.1



WV-13765
1.0
1.0
0.4
0.4



WV-13766
2.6
2.7
1.7
1.8



WV-13767
0.2
0.0
1.4
1.6



WV-13768
1.1
1.1
0.7
0.7



WV-13769
1.6
1.8
1.1
1.1



WV-13770
1.4
1.4
0.8
0.9



WV-13771
0.3
0.4
0.2
0.2



WV-13772
1.8
1.7
0.9
0.9



WV-13773
0.0
0.0
0.1
0.1



WV-13774
0.0
0.0
0.0
0.0



WV-13775
1.0
0.8
0.3
0.4



WV-13776
0.7
0.6
0.3
0.7



WV-13777
2.8
2.2
0.4
1.1



WV-13778
0.3
0.3
0.2
0.3



WV-13779
0.0
0.0
0.4
0.4



WV-13786
0.0
0.0
2.0
2.3



WV-13787
0.0
0.0
0.2
0.1



Mock
0.0
0.0
0.0
0.0



Mock
0.0
0.0
0.0
0.0











Skipping efficiency of various DMD oligonucleotides, tested for skipping of DMD exon 55.


Example Dystrophin Oligonucleotides and Compositions which Target Exon 57

In some embodiments, the present disclosure provides oligonucleotides, oligonucleotide compositions, and methods of use thereof for targeting exon 57 and/or mediating skipping of exon 57 in human DMD. Non-limiting examples include oligonucleotides and compositions of Exon 57 oligos include: WV-18853, WV-18854, WV-18855, WV-18856, WV-18857, WV-18858, WV-18859, WV-18860, WV-18861, WV-18862, WV-18863, WV-18864, WV-18865, WV-18866, WV-18867, WV-18868, WV-18869, WV-18870, WV-18871, WV-18872, WV-18873, WV-18874, WV-18875, WV-18876, WV-18877, WV-18878, WV-18879, WV-18880, WV-18881, WV-18882, WV-18883, WV-18884, WV-18885, WV-18886, WV-18887, WV-18888, WV-18889, WV-18890, WV-18891, WV-18892, WV-18893, WV-18894, WV-18895, WV-18896, WV-18897, WV-18898, WV-18899, WV-18900, WV-18901, WV-18902, WV-18903, WV-18904, and other oligonucleotides having a base sequence (naked sequence) which comprises at least 15 contiguous bases of any of these DMD oligonucleotides.


Example Dystrophin Oligonucleotides and Compositions for Exon Skipping of Multiple Exons (Multi-Exon Skipping)

In some embodiments, the present disclosure provides oligonucleotides, compositions, and methods for splicing modulation, including skipping of multiple exons. In some embodiments, a DMD oligonucleotide or composition thereof is capable of mediating skipping of multiple exons in the human or mouse Dystrophin gene.


In some embodiments, in a patient with muscular dystrophy, the symptoms of muscular dystrophy can at least be partially relieved and/or the disorder at least partially treated by administration of a DMD oligonucleotide capable of skipping one exon or multiple exons. Without wishing to be bound by any particular theory, the present disclosure notes that BMD patients with a deletion of exons 45 to 55 of DMD showed a milder or asymptomatic phenotype.


A non-limiting example of a scheme for multiple exon skipping is shown in FIG. 1. In this Figure, various numbers (43 to 57) indicate exons; and the shapes of the exons (e.g., <, > or |) indicate which reading frame is represented at the 5′ and 3′ end of each exon. Normally exon 44 is joined to exon 45. In a non-limiting example of multiple exon skipping, exons 45 to 55 are skipped, allowing exon 44 to join to exon 56. The 3′ end of exon 44 is represented by the same reading frame (<) as the 5′ end of exon 56: thus skipping exons 45 to 55 maintains or restores the correct reading frame. In some embodiments, skipping multiple exons restores the reading frame if one of the skipped exons comprises a mutation which alters the reading frame (in many cases, for example, producing a missense or prematurely truncated protein).


Among other things, the present disclosure notes that various exons represent at their 5′ and/or 3′ ends different reading frames; thus, some combinations of skipping adjacent reading frames but not other combinations are capable of maintaining or restoring the reading frame. In some embodiments, provided compositions and methods for multiple exon skipping skip, as non-limiting examples, exons 45-46, 4547, 4548, 4549, 45-51, 45-53, 45-55, 47-48, 47-49, 47-51, 47-53, 47-55, 48-49, 48-51, 48-53, 46-55, 50-51, 50-53, 50-55, 49-51, 49-53, 49-55, 52-53, 52-55, 44-45, 44-54, or 44-56, wherein in each case multiple exon skipping maintains or restores the correct reading frame. In some embodiments, skipping of non-overlapping sets of exons is capable of maintaining or restoring reading frame, e.g., skipping of exons 45-46 and exons 49-55; skipping of exons 45-47 and 49-55; skipping of exons 4549 and 52-55; etc.


Without wishing to be bound by any particular theory, the present disclosure notes that some DMD exons may be spliced transcriptionally, while others are spliced post-transcriptionally. For example, each of exons 45 to 55 are reportedly not simultaneously spliced, but rather first as three groups: exons 45 to 49, 50 to 52, and 53 to 55, the individual exons within each group being spliced transcriptionally. Reportedly, the remaining introns (between exons 44/45, 49/50, 52/53, and 55/56) are later spliced post-transcriptionally. Without wishing to be bound by any particular theory, the present disclosure notes that this lag in the timing of splicing may be exploited by oligonucleotides capable of increasing the splicing between exons whose adjacent introns are spliced post-transcriptionally, such as exon 44 and 56. It is reported that in nature, such multi-exon skipping joining exon 44 to exon 56 occurs at a low but detectable frequency (approximately 1/600). Without wishing to be bound by any particular theory, the present disclosure pertains in part to DMD oligonucleotides capable of skipping multiple exons at a therapeutically and clinically significant level.


In some embodiments, a composition capable of mediating multiple exon skipping comprises a DMD oligonucleotide. In some embodiments, a composition capable of mediating multiple exon skipping comprises a combination of (e.g., two or more different) DMD oligonucleotides. In some embodiments, a composition capable of mediating multiple exon skipping comprises a combination of (e.g., two or more different) DMD oligonucleotides, wherein at least one oligonucleotide recognizes a target associated with skipping the 5′ exon to be skipped, and at least one oligonucleotide recognizes a target associated with skipping the 3′ exon to be skipped. In some embodiments, a composition capable of mediating multiple exon skipping comprises a oligonucleotide capable of recognizes both (1) a target associated with skipping the 5′ exon to be skipped and (2) a target associated with skipping the 3′ exon to be skipped.


In some embodiments, an advantage of a composition capable of multiple exon skipping is that it is useful for treatment of dystrophy associated with a mutation in any individual exon included in the group of exons which is skipped. As a non-limiting example, a DMD oligonucleotide capable of mediating skipping of exon 48 is only capable of treating mutations within that exon (or, in some cases, an adjacent or nearby exon) but not mutations within other exons. However, a composition capable of mediating skipping of exons 45 to 55 is capable of treating mutations in any of exons 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 or 55. Thus, both a patient with a mutation in exon 48 and a patient with a mutation in exon 54 can be treated with a composition capable of skipping exons 45 to 55. In some embodiments, a composition capable of mediating skipping of exons 45 to 55 is capable of treating up to about 63% of DMD patients.


In some embodiments, a composition comprises one or more DMD oligonucleotides, wherein the composition is capable of mediating skipping of multiple (two or more) DMD exons.


In some embodiments, a MESO (a composition comprising one or more oligonucleotides, which composition is capable of mediating multiple exon skipping) has an advantage over a DMD oligonucleotide capable of skipping only one exon. In some embodiments, a composition which is capable of mediating skipping of a single exon, is only useful for treating patients treatable by skipping that exon (e.g., patients having a genetic lesion in that exon). In some embodiments, a MESO is useful for treating patients treatable by skipping any of the exons which the MESO is able to skip, which is likely a larger percentage of the patient population. In some embodiments, double or multiple exon skipping can potentially be applicable to 90% of patients.


In addition, in some embodiments, because the 5′ and 3′ ends of an exon are sometimes not in the same frame, deletion of such an exon would cause a frameshift. Skipping of multiple exons, in various such cases, can restore the reading frame.


In some embodiments, multiple exon skipping is useful to treat DMD patients with deletion, duplication, and nonsense mutations.


In addition, in some embodiments, skipping of multiple exons can mimic the genetics of the milder Becker muscular dystrophy. In some embodiments, the more severe Duchenne muscular dystrophy, mediated by a genetic lesion in one exon, can be converted into a milder Becker muscular dystrophy, mediated by an in-frame deletion of multiple exons. It is reported that some BMD patients and an asymptomatic person have in-frame deletions of exons 48 to 51 or 45 to 51. Singh et al. 1997 Hum. Genet. 99: 206-208; Melacini et al. 1993 J. Am. Col., Cardiol. 22: 1927-1934; Melis et al. 1998 Eur. J. Paediatr. Neurol. 2: 255-261; and Aartsma-Rus et al. 2003 Hum. Mol. Genet. 8: 907-914.


In some embodiments, certain exons may be more challenging than others to skip. In some embodiments, the present disclosure provides technologies to skip such exons, e.g., through chemical modifications, linkage phosphorus stereochemistry, and combinations thereof. In some embodiments, the present disclosure encompasses the recognition that multiple exon skipping can be useful for skipping such challenging exons. In some embodiments, the present disclosure provides multiple exon skipping technologies for skipping such challenging exons.


In some embodiments, exon skipping, e.g., DMD exon skipping, can be used to treat patients, e.g., DMD patients, with circular or circularized RNA transcripts (e.g., those of DMD). Circular DMD transcripts are reported in, as a non-limiting example: Gualandi et al. 2003 J. Med. Gen. 40:e100.


In some embodiments, a composition capable of mediating multiple exon skipping (MESO) comprises one DMD oligonucleotide capable of mediating skipping of multiple exons. In some embodiments, a composition capable of mediating multiple exon skipping (MESO) comprises two DMD oligonucleotides which are together (e.g., when used in combination) capable of mediating skipping of multiple exons. In some embodiments, a composition capable of mediating multiple exon skipping (MESO) comprises a cocktail of (e.g., a mixture of three or more) DMD oligonucleotides which are together (e.g., when used in combination as a cocktail) capable of mediating skipping of multiple exons. Combinations or cocktails of oligonucleotides capable of mediating skipple of multiple exons have been reported by, for example, Yokota et al. 2009 Arch. Neurol. 66: 32: Yokota et al. 2012 Nucl. Acid Ther. 22: 306; Adkin et al. 2012 Neur. Dis. 22: 297-305; Echigoya et al. 2013 Nul. Acid. Ther.; and Echigoya et al. 2015 Molecular Therapy-Nucleic Acids 4: e225. Among other things, the present disclosure provides more effective combinations, through, e.g., selected sequences, chemical modifications, and/or linkage phosphorus chemistry, etc.


In some embodiments, the present disclosure provides oligonucleotides that, when combined with other oligonucleotides, can provide dramatically increased activities compared to either oligonucleotides individually prior to combination. For example, in some embodiments, the present disclosure provides DMD oligonucleotides which are individually incapable of mediating efficient skipping of a particular exon; when combined with other oligonucleotides, such oligonucleotides are capable of mediating skipping of multiple exons. Among other things, the present disclosure provides combination therapy, wherein two or more oligonucleotides are used together to provide desired and/or enhanced properties and/or activities. When used in combination therapy, the two or more agents, e.g., oligonucleotides, may be administered concurrently, or separately in suitable ways for them to achieve their combination effects. In some embodiments, two or more oligonucleotides in a combination are all (primarily) for skipping of the same exon, and their combination provides enhanced skipping of such exon, in some embodiments, significantly more than the addition of their separate effects. In some embodiments, two or more oligonucleotide in a combination are for skipping of difference exons, and their combination provides effective skipping, sometimes more than the oligonucleotides individually can achieve, of two or more exons. In some embodiments, the present disclosure provide combinations of oligonucleotides with synergies between two or more different oligonucleotides. In some embodiments, the present disclosure provides combinations of different oligonucleotides wherein one or more, or each oligonucleotide by itself is not effective for exon skipping. Certain combinations are described in Adams et al. 2007 BMC Mol. Biol. 8:57. Among other things, the present disclosure provides more effective combinations, through, e.g., designed control of one or more or all structural elements of oligonucleotides. In some embodiments, a provided combination provides exon skipping of DMD exon 45. In some embodiments, a provided combination provides exon skipping of another DMD exon, including those described herein or otherwise desirable for skipping (e.g., for prevention or treatment of one or more conditions, diseases or disorders etc.) as known in the art.


In some embodiments, cocktails, combinations and mixtures of oligonucleotides, e.g., for multiple exon skipping may have disadvantages compared to single oligonucleotides which can perform the same or comparable functions, such as higher costs of goods, complications in manufacturing and delivery, increased regulatory burden, etc. In accordance with FDA regulations, each component in a combination may need to be separately tested for toxicity, as well as the entire combination. In some embodiments, the present disclosure provides single oligonucleotides that can achieve the same or comparable functions of oligonucleotide combinations, and may be utilized to replace oligonucleotide combinations, through precise and designed control of one or more structural elements of oligonucleotides, e.g., chemical modifications, stereochemistry, and combinations thereof.


Various technologies are suitable for assessing multiple exon skipping in accordance with the present disclosure. Non-limiting examples are described in Example 20 and FIG. 2.


In some embodiments, a composition for skipping multiple DMD exons comprises a DMD oligonucleotide capable of skipping DMD exon 45. Various DMD oligonucleotides were tested for their capability to skip exon 45, as shown in Table A. Various DMD oligonucleotides for skipping exon 45 were also tested for their ability to skip multiple exons, as shown in Table 22A. Among other things, the present disclosure demonstrates that several oligonucleotides, including WV-11088 and WV-11089, can provide low levels of skipping of exons 45-55 (creating a junction between exon 44 and exon 56 or 44-56).


In another experiment, oligonucleotides WV-11047, WV-11051 to WV-11059 did not demonstrate significant skipping under the specific tested condition, and oligonucleotides WV-11062 to WV-11069 each exhibited detectable levels of skipping which were <1% under the specific tested condition. Oligonucleotides WV-11091 to WV-11096, WV-11098, and WV-11100 to WV-11105 exhibited <0.5% skipping of exon 45 under the specific tested condition.









TABLE 22A





Example data of certain oligonucleotides.


















WV-11070
1.6



WV-11071
.3



WV-11072
.2



WV-11073
.7



WV-11074
2.2



WV-11075
.2



WV-11076
1.2



WV-11077
1.3



WV-11078
3.3



WV-11079
7.5



WV-11080
1.3



WV-11081
7.2



WV-11082
2.8



WV-11083
3.1



WV-11084
10.1



WV-11085
1.5



WV-11086
15.8



WV-11087
1.1



WV-11088
13



WV-11089
15.1



WV-11090
.9











Oligonucleotides were tested for their ability to skip DMD exon 45 in Δ48-50 cells.


Numbers indicate skipping level, wherein 100 would represent 100% skipping and 0 would represent 0% skipping.


Several oligonucleotides, including WV-11088 and WV-11089, showed detectable levels of multiple exon skipping (specifically exons 45-55) (approximately 0.1% skipping).


In another experiment, various DMD oligonucleotides targeting exon 45 were tested in Δ48-50 for an ability to skip multiple exons (specifically 45 to 53, creating a junction between exon 44 and exon 54 or 44-54). Oligonucleotides tested were: WV-11047, WV-11051, WV-11052, WV-11053, WV-11054, WV-11055, WV-11056, WV-11057, WV-11058, WV-11059, WV-11062, WV-11063, WV-11064, WV-11065, WV-11066, WV-11067, WV-11068, WV-11069, WV-11070, WV-11071, WV-11072, WV-11073, WV-11074, WV-11075, WV-11076, WV-11077, WV-11078, WV-11079, WV-11080, WV-11081, WV-11082, WV-11083, WV-11084, WV-11085, WV-11086, WV-11087, WV-11088, WV-11089, WV-11090, WV-11091, WV-11092, WV-11093, WV-11094, WV-11095, WV-11096, WV-11098, WV-11100, WV-11101. All these oligonucleotides, in one experiment, demonstrated on average about 0.05% or less skipping of exons 44-54 (data not shown).


Oligonucleotides targeting exon 45 were also tested for skipping of exons 45 to 57, as shown in Table 22A.1.









TABLE 22A.1





Example data of certain oligonucleotides.





















WV-11047
0.064
0.118
0.048
0.099



WV-11051
0.044
0.101
0.034
0.079



WV-11052
0.076
0.089
0.078
0.090



WV-11053
0.082
0.076
0.078
0.072



WV-11054
0.126
0.083
0.110
0.100



WV-11055
0.037
0.071
0.048
0.073



WV-11056
0.133
0.102
0.116
0.092



WV-11057
0.000
0.001
0.000
0.097



WV-11058
0.102
0.030
0.071
0.042



WV-11059
0.171
0.100
0.157
0.075



WV-11062
0.070
0.112
0.081
0.088



WV-11063
0.088
0.078
0.051
0.081



WV-11064
0.085
0.071
0.071
0.075



WV-11065
0.073
0.114
0.077
0.143



WV-11066
0.083
0.100
0.004
0.143



WV-11067
0.115
0.069
0.094
0.068



WV-11068
0.112
0.071
0.125
0.053



WV-11069
0.075
0.075
0.083
0.053



WV-11070
0.062
0.107
0.067
0.101



WV-11071
0.085
0.116
0.073
0.118



WV-11072
0.080
0.097
0.052
0.084



WV-11073
0.052
0.148
0.047
0.118



WV-11074
0.155
0.098
0.116
0.101



WV-11075
0.145
0.079
0.126
0.113



WV-11076
0.000
0.105
0.000
0.111



WV-11077
0.050
0.087
0.080
0.058



WV-11078
0.087
0.095
0.077
0.103



WV-11079
0.076
0.063
0.079
0.062



WV-11080
0.059
0.058
0.052
0.070



WV-11081
0.077
0.086
0.058
0.055



WV-11082
0.117
0.071
0.112
0.080



WV-11083
0.077
0.108
0.091
0.091



WV-11084
0.080
0.102
0.053
0.069



WV-11085
0.047
0.143
0.041
0.140



WV-11086
0.085
0.087
0.084
0.074



WV-11087
0.114
0.034
0.000
0.056



WV-11088
0.134
0.112
0.057
0.063



WV-11089
0.074
0.113
0.109
0.082



WV-11090
0.119
0.076
0.074
0.081



WV-11091
0.000
0.055
0.031
0.054



WV-11092
0.039
0.057
0.068
0.058



WV-11093
0.147
0.061
0.138
0.061



WV-11094
0.108
0.078
0.061
0.080



WV-11095
0.062
0.061
0.056
0.072



WV-11096
0.104
0.071
0.072
0.101



WV-11098
0.072
0.095
0.081
0.065



WV-11100
0.068
0.079
0.078
0.068



WV-11101
0.000
0.058
0.000
0.048











Oligonucleotides were tested in Δ48-50 for their ability to skip DMD exons 45 to 57, creating a junction between exon 44 and exon 58 or 44-58. Numbers indicate skipping level, wherein 100 would represent 100% skipping and 0 would represent 0% skipping. Replicate data in this and other tables are shown.


In some embodiments, a DMD oligonucleotide targets DMD exon 44 or the adjoining intronic region 3′ to DMD exon 44 and is capable of mediating multiple exon skipping.


In some embodiments, a DMD oligonucleotide targets DMD exon 44 or the adjoining intronic region 3′ to DMD exon 44, and the oligonucleotide is capable of mediating multiple exon skipping (e.g., of exons 45 to 55, or 45 to 57).


Reportedly, a phenomenon known as back-splicing can occur, in which, for example, a portion of the 3′ end of exon 55 interacts with a portion of the 5′ end of exon 45, forming a circular RNA (circRNA), which can thus skip multiple exons, e.g., all exons from exon 45 to 55, inclusive. The phenomenon can also reportedly occur between exon 57 and exon 45, skipping multiple exons, e.g., all exons from exon 45 to 57, inclusive. Back-splicing is described in the literature, e.g., in Suzuki et al. 2016 Int. J. Mol. Sci. 17.


Without wishing to be bound by any particular theory, the present disclosure suggests that it may be possible for a DMD oligonucleotide targeting DMD exon 44 or the adjoining intronic region 3′ to exon 44 may be able to mediate splicing of exons 45 to 55, or of exons 45 to 57, which exons are excised as a single piece of circular RNA (circRNA) designated 45-55 (or 55-45) or 45-57 (or 57-45), respectively.


Several oligonucleotides were designed to target exon 44 or intron 44, or which straddle exon 44 and intron 44. In some embodiments, oligonucleotides designed to target exon 44 or intron 44, or which straddle exon 44 and intron 44 arc tested to determine if they can increase the amount of backslicing and/or multiple-exon skipping.


As shown in Table 22A.2 and Table 22A.3, below, DMD oligonucleotides targeting Exon44 were tested for the ability to increase circRNA 55-45 (e.g., mediate multiple exon skipping of exons 45 to 55); or for the ability to increase circRNA 57-45 (e.g., mediate multiple exon skipping of exons 45 to 57). Various DMD oligonucleotides comprise various difference including, inter alia, base sequence and length (18 or 20 bases). Numbers indicate relative amount of circRNA 55-45 (Table 22A.2) or circRNA 57-45 (Table 22A.3). In this and various other tables, Rep indicates Replicate.









TABLE 22A.2





Example data of certain oligonucleotides.



















WV-13964
0.9
1



WV-13965
1.1
1.1



WV-13966
1.1
0.6



WV-13967
1.3
1.2



WV-13969
1
0.8



WV-13971
0.3
0.9



WV-13972
1.1
1.3



WV-13973
1.1
1.3



WV-13976
1.2
1.2



WV-13979
0.5
0.5



WV-13980
1.3
0.4



WV-13981
0.9
0.7



WV-13982
1
1



WV-13983
0.9
0.6



WV-13984
1.1



WV-13985
1.3
0.8



WV-13987
1.2
1



WV-13988
1.4
0.9



WV-13989
1.6
1



WV-13990
1.7
1



WV-13991
1.4
1



WV-13992
1.6
1



WV-13993
1.2
1



WV-13994
1.2
0.6



WV-13995
1.1
0.9



WV-13996
1.4
1



WV-13997
1.2
1.3



WV-13998
1.2
0.8



WV-13999
1.2
1.3



WV-14000
0.9
0.9



WV-14001
1.1
1.5



WV-14002
1
1.1



WV-14003
2
2.1



WV-14004
1.9
1.2



WV-14005
1.1
1



WV-14006
1.2
1.4



WV-14007
1.3
1.7



WV-14008
1.4
1.1



WV-14009
1.3
1.3



WV-14010
1
1.1



WV-14011
3.2
3.7



WV-14012
1.8
2



WV-14013
1.4
1.8



WV-14014
1.1
1.3



WV-14015
1.1
1.3



WV-14016
1.2
1.5



WV-14017
1.5
1.5



WV-14018
0.8
1



WV-14019
1.2
1.4



WV-14020
1
1



WV-14021
1
1.3



WV-14022
1.3
1.5



WV-14023
1.3
1.7



WV-14024
1.2
1.2



WV-14025
1.5
1.6



WV-14026
2.4
0.6



WV-14027
1.2
1.2



WV-14028
1.1
1.2



WV-14029
1.2
1.4



WV-14030
1.3
1.6



WV-14031
1.3
1.6



WV-14032
1.2
1.5



WV-14033
1.3



WV-14034
1.1
1.2



WV-14035
1.2
1.4



WV-14036
1.1
1.1



WV-14037
1.1
1.2



WV-14038
1.4
1.4



WV-14039
1.2
1.2



WV-14040
2.2
3



WV-14041
2.3
2.4



WV-14042
1.3
1.3



WV-14043
1.1
1.4



WV-14044
1.3
1.5



WV-14045
1.8
2.1



WV-14046
1.3
1.6



WV-14047
1.2
1.6



WV-14048
3.8
4.9



WV-14049
2.1
2.6



WV-14050
1.4
1.5



WV-14051
1.5
1.7



WV-14052
1.4
2.2



WV-14053
1.5
1.4



WV-14054
1.4
1.8



WV-14055
1.3
1.6



WV-14056
1.3
1.4



WV-14057
1.7
2.1



WV-14058
1.8
1.4

















TABLE 22A.3







Example data of certain oligonucleotides.










Biological
Biological



Rep1
Rep2















mock

0.9



mock
0.8
1



mock
1
1.4



mock
1
0.5



mock
1.9
1.2



mock
0.7
0.7



mock
0.9
0.6



mock
0.3
1.6



WV-13964
0.8
1



WV-13965
0.8
0.7



WV-13966
1
0.7



WV-13967
1.2
0.9



WV-13969
1.2
1.3



WV-13971

0.5



WV-13972
0.9
1.3



WV-13973
0.6
1.4



WV-13976
1.3
1.6



WV-13979
0.5
0.3



WV-13980
1.4
0.6



WV-13981
0.8
1.3



WV-13982
1.1
1



WV-13983
1
0.8



WV-13984
0.8
0.4



WV-13985
1.3
1.6



WV-13987
1.4
1.1



WV-13988
1.4
1



WV-13989
1.5
0.7



WV-13990
1.3
0.6



WV-13991
1.3
0.8



WV-13992
1.6
2.4



WV-13993
0.9
0.9



WV-13994
0.6
1



WV-13995
0.9
1.6



WV-13996
1.2
0.8



WV-13997
1.4
0.7



WV-13998
1.2
0.8



WV-13999
0.9
0.9



WV-14000
0.6
0.3



WV-14001
0.8
0.9



WV-14002
0.6
1.3



WV-14003
2.1
2



WV-14004
2.1
0.7



WV-14005
0.9
0.8



WV-14006
1.3
1.1



WV-14007
0.9
1.6



WV-14008
1.3
1.1



WV-14009
0.9
1



WV-14010
1
0.6



WV-14011
3.1
4.7



WV-14010
1
0.6



WV-14011
3.1
4.7



WV-14012
1.3
1.7



WV-14013
0.9
1



WV-14014
0.9
1.1



WV-14015
0.4
1.2



WV-14016
0.4
2.1



WV-14017
1.4
1.3



WV-14018
0.8
0.7



WV-14019
1.3
1.5



WV-14020
0.6
1.2



WV-14021
1.2
1.4



WV-14022
1.6
1.6



WV-14023
1.2
1.3



WV-14024
1.4
1.1



WV-14025
0.5
1.6



WV-14026
1.9



WV-14027
1.1
0.9



WV-14028
0.8
1



WV-14029
1.1
1.3



WV-14030
1.2
1.4



WV-14031
1.2
1.5



WV-14032
0.9
1.7



WV-14033
0.9



WV-14034
0.8
1.1



WV-14035
1.3
1.1



WV-14036
0.7
0.9



WV-14037
1.2
1



WV-14038
1.4
1.6



WV-14039
1.1
0.5



WV-14040
2.5
4.4



WV-14041
2
2.8



WV-14042
1.4
1.2



WV-14043
1.4
1.4



WV-14044
1.7
1.2



WV-14045
1.7
2



WV-14046
1.1
1.9



WV-14047
1.3
0



WV-14048
3.1
7.1



WV-14049
1.9
2.5



WV-14050
1.6
1.4



WV-14051
1.8
1.7



WV-14052
0.9
2.6



WV-14053
1.1
1.8



WV-14054
1.2
2



WV-14055
1.2
2



WV-14056
1.4
0.9



WV-14057
1.5
1.9



WV-14058
1.3
1










In some embodiments, a composition capable of mediating exon skipping of a particular DMD exon comprises two or more oligonucleotides targeting a particular exon. In some embodiments, a combination of two or more oligonucleotides provides skipping levels significantly higher than the addition of the skipping level of each oligonucleotide individually. In some embodiments, a combination of two or more oligonucleotides provides significant (1%, 5%, 10%, or more) and/or detectable levels of skipping while each oligonucleotide individually does not provide detectable levels of skipping. Combinations of traditional oligonucleotides (e.g., stereorandom oligonucleotide and/or oligonucleotides without non-negatively charged internucleotidic linkages described in the present disclosure) has been reported to provide certain improved effects, e.g., in Wilton et al. 2007 Mol. Ther. 7: 1288-1296 (exons 10, 20, 34, 65, etc.). Among other things, provided combinations comprise at least one oligonucleotide comprising one or more chirally controlled internucleotidic linkages and/or one or more non-negatively charged internucleotidic linkages, and can provide significantly increased levels of exon skipping.


Among other things, the present disclosure recognizes that certain exons are particularly challenging for skipping. For example, in one report, for exons 47 and 57, individual DMD oligonucleotides were not capable of mediating exon skipping, but pairs of oligonucleotides were capable of mediating exon skipping. In one report, effective skipping of exon 45 was mediated by combining two DMD oligonucleotides which were individually not effective in skipping of this exon. Aartsma-Rus et al. 2006 Mol. Ther. 14: 401. Aartsma-Rus et al. 2006 Mol. Ther. 14: 401. In some embodiments, the present disclosure provides oligonucleotides (e.g., chirally controlled oligonucleotides), and compositions and methods of use thereof, for exon skipping of such challenging exons. With chemistry modifications and/or stereochemistry technologies described herein, the present disclosure provides technologies with greatly improved exon skipping efficiency. In some embodiments, the present disclosure provides single oligonucleotide (e.g., a chirally controlled oligonucleotide) and compositions thereof (e.g., a chirally controlled oligonucleotide composition) for exon skipping of one or more exons that are challenging to skip. In some embodiments, the present disclosure provides combinations of oligonucleotides (e.g., chirally controlled oligonucleotides) and compositions thereof (e.g., chirally controlled oligonucleotide compositions) for exon skipping of one or more exons that are challenging to skip. In some embodiments, combinations of DMD oligonucleotides targeting the same exon mediate increased exon skipping levels relative to individual DMD oligonucleotides.


In some embodiments, a composition comprises two or more DMD oligonucleotides, wherein each individual DMD oligonucleotide mediates low levels of exon skipping, while the combination mediates a higher level of skipping (higher than the addition of levels achieved by each oligonucleotide individually).


In some embodiments, a composition comprises two or more DMD oligonucleotides, wherein the oligonucleotides target different exons.


In some embodiments, a combination of multiple DMD oligonucleotides targeting different exons is capable of mediating skipping of two or more (e.g., multiple) exons.


In some embodiments, a composition comprises two or more DMD oligonucleotides. In some embodiments, a composition comprises two or more DMD oligonucleotides, at least one of which is described herein or has a base sequence, stereochemistry or other chemical characteristic described herein.


Oligonucleotides Comprising Non-Negatively Charged Internucleotidic Linkages can Provide Significantly Improved Activities.

In some embodiments, the present disclosure provides oligonucleotides comprising one or more non-negatively charged internucleotidic linkages. In some embodiments, a non-negatively charged internucleotidic linkage is a neutral internucleotidic linkage. In some embodiments, the present disclosure provides oligonucleotides comprising one or more neutral internucleotidic linkages. In some embodiments, a non-negatively charged internucleotidic linkage has the structure of formula 1-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


In some embodiments, a non-negatively charged internucleotidic linkage comprises a triazole moiety. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted triazolyl group. In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage has the structure of




embedded image


In some embodiments, a non-negatively charged internucleotidic linkage comprises a substituted triazolyl group. In some embodiments, a non-negatively charged internucleotidic linkage has the structure




embedded image


wherein W is O or S. In some embodiments, a non-negatively charged internucleotidic linkage comprises an optionally substituted alkynyl group. In some embodiments, a non-negatively charged internucleotidic linkage has the structure




embedded image


wherein W is O or S.


In some embodiments, the present disclosure provides oligonucleotides comprising an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage, which comprises a cyclic guanidine moiety. In some embodiments, an internucleotidic linkage comprises a cyclic guanidine and has the structure of:




embedded image


In some embodiments, an internucleotidic linkage, e.g., a non-negatively charged internucleotidic linkage, comprising a cyclic guanidine is stereochemically controlled.


In some embodiments, a non-negatively charged internucleotidic linkage, or a neutral internucleotidic linkage, is or comprising a structure selected from




embedded image


wherein W is O or S. In some embodiments, a non-negatively charged internucleotidic linkage is a chirally controlled internucleotidic linkage. In some embodiments, a neutral internucleotidic linkage is a chirally controlled internucleotidic linkage. In some embodiments, a nucleic acid or an oligonucleotide comprising a modified internucleotidic linkage comprising a cyclic guanidine moiety is a siRNA, double-straned siRNA, single-stranded siRNA, gapmer, skipmer, blockmer, antisense oligonucleotide, antagomir, microRNA, pre-microRNs, antimir, supermir, ribozyme, U1 adaptor, RNA activator, RNAi agent, decoy oligonucleotide, triplex forming oligonucleotide, aptamer or adjuvant.


In some embodiments, an oligonucleotide comprises a neutral internucleotidic linkage and a chirally controlled internucleotidic linkage. In some embodiments, an oligonucleotide comprises a neutral internucleotidic linkage and a chirally controlled internucleotidic linkage which is a phosphorothioate in the Rp or Sp configuration. In some embodiments, the present disclosure provides an oligonucleotide comprising one or more non-negatively charged internucleotidic linkages and one or more phosphorothioate internucleotidic linkage, wherein each phosphorothioate internucleotidic linkage in the oligonucleotide is independently a chirally controlled internucleotidic linkage. In some embodiments, the present disclosure provides an oligonucleotide comprising one or more neutral internucleotidic linkages and one or more phosphorothioate internucleotidic linkage, wherein each phosphorothioate internucleotidic linkage in the oligonucleotide is independently a chirally controlled internucleotidic linkage. In some embodiments, a provided oligonucleotide comprises at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more chirally controlled phosphorothioate internucleotidic linkages.


Without wishing to be bound by any particular theory, the present disclosure notes that a neutral internucleotidic linkage is more hydrophobic than a phosphorothioate internucleotidic linkage (PS), which is more hydrophobic than a phosphodiester linkage (natural phosphate linkage, PO). Typically, unlike a PS or PO, a neutral internucleotidic linkage bears less charge. Without wishing to be bound by any particular theory, the present disclosure notes that incorporation of one or more neutral internucleotidic linkages into an oligonucleotide may increase oligonucleotides' ability to be taken up by a cell and/or to escape from endosomes. Without wishing to be bound by any particular theory, the present disclosure notes that incorporation of one or more neutral internucleotidic linkages can be utilized to modulate melting temperature between an oligonucleotide and its target nucleic acid.


Without wishing to be bound by any particular theory, the present disclosure notes that incorporation of one or more non-negatively charged internucleotidic linkages, e.g., neutral internucleotidic linkages, into an oligonucleotide may be able to increase the oligonucleotide's ability to mediate a function such as exon skipping or gene knockdown. In some embodiments, an oligonucleotide capable of altering skipping of one or more exons in a target gene comprises one or more neutral internucleotidic linkages. In some embodiments, an oligonucleotide capable of mediating skipping of an exon(s) in a target gene comprises one or more neutral internucleotidic linkages. In some embodiments, an oligonucleotide capable of mediating skipping of one or more DMD exon(s) comprises one or more neutral internucleotidic linkages.


In some embodiments, an oligonucleotide capable of mediating knockdown of level of a nucleic acid or a product encoded thereby comprises one or more non-negatively charged internucleotidic linkages. In some embodiments, an oligonucleotide capable of mediating knockdown of expression of a target gene comprises one or more non-negatively charged internucleotidic linkages. In some embodiments, an oligonucleotide capable of mediating knockdown of expression of a target gene comprises one or more neutral internucleotidic linkages.


In some embodiments, a non-negatively charged internucleotidic linkage is not chirally controlled. In some embodiments, a non-negatively charged internucleotidic linkage is chirally controlled. In some embodiments, a non-negatively charged internucleotidic linkage is chirally controlled and its linkage phosphorus is Rp. In some embodiments, a non-negatively charged internucleotidic linkage is chirally controlled and its linkage phosphorus is Sp.


In some embodiments, a provided oligonucleotide comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more non-negatively charged internucleotidic linkages. In some embodiments, a provided oligonucleotide comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more neutral internucleotidic linkages. In some embodiments, each of non-negatively charged internucleotidic linkage and/or neutral internucleotidic linkages is optionally and independently chirally controlled. In some embodiments, each non-negatively charged internucleotidic linkage in an oligonucleotide is independently a chirally controlled internucleotidic linkage. In some embodiments, each neutral internucleotidic linkage in an oligonucleotide is independently a chirally controlled internucleotidic linkage. In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


wherein W is O or S. In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure




embedded image


herein W is O or S. In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


wherein W is O or S. In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


In some embodiments, at least one non-negatively charged internucleotidic linkage/neutral internucleotidic linkage has the structure of




embedded image


In some embodiments, a provided oligonucleotide comprises at least one non-negatively charged internucleotidic linkage wherein its linkage phosphorus is in Rp configuration, and at least one non-negatively charged internucleotidic linkage wherein its linkage phosphorus is in Sp configuration.


In some embodiments, an oligonucleotide capable of increasing the frequency of skipping of an exon of a target gene comprises a non-negatively charged internucleotidic linkage. In some embodiments, an oligonucleotide capable of increasing the frequency of skipping of an exon of a target gene comprises a non-negatively charged internucleotidic linkage and is useful for treatment of a disease wherein the exon comprises a deleterious or disease-associated mutation. A non-limiting example is the DMD gene, wherein the skipping of an exon comprising a mutation contributes to muscular dystrophy.


Various oligonucleotides, including DMD oligonucleotides, that comprise one or more non-negatively charged internucleotidic linkages/neutral internucleotidic linkages were designed and/or constructed and/or tested, for example, WV-1343, WV-1344, WV-1345, WV-1346, WV-1347, WV-11237, WV-11238, WV-11239, WV-12130, WV-12131, WV-12132, WV-12133, WV-12134, WV-12135, WV-12136, WV-11340, WV-11341, WV-11342, WV-12123, WV-12124, WV-12125, WV-12126, WV-12127, WV-12128, WV-12129, WV-12553, WV-12554, WV-12555, WV-12556, WV-12557, WV-12558, WV-12559, WV-12872, WV-12873, etc. Example DMD oligonucleotides for skipping exon 23 and comprising a non-negatively charged internucleotidic linkage (e.g., a neutral internucleotidic linkage) include: WV-11343, WV-11344, WV-11345, WV-11346, and WV-1347. Example DMD oligonucleotides for skipping exon 51 and comprising a non-negatively charged internucleotidic linkage (e.g., a neutral internucleotidic linkage) include: WV-11237, WV-11238, WV-11239, WV-12130, WV-12131, WV-12132, WV-12133, WV-12134, WV-12135, and WV-12136. Example DMD oligonucleotides for skipping exon 53 and comprising a non-negatively charged internucleotidic linkage (e.g., a neutral internucleotidic linkage) include: WV-11340, WV-1341, WV-11342, WV-12123, WV-12124, WV-12125, WV-12126, WV-12127, WV-12128, WV-12129, WV-12553, WV-12554, WV-12555, WV-12556, WV-12557, WV-12558, WV-12559, WV-12872, and WV-12873. Certain oligonucleotides are in Table A1.


Additional DMD oligonucleotides comprising a non-negatively charged internucleotidic linkage were designed and/or constructed. These include DMD oligonucleotides for skipping DMD exon 45, WV-14528, WV-14529, WV-14532, and WV-14533.


The efficacy of various DMD oligonucleotides comprising a non-negatively charged internucleotidic linkage in skipping DMD exon 45 is shown in Table 1B.1 and Table 1B.2 herein.


The efficacy of various DMD oligonucleotides comprising a non-negatively charged internucleotidic linkage in skipping DMD exon 53 is shown in Table 21E, Table 21F, Table 21G, and Table 21H herein.


In some embodiments, a non-negatively charged internucleotidic linkage may be designated as nX if stereorandom, or nS chirally controlled and linkage phosphorus in the Sp configuration, or nR if chirally controlled and the linkage phosphorus in the Rp configuration.


In some embodiments, a non-negatively charged internucleotidic linkage may be designated as n001 if stereorandom, or n001S chirally controlled and linkage phosphorus in the Sp configuration, or n001R if chirally controlled and the linkage phosphorus in the Rp configuration (e.g., in Table A1).


Various DMD oligonucleotides comprising a non-negatively charged internucleotidic linkage in the Rp configuration were constructed, including WV-12872, WV-13408, WV-12554, WV-13409, WV-12555, and WV-12556.


Various DMD oligonucleotides comprising a non-negatively charged internucleotidic linkage in the Sp configuration were constructed, including WV-12557, WV-12558, and WV-12559.


Data showing activity and stability of various oligonucleotides comprising a non-negatively charged internucleotidic linkage in the Rp or Sp configuration are shown in Table 21H Table 211, Table 211.1, and Table 211.2


Several oligonucleotides (including WV-9517, WV-13864, WV-13835, and WV-14791) were tested at various concentrations up to 30 uM for TLR9 activation in HEK-blue-TLR9 cells (16 hour gymnotic uptake). WV-13864 and WV-14791 comprise a chirally controlled non-negatively charged internucleotidic linkage in the Rp configuration. WV-9517, WV-13864, WV-13835, and WV-14791 did not exhibit significant TLR9 activation (data not shown).


Several oligonucleotides which target a gene other than DMD were designed and/or constructed which comprise a non-negatively charged internucleotidic linkage.


Below are presented oligonucleotides comprising a cyclic guanidine moiety which target DMD or Malat-1 (Malat1). The DMD oligonucleotides are designed to mediate skipping of exon 23 (in mouse) or exon 51 or exon 53 (in human). The Malat-1 oligonucleotides are designed to for Malat1 mRNA knockdown, e.g., mediated through RNase H.









TABLE 22B







 Example Malat-1 oligonucleotides comprising a neutral backbone.









Oligonucleotide
Description
Stereochemistry





WV-11533
mU * SGeon001m5Ceon001 m5Ceo n001mA * SG * SG * 
SnXnXnXSSRSSR



RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
SSRSSSSSS



SmC * SmU * SmC



WV-12504
Mod001L00mU * SGeon001 m5Ceon001 m5Ceon001mA *
OSnXnXnXSSRSS



SG * SG * RC * ST * SG * RG * ST * ST * RA * ST * SmG
RSSRSSSSSS



* SmA * SmC * SmU * SmC



WV-12505
L001mU * SGeon001m5Ceon001 m5Ceon001mA * SG * SG
OSnXnXnXSSRSS



* RC * ST * SG * RG * ST * ST * RA * ST * SmG * SmA *
RSSRSSSSSS



SmC * SmU * SmC










All of these oligonucleotides have the base sequence of UGCCAGGCTGGTTATGACUC.


Oligonucleotides comprising non-negatively charged internucleotidic linkages and targeting other gene targets were also designed, constructed and/or tested for their properties and activities, including activities for reducing levels of target mRNAs and/or proteins, e.g., via RNaseH-mediated knockdown. Such oligonucleotides are active in reducing target levels.


Various Malat1 oligonucleotides were designed, constructed and tested which comprise a non-negatively charged internucleotidic linkage. Various Malat1 oligonucleotides comprise 1, 2 or 3 non-negatively charged internucleotidic linkages in a wing and/or a core.









TABLE 22C







 Malat1 oligonucleotides









Oligonucleotide
Sequence
Stereochemistry





WV-8587
mU * SGeo m5Ceo m5Ceo mA * SG * SG * RC * ST * SG * RG
SOOOSSRSSR



* ST * ST * RA * ST * S mG * S mA * S mC * S mU * S mC
SSRSSSSSS


WV-14733
mU * SGeo m5Ceo m5Ceo mA * SG * SG * SC * ST * SG * SG
SOOOSSSSSS



* ST * ST * SA * ST * S mG * S mA * S mC * S mU * S mC
SSSSSSSSS


WV-15351
mU * SGeo m5Ceo m5Ceo mA * SG * SGn001C * ST *
SOOOSSIASS



SGn001G* ST * STn001A * ST * S mG * S mA * S mC * S mU
nXSSnXSSSSSS



* S mC



WV-15352
mU * SGeo m5Ceo m5Ceo mA * SG * SGn001C * ST * SG *
SOOOSSnXSS



RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU * S mC
RSSRSSSSSS


WV-15353
mU * SGeo m5Ceo m5Ceo mA * SG * SG * RC * ST *
SOOOSSRSSnX



SGn001G * ST* ST * RA * ST* S mG* S mA * S mC * S mU *
SSRSSSSSS



S mC



WV-15354
mU * SGeo m5Ceo m5Ceo mA * SG * SG * RC * ST * SG * RG
SOOOSSRSSRSS



* ST * STn001A * ST * S mG * S mA * S mC * S mU * S mC
nXSSSSSS


WV-15356
mU * SGeo m5Ceo m5Ceo mA * SG * SG * RCn001Tn001G *
SOOOSSRnXnX



RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU * S mC
RSSRSSSSSS


WV-15357
mU * SGeo m5Ceo m5Ceo mA * SG * SG * RC * ST * SG *
SOOOSSRSSR



RGn001Tn001T * RA * ST * S mG * S mA * S mC * S mU * S
nXnXRSSSSSS



mC



WV-15358
mU * SGeo m5Ceo m5Ceo mA * SG * SG * RC * ST * SG * RG
SOOOSSRSSRS



* ST * ST * RAn001Tn001 mG * S mA * S mC * S mU * S mC
SRnXnXSSSS


WV-8582
mU * SGeo m5Ceo m5Ceo mA * SG * SG * SC * ST * SG * SG 
SOOOSSSSSSS



* ST * ST * RA * ST * S mG * S mA * S mC * S mU * S mC
SRSSSSSS


WV-15359
mU * SGeo m5Ceo m5Ceo mA * SG * SG * SC * ST * SG * SG
SOOOSSSSSSS



* ST * STn001An001Tn001 mG * S mA * S mC * S mU * S mC
SnXnXnXSSSS


WV-15360
mU * SGeo m5Ceo m5Ceo mA * SG * SG * SC * ST * SG * SG
SOOOSSSSSSS



* ST * STn001A * ST * S mG * S mA * S mC * S mU * S mC
SnXSSSSSS


WV-15361
mU * SGeo m5Ceo m5Ceo mA * SG * SG * SC * ST * SG * SG
SOOOSSSSSSS



* ST * ST * RA * STn001 mGn001 mA * S mC * S mU * S mC
SRSnXnXSSS


WV-15362
mU * SGeo m5Ceo m5Ceo mA * SG * SG * SC * ST * SG * SG
SOOOSSSSSSS



* ST * ST * RAn001T * S mG * S mA * S mC * S mU * S mC
SRnXSSSSS


WV-15363
mU * SGeo m5Ceo m5Ceo mA * SG * SG * SC * ST * SG* SG
SOOOSSSSSSS



* ST * ST * RA * STn001 mG * S mA * S mC * S mU * S mC
SRSnXSSSS


WV-14556
mUn001Geon001 m5Ceon001 m5Ceo mA * SG * SG * RC * ST
nXnXnXOSSRS



* SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU
SRSSRSSSSSS



* S mC



WV-14557
mUn001Geon001 m5Ceo m5Ceon001 mA * SG * SG * RC * ST
nXnXOnXSSRS



* SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU
SRSSRSSSSSS



* S mC



WV-14558
mUn001Geon001 m5Ceo m5Ceo mAn001G * SG * RC * ST *
nXnXOOnXSRS



SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU *
SRSSRSSSSSS



S mC



WV-14559
mUn001Geo m5Ceon001 m5Ceon001 mA * SG * SG * RC * ST
nXOnXnXSSRSS



* SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU
RSSRSSSSSS



* S mC



WV-14560
mUn001Geo m5Ceon001 m5Ceo mAn001G * SG * RC * ST *
nXOnXOnXSRSS



SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU *
RSSRSSSSSS



S mC



WV-14561
mUn001Geo m5Ceo m5Ceon001 mAn001G * SG * RC * ST *
nXOnXOnXSRSS











SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU *
RSSRSSSSSS




S mC




WV-11533
mU * SGeon001 m5Ceon001 m5Ceon001 mA * SG * SG * RC *
SnXnXnXSSRSS




ST * SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S
RSSRSSSSSS




mU * S mC




WV-14562
mU * SGeon001 m5Ceon001 m5Ceo mAn001G * SG * RC * ST
SnXnXOnXSRSS




* SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU
RSSRSSSSSS




* S mC




WV-14563
mU * SGeon001 m5Ceo m5Ceon001 mAn001G * SG * RC * ST
SnXOnXnXSRSS




* SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU
RSSRSSSSSS




* S mC




WV-14564
mU * SGeo m5Ceon001 m5Ceon001 mAn001G * SG * RC * ST
SOnXnXnXSRSS




* SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S mU
RSSRSSSSSS




* S mC




WV-14349
Mod098L001 mU * SGeo m5Ceo m5Ceo mA * SG * SG * RC *
OSOOOSSRSSRS




ST * SG * RG * ST * ST * RA * ST * S mG * S mA * S mC * S
SRSSSSSS




mU * S mC










All of the oligonucleotides in this table have the base sequence of UGCCAGGCTGGTTATGACUC.









TABLE 22D







Data of Malat1 oligonucleotides











0.004 uM
0.02 uM
0.1 uM




















WV-8587
1.23
1.21
0.94
0.95
0.84
0.81
0.54
0.53
0.61


WV-14733
1.81
1.06
1.36
1.47
1.12
1.17
0.98
0.97
0.72


WV-15351
1.27
0.92
1.00
0.89
0.95
0.92
0.74
0.66
0.71


WV-15352
1.49
1.78
1.52
0.88
0.83
0.91
0.50
0.52
0.73


WV-15353
0.85
0.91
1.10
0.65
0.59
0.68
0.44
0.42
0.40


WV-15354
1.31
1.00
0.90
0.69
0.94
0.79
0.56
0.87
0.74


WV-15356
0.77
0.87
0.68
0.49
0.67
0.63
0.30
0.35
0.31


WV-15357
0.91
1.02
1.13
0.66
0.75
0.79
0.37
0.32
0.36


WV-15358
0.80
0.82
0.90
0.83
0.85
0.85
0.36
0.45
0.43


WV-8582
1.11
1.06
1.15
1.30
1.15
1.14
0.67
0.85
1.06


WV-15359
1.16
1.26
1.02
0.92
0.83
0.83
0.85

0.90


WV-15360
1.57
1.38
1.31
1.05
0.99
0.83
1.03
0.91
0.80


WV-15361
0.92
1.11
1.00
0.71
0.63
0.68
0.74
1.09
0.73


WV-15362
1.23
1.22
1.07
0.90
0.83
0.82
0.99
0.97
0.80


WV-15363
1.16
1.03
0.85
0.89
0.87
0.90
1.10
1.18
1.01


WV-14556
0.81
0.84
0.91
0.46
0.42
0.58
0.15
0.23
0.17


WV-14557
0.75
1.10
0.96
0.46
0.40
0.54
0.19
0.19
0.21


WV-14558
0.96
1.11
0.90
0.77
1.08
0.78
1.27
0.40
0.45


WV-14559
0.80
0.62
0.75
0.35
0.36
0.37
0.12
0.17
0.13


WV-14560
1.11
0.99
1.03
0.44
0.48
0.60
0.29
0.31
0.15


WV-14561
0.71
0.73
1.04
0.47
0.41
0.48
0.22
0.24
0.16


WV-11533
0.74
0.75
0.87
0.40
0.37
0.41
0.14
0.14
0.09


WV-14562
0.79
0.60
0.60
0.53
0.45
0.64
0.22
0.33
0.24


WV-14563
0.76
0.96
0.79
0.57
0.51
0.53
0.23
0.23
0.24


WV-14564
0.72
0.65
0.70
0.58
0.47
0.50
0.17
0.20
0.21


WV-9491
1.02
0.96
1.28
0.82
0.93
1.27
0.88
0.91
1.06


WV-14349
1.07
1.34
1.03
0.86
0.77
1.11
0.63
0.60
0.79










Numbers represent knockdown of Malat1 mRNA relative to HPRT1, wherein 1.000 would represent no (0.0%)knockdown and 0.000 represents 100.0% knockdown; results from replicate experiments are shown. WV-9491 is a negative control that is not designed to target Malat1.


Various Malat1 oligonucleotides were designed, constructed and tested which comprise one or more non-negatively charged internucleotidic linkages in a core. In various embodiments of a Malat1 oligonucleotide, a phosphorothioate in the Rp configuration is replaced by anon-negatively charged internucleotidic linkage.









TABLE 22E







Data of Malat1 oligonucleotides














WV-
WV-
WV-
WV-
WV-
WV-



8587
15351
15352
15353
15354
9491

















0.004 uM 
1.23
1.27
1.49
0.85
1.31
1.02



1.21
0.92
1.78
0.91
1.00
0.96



0.94
1.00
1.52
1.10
0.90
1.28


0.02 uM
0.95
0.89
0.88
0.65
0.69
0.82



0.84
0.95
0.83
0.59
0.94
0.93



0.81
0.92
0.91
0.68
0.79
1.27


 0.1 uM
0.54
0.74
0.50
0.44
0.56
0.88



0.53
0.66
0.52
0.42
0.87
0.91



0.61
0.71
0.73
0.40
0.74
1.06










Numbers represent knockdown of Malat1 mRNA relative to HPRT1, wherein 1.000 would represent no (0.0%) knockdown and 0.000 represents 100.0% knockdown; results from replicate experiments are shown.


Various Malat1 oligonucleotides were designed, constructed and tested which comprise a non-negatively charged internucleotidic linkage. Various Malat1 oligonucleotides comprise 1 or more non-negatively charged internucleotidic linkages.









TABLE 22F







Data of certain oligonucleotides.













WV-
WV-
WV-
WV-
WV-



8587
15356
15357
15358
9491

















0.004
uM
1.23
0.77
0.91
0.80
1.02




1.21
0.87
1.02
0.82
0.96




0.94
0.68
1.13
0.90
1.28


0.02
uM
0.95
0.49
0.66
0.83
0.82




0.84
0.67
0.75
0.85
0.93




0.81
0.63
0.79
0.85
1.27


0.1
uM
0.54
0.30
0.37
0.36
0.88




0.53
0.35
0.32
0.45
0.91




0.61
0.31
0.36
0.43
1.06










Numbers represent knockdown of Malat1 mRNA relative to HPRT1, wherein 1.000 would represent no (0.0%) knockdown and 0.000 represents 100.0% knockdown: results from replicate experiments are shown.


Various Malat1 oligonucleotides were designed, constructed and tested which comprise a non-negatively charged internucleotidic linkage. Various Malat1 oligonucleotides comprise 1 or more non-negatively charged internucleotidic linkages. In various tables and throughout the text herein, the presence or absence of a hyphen in the designation of an oligonucleotide is irrelevant. For example, WV8582 is equivalent to WV-8582.









TABLE 22G







Data of certain oligonucleotides.















WV-
WV-
WV-
WV-
WV-
WV-
WV-



8582
15359
15360
15361
15362
15363
9491


















0.004 uM
1.11
1.16
1.57
0.92
1.23
1.16
1.02



1.06
1.26
1.38
1.11
1.22
1.03
0.96



1.15
1.02
1.31
1.00
1.07
0.85
1.28


 0.02 uM
1.30
0.92
1.05
0.71
0.90
0.89
0.82



1.15
0.83
0.99
0.63
0.83
0.87
0.93



1.14
0.83
0.83
0.68
0.82
0.90
1.27


 0.1 uM
0.67
0.85
1.03
0.74
0.99
1.10
0.88



0.85

0.91
1.09
0.97
1.18
0.91



1.06
0.90
0.80
0.73
0.80
1.01
1.06










Numbers represent knockdown of Malat1 mRNA relative to HPRT1, wherein 1.000 would represent no (0.0%) knockdown and 0.000 represents 100.0% knockdown; results from replicate experiments are shown.


Various Malat1 oligonucleotides were designed, constructed and tested which comprise a non-negatively charged internucleotidic link-age. Various Malat1 oligonucleotides comprise 1 or more non-negatively charged internucleotidic linkages.









TABLE 22H





Data of certain oligonucleotides.


















0.004 uM
0.02 uM

















WV-11533
0.74
0.75
0.87
0.40
0.37
0.41


WV-14556
0.81
0.84
0.91
0.46
0.42
0.58


WV-14557
0.75
1.10
0.96
0.46
0.40
0.54


WV-14558
0.96
1.11
0.90
0.77
1.08
0.78


WV-14559
0.80
0.62
0.75
0.35
0.36
0.37


WV-14560
1.11
0.99
1.03
0.44
0.48
0.60


WV-14561
0.71
0.73
1.04
0.47
0.41
0.48


WV-14562
0.79
0.60
0.60
0.53
0.45
0.64


WV-14563
0.76
0.96
0.79
0.57
0.51
0.53


WV-14564
0.72
0.65
0.70
0.58
0.47
0.50


WV-9491
1.02
0.96
1.28
0.82
0.93
1.27












0.1 uM
















WV-11533
0.14
0.14
0.09



WV-14556
0.15
0.23
0.17



WV-14557
0.19
0.19
0.21



WV-14558
1.27
0.40
0.45



WV-14559
0.12
0.17
0.13



WV-14560
0.29
0.31
0.15



WV-14561
0.22
0.24
0.16



WV-14562
0.22
0.33
0.24



WV-14563
0.23
0.23
0.24



WV-14564
0.17
0.20
0.21



WV-9491
0.88
0.91
1.06











Numbers represent knockdown of Malat1 mRNA relative to HPRT1, wherein 1.000 would represent no (0.0%) knockdown and 0.000 represents 100.0% knockdown; results from replicate experiments are shown.


In some embodiments, oligonucleotides were designed, constructed and tested in vitro against suitable reference oligonucleotides which do not comprise any non-negatively charged internucleotidic linkages, e.g., in iCell Astrocytes, at several suitable doses (e.g., 0, 0.014, 0.041, 0.123, 0.37, 1.11, 3.33, 10 uM) gymnotic for suitable period of time e.g., 2 days.


Tables 23, 24 and 25 present experimental results.









TABLE 23





Data of certain oligonucleotides.


















Oliogomscleotide tested



Dose
(Relative fold change Malat1/HPRT1)









(uM)
WV-8587
WV-9696
















0
0.924
0.970
1.106
1.162
1.040
0.799


0.013717
0.833
0.930
0.730
0.997
0.844
0.918


0.041152
1.186
0.868
0.874
1.076
0.957
0.844


0.123457
0.772
0.827
0.658
0.970
0.756
0.821


0.37037
0.610
0.610
0.553
0.821
0.520
0.681


1.111111
0.394
0.360
0.425
0.431
0.419
0.402


3.333333
0.157
0.136
0.162
0.225
0.214
0.220


10
0.051
0.052
0.065
0.090
0.086
0.091













Oliogonudeotide tested



Dose
(Relative fold change Malat1/HPRT1)









(uM)
WV-11114
WV-11533
















0
0.761
0.881
1.212
0.958
0.985
1.056


0.013717
1.048
1.027
1.187
0.900
0.932
1.020


0.041152
0.912
0.958
1.108
0.453
0.503
0.479


0.123457
0.971
1.063
1.238
0.356
0.387
0.332


0.37037
0.706
0.846
0.692
0.105
0.107
0.096


1.111111
0.429
0.486
0.574
0.048
0.051
0.049


3.333333
0.181
0.196
0.203
0.033
0.032
0.030


10
0.080
0.075
0.087
0.026
0.034
0.031










Numbers represent knockdown of Malat1 mRNA, wherein 1.000 would represent no (0.0%) knockdown and 0.000 re resents 100.0% knockdown; results from replicate experiments are shown.









TABLE 24







IC50 of certain Malat1 oligonucleotides.










Oligonucleotide
IC50















WV-8587
757
nM



WV-9696
806
nM



WV-11114
894
nM



WV-11533
49
nM










Among other things, the present disclosure demonstrates that oligonucleotides comprising one or more non-negatively charged internucleotidic linkages can provide dramatically improved activities—as illustrated in Table 24, more than 15-fold improvement can be achieved in terms of IC50.


In another experiment, several Malat1 oligonucleotides including WV-11533, which comprises three neutral internucleotidic linkages, were assessed for knockdown of Malat1, measured by a decrease in the abundance of a Malat1 RNA WV-7772, which is complementary to the tested oligonucleotides, in the presence of RNaseH.


















Linkage/


Oligonucleotide
Description
Naked Sequence
Stereochemistry







WV-11533
mU * SGeon001m5Ceo n001m5Ceo n001mA
UGCCAGGCTG
SnXnXnXSSRSSRS



* SG * SG * RC * ST * SG * RG * ST * ST *
GTTATGACUC
SRSSSSSS



RA * ST * SmG * SmA * SmC * SmU * SmC




WV-8556
mU * Geom5Ceom5CeomA * G * G * C * T
UGCCAGGCTGG
XOOOXXXXXX



* G *G * T * T * A * T * mG * mA * mC *
TTATGACUC
XXXXXXXXX



mU * mC




WV-8587
mU * SGeom5Ceom5CeomA * SG * SG *
UGCCAGGCTGG
SOOOSSRSSRSS



RC * ST * SG * RG * ST * ST * RA * ST *
TTATGACUC
RSSSSSS



SmG * SmA * SmC * SmU * SmC




WV-7772
rC rU rG rA rG rU rC rA rU rA rA rC rC rA
CUGAGUCAUAAC
OOOOOOOOOOOO



rG rC rC rU rG rG rC rA
CAGCCUGGCA
OOOOOOOOO


WV -9696
L001mU * SGeom5Ceom5CeomA * SG * SG
UGCCAGGCT
OSOOOSSRSSRS



* RC * ST * SG * RG * ST * ST * RA * ST *
GGTTATGACUC
SRSSSSSS



SmG * SmA * SmC * SmU * SmC




WV-11114 
Mod091L001mU * SGeom5Ceom5CeomA *
UGCCAGGCT
OSOOOSSRSSRS



SG * SG * RC * sT * SG * RG * ST * ST *
GGTTATGACUC
SRSSSSSS



RA * ST * SmG * SmA * SmC * SmU * SmC









At a time point of 45 minutes, less than 20% of the Malat1 RNA remained in the presence of RNase H and WV-11533 or WV-8587, indicating greater than 80% knockdown; and about 60% of the Malat1 RNA remained in the presence of RNase H and WV-8556, which is stereorandom and does not comprise a neutral backbone. Among other things, the present disclosure demonstrates that oligonucleotides comprising non-negatively charged internucleotidic linkages and/or chirally controlled internucleotidic linkages showed significantly improved activities in reducing levels of target nucleic acids, e.g., through RNase H-mediated knockdown.


Certain oligonucleotides were also tested for stability in rat liver homogenate at 0, 1 and 2 days. For both WV-11533 and WV-8587, over 80% of the full-length oligonucleotide remained at 2 days; about 40% of the stereorandom WV-8556 remained.


Oligonucleotides were also tested for Tm with the Malat1 RNA, WV-7772. One example set of test conditions: 1 μM Duplex in 1×PBS (pH 7.2); Temperature Range: 15° C.-90° C.; Temperature Rate: 0.5° C./min; Measurement Interval: 0.5° C. The results showed the following duplex Tm (° C.) with WV-7772; WV-8556, 73.52; WV-8587, 69.57; and WV-11533, 68.67.


In some embodiments, oligonucleotides comprising non-negatively charged internucleotidic linkages provide improved splicing modulation activities. Various oligonucleotides for mediating skipping of an exon in DMD were prepared and/or tested, wherein the oligonucleotides comprise non-negatively charged internucleotidic linkages. Certain oligonucleotides comprising non-negatively charged internucleotidic linkages are listed in Table A1.









TABLE 25 A







Example data of certain oligonucleotides.













Oligonucleotide
10 uM

3 uM

















WV-9898
27.13
13.38
11.27
9.69



WV-9897
33.61
31.46
11.82
9.52



WV-9517
20.21
12.08
6.72
6.89



WV-11342
44.84
41.17
19.22
18.43



WV-11341
38.85
44.85
18.95
20.63



WV-11340
41.51
43.08
17.79
16.4



PMO
3.89
4.05
2.08
1.52



Mock
0.49
0.53
0.45
0.52











Numbers indicate the level of exon skipping; e.g., 27.13 in column 2, row 2, represents 27.13% skipping of a DMD exon. Oligonucleotides were tested in vitro on cells at 10 or 3 uM.









TABLE 25B







Example data of certain oligonucleotides.













Mock
WV-11237
WV-3152
WV-3516
PMO

















10
um
1
49
35
7
3


3
uM
1
22
16
3
2










Numbers indicate the level of exon skipping relative to control; numbers are approximate. Oligonucleotides were tested in vitro on cells at 10 or 3 uM.


PMO indicates an all-PMO oligonucleotide.


Various DMD oligonucleotides for skipping exon 23 in mouse were constructed, several of which comprise anon-negatively charged internucleotidic linkage, including WV-11343 WV-11344 WV-11345, WV-11346, and WV-11347. These oligonucleotides were tested and demonstrated skipping of exon 23, as shown in the table below.









TABLE 25C.1







Example data of certain oligonucleotides.










10 uM
3.3 uM















WV-7684
5
2



WV-10256
25
13



WV-11343
44
33



WV-10257
16
10



WV-11344
42
29



WV-10258
22
20



WV-11345
48
39



WV-10259
24
10



WV-11346
43
32



WV-10260
23
14



WV-11347
43
32










In some experiments de145-52 cells (patient derived myoblasts) were treated with various oligonucleotides, including WV-13405 (PMO), WV-9517 and WV-9898, in muscle differentiation medium at 15, 10, 3.3, 1.1, 0.3, 0.1 and 0 uM under free uptake conditions for 6 days before being collected and analyzed for dystrophin protein restoration by Western blot. WV-9517 and WV-9898 demonstrated significant DMD production at concentrations of 3.3 uM and higher; WV-13405 did not show significant DMD product at a concentration of 3.3 uM, but did show DMD production at concentrations of 10 and 15 uM. Control was Vinculin.


As shown in Table 25D, additional oligonucleotides were constructed which were capable of mediating skipping of exon 53 and which comprise at least one neutral internucleotidic linkage.


Various additional DMD oligonucleotides for skipping exon 23 in mouse were constructed. These oligonucleotides were tested and demonstrated skipping of exon 23, as shown in the table below.









TABLE 25C.2







Example data of certain oligonucleotides.












WV-11345
WV-24092
WV-24098
Mock



















 10 uM
37.8
39.8
30.2
32.4
41.5
40.2
0
0


3.3 uM
22.4
22.9
13.4
14.5
24.3
23.5
0
0


1.1 uM
9.2
8.1
3
3.1
10.5
9.9
0
0










DMD oligonucleotides were tested in vitro for their ability to skip DMD exon 23 in H2K murine cells. Oligonucleotide delivery was gymnotic, and 4 day treatment was used.


Numbers represent exon 23 skipping level relative to control. 100.0 would represent 100% of transcripts skipped; 0 would represent 0% of transcripts skipped. Data from replicates are shown.









TABLE 25C.4







Example data of certain oligonucleotides.











10 uM
3.3 uM
1.1 uM
















WV-10258
22.9
11.6
3.8



WV-12885
34.2
17.8
6.1




32.4
18.6
6.9



WV-23576
23.7
10.6
3.8




25.6
11.5
3.3



WV-23577
23.3
13.9
6.6



WV-23578
22
11.8
4.9




16.1
13.9
7.1



WV-23579
19.2
8.3
6.7




20.7
29.8
5.5



WV-23937
18.8
9.2
3.5




6.3
4.2
1.3



WV-23938
26.4
16
6.9




30.3
16.7
7.3



WV-23939
35.2
23.3
11.8




33.6
22
12.9



Mock
0
0
0




0
0
0











DMD oligonucleotides were tested in vitro for their ability to skip DMD exon 23 in H2K murine cells. Oligonucleotide delivery was gymnotic, and 4 day treatment was used.


Numbers represent exon 23 skipping level relative to control. 100.0 would represent 100% of transcripts skipped; 0 would represent 0% of transcripts skipped. Data from replicates are shown.









TABLE 25C.4







Example data of certain oligonucleotides.













WV-
WV-
WV-
WV-




10258
25536
25537
25539
Mock




















 10 uM
22.9
2.3
10.7
11.8
15.1
12.5
8.1
0
0


3.3 uM
11.6
1.5
3.6
7.3
9.9
5.6
3.8
0
0


1.1 uM
3.8
1.1
1.3
2.7
4.2
1.8
2.3
0
0










DMD oligonucleotides were tested in vitro for their ability to skip DMD exon 23 in H2K murine cells. Oligonucleotide delivery was gymnotic, and 4 day treatment was used. Some of the tested oligonucleotides comprise one or more LNA.


Numbers represent exon 23 skipping level relative to control. 100.0 would represent 100% of transcripts skipped; 0 would represent 0% of transcripts skipped. Data from replicates are shown.









TABLE 25C.5







Example data of certain oligonucleotides.











10 uM
3.3 uM
1.1 uM
















WV-
22.9
11.6
3.8



10258



WV-
37.8
22.4
9.2



11345
39.8
22.9
8.1



WV-
34.2
17.8
6.1



12885
32.4
18.6
6.9



WV-
23.7
10.6
3.8



23576
25.6
11.5
3.3



WV-
23.3
13.9
6.6



23577



WV-
22
11.8
4.9



23578
16.1
13.9
7.1



WV-
19.2
8.3
6.7



23579
20.7
29.8
5.5



WV-
18.8
9.2
3.5



23937
6.3
4.2
1.3



WV-
26.4
16
6.9



23938
30.3
16.7
7.3



WV-
35.2
23.3
11.8



23939
33.6
22
12.9



WV-
30.2
13.4
3



24092
32.4
14.5
3.1



WV-
41.5
24.3
10.5



24098
40.2
23.5
9.9



WV-
2.3
1.5
1.1



25536
10.7
3.6
1.3



WV-
11.8
7.3
2.7



25537
15.1
9.9
4.2



WV-
12.5
5.6
1.8



25539
8.1
3.8
2.3



Mock
0
0
0




0
0
0











DMD oligonucleotides were tested in vitro for their ability to skip DMD exon 23 in H2K murine cells. Oligonucleotide delivery was gymnotic, and 4 day treatment was used. Some of the tested oligonucleotides comprise one or more non-negatively charged internucleotidic link-age.


Numbers represent exon 23 skipping level relative to control. 100.0 would represent 100% of transcripts skipped, 0 would represent 0%10 of transcripts skipped. Data from replicates are shown.









TABLE 25C.6







Example data of certain oligonucleotides.











Conc.
WV-24104

WV-24109














−4.70927
0.891
0.837
0.814
1.059


−4.40824
0.942
1.052
0.765
1.208


−4.10721
0.948
1.030
0.754
1.104


−3.80618
0.855
1.143
0.792
1.059


−3.50515
1.067
1.234
0.831
0.891


−3.20412
0.797
0.968
0.760
1.045


−2.90309
0.968
0.825
0.675
1.067


−2.60206
0.825
1.016
0.765
1.135


−2.30103
1.059
0.872
0.648
0.613


−2
0.988
1.067
0.413
0.548


−1.70927
0.754
0.955
0.357
0.362


−1.69897
0.922
0.797
0.313
0.340


−1.40824
0.666
0.739
0.220
0.227


−1.10721
0.548
0.604
0.162
0.170


−0.80618
0.404
0.427
0.096
0.098


−0.50515
0.352
0.427
0.062
0.053


−0.20412
0.272
0.206
0.027
0.027


0.09691
0.132
0.103
0.013
0.014


0.39794
0.061
0.058
0.008
0.011


0.69897
0.028
0.032
0.007
0.008


1
0.018
0.019
0.008
0.009


1.30103
0.016
0.015
0.009
0.010










Oligonucleotides targeting Malat-1, wherein the oligonucleotides comprise a non-negatively charged internucleotidic linkage, were tested for their ability to knock down Malat-1 in GABA neurons in vitro, with 4 day treatment. Numbers represent Malat-1 level relative to HPRT1 control and water, wherein 1.0 would represent 100% Malat-1 level (0% knockdown) and 0 would represent 0% Malat-1 level (100% knockdown). Concentrations (Conc.) tested are provided as [Log (dose uM)].


Data from replicates are shown.


IC50 of WV-24104 was 132 nM; and IC50 of WV-24109 was 12 nM.









TABLE 25D







Example data of certain oligonucleotides.










10 uM
3 uM



















mock
0.9
1.0
0.5
0.8
0.9
0.9
1.0
1.0


WV-9517
20.1
18.9
18.3
19.3
9.0
8.9
7.7
7.6


WV-11340
28.9
29.4
26.7
26.7
12.8
12.6
11.5
11.4


WV-11342
18.7
17.9
20.4
20.0
8.3
8.3
7.6
7.7


WV-12553
17.0
19.2
20.0
18.6
8.1
8.1
7.8
8.3


WV-12123
21.7
22.7
21.6
22.4
9.5
9.6
9.9
9.6


WV-12124
17.6
17.5
16.5
17.6
6.7
6.9
7.2
7.0


WV-12125
39.5
38.6
40.6
39.4
18.5
16.8
17.9
17.6


WV-12126
31.2
31.1
32.3
32.2
14.7
14.3
14.1
14.7


WV-12127
36.8
38.0
37.0
38.3
17.4
16.9
17.0
16.9


WV-12128
27.0
26.3
26.3
26.8
10.1
10.8
10.1
10.0


WV-12129
32.9
33.5
35.1
35.3
14.8
14.9
16.0
16.0


Mock
1.6
1.5
1.8
1.8
1.7
1.6
1.5
1.7


WV-9517
30.3
31.1
32.4
29.2
14.1
13.9
13.5
14.5


WV-11340
48.7
50.3
45.1
44.6
24.0
25.8
23.8
23.3


WV-12553
28.7
27.8
27.5
27.0
13.5
13.6
13.1
13.8


WV-9897
39.7
38.5
37.3
35.6
18.8
19.1
18.0
17.7


WV-11341
47.1
47.4


21.8
22.5
22.5
23.1


WV-12555
55.7
54.7
55.7
54.6
27.1
27.7
26.0
26.0


WV-12558
36.0
35.8
49.9
47.3
21.2
19.8
22.1
22.1


WV-9898
43.6
41.7
38.0
38.8
21.1
20.6


WV-11342
43.7
44.3
42.1
41.8
22.5
20.9
19.0
20.1


WV-12556
46.1
46.4
45.6
44.0
24.2
23.1
21.3
21.0


WV-12559
47.4
45.1
45.6
47.2
21.0
21.7
24.5
22.6


Mock
1.7
1.6
1.8
1.7
1.7
1.7
1.6
1.5


WV-9517
29.8
29.8
28.7
29.2
15.6
15.4
16.0
16.2


WV-11340
45.7
44.5
46.1
47.3
25.7
24.0
23.8
24.4


WV-11342
44.6
46.6
45.3
44.2
21.5
21.0
19.8
20.3


WV-12876
42.4
43.3
41.2
41.0
26.2
26.3
24.5
26.0


WV-12877
53.7
53.8
52.4
52.3
37.8
36.5
34.3
32.9


WV-12878
48.5
48.3
45.1
46.2
31.4
30.9
29.3
30.0


WV-12879
34.1
34.9
33.2
34.0
19.7
19.8
21.4
21.1


WV-12880
50.4
50.1
51.4
52.1
33.0
32.5
32.9
32.0


WV-12881
41.6
42.9
38.8
39.4
26.1
25.6
24.3
22.7


WV-12882
29.6
29.7
32.3
31.3
15.3
15.1
15.5
15.2


WV-12129
57.8
57.0
55.5
55.6
33.1
32.2










D45-52 myoblasts were treated for 4 days with 10 and 3 uM oligonucleotide.


Numbers in this and various other tables indicate amount of skipping relative to control.


Various DMD oligonucleotides comprising a chirally, controlled neutral backbone were constructed, including WV-12555, which comprises neutral internucleotidic linkage in the Rp configuration, and WV-12558, which comprises a neutral internucleotidic linkage in the Sp configuration. These were also tested for skipping a DMD exon, as shown in Table 25E.









TABLE 25E







Example data of certain oligonucleotides.
















WV-
WV-
WV-
WV-
WV-
WV-



MOCK
9517
11340
9897
11341
12555
12558


















10 uM
1.6
30.3
48.7
39.7
47.1
55.7
36.0



1.5
31.1
50.3
38.5
47.4
54.7
35.8



1.8
32.4
45.1
37.3

55.7
49.9



1.8
29.2
44.6
35.6

54.6
47.3


 3 uM
1.7
14.1
24.0
18.8
21.8
27.1
21.2



1.6
13.9
25.8
19.1
22.5
27.7
19.8



1.5
13.5
23.8
18.0
22.5
26.0
22.1



1.7
14.5
23.3
17.7
23.1
26.0
22.1










D45-52 myoblasts were treated for 4 days with 10 and 3 uM oligonucleotide. Oligonucleotides were delivered gymnotically. Numbers represent amount of skipping relative to control.


In some embodiments, >2 fold increase in exon skipping efficiency was achieved.









TABLE 25F







Example data of certain oligonucleotides.












MDX mouse
Human
Human
Human



Muscle
Liver
Muscle
Kidney

















WV-9517
82.4
77.8
84
73.7




3.08
7.9
2.01
3.59



WV-9897
88.3
82
96.1
75.2




9.12
4.2
5.5
3.8



WV-9898
74
75.8
96.8
81.5




5.07
6.4
8.9
5



WV-3473
69.8
69.8
ND
24




5.91
5.91
ND
0.15











Various DMD oligonucleotides for skipping exon 53 or 51 were incuted in tissue lysate for 5-days; full length oligonucleotides detected by LC-MS. Numbers represent percentage of full-length oligonucleotide remaining. Greater than 75% oligonucleotide remains inhuman and MDX muscle lysates at 5d incubation. Data was from a previous experiment performed for WV-3473, with 2d incubation in MDX muscle lysate. ND; Not determined; WV-3473 stability in human muscle lysate was not performed.


In some embodiments, an oligonucleotide comprising a neutral internucleotidic linkage (e.g., acyclic guanidine type) demonstrated a higher level of exon skipping than a corresponding oligonucleotide which did not comprise such a neutral internucleotidic linkage.


In some embodiments, the present disclosure pertains to an oligonucleotide or an oligonucleotide composition which is capable of mediating single-stranded RNA interference, wherein the oligonucleotide or oligonucleotide composition comprises a non-negatively charged internucleotidic linkage.


As described herein, various oligonucleotides comprising a non-negatively charged internucleotidic linkage and targeting any of several different genes, with different base sequences, patterns of sugar modifications, backbone chemistry, and patterns of stereochemistry of backbone internucleotidic linkages were constructed, including but not limited to various oligonucleotides which target C9orf72 (a different gene than DMD, or Malat).


Described herein are various non-limiting examples of oligonucleotides which target C9orf72 (which is a gene different from the other genes mentioned herein) and which comprise a non-negatively charged internucleotidic linkage.


A hexanucleotide repeat expansion in the C9orf72 gene (Chromosome 9, open reading frame 72) is reportedly the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). C9orf72 gene variants comprising the repeat expansion and/or products thereof are also associated with other C9orf72-related disorders, such as corticobasal degeneration syndrome (CBD), atypical Parkinsonian syndrome, olivopontocerebellar degeneration (OPCD), primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), Huntington's disease (HD) phenocopy, Alzheimer's disease (AD), bipolar disorder, schizophrenia, and other non-motor disorders. Various oligonucleotides were designed and constructed which comprise a neutral internucleotidic linkage and which target a C9orf72 target (e.g., a C9orf72 oligonucleotide) and are capable of knocking down or decreasing expression, level and/or activity of the C9orf72 target gene and/or a gene product thereof (a transcript, particularly a repeat expansion containing transcript, a protein, etc.).


Various oligonucleotides designed to target C9orf72 and comprising a non-negatively charged internucleotidic linkage include, but are not limited to: WV-11532, WV-13305, WV-13307, WV-13309, WV-13311, WV-13312, WV-13313, WV-13803, WV-13804, WV-13805, WV-13806, WV-13807, WV-13808, WV-14553, and WV-14555. These are described below in Table 25G.









TABLE 25G







Oligonucleotides targeting C9orf72 comprising a neutrai intemucleotidic linkage.










Oligo-





nucleo-





tide
Sequence
Naked Sequence
Stereochemistry





WV-
mC * Sm5Ceon001 Teon001 m5Ceon001 
CCTCACTCACCC
SnXnXnXSSSRSSR


11532
mA * SC * ST * SC * RA * SC * SC * RC
ACTCGCCA
SSSSSSSS



* SA * Se * ST * SmC * SmG * SmC *





SmC * SmA




WV-
m5Ceo * Rm5Ceon001 Teon001
CCTCACTCACCC
RnXnXnXRSSRSSR


13305
m5Ceon001 Aeo * RC * ST * sC * RA *
ACTCGCCA
SSSSSSSS



SC * SC * RC * SA * SC * ST * SmC*





SmG * SmC * SmC * SmA




WV_
m5Ceo * Sm5Ceon001 Teon001
CCTCACTCACCC
SnXnXnXRSSRSSR


13307
m5Ceon001 Aeo * RC * ST * SC * RA *
ACTCGCCA
SSSSSSSS



SC * SC * RC * SA * Sc * ST * SmC *





SmG * SmC * SmC * SmA




WV_
m5Ceo * Rm5Ceon001 Teon001
CCTCACTCACCC
RnXnXnXRSSRSSS


13309
m5Ceon001 Aeo * RC * ST * SC * RA *
ACTCGCCA
RSSSSSSS



SC * Sc * SC * RA * SC * ST * SmC *





SmG * SmC * SmC * SmA




WV-
m5Ceo * Sm5Ceon001 Teon001
CCTCACTCACCC
SnXnXnX.RSSRSSS


13311
m5Ceon001 Aeo * RC * ST * SC * RA *
ACTCGCCA
RSSSSSSS



SC * SC * SC * RA * SC * ST * SmC *





SmG * SmC * SmC * SmA




WV-
mC * Sm5Ceon001 Teon001 m5Ceon001
CCTCACTCACCC
SnXnXnXSSSR


13312
mA * SC * ST * SC * RA * SC * SC * SC
ACTCGCCA
SSSSSSSSSSS



* SA * SC * ST * SmC * SmG * SmC *





SmC * SmA




WV-
m5Ceo * Rm5Ceon001 Teon001
CCTCACTCACCC
RnXnXnXRSSR


13313
m5Ceon001 Aeo * RC * ST * SC * RA *
ACTCGCCA
SSSSSSSSSSS



Sc * SC * SC * SA * SC * ST * SmC *















SmG
* SmC * SmC *
SmA




WV-
Teo * Geon001 m5Ceon001 m5Ceon001
TGCCGCCTCCT
XnXnXnXXXXXXX




13803
Geo*C*C*T*C*C*I*C*A*
CACTCACCC
XXXXXXXXX





T * mC * mA * mC * mC * mC






WV-
Teo * Geom5Ccom 5CcoGeo * C * C * T
TGCCGCCTCCT
XOOOXXXXXXXXX




13804
* C * C * T * C * A * C * T *mCn001
CACTCACCC
XXnXnXnXX





mAn001 mCn001 mC * mC






WV-
Teo * Geon001 m5Ceon001 m5Ceon001
TGCCGCCTCCT
XnXnXnXXXXXXXX




13805
Geo * C * C * T * C * C * T * C * A * C *
CACTCACCC
XXXXnXnXnXX





T * mCn001 mAn001 mCn001 mC * mC






WV-
Geo * m5Ceon001 Geon001 m5Ceon001
GCGCGACTCCT
XnXnXnXXXXXXXX




13806
Geo * A * C * T * C * C * T * G* A * G
GAGTTCCAG
XXXXOOOX





* T * Teom5Ceom5CeoAeo * Geo






WV-
Geo * m5CeoGeom5CeoGeo * A * C * T
GCGCGACTCCT
XOOOXXXXXXXXXX




13807
* C * C * T * G * A * G * T * Teon001
GAGTTCCAG
XnXnXnXX





m5Ceon001 m5Ceon001 Aeo * Geo






WV-
Geo * m5Ceon001 Geon001 m5Ceon001
GCGCGACTCCT
XnXnXnXXXXXXXXX




13808
Geo * A * C * T * C * C * T * G * A * G
GAGTTCCAG
XXXnXnXnXX





* T * Teon001 m5Ceon001 m5Ceon001







Aeo * Geo






WV-
m5Ceo* Rm5Ceon001 Teon001
CCTCACTCACCC
RnXnXnXRSSRSSR




14553
m5Ceon001 Aeo * RC * ST * SC * RA *
ACTCGCCA
SSSRSSSS





SC * SC * RC * SA * SC* ST * Rm5Ceo







* SmG * SmC * SmC * SmA






WV-
m5Ceo* Rm5Ceon001 Teon001
CCTCACTCACCC
RnXnXnXRSSRSSS




14555
m5Ceon001 Aeo * RC * ST * SC * RA *
ACTCGCCA
RSSRSSSS





SC * SC * SC * RA * SC * ST * Rm5Ceo







* SmG * SmC * SmC * SmA










Several variants of a C9orf72 mRNA are produced from the C9orf72 gene: V2 (which does not comprise the deleterious hexanucleotide repeat and which comprises about 90% of all transcripts); V3 (which comprises the hexanucleotide repeat and comprises about 9% of all transcripts); and V I (which comprises the hexanucleotide repeat and comprises about 1% of all transcripts).


Hexanucleotide repeats reportedly elicit gain of function toxicities, at least partially mediated by the dipeptide repeat proteins and foci formation by, for example, repeat-expansion containing transcripts and/or spliced-out repeat-expansion containing introns and/or antisense transcription of the repeat-expansion containing region and various nucleic-acid binding proteins.


Both WV-8008 and WV-11532 have the same base sequence (or naked sequence). CCTCACTCACCCACTCGCCA. They differ, inter alia, in that the latter comprises 3 contiguous neutral internucleotidic linkages (Xn), but the former does not comprise any neutral internucleotic linkages. The structures of these oligonucleotides is provided below, in Table 25H.









TABLE 25H







 C9orf72 oligonucleotides.









Oligo-




nucleotide
Sequence
Stereochemistry





WV-8008
m5Ceo * Rm5CeoTeom5CeoAeo * RC * ST * SC * RA * SC * SC
ROOORSSRSSRS



* RC * SA * SC * ST * SmC * SmG * SmC * SmC * SmA SSSSSSS



WV-11532
mC * Sm5Ceon001Teon001m5Ceon001mA * SC * ST * SC * RA
SnXnXnXSSSRSS



* SC * SC * RC * SA * SC * ST * SmC * SmG * SmC * SmC *
RSSSSSSSS











SmA

,










WV-8008 and WV-11532 were tested for their ability to knock down expression of hexanucleotide-comprising (i.e., disease-associated) transcript V3 compared to total transcripts (all V), as shown below in Table 25I.


Table 25I and J. Activity of various c9orf72 oligonucleotides.


In Tables 25I to 25J, various c9orf72 oligonucleotides were tested in motor neurons, with oligonucleotides delivered gymnotically at concentrations from 0.003 to 10 μM (Concentrations are provided as exp10). Tested c9orf72 oligonucleotide WV-11532 comprises three neutral internucleotidic linkages. In Tables 14A and 14B, shown are residual levels of c9orf72 transcriptions [e.g., all transcripts (all V) or only V3] relative to HPRT1, after treatment with c9orf72 oligonucleotides, wherein 1.000 would represent 100% relative transcript level (no knockdown) and 0.000 would represent 0% relative transcript level (e.g., 100% knockdown). Results from replicate experiments are shown.









TABLE 25I







Activity of various c9orf72 oligonucleotides


(residual level of all V C9orf72 transcripts)










Conc.
WV-8008
WV-11532
















−2.495
0.999
0.958
0.913
1.006
0.894
0.900


−1.796
0.965
0.864
0.882
0.972
0.829
0.858


−1.097
1.006
0.900
0.932
0.907
0.888
0.858


−0.398
0.800
0.742
0.806
0.795
0.747
0.742


0.301
0.624
0.611
0.687
0.562
0.554
0.554


1
0.524
0.500
0.521
0.409
0.411
0.387
















TABLE 25J







Activity of various c9orf72 oligonucleotides


(residual level of V3 C9orf72 transcripts)










Conc.
WV-8008
WV-11532
















−2.495
0.947
0.871
1.014
0.927
0.853
0.908


−1.796
0.877
0.841
0.908
0.836
0.769
0.841


−1.097
0.665
0.743
0.871
0.620
0.633
0.717


−0.398
0.555
0.427
0.707
0.421
0.415
0.427


0.301
0.210
0.178
0.304
0.096
0.105
0.094


1
0.056
0.071
0.083
0.012
0.015
0.015









As described herein and in data not shown, various oligonucleotides comprising a non-negatively charged internucleotidic linkage and targeting different genes, with different base sequences, patterns of sugar modifications, backbone chemistries, and patterns of stereochemistry of backbone internucleotidic linkages were constructed, including but not limited to various oligonucleotides which target DMD, Malat1, or C9orf72.


Oligonucleotides comprising a non-negatively charged internucleotidic linkage were also constructed to target six other genes not described herein (wherein the six genes were not DMD, Malat1, or C9orf72); these oligonucleotides include oligonucleotides designed to target these genes and reduce the expression, level and/or activity of the gene or its gene product. These and various oligonucleotides comprising a neutral internucleotidic linkage described herein are capable of performing various functions, including reducing the level, expression and/or activity of a gene or its gene product (e.g., via a RNaseH- or steric-hindrance-mediated mechanism, or via a single-stranded RNA interference-mediated mechanism) and inducing skipping of an exon (e.g., skipping modulation).


Without wishing to be bound by any particular theory, Applicant notes that a non-negatively charged and/or neutral internucleotidic linkage can improve an oligonucleotide's entry into a cell and/or escape from an endosome.


Oligonucleotides which Comprise a Non-Negatively Charged Internucleotidic Linkage can Provide Desired Levels of TLR9 Activation


Among other things, oligonucleotides comprising non-negatively charged internucleotidic linkages can provide desired levels of properties and/or activities, e.g., TLR9 antagonist or agonist activities. In some embodiments, oligonucleotides comprising non-negatively charged internucleotidic linkages demonstrate lower levels of TLR9 activation in human and/or an animal model (e.g., a mouse) compared to certain comparable oligonucleotides of the same base sequences but having no non-negatively charged internucleotidic linkages. In some embodiments, oligonucleotides comprising non-negatively charged internucleotidic linkages have lower toxicity compared to certain oligonucleotides of the same base sequences but having no non-negatively charged internucleotidic linkages. In some embodiments, a non-negatively charged internucleotidic linkage is within a CpG motif and is the internucleotidic linkage between the C and G.


In an experiment, several oligonucleotides to target gene C were constructed. Gene C is a different gene than DMD, or SMalat-1. The sequence of these oligonucleotides comprises a CpG, a motif known to activate TLR9.


Table 25K.


This experiment represents a test of induction of human TLR9 or mouse TLR9 in HEK293 cells. Numbers represent relative inductive relative to negative control, water. Concentrations tested: 0.93 uM, 2.77 uM, 8.33 uM, 25 uM, 75 uM. Positive control: WV-BZ21. The experiment was performed in biological duplicates.









TABLE 25K







 Oligonucleotides used in this study









Oligo-




nucleotide
Sequence
Stereochemistry





WV-HZ12
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



RN * SN * SN * SN * SmC * SmG * SmN * SmN * SmN
RSSSSSSSS


WV-BZ761
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



RN * SN * SN * SN * SmCmG * SmN * SmN * SmN
RSSSSOSSS


WV-BZ762
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



RN * SN * SN * SN * Sm5CeomG * SmN * SmN * SmN
RSSSSOSSS


WV-BZ763
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



RN * SN * SN * SN * Sm5Ceo * SmG * SmN * SmN * SmN
RSSSSSSSS


WV-BZ764
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



RN * SN * SN * SN * Rm5CeomG * SmN * SmN * SmN
RSSSROSSS


WV-BZ765
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



RN * SN * SN * SN * Rm5Ceo * SmG * SmN * SmN * SmN
RSSSRSSSS


WV-BZ766
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



RN * SN * SN * SN * Sm5mC * StnG * SmN * SmN * SmN
RSSSSSSSS


WV-BA207
mN * Sm5NeoNeom5NeomN * SN * SN * SN * RN * SN * SN *
SOOOS SSRSS



SN * RN * SN * SN * SmCn001mG * SmN * SmN * SmN
SRSSSnXSSS


WV-BA208
m5Neo * Rm5NeoNeom5NeoNeo * RN * SN * SN * RN * SN *
ROOOR SSRSS



SN * RN * SN * SN * SN * SmCn001mG * SmN * SmN * SmN
RSSSSnXSSS


WV-BA209
m5Neo * Rm5NeoNeom5NeoNeo * RN * SN * SN * RN * SN *
ROOOR SSRSS



SN * SN * RN * SN * SN * SmCn001mG * SmN * SmN * SmN
SRSSSnXSSS


WV-BZ21
T * C * G * T * C * G * T * T * T * T * G * T * C * G * T * T * T
XXXXX XXXXX



* T * G * T * C * G * T * T
XXXXX XXXXX




XXX
















TABLE 25L







Activity of certain oligonucleotides.













0.93 uM
2.77 uM
8.33 uM
25 uM
75 uM
















WV-HZ12
1.0
1.0
1.0
1.0
0.9



1.1
1.0
1.1
1.0
1.0


WV-BZ761
1.0
1.0
1.0
1.0
1.0



1.1
1.0
1.1
1.0
0.9


WV-BZ762
1.0
1.0
1.0
1.1
1.0



1.0
1.1
1.0
1.0
1.0


WV-BZ763
1.0
1.0
1.1
1.1
1.1



1.1
1.1
1.1
1.1
1.0


WV-BZ764
1.0
1.0
1.0
0.9
1.0



1.0
1.0
1.0
1.0
1.0


WV-BZ765
1.0
0.9
1.1
1.0
1.0



1.0
1.1
1.0
0.9
0.9


WV-BZ766
1.1
1.3
1.5
1.5
1.5



1.2
1.3
1.3
1.4
1.4


WV-BA207
1.0
1.0
1.0
1.0
1.0



1.1
1.1
1.0
1.0
1.0


WV-BA208
1.0
1.0
1.0
1.0
1.0



1.0
1.1
1.0
0.9
1.0


WV-BA209
1.0
1.0
1.0
0.9
1.0



1.1
1.0
0.9
1.0
1.0


WV-BZ21
10.0
12.0
12.0
11.4
11.0


(positive
9.4
10.4
11.4
11.5
11.1


control)










All the tested oligonuclotides (WV-HZ12, WV-BZ761, WV-BZ762, WV-BZ763, WV-BZ764, WV-BZ765, WV-BZ766 WV-BA207, WV-BA208, and WV-BA209) target gene C and all have the same base sequence, wherein each base is indicated generically by N, except that the single CpG motif is indicated. WV-BZ21, positive control, has abase sequence of TCGTCGTTTTGTCGTTTTGTCGTT, which comprises several CpG motifs, and is not designed to target gene C. Numbers indicate relative induction of hTLR9 activity relative to water.









TABLE 25M







Activity of certain oligonucleotides.













0.93 uM
2.77 uM
8.33 uM
25 uM
75 uM
















WV-HZ12
2.9
4.4
4.7
5.0
4.9



3.0
4.1
4.8
5.1
5.2


WV-BZ761
1.2
1.5
1.8
2.1
2.1



1.2
1.4
1.8
2.1
2.2


WV-BZ762
1.0
1.0
1.0
1.0
1.0



1.0
1.1
1.1
0.9
1.0


WV-BZ763
1.0
1.1
1.1
1.1
1.0



1.1
1.0
1.1
1.1
1.1


WV-BZ764
1.0
1.1
1.1
1.1
1.1



1.0
1.1
1.1
1.1
1.1


WV-BZ765
1.0
1.2
1.3
1.3
1.2



1.1
1.2
1.3
1.3
1.3


WV-BZ766
1.1
1.3
1.4
1.6
1.6



1.1
1.2
1.4
1.6
1.6


WV-BA207
1.1
1.1
1.1
1.1
1.1



1.0
1.0
1.1
1.1
1.2


WV-BA208
1.0
1.1
1.1
1.2
1.1



1.0
1.0
1.1
1.2
1.2


WV-BA209
1.0
1.2
1.1
1.2
1.1



1.0
1.1
1.2
1.2
1.3


WV-BZ21
21.4
22.4
22.9
21.2
18.1


(positive
22.9
24.0
23.8
22.3
18.9


control)










These oligonucleotides were also tested for induction of mouse TLR9.


Numbers indicate relative induction of mTLR9 activity relative to water.


In some embodiments, it was observed that in some instances certain oligonucleotides that did not induce appreciable TLR9 activation, or induced very low level of TLR9 activation above mock against human or mouse TLR9.


Example Oligonucleotides Comprising Additional Moieties

In some embodiments, the present disclosure provides oligonucleotides comprising one or more additional moieties, e.g., targeting moieties, carbohydrate moieties, etc. In some embodiments, the present disclosure provides oligonucleotides comprising one or more sulfonamide moieties. In some embodiments, a provided oligonucleotide comprise one or two or more sulfonamide moieties. In some embodiments, the present disclosure provides oligonucleotides that can modulate splicing, e.g., DMD oligonucleotides that can modulate exon skipping, wherein the oligonucleotides comprise one or more sulfonamide moieties. In some embodiments, the present disclosure provides oligonucleotides that mediate skipping of DMD exon 23, 45, 51 or 53, or multiple DMD exons, wherein the oligonucleotides comprise one or more sulfonamide moieties.


In some embodiments, a sulfonamide moiety has or comprises the structure of -L-SO2N(R′)2. In some embodiments, a sulfonamide moiety has or comprises the structure of —SO2N(R′)2. In some embodiments, a sulfonamide moiety has or comprises the structure of -Cy-SO2N(R′)2. In some embodiments, -Cy- is aromatic. In some embodiments, -Cy- is an optionally substituted phenyl ring. In some embodiments, -Cy- is




embedded image


In some embodiments, -Cy- is an optionally substituted heteroaryl ring. In some embodiments, -Cy- is an optionally substituted 5-6 membered heteroaryl ring having 1-4 heteroatoms. In some embodiments, -Cy- is




embedded image


In some embodiments, each R1 is —H.


A sulfonamide moiety can be connected to an oligonucleotide chain via various suitable linkers in accordance with the present disclosure, such as those described herein and/or in WO/2017/062862, linkers of which is incorporated herein by reference. Example sulfonamides moieties,




embedded image


In some embodiments, an oligonucleotide comprise a modified internucleotidic linkage and a sulfonamide moiety optionally through a linker. In some embodiments, an oligonucleotide comprising a modified internucleotidic linkage and a sulfonamide moiety is a siRNA, double-straned siRNA, single-stranded siRNA, gapmer, skipmer, blockmer, antisense oligonucleotide, antagomir, microRNA, pre-microRNs, antimir, supermir, ribozyme, U1 adaptor, RNA activator, RNAi agent, decoy oligonucleotide, triplex forming oligonucleotide, aptamer or adjuvant. In some embodiments, the present disclosure provides an oligonucleotide which comprises a modified internucleotidic linkage which comprises a sulfonamide. In some embodiments, an oligonucleotide comprises a sulfonamide and a chirally controlled internucleotidic linkage. In some embodiments, an oligonucleotide comprises a sulfonamide and a chirally controlled internucleotidic linkage which is a phosphorothioate internucleotidic linkage.


In some embodiments, the present disclosure pertains to an oligonucleotide which comprises a sulfonamide moiety or a derivative or variant thereof. In some embodiments, the present disclosure pertains to an oligonucleotide composition, wherein the oligonucleotide comprises a sulfonamide moiety or a derivative or variant thereof and the oligonucleotide comprises at least one chirally controlled internucleotidic linkage.


In some embodiments, the present disclosure pertains to an oligonucleotide which comprises a sulfonamide moiety or a derivative or variant thereof, wherein the oligonucleotide is capable of mediating decrease in the expression, level and/or activity of a target gene or gene product thereof.


In some embodiments, the present disclosure pertains to an oligonucleotide which comprises a sulfonamide moiety or a derivative or variant thereof, wherein the oligonucleotide is capable of mediating modulation of exon skipping of a target gene. In some embodiments, the present disclosure pertains to an oligonucleotide which comprises a sulfonamide moiety or a derivative or variant thereof, wherein the oligonucleotide is capable of increasing skipping of an exon of a target gene.


Example oligonucleotides that can be utilized for splicing modulation, e.g., exon skipping, that comprise a sulfonamide moiety include WV-3548. WV-3366, etc. Other oligonucleotides comprising a sulfonamide moiety were designed, constructed and/or tested for various activities. For example, oligonucleotides comprising a “mono-sulfonamide” moiety, such as WV-2836, WV-7419 WV-7421, WV-7422, WV-7408, WV-7409, WV-7427, WV-7863, and WV-7864; oligonucleotide comprising a “bi-sulfonamide”, WV-7423; and oligonucleotide comprising a “tri-sulfonamide”, WV-7417.









TABLE 26A







 Certain Malat1 oligonucleotides.










Oligo-


Linkage/


nucleotide
Description
Naked Sequence
Stereochemistry





WV-2735
Geo * Geo * Geo * Teo * m5Ceo * A *
GGGTCAGCTG
XXXXXXXXXXX



G*C*T*G*C*C*A*A*T* Geo
CCAATGCTAG
XXXXXXXX



* m5Ceo * Teo * Aeo * Geo




WV-2835
Mod027L001 * Geo * Geo * Geo * Teo *
GGGTCAGCTGC
XXXXXXXXXXX



m5Ceo *A*G*C*T*G*C*C*A
CAATGCTAG
XXXXXXXXX



* A * T * Geo * m5Ceo * Teo * Aeo *





Geo




WV-2836
Mod028L001 * Geo * Geo * Geo * Teo *
GGGTCAGCTGC
XXXXXXXXXXX



m5Ceo * A * G * C * T * G * C * C * A
C AATGCTAG
XXXXXXXXX



* A * T * Geo * m5Ceo * Teo * Aeo *





Geo




WV-3174
mU * mG * mC * mC * mA * G * G * C
UGCCAGGCTGG
XXXXXXXXXXX



* T * G * G * T * T * A * T * mG * mA
T TATGACUC
XXXXXXXX



* mC * mU * mC




WV-7301
Teo * Geo * m5Ceo * m5Ceo * Aeo * G
TGCCAGGCTGG
XXXXXXXXXXX



* G * C * T * G * G * T * T * A * T *
T TATGACTC
XXXXXXXX



Geo * Aeo * m5Ceo * Teo * m5Ceo













WV-7408
Mod027L00lGeo * Geo * Geo * Teo *
GGGTCAGCTGC
OXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CAATGCTAG
X XXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7409
Mod028L001Geo * Geo * Geo * Teo *
GGGTCAGCTGC
OXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
C AATGCTAG
X XXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7417
Mod029L001 * Geo * Geo * Geo * Teo *
GGGTCAGCTGC
XXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CAATGCTAG
XXXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7419
Mod045L001 * Geo * Geo * Geo * Teo *
GGGTCAGCTGC
XXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CAATGCTAG
XXXXXXXXX




A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7421
Mod047L001 * Geo * Geo * Geo * Teo * 
GGGTCAGCTGC
XXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CAATGCTAG
XXXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7422
Mod048L001 * Geo * Geo * Geo * Teo * 
GGGTCAGCTG
XXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CCAATGCTAG
XXXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7423
Mod049L001 * Geo * Geo * Geo * Teo *
GGGTCAGCTG
XXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CCAATGCTAG
XXXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo













WV-7427
Mod045L001Geo * Geo * Geo * Teo *
GGGTCAGCTG
OXXXXXXXXXX












m5Ceo * A * G * C * T * G * C * C * A
CCAATGCTAG
XXXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7863
Mod046L001Geo * Geo * Geo * Teo *
GGGTCAGCTG
OXXXXXXXXXX




m5Ceo *A * G * C * T * G * C * C A
CCAATGCTAG
XXXXXXXXX




A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-7864
Mod054L001Geo * Geo * Geo * Teo *
GGGTCAGCTG
OXXXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CCAATGCTAG
X XXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo





WV-9430
Mod029L001mU * mG * mC * mC *
UGCCAGGCTG
OXXXXXXXXX




mA * G * G * C * T * G * G * T * T * A
GTTATGACUC
XXXXXXXXXX




* T * mG * mA * mC * mU * mC





WV-7420
Mod046L001 * Geo * Geo * Geo * Teo *
GGGTCAGCTG
XXXXXXXXX




m5Ceo * A * G * C * T * G * C * C * A
CCAATGCTAG
XXXXXXXXXXX




* A * T * Geo * m5Ceo * Teo * Aeo *






Geo










For this Table, descriptions match those of Table A1, and




embedded image


In these Mods, —C(O)— connects to —NH— of a linker (e.g., L001).


Oligonucleotides comprising a sulfonamide moiety were tested for their ability to knockdown Malat1. Tested oligonucleotides were gymnotically delivered to Δ48-50 patient derived myotubes, which were dosed at 3.1, 0.3 and 0.1 μM concentrations. Cells were allowed to differentiate for 4 days (e.g., this experiment was 4 days post-differentiation). qPCR was used to evaluate knockdown of Malat-1. The results are shown in Table 26B.









TABLE 26B







Example data of Malat1 oligonucleotides.

















WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-




3174
8927
8929
8930
8931
8934
9385
9390
Mock





















3 μM

10

11
10
11
9
8
33
95



1 μM

18

2.8
24
22
19
20
49
100


0.3 μM
39
56
50
67
46
42
43
67
95


0.1 μM
63
73
68
81
68
69
56
81
100










Numbers represent relative Malat-1 mRNA level.


Various Malat1 oligonucleotides, many comprising a sulfonamide moiety, were tested for their ability to knockdown Malat1 in pre-differentiated myotubes. Certain data are shown in Table 26C. A48-50 patient derived myoblasts were differentiated for 4 days prior to dosing with at 1 and 0.1 M concentrations. RNA was harvested 48 hours post-treatment for measurement.









TABLE 26C





Example data of Malat1 oligonucleotides.
























WV-
WV-
WV-
WV-
WV-
WV-
WV-
WV-



3174
8927
8929
8930
8931
8934
9385
9390






1 μM


31
25
25
36
24
18
45


0.1 μM
62
70
79
72
78
55
59
66


















WV-
WV-
WV-
WV-





8448
7558
7559
7560
MOCK








1 μM

33
34
22
23
98



0.1 μM
68
72
69
82
98











Numbers represent relative Malat-1 mRNA level. Numbers are approximate.


In some experiments, animals were dosed with oligonucleotides, including some which comprise a sulfonamide moiety, and the animals were later sacrificed and their tissues tested for the level of the oligonucleotides.


In some experiments, the following protocol was used: Animals: 32 male Mdx mice and 32 male C57BL/6 mice (all 8-10 week-old). Test animals were acclimated to the facility for at least 3 days upon arrival. Dosing: S. C. (subcutaneous) dosing on days 1, 3 and 5 (5 mL/kg). Necropsy: animals were euthanized 72 hours after the last SC injection. All animals were perfused with PBS. The following tissues were collected: brain, sciatic nerves, spinal cord, eyes, liver, kidney, spleen, heart, diaphragm, gastrocnemius, quadriceps and triceps, white fat, brown fat. Fresh tissues will be rinsed briefly with PBS, gently blotted dry, weighed and snap frozen in Liquid Nitrogen in 2-mL tubes and stored at −80C (on dry ice). Histology: Quadricep and Kidney postfixed in 10% Formalin and processed to slides (paraffin embedded sections). In some experiments, suitable variants of this protocol were used.


Certain results are shown in Tables 27, 28 and 29.









TABLE 27







Knock-down and oligonucleotide presence in various tissues.



















Heart pK


Malat1
Quadriceps pD
Triceps pD
Gastro pD
Diaphragm pD
Heart pD
Mean ± SD


Sequence
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD
(ug/g)





PBS
1.000 ±
1.000 ±
1.000 ±
1.000 ±
1.000 ±
0.000 ±



0.142
0.265
0.042
0.276
0.074
0.000


WV-2735
0.776 ±
0.699 ±
0.731 ±
0.879 ±
0.707 ±
1.631 ±



0.122
0.150
0.107
0.158
0.173
0.692


WV-2835
0.639 ±
0.588 ±
0.417 ±
0.895 ±
0.510 ±
1.987 ±



0.119
0.036
0.065
0.116
0.066
0.203


WV-2836
0.621 ±
0.834 ±
0.616 ±
0.769 ±
0.619 ±
7.001 ±



0.124
0.206
0.169
0.229
0.389
1.331










Numbers indicate Malat1 mRNA levels relative to mHprt (mHPRT or mHPRT1), and presence of oligonucleotide (ug/g). Experimental procedure: Study Species: 5-6 wks MDX mice: Route: Subcutaneous; # Doses: QD for 3 days; Time Point Post Last Dose: 2 days: Daily Dose Level (ug): 12.5 mg/kg.









TABLE 28





Knock-down and oligonucleotide presence in various tissues.




















Oligo-
Quadriceps pD
Triceps pD
Gastro pD
Diaphragm pD
Heart pD


nucleotide
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD





PBS
1.000 ± 0.266
1.000 ± 0.207
1.000 ± 0.138
1.000 ± 0.191
1.000 ± 0.221


WV-2735
0.952 ± 0.232
0.876 ± 0.180
0.998 ± 0.072
0.651 ± 0.046
1.032 ± 0.541


WV-2835
0.593 ± 0.167
0.877 ± 0.180
0.645 ± 0.124
0.563 ± 0.091
1.032 ± 0.240


WV-2836
0.556 ± 0.172
0.739 ± 0.047
0.695 ± 0.102
0.614 ± 0.120
0.544 ± 0.109


WV-3174
0.610 ± 0.109
1.009 ± 0.047
0.809 ± 0.137
0.698 ± 0.069
0.588 ± 0.258


WV-7301
0.624 ± 0.074
0.846 ± 0.172
0.837 ± 0.141
0.453 ± 0.031
0.887 ± 0.142
















Quadriceps pK
Diaphragm pK
Heart pK



Oligo-
Mean ± SD
Mean ± SD
Mean ± SD



nucleotide
(ug/g)
(ug/g)
(ug/g)







PBS
0.000 ± 0.000
0.096 ± 0.015
0.000 ± 0.000



WV-2735
5.616 ± 2.724
3.207 ± 1.465
0.342 ± 0.169



WV-2835
8.421 ± 3.374
5.734 ± 1.465
0.777 ± 0.203



WV-2836
11.221 ± 7.877 
6.142 ± 1.006
0.664 ± 0.441



WV-3174
9.792 ± 8.339
4.609 ± 1.006
0.619 ± 0.122



WV-7301
6.659 ± 3.858
5.728 ± 2.092
0.707 ± 0.191











Numbers indicate Malat1 mRNA levels relative to mHprt, and presence of oligonucleotide (ug/g). Experimental procedure: Study Species: 10-12 wks MDX mice; Route: Subcutaneous; # Doses: QD for 3 days; Time Point Post Last Dose: 3 days; and Daily Dose Level (ug): 12 mg/kg.









TABLE 29





Knock-down and oligonucleotide presence in various tissues.




















Oligo-
Quadriceps pD
Triceps pD
Gastro pD
Diaphragm pD
Heart pD


nucleotide
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD





PBS
1.000 ± 0.266
1.000 ± 0.191
1.000 ± 0.249
1.000 ± 0.191
1.000 ± 0.147


WV-2735
0.753 ± 0.230
0.667 ± 0.132
0.756 ± 0.136
0.651 ± 0.046
0.596 ± 0.140


WV-2835
0.611 ± 0.165
0.549 ± 0.077
0.656 ± 0.101
0.563 ± 0.091
0.546 ± 0.092


WV-2836
0.640 ± 0.186
0.596 ± 0.114
0.812 ± 0.216
0.614 ± 0.120
0.774 ± 0.168


WV-3174
0.796 ± 0.142
0.610 ± 0.111
0.870 ± 0.081
0.698 ± 0.069
0.703 ± 0.099


WV-7301
0.456 ± 0.116
0.498 ± 0.097
0.753 ± 0.113
0.453 ± 0.031
0.368 ± 0.031
















Quadriceps pK
Diaphragm pK
Heart pK



Oligo-
Mean ± SD
Mean ± SD
Mean ± SD



nucleotide
(ug/g)
(ug/g)
(ug/g)







PBS
0.000 ± 0.000
0.108 ± 0.016
0.000 ± 0.000



WV-2735
2.787 ± 0.734
9.219 ± 3.234
0.428 ± 0.084



WV-2835
2.700 ± 0.891
9.895 ± 2.466
0.726 ± 0.207



WV-2836
2.273 ± 0.621
9.751 ± 6.912
0.670 ± 0.242



WV-3174
2.142 ± 0.778
7.568 ± 1.807
0.612 ± 0.172



WV-7301
2.868 ± 0.334
6.174 ± 2.456
0.975 ± 0.216











Numbers indicate Malat1 mRNA levels relative to mHprt, and presence of oligonucleotide (ug/g). Experimental procedure: Study Species: 10-12 wks wt mice; Route: Subcutaneous; # Doses: QD for 3 days; Time Point Post Last Dose: 3 days; and Daily Dose Level(ug): 12 mg/kg.









TABLE 30





Knock-down and oligonucleotide presence in various tissues.



















Malat1
Quadriceps pD
Gastro pD
Diaphragm pD
Heart pD


Sequence
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD





PBS
1.000 ± 0.256
1.000 ± 0.309
1.000 ± 0.345
1.000 ± 0.432


WV-3174
0.752 ± 0.118
0.833 ± 0.160
0.647 ± 0.058
0.599 ± 0.120


WV-3174
0.603 ± 0.118
0.678 ± 0.145
0.421 ± 0.092
0.582 ± 0.185


WV-3174
0.454 ± 0.112
0.523 ± 0.104
0.380 ± 0.081
0.415 ± 0.062


WV-3174
0.342 ± 0.033
0.505 ± 0.119
0.322 ± 0.077
0.340 ± 0.055















Quadriceps pK
Gastro pK
Diaphragm pK
Heart pK


Malat1
Mean ± SD
Mean ± SD
Mean ± SD
Mean ± SD


Sequence
(ug/g)
(ug/g)
(ug/g)
(ug/g)





PBS
0.011 ± 0.025
0.000 ± 0.000
0.000 ± 0.000
0.000 ± 0.000


WV-3174
1.388 ± 0.677
1.704 ± 0.524
2.502 ± 0.919
1.781 ± 0.668


WV-3174
6.651 ± 5.930
4.563 ± 1.705
7.366 ± 3.939
2.532 ± 0.487


WV-3174
12.374 ± 4.081 
14.574 ± 8.235 
12.075 ± 3.739 
4.611 ± 1.050


WV-3174
15.227 ± 4.925 
14.124 ± 2.285 
22.734 ± 4.484 
12.660 ± 2.437 










Numbers indicate Malat1 mRNA levels relative to mHprt, and presence of oligonucleotide (ug/g). Experimental procedure: Study Species: 5-6 wks wt mice; Route: Subcutaneous # Doses: QD for 1 days, Time Point Post Last Dose: 3 days; and Daily Dose Level (ug): 200 mg/kg.


Example Methods for Preparing Oligonucleotides and Compositions

Among other things, the present disclosure provides technologies (methods, reagents, conditions, purification processes, etc.) for preparing oligonucleotides and oligonucleotide compositions, including chirally controlled oligonucleotides and chirally controlled oligonucleotide nucleotides. Various technologies (methods, reagents, conditions, purification processes, etc.), as described herein, can be utilized to prepare provided oligonucleotides and compositions thereof in accordance with the present disclosure, including but not limited to those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the preparation technologies of each of which are incorporated herein by reference.


In some embodiments, the present disclosure provides chirally controlled oligonucleotides. In some embodiments, a provided chirally controlled oligonucleotide is over 50% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 55% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 60% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 65% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 70% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 75% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 80% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 85% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 90% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 91% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 92% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 93% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 94% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 95% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 96% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 97% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 98% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 99% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 99.5% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 99.6% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 99.7% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 99.8% pure. In some embodiments, a provided chirally controlled oligonucleotide is over about 99.9% pure. In some embodiments, a provided chirally controlled oligonucleotide is over at least about 99% pure.


In some embodiments, a chirally controlled oligonucleotide composition is a composition designed to comprise a single oligonucleotide type. In certain embodiments, such compositions are about 50% diastereomerically pure. In some embodiments, such compositions are about 50% diastereomerically pure. In some embodiments, such compositions are about 50% diastereomerically pure. In some embodiments, such compositions are about 55% diastereomerically pure. In some embodiments, such compositions are about 60% diastereomerically pure. In some embodiments, such compositions are about 65% diastereomerically pure. In some embodiments, such compositions are about 70% diastereomerically pure. In some embodiments, such compositions are about 75% diastereomerically pure. In some embodiments, such compositions are about 80% diastereomerically pure. In some embodiments, such compositions are about 85% diastereomerically pure. In some embodiments, such compositions are about 90% diasteromerically pure. In some embodiments, such compositions are about 91% diastereomerically pure. In some embodiments, such compositions are about 92% diastereomerically pure. In some embodiments, such compositions are about 93% diastereomerically pure. In some embodiments, such compositions are about 94% diastereomerically pure. In some embodiments, such compositions are about 95% diastereomerically pure. In some embodiments, such compositions are about 96% diastereomerically pure. In some embodiments, such compositions are about 97% diastereomerically pure. In some embodiments, such compositions are about 98% diastereomerically pure. In some embodiments, such compositions are about 99% diastereomerically pure. In some embodiments, such compositions are about 99.5% diastereomerically pure. In some embodiments, such compositions are about 99.6% diastereomerically pure. In some embodiments, such compositions are about 99.7% diastereomerically pure. In some embodiments, such compositions are about 99.8% diastereomerically pure. In some embodiments, such compositions are about 99.9% diastereomerically pure. In some embodiments, such compositions are at least about 99% diastereomerically pure.


Among other things, the present disclosure recognizes the challenge of stereoselective (rather than stereorandom or racemic) preparation of oligonucleotides. Among other things, the present disclosure provides methods and reagents for stereoselective preparation of oligonucleotides comprising multiple (e.g., more than 5, 6, 7, 8, 9, or 10) internucleotidic linkages, and particularly for oligonucleotides comprising multiple (e.g., more than 5, 6, 7, 8, 9, or 10) chiral internucleotidic linkages. In some embodiments, in a stereorandom or racemic preparation of oligonucleotides, at least one chiral internucleotidic linkage is formed with less than 90:10, 95:5, 96:4, 97:3, or 98:2 diastereoselectivity. In some embodiments, for a stereoselective or chirally controlled preparation of oligonucleotides, each chiral internucleotidic linkage is formed with greater than 90:10, 95:5, 96:4, 97:3, or 98:2 diastereoselectivity. In some embodiments, for a stereoselective or chirally controlled preparation of oligonucleotides, each chiral internucleotidic linkage is formed with greater than 95:5 diastereoselectivity. In some embodiments, for a stereoselective or chirally controlled preparation of oligonucleotides, each chiral internucleotidic linkage is formed with greater than 96:4 diastereoselectivity. In some embodiments, for a stereoselective or chirally controlled preparation of oligonucleotides, each chiral internucleotidic linkage is formed with greater than 97:3 diastereoselectivity. In some embodiments, for a stereoselective or chirally controlled preparation of oligonucleotides, each chiral internucleotidic linkage is formed with greater than 98:2 diastereoselectivity. In some embodiments, for a stereoselective or chirally controlled preparation of oligonucleotides, each chiral internucleotidic linkage is formed with greater than 99:1 diastereoselectivity. In some embodiments, diastereoselectivity of a chiral internucleotidic linkage in an oligonucleotide may be measured through a model reaction, e.g. formation of a dimer under essentially the same or comparable conditions wherein the dimer has the same internucleotidic linkage as the chiral internucleotidic linkage, the 5′-nucleoside of the dimer is the same as the nucleoside to the 5′-end of the chiral internucleotidic linkage, and the 3′-nucleoside of the dimer is the same as the nucleoside to the 3-end of the chiral internucleotidic linkage.


In some embodiments, a chirally controlled oligonucleotide composition is a composition designed to comprise multiple oligonucleotide types. In some embodiments, methods of the present disclosure allow for the generation of a library of chirally controlled oligonucleotides such that a pre-selected amount of any one or more chirally controlled oligonucleotide types can be mixed with any one or more other chirally controlled oligonucleotide types to create a chirally controlled oligonucleotide composition. In some embodiments, the pre-selected amount of an oligonucleotide type is a composition having any one of the above-described diastereomeric purities.


In some embodiments, the present disclosure provides methods for making a chirally controlled oligonucleotide comprising steps of:


(1) coupling:


(2) capping:


(3) optionally modifying;


(4) deblocking; and


(5) repeating steps (1)-(4) until a desired length is achieved.


In some embodiments, the present disclosure provides a method, e.g., for preparing an oligonucleotide, comprising one or more cycles, each of which independently comprises:


(1) a coupling step;


(2) optionally a pre-modification capping step:


(3) a modification step;


(4) optionally a post-modification capping step; and


(5) optionally a de-blocking step.


In some embodiments, a cycle comprises one or more pre-modification capping steps. In some embodiments, a cycle comprises one or more post-modification capping steps. In some embodiments, a cycle comprises one or more pre- and post-modification capping steps. In some embodiments, a cycle comprises one or more de-blocking steps. In some embodiments, a cycle comprises a coupling step, a pre-modification capping step, a modification step, a post-modification capping step, and a de-blocking step. In some embodiments, a cycle comprises a coupling step, a pre-modification capping step, a modification step, and a de-blocking step. In some embodiments, a cycle comprises a coupling step, a modification step, a post-modification capping step and a de-blocking step. In some embodiments, comprise a coupling step, a pre-modification capping step, a modification step, a post-modification capping step, and a de-blocking step. In some embodiments, one or more cycles comprise a coupling step, a pre-modification capping step, a modification step, and a de-blocking step. In some embodiments, one or more cycles comprise a coupling step, a modification step, a post-modification capping step and a de-blocking step.


When describing the provided methods, the word “cycle” has its ordinary meaning as understood by a person of ordinary skill in the art. In some embodiments, one round of steps (1)-(4) is referred to as a cycle. In some embodiments, some cycles comprise modifying. In some embodiments, some cycles do not comprise modifying. In some embodiments, some cycles comprise and some cycles do not comprise modifying. In some embodiments, each cycle independently comprises a modifying step. In some embodiments, each cycle does not comprise a cycling step.


In some embodiments, to form a chirally controlled internucleotidic linkage, a chirally pure phosphoramidite comprising a chiral auxiliary is utilized to stereoselectively form the chirally controlled internucleotidic linkage. Various phosphoramidite and chiral auxiliaries, e.g., those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the phosphoramidite and chiral auxiliaries of each of which are incorporated herein by reference, may be utilized in accordance with the present disclosure.


In some embodiments, a coupling step provides an oligonucleotide comprises an internucleotidic linkage of formula I, I-a, I-b. I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1. II-a-2. II-b-1, II-b-2, l-c-1, I-c-2, II-d-1, I-d-2, etc., or a salt form thereof, wherein PL is P. In some embodiments, such an internucleotidic linkage is a chirally controlled internucleotidic linkage. In some embodiments, such an internucleotidic linkage comprises a chiral auxiliary moiety.


In some embodiments, a modifying step provides an oligonucleotide comprises an internucleotidic linkage of formula I, I-a, 1-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, etc., or a salt form thereof, wherein PL is P=W. In some embodiments, a modifying step provides an oligonucleotide comprises an internucleotidic linkage of formula I, I-a. I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, etc., or a salt form thereof, wherein PL is P=W. In some embodiments, W is S. In some embodiments, W is O. In some embodiments, such an internucleotidic linkage is a chirally controlled internucleotidic linkage. In some embodiments, such an internucleotidic linkage comprises a chiral auxiliary moiety. In some embodiments, a modifying step provides a non-negatively charged internucleotidic linkage. In some embodiments, a non-negatively charged internucleotidic linkage has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, etc., or a salt form thereof. In some embodiments, such an internucleotidic linkage is a neutral internucleotidic linkage. In some embodiments, such an internucleotidic linkage is a chirally controlled internucleotidic linkage. In some embodiments, such an internucleotidic linkage comprises a chiral auxiliary moiety. In some embodiments, such an internucleotidic linkage comprises no chiral auxiliary moiety. In some embodiments, a chiral auxiliary moiety falls off during modification.


Provided technologies provide various advantages. Among other things, as demonstrated herein, provided technologies can greatly improve oligonucleotide synthesis crude purity and yield, particularly for modified and/or chirally pure oligonucleotides that provide a number of properties and activities that are critical for therapeutic purposes. With the capability to provide unexpectedly high crude purity and yield for therapeutically important oligonucleotides, provided technologies can significantly reduce manufacturing costs (through, e.g., simplified purification, greatly improved overall yields, etc.). In some embodiments, provided technologies can be readily scaled up to produce oligonucleotides in sufficient quantities and qualities for clinical purposes. In some embodiments, provided technologies comprising chiral auxiliaries that comprise electron-withdrawing groups in G2 (e.g., PSM chiral auxiliaries) are particularly useful for preparing chirally controlled internucleotidic linkages comprising P-N bonds (e.g., non-negatively charged internucleotidic linkages such as n001, n002, n003, n004, n005, n006, n007, n008, n009, n010, etc.) and can significantly simplify manufacture operations, reduce cost, and/or facilitate downstream formation.


In some embodiments, provided technologies provides improved reagents compatibility. For example, as demonstrated in the present disclosure, provided technologies provide flexibility to use different reagent systems for oxidation, sulfurization and/or azide reactions, particularly for chirally controlled oligonucleotide synthesis.


Among other things, the present disclosure provides oligonucleotide compositions of high crude purity. In some embodiments, the present disclosure provides chirally controlled oligonucleotide composition of high crude purity. In some embodiments, the present disclosure provides chirally controlled oligonucleotide of high crude purity. In some embodiments, the present disclosure provides oligonucleotide of high crude purity and/or high stereopurity.


Support and Linkers

In some embodiments, oligonucleotides can be prepared in solution. In some embodiments, oligonucleotides can be prepared using a support. In some embodiments, oligonucleotides are prepared using a solid support. Suitable support that can be utilized in accordance with the present disclosure include, e.g., solid support described in U.S. Pat. Nos. 9,695,211, 9,605,019, U.S. Pat. No. 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the solid support of each of which is incorporated herein by reference.


In some embodiments, a linker moiety is utilized to connect an oligonucleotide chain to a support during synthesis. Suitable linkers are widely utilized in the art, and include those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the linker of each of which is incorporated herein by reference.


In some embodiments, the linking moiety is a succinamic acid linker, or a succinate linker (—CO—CH2—CH2—CO—), or an oxalyl linker (—CO—CO—). In some embodiments, the linking moiety and the nucleoside are bonded together through an ester bond. In some embodiments, a linking moiety and a nucleoside are bonded together through an amide bond. In some embodiments, a linking moiety connects a nucleoside to another nucleotide or nucleic acid. Suitable linkers are disclosed in, for example, Oligonucleotides And Analogues A Practical Approach, Ekstein, F. Ed., IRL Press, N.Y., 1991, Chapter 1 and Solid-Phase Supports for Oligonucleotide Synthesis, Pon, R. T., Curr. Prot. Nucleic Acid Chem., 2000, 3.1.1-3.1.28. In some embodiments, a universal linker (UnyLinker) is used to attached the oligonucleotide to the solid support (Ravikumar et al., Org. Process Res. Dev., 2008, 12 (3), 399-410). In some embodiments, other universal linkers are used (Pon, R. T., Curr. Prot. Nucleic Acid Chem., 2000, 3.1.1-3.1.28). In some embodiments, various orthogonal linkers (such as disulfide linkers) are used (Pon, R. T., Curr. Prot. Nucleic Acid Chem., 2000, 3.1.1-3.1.28).


Among other things, the present disclosure recognizes that a linker can be chosen or designed to be compatible with a set of reaction conditions employed in oligonucleotide synthesis. In some embodiments, to avoid degradation of oligonucleotides and to avoid desulfurization, auxiliary groups are selectively removed before de-protection. In some embodiments, DPSE group can selectively be removed by F ions. In some embodiments, the present disclosure provides linkers that are stable under a DPSE de-protection condition, e.g., 0.1M TBAF in MeCN, 0.5M HF-Et3N in THF or MeCN, etc. In some embodiments, a provided linker is a linker as exemplified below:




embedded image


Solvents

Syntheses of provided oligonucleotides are generally performed in aprotic organic solvents. In some embodiments, a solvent is a nitrile solvent such as, e.g., acetonitrile. In some embodiments, a solvent is a basic amine solvent such as, e.g., pyridine. In some embodiments, a solvent is an ethereal solvent such as, e.g., tetrahydrofuran. In some embodiments, a solvent is a halogenated hydrocarbon such as, e.g., dichloromethane. In some embodiments, a mixture of solvents is used. In certain embodiments a solvent is a mixture of any one or more of the above-described classes of solvents.


In some embodiments, when an aprotic organic solvent is not basic, a base is present in the reacting step. In some embodiments where a base is present, the base is an amine base such as, e.g., pyridine, quinoline, or N,N-dimethylaniline. Example other amine bases include pyrrolidine, piperidine, N-methyl pyrrolidine, pyridine, quinoline, N,N-dimethylaminopyridine (DMAP), or N,N-dimethylaniline.


In some embodiments, a base is other than an amine base.


In some embodiments, an aprotic organic solvent is anhydrous. In some embodiments, an anhydrous aprotic organic solvent is freshly distilled. In some embodiments, a freshly distilled anhydrous aprotic organic solvent is a basic amine solvent such as, e.g., pyridine. In some embodiments, a freshly distilled anhydrous aprotic organic solvent is an ethereal solvent such as, e.g., tetrahydrofuran. In some embodiments, a freshly distilled anhydrous aprotic organic solvent is a nitrile solvent such as, e.g., acetonitrile.


Chiral Reagents/Chiral Auxiliaries

In some embodiments, chiral reagents (may also be referred to as chiral auxiliaries) are used to confer stereoselectivity in the production of chirally controlled oligonucleotides. Many chiral reagents, also referred to by those of skill in the art and herein as chiral auxiliaries, may be used in accordance with methods of the present disclosure. Examples of such chiral reagents are described herein and in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/098264, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the chiral auxiliaries of each of which is incorporated by reference.


In some embodiments, a chiral reagent for use in accordance with the methods of the present disclosure is of Formula 3-I, below:




embedded image


wherein:


W1 and W2 are any of —O—, —S—, -NG5-, or -NG5-O—;


U1 and U3 are carbon atoms which are bonded to U2 if present, or to each other if r is 0, via a single, double or triple bond:


U2 is —C—, -CG8-, -CG8G8-. -NG8-, —N—, —O—, or —S— where r is an integer of 0 to 5; and


each of G1, G2, G3, G4, G5, and G8 is independently R1 as described in the present disclosure.


In some embodiments, W1 and W2 are any of —O—, —S—, or -NG5-, U1 and U3 are carbon atoms which are bonded to U2 if present, or to each other if r is 0, via a single, double or triple bond. U2 is —C—, -CG8-, -CG8G8-, -NG8-, —N—, —O—, or —S— where r is an integer of 0 to 5 and no more than two heteroatoms are adjacent. When any one of U2 is C, a triple bond must be formed between a second instance of U2, which is C, or to one of U1 or U3. Similarly, when any one of U2 is CG8, a double bond is formed between a second instance of U2 which is -CG8- or —N—, or to one of U1 or U3.


In some embodiments, -U1G3G4-(U2)r-U3G1G2- is -CG3G4-CG1G2-. In some embodiments, -U1-(U2),-U3- is -CG3=CG1-. In some embodiments, -U1-(U2)r-U3- is —C≡C—. In some embodiments, -U1-(U2)r-U3- is -CG3=CG8-CG1G2-. In some embodiments, U1(U2)r-U3- is -CG3G4-O-CG1G2-. In some embodiments, -U1-(U2)-U3 is -CG3G4-NG8-CG1G2-. In some embodiments, -U1-(U2)r-U3- is -CG3G4-N-CG2-. In some embodiments, -U1-(U2),-U3- is -CG3G4-N═CG8-CG1G2-.


In some embodiments, G1, G2, G3, G4, G5, and G8 are independently R1 as described in the present disclosure. In some embodiments, G1, G2, G3, G4, G5, and G8 are independently R as described in the present disclosure. In some embodiments, G1, G2, G3, G4, G5, and G8 are independently hydrogen, or an optionally substituted group selected from aliphatic, alkyl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaliphatic, heterocyclyl, heteroaryl, and aryl; or two of G1, G2, G3, G4, and G5 are G6 (taken together to form an optionally substituted, saturated, partially unsaturated or unsaturated carbocyclic or heteroatom-containing ring of up to about 20 ring atoms which is monocyclic or polycyclic, and is fused or unfused). In some embodiments, a ring so formed is substituted by oxo, thioxo, alkyl, alkenyl, alkynyl, heteroaryl, or aryl moieties. In some embodiments, when a ring formed by taking two G6 together is substituted, it is substituted by a moiety which is bulky enough to confer stereoselectivity during the reaction.


In some embodiments, a ring formed by taking two of G6 together is optionally substituted cyclopentyl, pyrrolyl, cyclopropyl, cyclohexenyl, cyclopentenyl, tetrahydropyranyl, or piperazinyl. In some embodiments, a ring formed by taking two of G together is optionally substituted cyclopentyl, pyrrolyl, cyclopropyl, cyclohexenyl, cyclopentenyl, tetrahydropyranyl, pyrrolidinyl, or piperazinyl.


In some embodiments, G1 is optionally substituted phenyl. In some embodiments, G1 is phenyl. In some embodiments, G2 is methyl or hydrogen. In some embodiments, G2 is hydrogen. In some embodiments, G1 is optionally substituted phenyl and G2 is methyl. In some embodiments, G1 is phenyl and G2 is methyl. In some embodiments, G1 is —CH2Si(R)z, wherein one R is optionally substituted C1-6 aliphatic, and the other two R are each independently an optionally substituted 3-20 membered, monocyclic or polycyclic, saturated, partially unsaturated or aromatic ring having 0-5 heteroatoms. In some embodiments, the other two R are each independently optionally substituted phenyl. In some embodiments, G1 is —CH2SiMePh2.


In some embodiments, r is 0.


In some embodiments, W1 is -NG5-O—. In some embodiments, W1 is -NG5-O—, wherein the —O— is bonded to —H. In some embodiments, W1 is -NG1-. In some embodiments, one of G3 and G4 is taken together with G5 to form an optionally substituted 3-10 membered ring. In some embodiments, one of G3 and G4 is taken together with G5 to form an optionally substituted pyrrolidinyl ring. In some embodiments, one of G3 and G4 is taken together with G5 to form a pyrrolidinyl ring. In some embodiments, G5 is optionally substituted C1-6 aliphatic. In some embodiments, G5 is methyl. In some embodiments, one of G1 and G2 and one of G3 and G4 are taken together with their intervening atoms to form an optionally substituted 3-10 membered ring having 0-3 heteroatoms. In some embodiments, a formed ring 3-membered. In some embodiments, a formed ring 4-membered. In some embodiments, a formed ring 5-membered. In some embodiments, a formed ring 6-membered. In some embodiments, a formed ring 7-membered. In some embodiments, a formed ring is substituted. In some embodiments, a formed ring is unsubstituted. In some embodiments, a formed ring has no heteroatom. In some embodiments, a formed ring is saturated. For example compounds, see WV-CA-293 and WV-CA-294.


In some embodiments, W2 is —O—.


In some embodiments, a chiral reagent is a compound of Formula 3-AA:




embedded image


wherein each variable is independently as defined above and described herein.


In some embodiments of Formula 3AA, W1 and W2 are independently -NG5-, —O—, or —S—; G1, G2, G3, G4, and G5 are independently hydrogen, or an optionally substituted group selected from alkyl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaliphatic, heterocyclyl, heteroaryl, or aryl; or two of G1, G2, G3, G4, and G5 are G6 (taken together to form an optionally substituted saturated, partially unsaturated or unsaturated carbocyclic or heteroatom-containing ring of up to about 20 ring atoms which is monocyclic or polycyclic, fused or unfused), and no more than four of G1, G2, G3, G4, and G5 are G6. Similarly to the compounds of Formula 3-1, any of G1, G2, G3, G4, or G5 are optionally substituted by oxo, thioxo, alkyl, alkenyl, alkynyl, heteroaryl, or aryl moieties. In some embodiments, such substitution induces stereoselectivity in chirally controlled oligonucleotide production. In some embodiments, a heteroatom-containing moiety, e.g., heteroaliphatic, heterocyclyl, heteroaryl, etc., has 1-5 heteroatoms. In some embodiments, the heteroatoms are selected from nitrogen, oxygen, sulfure and silicon. In some embodiments, at least one heteroatom is nitrogen.


In some embodiments, W1 is -NG5-O—. In some embodiments, W1 is -NG5-O—, wherein the —O— is bonded to —H. In some embodiments, W1 is -NG5-. In some embodiments, G5 and one of G3 and G4 are taken together to form an optionally substituted 3-10 membered ring having 0-3 heteroatoms in addition to the nitrogen atom of W1. In some embodiments, G5 and G3 are taken together to form an optionally substituted 3-10 membered ring having 0-3 heteroatoms in addition to the nitrogen atom of W1. In some embodiments, G5 and G4 are taken together to form an optionally substituted 3-10 membered ring having 0-3 heteroatoms in addition to the nitrogen atom of W1. In some embodiments, a formed ring is an optionally substituted 4, 5, 6, 7, or 8 membered ring. In some embodiments, a formed ring is an optionally substituted 4-membered ring. In some embodiments, a formed ring is an optionally substituted 5-membered ring. In some embodiments, a formed ring is an optionally substituted 6-membered ring. In some embodiments, a formed ring is an optionally substituted 7-membered ring.


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, a provided chiral reagent has the structure of




embedded image


In some embodiments, W1 is -NG5, W2 is O, each of G1 an G3 is independently hydrogen or an optionally substituted group selected from C1(aliphatic, heterocyclyl, heteroaryl and aryl, G2 is —C(R)2Si(R)3, and G4 and G5 are taken together to form an optionally substituted saturated, partially unsaturated or unsaturated heteroatom-containing ring of up to about 20 ring atoms which is monocyclic or polycyclic, fused or unfused. In some embodiments, each R is independently hydrogen, or an optionally substituted group selected from C1-C6 aliphatic, carbocyclyl, aryl, heteroaryl, and heterocyclyl. In some embodiments, G2 is —C(R)2Si(R)3, wherein —C(R)2- is optionally substituted —CH2—, and each R of —Si(R) is independently an optionally substituted group selected from C1-10 aliphatic, heterocyclyl, heteroaryl and aryl. In some embodiments, at least one R of —Si(R)3 is independently optionally substituted C1-10 alkyl. In some embodiments, at least one R of —Si(R)3 is independently optionally substituted phenyl. In some embodiments, one R of —Si(R)3 is independently optionally substituted phenyl, and each of the other two R is independently optionally substituted C1-10 alkyl. In some embodiments, one R of —Si(R)3 is independently optionally substituted C1-10 alkyl, and each of the other two R is independently optionally substituted phenyl. In some embodiments, G2 is optionally substituted —CH2Si(Ph)(Me)2. In some embodiments, G2 is optionally substituted —CH2Si(Me)(Ph)2. In some embodiments, G2 is —CH2Si(Me)(Ph)2. In some embodiments, G4 and G5 are taken together to form an optionally substituted saturated 5-6 membered ring containing one nitrogen atom (to which G5 is attached). In some embodiments, G4 and G5 are taken together to form an optionally substituted saturated 5-membered ring containing one nitrogen atom. In some embodiments, G1 is hydrogen. In some embodiments, G3 is hydrogen. In some embodiments, both G1 and G3 are hydrogen.


In some embodiments, W1 is -NG5-, W2 is O, each of G1 and G3 is independently R1, G2 is —R1, and G4 and G5 are taken together to form an optionally substituted saturated, partially unsaturated or unsaturated heteroatom-containing ring of up to about 20 ring atoms which is monocyclic or polycyclic, fused or unfused. In some embodiments, each of G1 and G3 is independently R. In some embodiments, each of G1 and G3 is independently —H. In some embodiments, G2 is connected to the rest of the molecule through a carbon atom, and the carbon atom is substituted with one or more electron-withdrawing groups. In some embodiments, G2 is methyl substituted with one or more electron-withdrawing groups. In some embodiments, G2 is methyl substituted with one and no more than one electron-withdrawing group. In some embodiments, G2 is methyl substituted with two or more electron-withdrawing groups. Among other things, a chiral auxiliary having G2 comprising an electron-withdrawing group can be readily removed by a base (base-labile, e.g., under an anhydrous condition substantially free of water; in many instances, preferably before oligonucleotides comprising internucleotidic linkages comprising such chiral auxiliaries are exposed to conditions/reagent systems comprising a substantial amount of water, particular in the presence of a base(e.g., cleavage conditions/reagent systems using NH4OH)) and provides various advantages as described herein, e.g., high crude purity, high yield, high stereoselectivity, more simplified operation, fewer steps, further reduced manufacture cost, and/or more simplified downstream formulation (e.g., low amount of salt(s) after cleavage), etc. In some embodiments, as described in the Examples, such auxiliaries may provide alternative or additional chemical compatibility with other functional and/or protection groups. In some embodiments, as demonstrated in the Examples, base-labile chiral auxiliaries are particularly useful for construction of chirally controlled non-negatively charged internucleotidic linkages (e.g., neutral internucleotidic linkages such as n001); in some instances, as demonstrated in the Examples, they can provide significantly improved yield and/or crude purity with high stereoselectivity, e.g., when utilized with removal using a base under an anhydrous condition. In some embodiments, such a chiral auxiliary is bonded to a linkage phosphorus via an oxygen atom (e.g., which corresponds to a —OH group in a corresponding chiral auxiliary compound, e.g., a compound of formula I), the carbon atom in the chiral auxiliary to which the oxygen is bonded (the alpha carbon) also bonds to —H (in addition to other groups; in some embodiments, a secondary carbon), and the next carbon atom (the beta carbon) in the chiral auxiliary is boned to one or two electron-withdrawing groups. In some embodiments, —W2—H is —OH. In some embodiments, G1 is —H. In some embodiments, G2 comprises one or two electron-withdrawing groups or can otherwise facilitate remove of the chiral auxiliary by a base. In some embodiments, G1 is —H, G2 comprises one or two electron-withdrawing groups, -W2—H is —OH. In some embodiments, G1 is —H, G2 comprises one or two electron-withdrawing groups, —W2—H is —OH, -W1—H is -NG5-H, and one of G3 and G4 is taken together with G5 to form with their intervening atoms a ring as described herein (e.g., an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having in addition to the nitrogen atom to which G5 is on, 0-5 heteroatoms (e.g., an optionally substituted 3, 4, 5, or 6-membered monocyclic saturated ring having in addition to the nitrogen atom to which G5 is on no other heteroatoms)).


As appreciated by those skilled in the art, various electron-withdrawing groups are known in the art and can be utilized in accordance with the present disclosure. In some embodiments, an electronic-withdrawing group comprises and/or is connected to the carbon atom through, e.g., —S(O)—, —S(O)2—, —P(O)(R1)—, —P(S)R1—, or —C(O)—. In some embodiments, an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2. In some embodiments, an electron-withdrawing group is aryl or heteroaryl, e.g., phenyl, substituted with one or more of —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R′)2, —P(O)(OR′)2, or—P(S)(R′)2.


In some embodiments, G2 is -L-R′. In some embodiments, G2 is -L′-L″-R′, wherein L′ is —C(R)2— or optionally substituted —CH2—, and L″ is —P(O)(R′)—, —P(O)(R′)O—, —P(O)(OR′)—, —P(O)(OR′)O—, —P(O)[N(R′)]—, —P(O)[N(R′)]O—, —P(O)[N(R′)][N(R′)]—, —P(S)(R′)—, —S(O)2—, —S(O)2—, —S(O)2O—, —S(O)—, —C(O)—, —C(O)N(R′)—, or —S—. In some embodiments, L′ is —C(R)2—. In some embodiments, L′ is optionally substituted —CH2—.


In some embodiments, L′ is —C(R)2—. In some embodiments, each R is independently hydrogen, or an optionally substituted group selected from C1-C6 aliphatic, carbocyclyl, aryl, heteroaryl, and heterocyclyl. In some embodiments, L′ is —CH2—. In some embodiments, L″ is —P(O)(R′)—, —P(S)(R′)—, —S(O)2—. In some embodiments, G2 is -L′-C(O)N(R′)2. In some embodiments, G2 is -L′-P(O)(R′)2. In some embodiments, G2 is -L′-P(S)(R′)2. In some embodiments, each R′ is independently optionally substituted aliphatic, heteroaliphatic, aryl, or heteroaryl as described in the present disclosure (e.g., those embodiments described for R). In some embodiments, each R′ is independently optionally substituted phenyl. In some embodiments, each R′ is independently optionally substituted phenyl wherein one or more substituents are independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, each R′ is independently substituted phenyl wherein one or more substituents are independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, each R′ is independently substituted phenyl wherein the substituents are independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, each R′ is independently mono-substituted phenyl, wherein the substituent is independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, two R′ are the same. In some embodiments, two R′ are different. In some embodiments, G2 is -L′-S(O)R′. In some embodiments, G2 is -L′-C(O)N(R′)2. In some embodiments, G2 is -L′-S(O)2R′. In some embodiments, R′ is optionally substituted aliphatic, heteroaliphatic, aryl, or heteroaryl as described in the present disclosure (e.g., those embodiments described for R). In some embodiments, R′ is optionally substituted phenyl. In some embodiments, R′ is optionally substituted phenyl wherein one or more substituents are independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, R′ is substituted phenyl wherein one or more substituents are independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, R′ is substituted phenyl wherein each substituent is independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, R′ is mono-substituted phenyl. In some embodiments, R′ is mono-substituted phenyl, wherein the substituent is independently selected from —CN, -OMe, —Cl, —Br, and —F. In some embodiments, a substituent is an electron-withdrawing group. In some embodiments, an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2.


In some embodiments, G2 is optionally substituted —CH2-L″-R, wherein each of L″ and R is independently as described in the present disclosure. In some embodiments, G2 is optionally substituted —CH(-L″-R)2, wherein each of L″ and R is independently as described in the present disclosure. In some embodiments, G2 is optionally substituted —CH(—S—R)2. In some embodiments, G2 is optionally substituted —CH2—S—R. In some embodiments, the two R groups are taken together with their intervening atoms to form a ring. In some embodiments, a formed ring is an optionally substituted 5, 6, 7-membered ring having 0-2 heteroatoms in addition to the intervening heteroatoms. In some embodiments, G2 is optionally substituted




embedded image


In some embodiments, G2 is




embedded image


In some embodiments, —S— may be converted to —S(O)— or —S(O)2—, e.g., by oxidation, e.g., to facilitate removal by a base.


In some embodiments, G2 is -L′-R′, wherein each variable is as described in the present disclosure. In some embodiments, G2 is —CH2—R′. In some embodiments, G2 is —CH(R′)2. In some embodiments, G2 is —C(R′)3. In some embodiments, R′ is optionally substituted aryl or heteroaryl. In some embodiments, R′ is substituted aryl or heteroaryl wherein one or more substituents are independently an electron-withdrawing group. In some embodiments, -L′- is optionally substituted —CH2—, and R′ is R, wherein R is optionally substituted aryl or heteroaryl. In some embodiments, R is substituted aryl or heteroaryl wherein one or more substituents are independently an electron-withdrawing group. In some embodiments, R is substituted aryl or heteroaryl wherein each substituent is independently an electron-withdrawing group. In some embodiments, R is aryl or heteroaryl substituted with two or more substituents, wherein each substituent is independently an electron-withdrawing group. In some embodiments, an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R, —C(O)OR1, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2. In some embodiments, R′ is




embedded image


In some embodiments, R′ is p-NO2Ph-. In some embodiments, R′ is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, G2 is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, R′ is 2,4,6-trichlorophenyl. In some embodiments, R′ is 2,4,6-trifluorophenyl. In some embodiments, G2 is —CH(4-chlorophenyl)2. In some embodiments, G2 is —CH(R′)2, wherein each R′ is




embedded image


In some embodiments, G2 is —CH(R′)2, wherein each R′ is




embedded image


In some embodiments, R′ is —C(O)R. In some embodiments, R′ is CH3C(O)—.


In some embodiments, G2 is -L′-S(O)2R′, wherein each variable is as described in the present disclosure. In some embodiments, G2 is —CH2—S(O)2R′. In some embodiments, G2 is -L′-S(O)R′, wherein each variable is as described in the present disclosure. In some embodiments, G2 is —CH2—S(O)R′. In some embodiments, G2 is -L′-C(O)2R′, wherein each variable is as described in the present disclosure. In some embodiments, G2 is —CH2—C(O)2R′. In some embodiments, G2 is -L′-C(O)R′, wherein each variable is as described in the present disclosure. In some embodiments, G2 is —CH2—C(O)R′. In some embodiments, -L′- is optionally substituted —CH2—, and R′ is R. In some embodiments, R is optionally substituted aryl or heteroaryl. In some embodiments, R is optionally substituted aliphatic. In some embodiments, R is optionally substituted heteroaliphatic. In some embodiments, R is optionally substituted heteroaryl. In some embodiments, R is optionally substituted aryl. In some embodiments, R is optionally substituted phenyl. In some embodiments, R is not phenyl, or mono-, di- or tri-substituted phenyl, wherein each substituent is selected from —NO2, halogen, —CN, —C1-3 alkyl, and C1-3 alkyloxy. In some embodiments, R is substituted aryl or heteroaryl wherein one or more substituents are independently an electron-withdrawing group. In some embodiments, R is substituted aryl or heteroaryl wherein each substituent is independently an electron-withdrawing group. In some embodiments, R is aryl or heteroaryl substituted with two or more substituents, wherein each substituent is independently an electron-withdrawing group. In some embodiments, an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2. In some embodiments, R′ is phenyl. In some embodiments, R′ is substituted phenyl. In some embodiments, R′ is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, R′ is




embedded image


In some embodiments, R′ is optionally substituted C1-6 aliphatic. In some embodiments, R′ is t-butyl. In some embodiments, R′ is isopropyl. In some embodiments, R′ is methyl. In some embodiments, G2 is —CH2C(O)OMe. In some embodiments, G2 is —CH2C(O)Ph. In some embodiments, G2 is —CH2C(O)—tBu.


In some embodiments, G2 is -L′-NO2. In some embodiments, G2 is —CH2—NO2. In some embodiments, G2 is -L′-S(O)2N(R′)2. In some embodiments, G2 is —CH2—S(O)2N(R′)2. In some embodiments, G2 is -L′-S(O)2NHR′. In some embodiments, G2 is —CH2—S(O)2NHR′. In some embodiments, R′ is methyl. In some embodiments, G2 is —CH2—S(O)2NH(CH3). In some embodiments. R′ is —CH2Ph. In some embodiments, G2 is —CH2—S(O)2NH(CH2Ph). In some embodiments, G2 is —CH2—S(O)2N(CH2Ph)2. In some embodiments, R′ is phenyl. In some embodiments, G2 is —CH2—S(O)2NHPh. In some embodiments, G2 is —CH2—S(O)2N(CH3)Ph. In some embodiments, G2 is —CH2—S(O)2N(CH3)2. In some embodiments, G2 is —CH2—S(O)2NH(CH2Ph). In some embodiments, G2 is —CH2—S(O)2NHPh. In some embodiments, G2 is —CH2—S(O)2NH(CH2Ph). In some embodiments, G2 is —CH2—S(O)2N(CH3)2. In some embodiments, G2 is —CH2—S(O)2N(CH3)Ph. In some embodiments, G2 is -L′-S(O)2N(R′)(OR′). In some embodiments, G2 is —CH2—S(O)2N(R′)(OR′). In some embodiments, each R′ is methyl. In some embodiments, G2 is —CH2—S(O)2N(CH3)(OCH3). In some embodiments, G2 is —CH2—S(O)2N(Ph)(OCH3). In some embodiments, G2 is —CH2—S(O)2N(CH2Ph)(OCH3). In some embodiments, G2 is —CH2—S(O)2N(CH2Ph)(OCH3). In some embodiments, G2 is -L′-S(O)2OR′. In some embodiments, G2 is —CH2—S(O)2OR′. In some embodiments, G2 is —CH2—S(O)2OPh. In some embodiments, G2 is —CH2—S(O)2OCH3. In some embodiments, G2 is —CH2—S(O)2OCH2Ph.


In some embodiments, G2 is -L′-P(O)(R′)2. In some embodiments, G2 is —CH2—P(O)(R′)2. In some embodiments, G2 is -L′-P(O)[N(R′)2]2. In some embodiments, G2 is —CH2—P(O)[N(R′)2]2. In some embodiments, G2 is -L′-P(O)[O(R′)2]2. In some embodiments, G2 is —CH2—P(O)[O(R′)2]2. In some embodiments, G2 is -L′-P(O)(R′)[N(R′)2]2. In some embodiments, G2 is —CH2—P(O)(R′)[N(R′)2]. In some embodiments, G2 is -L′-P(O)(R′)[O(R′)]. In some embodiments, G2 is —CH2—P(O)(R′)[O(R′)]. In some embodiments, G2 is -L′-P(O)(OR′)[N(R′)2]. In some embodiments. G2 is —CH2—P(O)(OR′)[N(R′)2]. In some embodiments, G2 is -L′-C(O)N(R′)2, wherein each variable is as described in the present disclosure. In some embodiments, G2 is —CH2—C(O)N(R′)2. In some embodiments, each R′ is independently R. In some embodiments, one R′ is optionally substituted aliphatic, and one R is optionally substituted aryl. In some embodiments, one R′ is optionally substituted C1-6 aliphatic, and one R is optionally substituted phenyl. In some embodiments, each R′ is independently optionally substituted C1-6 aliphatic. In some embodiments, G2 is —CH2—P(O)(CH3)Ph. In some embodiments, G2 is —CH2—P(O)(CH3)2. In some embodiments, G2 is —CH2—P(O)(Ph)2. In some embodiments, G2 is —CH2—P(O)(OCH3)2. In some embodiments, G2 is —CH2—P(O)(CH2Ph)2. In some embodiments, G2 is —CH2—P(O)[N(CH3)Ph]2. In some embodiments, G2 is —CH2—P(O)[N(CH3)2]2. In some embodiments, G2 is —CH2—P(O)[N(CH2Ph)2]2. In some embodiments, G2 is —CH2—P(O)(OCH3)2. In some embodiments, G2 is —CH2—P(O)(OPh)2.


In some embodiments, G2 is -L′-SR′. In some embodiments, G2 is —CH2—SR′. In some embodiments, R′ is optionally substituted phenyl. In some embodiments, R′ is phenyl.


In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein each R1 is independently as described in the present disclosure. In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein each R1 is independently as described in the present disclosure. In some embodiments, each R1 is independently R as described in the present disclosure. In some embodiments, each R1 is independently R, wherein R is optionally substituted aliphatic, aryl, heteroaliphatic, or heteroaryl as described in the present disclosure. In some embodiments, each R1 is phenyl. In some embodiments, R1 is -L-R′. In some embodiments, R1 is -L-R′, wherein L is —O—, —S—, or —N(R′). In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein each X1 is independently —H, an electron-withdrawing group, —NO2, —CN, —OR, —Cl, —Br, or —F, and W is O or S. In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein each X1 is independently —H, an electron-withdrawing group, —NO2, —CN, —OR, —Cl, —Br, or —F, and W is O or S. In some embodiments, each X1 is independently —CN, —OR, —Cl, —Br, or —F, wherein R is not —H. In some embodiments, R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6 alkyl. In some embodiments, R is —CH3. In some embodiments, one or more X1 are independently electron-withdrawing groups (e.g., —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, —P(S)(R1)2, etc.).


In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein R1 is as described in the present disclosure. In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein R1 is as described in the present disclosure. In some embodiments, R1 is R as described in the present disclosure. In some embodiments, R1 is R, wherein R is optionally substituted aliphatic, aryl, heteroaliphatic, or heteroaryl as described in the present disclosure. In some embodiments, R1 is -L-R′. In some embodiments, R1 is -L-R′, wherein L is —O—, —S—, or —N(R′). In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein X1 is —H, an electron-withdrawing group, —NO2, —CN, —OR, —Cl, —Br, or —F, and W is O or S. In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein X1 is —H, an electron-withdrawing group, —NO2, —CN, —OR, —Cl, —Br, or —F, and W is O or S. In some embodiments, X1 is —CN, —OR, —Cl, —Br, or —F, wherein R is not —H. In some embodiments, R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6 alkyl. In some embodiments, R is —CH3. In some embodiments, X1 is an electron-withdrawing group (e.g., —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R′)2, —P(O)(R1)2, —P(O)OR′)2, —P(S)(R1)2, etc.). In some embodiments, X1 is an electron-withdrawing group that is not —CN, —NO2, or halogen. In some embodiments, X1 is not —H, —CN, —NO2, halogen, or C1-3 alkyloxy.


In some embodiments, G2 is —CH(R21)—CH(R22)═C(R23)(R24), wherein each of R21, R22, R23, and R24 is independently R. In some embodiments, R22 and R23 are both R, and the two R groups are taken together with their intervening atoms to form an optionally substituted aryl or heteroaryl ring as described herein. In some embodiments, one or more substituents are independently electron-withdrawing groups. In some embodiments, R21 and R24 are both R, and the two R groups are taken together with their intervening atoms to form an optionally substituted ring as described herein. In some embodiments, R21 and R24 are both R. and the two R groups are taken together with their intervening atoms to form an optionally substituted saturated or partially saturated ring as described herein. In some embodiments, R22 and R23 are both R, and the two R groups are taken together with their intervening atoms to form an optionally substituted aryl or heteroaryl ring as described herein, and R21 and R24 are both R, and the two R groups are taken together with their intervening atoms to form an optionally substituted partially saturated ring as described herein. In some embodiments, R21 is —H. In some embodiments, R24 is —H. In some embodiments, G2 is optionally substituted




embedded image


In some embodiments, G2 is optionally substituted




embedded image


wherein each Ring A2 is independently a 3-15 membered monocyclic, bicyclic or polycyclic ring as described herein. In some embodiments, Ring A2 is an optionally substituted 5-10 membered monocyclic aryl or heteroaryl ring having 1-5 heteroatoms as described herein. In some embodiments, Ring A2 is an optionally substituted phenyl ring as described herein. In some embodiments, In some embodiments, G2 is optionally substituted




embedded image


In some embodiments, G2 is




embedded image


In some embodiments, G2 is




embedded image


In some embodiments, G2 is




embedded image


Certain useful example compounds for chiral auxiliaries are presented in, e.g., Tables CA-1 to CA-13. In some embodiments, a useful compound is an enantiomer of a compound in, e.g., Tables CA-1 to CA-13. In some embodiments, a useful compound is a diastereomer of a compound in, e.g., Tables CA-1 to CA-13. In some embodiments, a compound useful for chiral auxiliaries for removal under basic conditions (e.g., by a base under an anhydrous condition) is a compound of Tables CA-1 to CA-13, or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-1 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-2 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-3 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-4 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-5 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-6 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-7 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-8 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-9 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-10 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-11 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-12 or an enantiomer or a diastereomer thereof. In some embodiments, such a compound is a compound of Table CA-13 or an enantiomer or a diastereomer thereof.


In some embodiments, when contacted with a base, a chiral auxiliary moiety. e.g., of an internucleotidic linkage, whose corresponding compound is a compound of Formula 3-I or 3-AA may be released as an alkene, which has the same structure as a product formed by elimination of a water molecule from the corresponding compound (elimination of -W2—H═—OH and an alpha-H of G2). In some embodiments, such an alkene has the structure of (electron-withdrawing group)2═C(R1)-L-N(R5)(R6), (electron-withdrawing group)H═C(R1)-L-N(R5)(R6), CH(-L″-R′)═C(R1)-L-N(R5)(R6) wherein the CH group is optionally substituted, or Cx═C(R1)-L-N(R5)(R6), wherein Cx is optionally substituted




embedded image


and may be optionally fused with one or more optionally substituted rings, and each other variable is independently as described herein. In some embodiments, Cx is optionally substituted




embedded image


In some embodiments, Cx is




embedded image


In some embodiments, such an alkene is




embedded image


In some embodiments such an alkene is




embedded image


In some embodiments, such an alkene is




embedded image


In some embodiments, a chiral reagent is an aminoalcohol. In some embodiments, a chiral reagent is an aminothiol. In some embodiments, a chiral reagent is an aminophenol. In some embodiments, a chiral reagent is (S)- and (R)-2-methylamino-1-phenylethanol, (1R,2S)-ephedrine, or (IR, 2S)-2-methylamino-1,2-diphenylethanol.


In some embodiments of the disclosure, a chiral reagent is a compound of one of the following formulae:




embedded image


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer (e.g., WV-CA-237 is a related stereoisomer of WV-CA-236 (a related diastereomer, having the same constitution, the same configuration at one chiral center but not the other); WV-CA-108 is a related enantiomer of WV-CA-236 (mirror image of each other)): Table CA-1. Example chiral auxiliaries.









TABLE CA-1





Example chiral auxiliaries.


















WV-CA-231


embedded image









WV-CA-232


embedded image









WV-CA-233


embedded image









WV-CA-234


embedded image









WV-CA-235


embedded image









WV-CA-236


embedded image









WV-CA-237


embedded image









WV-CA-238


embedded image









WV-CA-239


embedded image









WV-CA-240


embedded image









WV-CA-241


embedded image









WV-CA-242


embedded image









WV-CA-243


embedded image









WV-CA-244


embedded image









WV-CA-245


embedded image









WV-CA-246


embedded image









WV-CA-247


embedded image









WV-CA-248


embedded image









WV-CA-249


embedded image









WV-CA-250


embedded image









WV-CA-251


embedded image









WV-CA-252


embedded image









WV-CA-253


embedded image









WV-CA-254


embedded image









WV-CA-255


embedded image









WV-CA-256


embedded image









WV-CA-257


embedded image









WV-CA-258


embedded image









WV-CA-259


embedded image









WV-CA-260


embedded image









WV-CA-261


embedded image









WV-CA-262


embedded image









WV-CA-263


embedded image









WV-CA-264


embedded image









WV-CA-265


embedded image









WV-CA-266


embedded image









WV-CA-267


embedded image









WV-CA-268


embedded image









WV-CA-269


embedded image









WV-CA-270


embedded image









WV-CA-271


embedded image









WV-CA-272


embedded image









WV-CA-273


embedded image









WV-CA-274


embedded image









WV-CA-275


embedded image









WV-CA-276


embedded image









WV-CA-277


embedded image









WV-CA-278


embedded image









WV-CA-279


embedded image









WV-CA-280


embedded image









WV-CA-281


embedded image









WV-CA-282


embedded image









WV-CA-283


embedded image









WV-CA-284


embedded image









WV-CA-285


embedded image









WV-CA-286


embedded image









WV-CA-287


embedded image









WV-CA-288


embedded image









WV-CA-289


embedded image









WV-CA-290


embedded image









WV-CA-291


embedded image









WV-CA-293


embedded image









WV-CA-294


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-1 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-i or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-2





Example chiral auxiliaries.


















WV-CA-231


embedded image









WV-CA-239


embedded image









WV-CA-249


embedded image









WV-CA-272


embedded image









WV-CA-273


embedded image









WV-CA-274


embedded image









WV-CA-275


embedded image









WV-CA-276


embedded image









WV-CA-277


embedded image









WV-CA-278


embedded image









WV-CA-279


embedded image









WV-CA-280


embedded image









WV-CA-281


embedded image









WV-CA-282


embedded image









WV-CA-283


embedded image









WV-CA-284


embedded image









WV-CA-285


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-2 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-2 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-3





Example chiral auxiliaries.


















WV-CA-236


embedded image









WV-CA-237


embedded image









WV-CA-238


embedded image









WV-CA-240


embedded image









WV-CA-241


embedded image









WV-CA-242


embedded image









WV-CA-243


embedded image









WV-CA-252


embedded image









WV-CA-290


embedded image









WV-CA-291


embedded image









WV-CA-108


embedded image









WV-CA-183


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-3 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-3 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-4





Example chiral auxiliaries.


















WV-CA-251


embedded image









WV-CA-253


embedded image









WV-CA-255


embedded image









WV-CA-257


embedded image









WV-CA-258


embedded image









WV-CA-263


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-4 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-4 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-5





Example chiral auxiliaries.


















WV-CA-254


embedded image









WV-CA-256


embedded image









WV-CA-259


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-5 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-5 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-6





Example chiral auxiliaries.


















WV-CA-260


embedded image









WV-CA-261


embedded image









WV-CA-262


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-6 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-6 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-7





Example chiral auxiliaries.


















WV-CA-245


embedded image









WV-CA-264


embedded image









WV-CA-265


embedded image









WV-CA-266


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-7 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-7 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-8





Example chiral auxiliaries.
















WV-CA-267


embedded image







WV-CA-269


embedded image







WV-CA-271


embedded image











In some embodiments, a provided compound is an enantiomer of a compound from Table CA-8 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-8 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-9





Example chiral auxiliaries.
















WV-CA-268


embedded image







WV-CA-270


embedded image











In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-9 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-9 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer particularly enantiomer:









TABLE CA-10





Example chiral auxiliaries.


















WV-CA-244


embedded image









WV-CA-246


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-10 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-10 or salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-11





Example chiral auxiliaries.


















WV-CA-247


embedded image









WV-CA-248


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-11 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-11 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-12





Example chiral auxiliaries.


















WV-CA-250


embedded image









WV-CA-286


embedded image









WV-CA-287


embedded image









WV-CA-288


embedded image









WV-CA-289


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-12 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-12 or a salt thereof.


In some embodiments, a useful chiral reagent is a compound selected from the compounds below, or its related stereoisomer, particularly enantiomer:









TABLE CA-13





Example chiral auxiliaries.


















WV-CA-110


embedded image









WV-CA-315


embedded image









WV-CA-110b


embedded image









WV-CA-324


embedded image












In some embodiments, a provided compound is an enantiomer of a compound selected from Table CA-13 or a salt thereof. In some embodiments, a provided compound is a diastereomer of a compound selected from Table CA-13 or a salt thereof.


As appreciated by those skilled in the art, chiral reagents are typically stereopure or substantially stereopure, and are typically utilized as a single stereoisomer substantially free of other stereoisomers. In some embodiments, compounds of the present disclosure are stereopure or substantially stereopure.


As demonstrated herein, when used for preparing a chiral internucleotidic linkage, to obtain stereoselectivity generally stereochemically pure chiral reagents are utilized. Among other things, the present disclosure provides stereochemically pure chiral reagents, including those having structures described.


The choice of chiral reagent, for example, the isomer represented by Formula Q or its stereoisomer, Formula R, permits specific control of chirality at a linkage phosphorus. Thus, either an Rp or Sp configuration can be selected in each synthetic cycle, permitting control of the overall three dimensional structure of a chirally controlled oligonucleotide. In some embodiments, a chirally controlled oligonucleotide has all Rp stereocenters. In some embodiments of the disclosure, a chirally controlled oligonucleotide has all Sp stereocenters. In some embodiments of the disclosure, each linkage phosphorus in the chirally controlled oligonucleotide is independently Rp or Sp. In some embodiments of the disclosure, each linkage phosphorus in the chirally controlled oligonucleotide is independently Rp or Sp, and at least one is Rp and at least one is Sp. In some embodiments, the selection of Rp and Sp centers is made to confer a specific three dimensional superstructure to a chirally controlled oligonucleotide. Examples of such selections are described in further detail herein.


In some embodiments, a provided oligonucleotide comprise a chiral auxiliary moiety, e.g., in an internucleotidic linkage. In some embodiments, a chiral auxiliary is connected to a linkage phosphorus. In some embodiments, a chiral auxiliary is connected to a linkage phosphorus through W2. In some embodiments, a chiral auxiliary is connected to a linkage phosphorus through W2, wherein W2 is O. Optionally, W1, e.g., when W1 is -NG5-, is capped during oligonucleotide synthesis. In some embodiments, W1 in a chiral auxiliary in an oligonucleotide is capped, e.g., by a capping reagent during oligonucleotide synthesis. In some embodiments, W1 may be purposeful capped to modulate oligonucleotide property. In some embodiments, W1 is capped with —R1. In some embodiments, R1 is —C(O)R′. In some embodiments, R′ is optionally substituted C1-6 aliphatic. In some embodiments, R′ is methyl.


In some embodiments, a chiral reagent for use in accordance with the present disclosure is selected for its ability to be removed at a particular step in the above-depicted cycle. For example, in some embodiments it is desirable to remove a chiral reagent during the step of modifying the linkage phosphorus. In some embodiments, it is desirable to remove a chiral reagent before the step of modifying the linkage phosphorus. In some embodiments, it is desirable to remove a chiral reagent after the step of modifying the linkage phosphorus. In some embodiments, it is desirable to remove a chiral reagent after a first coupling step has occurred but before a second coupling step has occurred, such that a chiral reagent is not present on the growing oligonucleotide during the second coupling (and likewise for additional subsequent coupling steps). In some embodiments, a chiral reagent is removed during the “deblock” reaction that occurs after modification of the linkage phosphorus but before a subsequent cycle begins. Example methods and reagents for removal are described herein.


In some embodiments, removal of chiral auxiliary is achieved when performing the modification and/or deblocking step, as illustrated in Scheme I. It can be beneficial to combine chiral auxiliary removal together with other transformations, such as modification and deblocking. A person of ordinary skill in the art would appreciate that the saved steps/transformation could improve the overall efficiency of synthesis, for instance, with respect to yield and product purity, especially for longer oligonucleotides. One example wherein the chiral auxiliary is removed during modification and/or deblocking is illustrated in Scheme 1.


In some embodiments, a chiral reagent for use in accordance with methods of the present disclosure is characterized in that it is removable under certain conditions. For instance, in some embodiments, a chiral reagent is selected for its ability to be removed under acidic conditions. In certain embodiments, a chiral reagent is selected for its ability to be removed under mildly acidic conditions. In certain embodiments, a chiral reagent is selected for its ability to be removed by way of an E1 elimination reaction (e.g., removal occurs due to the formation of a cation intermediate on the chiral reagent under acidic conditions, causing the chiral reagent to cleave from the oligonucleotide). In some embodiments, a chiral reagent is characterized in that it has a structure recognized as being able to accommodate or facilitate an E1 elimination reaction. One of skill in the relevant arts will appreciate which structures would be envisaged as being prone toward undergoing such elimination reactions.


In some embodiments, a chiral reagent is selected for its ability to be removed with a nucleophile. In some embodiments, a chiral reagent is selected for its ability to be removed with an amine nucleophile. In some embodiments, a chiral reagent is selected for its ability to be removed with a nucleophile other than an amine.


In some embodiments, a chiral reagent is selected for its ability to be removed with a base. In some embodiments, a chiral reagent is selected for its ability to be removed with an amine. In some embodiments, a chiral reagent is selected for its ability to be removed with a base other than an amine.


In some embodiments, chirally pure phosphoramidites comprising chiral auxiliaries may be isolated before use. In some embodiments, chirally pure phosphoramidites comprising chiral auxiliaries may be used without isolation—in some embodiments, they may be used directly after formation.


Activation

As appreciated by those skilled in the art, oligonucleotide preparation may use various conditions, reagents, etc. to active a reaction component, e.g., during phosphoramidite preparation, during one or more steps during in the cycles, during post-cycle cleavage/deprotection, etc. Various technologies for activation can be utilized in accordance with the present disclosure, including but not limited to those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the activation technologies of each of which are incorporated by reference. Certain activation technologies. e.g., reagents, conditions, methods, etc. are illustrated in the Examples.


Coupling

In some embodiments, cycles of the present disclosure comprise stereoselective condensation/coupling steps to form chirally controlled internucleotidic linkages. For condensation, often an activating reagent is used, such as 4,5-dicyanoimidazole (DCI), 4,5-dichloroimidazole, 1-phenylimidazolium triflate (PhIMT), benzimidazolium triflate (BIT), benztriazole, 3-nitro-4,2,4-triazole (NT), tetrazole, 5-ethylthiotetrazole (ETT), 5-benzylthiotetrazole (BTT), 5-(4-nitrophenyl)tetrazole, N-cyanomethylpyrrolidinium triflate (CMPT), N-cyanomethylpiperidinium triflate, N-cyanomethyldimethylammonium triflate, etc. Suitable conditions and reagents, including chiral phosphoramidites, include those described in U.S. Pat. Nos. 9,695,211, 9,605,019, U.S. Pat. No. 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the condensation reagents, conditions and methods of each of which are incorporated by reference. Certain coupling technologies, e.g., reagents, conditions, methods, etc. are illustrated in the Examples.


In some embodiments, a phosphoramidite for coupling has the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, each R is independently optionally substituted C1-6 aliphatic. A person skill in the art will appreciate that two R groups in any structure or formula can either be the same or different. In some embodiments, each R is independently optionally substituted C1-6 alkyl. In some embodiments, each R is independently optionally substituted C1-6 alkenyl. In some embodiments, each R is independently optionally substituted C1-6 alkynyl. In some embodiments, each R is indenpendtly isopropyl. In some embodiments, -X-L-R1 comprises an optionally substituted triazole group. In some embodiments, X is a covalent bond. In some embodiments, L is a covalent bond. In some embodiments, -X-L-R1 is R1. In some embodiments, R1 comprise an optionally substituted ring. In some embodiments, R1 is R as described herein. In some embodiments, R1 is optionally substituted




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, R1 is




embedded image


In some embodiments, -L- comprises C1-6 alkylene. In some embodiments, -L- comprises C1-6 alkenylene. In some embodiments, -L- comprises




embedded image


In some embodiments, R1 is R as described herein. In some embodiments, -L- is




embedded image


and R1 is H. In some embodiments, -L-R is




embedded image


In some embodiments, -X-L-R1 is




embedded image


In some embodiments, -X-L-R1 is —OCH2CH2CN.


In some embodiments, a chiral phosphoramidite for coupling has the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a chiral phosphoramidite for coupling has the structure of




embedded image


embedded image


In some embodiments, a chiral phosphoramidite for coupling has the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, G1 or G2 comprises an electron-withdrawing group as described in the present disclosure. In some embodiments, a chiral phosphoramidite for coupling has the structure of




embedded image


embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, R1 is R2 as described in the present disclosure. In some embodiments, R1 is R as described in the present disclosure. In some embodiments, R is optionally substituted phenyl as described in the present disclosure. In some embodiments, R is phenyl. In some embodiments, R is 4-methyl phenyl. In some embodiments, R is 4-methoxy phenyl. In some embodiments, R is optionally substituted C1-6 aliphatic as described in the present disclosure. In some embodiments, R is optionally substituted C1-6 alkyl as described in the present disclosure. For example, in some embodiments, R is methyl; in some embodiments, R is isopropyl; in some embodiments, R is t-butyl; etc.


In some embodiments, R5s-Ls- is R′O—. In some embodiments, R′O— is DMTrO-. In some embodiments, R4s is —H. In some embodiments, R4s and R2s are taken together to form a bridge -L-O- as described in the present disclosure. In some embodiments, the —O— is connected to the carbon at the 2′ position. In some embodiments, L is —CH2—. In some embodiments, L is —CH(Me)-. In some embodiments, L is —(R)—CH(Me)-. In some embodiments, L is —(S)—CH(Me)-. In some embodiments. R2s is —H. In some embodiments, R2s is —F. In some embodiments, R2s is —OR′. In some embodiments, R2s is -OMe. In some embodiments, R2s is -MOE. As appreciated by those skilled in the art, BA may be suitably protected during synthesis.


In some embodiments, an internucleotidic linkage formed in a coupling step has the structure of formula I or a salt form thereof. In some embodiments, PL is P. In some embodiments, -X-L-R is




embedded image


wherein each variable is independently in accordance with the present disclosure. In some embodiments, -X-L-R1 is —CH2CH2CN.


In some embodiments, a coupling forms an internucleotidic linkage with a stereoselectivity of 80%, 85%, 90%, 91%, 92%, 93% 94%, 95%, 96%, 97%, 98%, 99% or more. In some embodiments, the stereoselectivity is 85% or more. In some embodiments, the stereoselectivity is 85% or more. In some embodiments, the stereoselectivity is 90% or more. In some embodiments, the stereoselectivity is 91% or more. In some embodiments, the stereoselectivity is 92% or more. In some embodiments, the stereoselectivity is 93% or more. In some embodiments, the stereoselectivity is 94% or more. In some embodiments, the stereoselectivity is 95% or more. In some embodiments, the stereoselectivity is 96% or more. In some embodiments, the stereoselectivity is 97% or more. In some embodiments, the stereoselectivity is 98% or more. In some embodiments, the stereoselectivity is 99% or more.


Capping

If the final nucleic acid is larger than a dimer, the unreacted —OH moiety is generally capped with a blocking/capping group. Chiral auxiliaries in oligonucleotides may also be capped with a blocking group to form a capped condensed intermediate. Suitable capping technologies (e.g., reagents, conditions, etc.) include those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the capping technologies of each of which are incorporated by reference. In some embodiments, a capping reagent is a carboxylic acid or a derivate thereof. In some embodiments, a capping reagent is R′COOH. In some embodiments, a capping step introduces R′COO— to unreacted 5′-OH group and/or amino groups in chiral auxiliaries. In some embodiments, a cycle may comprise two or more capping steps. In some embodiments, a cycle comprises a first capping before modification of a coupling product (e.g., converting P(III) to P(V)), and another capping after modification of a coupling product. In some embodiments, a first capping is performed under an amidation condition, e.g., which comprises an acylating reagent (e.g., an anhydride having the structure of (RC(O))2O, (e.g., Ac2O)) and a base (e.g., 2,6-lutidine). In some embodiments, a first capping caps an amino group, e.g., that of a chiral auxiliary in an internucleotidic linkage. In some embodiments, an internucleotidic linkage formed in a coupling step has the structure of formula I or a salt form thereof. In some embodiments, PL is P. In some embodiments, -X-L-R1 is




embedded image


wherein each variable is independently in accordance with the present disclosure. In some embodiments, R1 is R—C(O)—. In some embodiments, R is CH3—. In some embodiments, each chirally controlled coupling (e.g., using a chiral auxiliary) is followed with a first capping. Typically, cycles for non-chirally controlled coupling using traditional phosphoramidite to construct natural phosphate linkages do not contain a first capping. In some embodiments, a second capping is performed, e.g., under an esterification condition (e.g., capping conditions of traditional phosphoramidite oligonucleotide synthesis) wherein free 5′-OH are capped.


Certain capping technologies, e.g., reagents, conditions, methods, etc. are illustrated in the Examples.


Modifying

In some embodiments, an internucleotidic linkage wherein its linkage phosphorus exists as P(II) is modified to form another modified internucleotidic linkage (e.g., one of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof) or a natural phosphate linkage. In many embodiments, P(III) is modified by reaction with an electrophile. Various types of reactions suitable for P(III) may be utilized in accordance with the present disclosure. Suitable modifying technologies (e.g., reagents (e.g., sulfurization reagent, oxidation reagent, etc.), conditions, etc.) include those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the modifying technologies of each of which are incorporated by reference.


In some embodiments, as illustrated in the Examples, the present disclosure provides modifying reagents for introducing non-negatively charged internucleotidic linkages including neutral internucleotidic linkages.


In some embodiments, modifying is within a cycle. In some embodiments, modifying can be outside of a cycle. For example, in some embodiments, one or more modifying steps can be performed after the oligonucleotide chain has been reached to introduce modifications simultaneously at one or more internucleotidic linkages and/or other locations.


In some embodiments, modifying comprises use of click chemistry. e.g., wherein an alkyne group of an oligonucleotide, e.g., of an internucleotidic linkage, is reacted with an azide. Various reagents and conditions for click chemistry can be utilized in accordance with the present disclosure. In some embodiments, an azide has the structure of R1-Na3, wherein R1 is as described in the present disclosure. In some embodiments, R1 is optionally substituted C1-6 alkyl. In some embodiments, R1 is isopropyl.


In some embodiments, as demonstrated in the examples, a P(III) linkage can be converted into a non-negatively charged internucleotidic linkage by reacting the P(III) linkage with an azide or an azido imidazolinium salt (e.g., a compound comprising




embedded image


in some embodiments, referred to as an azide reaction) under suitable conditions. In some embodiments, an azido imidazolinium salt is a salt of PF6. In some embodiments, an azido imidazolinium salt is a salt of




embedded image


In some embodiments, a useful reagent, e.g., an azido imidazolinium salt, is a salt of




embedded image


In some embodiments, a useful reagent is a salt of




embedded image


In some embodiments, a useful reagent is a salt of




embedded image


In some embodiments, a useful reagent is a salt of




embedded image


Such reagents comprising nitrogen cations also contain counter anions (e.g., Q as described in the present disclosure), which are widely known in the art and are contained in various chemical reagents. In some embodiments, a useful reagent is Q+Q, wherein Q+ is




embedded image


and Q+ is a counter anion. In some embodiments, Q+ is




embedded image


In some embodiments, Q+is




embedded image


In some embodiments, Q+is




embedded image


In some embodiments, Qis




embedded image


In some embodiments, Q+ is




embedded image


As appreciated by those skilled in the art, in a compound having the structure of Q+Q, typically the number of positive charges in Q+ equals the number of negative charges in Q. In some embodiments, Q+is a monovalent cation and Q is a monovalent anion. In some embodiments, Q is F, Cl, Br, BF4, PF6, TfO, Tf2N, AsF6, ClO4, or SbF6. In some embodiments, Q is PF6. Those skilled in the art readily appreciate that many other types of counter anions are available and can be utilized in accordance with the present disclosure. In some embodiments, an azido imidazolinium salt is 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. In some embodiments, an azide is




embedded image


In some embodiments, an azido imidazolinium salt is




embedded image


In some embodiments, an azido imidazolinium salt is




embedded image


In some embodiments, an azide is




embedded image


In some embodiments, an azide is




embedded image


In some embodiments, an azide is




embedded image


In some embodiments, an azido imidazolinium salt is




embedded image


In some embodiments, an azido imidazolinium salt is




embedded image


In some embodiments, an azido imidazolinium salt is




embedded image


In some embodiments, an azido imidazolinium salt is




embedded image


In some embodiments, a P(III) linkage is reacted with an electrophile having the structure of R-GZ, wherein R is as described in the present disclosure, and GZ is a leaving group, e.g., —Cl, —Br, —I, -OTf, -Oms, -OTosyl, etc. In some embodiments, R is —CH3. In some embodiments, R is —CH2CH3. In some embodiments, R is —CH2CH2CH3. In some embodiments, R is —CH2OCH3. In some embodiments, R is CH3CH2OCH2—. In some embodiments, R is PhCH2OCH2—. In some embodiments, R is HC≡C—CH2—. In some embodiments, R is H3C—C≡C—CH2—. In some embodiments, R is CH2═CHCH2—. In some embodiments, R is CH3SCH2—. In some embodiments, R is —CH2COOCH3. In some embodiments, R is —CH2COOCH2CH3. In some embodiments, R is —CH2CONHCH3.


In some embodiments, after a modifying step, a P(III) linkage phosphorus is converted into a P(V) internucleotidic linkage. In some embodiments, a P(III) linkage phosphorus is converted into a P(V) internucleotidic linkage, and all groups bounded to the linkage phosphorus remain unchanged. In some embodiments, a linkage phosphorus is converted from P into P(═O). In some embodiments, a linkage phosphorus is converted from P into P(═S). In some embodiments, a linkage phosphorus is converted from P into P(═N-L-R). In some embodiments, a linkage phosphorus is converted from P into




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, P is converted into




embedded image


In some embodiments, P is converted into




embedded image


In some embodiments, P is converted into




embedded image


In some embodiments, P is converted into




embedded image


In some embodiments, P is converted into




embedded image


As appreciated by those skilled in the art, for each cation there typically exists a counter anion so that the total number of positive charges equals the total number of negative charges in a system (e.g., compound, composition, etc.). In some embodiments, a counter anion is Q as described in the present disclosure (e.g., F, Cl, Br, BF4, PF6, TfO, Tf2N, AsF6, ClO4, SbF6, etc.). In some embodiments, an internucleotidic linkage having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof, wherein PL is P is converted into an internucleotidic linkage having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, III, or a salt form thereof, wherein PL is P(═W) or P→B(R′)3 or PN. In some embodiments, an internucleotidic linkage having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, I-a-1, I-a-2, II-b-1, II-b-2, I-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof, wherein PL is P, is converted into an internucleotidic linkage having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, I-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof, wherein PL is P(═W) or P→B(R′). In some embodiments, a linkage phosphorus P, which is PL in an internucleotidic linkage having the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, I-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof is converted into PL which is P(═W) or P→B(R′)3. In some embodiments, a linkage phosphorus P, which is PL in an internucleotidic linkage having the structure of formula I or a salt form thereof is converted into PL which is P(═W) or P→B(R′)3. In some embodiments, W is O (e.g., for an oxidation reaction). In some embodiments, W is S (e.g., for a sulfurization reaction). In some embodiments, W is ═N-L-R (e.g., for an azide reaction). In some embodiments, an internucleotidic linkage having the structure of formula I or a salt form thereof (e.g., wherein PL is P) is converted into an internucleotidic linkage having the structure of formula III or a salt form thereof:




embedded image


wherein:


PN is P(═N-L-R5),




embedded image


Q is an anion, and


each other variables is independently as described in the present disclosure.


In some embodiments, PN is P(═N-L-R5). In some embodiments, PN is




embedded image


In some embodiments, PN is




embedded image


In some embodiments, PN is




embedded image


In some embodiments, PN is




embedded image


In some embodiments, PN is




embedded image


In some embodiments, internucleotidic linkages of the present disclosure may exist in a salt form. In some embodiments, internucleotidic linkages of formula III may exist in a salt form. In some embodiments, in a salt form of an internucleotidic linkage of formula III PN is




embedded image


In some embodiments, PN is P=WN, wherein WN is as described herein.


In some embodiments, Y, Z, and -X-L-R1 remains the same during the conversion. In some embodiments, each of X, Y and Z is independently —O—. In some embodiments, as described herein, -X-L-R1 is of such a structure that H-X-L-R1 is a chiral reagent described herein, or a capped chiral reagent described herein wherein an amino group of the chiral reagent (typically of -W1—H or —W2—H, which comprises an amino group -NHG4-) is capped, e.g., with —C(O)R′ (replacing a —H, e.g., —N[—C(O)R′]G5-). In some embodiments, -X-L-R1 is




embedded image


wherein each variable is independently in accordance with the present disclosure. In some embodiments, wherein R1 is —C(O)R. In some embodiments, R1 is CH3C(O)—. In some embodiments, as described herein, G2 comprises an electron-withdrawing group. In some embodiments, G2 is —CH2SO2Ph.


In some embodiments, an internucleotidic linkage (e.g., a modified internucleotidic linkage, a chiral internucleotidic linkage, a chirally controlled internucleotidic linkage, a non-negatively charged internucleotidic linkage, a neutral internucleotidic linkage, etc.) has the structure of formula I, I-a. I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof, wherein PL is P(═N-L-R), or of formula HI or a salt form thereof. In some embodiments, such an internucleotidic linkage is chirally controlled. In some embodiments, all such internucleotidic linkages are chirally controlled. In some embodiments, linkage phosphorus of at least one of such internucleotidic linkages is Rp. In some embodiments, linkage phosphorus of at least one of such internucleotidic linkages is Sp. In some embodiments, linkage phosphorus of at least one of such internucleotidic linkages is Rp, and linkage phosphorus of at least one of such internucleotidic linkages is Sp. In some embodiments, oligonucleotides of the present disclosure comprises one or more (e.g., 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 1-40, 1-50, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, etc.) such internucleotidic linkages. In some embodiments, such oligonucleotide further comprise one or more other types of internucleotidic linkages, e.g., one or more natural phosphate linkages, and/or one or more phosphorothioate internucleotidic linkages (e.g., in some embodiments, one or more of which are independently chirally controlled; in some embodiments, each of which is independently chirally controlled; in some embodiments, at least one is Rp; in some embodiments, at least one is Sp; in some embodiments, at least one is Rp and at least one is Sp: etc.) In some embodiments, such oligonucleotides are stereopure (substantially free of other stereoisomers). In some embodiments, the present disclosure provides chirally controlled oligonucleotide compositions of such oligonucleotides. In some embodiments, the present disclosure provides chirally pure oligonucleotide compositions of such oligonucleotides.


In some embodiments, modifying proceeds with a stereoselectivity of 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more. In some embodiments, the stereoselectivity is 85% or more. In some embodiments, the stereoselectivity is 85% or more. In some embodiments, the stereoselectivity is 90% or more. In some embodiments, the stereoselectivity is 91% or more. In some embodiments, the stereoselectivity is 92% or more. In some embodiments, the stereoselectivity is 93% or more. In some embodiments, the stereoselectivity is 94% or more. In some embodiments, the stereoselectivity is 95% or more. In some embodiments, the stereoselectivity is 96% or more. In some embodiments, the stereoselectivity is 97% or more. In some embodiments, the stereoselectivity is 98% or more. In some embodiments, the stereoselectivity is 99% or more. In some embodiments, modifying is stereospecific.


Deblocking

In some embodiments, a cycle comprises a cycle step. In some embodiments, the 5′ hydroxyl group of the growing oligonucleotide is blocked (i.e., protected) and must be deblocked in order to subsequently react with a nucleoside coupling partner.


In some embodiments, acidification is used to remove a blocking group. Suitable deblocking technologies (e.g., reagents, conditions, etc.) include those described in U.S. Pat. No. 9,695,211, U.S. Pat. No. 9,605,019, U.S. Pat. No. 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555. WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the deblocking technologies of each of which are incorporated by reference. Certain deblocking technologies, e.g., reagents, conditions, methods, etc. are illustrated in the Examples.


Cleavage and Deprotection

At certain stage, e.g., after the desired oligonucleotide lengths have been achieved, cleavage and/or deprotection are performed to deprotect blocked nucleobases etc. and cleave the oligonucleotide products from support. In some embodiments, cleavage and deprotection are performed separately. In some embodiments, cleavage and deprotection are performed in one step, or in two or more steps but without separation of products in between. In some embodiments, cleavage and/or deprotection utilizes basic conditions and elevated temperature. In some embodiments, for certain chiral auxiliaries, a fluoride condition is required (e.g., TBAF, HF-ET3N, etc., optionally with additional base). Suitable cleavage and deprotection technologies (e.g., reagents, conditions, etc.) include those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the cleavage and deprotection technologies of each of which are incorporated by reference. Certain cleavage and deprotection technologies, e.g., reagents, conditions, methods, etc. are illustrated in the Examples.


In some embodiments, certain chiral auxiliaries are removed under basic conditions. In some embodiments, oligonucleotides are contacted with a base, e.g., an amine having the structure of N(R)3, to remove certain chiral auxiliaries (e.g., those comprising an electronic-withdrawing group in G2 as described in the present disclosure). In some embodiments, a base is NHR2. In some embodiments, each R is independently optionally substituted C1-6 aliphatic. In some embodiments, each R is independently optionally substituted C1-6 alkyl. In some embodiments, an amine is DEA. In some embodiments, an amine is TEA. In some embodiments, an amine is provided as a solution, e.g., an acetonitrile solution. In some embodiments, such contact is performed under anhydrous conditions. In some embodiments, such a contact is performed immediately after desired oligonucleotide lengths are achieved (e.g., first step post synthesis cycles). In some embodiments, such a contact is performed before removal of chiral auxiliaries and/or protection groups and/or cleavage of oligonucleotides from a solid support. In some embodiments, contact with a base may remove cyanoethyl groups utilized in standard oligonucleotide synthesis, providing an natural phosphate linkage which may exist in a salt form (with the cation being, e.g., an ammonium salt). In some embodiments, contact with a base provides an internucleotidic linkage of formula I-n-1, I-n-2. I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1. II-b-2, II-c-1, II-c-2,11-d-1, or II-d-2, or a salt form thereof. In some embodiments, contact with a base removes a chiral auxiliary from an internucleotidic linkage of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2, or a salt form thereof. In some embodiments, contact with a base removes a chiral auxiliary (e.g., -X-L-R1) from an internucleotidic linkage of formula I or a salt form thereof (e.g., wherein PL is P(═N-L-R5)). In some embodiments, contact with a base removes a chiral auxiliary (e.g., -X-L-R1) from an internucleotidic linkage of formula III or a salt form thereof. In some embodiments, In some embodiments, contact with a base converts an internucleotidic linkage of formula I or a salt form thereof (e.g., wherein PL is P(═N-L-R5)), or of formula III or a salt form thereof, into an internucleotidic linkage of formula II-n-1, 1-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2, or a salt form thereof.


Cycles

Suitable cycles for preparing oligonucleotides of the present disclosure include those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647 (e.g., Schemes I, I-b, I-c, I-d, I-e, I-f, etc.), WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the cycles of each of which are incorporated by reference. For example, in some embodiments, an example cycle is Scheme 1-f. Certain cycles are illustrated in the Examples (e.g., for preparation of natural phosphate linkages, utilizing other chiral auxiliaries, etc.).




embedded image


In some embodiments, R2s is H or —OR1, wherein R1 is not hydrogen. In some embodiments, R2s is H or —OR1 wherein R1 is optionally substituted C1-6 alkyl. In some embodiments, R2s is H. In some embodiments, R2s is -OMe. In some embodiments, R2s is —OCH2CH2OCH3. In some embodiments, R2s is —F. In some embodiments, R4s is —H. In some embodiments, R4s and R2s are taken together to form abridge -L-O- as described in the present disclosure. In some embodiments, the —O—is connected to the carbon at the 2′ position. In some embodiments, L is —CH2—. In some embodiments, L is —CH(Me)-. In some embodiments, L is -(R)-CH(Me)-. In some embodiments, L is -(S)-CH(Me)-.


Purification and Characterization

Various purification and/or characterization technologies (methods, instruments, protocols, etc.) can be utilized to purify and/or characterize oligonuclotides and oligonucleotide compositions in accordance with the present disclosure. In some embodiments, purification is performed using various types of HPLC/UPLC technologies. In some embodiments, characterization comprises MS, NMR, UV, etc. In some embodiments, purification and characterization may be performed together, e.g., HPLC-MS, UPLC-MS, etc. Example purification and characterization technologies include those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and/or WO 2019/055951, the purification and characterization technologies of each of which are incorporated by reference.


In some embodiments, the present disclosure provides methods for preparing provided oligonucleotide and oligonucleotide compositions. In some embodiments, a provided method comprises providing a provided chiral reagent having the structure of formula 3-I or 3-AA. In some embodiments, a provided method comprises providing a provided chiral reagent having the structure of




embedded image


wherein W1 is -NG5, W2 is O, each of G1 and G3 is independently hydrogen or an optionally substituted group selected from C1-10 aliphatic, heterocyclyl, heteroaryl and aryl, G2 is —C(R)2Si(R)3, and G4 and G5 are taken together to form an optionally substituted saturated, partially unsaturated or unsaturated heteroatom-containing ring of up to about 20 ring atoms which is monocyclic or polycyclic, fused or unfused, wherein each R is independently hydrogen, or an optionally substituted group selected from C1-C6 aliphatic, carbocyclyl, aryl, heteroaryl, and heterocyclyl. In some embodiments, a provided chiral reagent has the structure of




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a provided methods comprises providing a phosphoramidite comprising a moiety from a chiral reagent having the structure of




embedded image


wherein -W1H and —W2H, or the hydroxyl and amino groups, form bonds with the phosphorus atom of the phosphoramidite. In some embodiments, -W1H and —W2H, or the hydroxyl and amino groups, form bonds with the phosphorus atom of the phosphoramidite, e.g., in




embedded image


In some embodiments, a phosphoramidite has the structure of




embedded image


embedded image


embedded image


embedded image


or wherein BPRO is BA as described in the present disclosure, and each other variable is as described in the present disclosure. In some embodiments, BPRO is a protected nucleobase. In some embodiments, BPRO is protected A, T, G, C, U or a tautomers thereof. In some embodiments, R is a protection group. In some embodiments, R is DMTr.


In some embodiments, G2 is —C(R)2Si(R)3, wherein —C(R)2— is optionally substituted —CH2—, and each R of —Si(R)3 is independently an optionally substituted group selected from Co aliphatic, heterocyclyl, heteroaryl and aryl. In some embodiments, at least one R of —Si(R)3 is independently optionally substituted Co alkyl. In some embodiments, at least one R of —Si(R)3 is independently optionally substituted phenyl. In some embodiments, one R of —Si(R)3 is independently optionally substituted phenyl, and each of the other two R is independently optionally substituted C1-10 alkyl. In some embodiments, one R of —Si(R)3 is independently optionally substituted C1-10 alkyl, and each of the other two R is independently optionally substituted phenyl. In some embodiments, G2 is optionally substituted —CH2Si(Ph)(Me)2. In some embodiments, G2 is optionally substituted —CH2Si(Me)(Ph)2. In some embodiments, G2 is —CH2Si(Me)(Ph)2. In some embodiments, G2 is —CH2SiMe3. In some embodiments, G2 is —CH2Si(iPr)3. In some embodiments, G4 and G5 are taken together to form an optionally substituted saturated 5-6 membered ring containing one nitrogen atom (to which G5 is attached). In some embodiments, G4 and G5 are taken together to form an optionally substituted saturated 5-membered ring containing one nitrogen atom. In some embodiments, G1 is hydrogen. In some embodiments, G3 is hydrogen. In some embodiments, both G1 and G3 are hydrogen. In some embodiments, both G1 and G3 are hydrogen, G2 is —C(R)2Si(R)3, wherein —C(R)2— is optionally substituted —CH2—, and each R of —Si(R)3 is independently an optionally substituted group selected from C1-10 aliphatic, heterocyclyl, heteroaryl and aryl, and G4 and G5 are taken together to form an optionally substituted saturated 5-membered ring containing one nitrogen atom. In some embodiments, a provided method further comprises providing a fluoro-containing reagent. In some embodiments, a provided fluoro-containing reagent removes a chiral reagent, or a product formed from a chiral reagent, from oligonucleotides after synthesis. Various known fluoro-containing reagents, including those F sources for removing —SiR3 groups, can be utilized in accordance with the present disclosure, for example, TBAF, HF3-Et3N etc. In some embodiments, a fluoro-containing reagent provides better results, for example, shorter treatment time, lower temperature, less de-sulfurization, etc, compared to traditional methods, such as concentrated ammonia. In some embodiments, for certain fluoro-containing reagent, the present disclosure provides linkers for improved results, for example, less cleavage of oligonucleotides from support during removal of chiral reagent (or product formed therefrom during oligonucleotide synthesis). In some embodiments, a provided linker is an SP linker. In some embodiments, the present disclosure demonstrated that a HF-base complex can be utilized, such as HF-NR3, to control cleavage during removal of chiral reagent (or product formed therefrom during oligonucleotide synthesis). In some embodiments, HF-NR3 is HF-NEt3. In some embodiments, HF-NR3 enables use of traditional linkers, e.g., succinyl linker.


In some embodiments, as described herein, G2 comprises an electron-withdrawing group, e.g., at its α position. In some embodiments, G2 is methyl substituted with one or more electron-withdrawing groups. In some embodiments, an electronic-withdrawing group comprises and/or is connected to the carbon atom through, e.g., —S(O)—, —S(O)2—, —P(O)(R1)—, —P(S)R1—, or —C(O)—. In some embodiments, an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2. In some embodiments, an electron-withdrawing group is aryl or heteroaryl, e.g., phenyl, substituted with one or more of —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2. In some embodiments, G2 is —CH2S(O)R′. In some embodiments, G2 is —CH2S(O)2R′. In some embodiments, G2 is —CHP(O)(R′)2. Additional example embodiments are described, e.g., as for chiral reagents/auxiliaries.


Confirmation that a stereocontrolled oligonucleotide (e.g., one prepared by a method described herein or in the art) comprises the intended stereocontrolled (chirally controlled) internucleotidic linkage can be performed using a variety of suitable technologies. A stereocontrolled (chirally controlled) oligonucleotide comprises at least one stereocontrolled internucleotidic linkage, which can be, e.g., a stereocontrolled internucleotidic linkage comprising a phosphorus, a stereocontrolled phosphorothioate internucleotidic linkage (PS) in the Rp configuration, a PS in the Sp configuration, etc. Useful technologies include, as non-limiting examples: NMR (e.g., 1D (one-dimensional) and/or 2D (two-dimensional) 1H-31P HETCOR (heteronuclear correlation spectroscopy)), HPLC, RP-HPLC, mass spectrometry. LC-MS, and/or stereospecific nucleases. In some embodiments, stereospecific nucleases include: benzonase, micrococcal nuclease, and svPDE (snake venom phosphodiesterase), which are specific for internucleotidic linkages in the Rp configuration (e.g., a PS in the Rp configuration); and nuclease P1, mung bean nuclease, and nuclease S1, which are specific for internucleotidic linkages in the Sp configuration (e.g., a PS in the Sp configuration).


In some embodiments, the present disclosure pertains to a method of confirming or identifying the stereochemistry pattern of the backbone of an oligonucleotide and/or stereochemistry of particular internucleotidic linkages. In some embodiments, an oligonucleotide comprises a stereocontrolled internucleotidic linkage comprising a phosphorus, a stereocontrolled phosphorothioate (PS) in the Rp configuration, or a PS in the Sp configuration. In some embodiments, an oligonucleotide comprises at least one stereocontrolled internucleotidic linkage and at least one internucleotidic linkage which is not stereocontrolled. In some embodiments, a method comprises digestion of an oligonucleotide with a stereospecific nuclease. In some embodiments, a stereospecific nuclease is selected from: benzonase, micrococcal nuclease, and svPDE (snake venom phosphodiesterase), which are specific for internucleotidic linkages in the Rp configuration (e.g., a PS in the Rp configuration); and nuclease P1, mung bean nuclease, and nuclease S1, which are specific for internucleotidic linkages in the Sp configuration (e.g., a PS in the Sp configuration). In some embodiments, an oligonucleotide or fragments thereof produced by digestion with a stereospecific nuclease are analyzed. In some embodiments, an oligonucleotide or fragments thereof (e.g., produced by digestion with a stereospecific nuclease) are analyzed by NMR, 1D (one-dimensional) and/or 2D (two-dimensional) 1H-31P HETCOR (heteronuclear correlation spectroscopy), HPLC, RP-HPLC, mass spectrometry, LC-MS, UPLC, etc. In some embodiments, an oligonucleotide or fragments thereof are compared with chemically synthesized fragments of the oligonucleotide having a known pattern of stereochemistry.


Without wishing to be bound by any particular theory, the present disclosure notes that, in at least some cases, stereospecificity of a particular nuclease may be altered by a modification (e.g., 2′-modification) of a sugar, by a base sequence, or by a stereochemical context. For example, in some embodiments, benzonase and micrococcal nuclease, which are specific for Rp internucleotidic linkages, were both unable to cleave an isolated PS Rp internucleotidic linkage flanked by PS Sp internucleotidic linkages.


Various techniques and materials can be utilized. In some embodiments, the present disclosure provides useful combinations of technologies. For example, in some embodiments, stereochemistry of one or more particular internucleotidic linkages of an oligonucleotide can be confirmed by digestion of the oligonucleotide with a stereospecific nuclease and analysis of the resultant fragments (e.g., nuclease digestion products) by any of a variety of techniques (e.g., separation based on mass-to-charge ratio, NMR, HPLC, mass spectrometry, etc.). In some embodiments, stereochemistry of products of digesting an oligonucleotide with a stereospecific nuclease can be confirmed by comparison (e.g., NMR, HPLC, mass spectrometry, etc.) with chemically synthesized fragments (e.g., dimers, trimers, tetramers, etc.) produced, e.g., via technologies that control stereochemistry.


In one example, an oligonucleotide was confirmed to have the designed and intended pattern of stereochemistry in the backbone. The tested oligonucleotide comprises a core comprising 2′-deoxy nucleosides, wherein all of the internucleotidic linkages were PS in the Sp configuration except for one PS in the Rp configuration; and two wings, each of which comprising 2′-OMe nucleosides, wherein all the internucleotidic linkages in each wing were phosphodiester (PO) except for one PS in the Sp configuration in each wing. The oligonucleotide was digested with a stereospecific nuclease (e.g., nuclease P1). The various fragments were analyzed (e.g., by LC-MS and by comparison with chemically synthesized fragments of known stereochemistry). It was confirmed that the oligonucleotide had the intended pattern of stereochemistry in its backbone.


In another example, an oligonucleotide having a different sequence was confirmed to have the intended pattern of stereochemistry in its backbone, using digestion with a stereospecific nuclease and analysis of the resultant fragments. This oligonucleotide comprises a core comprising 2′-deoxy nucleotides, wherein all of the internucleotidic linkages were PS in the Sp configuration except for one PS in the Rp configuration; and two wings, each of which comprising 2′-Me nucleotides, wherein all the internucleotidic linkages in each wing were phosphodiester (PO) except for one PS in the Sp configuration in each wing.


In yet another example, a different oligonucleotide was tested to confirm that the internucleotidic linkages were in the intended configurations. The oligonucleotide is capable of skipping exon 51 of DMD; the majority of the nucleotides in the oligonucleotide were 2′-F and the remainder were 2′-OMe; the majority of the internucleotidic linkages in the oligonucleotide were PS in the Sp configuration and the remainder were PO. This oligonucleotide was tested by digestion with stereospecific nucleases, and the resultant digestion fragments were analyzed (e.g., by LC-MS and by comparison with chemically synthesized fragments of known stereochemistry). The results confirmed that the oligonucleotide had the intended pattern of stereocontrolled internucleotidic linkages.


In some embodiments, NMR is useful for characterization and/or confirming stereochemistry. In a set of example experiments, a set of oligonucleotides comprising a stereocontrolled CpG motif were tested to confirm the intended stereochemistry of the CpG motif. Oligonucleotides of the set comprise a motif having the structure of pCpGp, wherein C is Cytosine. G is Guanine, and p is a phosphorothioate which is stereorandom or stereocontrolled (e.g., in the Rp or Sp configuration). For example, one oligonucleotide comprises a pCpGp structure, wherein the pattern of stereochemistry of the phosphorothioates (e.g., the ppp) was RRR; in another oligonucleotide, the pattern of stereochemistry of the ppp was RSS; in another oligonucleotide, the pattern of stereochemistry of the ppp was RSR; etc. In the set, all possible patterns of stereochemistry of the ppp were represented. In the portion of the oligonucleotide outside the pCpGp structure, all the internucleotidic linkages were PO; all nucleosides in the oligonucleotides were 2′-deoxy. These various oligonucleotides were tested in NMR, without digestion with a stereospecific nuclease, and distinctive patterns of peaks were observed, indicating that each PS which was Rp or Sp produced a unique peak, and confirming that the oligonucleotides comprised stereocontrolled PS internucleotidic linkages of the intended stereochemistry.


Stereochemistry patterns of the internucleotidic linkages of various other stereocontrolled oligonucleotides were confirmed, wherein the oligonucleotides comprise a variety of chemical modifications and patterns of stereochemistry.


As those skilled in the art will appreciate, in some embodiments, a product oligonucleotide of a step, cycle or preparation is an oligonucleotide comprising O5P, OP, *P, *PDS, *PDR, *N, *NS and/or *NR as described herein, which oligonucleotide is optionally linked to a support (e.g., CPG) optionally via a linker (e.g., a CAN linker). For example, in some embodiments, after coupling and/or pre-modification capping and before modification, O5P is




embedded image


or a salt form thereof. In some embodiments, after modification O5P is LPO, LPA, LPB, or a salt form thereof.


Metabolites

In some embodiments, a DMD oligonucleotide corresponds to a fragment of a different, longer DMD oligonucleotide. In some embodiments, a DMD oligonucleotide corresponds to a metabolite produced by cleavage (e.g., enzymatic cleavage by a nuclease) of a longer DMD oligonucleotide, which produces a fragment or portion of the longer DMD oligonucleotide. In some embodiments, the present disclosure pertains to an DMD oligonucleotide which corresponds to a metabolite produced by the cleavage of a DMD oligonucleotide described herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which corresponds to a portion, or fragment of a DMD oligonucleotide disclosed herein.


Several experiments were performed wherein a DMD oligonucleotide was incubated in vitro in the presence of any of various substances comprising nucleases. In various experiments, such substances include brain homogenatem, cerebrospinal fluid or plasma from Sprague-Dawley rat or Cynomolgus monkey. Plasma was heparinized. Oligonucleotides were incubated for various time points (e.g., 0, 1, 2, 3, 4 or 5 days for brain tissue homogenate, with a pre-incubation period of 0, 1 or 2 days; 0, 1, 2, 4, 8, 16, 24 or 48 hrs for cerebrospinal fluid; or 0, 1, 2, 4, 8, 16 or 24 hrs for plasma). Pre-incubation indicates that the homogenate is incubated at 37 degrees ° C. for 0, 24 or 48 hrs to activate the enzymes before adding the oligonucleotide. Final concentration and volume of oligonucleotides was 20 μM in 200 μl. Products produced by cleavage of the oligonucleotides were analyzed by LC/MS.


For one DMD oligonucleotide, which is 20 bases long, tested in rat brain homogenate, the major metabolites represented the 3′ end of the oligonucleotide, which were truncated by 4, 10, 11, 12, or 13 bases.


One test DMD oligonucleotide has a length of 20 bases and was tested in rat brain homogenate, yielding major metabolites which were truncated at the 5′ end by 4, 10, 11, 12, or 13 bases, leaving metabolites representing the 3′ end of the oligonucleotide and which were 16, 10, 9, 8 or 7 bases long, respectively. This oligonucleotide also produced a metabolite which was a 5′ fragment which was 12 bases long (truncated at the 3′ end by 8 bases).


A second test oligonucleotide has a length of 20 bases and was tested in rat brain homogenate, yielding major metabolites which were truncated at the 3′ end by 4, 8, 9 or 10 bases, leaving metabolites representing the 5′ end of the oligonucleotide and which were 16, 12, 11 or 10 bases long, respectively.


The two tested oligonucleotides comprise internucleotidic linkages which are phosphodiesters, phosphorothioate in the Rp configuration, and phosphorothioates in the Sp configuration. In some embodiments, phosphodiesters were more labile than the phosphorothioate in the Rp configuration or the phosphorothioate in the Sp configuration. In some cases, a metabolite of an oligonucleotide represents a product of a cleavage at a phosphodiester.


In some embodiments, the present disclosure pertains to a DMD oligonucleotide which corresponds to a metabolite of a DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12, 13, or more bases shorter than a DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which has a base sequence which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or more bases shorter than that of a DMD oligonucleotide disclosed herein.


In some embodiments, a metabolite is designated as 3′-N-#, or 5′-N-#, wherein the # indicates the number of bases removed, and the 3′ or 5′ indicates which end of the molecule from which the bases were deleted. For example, 3′-N-1 indicates a fragment or metabolite wherein 1 base was removed from the 3′ end.


In some embodiments, the present disclosure perhaps to an oligonucleotide which corresponds to a fragment or metabolite of a DMD oligonucleotide disclosed herein, wherein the fragment or metabolite can be described as corresponding to 3′-N-1, 3′-N-2, 3′-N-3, 3′-N-4, 3′-N-5, 3′-N-6, 3′-N-7, 3′-N-8, 3′-N-9, 3′-N-10, 3′-N-11, 3′-N-12, 5′-N-1, 5′-N-2, 5′-N-3, 5′-N4, 5′-N-5, 5′-N-6, 5′-N-7, 5′-N-8, 5′-N-9, 5′-N-10, 5′-N-11, or 5′-N-12 of a DMD oligonucleotide described herein.


In some embodiments, the present disclosure pertains to a DMD oligonucleotide which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or more bases shorter on the 5′ end than a DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which has a base sequence which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or more bases shorter on the 5′ end than that of a DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or more bases shorter on the 3′ end than a DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which has a base sequence which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or more bases shorter on the 3′ end than that of a DMD oligonucleotide disclosed herein.


In some embodiments, the present disclosure pertains to a DMD which corresponds to a metabolite of a DMD oligonucleotide, wherein the metabolite is truncated on the 5′ and/or 3′ end relative to the DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD which corresponds to a metabolite of a DMD oligonucleotide, wherein the metabolite is truncated on both the 5′ and 3′ end relative to the DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or more total bases shorter on the 5′ and/or 3′ end than a DMD oligonucleotide disclosed herein. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which has a base sequence which is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or more bases total shorter on the 5′ and/or 3′ end than that of a DMD oligonucleotide disclosed herein.


In some embodiments, the present disclosure pertains to a DMD oligonucleotide which would be represented by a product of cleavage of a DMD oligonucleotide disclosed herein, which is cleaved at a phosphodiester linkage. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which would be represented by a product of cleavage of a DMD oligonucleotide disclosed herein, if such an oligonucleotide were cleaved at a phosphorothioate linkage in the Rp configuration. In some embodiments, the present disclosure pertains to a DMD oligonucleotide which would be represented by a product of cleavage of a DMD oligonucleotide disclosed herein, if such an oligonucleotide were cleaved at one or more phosphodiester linkages and/or phosphorothioate linkages in the Rp configuration.


Biological Applications, Example Use, and Dosing Regimens

As described herein, provided compositions and methods are useful for various purposes, e.g., those described in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, and/or WO 2017/210647. Among other things, provided technologies can function and/or provide various benefits through a number of chemical and/or biological mechanisms, pathways, etc. (e.g., RNase H, RNAi, splicing modulation (exon skipping(e.g., for DMD in DMD subjects/samples), exon inclusion (e.g., for SMN2 in SMA subjects/samples)), etc.). In some embodiments, provided technologies reduce levels, activities, expressions, etc. of a nucleic acid and/or a product thereof. For example, in some embodiments, provided technologies reduce levels and/or activities of target transcripts and/or products encoded thereby (without the intention to be limited by any particular theory, in some embodiments, via RNase H pathway). In some embodiments, provided technologies increase levels and/or activities of target transcripts and/or products encoded thereby (without the intention to be limited by any particular theory, in some embodiments, via exon skipping). A number of oligonucleotides comprising various types of modified internucleotidic linkages, including many comprising non-negatively charged internucleotidic linkages (e.g., n001), which have various base sequences and/or target various nucleic acids (e.g., transcripts of various genes) were prepared, and various useful properties, activities, and/or advantages were demonstrated. Certain such oligonucleotides, including many comprising non-negatively charged internucleotidic linkages, target transcripts of PNPLA3, C9orf72, SMN2, etc. and have demonstrated various activities and/or benefits. Example oligonucleotides comprising non-negatively charged internucleotidic linkages and targeting various genes, and compositions and uses thereof, include those described in WO 2018/223056, WO 2019/032607, PCT/US18/55653, and WO 2019/032612, each of which is independently incorporated herein by reference.


In some embodiments, the present disclosure provides methods for modulating level of a transcript or a product encoded thereby in a system, comprising administering an effective amount of a provided oligonucleotide or a composition thereof. In some embodiments, the present disclosure provides methods for modulating level of a transcript or a product encoded thereby in a system, comprising contacting the transcript a provided oligonucleotide or a composition thereof. In some embodiments, a system is an in vitro system. In some embodiments, a system is a cell. In some embodiments, a system is a tissue. In some embodiments, a system is an organ. In some embodiments, a system is an organism. In some embodiments, a system is a subject. In some embodiments, a system is a human. In some embodiments, modulating level of a transcript decreases level of the transcript. In some embodiments, modulating level of a transcript increases level of the transcript.


In some embodiments, the present disclosure provides methods for preventing or treating a condition, disease, or disorder associated with a nucleic acid sequence or a product encoded thereby, comprising administering to a subject suffering therefrom or susceptible thereto an effective amount of a provided oligonucleotide or composition thereof, wherein the oligonucleotide or composition thereof modulate level of a transcript of the nucleic acid sequence. In some embodiments, a nucleic acid sequence is a gene. In some embodiments, modulating level of a transcript decreases level of the transcript. In some embodiments, modulating level of a transcript increases level of the transcript.


In some embodiments, change of the level of a modulated transcript, e.g., through knock-down, exon skipping, etc., is at least 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 200, 500, or 1000 fold.


In some embodiments, provided oligonucleotides and oligonucleotide compositions modulate splicing. In some embodiments, provided oligonucleotides and oligonucleotide compositions promote exon skipping, thereby produce a level of a transcript which has increased beneficial functions that the transcript prior to exon skipping. In some embodiments, a beneficial function is encoding a protein that has increased biological functions. In some embodiments, the present disclosure provides methods for modulating splicing, comprising administering to a splicing system a provided oligonucleotide or oligonucleotide composition, wherein splicing of at least one transcript is altered. In some embodiments, level of at least one splicing product is increased at least 1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 200, 500, or 1000 fold. In some embodiments, the present disclosure provides methods for modulating DMD splicing, comprising administering to a splicing system a provided DMD oligonucleotide or composition thereof.


In some embodiments, the present disclosure provides methods for preventing or treating DMD, comprising administering to a subject susceptible thereto or suffering therefrom a pharmaceutical composition comprising an effective amount of a provided oligonucleotide or oligonucleotide composition.


In some embodiments, provided compositions and methods provide improved splicing patterns of transcripts compared to a reference pattern, which is a pattern from a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof. An improvement can be an improvement of any desired biological functions. In some embodiments, for example, in DMD, an improvement is production of an mRNA from which a dystrophin protein with improved biological activities is produced.


In some embodiments, particularly useful and effective are chirally controlled oligonucleotides and chirally controlled oligonucleotide compositions, wherein the oligonucleotides (or oligonucleotides of a plurality in chirally controlled oligonucleotide compositions) optionally comprises one or more non-negatively charged internucleotidic linkages. Among other things, such oligonucleotides and oligonucleotide compositions can provide greatly improved effects, better delivery, lower toxicity, etc.


For Duchenne muscular dystrophy, example mutations and/or suitable DMD exons for skipping are widely known in the art, including but not limited to those described in U.S. Pat. Nos. 8,759,507, 8,486,907, and reference cited therein.


In some embodiments, one or more skipped exons are selected from exon 2, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 and 60. In some embodiments, exon 2 of DMD is skipped. In some embodiments, exon 29 of DMD is skipped. In some embodiments, exon 40 of DMD is skipped. In some embodiments, exon 41 of DMD is skipped. In some embodiments, exon 42 of DMD is skipped. In some embodiments, exon 43 of DMD is skipped. In some embodiments, exon 44 of DMD is skipped. In some embodiments, exon 45 of DMD is skipped. In some embodiments, exon 46 of DMD is skipped. In some embodiments, exon 47 of DMD is skipped. In some embodiments, exon 48 of DMD is skipped. In some embodiments, exon 49 of DMD is skipped. In some embodiments, exon 50 of DMD is skipped. In some embodiments, exon 51 of DMD is skipped. In some embodiments, exon 52 of DMD is skipped. In some embodiments, exon 53 of DMD is skipped. In some embodiments, exon 54 of DMD is skipped. In some embodiments, exon 50 of DMD is skipped. In some embodiments, exon 55 of DMD is skipped. In some embodiments, a skipped exon is any exon whose inclusion decreases a desired function of DMD. In some embodiments, a skipped exon is any exon whose skipping increased a desired function of DMD.


In some embodiments, more than one exon of DMD is skipped. In some embodiments, two or more exons of DMD are skipped. In some embodiments, two or more adjacent exons of DMD are skipped.


In some embodiments, for exon skipping of DMD transcript, or for treatment of DMD, a sequence of a provided plurality of oligonucleotides comprises a DMD sequence list herein. In some embodiments, a sequence comprises one of SEQ ID Nos 1-30 of U.S. Pat. No. 8,759,507. In some embodiments, a sequence comprises one of SEQ ID Nos 1-211 of U.S. Pat. No. 8,486,907. In some embodiments, for exon skipping of DMD transcript, or for treatment of DMD, a sequence of a provided plurality of oligonucleotides is a DMD sequence disclosed herein. In some embodiments, a sequence is one of SEQ ID Nos 1-30 of U.S. Pat. No. 8,759,507. In some embodiments, a sequence is one of SEQ ID Nos 1-211 of U.S. Pat. No. 8,486,907. In some embodiments, a sequence is, comprises or comprises at least 15 consecutive bases of the sequence of any oligonucleotide list herein, e.g., in Table A1. In some embodiments, a sequence is one described in Kemaladewi, et al., Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy, BMC Med Genomics. 2011 Apr 20:4:36. doi: 10.1186/1755-8794-4-36; or Malerba et al., Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy, Mol Ther Nucleic Acids. 2012 Dec 18; 1:e62. doi: 10.1038/mtna.2012.54.


In some embodiments, a provided oligonucleotide composition is administered at a dose and/or frequency lower than that of an otherwise comparable reference oligonucleotide composition with comparable effect in altering the splicing of a target transcript. In some embodiments, a stereocontrolled (chirally controlled) oligonucleotide composition is administered at a dose and/or frequency lower than that of an otherwise comparable stereorandom reference oligonucleotide composition with comparable effect in altering the splicing of the target transcript. If desired, a provided composition can also be administered at higher dose/frequency due to its lower toxicities.


In some embodiments, provided oligonucleotides, compositions and methods have low toxicities, e.g., when compared to a reference composition. As widely known in the art, oligonucleotides can induce toxicities when administered to, e.g., cells, tissues, organism, etc. In some embodiments, oligonucleotides can induce undesired immune response. In some embodiments, oligonucleotide can induce complement activation. In some embodiments, oligonucleotides can induce activation of the alternative pathway of complement. In some embodiments, oligonucleotides can induce inflammation. Among other things, the complement system has strong cytolytic activity that can damages cells and should therefore be modulated to reduce potential injuries. In some embodiments, oligonucleotide-induced vascular injury is a recurrent challenge in the development of oligonucleotides for e.g., pharmaceutical use. In some embodiments, a primary source of inflammation when high doses of oligonucleotides are administered involves activation of the alternative complement cascade. In some embodiments, complement activation is a common challenge associated with phosphorothioate-containing oligonucleotides, and there is also a potential of some sequences of phosphorothioates to induce innate immune cell activation. In some embodiments, cytokine release is associated with administration of oligonucleotides. For example, in some embodiments, increases in interleukin-6 (IL-6) monocyte chemoattractant protein (MCP-1) and/or interleukin-12 (IL-12) is observed. See, e.g., Frazier, Antisense Oligonucleotide Therapies: The Promise and the Challenges from a Toxicologic Pathologist's Perspective. Toxicol Pathol., 43: 78-89, 2015; and Engelhardt, et al., Scientific and Regulatory Policy Committee Points-to-consider Paper: Drug-induced Vascular Injury Associated with Nonsmall Molecule Therapeutics in Preclinical Development: Part 2. Antisense Oligonucleotides. Toxicol Pathol. 43: 935-944, 2015.


Oligonucleotide compositions as provided herein can be used as agents for modulating a number of cellular processes and machineries, including but not limited to, transcription, translation, immune responses, epigenetics, etc. In addition, oligonucleotide compositions as provided herein can be used as reagents for research and/or diagnostic purposes. One of ordinary skill in the art will readily recognize that the present disclosure herein is not limited to particular use but is applicable to any situations where the use of synthetic oligonucleitides is desirable. Among other things, provided compositions are useful in a variety of therapeutic, diagnostic, agricultural, and/or research applications.


Various dosing regimens can be utilized to administer provided chirally controlled oligonucleotide compositions, e.g., those described in in U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, and/or WO 2017/210647, the dosing regimens of each of which is incorporated herein by reference.


In some embodiments, with their low toxicity, provided oligonucleotides and compositions can be administered in higher dosage and/or with higher frequency. In some embodiments, with their improved delivery (and other properties), provided compositions can be administered in lower dosages and/or with lower frequency to achieve biological effects, for example, clinical efficacy.


A single dose can contain various amounts of oligonucleotides. In some embodiments, a single dose can contain various amounts of a type of chirally controlled oligonucleotide, as desired suitable by the application. In some embodiments, a single dose contains about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 or more (e.g., about 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 or more) mg of a type of chirally controlled oligonucleotide. In some embodiments, a chirally controlled oligonucleotide is administered at a lower amount in a single dose, and/or in total dose, than a chirally uncontrolled oligonucleotide. In some embodiments, a chirally controlled oligonucleotide is administered at a lower amount in a single dose, and/or in total dose, than a chirally uncontrolled oligonucleotide due to improved efficacy. In some embodiments, a chirally controlled oligonucleotide is administered at a higher amount in a single dose, and/or in total dose, than a chirally uncontrolled oligonucleotide. In some embodiments, a chirally controlled oligonucleotide is administered at a higher amount in a single dose, and/or in total dose, than a chirally uncontrolled oligonucleotide due to improved safety.


Pharmaceutical Compositions

When used as therapeutics, a provided oligonucleotide or oligonucleotide composition described herein is administered as a pharmaceutical composition. In some embodiments, the pharmaceutical composition comprises a therapeutically effective amount of a provided oligonucleotides, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable inactive ingredient selected from pharmaceutically acceptable diluents, pharmaceutically acceptable excipients, and pharmaceutically acceptable carriers. In some embodiments, in provided compositions provided oligonucleotides may exist as salts, preferably pharmaceutically acceptable salts, e.g., sodium salts, ammonium salts, etc. In some embodiments, a salt of a provided oligonucleotide comprises two or more cations, for example, in some embodiments, up to the number of negatively charged acidic groups (e.g., phosphate, phosphorothioate, etc.) in an oligonucleotide. As appreciated by those skilled in the art, oligonucleotides described herein may be provided and/or utilized in a salt form, particularly a pharmaceutically acceptable salt form.


In some embodiments, the present disclosure provides salts of provided oligonucleotides, e.g., chirally controlled oligonucleotides, and pharmaceutical compositions thereof. In some embodiments, a salt is a pharmaceutically acceptable salt. In some embodiments, each hydrogen ion that may be donated to a base (e.g., under conditions of an aqueous solution, a pharmaceutical composition, etc.) is replaced by a non-H+ cation. For example, in some embodiments, a pharmaceutically acceptable salt of an oligonucleotide is an all-metal ion salt, wherein each hydrogen ion (for example, of —OH—SH, etc., acidic enough in water) of each internucleotidic linkage (e.g., a natural phosphate linkage, a phosphorothioate diester linkage, etc.) is replaced by a metal ion. In some embodiments, a provided salt is an all-sodium salt. In some embodiments, a provided pharmaceutically acceptable salt is an all-sodium salt. In some embodiments, a provided salt is an all-sodium salt, wherein each internucleotidic linkage which is a natural phosphate linkage (acid form —O—P(O)(OH)—O—), if any, exists as its sodium salt form (—O—P(O)(ONa)—O—), and each internucleotidic linkage which is a phosphorothioate diester linkage (phosphorothioate internucleotidic linkage; acid form —O—P(O)(SH)—O—), if any, exists as its sodium salt form (—O—P(O)(SNa)—O—).


In some embodiments, the pharmaceutical composition is formulated for intravenous injection, oral administration, buccal administration, inhalation, nasal administration, topical administration, ophthalmic administration or otic administration. In some embodiments, the pharmaceutical composition is a tablet, a pill, a capsule, a liquid, an inhalant, a nasal spray solution, a suppository, a suspension, a gel, a colloid, a dispersion, a suspension, a solution, an emulsion, an ointment, a lotion, an eye drop or an car drop.


In some embodiments, the present disclosure provides a pharmaceutical composition comprising chirally controlled oligonucleotide, or composition thereof, in admixture with a pharmaceutically acceptable excipient. One of skill in the art will recognize that the pharmaceutical compositions include the pharmaceutically acceptable salts of the chirally controlled oligonucleotide, or composition thereof, described above.


A variety of supramolecular nanocarriers can be used to deliver nucleic acids. Example nanocarriers include, but are not limited to liposomes, cationic polymer complexes and various polymeric. Complexation of nucleic acids with various polycations is another approach for intracellular delivery; this includes use of PEGlyated polycations, polyethyleneamine (PEI) complexes, cationic block co-polymers, and dendrimers. Several cationic nanocarriers, including PEI and polyamidoamine dendrimers help to release contents from endosomes. Other approaches include use of polymeric nanoparticles, polymer micelles, quantum dots and lipoplexes. In some embodiments, an oligonucleotide is conjugated to another molecular.


Additional nucleic acid delivery strategies are known in addition to the example delivery strategies described herein.


In therapeutic and/or diagnostic applications, the compounds of the disclosure can be formulated for a variety of modes of administration, including systemic and topical or localized administration. Techniques and formulations generally may be found in Remington. The Science and Practice of Pharmacy, (20th ed. 2000).


Provided oligonucleotides, and compositions thereof, are effective over a wide dosage range. For example, in the treatment of adult humans, dosages from about 0.01 to about 1000 mg, from about 0.5 to about 100 mg, from about 1 to about 50 mg per day, and from about 5 to about 100 mg per day are examples of dosages that may be used. The exact dosage will depend upon the route of administration, the form in which the compound is administered, the subject to be treated, the body weight of the subject to be treated, and the preference and experience of the attending physician.


Pharmaceutically acceptable salts are generally well known to those of ordinary skill in the art, and may include, by way of example but not limitation, acetate, benzenesulfonate, besylate, benzoate, bicarbonate, bitartrate, bromide, calcium edetate, carnsylate, carbonate, citrate, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, mucate, napsylate, nitrate, pamoate (embonate), pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, or teoclate. Other pharmaceutically acceptable salts may be found in, for example, Remington, The Science and Practice of Pharmacy (20th ed. 2000). Preferred pharmaceutically acceptable salts include, for example, acetate, benzoate, bromide, carbonate, citrate, gluconate, hydrobromide, hydrochloride, maleate, mesylate, napsylate, pamoate (embonate), phosphate, salicylate, succinate, sulfate, or tartrate.


As appreciated by a person having ordinary skill in the art, oligonucleotides may be formulated as a number of salts for, e.g., pharmaceutical uses. In some embodiments, a salt is a metal cation salt and/or ammonium salt. In some embodiments, a salt is a metal cation salt of an oligonucleotide. In some embodiments, a salt is an ammonium salt of an oligonucleotide. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. In some embodiments, a salt is a sodium salt of an oligonucleotide. In some embodiments, pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed with oligonucleotides. As appreciated by a person having ordinary skill in the art, a salt of an oligonucleotide may contain more than one cations, e.g., sodium ions, as there may be more than one anions within an oligonucleotide.


Depending on the specific conditions being treated, such agents may be formulated into liquid or solid dosage forms and administered systemically or locally. The agents may be delivered, for example, in a timed- or sustained-low release form as is known to those skilled in the art. Techniques for formulation and administration may be found in Remington, The Science and Practice of Pharmacy (20th ed. 2000). Suitable routes may include oral, buccal, by inhalation spray, sublingual, rectal, transdermal, vaginal, transmucosal, nasal or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intra-articullar, intra-sternal, intra-synovial, intra-hepatic, intralesional, intracranial, intraperitoneal, intranasal, or intraocular injections or other modes of delivery.


For injection, the agents of the disclosure may be formulated and diluted in aqueous solutions, such as in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.


Use of pharmaceutically acceptable inert carriers to formulate the compounds herein disclosed for the practice of the disclosure into dosages suitable for systemic administration is within the scope of the disclosure. With proper choice of carrier and suitable manufacturing practice, the compositions of the present disclosure, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection.


Compounds, e.g., oligonucleotides, can be formulated readily using pharmaceutically acceptable carriers well known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the disclosure to be formulated as tablets, pills, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject (e.g., patient) to be treated.


For nasal or inhalation delivery, the agents of the disclosure may also be formulated by methods known to those of skill in the art, and may include, for example, but not limited to, examples of solubilizing, diluting, or dispersing substances such as, saline, preservatives, such as benzyl alcohol, absorption promoters, and fluorocarbons.


In certain embodiments, oligonucleotides and compositions are delivered to the CNS. In certain embodiments, oligonucleotides and compositions are delivered to the cerebrospinal fluid. In certain embodiments, oligonucleotides and compositions are administered to the brain parenchyma. In certain embodiments, oligonucleotides and compositions are delivered to an animal/subject by intrathecal administration, or intracerebroventricular administration. Broad distribution of oligonucleotides and compositions, described herein, within the central nervous system may be achieved with intraparenchymal administration, intrathecal administration, or intracerebroventricular administration.


In certain embodiments, parenteral administration is by injection, by, e.g., a syringe, a pump, etc. In certain embodiments, the injection is a bolus injection. In certain embodiments, the injection is administered directly to a tissue, such as striatum, caudate, cortex, hippocampus and cerebellum.


In certain embodiments, methods of specifically localizing a pharmaceutical agent, such as by bolus injection, decreases median effective concentration (EC50) by a factor of 20, 25, 30, 35, 40, 45 or 50. In certain embodiments, the targeted tissue is brain tissue. In certain embodiments the targeted tissue is striatal tissue. In certain embodiments, decreasing EC50 is desirable because it reduces the dose required to achieve a pharmacological result in a patient in need thereof.


In certain embodiments, an oligonucleotide is delivered by injection or infusion once every month, every two months, every 90 days, every 3 months, every 6 months, twice a year or once a year.


Pharmaceutical compositions suitable for use in the present disclosure include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.


In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of an active compound into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions.


Pharmaceutical preparations for oral use can be obtained by combining an active compound with solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethyl-cellulose (CMC), and/or polyvinylpyrrolidone (PVP: povidone). If desired, disintegrating agents may be added, such as the cross-linked polyvinylpyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.


Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol (PEG), and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dye-stuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.


Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, an active compound may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols (PEGs). In addition, stabilizers may be added.


In some embodiments, any DMD oligonucleotide, or combination thereof, described herein, or any composition comprising a DMD oligonucleotide described herein, can be combined with any pharmaceutical preparation described herein or known in the art.


Certain Embodiments of Conjugates and Additional Chemical Moieties

In some embodiments, provided oligonucleotides comprise one or more additional chemical moieties (e.g., other than typical moieties of nucleobases, sugars and/or internucleotidic linkages, etc.), optionally through a linker. In some embodiments, a chemical moiety is a lipid moiety. In some embodiments, a chemical moiety is a carbohydrate moiety. In some embodiments, a chemical moiety is a targeting moiety. In some embodiments, a chemical moiety is a moiety of a ligand. In some embodiments, a chemical moiety can increase delivery of oligonucleotides to certain organelles, cells, tissues, organs, and/or organisms. In some embodiments, a chemical moiety enhances one or more of desired properties and/or activities. Certain example chemical moieties utilized in certain oligonucleotides are presented in the Tables (e.g., various Mod in Table A1). In some embodiments, a chemical moiety comprises one or more sugar moieties or derivatives thereof, e.g., glucose, mannose, etc. In some embodiments, a chemical moiety is or comprises a lipid moiety. In some embodiments, a chemical moiety is or comprises a vitamin E moiety. In some embodiments, a chemical moiety comprises one or more peptide moieties. In some embodiments, a peptide is a cell-penetrating peptide. In some embodiments, a peptide is a ligand of a protein, e.g., a cell surface receptor. In some embodiments, a peptide is a Tfr1 peptide. Certain example peptide moieties are utilized to prepare oligonucleotides described in the Tables, e.g., Table IA. In some embodiments, a chemical moiety comprises one or more basic moieties. In some embodiments, a basic moiety is positively charged at, e.g. about pH 7.4. In some embodiments, a basic moiety is or comprises a guanidine moiety. In some embodiments, a basic moiety is or comprises —N(R1)2, wherein each R1 is independently as described in the present disclosure. In some embodiments, a basic moiety is or comprises —N(R1)3, wherein each R1 is independently as described in the present disclosure. In some embodiments, a basic moiety is or comprises —N═C(N(R1)2)2, wherein each R1 is independently as described in the present disclosure. In some embodiments, each R1 is independently R as described in the present disclosure. In some embodiments, each R1 is independently optionally substituted C1-6 alkyl. In some embodiments, R1 is methyl. In some embodiments, one or two R1 are the same. In some embodiments, each R1 is the same. In some embodiments, at least one R1 is different from another R1. In some embodiments, a basic moiety is —N═C(N(CH3)2)2. In some embodiments, a chemical moiety comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more sugar, peptide, lipid, and/or basic moieties. In some embodiments, the number is 1. In some embodiments, the number is 2. In some embodiments, the number is 3. In some embodiments, the number is 4. In some embodiments, the number is 5. In some embodiments, the number is 6. In some embodiments, a chemical moiety comprises a ligand moiety of a protein, e.g., a receptor protein of a target cell. In some embodiments, a ligand is a ligand for a vitamin E receptor. In some embodiments, a ligand is for Tfr1 receptor. Chemical moieties as described and demonstrated in the present disclosure include and can be utilized as carbohydrate moieties, lipid moieties, targeting moieties, etc., and can provide a variety of functions, e.g., improving delivery, one or more properties, activities, etc.


In some embodiments, the present disclosure provides oligonucleotides comprising additional chemistry moieties, optionally connected to the oligonucleotide moiety through a linker. In some embodiments, the present disclosure provides oligonucleotides comprising (R))b-LM1-LM2-LM3-, wherein:


each RD is independently a chemical moiety:


each of LM1, LM2, and LM3 is independently L; and


b is 1-1000.


In some embodiments, each of LM1, LM2, and LM3 is independently a covalent bond, or a bivalent or multivalent, optionally substituted, linear or branched group selected from a C1-10 aliphatic group and a C1-10 heteroaliphatic group having 1-5 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, —C(R′)2—, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)— —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—. —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—. —OP(OR′)O—, —OP(SR′)O—. —OP(NR′)O—. —OP(R′)O—, or —OP(OR′)[B(R′)3]O—; and one or more CH or carbon atoms are optionally and independently replaced with CyL.


In some embodiments, LM1 comprises one or more —N(R′)— and one or more —C(O)—. In some embodiments, a linker (e.g., L, LM, etc.) or LM1 is or comprises




embedded image


wherein n is 1-8. In some embodiments, a linker or -LM1-LM2-LM3- is




embedded image


or a salt form thereof, wherein nL is 1-8. In some embodiments, a linker or -LM1-LM2-LM3- is




embedded image


or a salt form thereof, wherein


nL is 1-8.


each amino group independently connects to a moiety; and


the P atom connects to the 5′-OH of the oligonucleotide.


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker or RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, a linker, or LM1, is or comprises




embedded image


In some embodiments, the moiety and linker, or (RD)b-LM1-LM2-LM3-, is or comprises:




embedded image


In some embodiments, the moiety and linker, or -LM1-LM2-LM3-, is or comprises:




embedded image


In some embodiments, a linker is




embedded image


In some embodiments, the moiety and linker, or (RD)b-LM1-LM2-LM3-, is or comprises:




embedded image


In some embodiments, the moiety and linker, or (D)b-LM1-LM2-LM3-, is or comprises:




embedded image


In some embodiments, nL is 1-8. In some embodiments, nL is 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, nL is 1. In some embodiments, n is 2. In some embodiments, nL is 3. In some embodiments, nL is 4. In some embodiments, nL is 5. In some embodiments, nL is 6. In some embodiments, nL is 7. In some embodiments, nL is 8.


In some embodiments, LM2 is a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-10 aliphatic group and a C1-10 heteroaliphatic group having 1-5 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, —C(R′)2—, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(OR′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL. In some embodiments, LM2 is a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-10 aliphatic group and a C1-10 heteroaliphatic group having 1-5 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, —C(R′)2—, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, or —P(O)(R′)—. In some embodiments, LM2 is a covalent bond, or a bivalent, optionally substituted, linear or branched C1-10 aliphatic wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6alkenylene, —C≡C—, —C(R′)2—, —O—, —S—, —N(R′)—, or —C(O)—. In some embodiments, LM2 is —NH—(CH2)6—, wherein —NH— is bonded to LM1.


In some embodiments, LM3 is —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)—, —OP(O)(SR′)—, —OP(O)(R′)—, —OP(O)(NR′)—, —OP(S)(OR′)—, —OP(S)(SR′)—, —OP(S)(R′)—, —OP(S)(NR′)—, —OP(R′)—, —OP(OR′)—, —OP(SR′)—, —OP(NR′)—, or —OP(OR′)[B(R′)3]—. In some embodiments, LM3 is —OP(O)(OR′)—, or —OP(O)(SR′)—, wherein —O— is bonded to LM2. In some embodiments, the P atom is connected to a sugar unit, a nucleobase unit, or an internucleotidic linkage. In some embodiments, the P atom is connected to a —OH group through formation of a P-O bond. In some embodiments, the P atom is connected to the 5′-OH group through formation of a P-O bond.


In some embodiments, LM1 is a covalent bond. In some embodiments, LM2 is a covalent bond. In some embodiments, LM3 is a covalent bond. In some embodiments, LM1 is LM2 as described in the present disclosure. In some embodiments, LM1 is LM3 as described in the present disclosure. In some embodiments, LM2 is LM1 as described in the present disclosure. In some embodiments, LM2 is LM3 as described in the present disclosure. In some embodiments, LM3 is LM1 as described in the present disclosure. In some embodiments, LM3 is LM2 as described in the present disclosure. In some embodiments, LM is LM1 as described in the present disclosure. In some embodiments, LM is LM2 as described in the present disclosure. In some embodiments, LM is LM3 as described in the present disclosure. In some embodiments, LM is LM1-LM2, wherein each of LM1 and LM2 is independently as described in the present disclosure. In some embodiments, LM is LM1-LM3, wherein each of LM1 and LM3 is independently as described in the present disclosure. In some embodiments, LM is LM2-LM3, wherein each of LM2 and LM3 is independently as described in the present disclosure. In some embodiments, LM is LM1-LM2-LM3, wherein each of LM1, LM2 and LM3 is independently as described in the present disclosure.


In some embodiments, each RD is independently a chemical moiety as described in the present disclosure. In some embodiments, RD is an additional chemical moiety. In some embodiments, RD is targeting moiety. In some embodiments, RD is or comprises a carbohydrate moiety. In some embodiments, RD is or comprises a lipid moiety. In some embodiments, RD is or comprises a ligand moiety for, e.g., cell receptors such as a sigma receptor, an asialoglycoprotein receptor, etc. In some embodiments, a ligand moiety is or comprises an anisamide moiety, which may be a ligand moiety for a sigma receptor. In some embodiments, a ligand moiety is or comprises a lipid. In some embodiments, a ligand moiety is or comprises a GalNAc moiety, which may be a ligand moiety for an asialoglycoprotein receptor. In some embodiments, RD is selected from optionally substituted phenyl,




embedded image


wherein n′ is 0 or 1, and each other variable is independently as described in the present disclosure. In some embodiments, Rs is F. In some embodiments, Rs is OMe. In some embodiments, Rs is OH. In some embodiments, Rs is NHAc. In some embodiments, Rs is NHCOCF3. In some embodiments, R′ is H. In some embodiments, R is H. In some embodiments, R2s is NHAc, and R5s is OH. In some embodiments, R2s is p-anisoyl, and R5s is OH. In some embodiments, R2s is NHAc and R5s is p-anisoyl. In some embodiments, R2s is OH, and R5s is p-anisoyl. In some embodiments, RD is selected from




embedded image


embedded image


embedded image


Further embodiments of RD includes additional chemical moiety embodiments, e.g., those described in the examples.


In some embodiments, n′ is 1. In some embodiments, n′ is 0.


In some embodiments, n″ is 1. In some embodiments, n″ is 2.


In some embodiments, a provided oligonucleotide, e.g., DMD oligonucleotide, is conjugated to an additional component (chemical moiety). In some embodiments, a composition comprises any DMD oligonucleotide, or combination thereof, described herein, can be conjugated to any chemical moiety described herein or known in the art.


In some embodiments, a composition comprising a provided oligonucleotide, e.g., a DMD oligonucleotide, comprises an additional component which is any of: Sulfonamide (Carbonic Anhydrases IV inhibitor); Cleavable lipid; Transferrin Receptor 1 (CD71, TfR) ligand; OCTN2 transporter targeting (L-Cartinine); Glut4 and Glut1 Receptor ligand; Mannose Receptor C1 (Mrc1) and Mannose 6P Receptor (M6Pr) ligand; Cleavable Lipid; Cholesterol; or a Peptide (including, but not limited to, a short delivery peptide or cell-penetrating peptide (CPP)).


Variously oligonucleotides have been designed and/or constructed which comprise an additional component which is, comprises or is derived from: cholesterol; L-carnitine (amide and carbamate bond); Folic acid; Gambogic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand; CPP; Glucose (tri- and hex-antennary); and Mannose (tri- and hex-antennary, alpha and beta); and various synthesis schemes for these additional components and oligonucleotides comprising them or molecules derived from them have been devised.


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from




embedded image


WV-DL-14 is also known as WV-DL-014. In some embodiments, gambogic acid or a derivative thereof binds to Transferrin receptor (CD71).


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from L-carnitine, which binds to the OCTN2 transporter. In some embodiments, a composition comprising a DMD oligonucleotide comprises an additional component which is derived from




embedded image


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is a sulfonamide or a derivative thereof.


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from any of:




embedded image


embedded image


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is or comprises or comprises a derivative of:




embedded image


in some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is or comprises or comprises a derivative of:




embedded image


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from any of: WV-DL-001, WV-DL-002, WV-DL-003, WV-DL-006, WV-DL-007, WV-DL-008, WV-DL-009, WV-DL-010, WV-DL-011, WV-DL-012, or WV-Dl-014, and other additional components, wherein the terminal —COOH is used to conjugate the additional component to a linker or to an oligonucleotide. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from any of: WV-DL-001, WV-DL-002, WV-DL-003, WV-DL-006, WV-DL-007, WV-DL-008, WV-DL-009. WV-DL-010, WV-DL-011, WV-DL-012, or WV-Dl-014, and other additional components, wherein the terminal —COOH is used to conjugate the additional component to a linker, wherein the conjugation process converts the —COOH to a —C(O)— which connects a linker. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from any of: WV-DL-001, WV-DL-002, WV-DL-003, WV-DL-006, WV-DL-007, WV-DL-008. WV-DL-009, WV-DL-010. WV-DL-011, WV-DL-012, or WV-D-014, and other additional components, wherein the terminal —COOH is used to conjugate the additional component to a linker, wherein the conjugation process replaces the —COOH with —C(O)— which connects to —NH— of a linker (e.g., L001). A non-limiting example of a product of this process for conjugation, using an additional component derived from WV-DL-006 is shown here:




embedded image


wherein WV-DL-005 indicates the additional component.


In some embodiments, a composition comprising an oligonucleotide. e.g., a DMD oligonucleotide comprises an additional component which is a lipid. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is a lipid, including but not limited to a lipid described herein.


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide, comprises an additional component, wherein the additional component is conjugated to the oligonucleotide via a cleavable linker. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide, comprises an additional component which is a lipid, wherein the lipid is conjugated to the oligonucleotide via a cleavable linker. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide, comprises an additional component which is a lipid, including but not limited to a lipid described herein, wherein the lipid is conjugated to the oligonucleotide via a cleavable linker.


In some embodiments a cleavable linker comprises an ester. In some embodiments, a cleavable linker is cleavable within a cell, allowing the oligonucleotide to be physically separated from the additional component.


In some embodiments a cleavable linker is or comprises:




embedded image


Non-limiting examples of an oligonucleotide conjugated to a lipid(s) via a cleavable linker are shown here:




embedded image


A non-limiting example of an oligonucleotide comprising an additional component which is stearic acid, linked to the oligonucleotide via a cleavable linker is shown here:




embedded image


wherein stearic acid indicates the additional component.


A non-limiting reagent useful for conjugating stearic acid through a cleavable linker and it example preparation and use are shown below:




embedded image


A non-limiting reagent useful for conjugating a cholesterol derivative through a cleavable linker, and its example preparation, are shown here:




embedded image


In some embodiments, a composition comprising an oligonucleotide comprises an additional component derived from:




embedded image


In some embodiments, a composition comprising an oligonucleotide comprises an additional component derived from either of:




embedded image


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises a mannose receptor ligand. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises a mannose receptor ligand which is a mannose receptor inhibitor. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from any of:




embedded image


embedded image


where the arrow indicates a-COOH which can be used to conjugate the additional component to an oligonucleotide, optionally via a linker.


A non-limiting example of a procedure for preparing an additional component comprising a mannose receptor ligand is shown here:




embedded image


embedded image


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is a ligand (or derivative thereof) that binds to a glucose or Glut4 receptor. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is a ligand (or derivative thereof) that binds to a glucose receptor. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is a ligand (or derivative thereof) that binds to and inhibits a glucose receptor. In some embodiments, a ligand (or derivative thereof) that binds to a glucose or Glut4 receptor is mono-, bi-,tri, or hex-antennary. In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component which is derived from




embedded image


A non-limiting example of a procedure for synthesis of a tri-antennary glucose receptor inhibitor is shown here:




embedded image


embedded image


A non-limiting example of a procedure for synthesis of a hex-antennary glucose receptor inhibitor is shown here:




embedded image


embedded image


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component increases internalization of the oligonucleotide via receptor-mediated endocytosis.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component is an aptamer.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component is an aptamer which is a peptide aptamer, a RNA apatamer, a DNA aptamer, or an aptamer which comprises a RNA nucleotide, a DNA nucleotide, a modified nucleotide, and/or an amino acid and/or peptide.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component is an aptamer which binds to a receptor.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component is an aptamer which binds to a receptor which is a mannose receptor, a mannose-6-phosphate receptor or transferrin receptor.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component is an aptamer that increases internalization of the oligonucleotide.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component is an aptamer that increases internalization of the oligonucleotide via receptor-mediated endocytosis.


In some embodiments, an oligonucleotide, e.g., a DMD oligonucleotide comprises an additional component, wherein the additional component is or comprises a peptide. In some embodiments, a peptide is a cell-penetrating peptide (CPP). In some embodiments, a CPP is arginine-rich. In some embodiments, a CPP has or comprises the amino acid sequence of RRQPPRSISSHPC or RRQPPRSISSHP.


A non-limiting example of a procedure for conjugating a peptide to a DMD oligonucleotide is shown here:




embedded image


In some embodiments, a peptide comprises the amino acid sequence of RC or RRC. In some embodiments, a peptide comprises a structure of either of:




embedded image


Provided oligonucleotides, e.g., DMD oligonucleotides, may be conjugated as PMOs to cell-penetrating peptides. Yokota et al. 2012 Nucl. Acid Ther. 22: 306; Wu et al. 2009 Mol. Ther. 17: 864-871; Goyenvalle et al. 2010 Mol. Ther. 18, 198-205; Jearawiriyapaisarn et al. 2010 Cardiovasc. Res. 85, 444-453; Crisp et al. 2011 Hum. Mol. Genet. 20, 413-421; Widrick et al. 2011; Wu et al. 2011 PLoS One 6, e19906.


In some embodiments, a composition comprising an oligonucleotide. e.g., a DMD oligonucleotide comprises one or more peptide and/or peptide tag. In some embodiments, a peptide is or comprises a muscle-targeting hepta peptide (MSP). In some embodiments, the sequence of a muscle-targeting helptapeptide is or comprises the sequence of ASSLNIAXB. In some embodiments, a peptide is or comprises a cell-penetrating peptide. In some embodiments, the sequence of a cell-penetrating peptide comprises multiple arginines. In some embodiments, the sequence of a cell-penetrating peptide is or comprises RXRRBRRXRRBRXB.


In some embodiments, the sequence of a peptide is or comprises a sequence of ASSLNIAXB, RXRRBRRXRRBRXB, RXRRXRRXRRXRXB, ASSLNIAXB-RXRRBRRXRRBRXB, RXRRBRRXRRBRXB-ASSLNIAXB, or any sequence comprising both ASSLNIAXB and either RXRRBRRXRRBRXB or RXRRXRRXRRXRXB, wherein R is L-arginine, X is 6-aminohexanoic acid, and B is beta-alanine.


A muscle-targeting hepta peptide (MSP) fused to an arginine-rich cell-penetrating peptide (B-peptide) may be conjugated to provided oligonucleotides in accordance with the present disclosure. Yin et al. 2009 Hum. Mol. Genet. 18: 4405-4414. Yokota et al. 2009 Arch. Neurol. 66: 32.


In some embodiments, a composition comprising an oligonucleotide, e.g., a DMD oligonucleotide comprises anisamide or a derivative thereof.


In some embodiments, a composition comprising an oligonucleotide. e.g., a DMD oligonucleotide comprises one or more guanidinium group. vPMOs are reportedly morpholino oligomers conjugated with delivery moiety containing eight terminal guanidinium groups on a dendrimer scaffold that enable entry into cells. Morcos et al. 2008 Biotechniques 45: 613-618; Yokota et al. 2012 Nucl. Acid Ther. 22: 306.


In some embodiments, an oligonucleotide, e.g., DMD oligonucleotide is delivered using a leash. A non-limiting example of a leash is reported in: Gebski et al. 2003 Hum. Mol. Gen. 12: 1801-1811.


In some embodiments, an additional chemical moiety is cholesterol; L-carnitine (amide and carbamate bond); Folic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand; Gambogic acid; CPP; Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).


Certain chemical moieties, e.g., lipid moieties, carbohydrate moieties, targeting moieties, etc. and linker moieties for connecting such moieties to oligonucleotide chains (e.g., via sugars, nucleobases, internucleotidic linkages, etc.) are described in the Tables as example: some of such chemical and linker moieties and related technologies for their preparation, conjugation with oligonucleotide chains, and uses are described in e.g., WO 2017/062862, WO 2017/192679, WO 2017/210647, etc.


Lipids

In some embodiments, an additional chemical moiety/component is a lipid moiety. In some embodiments, the present disclosure provided oligonucleotide compositions further comprise one or more lipids. In some embodiments, incorporation of lipid moieties into oligonucleotides can provide unexpected, greatly improved properties (e.g., activities, toxicities, distribution, pharmacokinetics, etc.).


A composition can be obtained by combining an active compound with a lipid. In some embodiments, the lipid is conjugated to an active compound. In some embodiments, the lipid is not conjugated to an active compound. In some embodiments, a lipid comprises a C10-C40 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C40 linear, saturated or partially unsaturated, aliphatic chain, optionally substituted with one or more C1-4 aliphatic group. In some embodiments, a lipid comprises a C10-C60 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C60 linear, saturated or partially unsaturated, aliphatic chain, optionally substituted with one or more C1-4 aliphatic group. In some embodiments, a lipid comprises a C10-C80 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C80 linear, saturated or partially unsaturated, aliphatic chain, optionally substituted with one or more C1-4 aliphatic group. In some embodiments, a lipid comprises a C1-C100 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C100 linear, saturated or partially unsaturated, aliphatic chain, optionally substituted with one or more C1-4 aliphatic group.


In some embodiments, a lipid comprises an optionally substituted. C10-C80 saturated or partially unsaturated aliphatic group, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, a C1-C6 hetroaliphatic moiety, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —N(R′)S(O)—, —SC(O)—, —C(O)S—, —OC(O)—, and —C(O)O—, wherein each variable is independently as defined and described herein. In some embodiments, a lipid comprises an optionally substituted C10-C80 saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises an optionally substituted C10-C80 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C80 linear, saturated or partially unsaturated, aliphatic chain, optionally substituted with one or more C1-4 aliphatic group. In some embodiments, a lipid comprises an optionally substituted, C10-C60 saturated or partially unsaturated aliphatic group, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, a C1-C6 heteroaliphatic moiety, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —N(R′)S(O)—, —SC(O)—, —C(O)S—, —OC(O)—, and —C(O)O—, wherein each variable is independently as defined and described herein. In some embodiments, a lipid comprises an optionally substituted C10-C60 saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises an optionally substituted C10-C60 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C60 linear, saturated or partially unsaturated, aliphatic chain, optionally substituted with one or more C1-4 aliphatic group. In some embodiments, a lipid comprises an optionally substituted, C10-C40 saturated or partially unsaturated aliphatic group, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, a C1-C6 heteroaliphatic moiety, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—, —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2—, —SC(O)—, —C(O)S—, —OC(O)—, and —C(O)O—, wherein each variable is independently as defined and described herein. In some embodiments, a lipid comprises an optionally substituted C10-C40 saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises an optionally substituted C10-C40 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C40 linear, saturated or partially unsaturated, aliphatic chain, optionally substituted with one or more C1-4 aliphatic group. In some embodiments, a lipid comprises an unsubstituted C10-C80 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises no more than one optionally substituted C10-C80 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises two or more optionally substituted C10-C80 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises an unsubstituted C10-C60 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises no more than one optionally substituted C10-C60 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises two or more optionally substituted C10-C60 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises an unsubstituted C10-C40 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises no more than one optionally substituted C10-C40 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises two or more optionally substituted C10-C40 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid comprises a C10-C40 linear, saturated or partially unsaturated, aliphatic chain. In some embodiments, a lipid is selected from the group consisting of: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl. In some embodiments, a lipid is not conjugated to an oligonucleotide chain (whether through one or more linker moieties or not). In some embodiments, a lipid is conjugated to an oligonucleotide chain, optionally through one or more linker moieties.


In some embodiments, a lipid is selected from the group consisting of: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl. In some embodiments, a lipid has a structure of any of:




embedded image


In some embodiments, an active compound is an oligonucleotide described herein. In some embodiments, an active compound is an oligonucleotide capable of mediating skipping of an exon in dystrophin. In some embodiments, an active compound is an oligonucleotide capable of mediating skipping of exon 51 in dystrophin. In some embodiments, an active compound is a nucleic acid of a sequence comprising or consisting of any sequence of any nucleic acid described herein. In some embodiments, an active compound is a nucleic acid of a sequence comprising or consisting of any sequence of any oligonucleotide listed in Table A1. In some embodiments, a composition comprises a lipid and an active compound, and further comprises another component selected from: another lipid, and a targeting compound or moiety. In some embodiments, a lipid includes, without limitation: an amino lipid; an amphipathic lipid; an anionic lipid; an apolipoprotein; a cationic lipid: a low molecular weight cationic lipid; a cationic lipid such as CLinDMA and DLinDMA; an ionizable cationic lipid; a cloaking component; a helper lipid; a lipopeptide; a neutral lipid; a neutral zwitterionic lipid: a hydrophobic small molecule; a hydrophobic vitamin; a PEG-lipid; an uncharged lipid modified with one or more hydrophilic polymers; phospholipid; a phospholipid such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; a stealth lipid; a sterol; a cholesterol; and a targeting lipid; and any other lipid described herein or reported in the art. In some embodiments, a composition comprises a lipid and a portion of another lipid capable of mediating at least one function of another lipid. In some embodiments, a targeting compound or moiety is capable of targeting a compound (e.g., a composition comprising a lipid and a active compound) to a particular cell or tissue or subset of cells or tissues. In some embodiments, a targeting moiety is designed to take advantage of cell- or tissue-specific expression of particular targets, receptors, proteins, or other subcellular components; In some embodiments, a targeting moiety is a ligand (e.g., a small molecule, antibody, peptide, protein, carbohydrate, aptamer, etc.) that targets a composition to a cell or tissue, and/or binds to a target, receptor, protein, or other subcellular component.


In some embodiments, incorporation of a lipid moiety for delivery of an active compound allow (e.g., do not prevent or interfere with) the function of an active compound. Non-limiting example lipids include: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl.


In some embodiments, lipid conjugation, such as conjugation with fatty acids, may improve one or more properties of oligonucleotides. In some embodiments, lipid conjugation improves delivery.


In some embodiments, as supported by experimental data, conjugation with lipids can increase skipping efficiency.


In some embodiments, a composition for delivery of an active compound is capable of targeting an active compound to particular cells or tissues, as desired. In some embodiments, a composition for delivery of an active compound is capable of targeting an active compound to a muscle cell or tissue. In some embodiments, the present disclosure pertains to compositions and methods related to delivery of active compounds, wherein the compositions comprise an active compound a lipid. In some embodiments to a muscle cell or tissue, the lipid is selected from: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl. Example compositions were prepared comprising an active compound (WV-942) and a lipid, and these compositions were capable of delivering an active compound to target cells and tissues, e.g., muscle cells and tissues. The example lipids used include stearic acid, oleic acid, alpha-linolenic acid, gamma-linolenic acids, cis-DHA, turbinaric acid and dilinoleyl acid.


Various compositions comprising an active compound and any of: stearic acid, oleic acid, alpha-linolenic acid, gamma-linolenic acid, cis-DHA or turbinaric acid, were able to deliver an active compound to various tissues, including gastrocnemius muscle tissue, heart muscle tissue, quadriceps muscle tissue, gastrocnemius muscle tissue, and diaphragm muscle tissue.


In some embodiments, a composition comprising a lipid, selected from: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl, and an active compound is capable of delivering an active compound to extra-hepatic cells and tissues, e.g., muscle cells and tissues.


In some embodiments, a lipid has the structure of RLD—OH, wherein RLD is an optionally substituted, C10-C80 saturated or partially unsaturated aliphatic group, wherein one or more methylene units are optionally and independently replaced by C1-C6 alkylene, C1-C6 alkenylene, —C≡C—, a C1-C6 heteroaliphatic moiety, —C(R′)2-, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)—. —N(R′)C(O)O—, —OC(O)N(R′)—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —N(R′)S(O)2— —SC(O)—, —C(O)S—, —OC(O)—, and —C(O)O—. In some embodiments, a lipid has the structure of RLD—C(O)OH. In some embodiments, RLD is




embedded image


Example oligonucleotides comprising such RLD groups are described herein and in WO 2017/062862, the description of RLD is incorporated herein by reference.


In some embodiments, a lipid is conjugated to an active compound optionally through a linker moiety. In some embodiments, a linker is LM. In some embodiments, a linker is L. In some embodiments, -L- comprises a bivalent aliphatic chain. In some embodiments, -L- comprises a phosphate group. In some embodiments, -L- comprises a phosphorothioate group. In some embodiments, -L- has the structure of —C(O)NH—(CH2)6—OP(═O)(S)—. In some embodiments, -L- has the structure of —C(O)NH—(CH2)6—OP(═O)(O)—.


Lipids, optionally through linkers, can be conjugated to oligonucleotides at various suitable locations. In some embodiments, lipids are conjugated through the 5′-OH group. In some embodiments, lipids are conjugated through the 3′-OH group. In some embodiments, lipids are conjugated through one or more sugar moieties. In some embodiments, lipids are conjugated through one or more bases. In some embodiments, lipids are incorporated through one or more internucleotidic linkages. In some embodiments, an oligonucleotide may contain multiple conjugated lipids which are independently conjugated through its 5′-OH, 3′-OH, sugar moieties, base moieties and/or internucleotidic linkages.


In some embodiments, a composition comprises an oligonucleotide, e.g., DMD oligonucleotide and a lipid selected from: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid, arachidonic acid, and dilinoleyl, wherein the lipid is directly conjugated to the biologically active agent (without a linker interposed between the lipid and the biologically active agent). In some embodiments, a composition comprises an oligonucleotide and a lipid selected from: lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, gamma-linolenic acid, docosahexaenoic acid (cis-DHA), turbinaric acid and dilinoleyl, wherein the lipid is directly conjugated to the biologically active agent (without a linker interposed between the lipid and the biologically active agent).


In some embodiments, a composition comprises a DMD oligonucleotide and any lipid known in the art, wherein the lipid is conjugated or not conjugated to the oligonucleotide.


Non-limiting examples of lipids, and methods of making them and conjugating them are provided in, for example, WO 2017/062862, the lipids and related methods of which are incorporated herein by reference.


Targeting Moieties

In some embodiments, an additional chemical moiety/component is a targeting moiety. In some embodiments, a provided composition further comprises a targeting moiety. In some embodiments, a targeting moiety is conjugated to an oligonucleotide chain. In some embodiments, a biologically active agent is conjugated to both a lipid and an oligonucleotide chain. Various targeting moieties can be used in accordance with the present disclosure, e.g., lipids, antibodies, peptides, carbohydrates, etc.


Targeting moieties can be incorporated into provided technologies through many types of methods in accordance with the present disclosure. In some embodiments, targeting moieties are chemically conjugated with oligonucleotides.


In some embodiments, provided compositions comprise two or more targeting moieties. In some embodiments, provided oligonucleotides comprise two or more conjugated targeting moieties. In some embodiments, the two or more conjugated targeting moieties are the same. In some embodiments, the two or more conjugated targeting moieties are different. In some embodiments, provided oligonucleotides comprise no more than one targeting moiety. In some embodiments, oligonucleotides of a provided composition comprise different types of conjugated targeting moieties. In some embodiments, oligonucleotides of a provided composition comprise the same type of targeting moieties.


Targeting moieties can be conjugated to oligonucleotides optionally through linkers. Various types of linkers in the art can be utilized in accordance of the present disclosure. In some embodiments, a linker comprises a phosphate group, which can, for example, be used for conjugating targeting moieties through chemistry similar to those employed in oligonucleotide synthesis. In some embodiments, a linker comprises an amide, ester, or ether group. In some embodiments, a linker is LM. In some embodiments, a linker has the structure of -L-. Targeting moieties can be conjugated through either the same or different linkers compared to lipids.


Targeting moieties, optionally through linkers, can be conjugated to oligonucleotides at various suitable locations. In some embodiments, targeting moieties are conjugated through the 5′-OH group. In some embodiments, targeting moieties are conjugated through the 3′-OH group. In some embodiments, targeting moieties are conjugated through one or more sugar moieties. In some embodiments, targeting moieties are conjugated through one or more bases. In some embodiments, targeting moieties are incorporated through one or more internucleotidic linkages. In some embodiments, an oligonucleotide may contain multiple conjugated targeting moieties which are independently conjugated through its 5′-OH, 3′-OH, sugar moieties, base moieties and/or internucleotidic linkages. Targeting moieties and lipids can be conjugated either at the same, neighboring and/or separated locations. In some embodiments, a targeting moiety is conjugated at one end of an oligonucleotide, and a lipid is conjugated at the other end.


In some embodiments, a targeting moiety interacts with a protein on the surface of targeted cells. In some embodiments, such interaction facilitates internalization into targeted cells. In some embodiments, a targeting moiety comprises a sugar moiety. In some embodiments, a targeting moiety comprises a polypeptide moiety. In some embodiments, a targeting moiety comprises an antibody. In some embodiments, a targeting moiety is an antibody. In some embodiments, a targeting moiety comprises an inhibitor. In some embodiments, a targeting moiety is a moiety from a small molecule inhibitor. In some embodiments, an inhibitor is an inhibitor of a protein on the surface of targeted cells. In some embodiments, an inhibitor is a carbonic anhydrase inhibitor. In some embodiments, an inhibitor is a carbonic anhydrase inhibitor expressed on the surface of target cells. In some embodiments, a carbonic anhydrase is I, II, III, IV, V, VI, VII, VIII, IX, X. XI, XII, XIII, XIV, XV or XVI. In some embodiments, a carbonic anhydrase is membrane bound. In some embodiments, a carbonic anhydrase is IV, IX, XII or XIV. In some embodiments, an inhibitor is for IV, IX, XI and/or XIV. In some embodiments, an inhibitor is a carbonic anhydrase III inhibitor. In some embodiments, an inhibitor is a carbonic anhydrase IV inhibitor. In some embodiments, an inhibitor is a carbonic anhydrase IX inhibitor. In some embodiments, an inhibitor is a carbonic anhydrase XII inhibitor. In some embodiments, an inhibitor is a carbonic anhydrase XIV inhibitor. In some embodiments, an inhibitor comprises or is a sulfonamide (e.g., those described in Supuran, CT. Nature Rev Drug Discover 2008, 7, 168-181, which sulfonamides are incorporated herein by reference). In some embodiments, an inhibitor is a sulfonamide. In some embodiments, targeted cells are muscle cells.


In some embodiments, a targeting moiety is RLD or RCD or RTD as defined and described in the present disclosure. In some embodiments, RCD comprises or is




embedded image


In some embodiments, RCD comprises or is




embedded image


In some embodiments, RCD comprises or is




embedded image


In some embodiments RTD is a sulfonamide moiety as described in the present disclosure. In some embodiments, RTD comprises or is




embedded image


In some embodiments, RTD or RCD comprises or is




embedded image


In some embodiments, RTD or RCD comprises or is




embedded image


In some embodiments, RTD comprises or is




embedded image


In some embodiments, RTD or RCD comprises or is




embedded image


In some embodiments, RTD or RCD comprises or is




embedded image


In some embodiments, RTD comprises or is




embedded image


In some embodiments, RTD comprises or is




embedded image


In some embodiments, RTD or RCD comprises or is




embedded image


In some embodiments, RTD or RCD comprises or is




embedded image


In some embodiments, RTD comprises or is




embedded image


In some embodiments, RTD comprises or is




embedded image


In some embodiments, RL is a targeting moiety that comprises or is a lipid moiety. In some embodiments, X is O. In some embodiments, X is S.


In some embodiments, the present disclosure provides technologies (e.g., reagents, methods, etc.) for conjugating various moieties to oligonucleotide chains. In some embodiments, the present disclosure provides technologies for conjugating targeting moiety to oligonucleotide chains. In some embodiments, the present disclosure provides acids comprising targeting moieties for conjugation, e.g., RLD—COOH. In some embodiments, the present disclosure provides linkers for conjugation, e.g., LLD. A person having ordinary skill in the art understands that many known and widely practiced technologies can be utilized for conjugation with oligonucleotide chains in accordance with the present disclosure. In some embodiments, a provided acid is




embedded image


In some embodiments, a provided acid is




embedded image


In some embodiments, a provided acid is




embedded image


In some embodiments, a provided acid is




embedded image


In some embodiments, a provided acid is a fatty acid, which can provide a lipid moiety as a targeting moiety. In some embodiments, the present disclosure provides methods and reagents for preparing such acids.


In some embodiments, an additional chemical moiety, e.g., one comprising a guanidine moiety, may be incorporated into an oligonucleotide to improve one or more properties and/or activities. In some embodiments, such an additional chemical moiety is useful for improving delivery. In some embodiments, an additional chemical moiety comprises one or more group having the structure of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2 as described herein. In some embodiments, an additional chemical moiety comprises one or more group having the structure of formula I-n-1, I-n-2, I-n-3. I-n-4, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2 as described herein. In some embodiments, such a chemical moiety has the structure of formula R1-[-L-LP]n-, wherein each LP independently has the structure of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2 as described herein, and each other variable is independently as described herein. In some embodiments, R1 is —OH. In some embodiments, R1 is —H. In some embodiments, each L is independently optionally substituted bivalent C1-10 aliphatic. In some embodiments, each L is independently —(CH2)3— alkylene. In some embodiments, each L is independently C1-6 alkylene. In some embodiments, each LP is independently n00




embedded image


In some embodiments, an additional chemical moiety is




embedded image


In some embodiments, an additional chemical moiety is bonded to 5′-end carbon of an oligonucleotide chain. In some embodiments, it may be incorporated, e.g., using reagents including those illustrated below:




embedded image


In some embodiments, an additional chemical moiety may be linked to an oligonucleotide chain through a cleavable group, e.g., a phosphate group, to an oligonucleotide chain (e.g., at the 5′-end carbon):




embedded image


In some embodiments, L is a sugar moiety as described herein. For example, in some embodiments, L is




embedded image


In some embodiments, an additional chemical moiety is




embedded image


In some embodiments, it is bonded to 5′-end carbon of an oligonucleotide chain. In some embodiments, it may be incorporated, e.g., using reagents including those illustrated below:




embedded image


In some embodiments, additional chemical moieties described herein may comprise one or more alkyl chain. In some embodiments, additional chemical moieties described herein may comprise one or more lipid moieties. Those skilled in the art appreciates that many other embodiments of LP, including neutral internucleotidic linkage moieties, may be utilized in additional chemical moieties, e.g., n009. In some embodiments, an additional chemical moiety is




embedded image


In some embodiments, an additional chemical moiety is




embedded image


As described herein, in some embodiments, an additional chemical moiety may be bonded to the 5′-end carbon of an oligonucleotide chain. In some embodiments, an additional chemical moiety may be incorporated, e.g., using reagents including those illustrated below:




embedded image


embedded image


Those skilled in the art will appreciate that many other technologies, including synthetic chemical technologies, can be utilized in accordance with the present disclosure to provide compounds, e.g., oligonucleotides, reagents for incorporating additional chemical moieties, etc.


In some embodiments, provided compounds, e.g., reagents, products (e.g., oligonucleotides, amidites, etc.) etc. are at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97% or 99% pure. In some embodiments, the purity is at least 50%. In some embodiments, the purity is at least 75%. In some embodiments, the purity is at least 80%. In some embodiments, the purity is at least 85%. In some embodiments, the purity is at least 90%. In some embodiments, the purity is at least 95%. In some embodiments, the purity is at least 96%. In some embodiments, the purity is at least 97%. In some embodiments, the purity is at least 98%. In some embodiments, the purity is at least 99%.


Combination Therapy

In some embodiments, a subject is administered an additional treatment (including, but not limited to, a therapeutic agent or method) in additional to provided oligonucleotide or oligonucleotide composition, e.g., a composition comprising a DMD oligonucleotide. In some embodiments, a composition comprising a DMD oligonucleotide(s) (or two or more compositions, each comprising a DMD oligonucleotide) is administered to a patient along with an additional treatment.


In some embodiments, the present disclosure pertains to a method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising (a) administering to a subject susceptible thereto or suffering therefrom a composition comprising a provided oligonucleotide, and (b) administering to the subject an additional treatment which is capable of preventing, treating, ameliorating or slowing the progress of muscular dystrophy. In some embodiments, an additional treatment is a composition comprising a second oligonucleotide.


In some embodiments, an additional treatment is capable of preventing, treating, ameliorating or slowing the progress of muscular dystrophy by itself. In some embodiments, an additional treatment is capable of preventing, treating, ameliorating or slowing the progress of muscular dystrophy when administered with a provided oligonucleotide.


In some embodiments, an additional treatment is administered to the subject prior to, after or simultaneously with a composition comprising a provided oligonucleotide, e.g., a provided DMD oligonucleotide. In some embodiments, a composition comprises both a DMD oligonucleotide(s) and an additional treatment. In some embodiments, a DMD oligonucleotide(s) and an additional treatment(s) are in separate compositions. In some embodiments, the present disclosure provides technologies (e.g., compositions, methods, etc.) for combination therapy, for example, with other therapeutic agents and/or medical procedures. In some embodiments, provided oligonucleotides and/or compositions may be used together with one or more other therapeutic agents. In some embodiments, provided compositions comprise provided oligonucleotides, and one or more other therapeutic agents. In some embodiments, the one or more other therapeutic agents may have one or more different targets, and/or one or more different mechanisms toward targets, when compared to provided oligonucleotides in the composition. In some embodiments, a therapeutic agent is an oligonucleotide. In some embodiments, a therapeutic agent is a small molecule drug. In some embodiments, a therapeutic agent is a protein. In some embodiments, a therapeutic agent is an antibody. A number of therapeutic agents may be utilized in accordance with the present disclosure. For example, oligonucleotides for DMD may be used together with one or more therapeutic agents that modulate utrophin production (utrophin modulators). In some embodiments, a utrophin modulator promotes production of utrophin. In some embodiments, a utrophin modulator is ezutromid. In some embodiments, a utrophin modulator is




embedded image


or a pharmaceutically acceptable salt thereof. In some embodiments, provided oligonucleotides or compositions thereof are administered prior to, concurrently with, or subsequent to one or more other therapeutic agents and/or medical procedures. In some embodiments, provided oligonucleotides or compositions thereof are administered concurrently with one or more other therapeutic agents and/or medical procedures. In some embodiments, provided oligonucleotides or compositions thereof are administered prior to one or more other therapeutic agents and/or medical procedures. In some embodiments, provided oligonucleotides or compositions thereof are administered subsequent to one or more other therapeutic agents and/or medical procedures. In some embodiments, provide compositions comprise one or more other therapeutic agents.


In some embodiments, a composition comprising a DMD oligonucleotide is co-administered with an additional agent in order to improve skipping of a DMD exon of interest. In some embodiments, an additional agent is an antibody, oligonucleotide, protein or small molecule. In some embodiments, an additional agent interferes with a protein involved in splicing. In some embodiments, an additional agent interferes with a protein involved in splicing, wherein the protein is a SR protein.


In some embodiments, an additional agent interferes with a protein involved in splicing, wherein the protein is a SR protein, which contains a protein domain with one or more long repeats of serine (S) and arginine (R) amino acid residues. SR proteins are reportedly heavily phosphorylated in cells and are involved in constitutive and alternative splicing. Long et al. 2009 Biochem. J. 417: 15-27; Shepard et al. 2009 Genome Biol. 10: 242. In some embodiments, an additional agent is a chemical compound that inhibits or decreases a SR protein kinase. In some embodiments, a chemical compound that inhibits or decreases a SR protein kinase is SRPIN340. SRPIN340 is reported in, for example, Fukuhura et al. 2006 Proc. Natl. Acad. Sci. USA 103: 11329-11333. In some embodiments, a chemical compound is a kinase inhibitor specific for Cdc-like kinases (Clks) that are also able to phosphorylate SR proteins. In some embodiments, a kinase inhibitor specific for Cdc-like kinases (Clks) that are also able to phosphorylate SR proteins is TG003. TG003 reportedly affected splicing both in vitro and in vivo. Nowak et al. 2010 J. Biol. Chem. 285: 5532-5540; Muraki et al. 2004 J. Biol. Chem. 279: 24246-24254; Yomoda et al. 2008 Genes Cells 13: 233-244; and Nishida et al. 2011 Nat Commun. 2:308.


In some embodiments, in a patient afflicted with muscular dystrophy, muscle tissue is replaced by fat and connective tissue, and affected muscles may look larger due to increased fat content, a condition known as pseudohypertrophy. In some embodiments, a composition comprising a DMD oligonucleotide(s) is administered along with a treatment which reduces or prevents development of fat or fibrous or connective tissue, or replacement of muscle tissue by fat or fibrous or connective tissue.


In some embodiments, a composition comprising a DMD oligonucleotide(s) is administered along with a treatment which reduces or prevents development of fat or fibrous or connective tissue, or replacement of muscle tissue by fat or fibrous or connective tissue, wherein the treatment is an antibody to connective tissue growth factor (CTGF), a central mediator of fibrosis (e.g., FG-3019). In some embodiments, a composition comprising a DMD oligonucleotide(s) is administered along with an agent which reduces the fat content of the human body.


Additional treatments include: slowing the progression of the disease by immune modulators (eg, steroids and transforming growth factor-beta inhibitors), inducing or introducing proteins that may compensate for dystrophin deficiency in the myofiber (eg, utrophin, biglycan, and laminin), or bolstering the muscle's regenerative response (eg, myostatin and activin 2B).


In some embodiments, an additional treatment is a small molecule capable of restoring normal balance of calcium within muscle cells.


In some embodiments, an additional treatment is a small molecule capable of restoring normal balance of calcium within muscle cells by correcting the activity of a type of channel called the ryanodine receptor calcium channel complex (RyR). In some embodiments, such a small molecule is Ryca1 ARM210 (ARMGO Pharma, Tarry Town, N.Y.).


In some embodiments, an additional treatment is a flavonoid.


In some embodiments, an additional treatment is a flavonoid such as Epicatechin. Epicatechin is a flavonoid found in dark chocolate harvested from the cacao tree which has been reported in animals and humans to increase the production of new mitochondria in heart and muscle (e.g., mitochondrial biogenesis) while concurrently stimulating the regeneration of muscle tissue.


In some embodiments, an additional treatment is follistatin gene therapy.


In some embodiments, an additional treatment is adeno-associated virus delivery of follistatin 344 to increase muscle strength and prevent muscle wasting and fibrosis.


In some embodiments, an additional treatment is glucocorticoid.


In some embodiments, an additional treatment is prednisone.


In some embodiments, an additional treatment is deflazacort.


In some embodiments, an additional treatment is vamorolone (VBP15).


In some embodiments, an additional treatment is delivery of an exogenous Dystrophin gene or synthetic version or portion thereof, such as a microdystrophin gene.


In some embodiments, an additional treatment is delivery of an exogenous Dystrophin gene or portion thereof, such as a microdystrophin gene, such as SGT-001, an adeno-associated viral (AAV) vector-mediated gene transfer system for delivery of a synthetic dystrophin gene or microdystrophin (Solid BioSciences, Cambridge, Mass.).


In some embodiments, an additional treatment is stem cell treatment.


In some embodiments, an additional treatment is a steroid.


In some embodiments, an additional treatment is a corticosteroid.


In some embodiments, an additional treatment is prednisone.


In some embodiments, an additional treatment is a beta-2 agonist.


In some embodiments, an additional treatment is an ion channel inhibitor.


In some embodiments, an additional treatment is a calcium channel inhibitor.


In some embodiments, an additional treatment is a calcium channel inhibitor which is a xanthin. In some embodiments, an additional treatment is a calcium channel inhibitor which is methylxanthine. In some embodiments, an additional treatment is a calcium channel inhibitor which is pentoxifylline. In some embodiments, an additional treatment is a calcium channel inhibitor which is a methylxanthine derivative selected from: pentoxifylline, furafylline, lisofylline, propentofylline, pentifylline, theophylline, torbafylline, albifylline, enprofylline and derivatives thereof.


In some embodiments, an additional treatment is a treatment for heart disease or cardiovascular disease.


In some embodiments, an additional treatment is a blood pressure medicine.


In some embodiments, an additional treatment is surgery.


In some embodiments, an additional treatment is surgery to fix shortened muscles, straighten the spine, or treat a heart or lung problem.


In some embodiments, an additional treatment is a brace, walker, standing walker, or other mechanical aid for walking.


In some embodiments, an additional treatment is exercise and/or physical therapy.


In some embodiments, an additional treatment is assisted ventilation.


In some embodiments, an additional treatment is anticonvulsant, immunosuppressant or treatment for constipation.


In some embodiments, an additional treatment is an inhibitor of NF-κB.


In some embodiments, an additional treatment comprises salicylic acid and/or docosahexaenoic acid (DHA).


In some embodiments, an additional treatment is edasalonexent (CAT-1004, Catabasis), a conjugate of salicylic acid and docosahexaenoic acid (DHA).


In some embodiments, an additional treatment is a cell-based therapeutic.


In some embodiments, an additional treatment is comprises allogeneic cardiosphere-derived cells.


In some embodiments, an additional treatment is CAP-1002 (Capricor).


Certain Embodiments of Variables

Embodiments of variables are extensive described in the present disclosure. Those skilled in the art appreciate that an embodiment described for one variable may be optionally and independently combined with embodiments for other variables, and such combinations, wherever and whenever appropriate, are within the scope of the present disclosure. Embodiments of a variable (e.g. R) given when describing one variable that can be such variable (e.g., R1, which can be R) are generally applicable to other variables that can be the same variable (e.g., Rs, which can be R). Various embodiments of many variables are also described in other sections of the present disclosure.


In some embodiments, PL is P(═W). In some embodiments, PL is P. In some embodiments, PL is a chiral P (P*). In some embodiments, PL is P→B(R′)3.


In some embodiments, W is O. In some embodiments, W is S. In some embodiments, W is Se. In some embodiments, W is —N(-L-R5).


In some embodiments, X is O. In some embodiments, X is S. In some embodiments, X is —N(-L-R5)—. In some embodiments, -L-R5 is —R, which is taken together with a R group of -L-R1 (e.g., a —C(R′)— in L) to form a double bond or a ring as described in the present disclosure. In some embodiments, X is L.


In some embodiments, Y is O. In some embodiments, Y is S. In some embodiments, Z is O. In some embodiments, Z is S. In some embodiments, Y is O and Z is O.


In some embodiments, W is O, Y is O and Z is O. In some embodiments, W is S, Y is O and Z is O.


In some embodiments, R1 is —H. In some embodiments, R1 is -L-R. In some embodiments, R1 is halogen. In some embodiments, R1 is —CN. In some embodiments, R1 is —NO2. In some embodiments, R1 is -L-Si(R)3. In some embodiments, R1 is —OR. In some embodiments, R1 is —SR. In some embodiments, R1 is —N(R)2.


In some embodiments, R1 is R as described in the present disclosure.


In some embodiments, -X-L-R1 comprises or is an optionally substituted moiety of a chiral auxiliary (e.g., H-X-L-R1 is an optionally substituted (e.g., capped) chiral auxiliary), e.g., as used in chirally controlled oligonucleotide synthesis, such as those described in US 20150211006, US 20150211006, WO 2017015555, WO 2017015575, WO 2017062862, or WO 2017160741, chiral auxiliaries of each of which are incorporated herein by reference.


In some embodiments, -X-L-R1 is —OR. In some embodiments, -X-L-R1 is —OH. In some embodiments, -X-L-R1 is —SR. In some embodiments, -X-L-R1 is —SH.


In some embodiments, -X-L-R1 is —R. In some embodiments, R is —CH3. In some embodiments, R is —CH2CH3. In some embodiments, R is —CH2CH2CH3. In some embodiments, R is —CH2OCH3. In some embodiments, R is CH3CH2OCH2—. In some embodiments, R is PhCH2OCH2—. In some embodiments, R is HC≡C—CH2— In some embodiments, R is H3C—C≡C—CH2—. In some embodiments, R is CH2═CHCH2—. In some embodiments, R is CH3SCH2—. In some embodiments, R is —CH2COOCH3. In some embodiments, R is —CH2COOCH2CH. In some embodiments, R is —CH2CONHCH3.


In some embodiments, -X-L-R1 is comprises a guanidine moiety. In some embodiments, -X-L-R1 is or comprises




embedded image


In some embodiments, -X-L-R1 is -L-Wz, wherein W is selected from




embedded image


wherein R″ is R′ and n is 0-15. In some embodiments, R′ and R″ are independently




embedded image


In embodiments, L is —O—CH2CH2—. In some embodiments, n is 0-3. In some embodiments, each Rs is independently —H, —OCH3, —F, —CN, —CH3·—NO2, —CF3, or —OCF3. In some embodiments, R′ and R″ are the same. In some embodiments, R′ and R″ are different


In some embodiments, In some embodiments, -X-L-R1 is




embedded image


wherein each R′ is independently as described in the present disclosure. In some embodiments, two R′ on two different nitrogen atoms are taken together to form an optionally substituted ring as described in the present disclosure. In some embodiments, a ring is saturated. In some embodiments, a ring is monocyclic. In some embodiments, a ring is 3-10 membered. In some embodiments, a ring is 3-membered. In some embodiments, a ring is 4-membered. In some embodiments, a ring is 5-membered. In some embodiments, a ring is 6-membered. In some embodiments, a ring is 7-membered. In some embodiments, a ring has no additional ring heteroatoms in addition to the two nitrogen atoms.


In some embodiments, R5 is R′ as described in the present disclosure. In some embodiments, R5 is —H. In some embodiments, R is R as described in the present disclosure.


In some embodiments, L is a bivalent optionally substituted methylene group. In some embodiments, L is —CH2—. In some embodiments, each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, —C(R′)2-, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL.


In some embodiments, L is a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-6alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, —C(R′)2—, -Cy-, —O—, —S—, —S—S—·—N(R′)—, —C(O)—, —C(S)—, —C(NR′)O—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL. In some embodiments, L is a covalent bond, or a bivalent, optionally substituted, linear or branched C1-30 aliphatic group, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL. In some embodiments, L is a covalent bond, or a bivalent, optionally substituted, linear or branched C1-30 heteroaliphatic group having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-6 alkylene, C1-6 alkenylene. —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL. In some embodiments, L is a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, or —C(O)O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL. In some embodiments, L is a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-10 aliphatic group and a C1-10 heteroaliphatic group having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from C1-6 alkylene, C1-6 alkenylene, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—. —C(O)S—, and —C(O)O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL. In some embodiments, L is a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a Co aliphatic group and a C1-10 heteroaliphatic group having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein one or more methylene units are optionally and independently replaced by an optionally substituted group selected from —C(R′)2—, -Cy -, —O—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, and —C(O)O—.


In some embodiments, L is a covalent bond. In some embodiments, L is optionally substituted bivalent C1-30 aliphatic. In some embodiments, L is optionally substituted bivalent C1-30 heteroaliphatic having 1-10 heteroatoms independently selected from boron, oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, aliphatic moieties, e.g. those of L, Ls, LM, R, etc., either monovalent or bivalent or multivalent, and can contain any number of carbon atoms (before any optional substitution) within its range. e.g., C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, etc. In some embodiments, heteroaliphatic moieties, e.g. those of L, R, etc., either monovalent or bivalent or multivalent, and can contain any number of carbon atoms (before any optional substitution) within its range, e.g., C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, etc.


In some embodiments, a methylene unit of a linker, e.g., L, Ls, LM, etc., is replaced with -Cy-, wherein -Cy- is as described in the present disclosure. In some embodiments, one or more methylene unit is optionally and independently substituted with —O—, —S—, —N(R′)—, —C(O)—, —S(O)—, —S(O)2—, —P(O)(OR′)—, —P(O)(SR′)—, —P(S)(OR′)—, or —P(S)(OR′)—. In some embodiments, a methylene unit is replaced with —O—. In some embodiments, a methylene unit is replaced with —S—. In some embodiments, a methylene unit is replaced with —N(R′)—. In some embodiments, a methylene unit is replaced with —C(O)—. In some embodiments, a methylene unit is replaced with —S(O)—. In some embodiments, a methylene unit is replaced with —S(O)2—. In some embodiments, a methylene unit is replaced with —P(O)(OR′)—. In some embodiments, a methylene unit is replaced with —P(O)(SR′)—. In some embodiments, a methylene unit is replaced with —P(O)(R′)—. In some embodiments, a methylene unit is replaced with —P(O)(NR′)—. In some embodiments, a methylene unit is replaced with —P(S)(OR′)—. In some embodiments, a methylene unit is replaced with —P(S)(SR′)—. In some embodiments, a methylene unit is replaced with —P(S)(R′)—. In some embodiments, a methylene unit is replaced with —P(S)NR′)—. In some embodiments, a methylene unit is replaced with —P(R′)—. In some embodiments, a methylene unit is replaced with —P(OR′)—. In some embodiments, a methylene unit is replaced with —P(SR′)—. In some embodiments, a methylene unit is replaced with —P(NR′)—. In some embodiments, a methylene unit is replaced with —P(OR′)[B(R′)3]—. In some embodiments, one or more methylene unit is optionally and independently substituted with —O—, —S—, —N(R′)—, —C(O)—, —S(O)—, —S(O)2—, —P(O)(OR′)—, —P(O)(SR′)—, —P(S)(OR′)—, or —P(S)(OR′)—. In some embodiments, a methylene unit is replaced with —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, each of which may independently be an internucleotidic linkage.


In some embodiments, L or Ls (e.g., when Ls is L), e.g., when connected to Rs or a sugar ring, is —CH2—. In some embodiments, L is —C(R)2—, wherein at least one R is not hydrogen. In some embodiments, L is —CHR—. In some embodiments, R is hydrogen. In some embodiments, L is —CHR—, wherein R is not hydrogen. In some embodiments, C of —CHR— is chiral. In some embodiments, L is -(R)-CHR—, wherein C of —CHR— is chiral. In some embodiments, L is -(S)-CHR—, wherein C of —CHR— is chiral. In some embodiments, R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6alkyl. In some embodiments, R is optionally substituted C1-5 aliphatic. In some embodiments, R is optionally substituted C1-5 alkyl. In some embodiments, R is optionally substituted C1-4 aliphatic. In some embodiments, R is optionally substituted C1-4 alkyl. In some embodiments, R is optionally substituted C1-3 aliphatic. In some embodiments, R is optionally substituted C1-3 alkyl. In some embodiments, R is optionally substituted C2 aliphatic. In some embodiments, R is optionally substituted methyl. In some embodiments, R is C1-4 aliphatic. In some embodiments, R is C1-4 alkyl. In some embodiments, R is C1-5 aliphatic. In some embodiments, R is C1-5 alkyl. In some embodiments, R is C1-4 aliphatic. In some embodiments, R is C1-4alkyl. In some embodiments, R is C1-3 aliphatic. In some embodiments, R is C1-3, alkyl. In some embodiments, R is C2 aliphatic. In some embodiments, R is methyl. In some embodiments, R is C1-6 haloaliphatic. In some embodiments, R is C1-6 haloalkyl. In some embodiments, R is C1-5 haloaliphatic. In some embodiments, R is C1-4 haloalkyl. In some embodiments, R is C1-4 haloaliphatic. In some embodiments, R is C1-4 haloalkyl. In some embodiments, R is C1-3 haloaliphatic. In some embodiments, R is C1-3haloalkyl. In some embodiments, R is C2 haloaliphatic. In some embodiments, R is methyl substituted with one or more halogen. In some embodiments, R is —CF3. In some embodiments, L is optionally substituted —CH═CH—. In some embodiments, L is optionally substituted (E)-CH═CH—. In some embodiments, L is optionally substituted (Z)—CH═CH—. In some embodiments, L is —C≡C—.


In some embodiments, L comprises at least one phosphorus atom. In some embodiments, at least one methylene unit of L is replaced with —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—.


In some embodiments, L is bonded to a phosphorus of an linkage (e.g., when X is a covalent bond), e.g., the phosphorus of a linkage having formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, I-b-1, I-b-2, I-c-1, I-c-2, 1-d-1, I-d-2, or a salt form thereof. In some embodiments, such an linkage is an internucleotidic linkage. In some embodiments, such an linkage is a chirally controlled internucleotidic linkage.


In some embodiments, L is -Cy-. In some embodiments, L is —C≡C—.


In some embodiments, Lis a bivalent, optionally substituted, linear or branched C1-30 aliphatic group wherein one or more methylene units are optionally and independently replaced as described in the present disclosure. In some embodiments, Lis a bivalent, optionally substituted, linear or branched C1-30 heteroaliphatic group having 1-10 heteroatoms wherein one or more methylene units are optionally and independently replaced as described in the present disclosure.


In some embodiments, a heteroaliphatic group in the present disclosure, e.g., of L, R (including any variable that can be R), etc., comprises a




embedded image


moiety. In some embodiments, ═N— is directly bonded to a phosphorus atom. In some embodiments, a heteroaliphatic group comprises a




embedded image


moiety. In some embodiments, a heteroaliphatic group comprises A




embedded image


moiety. In some embodiments, such a moiety is directly bonded to a phosphorus atom. In some embodiments, R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6 alkyl. In some embodiments, R is isopropyl.


In some embodiments, -Cy- is optionally substituted bivalent monocyclic, bicyclic or polycyclic C3-20 cycloaliphatic. In some embodiments, -Cy- is optionally substituted bivalent monocyclic, bicyclic or polycyclic C6-20 aryl. In some embodiments, -Cy- is optionally substituted monocyclic, bicyclic or polycyclic 3-20 membered heterocyclyl ring having 1-5 heteroatoms. In some embodiments, -Cy- is optionally substituted monocyclic, bicyclic or polycyclic 5-20 membered heterocyclyl ring having 1-5 heteroatoms, wherein at least one heteroatom is oxygen. In some embodiments, -Cy- is 3-10 membered. In some embodiments, -Cy- is 3-membered. In some embodiments, -Cy- is 4-membered. In some embodiments, -Cy- is 5-membered. In some embodiments, -Cy- is 6-membered. In some embodiments, -Cy- is 7-membered. In some embodiments, -Cy- is 8-membered. In some embodiments, -Cy- is 9-membered. In some embodiments, -Cy- is 10-membered. In some embodiments, -Cy- is optionally substituted bivalent tetrahydrofuran ring. In some embodiments, -Cy- is an optionally substituted furanose moiety. In some embodiments, -Cy- is an optionally substituted bivalent 5-membered heteroaryl ring having 1-4 heteroatoms. In some embodiments, at least one heteroatom is nitrogen. In some embodiments, each heteroatom is nitrogen. In some embodiments, -Cy- is an optionally substituted bivalent triazole ring. In some embodiments, -Cy- is optionally substituted




embedded image


In some embodiments, -Cy- is




embedded image


In some embodiments, R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6 alkyl. In some embodiments, R is isopropyl.


In some embodiments, CyL is an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus, boron and silicon. In some embodiments, CyL is trivalent. In some embodiments, CyL is tetravalent. In some embodiments, one or more CH in a moiety, e.g., L, Ls, LM, etc. are independently substituted with a trivalent CyL group. In some embodiments, one or more carbon atoms in a moiety, e.g., L, Ls, LM, etc. are independently substituted with a tetravalent CyL group. In some embodiments, one or more CH in a moiety, e.g., L, Ls, LM, etc. are independently substituted with a trivalent CyL group, and one or more carbon atoms in a moiety, e.g., L, Ls, LM, etc. are independently substituted with a tetravalent CyL group.


In some embodiments, CyL is monocyclic. In some embodiments, CyL is bicyclic. In some embodiments. CyL is polycyclic.


In some embodiments, CyL is saturated. In some embodiments, CyL is partially unsaturated. In some embodiments, CyL is aromatic. In some embodiments, CyL is or comprises a saturated ring moiety. In some embodiments, CyL is or comprises a partially unsaturated ring moiety. In some embodiments, CyL is or comprises an aromatic ring moiety.


In some embodiments, CyL is an optionally substituted C3-20 cycloaliphatic ring as described in the present disclosure (for example, those described for R but tetravalent). In some embodiments, a ring is an optionally substituted saturated C3-20 cycloaliphatic ring. In some embodiments, a ring is an optionally substituted partially unsaturated C3-20 cycloaliphatic ring. A cycloaliphatic ring can be of various sizes as described in the present disclosure. In some embodiments, a ring is 3, 4, 5, 6, 7, 8, 9, or 10-membered. In some embodiments, a ring is 3-membered. In some embodiments, a ring is 4-membered. In some embodiments, a ring is 5-membered. In some embodiments, a ring is 6-membered. In some embodiments, a ring is 7-membered. In some embodiments, a ring is 8-membered. In some embodiments, a ring is 9-membered. In some embodiments, a ring is 10-membered. In some embodiments, a ring is an optionally substituted cyclopropyl moiety. In some embodiments, a ring is an optionally substituted cyclobutyl moiety. In some embodiments, a ring is an optionally substituted cyclopentyl moiety. In some embodiments, a ring is an optionally substituted cyclohexyl moiety. In some embodiments, a ring is an optionally substituted cycloheptyl moiety. In some embodiments, a ring is an optionally substituted cyclooctanyl moiety. In some embodiments, a cycloaliphatic ring is a cycloalkyl ring. In some embodiments, a cycloaliphatic ring is monocyclic. In some embodiments, a cycloaliphatic ring is bicyclic. In some embodiments, a cycloaliphatic ring is polycyclic. In some embodiments, a ring is a cycloaliphatic moiety as described in the present disclosure for R with more valences.


In some embodiments, CyL is an optionally substituted 6-20 membered aryl ring. In some embodiments, a ring is an optionally substituted trivalent or tetravalent phenyl moiety. In some embodiments, a ring is a tetravalent phenyl moiety. In some embodiments, a ring is an optionally substituted naphthalene moiety. A ring can be of different size as described in the present disclosure. In some embodiments, an aryl ring is 6-membered. In some embodiments, an aryl ring is 10-membered. In some embodiments, an aryl ring is 14-membered. In some embodiments, an aryl ring is monocyclic. In some embodiments, an aryl ring is bicyclic. In some embodiments, an aryl ring is polycyclic. In some embodiments, a ring is an aryl moiety as described in the present disclosure for R with more valences.


In some embodiments, CyL is an optionally substituted 5-20 membered heteroaryl ring having 1-10 heteroatoms, e.g., independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, CyL is an optionally substituted 5-20 membered heteroaryl ring having 1-10 heteroatoms, e.g., independently selected from oxygen, nitrogen, and sulfur. In some embodiments, CyL is an optionally substituted 5-6 membered heteroaryl ring having 1-4 heteroatoms, e.g., independently selected from oxygen, nitrogen, and sulfur. In some embodiments, CyL is an optionally substituted 5-membered heteroaryl ring having 1-4 heteroatoms, e.g., independently selected from oxygen, nitrogen, and sulfur. In some embodiments, CyL is an optionally substituted 6-membered heteroaryl ring having 1-4 heteroatoms, e.g., independently selected from oxygen, nitrogen, and sulfur. In some embodiments, as described in the present disclosure, heteroaryl rings can be of various sizes and contain various numbers and/or types of heteroatoms. In some embodiments, a heteroaryl ring contains no more than one heteroatom. In some embodiments, a heteroaryl ring contains more than one heteroatom. In some embodiments, a heteroaryl ring contains no more than one type of heteroatom. In some embodiments, a heteroaryl ring contains more than one type of heteroatoms. In some embodiments, a heteroaryl ring is 5-membered. In some embodiments, a heteroaryl ring is 6-membered. In some embodiments, a heteroaryl ring is 8-membered. In some embodiments, a heteroaryl ring is 9-membered. In some embodiments, a heteroaryl ring is 10-membered. In some embodiments, a heteroaryl ring is monocyclic. In some embodiments, a heteroaryl ring is bicyclic. In some embodiments, a heteroaryl ring is polycyclic. In some embodiments, a heteroaryl ring is a nucleobase moiety, e.g., A, T, C, G, U, etc. In some embodiments, a ring is a heteroaryl moiety as described in the present disclosure for R with more valences. In some embodiments, as in linkers described in the present disclosure, CyL is


In some embodiments, CyL is a 3-20 membered heterocyclyl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, CyL is a 3-20 membered heterocyclyl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, a heterocyclyl ring is saturated. In some embodiments, a heterocyclyl ring is partially unsaturated. A heterocyclyl ring can be of various sizes as described in the present disclosure. In some embodiments, a ring is 3, 4, 5, 6, 7, 8, 9, or 10-membered. In some embodiments, a ring is 3-membered. In some embodiments, a ring is 4-membered. In some embodiments, a ring is 5-membered. In some embodiments, a ring is 6-membered. In some embodiments, a ring is 7-membered. In some embodiments, a ring is 8-membered. In some embodiments, a ring is 9-membered. In some embodiments, a ring is 10-membered. Heterocyclyl rings can contain various numbers and/or types of heteroatoms. In some embodiments, a heterocyclyl ring contains no more than one heteroatom. In some embodiments, a heterocyclyl ring contains more than one heteroatom. In some embodiments, a heterocyclyl ring contains no more than one type of heteroatom. In some embodiments, a heterocyclyl ring contains more than one type of heteroatoms. In some embodiments, a heterocyclyl ring is monocyclic. In some embodiments, a heterocyclyl ring is bicyclic. In some embodiments, a heterocyclyl ring is polycyclic. In some embodiments, a ring is a heterocyclyl moiety as described in the present disclosure for R with more valences.


As readily appreciated by a person having ordinary skill in the art, many suitable ring moieties are extensively described in and can be used in accordance with the present disclosure, for example, those described for R (which may have more valences for CyL).


In some embodiments, CyL is a sugar moiety in a nucleic acid. In some embodiments, CyL is an optionally substituted furanose moiety. In some embodiments, CyL is a pyranose moiety. In some embodiments, CyL is an optionally substituted furanose moiety found in DNA. In some embodiments, CyL is an optionally substituted furanose moiety found in RNA. In some embodiments, CyL is an optionally substituted 2′-deoxyribofuranose moiety. In some embodiments, CyL is an optionally substituted ribofuranose moiety. In some embodiments, substitutions provide sugar modifications as described in the present disclosure. In some embodiments, an optionally substituted 2′-deoxyribofuranose moiety and/or an optionally substituted ribofuranose moiety comprise substitution at a 2′-position. In some embodiments, a 2′-position is a 2′-modification as described in the present disclosure. In some embodiments, a 2′-modification is —F. In some embodiments, a 2′-modification is —OR, wherein R is as described in the present disclosure. In some embodiments, R is not hydrogen. In some embodiments, CyL is a modified sugar moiety, such as a sugar moiety in LNA, alpha-L-LNA or GNA. In some embodiments, Cy is a modified sugar moiety, such as a sugar moiety in ENA. In some embodiments, CyL is a terminal sugar moiety of an oligonucleotide, connecting an internucleotidic linkage and a nucleobase. In some embodiments, CyL is a terminal sugar moiety of an oligonucleotide, for example, when that terminus is connected to a solid support optionally through a linker. In some embodiments, CyL is a sugar moiety connecting two internucleotidic linkages and a nucleobase. Example sugars and sugar moieties are extensively described in the present disclosure.


In some embodiments, CyL is a nucleobase moiety. In some embodiments, a nucleobase is a natural nucleobase, such as A, T, C, G, U etc. In some embodiments, a nucleobase is a modified nucleobase. In some embodiments, CyL is optionally substituted nucleobase moiety selected from A, T, C, G, U. and 5mC. Example nucleobases and nucleobase moieties are extensively described in the present disclosure.


In some embodiments, two CyL moieties are bonded to each other, wherein one CyL is a sugar moiety and the other is a nucleobase moiety. In some embodiments, such a sugar moiety and nucleobase moiety forms a nucleoside moiety. In some embodiments, a nucleoside moiety is natural. In some embodiments, a nucleoside moiety is modified. In some embodiments, CyL is an optionally substituted natural nucleoside moiety selected from adenosine, 5-methyluridine, cytidine, guanosine, uridine, 5-methylcytidine, 2′-deoxyadenosine, thymidine, 2′-deoxycytidine, 2′-deoxyguanosine, 2′-deoxyuridine, and 5-methy-2′-deoxycytidine. Example nucleosides and nucleosides moieties are extensive described in the present disclosure.


Ring AL can be either be monovalent, bivalent or polyvalent. In some embodiments, Ring AL is monovalent (e.g., when g is 0 and no substitution). In some embodiments, Ring AL is bivalent. In some embodiments, Ring AL is polyvalent. In some embodiments, Ring A is bivalent and is -Cy-. In some embodiments, Ring AL is an optionally substituted bivalent triazole ring. In some embodiments, Ring AL is trivalent and is CyL. In some embodiments, Ring AL is tetravalent and is CyL. In some embodiments, Ring AL is optionally substitute




embedded image


In some embodiments, -X-L-R1 is optionally substituted alkynyl. In some embodiments, -X-L-R1 is —C≡CH. In some embodiments, an alkynyl group, e.g., —C≡CH, can react with a number of reagents through various reactions to provide further modifications. For example, in some embodiments, an alkynyl group can react with azides through click chemistry. In some embodiments, an azide has the structure of R1—N3.


In some embodiments, each R is independently —H, halogen, —CN, —N3, —NO, —NO2, -L-R′, -L-Si(R)3, -L-OR′, -L-SR′, -L-N(R′)2, —O-L-R′, —O-L-Si(R)3, —O-L-OR′, —O-LsSR′, or —O-LsN(R′)2 as described in the present disclosure.


In some embodiments, Rs is R′, wherein R′ is as described in the present disclosure. In some embodiments, Rs is R, wherein R is as described in the present disclosure. In some embodiments, Rs is optionally substituted C1-6 aliphatic. In some embodiments, Rs is methyl. In some embodiments, Rs is optionally substituted C1-30 heteroaliphatic. In some embodiments, Rs comprises one or more silicon atoms. In some embodiments, R is —CH2Si(Ph)2CH3.


In some embodiments, Rs is -L-R′. In some embodiments, Rs is -L-R′ wherein -L- is a bivalent, optionally substituted C1-3 heteroaliphatic group. In some embodiments, Rs is —CH2Si(Ph)2CH3.


In some embodiments, Rs is —F. In some embodiments, Rs is —Cl. In some embodiments, Rs is —Br. In some embodiments, Rs is —I. In some embodiments, Rs is —CN. In some embodiments, Rs is —N. In some embodiments, Rs is —NO. In some embodiments, Rs is —NO2. In some embodiments, Rs is -L-Si(R)3. In some embodiments, Rs is —Si(R)3. In some embodiments, Rs is -L-R′. In some embodiments, Rs is —R′. In some embodiments, Rs is -L-OR′. In some embodiments. Rs is —OR′. In some embodiments, Rs is -L-SR′. In some embodiments, Rs is —SR′. In some embodiments, Rs is -L-N(R′)2. In some embodiments, Rs is —N(R′)2. In some embodiments, Rs is —O-L-R′. In some embodiments, Rs is —O-L-Si(R)3. In some embodiments, Rs is —O-L-OR′. In some embodiments, Rs is —O-L-SR′. In some embodiments, Rs is —O-L-N(R′)2. In some embodiments, Rs is a 2′-modification as described in the present disclosure. In some embodiments, Rs is —OR, wherein R is as described in the present disclosure. In some embodiments, Rs is —OR, wherein R is optionally substituted C1-6 aliphatic. In some embodiments, Rs is -OMe. In some embodiments, R is —OCH2CH2OMe. In some embodiments, Rs is R1s, R2s, R3s, R4s, or R5s as described in the present disclosure.


In some embodiments, g is 0-20. In some embodiments, g is 1-20. In some embodiments, g is 1-5. In some embodiments, g is 1. In some embodiments, g is 2. In some embodiments, g is 3. In some embodiments, g is 4. In some embodiments, g is 5. In some embodiments, g is 6. In some embodiments, g is 7. In some embodiments, g is 8. In some embodiments, g is 9. In some embodiments, g is 10. In some embodiments, g is 11. In some embodiments, g is 12. In some embodiments, g is 13. In some embodiments, g is 14. In some embodiments, g is 15. In some embodiments, g is 16. In some embodiments, g is 17. In some embodiments, g is 18. In some embodiments, g is 19. In some embodiments, g is 20.


In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments,




embedded image


is




embedded image


In some embodiments, each Ring A is independently an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms, e.g., independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, Ring A is an optionally substituted ring, which ring is as described in the present disclosure. In some embodiments, Ring A comprises an oxygen ring atom. In some embodiments, Ring A is or comprises a ring of a sugar moiety. In some embodiments, a ring is




embedded image


In some embodiments, a ring is




embedded image


In some embodiments, a ring is




embedded image


In some embodiments, a ring is a bicyclic ring, e.g., found in a sugar moiety of LNA.


In some embodiments, a sugar unit is of the structure




embedded image


wherein each variable is independently as described in the present disclosure. In some embodiments, a nucleoside unit is of the structure




embedded image


wherein each variable is independently as described in the present disclosure.


In some embodiments, Ls is —C(R5s)2— and




embedded image


is as described in the present disclosure. In some embodiments, Ls is —CHR5s— and




embedded image


is as described in the present disclosure. In some embodiments, Ls is —C(R)2— and




embedded image


is as described in the present disclosure. In some embodiments, Ls is —CHR— and




embedded image


is as described in the present disclosure.


In some embodiments,




embedded image


is




embedded image


BA is connected at Cl, and each of R1s, R2s, R3s, R4s and R5S is independently as described in the present closure. In some embodiments,




embedded image


is




embedded image


wherein R2s is as described in the present disclosure. In some embodiments,




embedded image


is




embedded image


wherein R2s is not —OH. In some embodiments,




embedded image


is




embedded image


wherein R2s and R4s are R, and the two R groups are taken together with their intervening atoms to form an optionally substituted ring. In some embodiments,




embedded image


or Ring A, is optionally substituted




embedded image


In some embodiments




embedded image


or Ring A, is



embedded image


In some embodiments,




embedded image


or Ring A, is



embedded image


In some embodiments each of R1s, R2s, R3s, R4s, and R5s is independently Rs, wherein Rs is as described in the present disclosure.


In some embodiments, R1s is Rs wherein Rs is as described in the present disclosure. In some embodiments, R1s is at 1′-position (BA is at 1′-position). In some embodiments, R1s is —H. In some embodiments, R1s is —F. In some embodiments, R1s is —Cl. In some embodiments, R1s is —Br. In some embodiments, R1s is —I. In some embodiments, R1s is —CN. In some embodiments, R1s is —N3. In some embodiments, R1s is —NO. In some embodiments, R1s is —NO2. In some embodiments, R1s is -L-R′. In some embodiments, R1s is —R′. In some embodiments, R1s is -L-OR′. In some embodiments, R1s is —OR′. In some embodiments, R1s is -L-SR′. In some embodiments, R1s is —SR′. In some embodiments, R1s is L-L-N(R′)2. In some embodiments, R1s is —N(R′)2. In some embodiments, R1s is —OR′, wherein R′ is optionally substituted C1-3 aliphatic. In some embodiments, R1s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R1s is -OMe. In some embodiments, R1s is -MOE. In some embodiments, R1s is hydrogen. In some embodiments, Rs at one 1′-position is hydrogen, and Rs at the other 1′-position is not hydrogen as described herein. In some embodiments, Rs at both 1′-positions are hydrogen. In some embodiments, Rs at one 1′-position is hydrogen, and the other 1′-position is connected to an internucleotidic linkage. In some embodiments, R1s is —F. In some embodiments, R1s is —Cl. In some embodiments, R1s is —Br. In some embodiments, R1s is —I. In some embodiments, R1s is —CN. In some embodiments, R1s is —N. In some embodiments, R1s is —NO. In some embodiments, R1s is —NO2. In some embodiments, R1s is -L-R′. In some embodiments, R1s is —R′. In some embodiments, R1s is -L-OR′. In some embodiments, R1s is —OR′. In some embodiments, R1s is -L-SR′. In some embodiments, R1s is —SR′. In some embodiments, R1s is -L-N(R′)2. In some embodiments, R1s is —N(R′)2. In some embodiments, R1s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R1s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R1s is —OH. In some embodiments, R1s is -OMe. In some embodiments, R1s is -MOE. In some embodiments, R1s is hydrogen. In some embodiments, one R1s at a 1′-position is hydrogen, and the other R1s at the other 1′-position is not hydrogen as described herein. In some embodiments, R1s at both 1′-positions are hydrogen. In some embodiments, R1s is —O-L-OR′. In some embodiments, R1s is —O-L-OR′, wherein L is optionally substituted C1-6 alkylene, and R′ is optionally substituted C1-6 aliphatic. In some embodiments, R1s is —O-(optionally substituted C1-6 alkylene)-OR′. In some embodiments, R1s is —O-(optionally substituted Cf alkylene)-OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R1s is —OCH2CH2OMe.


In some embodiments, R2s is Rs wherein Rs is as described in the present disclosure. In some embodiments, if there are two R2s at the 2′-position, one R2s is —H and the other is not. In some embodiments, R2s is at 2′-position (BA is at 1′-position). In some embodiments, R2s is —H. In some embodiments, R2s is —F. In some embodiments, R2s is —Cl. In some embodiments, R2s is —Br. In some embodiments, R2s is —I. In some embodiments, R2s is —CN. In some embodiments, R2s is —N3. In some embodiments, R2s is —NO. In some embodiments, R2s is —NO2. In some embodiments, R2s is -L-R′. In some embodiments, R2s is —R′. In some embodiments, R2s is -L-OR′. In some embodiments, R2s is —OR′. In some embodiments, R2s is -L-SR′. In some embodiments, R2s is —SR′. In some embodiments, R2s is L-L-N(R′)2. In some embodiments, R2s is —N(R′)2. In some embodiments, R2s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R2s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R2s is -OMe. In some embodiments, R2s is -MOE. In some embodiments, R2s is hydrogen. In some embodiments, Rs at one 2′-position is hydrogen, and Rs at the other 2′-position is not hydrogen as described herein. In some embodiments, Rs at both 2′-positions are hydrogen. In some embodiments, Rs at one 2′-position is hydrogen, and the other 2′-position is connected to an internucleotidic linkage. In some embodiments, R2s is —F. In some embodiments, R2s is —Cl. In some embodiments, R2s is —Br. In some embodiments, R2s is —I. In some embodiments, R2s is —CN. In some embodiments, R2s is —N3. In some embodiments, R2s is —NO. In some embodiments, R2s is —NO2. In some embodiments, R2s is -L-R′. In some embodiments, R2s is —R′. In some embodiments, R2s is -L-OR′. In some embodiments, R2s is —OR′. In some embodiments, R2s is -L-SR′. In some embodiments, R2s is —SR′. In some embodiments, R2s is -L-N(R′)2. In some embodiments, R2s is —N(R′)2. In some embodiments, R2s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R2s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R2s is —OH. In some embodiments, R2s is -OMe. In some embodiments, R2s is -MOE. In some embodiments, R2s is hydrogen. In some embodiments, one R2s at a 2′-position is hydrogen, and the other R2s at the other 2′-position is not hydrogen as described herein. In some embodiments, R2s at both 2′-positions are hydrogen. In some embodiments, R2s is —O-L-OR′. In some embodiments, R2s is —O-L-OR′, wherein L is optionally substituted C1-6 alkylene, and R′ is optionally substituted C1-6 aliphatic. In some embodiments, R2s is —O-(optionally substituted C1-6 alkylene)-OR′. In some embodiments, R2s is —O-(optionally substituted C1-6 alkylene)-OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R2s is —OCH2CH2OMe.


In some embodiments, R2s comprises a guanidine moiety. In some embodiments, R2s comprises




embedded image


In some embodiments, R2s is -L-Wz, wherein Wz is selected from




embedded image


wherein R″ is R′ and n is 0-15. In some embodiments, R′ and R″ are


independently




embedded image


In some embodiments, L is —O—CH2CH2—. In some embodiments, n is 0-3. In some embodiments, each Rs is independently —H, —OCH3, —F, —CN, —CH3, —NO2, —CF3, or —OCF3. In some embodiments, R′ and R″ are the same. In some embodiments, R′ and R″ are different.


In some embodiments, R3s is Rs wherein Rs is as described in the present disclosure. In some embodiments, R3s is at 3′-position (BA is at 1′-position). In some embodiments, R3s is —H. In some embodiments, R3s is —F. In some embodiments, R3s is —Cl. In some embodiments, R3s is —Br. In some embodiments, R3s is —I. In some embodiments, R3s is —CN. In some embodiments, R3s is —N3. In some embodiments, R3s is —NO. In some embodiments, R3s is —NO2. In some embodiments, R3s is -L-R′. In some embodiments, R3s is —R′. In some embodiments, R3s is -L-OR′. In some embodiments, R3s is —OR′. In some embodiments, R3s is -L-SR′. In some embodiments, R3s is —SR′. In some embodiments. R3s is -L-N(R′)2. In some embodiments, R3s is —N(R′)2. In some embodiments, R3s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R3s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R3s is -OMe. In some embodiments, R3s is -MOE. In some embodiments, R3s is hydrogen. In some embodiments, Rs at one 3′-position is hydrogen, and Rs at the other 3′-position is not hydrogen as described herein. In some embodiments, R3 at both 3′-positions are hydrogen. In some embodiments, Rs at one 3′-position is hydrogen, and the other 3′-position is connected to an internucleotidic linkage. In some embodiments, R3s is —F. In some embodiments, R3s is —Cl. In some embodiments, R3s is —Br. In some embodiments, R3s is —I. In some embodiments, R3s is —CN. In some embodiments, R3s is —N3. In some embodiments, R3s is —NO. In some embodiments, R3s is —NO2. In some embodiments, R3s is -L-R′. In some embodiments, R3s is —R′. In some embodiments, R3s is -L-OR′. In some embodiments, R3s is —OR′. In some embodiments, R3s is -L-SR′. In some embodiments, R3s is —SR′. In some embodiments, R3s is L-L-N(R′)2. In some embodiments, R3s is —N(R′)2. In some embodiments, R3s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R3s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R3s is —OH. In some embodiments, R3s is -OMe. In some embodiments, R3s is -MOE. In some embodiments, R3s is hydrogen.


In some embodiments, R4s is Rs wherein Rs is as described in the present disclosure. In some embodiments, R4s is at 4′-position (BA is at 1′-position). In some embodiments, R4s is —H. In some embodiments, R4s is —F. In some embodiments, R4s is —Cl. In some embodiments, R4s is —Br. In some embodiments, R4s is —I. In some embodiments, R4s is —CN. In some embodiments, R4s is —N3. In some embodiments, R4s is —NO. In some embodiments, R4s is —NO2. In some embodiments, R4s is -L-R′. In some embodiments, R4s is —R′. In some embodiments, R4s is -L-OR′. In some embodiments, R4s is —OR′. In some embodiments, R4s is -L-SR′. In some embodiments, R4s is —SR′. In some embodiments, R4s is -L-N(R′)2. In some embodiments, R4s is —N(R′)2. In some embodiments, R4s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R4S is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R4s is -OMe. In some embodiments, R4S is -MOE. In some embodiments, R4s is hydrogen. In some embodiments, RS at one 4′-position is hydrogen, and RS at the other 4′-position is not hydrogen as described herein. In some embodiments, Rs at both 4′-positions are hydrogen. In some embodiments, RS at one 4′-position is hydrogen, and the other 4′-position is connected to an internucleotidic linkage. In some embodiments, R4S is —F. In some embodiments, R4S is —Cl. In some embodiments, R4S is —Br. In some embodiments, R4s is —I. In some embodiments, R4s is —CN. In some embodiments, R4S is —N. In some embodiments, R4s is —NO. In some embodiments, R4s is —NO2. In some embodiments, R4s is -L-R′. In some embodiments, R4s is —R′. In some embodiments, R4s is -L-OR′. In some embodiments, R4s is —OR′. In some embodiments, R4s is -L-SR′. In some embodiments, R4s is —SR′. In some embodiments, R4s is L-L-N(R′)2. In some embodiments, R4s is —N(R′)2. In some embodiments, R4s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R4s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R4S is —OH. In some embodiments, R4s is -OMe. In some embodiments, R4S is -MOE. In some embodiments, R4S is hydrogen.


In some embodiments, R5s is Rs wherein RS is as described in the present disclosure. In some embodiments, R5s is R′ wherein R′ is as described in the present disclosure. In some embodiments, R5s is —H. In some embodiments, two or more R5s are connected to the same carbon atom, and at least one is not —H. In some embodiments, R5s is not —H. In some embodiments, R5s is —F. In some embodiments, R5s is —Cl. In some embodiments, R5s is —Br. In some embodiments, R5s is —I. In some embodiments, R5s is —CN. In some embodiments, R5s is —N. In some embodiments, R5s is —NO. In some embodiments, R5s is —NO2. In some embodiments, R5s is -L-R′. In some embodiments, R5s is —R′. In some embodiments, R5s is -L-OR′. In some embodiments, R5s is —OR′. In some embodiments, R5s is -L-SR′. In some embodiments, R5s is —SR′. In some embodiments, R5s is L-L-N(R′)2. In some embodiments, R5s is —N(R′)2. In some embodiments, R5s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R5s is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R5s is —OH. In some embodiments, R5s is -OMe. In some embodiments, R5s is -MOE. In some embodiments, R5s is hydrogen.


In some embodiments, R5s is optionally substituted C1-6 aliphatic as described in the present disclosure. e.g., C1-6 aliphatic embodiments described for R or other variables. In some embodiments, R5s is optionally substituted C1-6 alkyl. In some embodiments, R5s is optionally substituted methyl, wherein each substituent, if any, independently comprises no more than one carbon atoms. In some embodiments, R5s is optionally substituted methyl, wherein each substituent, if any, independently is halogen. In some embodiments, R5s is methyl. In some embodiments, R5s is ethyl.


In some embodiments, R5s is a protected hydroxyl group suitable for oligonucleotide synthesis. In some embodiments, R5s is —OR′, wherein R′ is optionally substituted C1-6 aliphatic. In some embodiments, R5s is DMTrO-. Example protecting groups are widely known for use in accordance with the present disclosure. For additional examples, see Greene. T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991, and U.S. Pat. Nos. 9,695,211, 9,605,019, 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, and/or WO 2017/210647, protecting groups of each of which are hereby incorporated by reference.


In some embodiments, two or more of R1s, R2s, R3s, R4s, and R5s are R and can be taken together with intervening atom(s) to form a ring as described in the present disclosure. In some embodiments, R2s and R4s are R taken together to form a ring, and a sugar moiety can be a bicyclic sugar moiety, e.g., a LNA sugar moiety.


In some embodiments, Ls is L as described in the present disclosure.


In some embodiments, Ls is —C(R5s)2—, wherein each R is independently as described in the present disclosure. In some embodiments, one of R5s is H and the other is not H. In some embodiments, none of R5s is H. In some embodiments, Ls is —CHR5s-, wherein each R5s is independently as described in the present disclosure. In some embodiments, the carbon atom of —C(R5s)2- is stereorandom. In some embodiments, it is of R configuration. In some embodiments, it is of S configuration. In some embodiments, —C(R5s)2- is 5′-C, optionally substituted, of a sugar moiety. In some embodiments, the C of —C(R5s)2- is of R configuration. In some embodiments, the C of —C(R5s)2-is of S configuration. As described in the present disclosure, in some embodiments, R is optionally substituted C1-6 aliphatic; in some embodiments, R5s is methyl.


In some embodiments, provided compounds comprise one or more bivalent or multivalent optionally substituted rings, e.g., Ring A, CyL, those formed by two or more R groups (R and (combinations of) variables that can be R) taken together, etc. In some embodiments, a ring is a cycloaliphatic, aryl, heteroaryl, or heterocyclyl group as described for R but bivalent or multivalent. As appreciated by those skilled in the art, ring moieties described for one variable, e.g., Ring A, can also be applicable to other variables, e.g., CyL, if requirements of the other variables, e.g., number of heteroatoms, valence, etc., are satisfied. Example rings are extensively described in the present disclosure.


In some embodiments, a ring, e.g., in Ring A, R, etc. which is optionally substituted, is a 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, a ring can be of any size within its range, e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20-membered.


In some embodiments, a ring is monocyclic. In some embodiments, a ring is saturated and monocyclic. In some embodiments, a ring is monocyclic and partially saturated. In some embodiments, a ring is monocyclic and aromatic.


In some embodiments, a ring is bicyclic. In some embodiments, a ring is polycyclic. In some embodiments, a bicyclic or polycyclic ring comprises two or more monocyclic ring moieties, each of which can be saturated, partially saturated, or aromatic, and each which can contain no or 1-10 heteroatoms. In some embodiments, a bicyclic or polycyclic ring comprises a saturated monocyclic ring. In some embodiments, a bicyclic or polycyclic ring comprises a saturated monocyclic ring containing no heteroatoms. In some embodiments, a bicyclic or polycyclic ring comprises a saturated monocyclic ring comprising one or more heteroatoms. In some embodiments, a bicyclic or polycyclic ring comprises a partially saturated monocyclic ring. In some embodiments, a bicyclic or polycyclic ring comprises a partially saturated monocyclic ring containing no heteroatoms. In some embodiments, a bicyclic or polycyclic ring comprises a partially saturated monocyclic ring comprising one or more heteroatoms. In some embodiments, a bicyclic or polycyclic ring comprises an aromatic monocyclic ring. In some embodiments, a bicyclic or polycyclic ring comprises an aromatic monocyclic ring containing no heteroatoms. In some embodiments, a bicyclic or polycyclic ring comprises an aromatic monocyclic ring comprising one or more heteroatoms. In some embodiments, a bicyclic or polycyclic ring comprises a saturated ring and a partially saturated ring, each of which independently contains one or more heteroatoms. In some embodiments, a bicyclic ring comprises a saturated ring and a partially saturated ring, each of which independently comprises no, or one or more heteroatoms. In some embodiments, a bicyclic ring comprises an aromatic ring and a partially saturated ring, each of which independently comprises no, or one or more heteroatoms. In some embodiments, a polycyclic ring comprises a saturated ring and a partially saturated ring, each of which independently comprises no, or one or more heteroatoms. In some embodiments, a polycyclic ring comprises an aromatic ring and a partially saturated ring, each of which independently comprises no, or one or more heteroatoms. In some embodiments, a polycyclic ring comprises an aromatic ring and a saturated ring, each of which independently comprises no, or one or more heteroatoms. In some embodiments, a polycyclic ring comprises an aromatic ring, a saturated ring, and a partially saturated ring, each of which independently comprises no, or one or more heteroatoms. In some embodiments, a ring comprises at least one heteroatom. In some embodiments, a ring comprises at least one nitrogen atom. In some embodiments, a ring comprises at least one oxygen atom. In some embodiments, a ring comprises at least one sulfur atom.


As appreciated by those skilled in the art in accordance with the present disclosure, a ring is typically optionally substituted. In some embodiments, a ring is unsubstituted. In some embodiments, a ring is substituted. In some embodiments, a ring is substituted on one or more of its carbon atoms. In some embodiments, a ring is substituted on one or more of its heteroatoms. In some embodiments, a ring is substituted on one or more of its carbon atoms, and one or more of its heteroatoms. In some embodiments, two or more substituents can be located on the same ring atom. In some embodiments, all available ring atoms are substituted. In some embodiments, not all available ring atoms are substituted. In some embodiments, in provided structures where rings are indicated to be connected to other structures




embedded image


“optionally substituted” is to mean that, besides those structures already connected, remaining substitutable ring positions, if any, are optionally substituted.


In some embodiments, a ring is a bivalent or multivalent C3-30 cycloaliphatic ring. In some embodiments, a ring is a bivalent or multivalent C3-20 cycloaliphatic ring. In some embodiments, a ring is a bivalent or multivalent C3-10 cycloaliphatic ring. In some embodiments, a ring is a bivalent or multivalent 3-30 membered saturated or partially unsaturated carbocyclic ring. In some embodiments, a ring is a bivalent or multivalent 3-7 membered saturated or partially unsaturated carbocyclic ring. In some embodiments, a ring is a bivalent or multivalent 3-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, a ring is a bivalent or multivalent 4-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, a ring is a bivalent or multivalent 5-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, a ring is a bivalent or multivalent 6-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, a ring is a bivalent or multivalent 7-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, a ring is a bivalent or multivalent cyclohexyl ring. In some embodiments, a ring is a bivalent or multivalent cyclopentyl ring. In some embodiments, a ring is a bivalent or multivalent cyclobutyl ring. In some embodiments, a ring is a bivalent or multivalent cyclopropyl ring.


In some embodiments, a ring is a bivalent or multivalent C6-30 aryl ring. In some embodiments, a ring is a bivalent or multivalent phenyl ring.


In some embodiments, a ring is a bivalent or multivalent 8-10 membered bicyclic saturated, partially unsaturated or aryl ring. In some embodiments, a ring is a bivalent or multivalent 8-10 membered bicyclic saturated ring. In some embodiments, a ring is a bivalent or multivalent 8-10 membered bicyclic partially unsaturated ring. In some embodiments, a ring is a bivalent or multivalent 8-10 membered bicyclic aryl ring. In some embodiments, a ring is a bivalent or multivalent naphthyl ring.


In some embodiments, a ring is a bivalent or multivalent 5-30 membered heteroaryl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, a ring is a bivalent or multivalent 5-30 membered heteroaryl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 5-30 membered heteroaryl ring having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, a ring is a bivalent or multivalent 5-30 membered heteroaryl ring having 1-5 heteroatoms independently selected from oxygen, nitrogen, and sulfur.


In some embodiments, a ring is a bivalent or multivalent 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 5-6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, sulfur, and oxygen.


In some embodiments, a ring is a bivalent or multivalent 5-membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen or sulfur. In some embodiments, a ring is a bivalent or multivalent 6-membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In certain embodiments, a ring is a bivalent or multivalent 8-10 membered bicyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 5,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 5,6-fused heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, a ring is a bivalent or multivalent 6,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, a ring is a bivalent or multivalent 3-30 membered heterocyclic ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, a ring is a bivalent or multivalent 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, a ring is a bivalent or multivalent 5-7 membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, a ring is a bivalent or multivalent 5-6 membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, a ring is a bivalent or multivalent 5-membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, a ring is a bivalent or multivalent 6-membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, a ring is a bivalent or multivalent 7-membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 3-membered heterocyclic ring having one heteroatom selected from nitrogen, oxygen or sulfur. In some embodiments, a ring is a bivalent or multivalent 4-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 5-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 6-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 7-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, a ring is a bivalent or multivalent 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, a ring is a bivalent or multivalent 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, a ring is a bivalent or multivalent 5,6-fused heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, a ring is a bivalent or multivalent 6,6-fused heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, a ring formed by two or more groups taken together, which is typically optionally substituted, is a monocyclic saturated 5-7 membered ring having no additional heteroatoms in addition to intervening heteroatoms, if any. In some embodiments, a ring formed by two or more groups taken together is a monocyclic saturated 5-membered ring having no additional heteroatoms in addition to intervening heteroatoms, if any. In some embodiments, a ring formed by two or more groups taken together is a monocyclic saturated 6-membered ring having no additional heteroatoms in addition to intervening heteroatoms, if any. In some embodiments, a ring formed by two or more groups taken together is a monocyclic saturated 7-membered ring having no additional heteroatoms in addition to intervening heteroatoms, if any.


In some embodiments, a ring formed by two or more groups taken together is a bicyclic, saturated, partially unsaturated, or aryl 5-30 membered ring having, in addition to the intervening heteroatoms, if any, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, a ring formed by two or more groups taken together is a bicyclic, saturated, partially unsaturated, or aryl 5-30 membered ring having, in addition to the intervening heteroatoms, if any, 0-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, a ring formed by two or more groups taken together is a bicyclic and saturated 8-10 membered bicyclic ring having no additional heteroatoms in addition to intervening heteroatoms, if any. In some embodiments, a ring formed by two or more groups taken together is a bicyclic and saturated 8-membered bicyclic ring having no additional heteroatoms in addition to intervening heteroatoms, if any. In some embodiments, a ring formed by two or more groups taken together is a bicyclic and saturated 9-membered bicyclic ring having no additional heteroatoms in addition to intervening heteroatoms, if any. In some embodiments, a ring formed by two or more groups taken together is a bicyclic and saturated 10-membered bicyclic ring having no additional heteroatoms in addition to intervening heteroatoms, if any. In some embodiments, a ring formed by two or more groups taken together is bicyclic and comprises a 5-membered ring fused to a 5-membered ring. In some embodiments, a ring formed by two or more groups taken together is bicyclic and comprises a 5-membered ring fused to a 6-membered ring. In some embodiments, the 5-membered ring comprises one or more intervening nitrogen, phosphorus and oxygen atoms as ring atoms. In some embodiments, a ring formed by two or more groups taken together comprises a ring system having the backbone structure of




embedded image


In some embodiments, a ring formed by two or more groups taken together is a polycyclic, saturated, partially unsaturated, or aryl 3-30 membered ring having, in addition to the intervening heteroatoms, if any, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, a ring formed by two or more groups taken together is a polycyclic, saturated, partially unsaturated, or aryl 3-30 membered ring having, in addition to the intervening heteroatoms, if any, 0-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur.


In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 5-10 membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 5-9 membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 5-8 membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 5-7 membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 5-6 membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms.


In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 5-membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 6-membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 7-membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 8-membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 9-membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 10-membered monocyclic ring whose ring atoms comprise one or more intervening nitrogen, phosphorus and/or oxygen atoms.


In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 5-membered ring whose ring atoms consist of carbon atoms and the intervening nitrogen, phosphorus and oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 6-membered ring whose ring atoms consist of carbon atoms and the intervening nitrogen, phosphorus and oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 7-membered ring whose ring atoms consist of carbon atoms and the intervening nitrogen, phosphorus and oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 8-membered ring whose ring atoms consist of carbon atoms and the intervening nitrogen, phosphorus and oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 9-membered ring whose ring atoms consist of carbon atoms and the intervening nitrogen, phosphorus and oxygen atoms. In some embodiments, a ring formed by two or more groups taken together is monocyclic, bicyclic or polycyclic and comprises a 10-membered ring whose ring atoms consist of carbon atoms and the intervening nitrogen, phosphorus and oxygen atoms.


In some embodiments, rings described herein are unsubstituted. In some embodiments, rings described herein are substituted. In some embodiments, substituents are selected from those described in example compounds provided in the present disclosure.


In some embodiments, each BA is independently an optionally substituted group selected from C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and C3-30 heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus, boron and silicon:


each Ring A is independently an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-I, II-a-2, II-b-1, II-b-2, I-c-1, II-c-2, II-d-1, II-d-2, or a salt form there, wherein each variable is independently as described in the present disclosure.


In some embodiments, each BA is independently an optionally substituted C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein the heteroaryl comprises one or more heteroatoms selected from oxygen and nitrogen:


each Ring A is independently an optionally substituted 5-10 membered monocyclic or bicyclic saturated ring having 0-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, wherein the ring comprises at least one oxygen atom; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, I-c-1, II-c-2, II-d-1, II-d-2, or salt form thereof, wherein each variable is independently as described in the present disclosure.


In some embodiments, each BA is independently an optionally substituted A, T, C, G, or U, or an optionally substituted tautomer of A, T, C, G, or U;


each Ring A is independently an optionally substituted 5-7 membered monocyclic or bicyclic saturated ring having one or more oxygen atoms; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, 11, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or salt form thereof, wherein each variable is independently as described in the present disclosure.


In some embodiments, each BA is independently an optionally substituted or protected nucleobase selected from adenine, cytosine, guanosine, thymine, and uracil;


each Ring A is independently an optionally substituted 5-7 membered monocyclic or bicyclic saturated ring having one or more oxygen atoms; and


each LP independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, I-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or salt form thereof, wherein each variable is independently as described in the present disclosure.


In some embodiments, R5s-Ls-is —CH2OH. In some embodiments, R5s-Ls- is —CH(R5s)—OH, wherein R5s is as described in the present disclosure.


In some embodiments, BA is an optionally substituted group selected from C3-30 cycloaliphatic, C6-30 aryl, C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C3-30 heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, a natural nucleobase moiety, and a modified nucleobase moiety. In some embodiments, BA is an optionally substituted group selected from C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C3-30 heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, a natural nucleobase moiety, and a modified nucleobase moiety. In some embodiments, BA is an optionally substituted group selected from C3-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, a natural nucleobase moiety, and a modified nucleobase moiety. In some embodiments, BA is optionally substituted C5-30 heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, BA is optionally substituted natural nucleobases and tautomers thereof. In some embodiments, BA is protected natural nucleobases and tautomers thereof. Various nucleobase protecting groups for oligonucleotide synthesis are known and can be utilized in accordance with the present disclosure. In some embodiments, BA is an optionally substituted nucleobase selected from adenine, cytosine, guanosine, thymine, and uracil, and tautomers thereof. In some embodiments, BA is an optionally protected nucleobase selected from adenine, cytosine, guanosine, thymine, and uracil, and tautomers thereof.


In some embodiments, BA is optionally substituted C3-30 cycloaliphatic. In some embodiments, BA is optionally substituted C6-30 aryl. In some embodiments, BA is optionally substituted C3-30 heterocyclyl. In some embodiments, BA is optionally substituted C5-30 heteroaryl. In some embodiments, BA is an optionally substituted natural base moiety. In some embodiments, BA is an optionally substituted modified base moiety. BA is an optionally substituted group selected from C3-30 cycloaliphatic, C6-30 aryl, C3-30 heterocyclyl, and C5-30 heteroaryl. In some embodiments, BA is an optionally substituted group selected from C3-30 cycloaliphatic, C6-30 aryl, C3-30 heterocyclyl, C5-30 heteroaryl, and a natural nucleobase moiety.


In some embodiments, BA is connected through an aromatic ring. In some embodiments, BA is connected through a heteroatom. In some embodiments, BA is connected through a ring heteroatom of an aromatic ring. In some embodiments, BA is connected through a ring nitrogen atom of an aromatic ring.


In some embodiments, BA is a natural nucleobase moiety. In some embodiments, BA is an optionally substituted natural nucleobase moiety. In some embodiments, BA is a substituted natural nucleobase moiety. In some embodiments, BA is optionally substituted, or an optionally substituted tautomer of, A, T, C, U, or G. In some embodiments, BA is natural nucleobase A, T, C, U, or G. In some embodiments, BA is an optionally substituted group selected from natural nucleobases A, T, C, U, and G.


In some embodiments, BA is an optionally substituted purine base residue. In some embodiments, BA is a protected purine base residue. In some embodiments, BA is an optionally substituted adenine residue. In some embodiments, BA is a protected adenine residue. In some embodiments, BA is an optionally substituted guanine residue. In some embodiments, BA is a protected guanine residue. In some embodiments, BA is an optionally substituted cytosine residue. In some embodiments, BA is a protected cytosine residue. In some embodiments, BA is an optionally substituted thymine residue. In some embodiments, BA is a protected thymine residue. In some embodiments, BA is an optionally substituted uracil residue. In some embodiments, BA is a protected uracil residue. In some embodiments, BA is an optionally substituted 5-methylcytosine residue. In some embodiments, BA is a protected 5-methylcytosine residue.


In some embodiments, s is 0-20. In some embodiments, s is 1-20. In some embodiments, s is 1-5. In some embodiments, s is 1. In some embodiments, s is 2. In some embodiments, s is 3. In some embodiments, s is 4. In some embodiments, s is 5. In some embodiments, s is 6. In some embodiments, s is 7. In some embodiments, s is 8. In some embodiments, s is 9. In some embodiments, s is 10. In some embodiments, s is 11. In some embodiments, s is 12. In some embodiments, s is 13. In some embodiments, s is 14. In some embodiments, s is 15. In some embodiments, s is 16. In some embodiments, s is 17. In some embodiments, s is 18. In some embodiments, s is 19. In some embodiments, s is 20.


In some embodiments, LP is an internucleotidic linkage. In some embodiments, LP is an internucleotidic linkage of formula I, I-a, I-b. I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1. II-a-2. II-b-1, II-b-2, II-c-1, II-c-2,11-d-1,1-d-2, or a salt form thereof. In some embodiments, LP is a natural phosphate linkage. In some embodiments, LP is a non-negatively charged internucleotidic linkage. In some embodiments, LP is a neutral internucleotidic linkage. In some embodiments, LP is a negatively-charged internucleotidic linkage. In some embodiments, LP is a phosphorothioate internucleotidic linkage. In some embodiments, LP is a chirally controlled internucleotidic linkage.


In some embodiments, z is 1-1000. In some embodiments, z+1 is an oligonucleotide length as described in the present disclosure. In some embodiments, z is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 to 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900 or 1000. In some embodiments, z is 10-100. In some embodiments, z is 10-50. In some embodiments, z is 15-100. In some embodiments, z is 20-50. In some embodiments, z is no less than 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19. In some embodiments, z is no less than 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14. In some embodiments, z is no more than 50, 60, 70, 80, 90, 100, 150, or 200. In some embodiments, z is 5-50, 10-50, 14-50, 14-45, 1440, 14-35, 14-30, 14-25, 14-100, 14-150, 14-200, 14-250, 14-300, 15-50, 1545, 1540, 15-35, 15-30, 15-25, 15-100, 15-150, 15-200, 15-250, 15-300, 16-50, 1645, 1640, 16-35, 16-30, 16-25, 16-100, 16-150, 16-200, 16-250, 16-300, 17-50, 17-45, 1740, 17-35, 17-30, 17-25, 17-100, 17-150, 17-200, 17-250, 17-300, 18-50, 1845, 1840, 18-35, 18-30, 18-25, 18-100, 18-150, 18-200, 18-250, 18-300, 19-50, 1945, 1940, 19-35, 19-30, 19-25, 19-100, 19-150, 19-200, 19-250, or 19-300. In some embodiments, z is 10. In some embodiments, z is 11. In some embodiments, z is 12. In some embodiments, z is 13. In some embodiments, z is 14. In some embodiments, z is 15. In some embodiments, z is 16. In some embodiments, z is 17. In some embodiments, z is 18. In some embodiments, z is 19. In some embodiments, z is 20. In some embodiments, z is 21. In some embodiments, z is 22. In some embodiments, z is 23. In some embodiments, z is 24. In some embodiments, z is 25. In some embodiments, z is 26. In some embodiments, z is 27. In some embodiments, z is 28. In some embodiments, z is 29. In some embodiments, z is 30. In some embodiments, z is 31. In some embodiments, z is 32. In some embodiments, z is 33. In some embodiments, z is 34.


In some embodiments, L3E is -L- or -L-L-. In some embodiments, L3E is -L-. In some embodiments, L3E is -L-L-. In some embodiments, L3E is a covalent bond. In some embodiments, L3E is a linker used in oligonucleotide synthesis. In some embodiments, L3E is a linker used in solid phase oligonucleotide synthesis. Various types of linkers are known and can be utilized in accordance with the present disclosure. In some embodiments, a linker is a succinate linker (—O—C(O)—CH2—CH2—C(O)—). In some embodiments, a linker is an oxalyl linker (—O—C(O)—C(O)—). In some embodiments, L3E is a succinyl-piperidine linker (SP) linker. In some embodiments, L3E is a succinyl linker. In some embodiments, L3E is a Q-linker. In some embodiments, L3E is —O—.


In some embodiments, R3E is —R′, -L-R′, —OR′, or a solid support. In some embodiments, R3E is —R′ as described in the present disclosure. In some embodiments, R3E is —R as described in the present disclosure. In some embodiments, R3E is hydrogen. In some embodiments, R3E is -L-R′. In some embodiments, R3E is —OR′. In some embodiments, R3E is a support for oligonucleotide synthesis. In some embodiments, R3E is a solid support. In some embodiments, a solid support is a CPG support. In some embodiments, a solid support is a polystyrene support. In some embodiments, R3E is —H. In some embodiments, -L3-R3E is —H. In some embodiments, R3E is —OH. In some embodiments, -L3-R3E is —OH. In some embodiments, R3E is optionally substituted C1-6 aliphatic. In some embodiments, R3E is optionally substituted C1-6 alkyl. In some embodiments, R3E is —OR′. In some embodiments, R3E is —OH. In some embodiments, R3E is —OR′, wherein R′ is not hydrogen. In some embodiments, R3E is —OR′, wherein R′ is optionally substituted C1-6 alkyl. In some embodiments, R3E is a 3′-end cap (e.g., those used in RNAi technologies).


In some embodiments, R3E is a solid support. In some embodiments, R3E is a solid support for oligonucleotide synthesis. Various types of solid support are known and can be utilized in accordance with the present disclosure. In some embodiments, a solid support is HCP. In some embodiments, a solid support is CPG.


In some embodiments, R′ is —R, —C(O)R, —C(O)OR, or —S(O)2R, wherein R is as described in the present disclosure. In some embodiments, R′ is R, wherein R is as described in the present disclosure. In some embodiments, R′ is —C(O)R, wherein R is as described in the present disclosure. In some embodiments, R′ is —C(O)OR, wherein R is as described in the present disclosure. In some embodiments, R′ is —S(O)2R, wherein R is as described in the present disclosure. In some embodiments, R′ is hydrogen. In some embodiments, R′ is not hydrogen. In some embodiments, R′ is R, wherein R is optionally substituted C1-3 aliphatic as described in the present disclosure. In some embodiments, R′ is R, wherein R is optionally substituted C1-20 heteroaliphatic as described in the present disclosure. In some embodiments, R′ is R, wherein R is optionally substituted C6-20 aryl as described in the present disclosure. In some embodiments, R′ is R, wherein R is optionally substituted C6-20 arylaliphatic as described in the present disclosure. In some embodiments, R′ is R, wherein R is optionally substituted C6-20 arylheteroaliphatic as described in the present disclosure. In some embodiments, R′ is R, wherein R is optionally substituted 5-20 membered heteroaryl as described in the present disclosure. In some embodiments, R′ is R, wherein R is optionally substituted 3-20 membered heterocyclyl as described in the present disclosure. In some embodiments, two or more R′ are R, and are optionally and independently taken together to form an optionally substituted ring as described in the present disclosure.


In some embodiments, each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, 5-30 membered heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and 3-30 membered heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, or


two R groups are optionally and independently taken together to form a covalent bond, or:


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon; or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, 5-30 membered heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and 3-30 membered heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, or


two R groups are optionally and independently taken together to form a covalent bond, or:


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom. 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, each R is independently —H, or an optionally substituted group selected from C1-20 aliphatic, C1-20 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. C6-20 aryl, C6-20 arylaliphatic, C6-20 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, 5-20 membered heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and 3-20 membered heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, or


two R groups are optionally and independently taken together to form a covalent bond, or:


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-20 membered monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-20 membered monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, 5-30 membered heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and 3-30 membered heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, each R is independently —H, or an optionally substituted group selected from C1-20 aliphatic, C1-20 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C6-20 aryl, C6-20 arylaliphatic, C6-20 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, 5-20 membered heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and 3-20 membered heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, R is hydrogen. In some embodiments, R is not hydrogen. In some embodiments, R is an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, C6-30 aryl, a 5-30 membered heteroaryl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, and a 3-30 membered heterocyclic ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, R is hydrogen or an optionally substituted group selected from C1-20 aliphatic, phenyl, a 3-7 membered saturated or partially unsaturated carbocyclic ring, an 8-10 membered bicyclic saturated, partially unsaturated or aryl ring, a 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, a 4-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur, a 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur, or an 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is optionally substituted C1-30 aliphatic. In some embodiments, R is optionally substituted C1-20 aliphatic. In some embodiments, R is optionally substituted C1-15 aliphatic. In some embodiments, R is optionally substituted C1-10 aliphatic. In some embodiments, R is optionally substituted C1-6 aliphatic. In some embodiments, R is optionally substituted C1-6 alkyl. In some embodiments, R is optionally substituted hexyl, pentyl, butyl, propyl, ethyl or methyl. In some embodiments, R is optionally substituted hexyl. In some embodiments, R is optionally substituted pentyl. In some embodiments, R is optionally substituted butyl. In some embodiments, R is optionally substituted propyl. In some embodiments, R is optionally substituted ethyl. In some embodiments, R is optionally substituted methyl. In some embodiments, R is hexyl. In some embodiments, R is pentyl. In some embodiments, R is butyl. In some embodiments, R is propyl. In some embodiments, R is ethyl. In some embodiments, R is methyl. In some embodiments, R is isopropyl. In some embodiments, R is n-propyl. In some embodiments, R is tert-butyl. In some embodiments, R is sec-butyl. In some embodiments, R is n-butyl. In some embodiments, R is —(CH2)2CN.


In some embodiments, R is optionally substituted C3-30 cycloaliphatic. In some embodiments, R is optionally substituted C3-20 cycloaliphatic. In some embodiments, R is optionally substituted C3-10 cycloaliphatic. In some embodiments, R is optionally substituted cyclohexyl. In some embodiments, R is cyclohexyl. In some embodiments, R is optionally substituted cyclopentyl. In some embodiments, R is cyclopentyl. In some embodiments, R is optionally substituted cyclobutyl. In some embodiments, R is cyclobutyl. In some embodiments, R is optionally substituted cyclopropyl. In some embodiments, R is cyclopropyl.


In some embodiments, R is an optionally substituted 3-30 membered saturated or partially unsaturated carbocyclic ring. In some embodiments, R is an optionally substituted 3-7 membered saturated or partially unsaturated carbocyclic ring. In some embodiments, R is an optionally substituted 3-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, R is an optionally substituted 4-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, R is an optionally substituted 5-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, R is an optionally substituted 6-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, R is an optionally substituted 7-membered saturated or partially unsaturated carbocyclic ring. In some embodiments, R is optionally substituted cycloheptyl. In some embodiments, R is cycloheptyl. In some embodiments, R is optionally substituted cyclohexyl. In some embodiments, R is cyclohexyl. In some embodiments, R is optionally substituted cyclopentyl. In some embodiments, R is cyclopentyl. In some embodiments, R is optionally substituted cyclobutyl. In some embodiments, R is cyclobutyl. In some embodiments, R is optionally substituted cyclopropyl. In some embodiments, R is cyclopropyl.


In some embodiments, when R is or comprises a ring structure, e.g., cycloaliphatic, cycloheteroaliphatic, aryl, heteroaryl, etc., the ring structure can be monocyclic, bicyclic or polycyclic. In some embodiments, R is or comprises a monocyclic structure. In some embodiments, R is or comprises a bicyclic structure. In some embodiments, R is or comprises a polycyclic structure.


In some embodiments, R is optionally substituted C3-30 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is optionally substituted C1-20 heteroaliphatic having 1-10 heteroatoms. In some embodiments, R is optionally substituted C1-20 heteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus or silicon, optionally including one or more oxidized forms of nitrogen, sulfur, phosphorus or selenium. In some embodiments, R is optionally substituted C1-30 heteroaliphatic comprising 1-10 groups independently selected from




embedded image


In some embodiments, R is optionally substituted C6-30 aryl. In some embodiments, R is optionally substituted phenyl. In some embodiments, R is phenyl. In some embodiments, R is substituted phenyl.


In some embodiments, R is an optionally substituted 8-10 membered bicyclic saturated, partially unsaturated or aryl ring. In some embodiments, R is an optionally substituted 8-10 membered bicyclic saturated ring. In some embodiments, R is an optionally substituted 8-10 membered bicyclic partially unsaturated ring. In some embodiments, R is an optionally substituted 8-10 membered bicyclic aryl ring. In some embodiments, R is optionally substituted naphthyl.


In some embodiments, R is optionally substituted 5-30 membered heteroaryl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is optionally substituted 5-30 membered heteroaryl ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, R is optionally substituted 5-30 membered heteroaryl ring having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is optionally substituted 5-30 membered heteroaryl ring having 1-5 heteroatoms independently selected from oxygen, nitrogen, and sulfur.


In some embodiments, R is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is a substituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an unsubstituted 5-6 membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5-6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, sulfur, and oxygen. In some embodiments, R is a substituted 5-6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an unsubstituted 5-6 membered monocyclic heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, sulfur, and oxygen.


In some embodiments, R is an optionally substituted 5-membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen or sulfur. In some embodiments, R is an optionally substituted 6-membered monocyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is an optionally substituted 5-membered monocyclic heteroaryl ring having one heteroatom selected from nitrogen, oxygen, and sulfur. In some embodiments, R is selected from optionally substituted pyrrolyl, furanyl, or thienyl.


In some embodiments, R is an optionally substituted 5-membered heteroaryl ring having two heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 5-membered heteroaryl ring having one nitrogen atom, and an additional heteroatom selected from sulfur or oxygen. Example R groups include but are not limited to optionally substituted pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl or isoxazolyl.


In some embodiments, R is an optionally substituted 5-membered heteroaryl ring having three heteroatoms independently selected from nitrogen, oxygen, and sulfur. Example R groups include but are not limited to optionally substituted triazolyl, oxadiazolyl or thiadiazolyl.


In some embodiments, R is an optionally substituted 5-membered heteroaryl ring having four heteroatoms independently selected from nitrogen, oxygen, and sulfur. Example R groups include but are not limited to optionally substituted tetrazolyl, oxatriazolyl and thiatriazolyl.


In some embodiments, R is an optionally substituted 6-membered heteroaryl ring having 1-4 nitrogen atoms. In some embodiments, R is an optionally substituted 6-membered heteroaryl ring having 1-3 nitrogen atoms. In other embodiments. R is an optionally substituted 6-membered heteroaryl ring having 1-2 nitrogen atoms. In some embodiments, R is an optionally substituted 6-membered heteroaryl ring having four nitrogen atoms. In some embodiments, R is an optionally substituted 6-membered heteroaryl ring having three nitrogen atoms. In some embodiments, R is an optionally substituted 6-membered heteroaryl ring having two nitrogen atoms. In certain embodiments, R is an optionally substituted 6-membered heteroaryl ring having one nitrogen atom. Example R groups include but are not limited to optionally substituted pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, or tetrazinyl.


In certain embodiments, R is an optionally substituted 8-10 membered bicyclic heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In other embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having b heteroatom independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted indolyl. In some embodiments, R is an optionally substituted azabicyclo[3.2.1]octanyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted azaindolyl. In some embodiments, R is an optionally substituted benzimidazolyl. In some embodiments, R is an optionally substituted benzothiazolyl. In some embodiments, R is an optionally substituted benzoxazolyl. In some embodiments, R is an optionally substituted indazolyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having two heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having three heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having four heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having five heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having one heteroatom independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted indolyl. In some embodiments, R is optionally substituted benzofuranyl. In some embodiments, R is optionally substituted benzo[b]thienyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having two heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted azaindolyl. In some embodiments, R is optionally substituted benzimidazolyl. In some embodiments, R is optionally substituted benzothiazolyl. In some embodiments, R is optionally substituted benzoxazolyl. In some embodiments, R is an optionally substituted indazolyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having three heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted oxazolopyridiyl, thiazolopyridinyl or imidazopyridinyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having four heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted purinyl, oxazolopyrimidinyl, thiazolopyrimidinyl, oxazolopyrazinyl, thiazolopyrazinyl, imidazopyrazinyl, oxazolopyridazinyl, thiazolopyridazinyl or imidazopyridazinyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having five heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is optionally substituted 1,4-dihydropyrrolo[3,2-b]pyrrolyl, 4H-furo[3,2-b]pyrrolyl, 4H-thieno[3,2-b]pyrrolyl, furo[3,2-b]furanyl, thieno[3,2-b]furanyl, thieno[3,2-b]thienyl, 1H-pyrrolo[1,2-a]imidazolyl, pyrrolo[2,1-b]oxazolyl or pyrrolo[2,1-b]thiazolyl. In some embodiments, R is optionally substituted dihydropyrroloimidazolyl, 1H-furoimidazolyl, 1H-thienoimidazolyl, furooxazolyl, furoisoxazolyl, 4H-pyrrolooxazolyl, 4H-pyrroloisoxazolyl, thienooxazolyl, thienoisoxazolyl, 4H-pyrrolothiazolyl, furothiazolyl, thienothiazolyl, 1H-imidazoimidazolyl, imidazooxazolyl or imidazo[5,1-b]thiazolyl.


In certain embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In other embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having 1 heteroatom independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted quinolinyl. In some embodiments, R is an optionally substituted isoquinolinyl. In some embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted quinazoline or a quinoxaline.


In some embodiments, R is 3-30 membered heterocyclic ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is 3-30 membered heterocyclic ring having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, R is 3-30 membered heterocyclic ring having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is 3-30 membered heterocyclic ring having 1-5 heteroatoms independently selected from oxygen, nitrogen, and sulfur.


In some embodiments, R is an optionally substituted 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is a substituted 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an unsubstituted 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 5-7 membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 5-6 membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 5-membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 6-membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 7-membered partially unsaturated monocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted 3-membered heterocyclic ring having one heteroatom selected from nitrogen, oxygen or sulfur. In some embodiments, R is optionally substituted 4-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted 5-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted 6-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted 7-membered heterocyclic ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is an optionally substituted 3-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 4-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 6-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 7-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is an optionally substituted 4-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than I heteroatom, wherein the heteroatom is nitrogen. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is oxygen. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is sulfur. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having 2 oxygen atoms. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having 2 nitrogen atoms. In some embodiments, R is an optionally substituted 4-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is nitrogen. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is oxygen. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is sulfur. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having 2 oxygen atoms. In some embodiments, R is an optionally substituted 4-membered partially unsaturated heterocyclic ring having 2 nitrogen atoms.


In some embodiments, R is an optionally substituted 5-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5-membered partially unsaturated heterocyclic ring having 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom. In some embodiments, R is an optionally substituted 5-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is nitrogen. In some embodiments, R is an optionally substituted 5-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is oxygen. In some embodiments, R is an optionally substituted 5-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is sulfur. In some embodiments, R is an optionally substituted 5-membered partially unsaturated heterocyclic ring having 2 oxygen atoms. In some embodiments, R is an optionally substituted 5-membered partially unsaturated heterocyclic ring having 2 nitrogen atoms.


In some embodiments, R is an optionally substituted 6-membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 6-membered partially unsaturated heterocyclic ring having 2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments. R is an optionally substituted 6-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom. In some embodiments, R is an optionally substituted 6-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is nitrogen. In some embodiments, R is an optionally substituted 6-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is oxygen. In some embodiments, R is an optionally substituted 6-membered partially unsaturated heterocyclic ring having no more than 1 heteroatom, wherein the heteroatom is sulfur. In some embodiments, R is an optionally substituted 6-membered partially unsaturated heterocyclic ring having 2 oxygen atoms. In some embodiments, R is an optionally substituted 6-membered partially unsaturated heterocyclic ring having 2 nitrogen atoms.


In certain embodiments, R is a 3-7 membered saturated or partially unsaturated heterocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is optionally substituted oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, oxepaneyl, aziridineyl, azetidineyl, pyrrolidinyl, piperidinyl, azepanyl, thiiranyl, thietanyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, thiepanyl, dioxolanyl, oxathiolanyl, oxazolidinyl, imidazolidinyl, thiazolidinyl, dithiolanyl, dioxanyl, morpholinyl, oxathianyl, piperazinyl, thiomorpholinyl, dithianyl, dioxepanyl, oxazepanyl, oxathiepanyl, dithiepanyl, diazepanyl, dihydrofuranonyl, tetrahydropyranonyl, oxepanonyl, pyrolidinonyl, piperidinonyl, azepanonyl, dihydrothiophenonyl, tetrahydrothiopyranonyl, thiepanonyl, oxazolidinonyl, oxazinanonyl, oxazepanonyl, dioxolanonyl, dioxanonyl, dioxepanonyl, oxathiolinonyl, oxathianonyl, oxathiepanonyl, thiazolidinonyl, thiazinanonyl, thiazepanonyl, imidazolidinonyl, tetrahydropyrimidinonyl, diazepanonyl, imidazolidinedionyl, oxazolidinedionyl, thiazolidinedionyl, dioxolanedionyl, oxathiolanedionyl, piperazinedionyl, morpholinedionyl, thiomorpholinedionyl, tetrahydropyranyl, tetrahydrofuranyl, morpholinyl, thiomorpholinyl, piperidinyl, piperazinyl, pyrrolidinyl, tetrahydrothiophenyl, or tetrahydrothiopyranyl.


In certain embodiments, R is an optionally substituted 5-6 membered partially unsaturated monocyclic ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted tetrahydropyridinyl, dihydrothiazolyl, dihydrooxazolyl, or oxazolinyl group.


In some embodiments, R is an optionally substituted 7-10 membered bicyclic saturated or partially unsaturated heterocyclic ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted indolinyl. In some embodiments, R is optionally substituted isoindolinyl. In some embodiments, R is optionally substituted 1, 2, 3, 4-tetrahydroquinolinyl. In some embodiments, R is optionally substituted 1, 2, 3, 4-tetrahydroisoquinolinyl. In some embodiments, R is an optionally substituted azabicyclo[3.2.1]octanyl.


In some embodiments, R is an optionally substituted 8-10 membered bicyclic heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having two heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted 1,4-dihydropyrrolo[3,2-b]pyrrolyl, 4H-furo[3,2-b]pyrrolyl, 4H-thieno[3,2-b]pyrrolyl, furo[3,2-b]furanyl, thieno[3,2-b]furanyl, thieno[3,2-b]thienyl, 1H-pyrrolo[1,2-a]imidazolyl, pyrrolo[2,1-b]oxazolyl or pyrrolo[2,1-b]thiazolyl. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having three heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted dihydropyrroloimidazolyl, 1H-furoimidazolyl. 1H-thienoimidazolyl, furooxazolyl, furoisoxazolyl, 4H-pyrrolooxazolyl, 4H-pyrroloisoxazolyl, thienooxazolyl, thienoisoxazolyl, 4H-pyrrolothiazolyl, furothiazolyl, thienothiazolyl, 1H-imidazoimidazolyl, imidazooxazolyl or imidazo[5,1-b]thiazolyl. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having four heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having five heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In other embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having one heteroatom independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted indolyl. In some embodiments, R is optionally substituted benzofuranyl. In some embodiments, R is optionally substituted benzo[b]thienyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having two heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted azaindolyl. In some embodiments, R is optionally substituted benzimidazolyl. In some embodiments, R is optionally substituted benzothiazolyl. In some embodiments, R is optionally substituted benzoxazolyl. In some embodiments, R is an optionally substituted indazolyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having three heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted oxazolopyridiyl, thiazolopyridinyl or imidazopyridinyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having four heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted purinyl, oxazolopyrimidinyl, thiazolopyrimidinyl, oxazolopyrazinyl, thiazolopyrazinyl, imidazopyrazinyl, oxazolopyridazinyl, thiazolopyridazinyl or imidazopyridazinyl. In certain embodiments, R is an optionally substituted 5,6-fused heteroaryl ring having five heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In certain embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having 1-5 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having 1-2 heteroatoms independently selected from nitrogen, oxygen, and sulfur. In other embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having one heteroatom selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted quinolinyl. In some embodiments, R is optionally substituted isoquinolinyl. In some embodiments. R is an optionally substituted 6,6-fused heteroaryl ring having two heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted quinazolinyl, phthalazinyl, quinoxalinyl or naphthyridinyl. In some embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having three heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted pyridopyrimidinyl, pyridopyridazinyl, pyridopyrazinyl, or benzotriazinyl. In some embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having four heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, R is optionally substituted pyridotriazinyl, pteridinyl, pyrazinopyrazinyl, pyrazinopyridazinyl, pyridazinopyridazinyl, pyrimidopyridazinyl or pyrimidopyrimidinyl. In some embodiments, R is an optionally substituted 6,6-fused heteroaryl ring having five heteroatoms independently selected from nitrogen, oxygen, and sulfur.


In some embodiments, R is optionally substituted C6-30 arylaliphatic. In some embodiments, R is optionally substituted C6-20 arylaliphatic. In some embodiments, R is optionally substituted C6-10 arylaliphatic. In some embodiments, an aryl moiety of the arylaliphatic has 6, 10, or 14 aryl carbon atoms. In some embodiments, an aryl moiety of the arylaliphatic has 6 aryl carbon atoms. In some embodiments, an aryl moiety of the arylaliphatic has 10 aryl carbon atoms. In some embodiments, an aryl moiety of the arylaliphatic has 14 aryl carbon atoms. In some embodiments, an aryl moiety is optionally substituted phenyl.


In some embodiments, R is optionally substituted C6-30 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is optionally substituted C6-30 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, R is optionally substituted C6-20 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is optionally substituted C6-20 arylheteroaliphatic having 1-10 heteroatoms independently selected from oxygen, nitrogen, and sulfur. In some embodiments, R is optionally substituted C6-10 arylheteroaliphatic having 1-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, R is optionally substituted C6-10 arylheteroaliphatic having 1-5 heteroatoms independently selected from oxygen, nitrogen, and sulfur.


In some embodiments, two R groups are optionally and independently taken together to form a covalent bond. In some embodiments, —C═O is formed. In some embodiments, —C═C— is formed. In some embodiments, —C≡C— is formed.


In some embodiments, two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-20 membered monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-10 membered monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-6 membered monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-3 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-5 membered monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-3 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-20 membered monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted. 3-10 membered monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-10 membered monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-5 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted. 3-6 membered monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-3 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon. In some embodiments, two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-5 membered monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-3 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon.


In some embodiments, heteroatoms in R groups, or in the structures formed by two or more R groups taken together, are selected from oxygen, nitrogen, and sulfur. In some embodiments, a formed ring is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20-membered. In some embodiments, a formed ring is saturated. In some embodiments, a formed ring is partially saturated. In some embodiments, a formed ring is aromatic. In some embodiments, a formed ring comprises a saturated, partially saturated, or aromatic ring moiety. In some embodiments, a formed ring comprises 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 aromatic ring atoms. In some embodiments, a formed contains no more than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 aromatic ring atoms. In some embodiments, aromatic ring atoms are selected from carbon, nitrogen, oxygen and sulfur.


In some embodiments, a ring formed by two or more R groups (or two or more groups selected from R and variables that can be R) taken together is a C3-30 cycloaliphatic, C30 aryl, 5-30 membered heteroaryl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, or 3-30 membered heterocyclyl having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus and silicon, ring as described for R, but bivalent or multivalent.


As appreciated by those skilled in the art, embodiments of R described in the present disclosure can also independently be embodiments for variables that can be R.


In some embodiments, a is 1-100. In some embodiments, a is 1-50. In some embodiments, a is 1-40. In some embodiments, a is 1-30. In some embodiments, a is 1-20. In some embodiments, a is 1-15. In some embodiments, a is 1-10. In some embodiments, a is 1-9. In some embodiments, a is 1-8. In some embodiments, a is 1-7. In some embodiments, a is 1-6. In some embodiments, a is 1-5. In some embodiments, a is 1-4. In some embodiments, a is 1-3. In some embodiments, a is 1-2. In some embodiments, a is 1. In some embodiments, a is 2. In some embodiments, a is 3. In some embodiments, a is 4. In some embodiments, a is 5. In some embodiments, a is 6. In some embodiments, a is 7. In some embodiments, a is 8. In some embodiments, a is 9. In some embodiments, a is 10. In some embodiments, a is more than 10.


In some embodiments, b is 1-100. In some embodiments, b is 1-50. In some embodiments, b is 1-40. In some embodiments, b is 1-30. In some embodiments, b is 1-20. In some embodiments, b is 1-15. In some embodiments, b is 1-10. In some embodiments, b is 1-9. In some embodiments, b is 1-8. In some embodiments, b is 1-7. In some embodiments, b is 1-6. In some embodiments, b is 1-5. In some embodiments, b is 1-4. In some embodiments, b is 1-3. In some embodiments, b is 1-2. In some embodiments, b is 1. In some embodiments, b is 2. In some embodiments, b is 3. In some embodiments, b is 4. In some embodiments, b is 5. In some embodiments, b is 6. In some embodiments, b is 7. In some embodiments, b is 8. In some embodiments, b is 9. In some embodiments, b is 10. In some embodiments, b is 1. In some embodiments, b is 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or more.


In some embodiments, LLD is L. In some embodiments, LLD- is bivalent LM.


In some embodiments, LM is -LM1-LM2-LM3- as described in the present disclosure. In some embodiments, LM is LM1 as described in the present disclosure. In some embodiments, LM is LM2 as described in the present disclosure. In some embodiments, LM is LM3 as described in the present disclosure. In some embodiments, LM is L as described in the present disclosure.


In some embodiments, LM1 is L. In some embodiments, LM2 is L. In some embodiments, LM3 is L. In some embodiments, LM1 is a covalent bond. In some embodiments, LM2 is a covalent bond. In some embodiments, LM3 is a covalent bond. In some embodiments, LM1 is LM2 as described in the present disclosure. In some embodiments, LM1 is LM3 as described in the present disclosure. In some embodiments, LM2 is LM1 as described in the present disclosure. In some embodiments, LM2 is LM3 as described in the present disclosure. In some embodiments, LM3 is LM1 as described in the present disclosure. In some embodiments, LM3 is LM2 as described in the present disclosure. In some embodiments, LM is LM1 as described in the present disclosure. In some embodiments, LM is LM2 as described in the present disclosure. In some embodiments, LM is LM3 as described in the present disclosure. In some embodiments, LM is LM1-LM2, wherein each of LM1 and LM2 is independently as described in the present disclosure. In some embodiments, LM is LM1-LM3, wherein each of LM1 and LM3 is independently as described in the present disclosure. In some embodiments, LM is LM2-LM3, wherein each of LM2 and LM3 is independently as described in the present disclosure. In some embodiments, LM is LM1-LM2-LM3, wherein each of LM1, LM2 and LM3 is independently as described in the present disclosure.


In some embodiments, LM1 comprises one or more —N(R′)— and one or more —C(O)—. In some embodiments, a linker or LM1 is or comprises




embedded image


wherein nL is 1-8. In some embodiments, a linker or -LM1-LM2-LM3- is




embedded image


or a salt form thereof, wherein nL is 1-8. In some embodiments, a linker or -LM1-LM2-LM3- is




embedded image


or a salt form thereof, wherein:


nL is 1-8.


each amino group independently connects to a moiety; and


the P atom connects to the 5′-OH of the oligonucleotide.


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker, or (R)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the link R, or (RD)b-LM1-LM2-LM3- or comprises




embedded image


In some embodiments, the moiety and the link (RD)b-LM1-LM2-LM3- is or comprises




embedded image


In some embodiments the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the moiety and the linker, or (RD)b-LM1-LM2-LM3-, is or comprises




embedded image


In some embodiments, the linker, or LM1, is or comprise




embedded image


some embodiments, the moiety and linker, or (RD)b-LM1-LM2-LM3-, is or comprises:




embedded image


In some embodiments, the moiety and linker, or (RD)b-LM1-LM2-LM3-, is or comprises:




embedded image


In some embodiments, nL is 1-8. In some embodiments, nL is 1, 2, 3, 4, 5, 6, 7, or 8. In some embodiments, nL is 1. In some embodiments, nL is 2. In some embodiments, nL is 3. In some embodiments, nL is 4. In some embodiments, nL is 5. In some embodiments, nL is 6. In some embodiments, nL is 7. In some embodiments, nL is 8.


In some embodiments, at least one LM is directly bound to a sugar unit of a provided oligonucleotide. In some embodiments, a LM directly binds to a sugar unit incorporates a lipid moiety into an oligonucleotide. In some embodiments, a LM directly binds to a sugar unit incorporates a carbohydrate moiety into an oligonucleotide. In some embodiments, a LM directly binds to a sugar unit incorporates a RLD group into an oligonucleotide. In some embodiments, a LM directly binds to a sugar unit incorporates a RCD group into an oligonucleotide. In some embodiments, LM is directed bound through 5′-OH of an oligonucleotide chain. In some embodiments, LM is directed bound through 3′-OH of an oligonucleotide chain.


In some embodiments, at least one LM is directly bound to an internucleotidic linkage unit of a provided oligonucleotide. In some embodiments, a LM directly binds to an internucleotidic linkage unit incorporates a lipid moiety into an oligonucleotide. In some embodiments, a LM directly binds to an internucleotidic linkage unit incorporates a carbohydrate moiety into an oligonucleotide. In some embodiments, a LM directly binds to an internucleotidic linkage unit incorporates a RLD group into an oligonucleotide. In some embodiments, a LM directly binds to an internucleotidic linkage unit incorporates a RCD group into an oligonucleotide.


In some embodiments, at least one LM is directly bound to a nucleobase unit of a provided oligonucleotide. In some embodiments, a LM directly binds to a nucleobase unit incorporates a lipid moiety into an oligonucleotide. In some embodiments, a LM directly binds to a nucleobase unit incorporates a carbohydrate moiety into an oligonucleotide. In some embodiments, a LM directly binds to a nucleobase unit incorporates a RLD group into an oligonucleotide. In some embodiments, a LM directly binds to a nucleobase unit incorporates a R group into an oligonucleotide.


In some embodiments, LM is bivalent. In some embodiments, LM is multivalent. In some embodiments, LM is




embedded image


wherein LM is directly bond to a nucleobase, for example, as in:




embedded image


In some embodiments, LM is




embedded image


In some embodiments, LM is




embedded image


In some embodiments, LM is




embedded image


In some embodiments, LM is




embedded image


In some embodiments, a linker moiety, e.g., LM, LM1, LM2, LM3, L, Ls, etc., is or comprise




embedded image


In some embodiments, a linker moiety, e.g., LM, LM1, LM2, LM3, L, Ls, etc., is or comprise




embedded image


In some embodiments, RD is a lipid moiety. In some embodiments, RD, is targeting moiety. In some embodiments, RD is a carbohydrate moiety. In some embodiments, RD is a sulfonamide moiety. In some embodiments, RD is an antibody or a fragment thereof. In some embodiments, RD is RLD as described in the present disclosure. In some embodiments, RD is RCD as described in the present disclosure. In some embodiments, RD is RTD as described in the present disclosure.


In some embodiments, a lipid moiety has the structure of RLD. In some embodiments, RLD is optionally substituted C10, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, or C25 to C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C35, C40, C45, C50, C60, C70, or C80 aliphatic. In some embodiments, RLD is optionally substituted C10-80 aliphatic. In some embodiments, RLD is optionally substituted C20-80 aliphatic. In some embodiments, RLD is optionally substituted C10-70 aliphatic. In some embodiments, RLD is optionally substituted C20-70 aliphatic. In some embodiments, RLD is optionally substituted C10-60 aliphatic. In some embodiments, RLD is optionally substituted C20-60 aliphatic. In some embodiments, RLD is optionally substituted C10-50 aliphatic. In some embodiments, RLD is optionally substituted C20-50 aliphatic. In some embodiments, RLD is optionally substituted C10-40 aliphatic. In some embodiments, RLD is optionally substituted C20-40 aliphatic. In some embodiments, RLD is optionally substituted C10-30 aliphatic. In some embodiments, RLD is optionally substituted C20-30 aliphatic. In some embodiments, RLD is unsubstituted C10, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, or C25 to C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C35, C40, C45, C50, C60, C70, or C80 aliphatic. In some embodiments, RLD is unsubstituted C10-80 aliphatic. In some embodiments, RLD is unsubstituted C20-80 aliphatic. In some embodiments, RLD is unsubstituted C10-70 aliphatic. In some embodiments, RLD is unsubstituted C20-70 aliphatic. In some embodiments, RLD is unsubstituted C10-60 aliphatic. In some embodiments, RLD is unsubstituted C20-60 aliphatic. In some embodiments, RLD is unsubstituted C10-50 aliphatic. In some embodiments, RLD is unsubstituted C20-50 aliphatic. In some embodiments, RLD is unsubstituted C10-40 aliphatic. In some embodiments, RLD is unsubstituted C20-40 aliphatic. In some embodiments, RLD is unsubstituted C10-30 aliphatic. In some embodiments, RLD is unsubstituted C20-30 aliphatic.


In some embodiments, RLD is not hydrogen. In some embodiments, RLD is a lipid moiety. In some embodiments, RLD is a targeting moiety. In some embodiments, RLD is a targeting moiety comprising a carbohydrate moiety. In some embodiments, RLD is a GalNAc moiety.


In some embodiments, RTD is RLD, wherein RLD is independently as described in the present disclosure. In some embodiments, RTD is RCD, wherein RCD is independently as described in the present disclosure. In some embodiments, RTD comprises a sulfonamide moiety. In some embodiments, a RTD comprises a carbohydrate moiety. In some embodiments, a RTD comprises a GalNAc moiety.


In some embodiments, RCD is an optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus, boron and silicon, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, —C(R′)2, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′),]O—; and one or more carbon atoms are optionally and independently replaced with CyL. In some embodiments, RCD is an optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus, boron and silicon, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, —C(R′), —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—; and one or more carbon atoms are independently replaced with a monosaccharide, disaccharide or polysaccharide moiety. In some embodiments, RCD is an optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms independently selected from oxygen, nitrogen, sulfur, phosphorus, boron and silicon, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, CC, —C(R′), —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—; and one or more carbon atoms are independently replaced with a GalNac moiety.


In some embodiments, each RD is independently a chemical moiety as described in the present disclosure. In some embodiments, RD is an additional chemical moiety. In some embodiments, RD is targeting moiety. In some embodiments, RD is or comprises a carbohydrate moiety. In some embodiments, RD is or comprises a lipid moiety. In some embodiments, RD is or comprises a ligand moiety for, e.g., cell receptors such as a sigma receptor, an asialoglycoprotein receptor, etc. In some embodiments, a ligand moiety is or comprises an anisamide moiety, which may be a ligand moiety for a sigma receptor. In some embodiments, a ligand moiety is or comprises a lipid. In some embodiments, a ligand moiety is or comprises a GalNAc moiety, which may be a ligand moiety for an asialoglycoprotein receptor. In some embodiments, RD is selected from optionally substituted phenyl,




embedded image


wherein n′ is 0 or 1, and each other variable is independently as described in the present disclosure. In some embodiments, Rs is F. In some embodiments, Rs is OMe. In some embodiments, Rs is OH. In some embodiments, Rs is NHAc. In some embodiments, Rs is NHCOCF3. In some embodiments, R′ is H. In some embodiments, R is H. In some embodiments, R2s is NHAc, and R5s is OH. In some embodiments, R2s is p-anisoyl, and R5s is OH. In some embodiments, R2s is NHAc and R5s is p-anisoyl. In some embodiments, R2s is OH, and R5s is p-anisoyl. In some embodiments, RD is selected from




embedded image


embedded image


embedded image


Further embodiments of RD includes additional chemical moiety embodiments, e.g., those described in the examples.


In some embodiments, RD, RLD or RTD is or comprises




embedded image


In some embodiments, RD, RLD or RTD is or comprises




embedded image


In some embodiments, RD, RLD or RTD is or comprises




embedded image


In some embodiments, RD, RLD or RTD is or comprises




embedded image


In some embodiments, RD, RLD, RCD or RTD is or comprises




embedded image


In some embodiments, RD, RLD, or RTD is or comprise




embedded image


In some embodiments, RD, RLD, RCD or RTD is or comprises —N(R1)2, wherein each R1 is independently as described in the present disclosure. In some embodiments, RD, RLD, RCD or RTD is or comprises —N(R1)3, wherein each R1 is independently as described in the present disclosure. In some embodiments, RD, RLD, RCD or RTD is or comprises one or more guanidine moieties. In some embodiments, RD, RLD, RCD or RTD is or comprises —N═C(N(R1)2), wherein each R1 is independently as described in the present disclosure. In some embodiments, RD or RTD is or comprises




embedded image


In some embodiments, RD, RLD or RT is or comprise




embedded image


In some embodiments, RD or RTD is or comprises




embedded image


In some embodiments, RD or RTD is or comprises




embedded image


In some embodiments, RD, RCD, or RTD is or comprises




embedded image


In some embodiments, RD, RLD, or RTD is or comprise




embedded image


In some embodiments, RD, RCD, or RTD is or comprises




embedded image


In some embodiments, RD, RLD, or RTD is or comprise




embedded image


In some embodiments, RD or RTD is or comprises




embedded image


In some embodiments, RD or RTD is or comprise




embedded image


In some embodiments, RD or RTD is or comprises




embedded image


In some embodiments, RD or RTD is or comprises




embedded image


In some embodiments, RD or RTD is or comprises




embedded image


In some embodiments RD or RTD is or comprises




embedded image


In some embodiments, RD, RCD, or RTD is or comprises




embedded image


In some embodiments, RD, RCD, or RTD is or comprises




embedded image


In some embodiments, RD, RCD, or RTD is or comprises




embedded image


In some embodiments, RD, RLD, RCD or RTD comprise




embedded image


In some embodiments, RD, RLD, RCD or RTD comprise




embedded image


In some embodiments, n′ is 1. In some embodiments, n′ is 0.


In some embodiments, n″ is 1. In some embodiments, n″ is 2.


In some embodiments, a moiety of the present disclosure, e.g., a heteroaliphatic, heteroaryl, heterocyclyl, a ring, etc., may contain one or more heteroatoms. In some embodiments, a heteroatom is any atom that is not carbon and is not hydrogen. In some embodiments, each heteroatom is independently selected from boron, nitrogen, oxygen, sulfur, silicon and phosphorus. In some embodiments, each heteroatom is independently selected from nitrogen, oxygen, sulfur, silicon and phosphorus. In some embodiments, each heteroatom is independently selected from boron, nitrogen, oxygen, sulfur and phosphorus. In some embodiments, each heteroatom is independently selected from boron, nitrogen, oxygen, sulfur and silicon. In some embodiments, each heteroatom is independently selected from nitrogen, oxygen, and sulfur. In some embodiments, at least one heteroatom is nitrogen. In some embodiments, at least one heteroatom is oxygen. In some embodiments, at least one heteroatom is sulfur.


In some embodiments, y, t, n and m. e.g., in a stereochemistry pattern, each are independently 1-20 as described in the present disclosure. In some embodiments, y is 1. In some embodiments, y is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, y is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, y is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, y is 1. In some embodiments, y is 2. In some embodiments, y is 3. In some embodiments, y is 4. In some embodiments, y is 5. In some embodiments, y is 6. In some embodiments, y is 7. In some embodiments, y is 8. In some embodiments, y is 9. In some embodiments, y is 10.


In some embodiments, n is 1. In some embodiments, n is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, n is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, n is 1-10. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7 or 8. In some embodiments, n is 1. In some embodiments, n is 2, 3, 4, 5, 6, 7 or 8. In some embodiments, n is 3, 4, 5, 6, 7 or 8. In some embodiments, n is 4, 5, 6, 7 or 8. In some embodiments, n is 5, 6, 7 or 8. In some embodiments, n is 6, 7 or 8. In some embodiments, n is 7 or 8. In some embodiments, n is 1. In some embodiments, n is 2. In some embodiments, n is 3. In some embodiments, n is 4. In some embodiments, n is 5. In some embodiments, n is 6. In some embodiments, n is 7. In some embodiments, n is 8. In some embodiments, n is 9. In some embodiments, n is 10.


In some embodiments, m is 0-50. In some embodiments, m is 1-50. In some embodiments, m is 1. In some embodiments, m is 2-50. In some embodiments, m is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, m is 2, 3, 4, 5, 6, 7 or 8. In some embodiments, m is 3, 4, 5, 6, 7 or 8. In some embodiments, m is 4, 5, 6, 7 or 8. In some embodiments, m is 5, 6, 7 or 8. In some embodiments, m is 6, 7 or 8. In some embodiments, m is 7 or 8. In some embodiments, m is 0. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3. In some embodiments, m is 4. In some embodiments, m is 5. In some embodiments, m is 6. In some embodiments, m is 7. In some embodiments, in is 8. In some embodiments, m is 9. In some embodiments, m is 10. In some embodiments, m is 11. In some embodiments, m is 12. In some embodiments, m is 13. In some embodiments, m is 14. In some embodiments, m is 15. In some embodiments, m is 16. In some embodiments, m is 17. In some embodiments, m is 18. In some embodiments, m is 19. In some embodiments, m is 20. In some embodiments, m is 21. In some embodiments, m is 22. In some embodiments, m is 23. In some embodiments, m is 24. In some embodiments, m is 25. In some embodiments, m is at least 2. In some embodiments, m is at least 3. In some embodiments, m is at least 4. In some embodiments, m is at least 5. In some embodiments, m is at least 6. In some embodiments, m is at least 7. In some embodiments, m is at least 8. In some embodiments, m is at least 9. In some embodiments, m is at least 10. In some embodiments, m is at least 11. In some embodiments, m is at least 12. In some embodiments, m is at least 13. In some embodiments, m is at least 14. In some embodiments, m is at least 15. In some embodiments, in is at least 16. In some embodiments, in is at least 17. In some embodiments, in is at least 18. In some embodiments, m is at least 19. In some embodiments, m is at least 20. In some embodiments, in is at least 21. In some embodiments, m is at least 22. In some embodiments, m is at least 23. In some embodiments, m is at least 24. In some embodiments, m is at least 25. In some embodiments, m is at least greater than 25.


In some embodiments, t is 1-20. In some embodiments, t is 1. In some embodiments, t is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, t is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, t is 1-5. In some embodiments, t is 2. In some embodiments, t is 3. In some embodiments, t is 4. In some embodiments, t is 5. In some embodiments, t is 6. In some embodiments, t is 7. In some embodiments, t is 8. In some embodiments, t is 9. In some embodiments, t is 10. In some embodiments, t is 11. In some embodiments, t is 12. In some embodiments, t is 13. In some embodiments, t is 14. In some embodiments, t is 15. In some embodiments, t is 16. In some embodiments, t is 17. In some embodiments, t is 18. In some embodiments, t is 19. In some embodiments, t is 20.


In some embodiments, each of t and m is independently at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, each of t and m is independently at least 3. In some embodiments, each of t and m is independently at least 4. In some embodiments, each of t and m is independently at least 5. In some embodiments, each of t and m is independently at least 6. In some embodiments, each of t and m is independently at least 7. In some embodiments, each of t and m is independently at least 8. In some embodiments, each of t and m is independently at least 9. In some embodiments, each of t and m is independently at least 10.


As used in the present disclosure, in some embodiments, “one or more” is 1-200, 1-150, 1-100, 1-90, 1-80, 1-70, 1-60, 1-50, 1-40, 1-30, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25. In some embodiments, “one or more” is one. In some embodiments, “one or more” is two. In some embodiments, “one or more” is three. In some embodiments, “one or more” is four. In some embodiments, “one or more” is five. In some embodiments, “one or more” is six. In some embodiments, “one or more” is seven. In some embodiments, “one or more” is eight. In some embodiments, “one or more” is nine. In some embodiments, “one or more” is ten. In some embodiments, “one or more” is at least one. In some embodiments, “one or more” is at least two. In some embodiments, “one or more” is at least three. In some embodiments, “one or more” is at least four. In some embodiments, “one or more” is at least five. In some embodiments, “one or more” is at least six. In some embodiments, “one or more” is at least seven. In some embodiments, “one or more” is at least eight. In some embodiments, “one or more” is at least nine. In some embodiments, “one or more” is at least ten. As used in the present disclosure, in some embodiments, “at least one” is 1-200, 1-150, 1-100, 1-90, 1-80, 1-70, 1-60, 1-50, 1-40, 1-30, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25. In some embodiments, “at least one” is one. In some embodiments, “at least one” is two. In some embodiments, “at least one” is three. In some embodiments, “at least one” is four. In some embodiments, “at least one” is five. In some embodiments, “at least one” is six. In some embodiments, “at least one” is seven. In some embodiments, “at least one” is eight. In some embodiments, “at least one” is nine. In some embodiments, “at least one” is ten.


In some embodiments, the present disclosure provides the following embodiments:


1. An oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 chirally controlled internucleotidic linkages; and


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 non-negatively charged internucleotidic linkages.


2. The oligonucleotide composition of embodiment 1, wherein the oligonucleotide composition being characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


3. An oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 chirally controlled internucleotidic linkages; and


the oligonucleotide composition being characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


4. The composition of any one of the preceding embodiments, wherein each chiral internucleotidic linkage of the oligonucleotides of the plurality is independently a chirally controlled internucleotidic linkage.


5. The composition of any one of the preceding embodiments, wherein each chiral modified internucleotidic linkage independently has a stereopurity of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% at its chiral linkage phosphorus.


6. A composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


which composition is chirally controlled and it is enriched, relative to a substantially racemic preparation of oligonucleotides having the same base sequence, pattern of backbone linkages and pattern of backbone phosphorus modifications, for oligonucleotides of the particular oligonucleotide type,


wherein:


the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of inclusion of a nucleic acid sequence is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


7. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least one Sp.


8. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least one Rp.


9. A composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages; and


3) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 non-negatively charged internucleotidic linkages;


the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of inclusion of a nucleic acid sequence is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


10. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage is independently an internucleotidic linkage at least 50% of which exists in its non-negatively charged form at pH 7.4.


11. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage is independently a neutral internucleotidic linkage, wherein at least 50% of the internucleotidic linkage exists in its neutral form at pH 7.4.


12. The composition of any one of the preceding embodiments, wherein the neutral form of each non-negatively charged internucleotidic linkage independently has a pKa no less than 8, 9, 10, 11, 12, 13, or 14.


13. The composition of any one of the preceding embodiments, wherein the neutral form of each non-negatively charged internucleotidic linkage, when the units which it connects are replaced with —CH3, independently has a pKa no less than 8, 9, 10, 11, 12, 13, or 14.


14. The composition of any one of the preceding embodiments, wherein the reference condition is absence of the composition.


15. The composition of any one of the preceding embodiments, wherein the reference condition is presence of a reference composition.


16. The composition of any one of the preceding embodiments, wherein the reference composition is an otherwise identical composition wherein the oligonucleotides of the plurality comprise no chirally controlled internucleotidic linkages.


17. The composition of any one of the preceding embodiments, wherein the reference composition is an otherwise identical composition wherein the oligonucleotides of the plurality comprise no non-negatively charged internucleotidic linkages.


18. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises one or more backbone linkages selected from phosphodiester, phosphorothioate and phosphodithioate linkages.


19. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise one or more sugar modifications.


20. The composition of any one of the preceding embodiments, wherein the sugar modifications comprise one or more modifications selected from: 2′-O-methyl, 2′-MOE, 2′-F, morpholino and bicyclic sugar moieties.


21. The composition of any one of the preceding embodiments, wherein one or more sugar modifications are 2′-F modifications.


22. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise a 5′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety.


23. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise a 3′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety.


24. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise a middle region between the 5′-end region and the 3′-region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotidic units comprising a phosphodiester linkage.


25. A composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages; and


3) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise:


1) a 5′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety;


2) a 3′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety; and


3) a middle region between the 5′-end region and the 3′-region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotidic units comprising a phosphodiester linkage.


26. The composition of embodiment 25, wherein the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of inclusion of a nucleic acid sequence is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


27. The composition of any one of the preceding embodiments, wherein the 5′-end region comprises 1 or more nucleoside units not comprising a 2′-F modified sugar moiety.


28. The composition of any one of the preceding embodiments, wherein the 3′-end region comprises 1 or more nucleoside units not comprising a 2′-F modified sugar moiety.


29. The composition of any one of the preceding embodiments, wherein the middle region comprises 1 or more nucleotidic units comprising no phosphodiester linkage.


30. The composition of any one of the preceding embodiments, wherein the first of the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety and a modified internucleotidic linkage of the 5′-end is the first, second, third, fourth or fifth nucleoside unit of the oligonucleotide from the 5′-end, and the last of the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety and a modified internucleotidic linkage of the 3′-end is the last, second last, third last, fourth last, or fifth last nucleoside unit of the oligonucleotide.


31. The composition of any one of the preceding embodiments, wherein the 5′-end region comprising 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


32. The composition of any one of the preceding embodiments, wherein the 5′-end region comprising 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


33. The composition of any one of the preceding embodiments, wherein the 3′-end region comprising 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


34. The composition of any one of the preceding embodiments, wherein the 3′-end region comprising 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


35. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage between two nucleoside units comprising a 2′-F modified sugar moiety in the 5′-end region is independently a modified internucleotidic linkage.


36. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage between two nucleoside units comprising a 2′-F modified sugar moiety in the 3′-end region is independently a modified internucleotidic linkage.


37. The composition of embodiment 35 or 36, wherein each modified internucleotidic linkage is independently a chiral internucleotidic linkage.


38. The composition of embodiment 35 or 36, wherein each modified internucleotidic linkage is independently a chirally controlled internucleotidic linkage.


39. The composition of embodiment 35 or 36, wherein each modified internucleotidic linkage is a phosphorothioate internucleotidic linkage.


40. The composition of embodiment 35 or 36, wherein each modified internucleotidic linkage is a chirally controlled phosphorothioate internucleotidic linkage.


41. The composition of embodiment 35 or 36, wherein each modified internucleotidic linkage is a Sp chirally controlled phosphorothioate internucleotidic linkage.


42. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more natural phosphate linkages.


43. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more natural phosphate linkages each independently between a nucleoside unit comprising a 2′-OR1 modified sugar moiety and a nucleoside unit comprising a 2′-F modified sugar moiety, or between two nucleoside units each independently comprising a 2′-OR1 modified sugar moiety, wherein R1 is optionally substituted C1-6 alkyl.


44. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


45. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages each independently between a nucleoside unit comprising a 2′-OR1 modified sugar moiety and a nucleoside unit comprising a 2′-F modified sugar moiety, or between two nucleoside units each independently comprising a 2′-OR1 modified sugar moiety, wherein R1 is optionally substituted C1-6 alkyl.


46. The composition of embodiment 43 or 45, wherein 2′OR1 is 2′-OCH3.


47. The composition of embodiment 43 or 45, wherein 2′OR1 is 2′-OCH2CH2OCH3.


48. The composition of any one of the preceding embodiments, wherein the 5′-end region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 chiral modified internucleotidic linkages.


49. The composition of any one of the preceding embodiments, wherein the 5′-nd region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 consecutive chiral modified internucleotidic linkages.


50. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage in the 5′-end region is a chiral modified internucleotidic linkage.


51. The composition of any one of the preceding embodiments, wherein the 3′-end region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 chiral modified internucleotidic linkages.


52. The composition of any one of the preceding embodiments, wherein the 3′-end region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 consecutive chiral modified internucleotidic linkages.


53. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage in the 3′-end region is a chiral modified internucleotidic linkage.


54. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 chiral modified internucleotidic linkages.


55. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 consecutive chiral modified internucleotidic linkages.


56. The composition of any one of embodiments 48-55, wherein each chiral modified internucleotidic linkage is independently a chirally controlled internucleotidic linkage.


57. The composition of any one of embodiments 48-55, wherein each chiral modified internucleotidic linkage is independently a chirally controlled internucleotidic linkage wherein its chirally controlled linkage phosphorus has a Sp configuration.


58. The composition of any one of embodiments 48-57, wherein each chiral modified internucleotidic linkage is independently a chirally controlled phosphorothioate internucleotidic linkage.


59. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 non-negatively charged internucleotidic linkages.


60. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 neutral internucleotidic linkages.


61. The composition of any one of the preceding embodiments, wherein a neutral internucleotidic linkage is a chiral internucleotidic linkage.


62. The composition of any one of the preceding embodiments, wherein a neutral internucleotidic linkage is a chirally controlled internucleotidic linkage independently of Rp or Sp at its linkage phosphorus.


63. The composition of any one of the preceding embodiments, wherein the base sequence comprises a sequence having no more than 5 mismatches from a 20 base long portion of the dystrophin gene or its complement.


64. The composition of any one of the preceding embodiments, wherein the length of the base sequence of the oligonucleotides of the plurality is no more than 50 bases.


65. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 chirally controlled centers independently of Rp or Sp.


66. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 5 chirally controlled centers independently of Rp or Sp.


67. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 6 chirally controlled centers independently of Rp or Sp.


68. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 10 chirally controlled centers independently of Rp or Sp.


69. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the particular oligonucleotide type are capable of mediating skipping of one or more exons of the dystrophin gene.


70. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 45, 51 or 53 of the dystrophin gene.


71. The composition of embodiment 70, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 45 of the dystrophin gene.


72. The composition of embodiment 70, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 51 of the dystrophin gene.


73. The composition of embodiment 70, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 53 of the dystrophin gene.


74. The composition of any one of preceding embodiments, wherein the composition provides exon skipping of two or more exons.


75. The composition of embodiment 71, wherein the base sequence comprises a sequence having no more than 5 mismatches from a sequence of Table A1.


76. The composition of embodiment 71, wherein the base sequence comprises or is a sequence of Table A1.


77. The composition of embodiment 71, wherein the base sequence is a sequence of Table A1.


78. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality are oligonucleotides of an oligonucleotide selected from Table A1.


79. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


80. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chirally controlled non-negatively charged internucleotidic linkages.


81. The composition of anyone of the preceding embodiments, wherein the oligonucleotides comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive non-negatively charged internucleotidic linkages.


82. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive chirally controlled non-negatively charged internucleotidic linkages.


83. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure.


84. The composition of any one of the preceding embodiments, wherein a wing comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


85. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a wing comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chirally controlled non-negatively charged internucleotidic linkages.


86. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a wing comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive non-negatively charged internucleotidic linkages.


87. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a wing comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive chirally controlled non-negatively charged internucleotidic linkages.


88. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise or consist of a wing-core-wing structure, and wherein only one wing comprise one or more non-negatively charged internucleotidic linkages.


89. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


90. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chirally controlled non-negatively charged internucleotidic linkages.


91. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive non-negatively charged internucleotidic linkages.


92. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive chirally controlled non-negatively charged internucleotidic linkages.


93. The composition of any one of the preceding embodiments, wherein 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of internucleotidic linkages of a wing is independently a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage or a Rp chiral internucleotidic linkage.


94. The composition of any one of the preceding embodiments, wherein 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of internucleotidic linkages of a wing is independently a non-negatively charged internucleotidic linkage or a natural phosphate internucleotidic linkage.


95. The composition of any one of the preceding embodiments, wherein 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of internucleotidic linkages of a wing is independently a non-negatively charged internucleotidic linkage.


96. The composition of any one of embodiments 93-95, wherein the percentage is 50% or more.


97. The composition of any one of embodiments 93-95, wherein the percentage is 60% or more.


98. The composition of any one of embodiments 93-95, wherein the percentage is 75% or more.


99. The composition of any one of embodiments 93-95, wherein the percentage is 80% or more.


100. The composition of any one of embodiments 93-95, wherein the percentage is 90% or more.


101. The composition of any one of the preceding embodiments, wherein the oligonucleotides each comprise a non-negatively charged internucleotidic linkage and a natural phosphate internucleotidic linkage.


102. The composition of any one of the preceding embodiments, wherein the oligonucleotides each comprise a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage and a Rp chiral internucleotidic linkage.


103. The composition of any one of the preceding embodiments, wherein a wing comprises a non-negatively charged internucleotidic linkage and a natural phosphate internucleotidic linkage.


104. The composition of any one of the preceding embodiments, wherein a wing comprises a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage and a Rp chiral internucleotidic linkage.


105. The composition of any one of the preceding embodiments, wherein a core comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


106. The composition of any one of the preceding embodiments, wherein all non-negatively charged internucleotidic linkages of the same oligonucleotide have the same constitution.


107. The composition of any one of the preceding embodiments, wherein each of the non-negatively charged internucleotidic linkages independently has the structure of formula II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


108. The composition of any one of the preceding embodiments, wherein each of the non-negatively charged internucleotidic linkages independently has the structure of formula II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


109. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage which is a neutral internucleotidic linkage.


110. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the particular type are structurally identical.


111. The composition of any one of the preceding claims, wherein each of the oligonucleotides comprises a chemical moiety conjugated to the oligonucleotide chain of the oligonucleotide optionally through a linker moiety, wherein the chemical moiety comprises a carbohydrate moiety, a peptide moiety, a receptor ligand moiety, or a moiety having the structure of —N(R′)2, —N(R′)3, or —N═C(N(R)2)2.


112. The composition of any one of the preceding claims, wherein each of the oligonucleotides comprises a chemical moiety conjugated to the oligonucleotide chain of the oligonucleotide optionally through a linker moiety, wherein the chemical moiety comprises a guanidine moiety.


113. The composition of any one of the preceding claims, wherein each of the oligonucleotides comprises a chemical moiety conjugated to the oligonucleotide chain of the oligonucleotide optionally through a linker moiety, wherein the chemical moiety comprises —N═C(N(CH3)2)2.


114. The composition of any one of the preceding embodiments, wherein at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the oligonucleotides in the composition that have the same constitution as oligonucleotides of the particular oligonucleotide type are oligonucleotides of the particular oligonucleotide type.


115. The composition of any one of the preceding embodiments, wherein at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the oligonucleotides in the composition that have the base sequence, pattern of backbone linkages, and pattern of backbone phosphorus modifications of the particular oligonucleotide type are oligonucleotides of the particular oligonucleotide type.


116. The composition of any one of the preceding embodiments, wherein at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the oligonucleotides in the composition that have the base sequence of the particular oligonucleotide type are oligonucleotides of the particular oligonucleotide type.


117. The composition of any one of embodiments 114-116, wherein the percentage is at least 10%.


118. The composition of any one of embodiments 114-116, wherein the percentage is at least 50%.


119. The composition of any one of embodiments 114-116, wherein the percentage is at least 80%.


120. The composition of any one of embodiments 114-116, wherein the percentage is at least 90%.


121. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage is a phosphoramidate linkage.


122. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage comprises a guanidine moiety.


123. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I:




embedded image


or a salt form thereof, wherein:


PL is P(═W), P, or P→B(R′)3;


W is O, N(-L-R5), S or Se;


each of R1 and R is independently —H, -L-R′, halogen, —CN, —NO2, -L-Si(R′)3, —OR′, —SR′, or —N(R′)2;


each of X, Y and Z is independently —O—, —S—, —N(-L-R5)—, or L;


each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL;


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each R′ is independently —R, —C(O)R, —C(O)OR, or —S(O)2R;


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


124. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I or a salt form thereof.


125. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-1 or a salt form thereof:




embedded image


126. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-1 or a salt form thereof.


127. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-2 or a salt form thereof:




embedded image


128. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-3 or a salt form thereof:




embedded image


129. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-3 or a salt form thereof.


130. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


131. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


132. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted 5-membered monocyclic ring having no more than two nitrogen atoms.


133. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted 5-membered monocyclic ring having no more than two nitrogen atoms.


134. The composition of any one of embodiments 128-131, wherein the ring formed is a saturated ring.


135. The composition of any one of embodiments 128-131, wherein the ring formed is a partially unsaturated ring.


136. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II:




embedded image


or a salt form thereof, wherein:


PL is P(═W), P, or P→B(R′)3;


W is O, N(-L-R5), S or Se;


each of X, Y and Z is independently —O—, —S—, —N(-L-R5)—, or L;


R5 is —H, -L-R′, halogen, —CN, —NO2, -L-Si(R′)3, —OR′, —SR′, or —N(R′)2;


Ring AL is an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms;


each RL s is independently —H, halogen, —CN, —N3, —NO, —NO2, -L-R′, -L-Si(R)3, -L-OR′, -L-SR′, -L-N(R′)2, —O-L-R′, —O-L-Si(R)3, —O-L-OR′, —O-L-SR′, or —O-L-N(R′)2;


g is 0-20;


each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL.


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each R′ is independently —R, —C(O)R, —C(O)OR, or —S(O)2R;


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or,


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


137. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II, or a salt form thereof.


138. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-a-1:




embedded image


or a salt form thereof.


139. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-a-1, or a salt form thereof.


140. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-a-2:




embedded image


or a salt form thereof.


141. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-a-2, or a salt form thereof.


142. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-b-1:




embedded image


or a salt form thereof.


143. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-b-1, or a salt form thereof.


144. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-b-2:




embedded image


or a salt form thereof.


145. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-b-2, or a salt form thereof.


146. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-c-1:




embedded image


or a salt form thereof.


147. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-c-1, or a salt form thereof.


148. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-c-2:




embedded image


or a salt form thereof.


149. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-c-2, or a salt form thereof.


150. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-d-1:




embedded image


or a salt form thereof.


151. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-d-1, or a salt form thereof.


152. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-d-2:




embedded image


or a salt form thereof.


153. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-d-2, or a salt form thereof.


154. The composition of any one of embodiments 136-153, wherein each non-negatively charged internucleotidic linkage has the same structure.


155. The composition of any one of the preceding embodiments, wherein, if applicable, each internucleotidic linkage in the oligonucleotides of the plurality that is not a non-negatively charged internucleotidic linkage independently has the structure of formula I.


156. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage in the oligonucleotides of the plurality independently has the structure of formula I.


157. The composition of any one of the preceding embodiments, wherein one or more PL is P(═W).


158. The composition of any one of the preceding embodiments, wherein each PL is independently P(═W).


159. The composition of any one of the preceding embodiments, wherein one or more W is O.


160. The composition of any one of the preceding embodiments, wherein each W is O.


161. The composition of any one of the preceding embodiments, wherein one or more Y is O.


162. The composition of any one of the preceding embodiments, wherein each Y is O.


163. The composition of any one of the preceding embodiments, wherein one or more Z is O.


164. The composition of any one of the preceding embodiments, wherein each Z is O.


165. The composition of any one of the preceding embodiments, wherein one or more X is O.


166. The composition of any one of the preceding embodiments, wherein one or more X is S.


167. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of




embedded image


168. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of




embedded image


169. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of




embedded image


170. The composition of any one of the preceding embodiments, wherein for each internucleotidic linkage of formula I or a salt fore thereof that is not a non-negatively charged internucleotidic linkage, X is independently O or S, and -Ls-R5 is —H (natural phosphate linkage or phosphorothioate linkage, respectively).


171. The composition of any one of the preceding embodiments, wherein each phosphorothioate linkage, if any, in the oligonucleotides of the plurality is independently a chirally controlled internucleotidic linkage.


172. The composition of any one of the preceding embodiments, wherein at least one non-negatively charged internucleotidic linkage is a chirally controlled oligonucleotide composition.


173. The composition of any one of the preceding embodiments, wherein at least one non-negatively charged internucleotidic linkage is a chirally controlled oligonucleotide composition.


174. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality comprise a targeting moiety wherein the targeting moiety is independently connected to an oligonucleotide backbone through a linker.


175. The composition of embodiment 174, wherein the targeting moiety is a carbohydrate moiety.


176. The composition of embodiment 174 or 175, wherein the targeting moiety comprises or is a GalNAc moiety.


177. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality comprise a lipid moiety wherein the lipid moiety is independently connected to an oligonucleotide backbone through a linker.


178. The composition of any one of the preceding embodiments, wherein the oligonucleotide of the plurality comprise a pattern of backbone chiral centers of (Np/Op)t[(Rp)n(Sp)m]y, (Np/Op)t[(Op)n(Sp)m]y, (Np/Op)t[(Op/Rp)n(Sp)m]y, (Sp)t[(Rp)n(Sp)m]y. (Sp)t[(Op)n(Sp)m]y. (Sp)t[(Op/Rp)n(Sp)m]y, [(Rp)n(Sp)m]y, [(Op)n(Sp)m]y, [(Op/Rp)n(Sp)m]y, (Rp)t(Np)n(Rp)m, (Rp)t(Sp)n(Rp)m, (Rp)t[(Np/Op)n]y(Rp)m, (Rp)t[(Sp/Np)n]y(Rp)m, (Rp)t[(Sp/Op)n]y(Rp)m, (Np/Op)t(Np)n(Np/Op)m, (Np/Op)t(Sp)n(Np/Op)m, (Np/Op)t[(Np/Op)n]y(Np/Op)m, (Np/Op)t[(Sp/Op)n]y(Np/Op)m, (Np/Op)t[(Sp/Op)n]y(Np/Op)m, (Rp/Op)t(Np)n(Rp/Op)m. (Rp/Op)t(Sp)n(Rp/Op)m, (Rp/Op)t[(Np/Op)n]y(Rp/Op)m, (Rp/Op)t[(Sp/Op)n]y(Rp/Op)m, or (Rp/Op)t[(Sp/Op)n]y(Rp/Op)m.


179. The composition of any one of the preceding embodiments, wherein the oligonucleotide of the plurality comprise a pattern of backbone chiral centers of (Sp)t[(Rp)n(Sp)m]y.


180. The composition of any one of the preceding embodiments, wherein y is 1.


181. The composition of any one of the preceding embodiments, wherein n is 1.


182. The composition of any one of the preceding embodiments, wherein t is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.


183. The composition of any one of the preceding embodiments, wherein t is 4, 5, 6, 7, 8, 9 or 10.


184. The composition of any one of the preceding embodiments, wherein m is 2, 3, 4, 5, 6, 7, 8, 9 or 10.


185. The composition of any one of the preceding embodiments, wherein m is 4, 5, 6, 7, 8, 9 or 10.


186. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality has the structure of formula O-I or a salt thereof.


187. The composition of any one of the preceding embodiments, wherein L in formula O-I independently has the structure of formula I, I-a, I-b, I-c, I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1. II-d-2, or a salt form thereof.


188. The composition of any one of the preceding embodiments, wherein a




embedded image


is




embedded image


189. The composition of any one of the preceding embodiments, wherein a




embedded image


is




embedded image


190. The composition of any one of the preceding embodiments, wherein a




embedded image


is




embedded image


191. The composition of any one of the preceding embodiments, wherein a




embedded image


is optionally substituted.




embedded image


192. The composition of any one of the preceding embodiments, wherein Ls in formula O-I between LP and Ring A is —C(R5s)2—.


193. The composition of any one of the preceding embodiments, wherein L in formula O-I between LP and Ring A is —CH(R5s)2—.


194. The composition of any one of the preceding embodiments, wherein -L3E-R3E in formula O-I IS —OH.


195. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality has the structure of Ac-[-LLD-(RLD)a]b, Ac-[-LM-(RD)a]b, [(Ac)a-LM]b-RD, (Ac)a-LM-(Ac)b, or (Ac)a-LM-(RD)b, or a salt thereof.


196. The composition of embodiment 195, wherein H-Ac, [H]a-Ac or [H]b-Ac is an oligonucleotide of any one of embodiments 186-194.


197. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein one or more non-neutral internucleotidic linkages at the condition of the composition independently exist as a salt form.


198. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein one or more negatively-charged internucleotidic linkages at the condition of the composition independently exist as a salt form.


199. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein one or more negatively-charged internucleotidic linkages at the condition of the composition independently exist as a metal salt.


200. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein each negatively-charged internucleotidic linkage at the condition of the composition independently exists as a metal salt.


201. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein each negatively-charged internucleotidic linkage at the condition of the composition independently exists as sodium salt.


202. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein each negatively-charged internucleotidic linkage is independently a natural phosphate linkage (the neutral form of which is —O—P(O)(OH)—O) or phosphorothioate internucleotidic linkage (the neutral form of which is —O—P(O)(SH)—O).


203. The composition of any one of the preceding embodiments, wherein each heteroatom in heteroaliphatic, heteroalkyl, heterocyclyl, or heteroaryl is independently boron, nitrogen, oxygen, silicon, sulfur, or phosphorus.


204. The composition of any one of the preceding embodiments, wherein each heteroatom in heteroaliphatic, heteroalkyl, heterocyclyl, or heteroaryl is independently nitrogen, oxygen, silicon, sulfur, or phosphorus.


205. The composition of any one of the preceding embodiments, wherein each heteroatom in heteroaliphatic, heteroalkyl, heterocyclyl, or heteroaryl is independently nitrogen, oxygen, or sulfur.


206. A pharmaceutical composition comprising an oligonucleotide composition of any one of the preceding embodiments and a pharmaceutically acceptable carrier.


207. A method for altering splicing of a target transcript, comprising administering an oligonucleotide composition of any one of the preceding embodiments.


208. The method of embodiment 207, wherein the splicing of the target transcript is altered relative to absence of the composition.


209. The method of any one of the preceding embodiments, wherein the alteration is that one or more exon is skipped at an increased level relative to absence of the composition.


210. The method of any one of the preceding embodiments, wherein the target transcript is pre-mRNA of dystrophin.


211. The method of any one of the preceding embodiments, wherein exon 51 of dystrophin is skipped at an increased level relative to absence of the composition.


212. The method of any one of embodiments 207-210, wherein exon 53 of dystrophin is skipped at an increased level relative to absence of the composition.


213. The method of any one of embodiments 207-210, wherein exon 45 of dystrophin is skipped at an increased level relative to absence of the composition.


214. The method of any one of the preceding embodiments, wherein two or more exons of dystrophin is skipped at an increased level relative to absence of the composition


215. The method of any one of the preceding embodiments, wherein a protein encoded by the mRNA with the exon skipped provides one or more functions better than a protein encoded by the corresponding mRNA, without the exon skipping.


216. A method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising administering to a subject susceptible thereto or suffering therefrom a composition of any one of the preceding embodiments.


217. A method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising (a) administering to a subject susceptible thereto or suffering therefrom a composition of any one of the preceding embodiments, and (b) administering to the subject additional treatment.


218. The method of embodiment 217, wherein the additional treatment is capable of preventing, treating, ameliorating or slowing the progress of muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD).


219. The method of any one of the preceding embodiments, wherein the additional treatment comprises administering a composition of any one of the preceding embodiments, wherein oligonucleotides of the composition have a different base sequence.


220. The method of any one of the preceding embodiments, wherein the additional treatment comprises administering a composition of any one of the preceding embodiments, wherein oligonucleotides of the composition have a different base sequence and target a different exon.


221. The composition of any of the preceding embodiments, wherein the transcript splicing system comprises a myoblast or myotubule.


222. The composition of any of the preceding embodiments, wherein the transcript splicing system comprises a myoblast cell.


223. The composition of any of the preceding embodiments, wherein the transcript splicing system comprises a myoblast cell, which is contacted with the composition after 0, 4 or 7 days of pre-differentiation.


224. A composition comprising a combination comprising: (a) a first composition of any of the preceding embodiments; (b) a second composition of any of the preceding embodiments; and, optionally (c) a third composition of any of the preceding embodiments, wherein the first, second and third compositions are different.


EXEMPLIFICATION

The foregoing has been a description of certain non-limiting embodiments of the disclosure. Accordingly, it is to be understood that embodiments of the disclosure herein described are merely illustrative of applications of principles of the disclosure. Reference herein to details of illustrated embodiments is not intended to limit the scope of any claims.


Various methods for preparing, and for assessing properties and/or activities of, oligonucleotides and oligonucleotide compositions are widely known in the art and may be utilized in accordance with the present disclosure, including but not limited to those described in U.S. Pat. Nos. 9,394,333, 9,744,183, 9,605,019, 9,598,458, US 2015/0211006, US 2017/0037399, WO 2017/015555, WO 2017/192664, WO 2017/015575, WO 2017/062862, WO 2017/160741, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and WO 2019/055951, the methods and reagents of each of which are incorporated herein by reference. In some embodiments, the present disclosure provides technologies for preparing oligonucleotides and compositions thereof, particularly chirally controlled oligonucleotides which comprise neutral backbones (e.g., n001, n002, n003, n004, n005, n006, n007, n008, n009, n010, etc.) and chirally controlled oligonucleotide compositions thereof, and technologies for assessing and using various oligonucleotides and compositions thereof. Among other things, Applicant describes herein example technologies for preparing, assessing and using provided oligonucleotides and oligonucleotide compositions.


Functions and advantage of certain embodiments of the present disclosure may be more fully understood from the examples described below. The following examples are intended to illustrate certain benefits of such embodiments.


Example 1. Example Synthesis of Oligonucleotide Compositions

Technologies for preparing oligonucleotide and compositions thereof are widely known in the art. In some embodiments, oligonucleotides and oligonucleotide compositions of the present disclosure were prepared using technologies, e.g., reagents (e.g., solid supports, coupling reagents, cleavage reagents, phosphoramidites, etc.), chiral auxiliaries, solvents (e.g., for reactions, washing, etc.), cycles, reaction conditions (e.g., time, temperature, etc.), etc., described in one or more of U.S. Pat. Nos. 9,394,333, 9,744,183, 9,605,019, 9,598,458, US 2015/0211006, US 2017/0037399, WO 2017/015555, WO 2017/192664, WO 2017/015575, WO 2017/062862, WO 2017/160741, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, and WO 2019/055951.


Example 2. Example Synthesis of Oligonucleotides Comprising an Internucleotidic Linkage Comprising a Triazole Moiety or an Alkyne Moiety

Various types of internucleotidic linkages can be prepared in accordance with the present disclosure. Described in this example is preparation of oligonucleotides comprising internucleotidic linkages comprising triazole moieties. As those skilled in the art appreciates, technology described herein can be readily utilized to conjugate various desirable moieties, e.g., those derived from GalNAc, lipids, peptides, ligands, etc. Among other things, such conjugation can be useful for delivery of oligonucleotides to various target systems (e.g., CNS, muscles, eye, etc.).


Example oligonucleotide comprising internucleotidic linkages comprising triazole moieties.




embedded image


embedded image


Synthesis scheme for dimer preparation in solution phase.




embedded image


Synthesis scheme for dimer preparation on solid support.




embedded image


embedded image


embedded image


Triazole backbone oligonucleotides:




embedded image


embedded image


Synthesis scheme for dimer preparation in solution phase:




embedded image


Synthesis scheme for dimer preparation on solid support:




embedded image


embedded image


embedded image


Alkyne backbone oligonucleotides:




embedded image


embedded image


Synthesis scheme for dimer preparation on solid support:




embedded image


embedded image


embedded image


Example 3. Example Synthesis of Phosphoramidate Internucleotidic Linkages Comprising a Guanidine Moiety

As illustrated herein, phosphoramidate internucleotidic linkages can be readily prepared from phosphite internucleotidic linkages, including stereopure phosphite internucleotidic linkages, in accordance with the present disclosure.




embedded image


To a stirred solution of amidite (474 mg, 0.624 mmol, 1.5 equiv., pre-dried by co-evaporation with dry acetonitrile and under vacuum for a minimum of 12 h) and TBS protected alcohol (150 mg, 0.41 mmol, pre-dried by co-evaporation with dry acetonitrile and under vacuum for a minimum of 12 h) in dry acetonitrile (5.2 ml) was added 5-(ethylthio)-1H-tetrazole (ETT, 2.08 ml, 0.6M, 3 equiv.) under argon atmosphere at room temperature. The reaction mixture was stirred for 5 mins then monitored by LCMS and then a solution of 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (356 mg, 1.24 mmol, 3 equiv.) in acetonitrile (1 ml) was added. Once the reaction was completed (after ˜5 mins, monitored by LCMS) then triethylamine (0.17 ml, 1.24 mmol, 3 equiv) was added and the reaction was monitored by LCMS. The reaction mixture was concentrated under reduced pressure and then redissolved in dichloromethane (50 ml), washed with water (25 ml), saturated aq. sodium bicarbonate (25 ml), and brine (25 ml), and dried with magnesium sulfate. The solvent was removed under reduced pressure. The crude product was purified by silica gel column (80 g) using DCM (5% triethyl amine) and MeOH as eluent. Product-containing fractions were collected and the solvent was evaporated. The resulted product may contain Triethylamine trihydrochloride (TEA.HCl) salt. To remove the salt, the product was re-dissolved in DCM (50 ml) and washed with saturated aq. sodium bicarbonate (20 ml) and brine (20 ml) then dried with magnesium sulfate and the solvent was evaporated. A pale yellow solid was obtained. Yield: 440 mg (89%). 31P NMR (162 MHz, CDCl3) δ −1.34, −1.98. MS calculated for C51H65FN7O14PSi [M]+ 1078.17 Observed: 1078.57 M+H+.




embedded image


Synthesis of Stereopure (Rp) Dimer.


To a stirred solution of L-DPSE chiral amidite (1.87 g, 2.08 mmol, 1.5 equiv., pre-dried by co-evaporation with dry acetonitrile and under vacuum for a minimum of 12 h) and TBS protected alcohol (500 mg, 1.38 mmol, pre-dried by co-evaporation with dry acetonitrile and under vacuum for a minimum of 12 h) in dry acetonitrile (18 mL) was added 2-(1H-imidazol-1-yl) acetonitrile trifluoromethanesulfonate (CMIMT, 5.54 mL, 0.5M, 2 equiv.) under argon atmosphere at room temperature. The resulting reaction mixture was stirred for 5 mins then monitored by LCMS and then a solution of 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (1.18 g, 4.16 mmol, 3 equiv.) in acetonitrile (2 mL) was added. Once the reaction was completed (after ˜5 mins, monitored by LCMS), the reaction mixture was concentrated under reduced pressure and then redissolved in dichloromethane (70 mL), washed with water (40 mL), saturated aq. sodium bicarbonate (40 mL) and brine (40 mL), and dried with magnesium sulfate. The solvent was removed under reduced pressure. The crude product was purified by silica gel column (120 g) using DCM (5% triethyl amine) and MeOH as eluent. Product containing fractions were collected and the solvent was evaporated. The resulted product contained TEA.HCl salt. To remove the salt, the product was re-dissolved in DCM (50 mL) and washed with saturated aq. sodium bicarbonate (20 mL) and brine (20 mL) and then dried with magnesium sulfate and the solvent was evaporated. A pale yellow foamy solid was obtained. Yield: 710 mg (47%). 1P NMR (162 MHz, CDCl3) δ −1.38. MS calculated for C51H65FN7O14PSi [M]+1078.17, Observed: 1078.19.




embedded image


Synthesis of Stereopure (Sp) Dimer


The same procedure was followed as for the Rp dimer. In place of L-DPSE chiral amidite, D-DPSE chiral amidite was used. A pale yellow foamy solid was obtained. Yield: 890 mg (59%). 31P NMR (162 MHz, CDCl3) δ −1.93. MS calculated for C51H65FN7O14PSi [M]+ 1078.17, Observed: 1078.00.


In an example 31P NMR (internal standard of phosphoric acid at δ 0.0), the stereorandom preparation showed two peaks at −1.34 and −1.98, respectively; the stereopure Rp preparation showed a peak at −1.93, and the stereopure Sp preparation showed a peak at −1.38.


Example 4A. Preparation of Oligonucleotides with Internucleotidic Linkages Comprising Neutral Guanidinium Group

In accordance with technologies described in the present disclosure, oligonucleotides with various neutral and/or cationic internucleotidic linkages (e.g., at physiological pH) can be prepared. Illustrated below are preparation of oligonucleotides comprising representative such internucleotidic linkages.


WV-1237 is an oligonucleotide comprising four internucleotidic linkages having the structure of




embedded image


(n00) to introduce a neutral nature to the backbone and reduce the overall negative charges of the backbone. Expected molecular weight: 7113.4.


As an example, one preparation of WV-11237, including certain synthetic conditions and analytical results, is described below. Briefly, stereopure internucleotidic linkages were constructed using L-DPSE amidites and typical DPSE coupling cycles comprising Detritylation->Coupling->Pre-Cap->Thiolation->Post-Cap. Cycles for the n001 internucleotidic linkages were modified and comprised Detritylation->Coupling->Dimethyl imidazolium treatment->Post-cap. Compared to certain oxidation cycles, oxidation steps of oxidizing the P(III), e.g., with I2-Pyridine (pyr)-water, was replaced with the dimethyl imidazolium treatment.


Certain conditions and/or results of an example preparation.


Synthetic scale: 127 μmol


Synthetic conditions (stereopure internucleotidic linkages)













Synthetic Steps
Conditions







Detritylation
3% DCA in Toluene; 300 cm/hr, 436 UV watch


Coupling
2.5 eq. of 0.2M chiral amidite, 67% of 0.6M CMIMT



Recycle time: 10 min


Pre-Cap B
Reagent: 20:30:50::Acetic anhydride:Lutidine:Acetonitrile



1.5 CV, 3 min CT


Thiolation
Reagent: 0.2M Xanthane Hydride



0.6 CV, 6 mm CT


Capping (1:1 Cap A + Cap B)
0.4 CV, 0.8 min CT










Cap A=N-Methylimidazole in acetonitrile, 20/80, v/v (20%:80%=NMI:ACN (v/v))


Cap B=Acetic anhydride/2,6-Lutidine/Acetonitrile, 20/30/50, v/v/v, 20%:30%:50%=Ac2O:2,6-Lutidine:ACN (v/v/v)


Synthetic conditions (stereorandom n001)













Synthetic Steps
Conditions







Detritylation
3% DCA in Toluene; 300 cm/hr, 436 UV watch


Coupling
2.5 eq. of 0.2M standard amidite, 67% of 0.6M ETT



Recycle time: 8 min


Dimethyl imidazolium treatment:
2.30 CV, 5 mm CT, 3.5 eq.


Capping (1:1 Cap A + Cap B)
0.4 CV, 0.8 min CT









Synthesis Process Parameters:
Synthesizer: AKTA Oligopilot 100

Solid Support: CPG 2′Fluoro-U, (85 umol/g)


Synthetic scale: 127 umol; 1.5 gm


Column diameter: 20 mm


Column volume: 6.3 mL


Stereopure Coupling Reagents:

Monomer: 0.2M in MeCN (2′Fluoro-dA-L-DPSE, 2′Fluoro-dG-L-DPSE, 2′-OMe-A-L-DPSE); 0.2M in 20% isobutyronitrle/MeCN (2′Fluoro-dC-L-DPSE, 2′Fluoro-U-L-DPSE)


Deblocking: 3% Dichloroacetic acid (DCA) in Toluene


Activator: 0.6M CMIMT in MeCN

Sulfurization: 0.2M Xanthane Hydride in pyridine


Cap A: N-Methylimidazole in acetonitrile, 20/80, v/v (20% NMI in MeCN)


Cap B: Acetic anhydride/2,6-Lutidine/Acetonitrile, 20/30/50, v/v/v, (Acetic anhydride. Lutidine, MeCN (20:30:50))


Pre-Cap: Neat Cap B
Stereorandom Coupling Reagents:
Monomer: 0.2M in MeCN (2′OMeA and 2′OMeG)
Deblocking: 3% DCA in Toluene
Activator: 0.6M ETT in MeCN

2-Azido-1,3-dimethylimidazolinium-hexafluorophosphate: 0.1M in MeCN


Cap A: 20% NMI in MeCN

Cap B: Acetic anhydride, Lutidine, MeCN


Deprotection Condition:

One pot deprotection by first treating the support with 5M Triethylamine trihydrofluoride (TEA.HF) in Dimethylsulfoxid (DMSO), H2O, Triethylamine (pH 6.8). Incubation: 3 h, room temperature, 80 μL/μmol. Followed by addition of aqueous ammonia (200 μL/μmol). Incubation: 24 h, 35° C. The deprotected material was sterile filtered using 0.45 μm filters.


Yield: 72 O.D./μmol
Recipe for 5× Solution of TEA.HF in DMSO/Water, 5/1, v/v:
















Solvents/
Volume
Total Volume


Reagent
Reagents
(mL)
(mL)


















(5X) TEA.HF in
DMSO
55.0
100


DMSO/Water,
Water
11.0


5/1, v/v
Triethylamine (TEA)
9.0



Triethylamine
25.0



trihydrofluoride



(TEA.3HF)









In an example crude UPLC chromatogram, there were four distinct peaks all having same desired molecular weight of 7113.2:


















RT
Area
% Area
Height




















9
7.843
402732
16.75
212901


10
7.884
941388
39.14
327190


11
7.968
595232
24.75
275741


12
8.025
353090
14.68
150141









The example final QC UPLC chromatogram showed four distinct peaks all having the desired molecular weight of 7113.2 (% Purity 95.32). Crude LC-MS showed a single peak of desired molecular weight of 113.2 (data not shown). The example final QC LC-MS showed a major peak with the desired molecular weight of 7113.1.


Other oligonucleotides may be prepared using similar cycle conditions or variants thereof depending on specific chemistries of each oligonucleotides. MS data of certain oligonucleotides are listed below:

















ID
Average
Observed




















WV-11237
7113.40288
7113.1



WV-11340
6967.19736
6967.4



WV-11341
6876.08178
6875.6



WV-11342
6888.1173
6887.7



WV-11343
7072.39402
7072.4



WV-11344
6981.27844
6981.6



WV-11345
6981.27844
6981.6



WV-11346
6981.27844
6981.6



WV-11347
6981.27844
6981.6



WV-11532
6905.78632
6905



WV-11533
7098.86298
7099



WV-12116
7909.88196
7909.4



WV-12117
7909.88196
7909.8



WV-12118
7909.88196
7910.2



WV-12119
7909.88196
7909.4



WV-12120
7909.88196
7909.8



WV-12121
7909.88196
7909.8



WV-12123
7125.35748
7125



WV-12124
6967.19736
6967



WV-12125
6967.19736
6967



WV-12126
6967.19736
6967



WV-12127
7046.27742
7046



WV-12128
7046.27742
7046



WV-12129
7046.27742
7046



WV-12504
8887.86402
8887.5



WV-12505
7278.017
7278.2



WV-12506
8944.9584
8945.2



WV-12507
7335.11138
7334.4



WV-12508
7155.95736
7156.3



WV-12539
7171.78104
7171



WV-12540
7171.78104
7171



WV-12541
7457.21802
7457



WV-12542
7219.97784
7219



WV-12543
7235.97724
7236



WV-12544
7112.86454
7113



WV-12553
6872.0517
6872



WV-12555
6876.08178
6875.8



WV-12556
6888.1173
6887.8



WV-12558
6876.08178
6875.6



WV-12559
6888.1173
6887.7



WV-12876
7204.43754
7204.4



WV-12877
7113.32196
7113.5



WV-12878
7125.35748
7125.4



WV-12879
6919.00056
6919.1



WV-12880
6923.03064
6923.2



WV-12881
6935.06616
6935.3



WV-12882
7094.4195
7094.1



WV-12883
7410.73974
7411.1










Example 4B. Chirally Controlled Non-Negatively Charged Internucleotidic Linkages

Dimer Synthesis.


This procedure is to make stereopure dimer phosphate backbone followed by incorporating it to the selective sites of oligonucleotides (e.g., antisense oligonucleotide or ASO, single-stranded RNAi agent or ssRNA, etc.). A second approach is to synthesize molecules using an automated oligonucleotide synthesizer to introduce anon-negatively charged internucleotidic linkage. e.g., a neutral internucleotidic linkage, at a specific site or full oligonucleotide.




embedded image


embedded image


embedded image


General experimental procedure (A): To a stirred solution of stereorandom amidite (474 mg, 0.624 mmol, 1.5 equiv., pre-dried by co-evaporation with dry acetonitrile and kept it under vacuum for minimum 12 h) and TBS protected alcohol (150 mg, 0.41 mmol, pre-dried by co-evaporation with dry acetonitrile and kept it under vacuum for minimum 12 h) in dry acetonitrile (5.2 mL) was added 5-(Ethylthio)-1H-tetrazole (ETT, 2.08 ml, 0.6M, 3 equiv.) under argon atmosphere at room temperature. Resulting reaction mixture was stirred for 5 mins then monitored by LCMS and then a solution of 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (356 mg, 1.24 mmol, 3 equiv.) in acetonitrile (1 mL) was added. Once the reaction was completed (after ˜5 mins, monitored by LCMS) then triethylamine (0.17 mL, 1.24 mmol, 3 equiv.) was added and monitored LCMS. Reaction mixture was concentrated under reduced pressure and then re-dissolved in dichloromethane (50 mL) washed with water (25 mL), saturated aq. Sodium bicarbonate (25 mL) and brine (25 mL) dried with magnesium sulfate. Solvent was removed under reduced pressure. The crude product was purified by silica gel column (80 g) using DCM (2% triethylamine) and MeOH as eluent. Product containing fractions collected and evaporated. Pale yellow solid 1001 obtained. Yield: 440 mg (89%). 31P NMR (162 MHz, CDCl3) δ −1.34, −1.98. MS (ES) m/z calculated for C51H65FN7O14PSi [M]+ 1077.40. Observed: 1078.57 [M+H]+.




embedded image


General experimental procedure (B) for stereopure (Rp) dimer: To a stirred solution of L (or) D-DPSE chiral amidite (1.87 g, 2.08 mmol, 1.5 equiv., pre-dried by co-evaporation with dry acetonitrile and kept it under vacuum for minimum 12 h) and TBS protected alcohol (500 mg, 1.38 mmol, pre-dried by co-evaporation with dry acetonitrile and kept it under vacuum for minimum 12 h) in dry acetonitrile (18 mL) was added 2-(H-imidazol-1-yl) acetonitrile trifluoromethanesulfonate (CMIMT, 5.54 mL, 0.5M, 2 equiv.) under argon atmosphere at room temperature. Resulting reaction mixture was stirred for 5 mins then monitored by LCMS and then a solution of 2-azido-, 3-dimethylimidazolinium hexafluorophosphate (1.18 g, 4.16 mmol, 3 equiv.) in acetonitrile (2 mL) was added. Once the reaction was completed (after ˜5 mins, monitored by LCMS) then the reaction mixture was concentrated under reduced pressure and then redissolved in dichloromethane (70 mL) washed with water (40 mL), saturated aq. sodium bicarbonate (40 mL) and brine (40 mL) dried with magnesium sulfate. Solvent was removed under reduced pressure. The crude product was purified by silica gel column (120 g) using DCM (2% triethyl amine) and MeOH as eluent. Product containing fractions are evaporated. Pale yellow foamy solid 1002 was obtained. Yield: 710 mg (47%). 31P NMR (162 MHz, CDCl3) δ −1.38. MS (ES) m/z calculated for C51H65FN7O14PSi[M]+ 1077.40, Observed: 1078.19 [M+H]+.




embedded image


Stereopure (Sp) dimer 1003: The procedure B was followed as shown above. D-DPSE chiral amidite was used. Pale yellow foamy solid was obtained. Yield: 890 mg (59%). 31P NMR (162 MHz, CDCl3) δ −1.93. MS (ES) m/z calculated for C51H65FN7O14PSi [M]+ 1077.40. Observed: 1078.00 [M+H]+.


General experimental procedure (C) for deprotection of TBS group: To a stirred solution of TBS protected compound (9.04 mmol) in trihydrofluoride (THF) (70 mL), was added TBAF (1.0 M, 13.6 mmol) at rt. The reaction mixture was stirred at room temperature for 2-4 h. LCMS showed there was no starting material left, then concentrated followed by purification using ISCO-combiflash system (330 g gold rediSep high performance silica column pre-equilibrated 3 CV with 2% TEA in DCM) and DCM/Methanol/2% TEA as a gradient eluent. Product containing column fractions were pooled together and evaporated followed by drying under high vacuum afforded the pure product.


General experimental procedure (D) for chiral amidites: The TBS deprotected compound (2.5 mmol) was dried by co-evaporation with 80 mL of anhydrous toluene (30 mL×2) at 35° C. and dried under at high vacuum for overnight. Then dried it was dissolved in dry THF (30 mL), followed by the addition of triethylamine (17.3 mmol) then the reaction mixture was cooled to −65° C. [for Guanine flavors: TMS-Cl, 2.5 mmol was added at −65° C., for non-Guanine flavors no TMS-Cl was added]. The THF solution of [(1R,3S,3aS)-1-chloro-3-((methyldiphenylsilyl)methyl)tetrahydro-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaphosphole (or) (1S,3R,3aR)-1-chloro-3-((methyldiphenylsilyl)methyl)tetrahydro-1H,3H-pyrrolo[1,2-c][1,3,2]oxazaphosphole (1.8 equiv.) was added through syringe to the above reaction mixture over 2 min then gradually warmed to room temperature. After 20-30 min, at rt, TLC as well as LCMS indicated starting material was converted to product (reaction time: 1 h). Then the reaction mixture was filtered under argon using air free filter tube, washed with THF and dried under rotary evaporation at 26° C. afforded crude solid material, which was purified by ISCO-combiflash system (40 g gold rediSep high performance silica column (pre-equilibrated 3 CV with CH3CN/5% TEA then 3 CV with DCM/5% TEA) using DCM/CH3CN/5% TEA as a solvent (compound eluted at 10-40 DCM/CH3CN/5% TEA). After evaporation of column fractions pooled together was dried under high vacuum afforded white solid to give isolated yield.



31P NMR (internal standard of Phosphoric acid at δ 0.0): 1001: −1.34 and −1.98. 1002: −1.93. 1003: −1.38. 1H NMR of 1001, 1002, and 1003 demonstrated different chemical shifts for multiple hydrogens of the diastereomers. LCMS showed different retention times for the two diastereomers as well. Under one condition, the following retention times were observed: 1.90 and 2.15 for 1001, 1.92 for one diastereomer, and 2.17 for the other.




embedded image


Compound 1004: Procedures B and C followed, Off-white foamy solid, Yield: (36%). 31P NMR (162 MHz, CDCl3) δ −1.23. MS (ES) m/z calculated for C47H54FN8O14P [M]+ 1004.34. Observed: 1043.21 [M+K]+.


Compound 1005: Procedure D used, Off-white foamy solid, Yield: (81%). 31P NMR (162 MHz, CDCl3) δ154.43, −2.52. MS (ES) m/z calculated for C66H76FN9O15P2Si [M]+ 1343.46, Observed: 1344.85 [M+H]+.




embedded image


Compound 1006: Procedures B and C followed, Off-white foamy solid, Yield: (47%). 31P NMR (162 MHz, CDCl3) δ−2.54. MS (ES) m/z calculated for C47H54FN8O14P [M]+ 1004.34, Observed: 1043.12 [M+K]+.


Compound 1007: Procedures D used, Off-white foamy solid, yield (81%). 31P NMR (162 MHz, CDCl3)δ153.55, −2.20. MS(ES) m/z calculated for C66H76FN9O15P2Si [m]+ 1343.46, Observed: 1344.75 [M+H]+.




embedded image


Compound 1008: Procedures B and C followed, Off-white foamy solid, Yield: (36%). 31NMR (162 MHz, CDCl3) δ−1.38. MS (ES) m/z calculated for C58H63FN13O13P [M]+ 1199.43, Observed: 1200.76 [M+H]+.


Compound 1009: Procedure D used, Off-white foamy solid, Yield: (60%). 31P NMR (162 MHz, CDCl3) δ157.26, −2.86. MS (ES) m/z calculated for C77H85FN14O14P2Si [M]+ 1538.55, Observed: 1539.93 [M+H]+.




embedded image


Compound 1010: Procedures B and C followed, Off-white foamy solid, Yield: (36%). 31P NMR (162 MHz, CDCl3) δ −2.82. MS (ES) m/z calculated for C58H63FN13O13P [M]+ 1199.43, Observed: 1200.19 [M+H]+.


Compound 1011: Procedure D used, Off-white foamy solid, Yield: (63%). 31P NMR (162 MHz, CDCl3) δ 159.56, −2.99. MS (ES) m/z calculated for C77H85FN14O14P2Si [M]+ 1538.55. Observed: 1539.83 [M+H]+.




embedded image


Compound 1012: Procedures B and C followed, Off-white foamy solid, Yield: (36%). [α]D23=−25.74 (c 1.06, CHCl3). 31P NMR (162 MHz, Chloroform-d) δ −1.83. 1H NMR (400 MHz, Chloroform-d) δ 12.14 (s, 1H), 11.28 (s, 1H), 9.15 (s, 1H), 8.56 (s, 1H), 8.25-7.94 (m, 2H), 7.90 (s, 1H), 7.72-7.48 (m, 2H), 7.44 (dd, J=8.2, 6.7 Hz, 2H), 7.35-7.26 (m, 2H), 7.24-7.02 (m, 8H), 6.81-6.56 (m, 4H), 6.04 (d, J=5.2 Hz, 1H), 5.67 (d, J=5.5 Hz, 1H), 4.83 (dt, J=8.6, 4.4 Hz, 1H), 4.71-4.54 (m, 2H), 4.49 (dt, J=14.2, 4.8 Hz, 2H), 4.35 (ddt, J=11.0, 5.1, 3.2 Hz, 1H), 4.28-4.09 (m, 2H), 3.68 (s, 6H), 3.37 (d, J=3.3 Hz, 7H), 3.33-3.17 (m, 5H), 2.82 (s, 5H), 2.74-2.60 (m, 1H), 1.92 (s, 2H), 1.72-1.50 (m, 1H), 1.08 (d, J=6.9 Hz, 3H), 0.94 (d, J=6.9 Hz, 3H). MS (ES) m/z calculated for C59H66N13O14P 1211.45 [M]+, Observed: 1212.42 [M+H]+.


Compound 1013: Procedure D used, Off-white foamy solid, Yield: (78%). [α]D23=−15.48 (c 0.96, CHCl3). 31P NMR (162 MHz, Chloroform-d) δ 159.42, −2.47. MS (ES) m/z calculated for C78H88N14O15P2Si 1550.57 [M]+, Observed: 1551.96 [M+H]+.




embedded image


Compound 1014: Procedures Band C followed, Off-white foamy solid, Yield: (30%). [α]D23=−21.45 (c 0.55, CHCl3). MS(ES) m/z calculated for C59H66N13O14P 1211.45 [M]+, Observed: 1212.80[M+H]+.


Compound 1015: Procedure D used, Off-white foamy solid, Yield: (68%). [α]D23=−15.63 (c 1.44, CHCl3). MS (ES) m/z Calculated for C78H88N14O15P2Si 1550.571[M]+,Observed: 1551.77 [M+H]+.


Compound 1016: Procedure D used, Off-white foamy solid, Yield: (64%). 31P NMR (162 MHz, CDCl3)δ156.64, −2.67. MS (ES)m/z Calculated for C78H88N14O15P2Si 1550.57[M]+, Observed: 1551.77 [M+H]+.




embedded image


General experimental procedure (E) for stereopure dimer using sulfonyl amidite: To a stirred solution of steropure sulfonyl amidite 1017 (259 mg, 0.275 mmol, 1.5 equiv) and TBS protected alcohol (100 mg, 0.18 mmol) in dry acetonitrile (2 mL) was added 2-(1H-imidazol-1-yl) acetonitrile trifluoromethanesulfonate (CMIMT, 0.73 mL, 0.36 mmol, 0.5M, 2 equiv.) under argon atmosphere at room temperature. Resulting reaction mixture was stirred for 5 mins and monitored by LCMS then a mixture of acetic anhydride (2M in ACN, 0.18 ml, 0.36 mmol, 2 equ) and lutidine (2M in ACN, 0.18 ml, 0.36 mmol, 2 equ) was added then stirred for ˜5 mins then a solution of 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (104.7 mg, 0.367 mmol, 2 equiv.) in acetonitrile (1 mL) was added. Once the reaction was completed (after ˜5 mins, monitored by LCMS) then triethylamine (0.13 mL, 0.91 mmol, 5 equiv.) was added and monitored by LCMS. Once the reaction was completed, it was concentrated under reduced pressure and then re-dissolved in dichloromethane (50 mL) washed with water (25 mL), saturated aq. Sodium bicarbonate (25 mL) and brine (25 mL) dried with magnesium sulfate. Solvent was removed under reduced pressure. The crude product was purified by silica gel column (80 g) using DCM (2% triethylamine) and MeOH as eluent. Product containing fractions collected and evaporated. Off white solid 1018 obtained. Yield: 204 mg (82%). 31P NMR (162 MHz, CDCl3) δ −1.87. MS (ES) m/z calculated for C74H75FN10P [M]+ 1359.44. Observed: 1360.39 [M+H]+.


Additional phosphoramidites that may be utilized for synthesis include:




embedded image


Additional useful chiral auxiliaries include:




embedded image


Other phosphoramidites and chiral auxiliaries, such as those described in U.S. Pat. Nos. 9,695,211, 9,605,019, U.S. Pat. No. 9,598,458, US 2013/0178612, US 20150211006, US 20170037399, WO 2017/015555, WO 2017/062862, WO 2017/160741, WO 2017/192664, WO 2017/192679, WO 2017/210647, WO 2018/098264, WO 2018/223056, and/or WO 2018/237194, the chiral auxiliaries and phosphoramidites of each of which is incorporated by reference.


Example 4C. Synthesis of N2,N6-bis(4-sulfamoylbenzoyl)-L-lysine



embedded image


Step 1. To a solution of 4-sulfamoylbenzoic acid (10.00 g, 49.70 mmol) and HOSu (6.29 g, 54.67 mmol) in DMF (300 mL) was added DCC (10.25 g, 49.70 mmol) at 0° C. The mixture was stirred at 0° C. for 16 hours. LCMS showed compound was consumed. The resulting mixture was combined and workup with another batch of crude (1 g scale). The white suspension of N,N′-dicyclohexylurea (DCU) was filtered and removed white solid. The filtrate was concentrated to give an oil. This crude product was washed with hot 2-propanol (50 mL*3) to afford an off-white solid. Compound (2,5-dioxopyrrolidin-1-yl) 4-sulfamoylbenzoate (11.80 g, 38.66 mmol, 77.78% yield, 97.713% purity) (yield from conversion rate for 10 g batch) was obtained as a white solid. Compound (2,5-dioxopyrrolidin-1-yl) 4-sulfamoylbenzoate (13 g) was totally obtained as a white solid for two batches of reactions. 1H NMR (400 MHz, CHLOROFORM-d) δ=8.30 (d, J=8.4 Hz, 2H), 8.08 (d, J=8.3 Hz, 2H), 7.70 (s, 2H), 2.96-2.87 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ=170.62, 161.47, 150.32, 131.40, 127.65, 127.18, 26.04; HPLC purity: 97.71%.


Step 2. To a solution of (2,5-dioxopyrrolidin-1-yl) 4-sulfamoylbenzoate (5.00 g, 16.76 mmol) and (2S)-2,6-diaminohexanoic acid (1.23 g, 8.38 mmol) in H2O (50 mL) and DMF (50.00 mL) was added NaHCO3 (2.11 g, 25.14 mmol). The mixture was stirred at 15° C. for 16 hours. LCMS showed MS with desired compound was detected. The mixture concentrated under reduced pressure to give a crude (6 g). The crude (3.5 g) was purified by prep-HPLC(column: Phenomenex luna C18 250*50 mm*10 um; mobile phase: [water(0.1% TFA)-ACN]; B %: 1%-30%, 20 min). N2,N6-bis(4-sulfamoylbenzoyl)-L-lysine (1.40 g, 30.40% yield, 93.268% purity) was obtained as a white solid and 2.5 g crude as a yellow solid. 1H NMR (400 MHz, DMSO-d) δ=12.64 (br s, 1H), 8.80 (br d, J=7.5 Hz, 1H), 8.65 (br t, J=5.3 Hz, 1H), 8.04 (d, J=8.2 Hz, 2H), 7.99-7.95 (m, 2H), 7.95-7.84 (m, 4H), 7.48 (br d, J=11.6 Hz, 4H), 4.44-4.32 (m, 1H), 3.28 (br d, J=6.1 Hz, 2H), 1.94-1.71 (m, 3H), 1.63-1.36 (m, 4H); 13C NMR (101 MHz, DMSO-d) δ=174.04, 166.08, 165.58, 146.89, 146.57, 138.05, 137.36, 128.60, 128.26, 126.05, 53.21, 30.77, 29.11, 23.84. LCMS (M−H+); 511.0 (M+H)+ HPLC purity: 93.268%.


Example 4D. Example Technologies for Chirally Controlled Oligonucleotide Preparation—Example Useful Chiral Auxiliaries

Among other things, the present disclosure provides technologies (e.g., chiral auxiliaries, phosphoramidites, cycles, conditions, reagents, etc.) that are useful for preparing chirally controlled internucleotidic linkages. In some embodiments, provided technologies are particularly useful for preparing certain internucleotidic linkages, e.g., non-negatively charged internucleotidic linkages, neutral internucleotidic linkages, etc., comprising P-N═ wherein P is the linkage. In some embodiments, the linkage phosphorus is trivalent. In some embodiments, the linkage phosphorus is pentavalent. In some embodiments, such internucleotidic linkages have the structure of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, I-b-1, II-b-2, I-c-1, II-c-2, I-d-1, II-d-2, or a salt form thereof. Certain example technologies (chiral auxiliaries and their preparations, phosphoramidites and their preparations, cycles, conditions, reagents, etc.) are described in the Examples herein. Among other things, such chiral auxiliaries provide milder reaction conditions, higher functional group compatibility, alternative deprotection and/or cleavage conditions, higher crude and/or purified yields, higher crude purity, higher product purity, and/or higher (or substantially the same or comparable) stereoselectivity when compared to a reference chiral auxiliary (e.g., of formula 0, P, Q, R or DPSE).




embedded image


Two batches in parallel: To a solution of methylsulfonylbenzene (102.93 g, 658.96 mmol, 1.5 eq.) in THF (600 mL) was added KHMDS (1 M, 658.96 mL, 1.5 eq.) dropwise at −70° C., and warmed to −30° C. slowly over 30 min. The mixture was then cooled to −70° C. A solution of compound 1 (150 g, 439.31 mmol, 1 eq.) in THF (400 mL) was added dropwise at −70° C. The mixture was stirred at −70° C. for 3 hr. TLC (Petroleum ether:Ethyl acetate=3:1, Rf=0.1) indicated compound 1 was consumed completely and one major new spot with larger polarity was detected. Combined 2 batches. The reaction mixture was quenched by added to the sat. NH4Cl (aq. 1000 mL), and then extracted with EtOAc (1000 mL×3). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to give 1000 mL solution. Then added the MeOH (600 mL), concentrated under reduced pressure to give 1000 mL solution, then filtered the residue and washed with MeOH (150 mL); the residue was dissolved with THF (1000 mL) and MeOH (600 mL), then concentrated under reduced pressure to give 1000 mL solution. Then filtered to give a residue and washed with MeOH (150 mL). And repeat one more time. Compound 2 (248 g, crude) was obtained as a white solid. And the combined mother solution was concentrated under reduced pressure to give compound 3 (200 g, crude) as yellow oil.


Compound 2: 1H NMR (400 MHz, CHLOROFORM-d) δ=7.80 (d, J=7.5 Hz, 2H), 7.74-7.66 (m, 1H), 7.61-7.53 (m, 2H), 7.47 (d, J=7.5 Hz, 6H), 7.24-7.12 (m, 9H), 4.50-4.33 (m, 1H), 3.33 (s, 1H), 3.26 (ddd, J=2.9, 5.2, 8.2 Hz, 1H), 3.23-3.10 (m, 2H), 3.05-2.91 (m, 2H), 1.59-1.48 (m, 1H), 1.38-1.23 (m, 1H), 1.19-1.01 (m, 1H), 0.31-0.12 (m, 1H).


Preparation of Compound WV-CA-108



embedded image


To a solution of compound 2 (248 g, 498.35 mmol, 1 eq.) in THF (1 L) was added HCl (5M, 996.69 mL, 10 eq.). The mixture was stirred at 15° C. for 1 hr. TLC (Petroleum ether:Ethyl acetate=3:1, Rf=0.03) indicated compound 2 was consumed completely and one major new spot with larger polarity was detected. The resulting mixture was washed with MTBE (500 mL×3). The combined organic layers were back-extracted with water (100 mL). The combined aqueous layer was adjusted to pH 12 with 5M NaOH aq. and extracted with DCM (500 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated to afford a white solid. WV-CA-108 (122.6 g, crude) was obtained as a white solid.



1H NMR (400 MHz, CHLOROFORM-d) δ=7.95 (d, J=7.5 Hz, 2H), 7.66 (t, J=7.5 Hz, 1H), 7.57 (t, J=7.7 Hz, 2H), 4.03 (ddd, J=2.6, 5.3, 8.3 Hz, 1H), 3.37-3.23 (m, 2H), 3.20-3.14 (m, 1H), 2.91-2.75 (m, 3H), 2.69 (br s, 1H), 1.79-1.54 (m, 5H); 13C NMR (101 MHz, CHLOROFORM-d) δ=139.58, 133.83, 129.28, 127.98, 67.90, 61.71, 59.99, 46.88, 25.98, 25.84; LCMS [M+H]+: 256.1. LCMS purity: 100%. SFC 100% purity.


Among other things, the present disclosure encompasses the recognition that bases utilized in reactions (e.g., from compound 1 to compound 2)can impact stereoselectivity of such reactions. Certain example results are described below:




















Chiral Auxiliary


S. No
Aldehyde
Nucleophile
Base
(Diastereoselectivity, cis/trans)







 1
1


embedded image


n-BuLi
WV-CA-108 (87:13)





 2
1


embedded image


LiHMDS
WV-CA-108 (1.85:1)





 3
1


embedded image


LDA
WV-CA-108 (1.85:1)





 4
1


embedded image


KHMDS
WV-CA-108 (10:1)





 5
1


embedded image


t-BuOK
WV-CA-108 (10:1)





 6
4


embedded image


n-BuLi
WV-CA-242 (2:1)





 7
4


embedded image


KHMDS
WV-CA-242 (8:1)





 8
4


embedded image


n-BuLi
WV-CA-243 (2:1)





 9
4


embedded image


KHMDS
WV-CA-243 (8:1)





10
4


embedded image


n-BuLi
WV-CA-347 (5.5:1)





11
4


embedded image


KHMDS
WV-CA-347 (10:1)





12
4


embedded image


KHMDS
WV-CA-247 (43:57)





13
4


embedded image


n-BuLi
WV-CA-247 (~1:1)





14
4


embedded image


LiHMDS
WV-CA-247 (~39:51)





15
4


embedded image


NaHMDS
WV-CA-247 (~40:66)









Preparation of compound WV-CA-237



embedded image


To a solution of compound 3 (400.00 g, 803.78 mmol) in THF (1.5 L) was added HCl (5M, 1.61 L). The mixture was stirred at 15° C. for 2 hr. TLC indicated compound 3 was consumed completely and one major new spot with larger polarity was detected. The resulting mixture was washed with MTBE (500 mL×3). The combined aqueous layer was adjusted to pH 12 with 5M NaOH aq. and extracted with DCM (500 mL×1) and EtOAc (1000 mL×2). The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated to afford as a brown solid. WV-CA-237 (100 g, crude) was obtained as a brown solid.


The residue was purified by column chromatography (SiO2, Petroleum ether/Ethyl acetate=3/1 to Ethyl acetate:Methanol=1: 2) to give 24 g crude. Then the 4 g residue was purified by prep-HPLC (column: Phenomenex luna C18 250×50 mm×10 um; mobile phase: [water (0.05% HCl)-ACN]; B %: 2%→20%, 15 min) to give desired compound (2.68 g, yield 65%) as a white solid. WV-CA-237 (2.68 g) was obtained as a white solid. WV-CA-237; 1H NMR (400 MHz, CHLOROFORM-d) δ=7.98-7.88 (m, 2H), 7.68-7.61 (m, 1H), 7.60-7.51 (m, 2H), 4.04 (dt, J=2.4, 5.6 Hz, 1H), 3.85 (ddd, J=3.1, 5.6, 8.4 Hz, 1H), 3.37-3.09 (m, 3H), 2.95-2.77 (m, 3H), 1.89-1.53 (m, 4H), 1.53-1.39 (m, 1H); 13C NMR (101 MHz, CHLOROFORM-d) δ=139.89, 133.81, 133.70, 129.26, 129.16, 128.05, 127.96, 68.20, 61.77, 61.61, 61.01, 60.05, 46.67, 28.02, 26.24, 25.93; LCMS [M+H]+; 256.1. LCMS purity: 80.0%. SFC dr=77.3:22.7.




embedded image


To a solution of compound 4 (140 g, 410.02 mmol) in THF (1400 mL) was added methylsulfonylbenzene (96.07 g, 615.03 mmol), then added KHMDS (1 M, 615.03 mL) in 0.5 hr. The mixture was stirred at −70˜−40° C. for 3 hr. TLC indicated compound 4 was consumed and one new spot formed. The reaction mixture was quenched by addition sat. NH4Cl aq. 3000 mL at 0° C., and then diluted with EtOAc (3000 mL) and extracted with EtOAc (2000 mL×3). Dried over Na2SO4, filtered, and concentrated under reduced pressure to give a residue. To the crude was added THF (1000 mL) and MeOH (1500 mL), concentrated under reduced pressure at 45° C. until about 1000 mL residue remained, filtered the solid. Repeat 3 times. Compound 5 (590 g, 72.29% yield) was obtained as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.81 (d, J=7.5 Hz, 2H), 7.75-7.65 (m, 1H), 7.62-7.53 (m, 2H), 7.48 (br d, J=7.2 Hz, 6H), 7.25-7.11 (m, 9H), 4.50-4.37 (m, 1H), 3.31-3.11 (m, 3H), 3.04-2.87 (m, 2H), 1.60-1.48 (m, 1H), 1.39-1.24 (m, 1H), 1.11 (dtd, J=4.5, 8.8, 12.8 Hz, 1H), 0.32-0.12 (m, 1H).


Preparation of compound WV-CA-236



embedded image


To a solution of compound 5 (283 g, 568.68 mmol) in THF (1100 mL) was added HCl (5M, 1.14 L). The mixture was stirred at 25° C. for 2 hr. TLC indicated compound 5 was consumed and two new spots formed. The reaction mixture was washed with MTBE (1000 mL×3), then the aqueous phase was basified by addition NaOH (5M) until pH=12 at 0° C., and then extracted with DCM (1000 mL×3) to give a residue, dried over Na2SO4, filtered, and concentrated under reduced pressure to give a residue. Compound WV-CA-236 (280 g, 1.10 mol, 96.42% yield) was obtained as a yellow solid.


The crude product was added HCl/EtOAc (1400 mL, 4M) at 0° C., 2 hr later, filtered the white solid and washed the solid with MeOH (1000 mL×3). LCMS showed the solid contained another peak (MS=297). Then the white solid was added H2O (600 mL) and washed with DCM (300 mL×3). The aqueous phase was added NaOH (5 M) until pH=12. Then diluted with DCM (800 mL) and extracted with DCM (800 mL×4). The combined organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure to give the product. Compound WV-CA-236 (280 g) was obtained as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) 6=8.01-7.89 (m, 2H), 7.69-7.62 (m, 1H), 7.61-7.51 (m, 2H), 4.05 (ddd, J=2.8, 5.2, 8.4 Hz, 11H), 3.38-3.22 (m, 2H), 3.21-3.08 (m, 1H), 2.95-2.72 (m, 4H), 1.85-1.51 (m, 4H); 13C NMR (101 MHz, CHLOROFORM-d) δ=139.75, 133.76, 129.25, 127.94, 67.57, 61.90, 60.16, 46.86, 25.86. LCMS [M+H]+: 256. LCMS purity: 95.94. SFC purity:




embedded image


To a solution of -methoxy-4-methylsulfonyl-benzene (36.8 g, 197.69 mmol) in THF (500 mL) was added KHMDS (1 M, 197.69 mL) at −70° C., 0.5 hr later added compound 4 (45 g, 131.79 mmol) in THF (400 mL) at −70° C. The mixture was stirred at −70→−30° C. for 4 hr, and then the mixture was added with KHMDS (1M, 131.79 mL) at −70° C. The mixture was stirred at −70° C. for 1 hr. TLC indicated compound 4 was remained, and two new spots were detected. The reaction mixture was quenched by sat. NH4Cl (aq. 300 mL), and then extracted with EtOAc (500 mL×3). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to give a residue. The residue was dissolved in THF (800 mL) and MeOH (500 mL), and then concentrated under reduced pressure until 200 mL solvent left. The mixture was added with MeOH (500 mL) and concentrated under reduced pressure to 200 mL solvent left and solid appeared. The solid was filtered to give product. Repeated the trituration 2 times. Compound 6 (49.8 g, 71.61% yield) was obtained as a brown solid. 1H NMR (400 MHz, CHLOROFORM-d)=7.73-7.66 (m, 2H), 7.46 (d, J=7.5 Hz, 6H), 7.24-7.11 (m, 9H), 7.04-6.96 (m, 2H), 4.37 (td, J=3.1, 8.3 Hz, 1H), 3.94-3.88 (m, 3H), 3.36 (s, 1H), 3.26-3.10 (m, 3H), 3.00-2.89 (m, 2H), 1.58-1.45 (m, 1H), 1.37-1.23 (m, 1H), 1.15-1.00 (m, 1H), 0.26-0.10 (m, 1H).


Preparation of compound WV-CA-241



embedded image


To a solution of compound 6 (50 g, 94.76 mmol) in THF (250 mL) was added HCl (5 M, 189.51 mL). The mixture was stirred at 20° C. for 3 hr. TLC indicated compound 6 was consumed and two new spots formed. The reaction mixture was extracted with MTBE (200 mL×3) and the MTBE phases were discarded. And then the water phase was added with 5 M NaOH (aq.) to pH=9 and extracted with DCM (200 mL×5). The combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to give the product. WV-CA-241 (27 g, 98.10% yield, LCMS purity: 98.24% purity) was obtained as a colorless oil. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.83-7.76 (m, 2H), 6.98-6.91 (m, 2H), 4.00 (ddd, J=2.9, 5.0, 8.4 Hz, 1H), 3.81 (s, 3H), 3.33-3.07 (m, 5H), 2.87-2.75 (m, 2H), 1.74-1.49 (m, 4H); 13C NMR (101 MHz, CHLOROFORM-d) δ=163.79, 131.10, 130.21, 114.44, 67.66, 61.88, 60.25, 55.69, 46.85, 25.84, 25.81. LCMS [M+H]+; 286.1. LCMS purity: 98.24%. SFC:dr=0.18:99.82. LCMS purity: 99.9%; SFC purity: 99.82%.




embedded image


To a solution of 2-methylsufonylpropane (32.21 g, 263.59 mmol) in THF (1200 mL) was added KHMDS (1 M, 263.59 mL) dropwise at −60° C., and warm to −30° C., slowly over 30 min. The mixture was then cooled to −70° C. A solution of compound 4 (60 g, 175.72 mmol) in THF (300 mL) was added dropwise at −70° C.→60° C., over 30 min. The mixture was stirred at −70° C.→60° C. for 2 hr. TLC showed compound 4 was consumed and new spot was detected. The reaction mixture was quenched with sat. aq. NH4Cl (800 mL), and then extracted with EtOAc (1 L×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated. Compound 7 (95 g, crude) was obtained as a yellow oil.


Preparation of Compound WV-CA-242



embedded image


To a solution of compound 7 (95 g, 204.90 mmol) in THF (400 mL) was added HCl (5M, 409.81 mL). The mixture was stirred at 0→+25° C. for 2 hr. TLC indicated compound 7 was consumed and one new spot formed. The reaction mixture was washed with MTBE (300 mL×3), then the aqueous phase was basified by addition NaOH (5 M) until pH=12 at 0° C., and then extracted with DCM (300 mL×3) to give a residue dried over Na2SO4, filtered, and concentrated under reduced pressure to give a residue. Compound WV-CA-242 (45 g, 99.23% yield) was obtained as a yellow oil. LCMS [M+H]+: 222.0.


Purification of Compound WV-CA-242



embedded image


A solution of WV-CA-242 (45 g, 203.33 mmol), (E)-3-phenylprop-2-enoic acid (30.12 g, 203.33 mmol) in EtOH (450 mL) was stirred at 80° C. for 1 hr. The reaction was concentrated in vacuo. The residue was dissolved in TBME (400 mL), and then stirred at 80° C. for 15 min, and then to the mixture was added EtOH (20 mL) and MeCN (30 mL), and then the mixture was filtered, and the filtered cake was washed with TBME (30 mL×2) and then did this for 8 times. The salt (35 g, crude) was obtained as a red solid.


To a solution of salt (34 g, 92.02 mmol) in H2O (20 mL) was added aq. 5N NaOH (5 M, 36.81 mL). The mixture was stirred at 25° C. for 10 min. The reaction was extracted with DCM (100 mL×8), and then the organic phase was concentrated in vacuo. Compound WV-CA-242 (18.9 g, 91.09% yield. LCMS purity: 98.16%) was obtained as an off-white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=4.13 (ddd, J=2.1, 4.6, 9.5 Hz, 1H), 3.38 (spt, J=6.9 Hz, 1H), 3.23-3.14 (m, 2H), 3.01 (dd, J=2.1, 14.4 Hz, 1H), 2.95-2.91 (m, 2H), 1.83-1.60 (m, 4H), 1.40 (dd, J=4.0, 6.8 Hz, 6H); 13C NMR (101 MHz, CHLOROFORM-d) 6=67.45, 61.71, 53.93, 53.42, 46.80, 25.86, 5.43, 16.03, 14.17. LCMS [M+H]+; 222.1. LCMS purity: 98.17%.




embedded image


To a solution 2-methyl-2-(methylsulfonyl)propane (14.96 g, 109.83 mmol) in THF (150 mL) was added KHMDS (1 M, 109.83 mL) dropwise at −70° C., and warm to −30° C. slowly over 30 min. The mixture was then cooled to −70° C. A solution of compound 4 (25.00 g, 73.22 mmol) in THF (100 mL) was added dropwise at −70° C. The mixture was stirred at −70° C. for 4 hr. TLC (Petroleum ether:Ethyl acetate=3:1 Rf=0.3) showed compound 4 was remained a little, and one major new spot with larger polarity was detected. The reaction mixture was quenched by added to the sat. NH4Cl (aq. 100 mL), and then extracted with EtOAc (100 mL×3). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to give 30 mL solution. Then added MeOH (30 mL), concentrated under reduced pressure to give 30 mL solution, then filtered the residue and washed with MeOH (10 mL); the residue was dissolved with THF (30 mL) and MeOH (30 mL), and then concentrated under reduced pressure to give 30 mL solution. Then filtered to give a residue and washed with MeOH (10 mL). And repeat one more time to give 21 g white solid and 20 g brown oil. Compound 8 (21 g, crude) was obtained as a white solid, and Compound 8A (20 g, crude) as a brown oil. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.56 (d, J=7.5 Hz, 6H), 7.32-7.23 (m, 6H), 7.21-7.14 (m, 3H), 4.85-4.68 (m, 1H), 3.52-3.43 (m, 4H), 3.41 (td, J=3.8, 8.1 Hz, 1H), 3.28 (td, J=8.5, 11.9 Hz, 1H), 3.09-2.91 (m, 2H), 2.78 (dd, J=2.6, 13.6 Hz, 1H), 1.65-1.50 (m, 1H), 1.37 (s, 10H), 1.16-0.98 (m, 2H), 0.39-0.21 (m, 1H). LCMS [M+H]+: 235.9.


Preparation of Compound WV-CA-243



embedded image


To a solution of compound 8 (20 g, 41.87 mmol) in THF (200 mL) was added HCl (5 M, 83.74 mL). The mixture was stirred at 15° C. for 3 hr. TLC indicated compound 8 was consumed completely and one major new spot with larger polarity was detected. The resulting mixture was washed with MTBE (100 mL×3). The combined aqueous layer was adjusted to pH 12 with 5M NaOH aq. and extracted with DCM (50 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated to afford a white solid. WV-CA-243 (9 g, 90.42% yield, 99% purity) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ 4.18 (ddd, J=2.8, 5.8, 8.2 Hz, 1H), 3.29-3.21 (m, 1H), 3.19 (d, J=2.6 Hz, 1H), 3.16-3.08 (m, 1H), 2.92 (t, J=6.6 Hz, 2H), 2.74 (br s, 1H), 1.92-1.81 (m, 1H), 1.81-1.61 (m, 3H), 1.42 (s, 10H); 13CNMR (101 MHz, CHLOROFORM-d) δ=68.01, 62.00, 59.73, 49.79, 46.96, 26.77, 25.80, 23.22. LCMS [M+H]+: 236.1. LCMS purity: 99.46%.




embedded image


To a solution (chloromethyl)(phenyl)sulfane of Mg (17.08 g, 702.90 mmol, 4 eq.) and I2 (0.50 g, 1.97 mmol, 396.83 uL, 1.12-2 eq.) in THF (100 mL) was added with 1,2-dibromoethane (1.25 g, 6.63 mmol, 0.5 mL, 3.77-2 eq.). Once the mixture turned to be colorless, chloromethylsulfanylbenzene (111.51 g, 702.90 mmol, 4 eq.) in THF (100 mL) was dropwise added at 10-20° C. for 1 hr. After addition, the mixture was stirred at 10-20° C. for 1 hr, most of Mg was consumed. And then the mixture was added in the mixture of compound 1 (60 g, 175.72 mmol, 1 eq.) in THF (600 mL) at −78° C., the mixture was stirred at −78° C.-20° C. for 4 hr. TLC (Petroleum ether:Ethyl acetate=9:1, Rf=0.26) indicated compound 1 was remained and two new spots formed. The reaction mixture was quenched by addition water (100 mL) at 0° C., and then extracted with EtOAc (100 mL×3). The combined organic layers were dried over Na2SO4, filtered, and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO2, Petroleum ether/Ethyl acetate=200/1 to 10:1) 2 times. Compound 9 (80 g, 171.80 mmol, 97.77% yield) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.52 (d, J=7.5 Hz, 6H), 7.31-7.09 (m, 14H), 4.24-4.14 (m, 1H), 3.54-3.44 (m, 1H), 3.30-3.18 (m, 1H), 3.08-2.96 (m, 1H), 2.91 (s, 1H), 2.80 (d, J=7.0 Hz, 2H), 1.69-1.53 (m, 1H), 1.39-1.30 (m, 1H), 1.15-1.01 (m, 1H), 0.30-0.12 (m, 1H).


Preparation of Compound WV-CA-244



embedded image


To a solution of compound 9 (80 g, 171.80 mmol, 1 eq.) in EtOAc (350 mL) was added HCl (5 M, 266.30 mL, 7.75 eq.). The mixture was stirred at 15° C. for 18 hr. TLC (Petroleum ether:Ethyl acetate=9:1, Rf=0.01) indicated compound 9 was consumed and new spots formed. The reaction mixture was extracted with MTBE (200 mL×3) and the MTBE phases were discarded. And then the water phase was added with 2 M NaOH (aq.) to pH=9 and extracted with EtOAc (200 mL×5). The combined organic layers were washed with brine (200 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to give the crude product. To the crude product was added EtOAc (100 mL) at 70° C. The mixture was stirred at 70° C.→20° C. for 1 hr. The reaction mixture was filtered, and the filter cake was dried to give the product. WV-CA-244 (31.9 g, 142.84 mmol, 94.66% yield) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.37 (d, J=7.5 Hz, 2H), 7.26 (t. J=7.7 Hz, 2H), 7.20-7.12 (m, 1H), 3.74-3.65 (m, 1H), 3.24-3.15 (m, 1H), 3.13-3.00 (m, 2H), 3.00-2.21 (m, 4H), 1.77-1.59 (m, 4H); 13C NMR (101 MHz, CHLOROFORM-d) δ=136.04, 129.35, 128.95, 126.15, 70.75, 61.64, 46.86, 38.54, 25.86, 25.17. LCMS [M+H]+: 224.1. LCMS purity: 99.57%.




embedded image


To a solution of 4-methylsulfonylbenzonitrile (47.76 g, 263.59 mmol, 1.5 eq.) in THF (800 mL) was added KHMDS (1 M, 263.59 mL, 1.5 eq.) at −70° C.→−40° C., 0.5 hr later, added compound 4 (60.00 g, 175.72 mmol, 1 eq.) in THF (400 mL) at −70° C. The mixture was stirred at −70° C. for 2.5 hr. TLC (Petroleum ether:Ethyl acetate=1:1, Rf=0.4) indicated compound 4 was consumed and one new spot formed. The reaction mixture was quenched by addition sat. NH4Cl (20 mL) at 0° C. and extracted with DCM (600 mL×3). Dried over Na2SO4, filtered, and concentrated under reduced pressure to give a residue. The residue was washed with MeOH (500 mL×5) to get compound 10 (28 g, 53.57 mmol, 30.49% yield) as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.84-7.74 (m, 2H), 7.73-7.65 (m, 2H), 7.32 (d, J=7.2 Hz, 6H), 7.15-6.99 (m, 9H), 4.20 (td, J=2.9, 5.6 Hz, 1H), 3.22 (ddd, J=3.1, 5.7, 8.3 Hz, 1H), 3.12-3.03 (m, 2H), 3.02-2.92 (m, 1H), 2.90-2.77 (m, 2H), 1.39-1.26 (m, 1H), 1.20-0.93 (m, 2H), 0.13-0.11 (m, 1H).


Preparation of Compound WV-CA-23&



embedded image


To a solution of compound 10 (28 g, 53.57 mmol, 1 eq.) in DCM (196 mL) was added TFA (12.22 g, 107.15 mmol, 7.93 mL, 2 eq.). The mixture was stirred at 0° C. for 3 hr. TLC and LCMS indicated compound 10 was consumed and two new spots formed, the reaction mixture was washed with MTBE (100 mL×3), then the aqueous phase was basified by addition NaOH (5 M) until pH=12 at 0° C., and then extracted with DCM (50 mL×3) to give a residue dried over Na2SO4, filtered, and concentrated under reduced pressure to give a residue. Compound WV-CA-238 (9.5 g, 33.42 mmol, 62.38% yield, 98.62% purity) was obtained as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=8.09 (d, J=8.4 Hz, 2H), 7.87 (d, J=8.4 Hz, 2H), 4.06 (ddd, J=2.9, 4.9, 8.3 Hz, 1H), 3.38-3.16 (m, 3H), 2.96-2.79 (m, 2H), 1.81-1.64 (m, 3H), 1.61-1.45 (m, 1H). 13C NMR (101 MHz, CHLOROFORM-d) δ=144.05, 132.88, 128.93, 117.48, 117.15, 67.63, 61.50, 60.09, 46.83, 25.88, 25.55. LCMS [M+H]+; 281.1. LCMS purity: 98.62%. SFC:dr=99.75:0.25.




embedded image


To a solution of methylsulfinylbenzene (25 g, 178.31 mmol, 1.5 eq.) in THF (400 mL) was added KHMDS (1 M, 178.31 mL, 1.5 eq.) dropwise at −60° C., and warm to −30° C. slowly over 30 min. The mixture was then cooled to −70° C. A solution of compound 4 (40.59 g, 118.88 mmol, 1 eq.) in THF (100 mL) was added dropwise at −70° C. The mixture was stirred at −70° C.→−50° C. for 2 hr. TLC (Petroleum ether:Ethyl acetate=3:1) showed compound 4 was remained. The reaction mixture was cooled to −70° C., additionally added KHMDS (M, 40 mL), and stirred at −70° C.→˜−40° C. for 2 hr. TLC (Petroleum ether:Ethyl acetate=3:1) showed compound 4 was little remained. The reaction mixture was quenched with sat. NH4Cl (aq. 300 mL), and the separated aqueous layer was extracted with EtOAc (200 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated to afford a residue as a yellow gum, which was crystallized in MeOH (100 mL), filtered and rinsed with MeOH (50 mL) to give an off-white solid (17 g), and the filtrate was concentrated to afford a yellow gum (50 g). The white solid product (17 g) was re-dissolved in THF (150 mL), and added MeOH (80 mL), and the mixture was concentrated to remove THF, filtered and dried to give an off-white solid, which was re-dissolved in THF (150 mL), and added MeOH (80 mL), and the mixture was concentrated to remove THF filtered and dried to give the product as an off-white solid (13 g). The filtrate was concentrated to give 4 g crude. No further purification. The product compound 11 (13 g, 26.99 mmol, 22.70% yield) was obtained as an off-white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.62-7.56 (m, 2H), 7.55-7.52 (m, 3H), 7.51-7.45 (m, 6H), 7.25-7.12 (m, 9H), 4.60 (td, J=2.4, 10.1 Hz, 1H), 3.72 (s, 1H), 3.27-3.13 (m, 2H), 3.04-2.84 (m, 2H), 2.46 (dd, J=2.2, 13.5 Hz, 1H), 1.71-1.53 (m, 1H), 1.42-1.28 (m, 1H), 1.07-0.90 (m, 1H), 0.37-0.21 (m, 1H).


Preparation of Compound WV-CA-247



embedded image


To a solution of compound 11 (13 g, 26.99 mmol, 1 eq.) in THF (45 mL) was added HCl (5 M, 52.00 mL, 9.63 eq.) aqueous. The mixture was stirred at 20° C. for 2 hr. TLC (Petroleum ether:Ethyl acetate=3:1) showed the reaction was completed. The resulting mixture was washed with MTBE (60 mL×3), the combined aqueous layer was adjusted to pH 12 with 5 M NaOH aq. and extracted with DCM (80 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated to afford a white solid (5.8 g). Without further purification. The compound WV-CA-247 (5.8 g, 24.17 mmol, 89.55% yield, 99.74% purity) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.67-7.60 (m, 2H), 7.55-7.42 (m, 3H), 4.17 (ddd, J=2.6, 4.2, 9.9 Hz, 1H), 3.74-3.23 (brs, 2H), 3.13 (dt, J=4.3, 7.3 Hz, 1H), 2.96-2.74 (m, 4H), 1.81-1.52 (m, 4H). 13C NMR (101 MHz, CHLOROFORM-d) δ=143.99, 130.93, 129.32, 123.92, 66.97, 62.23, 61.58, 46.86, 25.88, 25.3. LCMS [M+H]+: 240 LCMS purity: 99.74% SFC:dr=99.48:0.52.




embedded image


To a solution of 1,3-dithiane (13.21 g, 109.83 mmol) in THF (250 mL) was added n-BuLi (2.5 M, 29.29 mL) at −20° C., 0.5 hr later added compound 1 (25 g, 73.22 mmol) in THF (250 mL) at -70° C. The mixture was stirred at −70→20° C. for 16 hr. TLC indicated compound 4 was remained, and one new spot was detected. The reaction mixture was quenched by sat. NH4Cl (200 mL), and then extracted with EtOAc (200 mL×5). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by MPLC (SiO2, Petroleum ether/Ethyl acetate=50/1 to 10/1, 5% TEA) 2 times. Compound 12 (16 g, 47.33% yield) was obtained as a yellow oil. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.59 (d, J=7.0 Hz, 5H), 7.29-7.25 (m, 6H), 7.20-7.14 (m, 3H), 4.39 (dd, J=2.4, 10.3 Hz, 1H), 4.03 (ddd, J=2.4, 5.6, 8.2 Hz, 1H), 3.38 (d, J=10.1 Hz, 1H), 3.28 (ddd, J=7.0, 10.1, 12.3 Hz, 1H), 3.07-2.99 (m, 1H), 2.93-2.85 (m, 1H), 2.63-2.54 (m, 1H), 2.34-2.18 (m, 2H), 1.97-1.82 (m, 2H), 1.59-1.45 (m, 1H), 1.22-1.11 (m, 1H), 0.22-0.06 (m, 1H).


Preparation of Compound WV-CA-246



embedded image


To a solution of compound 12 (16 g, 34.66 mmol) in EtOAc (80 mL) was added HCl (5M, 69.31 mL). The mixture was stirred at 15° C. for 16 hr. TLC indicated compound 12 was consumed completely and new spots formed. The reaction mixture was extracted with TBME (100 mL×3) and the TBME phases were discarded. And then the water phase was added with 5 M NaOH (aq.) to pH=9 and extracted with DCM (100 mL×5). The combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give the crude product. The residue was purified by prep-HPLC (column: Phenomenex luna C18 250×50 mm×10 um; mobile phase: [water (0.1% TFA)-ACN]; B %: 0%-15%, 20 min and column: Phenomenex luna (2) C18 250×50×10 um; mobile phase: [water (0.1% TFA)-ACN]; B %: 0%-12%, 20 min). WV-CA-246 (4.2 g, 55.25% yield) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=4.13 (d, J=7.2 Hz, 11H), 3.83 (dd, J=5.1, 7.2 Hz, 1H), 3.49 (dt, J=5.1, 7.3 Hz, 1H), 3.13-2.76 (m, 6H), 2.60 (br s, 2H), 2.20-2.05 (m, 1H), 2.04-1.90 (m, 1H), 1.89-1.62 (m, 4H). 13C NMR (101 MHz, CHLOROFORM-d) δ=73.76, 59.94, 50.42, 46.83, 28.95, 28.45, 25.87, 25.32. HPLC purity: 97.75%. LCMS [M+H]+: 220.1. SFC:dr=0.22:99.78.




embedded image


To a solution of N-methyl-N-phenyl-acetamide (18.5 g, 124.00 mmol) in THF (250 mL) was added KHMDS (1 M, 124.00 mL) dropwise at −70° C., and to warm to −30° C. slowly over 30 min. The mixture was then cooled to −70° C. A solution of compound 4 (28.23 g, 82.67 mmol) in THF (150 mL) was added dropwise at −70° C. The mixture was stirred at −70° C.˜−50° C. for 3 hr. TLC showed the reaction was almost completed. The reaction mixture was quenched with sat. NH4Cl (aq. 30 mL), and extracted with EtOAc (25 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated to afford a residue as yellow gum. The crude was purified by column chromatography on silica gel (Petroleum ether:Ethyl acetate=10:1, 3:1, 1:1, 1:2, 5% TEA). Compound 13 (38 g, 93.7% yield) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.53 (br d, J=7.5 Hz, 6H), 7.44-7.31 (m, 4H), 7.26-7.09 (m, 12H), 4.46-4.40 (m, 1H), 3.90 (br s, 1H), 3.31-3.19 (m, 4H), 3.15-3.07 (m, 1H), 3.00-2.91 (m, 1H), 1.48-1.26 (m, 2H), 0.86-0.74 (m, 1H), 0.33-0.19 (m, 1H).


Preparation of Compound WV-CA-24&



embedded image


To a solution of compound 13 (38 g, 77.45 mmol) in THF (125 mL) was added HCl (5M, 152.00 mL) aqueous. The mixture was stirred at 20° C. for 2 hr. TLC showed the reaction was completed. The resulting mixture was washed with MTBE (80 mL×3), EtOAc (100 mL×3), and DCM (100 mL×2) in turn. The combined aqueous layer was adjusted to pH=12 with 5M NaOH aq. and extracted with DCM (120 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated to afford a yellow gum. The crude of WV-CA-248 (15.2 g, 73.26% yield, 92.7% purity) appears a yellow gum. To a solution of WV-CA-248 (14.5 g, 58.39 mmol) in EtOH (150 mL) was added (E)-3-phenylprop-2-enoic acid (8.65 g, 58.39 mmol). The mixture was stirred at 80° C. for 1 hr. The mixture was concentrated in vacuo. The residue was dissolved in TBME (50 mL), and then the mixture was added MeCN (3 mL), the mixture was turned clear, then the solution was standed, and then solid was appeared, and the mixture was filtered, and the filtered cake was washed with TMBE (10 mL×2), and the filtered cake was desired compound. The residue (6.5 g, crude) was obtained as a yellow solid. The residue was dissolved in H2O (10 mL) was added aq. NaOH (5 M, 6.56 mL, 2 eq.). The mixture was stirred at 25° C. for 10 min. The pH of the mixture was 13. The solution was extracted with DCM (40 mL×6), and the organic phase was concentrated in vacuo. Compound WV-CA-248 (4 g, 91.74% yield, 93.4% purity) was obtained as a brown oil. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.49-7.31 (m, 3H), 7.21 (br d, J=7.3 Hz, 2H), 4.00 (td, J=4.3, 8.6 Hz, 1H), 3.48 (br s, 2H), 3.28 (s, 3H), 3.10-2.98 (m, 1H), 2.97-2.80 (m, 2H), 2.36-2.17 (m, 2H), 1.79-1.47 (m, 3H), 1.79-1.47 (m, 1H). 13C NMR (101 MHz, CHLOROFORM-d) δ=172.38, 143.42, 129.89, 128.04, 127.27, 69.90, 62.29, 46.77, 37.98, 37.23, 25.99, 25.65. LCMS [M+H]+: 249.1. LCMS purity: 93.35%. SFC:SFC purity de=94.26%.




embedded image


To a solution of methylsulfonylmethane (8.27 g, 87.86 mmol) in THF (150 mL) was added KHMDS (1 M, 87.86 mL) at −70° C.˜−40° C. 0.5 hr later added compound 1 (20 g, 58.57 mmol) in THF (100 mL). The mixture was stirred at −70° C. for 1.5 hr. TLC indicated compound 4 was remained a little and one new spot formed. The reaction mixture was quenched by addition sat. NH4Cl(aq. 200 mL) at 0° C. and then diluted with EtOAc (200 mL) and extracted with EtOAc (200 mL×3). Dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO2, Petroleum ether/Ethyl acetate=1/0→0:1). Compound 14 (12 g, crude, HNMR showed cis/trans isomer ratio 10:1) was obtained as a yellow oil. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.58-7.47 (m, 7H), 7.26-7.22 (m, 51), 7.20-7.13 (m, 3H), 4.51-4.46 (m, 1H), 3.99-3.88 (m, 1H), 3.48-3.39 (m, 1H), 3.21-2.97 (m, 4H), 2.96-2.91 (m, 3H), 2.68 (br d, J=14.6 Hz, 1H), 1.57-1.43 (m, 1H), 1.36-1.26 (m, 1H), 1.20-1.10 (m, 1H), 0.57-0.44 (m, 1H), 0.25-0.04 (m, 1H).


Preparation of WV-CA-252



embedded image


To a solution of compound 14 (18 g, 41.32 mmol) in THF (82 mL) was added HCl (5 M, 82.65 mL). The mixture was stirred at 25° C. for 3 hr. TLC indicated compound 14 was consumed and two new spots formed. The reaction mixture was washed with MTBE (50 mL×3), then the aqueous phase was basified by addition NaOH (5M) until pH=12 at 0° C. and then extracted with DCM (50 mL×6) to give a residue dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude compound WV-CA-252 (6.5 g, 81.4% yield) was obtained as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=4.13 (ddd, J=1.8, 4.0, 9.7 Hz, 1H), 3.23 (dt, J=4.2, 7.4 Hz, 1H), 3.18-3.09 (m, 1H), 3.05 (s, 4H), 3.00-2.90 (m, 3H), 1.95-1.68 (m, 4H), 1.67-1.48 (m, 1H). LCMS [M+H]+: 194.0.




embedded image


A mixture of compound 1A (52.24 g, 241.62 mmol) in THF (500 mL) was degassed and purged with N2 for 3 times, and then the mixture was cooled to −70° C., and then to the mixture was added LDA (2 M, 112.76 mL). The mixture was stirred at −40° C. for 30 min, and then to the mixture was added compound 1 (55 g, 161.08 mmol) in THF (250 mL) at −70° C. The mixture was stirred at −70° C. for 2 hr under N2 atmosphere. TLC indicated compound 1 was consumed completely and one new spot formed. The reaction was clean according to TLC. The reaction was quenched by sat. aq. NH4Cl (300 mL) and then extracted with EtOAc (100 mL×3). The combined organic phase was washed with brine (100 mL), dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The residue was dissolved in MeOH (300 mL) and filtered; the filtered cake was the desired product. Compound 2 (53 g, crude) was obtained as a white solid.


Preparation of Compound WV-CA-245



embedded image


To a solution of compound 15 (72 g, 129.11 mmol) in THF (400 mL) was added HCl (5M, 258.22 mL). The mixture was stirred at 25° C. for 1 hr. LC-MS showed compound 15 was consumed completely and one main peak with desired mass was detected. The reaction was extracted with TBME (100 mL×3), added aq. 5 N NaOH to pH=13, and then extracted with DCM (50 mL×3), and the combined organic phase was concentrated in vacuo. WV-CA-245 (38 g, 92.82% yield, 99.5% purity) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.81-7.71 (m, 4H), 7.58-7.44 (m, 6H), 4.01-3.92 (m, 1H), 3.16-3.09 (m, 1H), 2.92-2.79 (m, 2H), 2.63-2.44 (m, 2H), 1.82-1.60 (m, 4H). 13C NMR (101 MHz, CHLOROFORM-d) δ=133.88, 132.89, 132.86, 131.95, 131.88, 130.73, 128.74, 68.98, 68.94, 63.79, 63.67, 47.03, 34.21, 33.49, 26.37, 25.88. LCMS [M+H]+: 316.1. LCMS purity: 99.45%. SFC:SFC purity de=99.5%.




embedded image


To a solution of compound 1B (13.32 g, 87.86 mmol) in THF (200 mL) was added KHMDS (1 M, 82.00 mL) at −70° C. under N2, and then the mixture was stirred at −70° C. for 10 min, and then to the mixture was added compound 1 (20 g, 58.57 mmol) in THF (100 mL), the reaction was stirred at −70° C. for 30 min. TLC indicated compound 1 was consumed completely and one new spot formed. The reaction was clean according to TLC. The reaction mixture was quenched with sat. aq. NH4Cl (100 mL), and then extracted with EtOAc (50 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography (SiO2, Petroleum ether/Ethyl acetate=50:1, 20:1, 10:1, 1:1, 0:1). Compound 16 (12 g, crude) was obtained as a yellow solid.


Preparation of Compound WV-CA-249



embedded image


To a solution of compound 16 (12 g, 24.34 mmol) in THF (50 mL) was added aq. HCl (5M, 48.68 mL). The mixture was stirred at 25° C. for 30 min. TLC indicated compound 16 was consumed completely and one new spot formed. The reaction was clean according to TLC. The reaction was extracted with TBME (100 mL×3), and then to the mixture was added 5N aq. NaOH to pH=13, extracted with DCM (100 mL×3), and then the organic phase was concentrated in vacuo. WV-CA-249 (5.36 g, 87.84% yield, 100.00% purity) was obtained as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.64 (s, 1H), 7.49 (d, J=0.9 Hz, 2H), 3.88 (td, J=3.6, 9.4 Hz, 1H), 3.24-3.16 (m, 1H), 3.02-2.89 (m, 3H), 2.78 (dd. J=9.4, 14.0 Hz, 1H), 1.84-1.70 (m, 4H). 13C NMR (101 MHz, CHLOROFORM-d) δ=143.11, 134.94, 132.60, 132.33, 130.12, 117.63, 111.52, 70.86, 62.02, 46.76, 37.90, 25.88, 24.21. LCMS [M+H]+: 251.0. LCMS purity: 100.000%. SFC:SFC purity de=98.28%.




embedded image


To a solution of nitromethane (30.59 g, 501.15 mmol) in THF (300 mL) was added KHMDS (1 M, 263.59 mL) at 20-25° C. and stirred for 1 hr. Compound 1 (30 g, 87.86 mmol) in THF (90 mL) was added to the mixture at 20-25° C. and stirred for 0.5 hr. TLC showed that the starting material was consumed mostly, and desired product was formed. The mixture was quenched by saturated aq. NH4Cl (300 mL) and extracted with ethyl acetate (100 mL×3). The organic phase was washed by saturated aq. NaCl (100 mL×3) and dried with anhydrous Na2SO4, then concentrated under reduced pressure to remove the solvent. The crude product was purified by MPLC (SiO2, Ethyl acetate/Petroleum ether=0%→20%) to obtain compound 17 (26.55 g, 75.08% yield) as yellow solid. The product was detected by 1H NMR. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.54-7.44 (m, 6H), 7.28-7.21 (m, 6H), 7.20-7.14 (m, 3H), 4.64 (td, J=3.0, 9.4 Hz, 1H), 4.53-4.06 (m, 3H), 3.60-3.40 (m, 1H), 3.24-2.96 (m, 3H), 1.52-1.41 (m, 1H), 1.40-1.28 (m, 1H), 1.17-0.94 (m, 1H), 0.67-0.50 (m, 1H), 0.23 (quin d, J=8.8, 11.6 Hz, 1H).


Preparation of Compound WV-CA-250



embedded image


To a solution of compound 17 (7.5 g, 18.63 mmol) in EtOAc (35 mL) was added HC/EtOAc (4 M, 50 mL) at 20-25° C. and stirred for 1 hr. TLC showed that the starting material was consumed completely. Poured the supernatant liquid of the mixture, the yellow gum on the bottle wall was concentrated under reduced pressure to remove the solvent. WV-CA-250 (2.10 g, 56.70% yield, 98.927% purity, HCl salt) was obtained as yellow gum. The product was detected by 1H NMR, 13C NMR and LCMS. 1H NMR (400 MHz, DMSO-d) δ=9.89-9.54 (m, 1H), 9.03-8.75 (m, 1H), 8.94 (br s, 1H), 4.97-4.78 (m, 1H), 4.65-4.35 (m, 2H), 3.70-3.41 (m, 4H), 3.22-3.03 (m, 2H), 2.06-1.65 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ=79.42, 79.00, 67.89, 66.82, 61.53, 60.77, 45.44, 45.25, 26.93, 24.57, 23.95, 23.81. LCMS [M+H]+: 161.1, purity: 98.92%.




embedded image


To a solution of compound benzylamine (30 g, 279.97 mmol) an TEA (56.66 g, 559.95 mmol) in DCM (60 mL) was added MsCl (38.49 g, 335.97 mmol) in DCM (30 mL) at 0° C. The mixture was stirred at 0° C. for 2 hr. LC-MS showed compound 18A was consumed and many new peaks were detected. The reaction mixture was washed with HCl (1 M, 50 mL×3) and sat. NaHCO3 (aq. 50 mL x 3). The organic layer was washed with brine (50 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. TLC showed one main spot. The residue was purified by MPLC (SiO2, Petroleum ether/Ethyl acetate=5/1 to 1:1). Compound 18A (35 g, 67.49% yield) was obtained as a light-yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.44-7.24 (m, 5H), 4.82 (br s, 1H), 4.31 (d, J=6.2 Hz, 2H), 2.85 (s, 3H).




embedded image


To a solution of compound 18A (16.28 g, 87.86 mmol) in THF (60 mL) was added with LDA (2 M, 87.86 mL) at 0° C. The mixture was stirred at 0-25° C. for 0.5 hr. And then compound 1 (15 g, 43.93 mmol) in THF (60 mL) was added to above solution at −70° C. The mixture was stirred at −70-25° C. for 4 hr. TLC indicated compound 1 was consumed completely and many new spots formed. The reaction mixture was added with sat. NH4Cl (aq. 50 mL) and extracted with EtOAc (100 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO2, Petroleum ether/Ethyl acetate=5/1, 2% TEA). Compound 18 (22 g, 95.08% yield) was obtained as a yellow oil.


Preparation of Compound WV-CA-255



embedded image


To a solution of compound 18 (22 g, 41.77 mmol) in EtOAc (15 mL) was added HCl (4M in ethyl acetate, 31.33 mL) at 0° C. The mixture was stirred at 0-25° C. for 2 hr. And solid appeared in the reaction mixture. TLC indicated compound 18 was consumed completely and many new spots formed. The reaction mixture was filtered. The filter cake was dissolved in water (10 mL), washed with MTBE (40 mL×3). The water phase was added with Na2CO3 (powder) to pH=8-9 and extracted with DCM (50 mL×5). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. WV-CA-255 (11 g, 92.60% yield) was obtained as a brown solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.46-7.25 (m, 5H), 4.65-3.72 (m, 5H), 3.14-3.01 (m, 3H), 2.95-2.77 (m, 2H), 1.89-1.34 (m, 4H). 13C NMR (101 MHz, CHLOROFORM-d) δ=136.99, 128.71, 128.62, 128.19, 128.09, 127.85, 69.12, 67.58, 61.98, 61.70, 55.55, 55.36, 47.36, 47.30, 46.60, 46.28, 28.05, 26.16, 25.71, 24.92. LCMS [M+H]+: 285.0, LCMS purity: 99.8%. SFC:dr (trans/cis)=32.36:67.64.




embedded image


To a solution of compound dibenzylamine (30 g, 152.07 mmol) in DCM (250 mL) was added TEA (15.39 g, 152.07 mmol). The mixture was cooled to 0° C., and to the mixture was added MsCl (17.42 g, 152.07 mmol) in DCM (50 mL), and then the mixture was stirred at 25° C. for 12 hours. LC-MS showed desired mass was detected. The reaction was quenched by H2O (100 mL) and the organic phase was extracted with H2O (100 mL×3), the organic phase was dried by Na2SO4, and then concentrated in vacuum. No need further purification. Compound 19A (39 g, crude) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.41-7.29 (m, 9H), 4.36 (s, 4H), 2.82-2.75 (m, 3H). LCMS [M+H]+: 298.0, purity: 86.6%.




embedded image


To a solution of compound 19A (19.36 g, 70.29 mmol) in THF (200 mL) was added KHMDS (1 M, 76.15 mL) dropwise at −78° C. to −70° C. under N2. The mixture was warmed to −40° C. and stirred for 0.5 hr, then cooled to −78° C. To the mixture was added compound 1 (20 g, 58.57 mmol) in THF (100 mL) at −78° C. to −70° C. and stirred for 1 hr under N2. TLC showed that the starting material was consumed completely. The mixture was quenched by saturated aq. NH4Cl (200 mL) and extracted with ethyl acetate (70 mL×3). The organic phase was washed by saturated aq. NaCl (70 mL×3) and dried with anhydrous Na2SO4, then concentrated under reduced pressure to remove the solvent to obtain the crude product as yellow gum. The crude product was re-dissolved with methanol (200 mL) and standing at 20-25° C. for 12 hours. Compound 19 (20.4 g, 99.99% yield) was crystallized from the solvent as white solid, then filtered and dried in vacuum. The filtrate was concentrated under reduced pressure to remove the solvent to give compound 20 (28.4 g, crude) as brown gum. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.47-7.42 (m, 6H), 7.23-7.05 (m, 19H), 4.36 (td, J=3.0, 8.6 Hz, 1H), 4.23-4.12 (m, 4H), 3.29-3.19 (m, 1H), 3.29-3.19 (m, 1H), 3.11 (ddd, J=7.1, 9.5, 12.1 Hz, 1H), 2.97-2.82 (m, 2H), 2.59 (dd, J=3.1, 14.2 Hz, 1H), 1.37-1.27 (m, 1H), 1.24-1.14 (m, 1H), 1.00-0.92 (m, 1H), 0.16-0.02 (m, 1H).


Preparation of Compound WV-CA-263



embedded image


To a solution of compound 19 (20 g, 32.42 mmol) in THF (100 mL) was added HCl (5M, 64.85 mL) at 20-25° C. and stirred for 0.5 hr. TLC showed that the starting material was consumed completely. The mixture was extracted with TBME (80 mL×3), then adjusted the pH of the mixture with aq. NaOH (65 mL, 5M) to 11-13 and extracted with DCM (100 mL×3). The organic phase was dried with anhydrous Na2SO4 and concentrated under reduced pressure to remove the solvent. The crude product was used for the next step without any purification. WV-CA-263 (10.04 g, 82.68% yield, 100% purity) was obtained as white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.38-7.28 (m, 10H), 4.38 (s, 4H), 4.01 (ddd, J=2.6, 5.6, 8.5 Hz, 1H), 3.20-3.13 (m, 2H), 3.10-3.02 (m, 1H), 2.91 (t, J=6.5 Hz, 2H), 1.89 (br d, J=8.6 Hz, 1H), 1.82-1.66 (m, 4H), 1.62-1.52 (m, 1H). 13C NMR (101 MHz, CHLOROFORM-d) δ=135.62, 128.77, 128.70, 127.98, 77.35, 76.87 (d, J=31.5 Hz, 1C), 68.84, 61.51, 57.03, 50.35, 46.96, 26.27, 25.88. LCMS [M+H]+: 375.1, purity: 100.00%. SFC:dr=99.55:0.45.




embedded image


To a solution of 3,3-dimethylbutan-2-one (11.00 g, 109.83 mmol) in THF (125 mL) was added LDA (2 M, 54.91 mL) dropwise at −70° C., and it was stirred at −70° C.˜−60° C. for 1 hr. A solution of compound 1 (25 g, 73.22 mmol) in THF (125 mL) was added dropwise at −70° C.˜−60° C. The mixture was stirred at −70° C. for 1.5 hr. TLC showed compound 1 was almost consumed. The reaction mixture was quenched with sat. NH4Cl (aq., 200 mL), and the separated aqueous layer was extracted with EtOAc (150 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated to afford a residue as a light-yellow solid. The crude was purified by column chromatography on silica gel (Petroleum ether+5% TEA: Petroleum ether:Ethyl acetate (20:1)+5% TEA). Compound 21 (17 g, 52.6% yield) was obtained as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.37-7.25 (m, 6H), 7.03-6.95 (m, 6H), 6.94-6.84 (m, 3H), 4.22 (td, J=2.7, 9.2 Hz, 1H), 3.09 (td, J=4.1, 7.6 Hz, 1H), 3.04-2.92 (m, 2H), 2.75 (ddd, J=2.9, 8.5, 12.0 Hz, 1H), 2.26 (dd, J=9.3, 17.0 Hz, 1H), 2.04 (dd, J=3.4, 16.9 Hz, 1H), 1.43-1.24 (m, 2H), 1.14-1.01 (m, 1H), 0.84 (s, 9H), 0.81-0.71 (m, 1H), 0.09-−0.07 (m, 1H).


Preparation of Compound WV-CA-289



embedded image


To a solution of compound 21 (16 g, 36.23 mmol) in EtOAc (25 mL) was added 4 M HCl/EtOAc (100 mL). The mixture was stirred at 25° C. for 0.5 hr. TLC showed the reaction was completed. The resulting mixture was filtered, and the solid was stirred in EtOAc (150 mL), filtered and re-triturated with EtOAc/MeOH (150 mL/5 mL), filtered and dried to afford compound WV-CA-289 (7.5 g, 87.8% yield, HCl salt) as a white solid. 1H NMR (400 MHz, METHANOL-d4) δ=4.43 (ddd, J=3.5, 4.6, 7.8 Hz, 1H), 3.71 (dt, J=3.5, 8.0 Hz, 1H), 3.42-3.22 (m, 2H), 2.92 (dd, J=7.6, 17.7 Hz, 1H), 2.73 (dd, J=4.9, 17.7 Hz, 1H), 2.23-1.90 (m, 4H), 1.28-1.05 (m, 9H). [M+H]+: 200.1, purity: 100.00%.




embedded image


To a solution of methylsulfonylbenzene (13.72 g, 87.86 mmol) in THF (100 mL) was added LiHMDS (1 M, 87.86 mL) in 0.5 hr at −70° C.-0° C., then added compound 4 in THF (100 mL). The mixture was stirred at −70° C. in 2.5 hr. TLC indicated compound 4 was remained a little and two new spots formed. The reaction mixture was quenched by addition sat. NH4Cl aq. (300 mL) at 0° C., extracted with DCM (200 mL×3). Dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude was added THF (100 mL) and MeOH (150 mL), concentrated under reduced pressure at 45° C. until about 100 mL residue remained, filtered the solid. Repeated 3 times. Got solid 20 g, the mother liquid was concentrated under reduced pressure to get compound 22 (20 g, crude) was obtained as a yellow oil. Compound (1R)-2-(benzenesulfonyl)-1-[(2R)-1-tritylpyrrolidin-2-yl]ethanol (20 g, 68.61% yield) was obtained as a white solid.


Preparation of Compound WV-CA-290



embedded image


To a solution of compound 22 (20 g, 40.19 mmol) in THF (80 mL) was added HCl (5 M, 80.38 mL) at 0° C. The mixture was stirred at 25° C. for 2 hr. TLC showed the compound 22 was consumed and two new spots formed. The reaction mixture was washed with MTBE (50 mL×3), then the aqueous phase was basified by addition NaOH (5M) until pH=12 at 0° C. and then extracted with DCM (50 mL×3) to give a residue dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Phenomenex luna C18 250×50 mm×10 um; mobile phase: [water (0.1% TFA)-ACN]; B %: 0%-15%, 20 min). Compound WV-CA-290 (0.7 g, 6.78% yield, 99.39% purity) was obtained as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.95-7.85 (m, 2H), 7.64-7.56 (m, 1H), 7.55-7.46 (m, 2H), 3.79 (ddd, J=3.2, 5.4, 8.4 Hz, 1H), 3.28-3.05 (m, 3H), 2.92-2.72 (m, 2H), 1.84-1.54 (m, 3H), 1.51-1.37 (m, 1H). 13C NMR (101 MHz, CHLOROFORM-d) δ=139.81, 133.74, 129.19, 128.07, 68.15, 61.55, 60.97, 46.67, 28.03, 26.27. SFC: (AD_MeOH_IPAm_10_40_25_35_6 min), 100% purity. LCMS [M+H]+: 256.1. LCMS purity: 99.39%.




embedded image


Two batches in parallel: To a solution of compound tert-butyl(methyl)sulfane (25 g, 239.89 mmol) in MeOH (625 mL) was added Oxone (457.18 g, 743.67 mmol) in H2O (625 mL) at 0° C. The mixture was stirred at 15° C. for 12 hr. HNMR showed compound tert-butyl(methyl)sulfane was consumed completely and desired compound was detected. Combined two batches of the reaction mixture, filtered and concentrated under reduced pressure to evaporate the MeOH, and then extracted with EtOAc (400 mL×4). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. Compound 23A (55 g, crude) was obtained as a colorless oil, confirmed by HNMR. 1HNMR (400 MHz, CHLOROFORM-d) δ=7.26 (s, 1H), 5.30 (s, 8H), 2.81 (s, 3H), 1.43 (s, 9H).




embedded image


To a solution of compound 23A (50 g, 367.07 mmol) in THF (510 mL) was added KHMDS (1 M, 367.07 mL) dropwise at −70° C. and warm to −30° C. slowly over 30 min. The mixture was then cooled to −70° C. A solution of compound 1 (83.56 g, 244.72 mmol) in THF (340 mL) was added dropwise at -70° C. The mixture was stirred at −70° C. for 4 hr. TLC showed compound 1 was remained a little, and one major new spot with larger polarity was detected. The reaction mixture was quenched by added to the sat. NH4Cl (aq. 800 mL), and then extracted with EtOAc (500 mL×3). The combined organic layers were dried over Na2SO4, filtered and concentrated under reduced pressure to give brown oil. The crude was dissolved with THF (300 mL) then concentrated under reduced pressure (40° C.) to give 150 mL clarified solution. Then added to 300 mL MeOH and concentrated under reduced pressure to give 200 mL solution, then filtered to give a residue and washed with MeOH (10 mL). The mother solution was concentrated under reduced pressure to give 100 mL solution then filtered to give a residue and washed with MeOH (10 mL). Combined all the residue, repeated two times to give 60 g residue. Compound 23 (60 g, crude) was obtained as a white solid. 1HNMR (400 MHz, CHLOROFORM-d) δ=7.56 (d, J=7.5 Hz, 6H), 7.32-7.23 (m, 6H), 7.21-7.14 (m, 3H), 4.85-4.68 (m, 1H), 3.41 (td, J=3.8, 8.1 Hz, 1H), 3.28 (td, J=8.5, 11.9 Hz, 1H), 3.09-2.91 (m, 2H), 2.78 (dd, J=2.6, 13.6 Hz, 1H), 1.65-1.50 (m, 1H), 1.37 (s, 9H), 1.16-0.98 (m, 2H), 0.39-0.21 (m, 1H).


Preparation of Compound WV-CA-240



embedded image


To a solution of compound 23 (59 g, 123.52 mmol) in THF (500 mL) was added HCl (5M, 247.04 mL). The mixture was stirred at 20° C. for 3 hr. TLC indicated compound 23 was consumed completely and one major new spot with larger polarity was detected. The resulting mixture was washed with MTBE (500 mL×3). The combined aqueous layer was adjusted to pH 12 with 5 M NaOH aq. and extracted with DCM (200 mL×3). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated to afford a white solid. WV-CA-240 (23.6 g, 81.14% yield, 99.95% purity) was obtained as a white solid. 1HNMR (400 MHz, CHLOROFORM-d) δ=4.18 (ddd, J=2.8, 5.8, 8.2 Hz, 1H), 3.29-3.21 (m, 1H), 3.19 (d, J=2.6 Hz, 1H), 3.16-3.08 (m, 1H), 2.92 (t, J=6.6 Hz, 2H), 2.74 (br s, 2H), 1.92-1.81 (m, 1H), 1.81-1.61 (m, 3H), 1.42 (s, 9H). 13CNMR (101 MHz, CHLOROFORM-d) δ=68.01, 62.00, 59.73, 49.79, 46.96, 26.77, 25.80, 23.22. LCMS [M+H]+: 236.1. LCMS purity 99.95%.




embedded image


To a solution of WV-CA-108 (37 g, 144.91 mmol, 1 eq.) in MeOH (370 mL) was added prop-2-enenitrile (7.69 g, 144.91 mmol, 9.61 mL, 1 eq.). The mixture was stirred at 20° C. for 3 hr., (TLC, Petroleum ether:Ethyl acetate=1:3, Rf=0.31) showed WV-CA-108 was consumed completely and in LCMS one main peak with desired MS was detected. The reaction mixture was filtered and concentrated under reduced pressure to give a residue. Compound 24 (44 g, crude) was obtained as a white solid. LCMS [M+H]+: 308.9.


Preparation of Compound WV-CA-291



embedded image


A solution of compound 24 (44 g, 142.67 mmol, 1 eq.) in DCM (220 mL) and MeOH (220 mL) was cooled to −78° C. Then mCPBA (36.93 g, 214.01 mmol, 1.5 eq.) and K2CO3 (29.58 g, 214.01 mmol, 1.5 eq.) was added. After addition, the mixture was stirred at −78° C. for 3 hr. And the resulting mixture was stirred at 20° C. for 12 hr. LC-MS showed compound 24 was consumed completely and one main peak with desired MS was detected. The reaction mixture was filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography. The residue was purified by flash silica gel chromatography (ISCO®; 220 g SepaFlash® Silica Flash Column. Eluent of 0-30% Ethyl acetate/Petroleum ether gradient at 100 mL/min). WV-CA-291 (12 g, 42.05 mmol, 29.47% yield, 95.08% purity) was obtained as a yellow solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=7.98-7.92 (m, 2H), 7.65 (d, J=7.5 Hz, 1H), 7.61-7.53 (m, 2H), 4.50-4.39 (m, 1H), 3.33-3.15 (m, 3H), 2.97-2.78 (m, 2H), 1.89-1.64 (m, 4H). 13CNMR (101 MHz, CHLOROFORM-d) δ=139.61, 133.90, 129.31, 128.02, 71.21, 64.96, 60.05, 58.12, 21.23, 20.29. LCMS [M+H]+: 272.0. LCMS purity 95.08%.


Example 4E. Example Technologies for Chirally Controlled Oligonucleotide Preparation—Example Useful Phosphoramidites

Among other things, the present disclosure provides phosphoramidites useful for oligonucleotide synthesis. In some embodiments, provided phosphoramidites are particularly useful for preparation of chirally controlled internucleotidic linkages. In some embodiments, provided phosphoramidites are particularly useful for preparing chirally controlled internucleotidic linkages, e.g., non-negatively charged internucleotidic linkages or neutral internucleotidic linkages, etc., that comprise P-N═. In some embodiments, the linkage phosphorus is trivalent. In some embodiments, the linkage phosphorus is pentavalent. In some embodiments, such internucleotidic linkages have the structure of formula I-n-1, I-n-2, I-n-3, I-n-4. II, II-a-1, II-a-2, I-b-1. II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


General Procedure I for Chloroderivative: In some embodiments, in an example procedure, a chiral auxiliary (174.54 mmol) was dried by azeotropic evaporation with anhydrous toluene (80 mL×3) at 35° C. in a rota-evaporator and dried under high vacuum for overnight. A solution of this dried chiral auxiliary (174.54 mmol) and 4-methylmorpholine (366.54 mmol) dissolved in anhydrous THF (200 mL) was added to an ice-cooled (isopropyl alcohol-dry ice bath) solution of trichlorophosphine (37.07 g, 16.0 mL, 183.27 mmol) in anhydrous THF (150 mL) placed in three neck round bottomed flask through cannula under Argon (start Temp: −10.0° C., Max: temp 0° C. 28 min addition) and the reaction mixture was warmed at 15° C. for 1 hr. After that the precipitated white solid was filtered by vacuum under argon using airfree filter tube (Chemglass: Filter Tube, 24/40 Inner Joints, 80 mm OD Medium Frit, Airfree, Schlenk). The solvent was removed with rota-evaporator under argon at low temperature (25° C.) and the crude semi-solid obtained was dried under vacuum overnight (-15 h) and was used for the next step directly.


General Procedure I for Chloroderivative: In some embodiments, in an example procedure, a chiral auxiliary (174.54 mmol) was dried by azeotropic evaporation with anhydrous toluene (80 mL×3) at 35° C. in a rota-evaporator and dried under high vacuum for overnight. A solution of this dried chiral auxiliary (174.54 mmol) and 4-methylmorpholine (366.54 mmol) dissolved in anhydrous THF (200 mL) was added to an ice-cooled (isopropyl alcohol-dry ice bath) solution of trichlorophosphine (37.07 g, 16.0 mL, 183.27 mmol) in anhydrous THF (150 mL) placed in three neck round bottomed flask through cannula under Argon (start Temp: −10.0° C., Max: temp 0° C., 28 min addition) and the reaction mixture was warmed at 15° C. for 1 hr. After that the precipitated white solid was filtered by vacuum under argon using airfree filter tube (Chemglass: Filter Tube, 24/40 Inner Joints, 80 mm OD Medium Frit, Airfree, Schlenk). The solvent was removed with rota-evaporator under argon at low temperature (25° C.) and the crude semi-solid obtained was dried under vacuum overnight (-15 h) and was used for the next step directly.


General Procedure III for Coupling: In some embodiments, in an example procedure, a nucleoside (9.11 mmol) was dried by co-evaporation with 60 mL of anhydrous toluene (60 mL×2) at 35° C. and dried under high vacuum for overnight. The dried nucleoside was dissolved in dry THF (78 mL), followed by the addition of triethylamine (63.80 mmol) and then cooled to −5° C. under Argon (for 2′F-dG/2′OMe-dG case 0.95 eq of TMS-Cl used). The THF solution of the crude (made from general procedure I (or) H, 14.57 mmol), was added through cannula over 3 min then gradually warmed to room temperature. After 1 hr at room temperature, TLC indicated conversion of SM to product (total reaction time 1 h), the reaction mixture was then quenched with H2O (4.55 mmol) at 0° C., and anhydrous MgSO4 (9.11 mmol) was added and stirred for 10 min. Then the reaction mixture was filtered under argon using airfree filter tube, washed with THF, and dried under rotary evaporation at 26° C. to afford white crude solid product, which was dried under high vacuum overnight. The crude product was purified by ISCO-Combiflash system (rediSep high performance silica column pre-equilibrated with Acetonitrile) using Ethyl acetate/Hexane with 1% TEA as a solvent (compound eluted at 100% EtOAc/Hexanes/1% Et3N) (for 2′F-dG case Acetonitrile/Ethyl acetate with 1% TEA used). After evaporation of column fractions pooled together, the residue was dried under high vacuum to afford the product as a white solid.


Preparation of Amidites (1030-1039)



embedded image


Preparation of 1030: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (73%). 31P NMR (162 MHz, CDCl3) δ 153.32. (ES) m/z Calculated for C47H50FN6O10PS: 940.98 [M]+, Observed: 941.78 [M+H]+.


Preparation of 1031: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (78%). 31P NMR (162 MHz, CDCl3) δ 153.62. (ES) m/z Calculated for C42H43FN3O10PS: 831.85 [M]+, Observed: 870.58 [M+K]+.


Preparation of 1032: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (68%). 31P NMR (162 MHz, CDCl3) δ 153.95. (ES) m/z Calculated for C41H46FN4O10PS: 872.26 [M]+, Observed: 873.62 [M+H]+.


Preparation of 1033: General Procedure I followed by General Procedure III used. white foamy solid. Yield: (87%). 31P NMR (162 MHz, CDCl3) δ 151.70. (ES) m/z Calculated for C50H48FN6O9PS: 958.29 [M]+, Observed: 959.79, 960.83 [M+H]+.


Preparation of 1034: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (65%). 31P NMR (162 MHz, CDCl3) δ 154.80. (ES) m/z Calculated for C51H51N6O10PS: 971.31 [M]+, Observed: 971.81 [M+H]+.


Preparation of 1035: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (76%). 31P NMR (162 MHz, CDCl3) S 156.50. (ES) m/z Calculated for C53H55N6O11PS: 1014.33 [M]+, Observed: 1015.81 [M+H]+.


Preparation of 1036: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (78%). 31P NMR (162 MHz, CDCl3) δ 156.40. (ES) m/z Calculated for C50H57,N6O12PS: 996.34 [M]+, Observed: 997.90 [M+H]+.


Preparation of 1037: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (73%). 31P NMR (162 MHz, CDCl3) δ 154.87. (ES) m/z Calculated for C46H52N3O12PS: 901.30 [M]+, Observed: 940.83 [M+K]+.


Preparation of 1038: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (75%). 31P NMR (162 MHz, CDCl3) δ 154.94. (ES) m/z Calculated for C53H57N4O12PS: 1004.34 [M]+, Observed: 1005.86 [M+H]+.


Preparation of 1039: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (80%). 31P NMR (162 MHz, CDCl3) δ 153.52. (ES) m/z Calculated for C44H47N4O10PS: 854.28 [M]+, Observed: 855.41 [M+H]+.


Preparation of Amidites (1040-1049)



embedded image


Preparation of 1040: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (78%). 31P NMR (162 MHz, CDCl3) δ 157.80. (ES) m/z Calculated for C47H50FN6O10PS: 940.98 [M]+, Observed: 941.68 [M+H]+.


Preparation of 1041: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (78%). 31P NMR (162 MHz, CDCl3) δ 157.79. (ES) m/z Calculated for C42H43FN3OPS: 831.85 [M]+, Observed: 870.68 [M+K]+.


Preparation of 1042: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (78%). 31P NMR (162 MHz, CDCl3) δ 158.07. (ES) m/z Calculated for C41H16FN4O10PS: 872.26 [M]+, Observed: 873.62 [M+H]+.


Preparation of 1043: General Procedure 1 followed by General Procedure III used. white foamy solid. Yield: (86%). 31P NMR (162 MHz, CDCl3) δ 156.48. (ES) m/z Calculated for C50H48FN6O9PS: 958.29 [M]+, Observed: 959.79, 960.83 [M+H]+.


Preparation of 1044: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (65%). 31P NMR (162 MHz, CDCl3) δ 154.80. (ES) m/z Calculated for C51H51N6O10PS: 971.31 [M]+, Observed: 971.81 [M+H]+.


Preparation of 1045: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (77%). 31P NMR (162 MHz, CDCl3) δ 154.74. (ES) m-z Calculated for C53H55N6O11PS: 1014.33 [M]+ Observed: 1015.81 [M+H]+.


Preparation of 1046: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (76%). 31P NMR (162 MHz, CDCl3) δ 155.05. (ES) m/z Calculated for C50H57N6O12PS: 996.34 [M]+, Observed: 997.90 [M+H]+.


Preparation of 1047: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (75%). 31P NMR (162 MHz, CDCl3) δ 155.44. (ES) m/z Calculated for C46H52N3O12PS: 901.30 [M]+, Observed: 940.83 [M+K]+.


Preparation of 1048: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (73%). 1P NMR (162 MHz, CDCl3) δ 155.96. (ES) m/z Calculated for C53H57N4O12PS: 1004.34 [M]+, Observed: 1005.86 [M+H]+.


Preparation of 1049: General Procedure I followed by General Procedure III used. Off-white foamy solid. Yield: (80%). 31P NMR (162 MHz, CDCl3) δ 156.37. (ES) m/z Calculated for C44H47N4O10PS: 854.28 [M]+, Observed: 855.31 [M+H]+.


Preparation of Amidites (1051)



embedded image


Preparation of 1051: General Procedure II followed by General Procedure III used. Off-white foamy solid. Yield: (72%). 31P NMR (162 MHz, CDCl3) δ 154.26. (ES) m/z Calculated for C42H50FN4O10PS: 852.29 [M]+, Observed: 853.52 [M+H]+.


Preparation of Amidites (1052)



embedded image


Preparation of 1052: General Procedure II followed by General Procedure III used. Off-white foamy solid. Yield: (76%). 31P NMR (162 MHz, CDCl3) δ 156.37. (ES) m/z Calculated for C42H50FN4O10PS: 852.29 [M]+, Observed: 853.52 [M+H]+.


Preparation of Amidites (1053, 1054)



embedded image


Preparation of 1053: General Procedure II followed by General Procedure III used. Off-white foamy solid. Yield: (80%). 31P NMR (162 MHz, CDCl3) δ 156.62. (ES) m/z Calculated for C47H50FN6O8PS: 908.98 [M]+. Observed: 909.36 [M+H]+.


Preparation of 1054: General Procedure 11 followed by General Procedure III used. Off-white foamy solid. Yield: (79%). 31P NMR (162 MHz, CDCl3) δ 157.62. (ES) m/z Calculated for C44H46FN4O8PS: 840.90 [M]+, Observed: 841.67 [M+H]+.


Preparation of Amidites (1055)



embedded image


Preparation of 1055: General Procedure 11 followed by General Procedure III used. White foamy solid. Yield: (77%). 31P NMR (162 MHz, CDCl3) δ 160.00. (ES) m/z Calculated for C45H45FN5O10PS: 897.26 [M]+, Observed: 898.74 [M+H]+.


Preparation of Amidites (1056)



embedded image


Preparation of 1056: General Procedure II followed by General Procedure III used. Off-white foamy solid. Yield: (84%). 31P NMR (162 MHz, CDCl3) δ 154.80. (ES) m/z Calculated for C45H44ClFN5O8P: 867.26 [M]+, Observed: 868.69 [M+H]+.


Preparation of Amidites (1057)



embedded image


Preparation of 1057: General Procedure II followed by General Procedure III used. white foamy solid. Yield: (91%). 31P NMR (162 MHz, CDCl3) δ 154.48. (ES) m-z Calculated for C52H55FN5O10PS: 991.34 [M]+, Observed: 992.87 [M+H]+.


Example 4F. Example Technologies for Chirally Controlled Oligonucleotide Preparation—Example Cycles, Conditions and Reagents for Oligonucleotide Synthesis

In some embodiments, the present disclosure provides technologies (e.g., reagents, solvents, conditions, cycle parameters, cleavage methods, deprotection methods, purification methods, etc.) that are particularly useful for preparing chirally controlled internucleotidic linkages. In some embodiments, such internucleotidic linkages, e.g., non-negatively charged internucleotidic linkages or neutral internucleotidic linkages, etc., comprise P-N═, wherein P is the linkage phosphorus. In some embodiments, the linkage phosphorus is trivalent. In some embodiments, the linkage phosphorus is pentavalent. In some embodiments, such internucleotidic linkages have the structure of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof. As demonstrated herein, technologies of the present disclosure can provide mild reaction conditions, high functional group compatibility, alternative deprotection and/or cleavage conditions, high crude and/or purified yields, high crude purity, high product purity, and/or high stereoselectivity.


In some embodiments, a cycle for preparing natural phosphate linkages comprises or consists of deprotection (e.g., detritylation), coupling, oxidation (e.g., using I2/Pyr/Water or other suitable methods available in the art) and capping (e.g., cap 2 described herein or other suitable methods available in the art). An example cycle is depicted below, wherein B1 and B2 are independently nucleobases. As appreciated by those skilled in the art, various modifications, e.g., sugar modifications, base modifications, etc. are compatible and may be included.




embedded image


In some embodiments, a cycle for preparing non-natural phosphate linkages (e.g., phosphorothioate internucleotidic linkages) comprises or consists of deprotection (e.g., detritylation), coupling, a first capping (e.g., capping-1 as described herein), modification (e.g., thiolation using XH or other suitable methods available in the art), and a second capping (e.g., capping-2 as described herein or other suitable methods available in the art). An example cycle is depicted below, wherein B1 and B2 are independently nucleobases. As appreciated by those skilled in the art, various modifications, e.g., sugar modifications, base modifications, etc. are compatible and may be included. In some embodiments, a cycle using a DPSE chiral auxiliary is referred to as a DPSE cycle or DPSE amidite cycle.




embedded image


In some embodiments, a cycle for preparing non-natural phosphate linkages (e.g., certain non-negatively charged internucleotidic linkages, neutral internucleotidic linkages, etc.), particularly those comprising P-N═, wherein P is the linkage phosphorus and/or those have the structure of formula I-n-1, I-n-2, I-n-3. I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1. II-c-2, II-d-1, II-d-2, III, or a salt form thereof, comprises or consists of deprotection (e.g., detritylation), coupling, a first capping (e.g., capping-1 as described herein), modification (e.g., using ADIH




embedded image


2-azido-1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium hexafluorophosphate(V)) or other suitable methods available in the art), and a second capping (e.g., capping-2 as described herein or other suitable methods available in the art). An example cycle is depicted below, wherein B1 and B2 are independently nucleobases. In some embodiments, a chiral auxiliary utilized in such a cycle for preparing a chirally controlled internucleotidic linkage comprises an electron-withdrawing group as described herein, e.g., various chiral auxiliaries having a G2 comprising an electron-withdrawing group. In some embodiments, G2 comprises a —SO2R group as described herein (e.g., in some embodiments, R is optionally substituted phenyl; in some embodiments, R is optionally substituted alkyl (e.g., t-butyl); in some embodiments, it was observed that R being alkyl (e.g., R being t-butyl (e.g., WV-CA-240)) can provide comparable results to R being optionally substituted phenyl (e.g., R being phenyl (PSM))). As appreciated by those skilled in the art, various modifications. e.g., sugar modifications, base modifications, etc. are compatible and may be included. In some embodiments, a cycle using a PSM chiral auxiliary is referred to as a PSM cycle or PSM amidite cycle.




embedded image


Various cleavage and deprotection methods may be utilized in accordance with the present disclosure. In some embodiments, as appreciated by those skilled in the art, parameters of cleavage and deprotection (e.g., bases, solvents, temperatures, equivalents, time, etc.) can be adjusted in view of, e.g., structures of oligonucleotides to be prepared (e.g., nucleobases, sugars, internucleotidic linkages, and modifications/protections thereof), solid supports, reaction scales, etc. In some embodiments, cleavage and deprotection comprise one, or two or more, individual steps. For example, in some embodiments, a two-step cleavage and deprotection is utilized. In some embodiments, a cleavage and deprotection step comprises a fluoride-containing reagent (e.g., TEA-HF, optionally buffered with additional bases such as TEA) in a suitable solvent (e.g., DMSO/H2O) at a suitable amount (e.g., about 100 or more (e.g., 100±5)mL/mmol) and is performed at a suitable temperature (e.g., about 0-100, 0-80, 0-50, 0-40, 0-30, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100° C. (e.g., in one example, 27±2° C.)) for a suitable period of time (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 or more hours (e.g., in one example, 6±0.5 h)). In some embodiments, a cleavage and deprotection step comprises a suitable base (e.g., NR3) in a suitable solvent (e.g., water) (e.g., conc. NH4OH) at a suitable amount (e.g., about 200 or more (e.g., 200±5) mL/mmol) and is performed at a suitable temperature (e.g., about 0-100, 0-80, 0-50, 0-40, 0-30, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100° C. (e.g., in one example, 37±2° C.)) for a suitable period of time (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 or more hours (e.g., in one example, 24±1 h)). In some embodiments, cleavage and deprotection comprises or consists of two steps, wherein one step (e.g., step 1) is 1×TEA-HF in DMSO/H2O, 100±5 mL/mmol, 27±2° C. and 6±0.5 h, and the other step (e.g., step 2) is conc. NH4OH, 200±5 mL/mmol, 37±2° C. and 24±1 h. Certain examples of cleavage and deprotection processes are described here.


As appreciated by those skilled in the art, oligonucleotide synthesis is often performed on solid support. Many types of solid support are commercially available and/or can be otherwise prepared/obtained and can be utilized in accordance with the present disclosure. In some embodiments, a solid support is CPG. In some embodiments, a solid support is NittoPhase HL. Types and sizes of solid support can be selected based on desired applications, and in some cases, for a specific use one type of solid support may perform better than the other. In some embodiments, it was observed that for certain preparations CPG can deliver higher crude yields and/or purities compared to certain polymer solid supports such as NittoPhase HL.


Amidites are typically dissolved in solvents at suitable concentrations. In some embodiments, amidites are dissolved in ACN. In some embodiments, amidites are dissolved in a mixture of two or more solvents. In some embodiments, amidites are dissolved in a mixture of ACN and IBN (e.g., 20% ACN/80% IBN). Various concentrations of amidites may be utilized, and may be adjusted in view of specific conditions (e.g., solid support, oligonucleotides to be prepared, reaction times, scales, etc.). In some embodiments, a concentration of about 0.01-0.5, 0.05-0.5, 0.1-0.5, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 or 0.5 M is utilized. In some embodiments, a concentration of about 0.2 M is utilized. In many embodiments, amidite solutions are dried. In some embodiments, 3 Å molecular sieves are utilized to dry amidite solutions (or keep amidite solutions dry). In some embodiments, molecular sieves are utilized at about 15-20% v/v.


Various equivalents of amidites may be useful for oligonucleotide synthesis. As those skilled in the art will appreciate, equivalents of amidites can be adjusted in view of specific conditions (e.g., solid support, oligonucleotides to be prepared, reaction times, scales, etc.), and the same or different equivalents may be utilized during synthesis. In some embodiments, equivalents of amidites are about 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 or more. In some embodiments, a suitable equivalent is about 2. In some embodiments, a suitable equivalent is about 2.5. In some embodiments, a suitable equivalent is about 3. In some embodiments, a suitable equivalent is about 3.5. In some embodiments, a suitable equivalent is about 4.


A number of activators are available in the art and may be utilized in accordance with the present disclosure. In some embodiments, an activator is ETT. In some embodiments, an activator is CMIMT. In some embodiments, CMIMT is utilized for chirally controlled synthesis. As appreciated by those skilled in the art, the same or different activators may be utilized for different amidites, and may be utilized at different amounts. In some embodiments, activators are utilized at about 40-100%. e.g., 40%, 50%, 60%, 70%, 80% or 90% delivery. In some embodiments, a delivery is about 60% (e.g., for ETT). In some embodiments, a delivery is about 70% (e.g., for CMIMT). In some embodiments, molar ratio of activator/amidite is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more. In some embodiments, a molar ratio is about 3-6. In some embodiments, a molar ratio is about 1. In some embodiments, a molar ratio is about 2. In some embodiments, a molar ratio is about 3. In some embodiments, a molar ratio is about 4. In some embodiments, a molar ratio is about 5. In some embodiments, a molar ratio is about 6. In some embodiments, a molar ratio is about 7. In some embodiments, a molar ratio is about 8. In some embodiments, a molar ratio is about 9. In some embodiments, a molar ratio is about 10. In some embodiments, a molar ratio is about 2-5, 2-4 or 3-4 (e.g., for ET). In some embodiments, a molar ratio is about 3.7 (e.g., for ETT). In some embodiments, a molar ratio is about 3-8, 4-8, 4-7, 4-6, 5-7, 5-8 or 5-6 (e.g., for CMIMT). In some embodiments, a molar ratio is about 5.8 (e.g., for CMIMT).


As appreciated by those skilled in the art, various suitable flowrates and reaction times may be utilized for oligonucleotide synthesis, and may be adjusted according to oligonucleotides to be prepared, scales, synthetic setups, etc. In some embodiments, a recycle flow rate utilized for synthesis is about 200 cm/h. In some embodiments, a recycle time is about 1-10 minutes. In some embodiments, a recycle time is about 8 minutes. In some embodiments, a recycle time is about 10 minutes.


Many technologies are available to modify P(III) linkages, e.g., after coupling. For example, various methods are available to convert a P(III) linkage to a P(V) P(═O)-type linkage, e.g., via oxidation. In some embodiments, I2/Pyr/H2O is utilized. Similarly, many methods are available to convert a P(III) linkage to a P(V) P(═S)-type linkage, e.g., via sulfurization. In some embodiments, as illustrated herein, XH is utilized as a thiolation reagent. Technologies for converting P(III) linkages to P(V) P(═N—)-type linkages are also widely available and can be utilized in accordance with the present disclosure. In some embodiments, as illustrated herein ADIH is employed. Suitable reaction parameters are described herein. In some embodiments, ADIH is used at a concentration of about 0.01-0.5, 0.05-0.5, 0.1-0.5, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 or 0.5 M. In some embodiments, concentration of ADIH is about 0.25 M. In some embodiments, concentration of ADIH is about 0.3 M. In some embodiments, ADIH is utilized at about 1-50, 1-40, 1-30, 1-25, 1-20, 1-10, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45 or 50 or more equivalent. In some embodiments, equivalent of ADIH is about 7.5. In some embodiments, equivalent of ADIH is about 10. In some embodiments, equivalent of ADIH is about 15. In some embodiments, equivalent of ADIH is about 20. In some embodiments, equivalent of ADIH is about 23. In some embodiments, equivalent of ADIH is about 25. In some embodiments, equivalent of ADIH is about 30. In some embodiments, equivalent of ADIH is about 35. In some embodiments, one experiment, ADIH was utilized at 15.2 equivalent, and 15 min contact time. In some embodiments, depending on amidites, concentrations, equivalents, contact times, etc. of reagents, e.g., ADIH, may be adjusted.


Technologies of the present disclosure are suitable for preparation at various scales. In some embodiments, synthesis is performed at hundreds of umol or more. In some embodiments, a scale is about 200 umol. In some embodiments, a scale is about 300 umol. In some embodiments, a scale is about 400 umol. In some embodiments, a scale is about 500 umol. In some embodiments, a scale is about 550 umol. In some embodiments, a scale is about 600 umol. In some embodiments, a scale is about 650 umol. In some embodiments, a scale is about 700 umol. In some embodiments, a scale is about 750 umol. In some embodiments, a scale is about 800 umol. In some embodiments, a scale is about 850 umol. In some embodiments, a scale is about 900 umol. In some embodiments, a scale is about 950 umol. In some embodiments, a scale is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25, or more mmol. In some embodiments, a scale is about 1 mmol or more. In some embodiments, a scale is about 2 mmol or more. In some embodiments, a scale is about 5 mmol or more. In some embodiments, a scale is about 10 mmol or more. In some embodiments, a scale is about 15 mmol or more. In some embodiments, a scale is about 20 mmol or more. In some embodiments, a scale is about 25 mmol or more.


In some embodiments, observed yields were 85-90 OD/umol (e.g., 85,000 OD/mmol for a 10.2 mmol synthesis, with 58.4% crude purity (% FLP)).


Technologies of the present disclosure, among other things, can provide various advantages when utilized for preparing oligonucleotides comprising chirally controlled internucleotidic linkages, e.g., those comprising P-N═ wherein P is a linkage phosphorus (e.g., internucleotidic linkages of I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1. II-d-2, or a salt form thereof, etc.). For example, as demonstrated herein, technologies of the present disclosure can provide high crude purities and yields (e.g., in many embodiments, about 55-60% full-length product for a 20-mer oligonucleotide) with minimal amount of shorter oligonucleotides (e.g., from incomplete coupling, decomposition, etc.). Such high crude yields and/or purities, among other things, can significantly reduce downstream purification and can significantly reduce production cost and cost of goods, and in some embodiments, greatly facilitate or make possible large scale commercial production, clinical trials and/or commercial sales.


Example Procedure for Preparing Chirally Controlled Oligonucleotide Compositions—WV-13864

Described below are example procedures for preparing WV-13864 using controlled pore glass (CPG) low bulk density solid support(e.g., 2′-fC (acetyl) via CNA linker CPG (600 Å LBD)). Useful phosphoramidites include 5′-ODMTr-2′-F-dA(N6-Bz)-(L)-DPSE phosphoramidite, 5′-ODMTr-2′-F-dC(N4-Ac)-(L)-DPSE phosphoramidite, 5′-ODMTr-2′-F-dG(N2-iBu)-(L)-DPSE phosphoramidite, 5′-ODMTr-2′-F-dU-(L)-DPSE phosphoramidite, 5′-ODMTr-2′-OMe-G(N2-iBu)-(L)-DPSE phosphoramidite, 5′-ODMTr-2′-F-dC(N4-Ac)-(L)-PSM phosphoramidite, 5′-ODMTr-2′-F-dG(N2-iBu)-(L)-PSM phosphoramidite, 5′-DMT-2′-OMe-A (Bz)-p-Cyanoethyl phosphoramidite, and 5′-DMT-2′-OMe-C(Ac)-β-Cyanoethyl phosphoramidite.


0.1 M Xanthane hydride solution (XH) was used for thiolation. Neutral PN linkages were formed utilizing 0.3 M of 2-azido-1,3-dimethyl-imidazolinium hexafluorophosphate (ADIH) in acetonitrile. Oxidation solution was 0.04-0.06 M iodine in pyridine/water, 90/10, v/v. Cap A was N-Methylimidazole in acetonitrile, 20/80, v/v. Cap B was acetic anhydride/2,6-Lutidine/Acetonitrile, 20/30/50, v/v/v. Deblocking was performed using 3% dichloroacetic acid in toluene. NH4OH used was 28-30% concentrated ammonium hydroxide.


Detritylation.


To initiate the synthesis, the 5′-ODMTr-2′-F-dC(N4-Ac)-CPG solid support was subjected to acid catalyzed removal of the DMTr protecting group from the 5′-hydroxyl by treatment with 3% (DCA) in toluene. The DMTr removal step was usually visualized with strong red or orange color and can be monitored by UV watch command at the wavelength of 436 nm.


DMTr removal can be repeated at the beginning of a synthesis cycle. In every case, following detritylation, the support-bound material was washed with acetonitrile in preparation for the next step of the synthesis.


Coupling.


Amidites were dissolved either in acetonitrile (ACN) or in 20% isobutyronitrile (IBN)/80% ACN at a concentration of 0.2M without density correction. The solutions were dried over molecular sieves (3 Å) not less than 4 h before use (15-20%, v/v).















Amidite
Solvent
Concentration
MS3Å







5′-ODMTr-2′-OMe-A(N6-Bz)-CE
ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-OMe-C(N4-Ac)-CE
ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-F-dA(N6-Bz)-(L)-DPSE
ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-F-dC(N4-Ac)-(L)-DPSE
ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-F-dU-(L)-DPSE
20% IBN/80% ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-F-dG(N2-iBu)-(L)-DPSE
ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-OMe-G(N2-iBu)-(L)-DPSE
20% IBN/80% ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-F-dC(N4-Ac)-(L)-PSM
ACN
0.2M
15-20%, v/v


5′-ODMTr-2′-F-dG(N2-iBu)-(L)-PSM
ACN
0.2M
15-20%, v/v









Dual activators (CMIMT and ET) coupling approach were utilized. Both activators were dissolved in ACN at a concentration of 0.5M. CMIMT has been used for chirally controlled coupling with CMIMT to amidite molar ratio of 5.833/1. ETT was used for the coupling of standard amidites (for natural phosphate linkages) with ETT to amidite molar ratio of 3.752/1. Recycle time for all DPSE and PSM amidites was 10 min except mG-L-DPSE which was 8 min. All standard amidites were coupled for 8 min.


Cap-1 (Capping-1, First Capping).


Cap B (Ac2O/2,6-lutidine/MeCN (2:3:5, v/v/v)) was used. In some embodiments, Cap-1 capped secondary amine groups, e.g., on the chrial auxiliaries. In some embodiments, incomplete protection of secondary amines may lead side reaction resulting in a failed coupling or formation of one or more by-products. In some embodiments, Cap-1 may not be an efficient condition for esterification (e.g., a condition less efficient than Cap-2 (the second capping) for capping unreacted 5′-OH).


Thiolation for DPSE Cycles.


Following Cap-1, phosphite intermediates, P(III), were modified with sulfurizing reagent. In an example preparation, 1.2 CV (6-7 equivalent) of sulfurizing reagent (0.1 M XH/pyridine-ACN, 1:1, v/v) was delivered through the synthetic column via flow through mode over 6 min contact time to form P(V).


Azide Reaction for PSM Cycles.


After Cap-1, a suitable reagent (e.g., comprising —N3 such as ADIH), in ACN was used to form neutral internucleotidic linkages (PN linkages). In an example preparation, 10.3 eq. of 0.25 M ADIH over 10 min contact time for fG-L-PSM and 25.8 eq. of 0.3 M ADIH over 15 min contact time for fC-L-PSM were utilized in the respective cycles.


Oxidation for Standard Nucleotide Cycles.


Cap-1 step was not necessary for standard amidite cycle. After coupling of a standard amidite onto the solid support, the phosphite intermediate, P(III), was oxidized with 0.05 M of iodine/water/pyridine solution to form P(V). In an example preparation, 3.5 eq. of oxidation solution delivered to the column by a flow through mode over 2 min contact time for efficient oxidation.


Cap-2 (Capping-2, a Second Capping).


Coupling efficiency on the solid phase oligonucleotide synthesis for each cycle was approx. 97-100% and monitored by, e.g., release of DMTr cation. Residual uncoupled 5′-hydroxyl groups, typically 1-3% by detrit monitoring, on the solid support were blocked with Cap A (20% N-Methylimidazole in acetonitrile (NMI/ACN=20/80, v/v)) and Cap B (20%:30%:50%=Ac2O:2,6 -Lutidine: ACN (v/v/v)) reagents (e.g., 1:1). Both reagents (e.g., 0.4 CV) were delivered to the column by flow through mode over 0.8 min contact time to prevent formation of failure sequences. Uncapped amine groups may also be protected in this step.


As illustrated herein, in some embodiments, a DPSE amidite or DPSE cycle is Detritylation ->Coupling ->Cap-1 (Capping-1, first capping) ->Thiolation ->Cap-2 (Capping-L Post-capping, second capping); in some embodiments, a PSM amidite or PSM cycle is Detritylation ->Coupling ->Cap-1 (Capping-, first capping) ->Azide reaction ->Cap-2 (Capping-1, Post-capping, second capping); in some embodiments, a standard amidite or standard cycle (traditional, non-chirally controlled) is Detritylation ->Coupling ->Oxidation ->Cap-2 (Capping-1, Post-capping, second capping).


Synthetic cycles were selected and repeated until the desired length was achieved.


Amine Wash.


In some embodiments, provided technologies are particularly effective for preparing oligonucleotides comprising internucleotidic linkages that comprise P-N═, wherein P is the linkage phosphorus. In some embodiments, provided technologies comprise contacting an oligonucleotide intermediate with a base. In some embodiments, a contact is performed after desired oligonucleotide lengths have been achieved. In some embodiments, such a contact provides an oligonucleotide comprising internucleotidic linkages that comprise P-N═, wherein P is the linkage phosphorus (e.g., those of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof). In some embodiments, a contact removes a chiral auxiliary (e.g., those with a G2 that is connected to the rest of the molecule through a carbon atom, and the carbon atom is connected to at least one electron-withdrawing group (e.g., WV-CA-231, WV-CA-236, WV-CA-240, etc.)). In some embodiments, a contact is performed utilizing a base or a solution of a base which is substantially free of OH or water (anhydrous). In some embodiments, a base is an amine (e.g., N(R)3). In some embodiments, an amine has the structure of NH(R)2, wherein each R is independently optionally substituted C1-6 aliphatic; in some embodiments, each R is independently optionally substituted C1-6 alkyl. In some embodiments, a base is N, N-diethylamine (DEA). In some embodiments, a base solution is 20% DEA/ACN. In some embodiments, such a contact with a base lowers levels of by-products which, at one or more locations of internucleotidic linkages that comprise P-N═, have instead natural phosphate linkages.


In an example preparation, an on-column amine wash was performed after completion of oligonucleotide nucleotide synthesis cycles, by five column volume of 20% DEA in acetonitrile over 15 min contact time.


In some embodiments, contact with a base may also remove 2-cyanoethyl group used for construction of standard natural phosphate linkage. In some embodiments, contact with a base provide a natural phosphate linkage (e.g., in a salt form in which the cation is the corresponding ammonium salt of the amine base).


Cleavage and Deprotection.


After contact with a base, oligonucleotides are exposed to further cleavage and deprotection. In an example preparation, auxiliary removal (e.g., DPSE), cleavage & deprotection was a two steps process. In step 1, CPG solid support with oligonucleotides was treated with 1×TEA-HF solution (DMSO:Water:TEA.3HF:TEA=43:8.6:2.8:1=v/v/v/v, 100±5 uL/umol) for 6±0.5h at 27+2° C. The bulk slurry was then treated with concentrated ammonium hydroxide (28-30%, 200±10 mL/mmol) for 24±1h at 37±2° C. (step 2) to release oligonucleotide from the solid support. Crude product was collected by filtration. Filtrates were combined with washes (e.g., water) of the solid support. In some embodiments, observed yields were about 80-90 OD/umole.


Example Procedure for Preparing Chirally Controlled Oligonucleotide Compositions—WV-13835

In an example preparation, WV-13835 was prepared at a 1.2 mmol scale starting from CPG 2′-F-U. DPSE was utilized as chiral auxiliary for chirally controlled internucleotidic linkages. The preparation comprised multiple cycles comprising a de-blocking step (detritylation under an acidic condition), a coupling step (with a DPSE phosphoramidite), a pre-modification capping step (e.g., Cap B), a modification step (e.g., thiolation using 0.1M XH in Pyr/CAN), a post-modification capping step (e.g., under a cap 2 condition (1:1 Cap A+Cap B). In some embodiments, a cycle comprises a modification step which is or comprises oxidation with I2/Pyr/H2O. Cleavage and deprotection included two steps, wherein step one utilized TEA-HF at 100 mL/mmol and 27±2.5° C., and step 2 utilized conc. NH4OH at 200 mL/mmol and 37±2.5° C. Total crude yield was 91800 OD (76500 OD/mmol). Neat % FLP was 53.6% and NAP (after de-salting) % FLP was 58.3%. % FLP in crude was 1.71 g.


Example Procedure for Preparing Chirally Controlled Oligonucleotide Compositions—WV-14791

In an example preparation, WV-14791 was prepared at a 402 umol scale starting from CPG 2′-F-U. DPSE was utilized as chiral auxiliary for chirally controlled phosphorothioate internucleotidic linkages, and PSM for chirally controlled n001. The preparation comprised multiple cycles comprising a de-blocking step (detritylation under an acidic condition), a coupling step (with a DPSE (for a chirally controlled phosphorothioate internucleotidic linkage) or PSM phosphoramidites (for a chirally controlled n001 internucleotidic linkage)), a pre-modification capping step (e.g., Cap B), a modification step (e.g., thiolation using 0.1 M XH in Pyr/CAN for phosphorothioate internucleotidic linkages, 2-azido-1,3-dimethyl-imidazolinium hexafluorophosphate in CAN for n001), a post-modification capping step (e.g., under a cap 2 condition (1:1 Cap A+Cap B). In some embodiments, a cycle comprises a modification step which is or comprises oxidation with I2/Pyr/H2O. Total crude yield was 27000 OD (67.1 OD/umol). Neat % FLP was 45.7% and NAP (after de-salting) % FLP was 51.8%. % FLP in crude was 445 mg.


Example Procedure for Preparing Chirally Controlled Oligonucleotide Compositions—WV-14344

In an example preparation, WV-14344 was prepared at a 400 umol scale starting from CPG 2′-F-C. DPSE was utilized as chiral auxiliary for chirally controlled phosphorothioate internucleotidic linkages, and PSM for chirally controlled n001. The preparation comprised multiple cycles comprising a de-blocking step (detritylation under an acidic condition), a coupling step (with a DPSE (for a chirally controlled phosphorothioate internucleotidic linkage) or PSM phosphoramidites (for a chirally controlled n001 internucleotidic linkage)), a pre-modification capping step (e.g., Cap B), a modification step (e.g., thiolation using 0.1M XH in Pyr/CAN for phosphorothioate internucleotidic linkages, 2-azido-1,3-dimethyl-imidazolinium hexafluorophosphate in CAN for n001), a post-modification capping step (e.g., under a cap 2 condition (1:1 Cap A+Cap B). In some embodiments, a cycle comprises a modification step which is or comprises oxidation with I2/Pyr/H2O. Total crude yield was 32000 OD (80 OD/umol). Neat % FLP was 48.8% and NAP (after de-salting) % FLP was 59.2%. % FLP in crude was 571 mg.


Example Preparation of Additional Chirally Controlled Oligonucleotide Compositions

Various oligonucleotide compositions including chirally controlled oligonucleotide composition were prepared utilizing technologies described herein. In some embodiments, oligonucleotide compositions were prepared using automated solid-phase synthesis. Certain preparations were performed at 25 umol using TWISTτM columns 10 um/15 um column (GlenResearch, catalog #20-0040) filled with 325 mg of CNA linked nucleosides-CPG. Example cycles and azide modification reagents for chirally controlled internucleotidic linkages at 25 umol were shown below.






















Waiting


Step
Operation
Reagents
Volume
time
















1
Deblocking (detritylation)
3% DCA/DCM
10
mL
1
min


2
Coupling
0.2M monomer/MeCN
0.5
mL
8
min




0.6M CMIMT/MeCN
1
mL




3
Pre-modification capping (cap-1)
Cap-B
2
mL
2
min


4
Modification
0.2M XH/pyridine or
2
mL
6
min



(sulfurization or azide reaction)
0.5M azide reagent/MeCN
2
mL
10
min


5
Post-modification capping (cap-2)
Cap-A + Cap-B
2
mL
45
s











Final linkage
Azide Reagent





n001


embedded image







n003


embedded image







n004


embedded image







n006


embedded image







n008


embedded image











After cycles were completed, the CPG support was treated with 20% DEA in MeCN for 12 min, washed with dry MeCN and dried under argon and vacuum. The dried CPG support was transferred into a 15 mL plastic tube, treated with 1×solution (1M HF-TEA in H2O-DMSO (1:5, v/v), 100 uL/umol) for 6 h at 28° C., then added cone. NH3 (200 uL/umol) and reacted for 24 h at 37° C. The mixture was cooled to mom temperature and the CPG was removed by membrane filtration, and the product was analyzed by LTQ and RP-UPLC with a linear gradient of MeCN (1-15%/15 m) in (10 mM TEA, 100 mM HFIP in water) at 55° C. at a rate of 0.8 mL/min. Crude oligonucleotides were purified by AEX-HPLC eluting with 20 mM NaOH to 2.5M NaCl, and desalted to obtain the target oligonucleotide compositions.


Example preparations were listed below, with crude UPLC purity ranging from about 9% to about 58% percent. Higher crude HPLC purities were observed for preparation of the same and/or other oligonucleotides.

















Oligonucleotide
Scale (umol)
Observed Mass




















WV-16006
70
6912.3



WV-16007
70
7068.9



WV-24092
24
7282



WV-24098
24
7237.1



WV-24104
24
7399.1



WV-24109
24
7355.1



WV-25536
24
6729.1



WV-25537
24
6705.2



WV-25538
24
6739.1



WV-25539
24
6702



WV-25540
24
6726.9



WV-25541
25
7012.6



WV-25542
25
7014.1



WV-25543
25
6989.9



WV-25544
25
7024.2










Among other things, provided technologies provided high crude purities and/or yields. In many preparations (various scales, reagents concentrations, reaction times, etc.), about 55-60% crude purities (% FLP) were obtained, with minimal amount of shorter oligonucleotides (e.g., from incomplete coupling, decomposition, side-reactions, etc.). In many embodiments, amounts of the most significant shorter oligonucleotide are no more than about 2-10%, often no more than 2-4% (e.g., in some embodiments, as low as about 2% (the most significant shorter oligonucleotide being N-3)).


Various technologies are available for oligonucleotide purification and can be utilized in accordance with the present disclosure. In some embodiments, crude products were further purified (e.g., over 90% purity) using, e.g., AEX purification, and/or UF/DF.


Using technologies described herein, various oligonucleotides comprising diverse base sequences, modifications (e.g., nucleobase, sugar, and internucleotidic linkage modifications) and/or patterns thereof, linkage phosphorus stereochemistry and/or patterns thereof, etc. were prepared at various scales from umol to mmol. Such oligonucleotides have various targets and may function through various mechanisms. Certain such oligonucleotides were presented in the Tables of the present disclosure.


As appreciated by those skilled in the art, examples described herein are for illustration only. Those skilled in the art will appreciate that various conditions, parameters, etc. may be adjusted according to, e.g., instrumentation, scales, reagents, reactants, desired outcomes, etc. Certain results may be further improved using various technologies in accordance with the present disclosure. Among other things, provided oligonucleotides and compositions thereof can provide significantly improved properties and/or activities, e.g., in various assays and in vivo models, and may be particularly useful for preventing and/or treating various conditions, disorders or diseases. Certain data are provided in Examples herein.


Example 4G. Synthesis of Certain Reagents for Incorporation of Mod

As described in the present disclosure, oligonucleotide of the present disclosure may comprise various additional chemical moieties (e.g., various Mods) in addition to the oligonucleotide chain moiety. In some embodiments, the present disclosure provides oligonucleotide comprising a Mod described herein. In some embodiments, such additional moieties provide improved properties, activities, deliveries, etc. In some embodiments, the present disclosure provides useful additional chemical moieties, and technologies for preparing and incorporating such additional chemical moieties. Certain examples are described below. Those skilled in the art appreciates and various technologies related to additional chemical moieties (e.g., structures, preparations, incorporation, uses, etc.), e.g., those described in U.S. Pat. Nos. 9,394,333, 9,744,183, 9,605,019, 9,598,458, US 2015/0211006, US 2017/0037399, WO 2017/015555, WO 2017/192664, WO 2017/015575, WO 2017/062862, WO 2017/160741, WO 2017/192679, WO 2017/210647, WO 2018/223056, WO 2018/237194, WO 2019/055951, etc., such technologies of each of which are independently incorporated by reference, may be utilized in accordance with the present disclosure.


Synthesis of 5-((1,19-bis((1,3-dimethylimidazolidin-2-ylidene)amino)-10-((3-((3-((1,3-dimethylimidazolidin-2-ylidene)amino)propyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-416-diazanonadecan-10-yl)amino)-5-oxopentanoic acid



embedded image


Step 1. To a solution of benzyl 15,15-bis(13,13-dimethyl-5,11-dioxo-2,12-dioxa-6,10-diazatetradecyl)-2,2-dimethyl-4,10,17-trioxo-3,13-dioxa-5,9,16-triazahenicosan-2-oate (5 g, 4.95 mmol, 1 eq.) in DCM (50 mL) was added TFA (16.93 g, 148.48 mmol, 10.99 mL, 30 eq.) at 0° C. The mixture was stirred at 0-25° C. for 2 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. Then added ACN (5 mL), and MTBE (40 mL), filtered the viscous liquid. The crude benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (5.21 g, crude, 3TFA) was obtained as a yellowish oil. LCMS: (M+H+): 710.6: (M+Na+): 732.7.


Step 2. To a solution of benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (5.21 g, crude, 3TFA) in DCM (35 mL) was added DIEA (6.39 g, 49.45 mmol, 8.61 mL, 10 eq.) and 2-chloro-1,3-dimethyl-4,5-dihydroimidazol-1-ium; hexafluorophosphate (4.55 g, 16.32 mmol, 3.3 eq.). The mixture was stirred at 25° C. for 15 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The crude was purified by RP-MPLC (Spec: C18, 330 g, 20-35 micron, 100 Å). The product benzyl 5-((1,19-bis((1,3-dimethylimidazolidin-2-ylidene)amino)-10-((3-((3-((1,3-dimethylimidazolidin-2-ylidene)amino)propyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (4.94 g, crude) was obtained as a yellow oil. 1H NMR (400 MHz, METHANOL-d4) δ=7.39-7.29 (m, 5H), 3.70-3.62 (m, 28H), 3.45 (q, J=6.6 Hz, 7H), 3.30-3.26 (m, 6H), 3.08-2.99 (m, 21H), 2.47-2.39 (m, 9H), 2.23 (t, J=7.4 Hz, 2H), 1.92-1.78 (m, 10H).


Step 3. To a solution of benzyl 5-((1,19-bis((1,3-dimethylimidazolidin-2-ylidene)amino)-10-((3-((3-((1,3-dimethylimidazolidin-2-ylidene)amino)propyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (2 g, 2.00 mmol, 1 eq.) in THF (10 mL) and H2O (2 mL) was added LiOH.H2O (588.51 mg, 14.02 mmol, 7 eq.). The mixture was stirred at 25° C. for 3 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by prep-HPLC (column: Phenomenex luna C18 250*50 mm*10 um; mobile phase: [water (0.1% TFA)-ACN]; B %: 0%-25%, 20 min). 5-((1,19-bis((1,3-dimethylimidazolidin-2-ylidene)amino)-10-((3-((3-((1,3-dimethylimidazolidin-2-ylidene)amino)propyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoic acid (0.6 g, 651.84 umol, 32.54% yield, 98.66% purity) was obtained as a yellow gum. 1H NMR (400 MHz, DMSO-d6) δ=8.03 (br t, J=5.6 Hz, 3H), 7.75 (br t, J=5.6 Hz, 3H), 7.08 (s, 1H), 3.62-3.54 (m, 24H), 3.34 (q, J=6.6 Hz, 7H), 3.12 (q, J=6.2 Hz, 5H), 2.96 (s, 18H), 2.30 (br t, J=6.4 Hz, 6H), 2.23-2.03 (m, 4H), 1.79-1.59 (m, 8H); LCMS: (M/2+H): 454.9; LCMS purity: 98.66%.


Synthesis of (E)-2-methyl-14,14-bis((E)-2-methyl-3-morpholino-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-3-morpholino-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-oic acid



embedded image


Step 1. To a solution of benzyl 15,15-bis(13,13-dimethyl-5,11-dioxo-2,12-dioxa-6,10-diazatetradecyl)-2,2-dimethyl-4,10,17-trioxo-3,13-dioxa-5,9,16-triazahenicosan-2-oate (5 g, 4.95 mmol, 1 eq.) in DCM (50 mL) was added TFA (16.93 g, 148.48 mmol, 10.99 mL, 30 eq.). The mixture was stirred at 0-25° C. for 2 hr. The reaction mixture was concentrated under reduced pressure to remove solvent, then added ACN (50 mL), and MTBE (500 mL), filtered the viscous liquid. The crude benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (5.21 g, crude, 3TFA) was obtained as a yellow oil. LCMS: (M+H+): 710.6; (M+Na+): 732.5.


Step 2. To a solution of benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (3.86 g, 3.67 mmol, 1 eq., 3TFA) in DCM (35.1 mL) was added DIEA (4.73 g, 36.63 mmol, 6.38 mL, 10 eq.) and [[(Z)-(1-cyano-2-ethoxy-2-oxo-ethylidene)amino]oxy-morpholino-methylene]-dimethylammonium; hexafluorophosphate (5.18 g, 12.09 mmol, 3.3 eq.). The mixture was stirred at 25° C. for 15 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The crude was dissolved by ACN (15 mL) then input it into the reversed-phase column. The crude product was purified by reversed-phase HPLC (0.75% TFA in water, and acetonitrile). The crude compound benzyl (E)-2-methyl-14,14-bis((E)-2-methyl-3-morpholino-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-3-morpholino-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-oate (4.14 g, crude) was obtained as a yellow oil. 1H NMR (400 MHz, METHANOL-d4) δ=7.43-7.24 (m, 5H), 3.78 (br s, 13H), 3.72-3.64 (m, 12H), 3.50-3.36 (m, 13H), 3.27 (br d, J=8.6 Hz, 11H), 3.11-2.97 (m, 18H), 2.50-2.42 (m, 8H), 2.26 (t, J=7.4 Hz, 2H), 1.93-1.78 (m, 8H).


Step 3. To a solution of benzyl (E)-2-methyl-14,14-bis((E)-2-methyl-3-morpholino-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-3-morpholino-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-oate (2 g, 1.77 mmol, 1 eq.) in THF (1 mL) and H2O (0.2 mL) was added LiOH.H2O (519.71 mg, 12.38 mmol, 7 eq.). The mixture was stirred at 25° C. for 3 hr. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by prep-HPLC (Phenomenex luna C18 250*50 mm *10 um; mobile phase: [water (0.1% TFA)-ACN]; B %: 0%-20%, 20 min). The compound (E)-2-methyl-14,14-bis((E)-2-methyl-3-morpholino-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-3-morpholino-9,16-dioxo-2-oxa-2,4,8,15-tetraazaicos-3-en-20-oic acid (1.2 g, 1.14 mmol, 64.65% yield, 99.16% purity) was obtained as a yellow gum. 1H NMR (400 MHz, DMSO-d6) δ=7.99 (br s, 3H), 7.84 (br s, 3H), 7.06 (s, 1H), 3.67 (br s, 12H), 3.59-3.49 (m, 12H), 3.44-3.25 (m, 12H), 3.11 (br s, 12H), 3.02-2.81 (m, 17H), 2.31 (br t, J=6.1 Hz, 6H), 2.23-2.04 (m, 4H), 1.79-1.60 (m, 8H). LCMS: (M/2+H+): 521.0; LCMS purity: 99.16%.


Synthesis of (S)-3-(dimethylamino)-26-(3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-amido)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16,20,27-tetraoxo-12-oxa-2,4,8,15,21,28-hexaazatetratriacont-3-en-34-oic acid



embedded image


embedded image


Step 1. To a solution of 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-meth)yl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,48,15-tetraazaicos-3-en-20-oic acid (10 g, 10.94 mmol, 5 eq.) in DMF (100 mL) was added DIPEA (2.83 g, 21.88 mmol, 3.81 mL, 10 eq.) and followed by benzyl (S)-6-(2,6-diaminohexanamido)hexanoate (924.07 mg, 2.19 mmol, 1 eq., 2HC) and then to the mixture was dropwise added HATU (1.91 g, 5.03 mmol, 2.3 eq.) in DMF (10 mL) at 0° C. The reaction mixture was stirred at 25° C. for 12 hr. The mixture was concentrated in vacuo. The residue was purified by prep-HPLC (TFA condition). Column: Phenomenex luna C18 250*50 mm*10 um, mobile phase: [water (0.1% TFA)-ACN]; B1% CH3CN: 10%-35%, 20 min. Benzyl (S)-3-(dimethylamino)-26-(3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxo-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-amido)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16,20,27-tetraoxo-12-oxa-2,4,8,15,21,28-hexaazatetratriacont-3-en-34-oate (3.7 g, crude) was obtained as a yellow oil. 1H NMR (400 MHz, CHLOROFORM-d) δ=8.01-7.77 (m, 10H) 7.63 (br t, J=4.9 Hz, 6H), 7.40-7.29 (m, 5H), 7.07 (br d, J=16.5 Hz, 2H), 5.08 (s, 2H), 4.18-4.07 (m, 1H), 3.63-3.46 (m, 24H), 3.10 (br dd, J=3.2, 5.1 Hz, 25H), 3.00-2.78 (m, 79H), 2.39-2.23 (m, 18H), 2.15-1.98 (m, 20H), 1.72-1.13 (m, 31H). LCMS: M/4+H+=536.5.


Step 2. To a solution of compound benzyl (S)-3-(dimethylamino)-26-(3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-amido)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16,20,27-tetraoxo-12-oxa-2,4,8,15,21,28-hexaazatetratriacont-3-en-34-oate (4.4 g, 2.05 mmol, 1 eq.) in THF (40 mL) and H2O (8 mL) was added LiOH.H2O (603.45 mg, 14.38 mmol, 7 eq.). The mixture was stirred at 25° C. for 2 hr. The mixture was concentrated in vacuo. The residue was purified by prep-HPLC (TFA condition). Column: Phenomenex luna C 18 250*50 mm*10 um; mobile phase: [water (0.1% TFA)-ACN]; B %: 2%-30%, 20 min. Compound (S)-3-(dimethylamino)-26-(3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-amido)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16,20,27-tetraoxo-12-oxa-2,4,8,15,21,28-hexaazatetratriacont-3-n-34-oic acid (1.4 g, 678.84 umol, 33.04% yield, 99.483% purity) was obtained as a yellow oil. 1H NMR (400 MHz, DMSO-d6) δ=8.00 (br t, J=5.5 Hz, 6H), 7.91 (br t, J=5.6 Hz, 1H), 7.87-7.79 (m, 2H), 7.67 (br t, J=4.8 Hz, 5H), 7.15-7.01 (m, 2H), 4.17-4.10 (m, 1H), 3.70-3.43 (m, 24H), 3.16-3.06 (m, 24H), 3.05-2.75 (m, 76H), 2.30 (br t, J=6.4 Hz, 12H), 2.18 (t, J=7.4 Hz, 2H), 2.15-1.98 (m, 8H), 1.66 (quin, J=6.6 Hz, 17H), 1.48 (quin, J=7.4 Hz, 3H), 1.41-1.31 (m, 4H), 1.28-1.17 (m, 4H). 13C NMR (101 MHz, DMSO-d6) δ=174.85, 172.67, 172.61, 172.40, 172.19, 170.87, 161.50, 158.77 (q, 0.1=35.2 Hz, 1C), 118.06, 115.15, 68.72, 67.84, 60.03, 53.08, 42.36, 38.87, 38.78, 36.40, 35.95, 35.88, 35.81, 35.25, 34.91, 34.08, 29.85, 29.40, 29.19, 26.34, 24.63, 23.47, 22.14. LCMS: M/3+H+=684.7, purity: 99.48%.


Synthesis of (S)-6-(4-(4-(N-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)-2,2,2-trifluoroacetamido)benzamido)-5-methoxy-5-oxopentanamido)hexanoic acid



embedded image


Step 1. To a solution of (S)-4-(((benzyloxy)carbonyl)amino)-5-methoxy-5-oxopentanoic acid (14 g, 47.41 mmol, 1 eq.) in THF (150 mL) was added TEA (14.39 g, 142.23 mmol, 19.80 mL, 3 eq.), followed by tert-butyl 6-aminohexanoate 6-aminohexanoate (11.54 g, 61.63 mmol, 1.3 eq.) at 0-5° C. and stirred for 0.5 hour. T3P (60.34 g, 94.82 mmol, 56.39 mL, 50% purity, 2 eq.) was added to the mixture at 0-5° C. and stirred at 20-25° C. for 12 hours. TLC (Petroleum ether/Ethyl acetate=1:1, Rf=0.35) showed that the starting material was consumed completely. The mixture was concentrated under reduced pressure to remove the solvent, and then re-dissolved with ethyl acetate (100 mL). The organic phase was washed by saturated aq. NaHCO3 (50 mL×3) and dried over anhydrous Na2SO4. The crude product was purified by MPLC (SiO2, Petroleum ether/Ethyl acetate=1:1) to obtain tert-butyl (S)-6-(4-(((benzyloxy)carbonyl)amino)-5-methoxy-5-oxopentanamido)hexanoate (19.7 g, crude) as yellow oil.


Step 2. A mixture of tert-butyl (S)-6-(4-(((benzyloxy)carbonyl)amino)-5-methoxy-5-oxopentanamido)hexanoate (15 g, 32.29 mmol, eq.) and Pd/C (10 g, 10% purity) in THF (300 mL) was evacuated in vacuo and backfilled with H2 (15 Psi) three times, then stirred at 20-25° C. for 6 hours. TLC (Petroleum ether/Ethyl acetate=1:1, Rf=0) showed that the starting material was consumed completely. The mixture was filtered and concentrated under reduced pressure to remove the most solvent. The crude product was used for the next step without any purification, tert-butyl (S)-6-(4-amino-5-methoxy-5-oxopentanamido)hexanoate (10.67 g, 31.42 mmol, 97.31% yield, 97.303% purity) was obtained as colorless liquid (in solvent). LCMS: M+H+=331.2, purity: 97.70%.


Step 3. To a mixture of 4-(N-((2-Amino-4-oxo-3,4-dihydropteridin-6-yl)-methyl)-2,2,2-trifluoroacetamido)benzoic acid (8.28 g, 25.06 mmol, 1.1 eq.) and DIPEA (8.83 g, 68.33 mmol, 11.90 mL, 3 eq.) in DMSO (20 mL) was added HATU (8.66 g, 22.78 mmol, 1 eq.) and tert-butyl (S)-6-(4-amino-5-methoxy-5-oxopentanamido)hexanoate at 20-25° C. and stirred for 12 hours. The mixture was diluted with H2O (20 mL) and extracted with ethyl acetate (20 mL×3). The organic phase was concentrated under reduced pressure to remove the solvent. The crude product was purified by MPLC (SiO2, Methanol/Ethyl acetate=2:5) to obtain tert-butyl (S)-6-(4-(4-(N-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)-2,2,2-trifluoroacetamido)benzamido)-5-methoxy-5-oxopentanamido)hexanoate (26.2 g. crude) as brown gum. LCMS: M+H+=721.2.


Step 4. To a solution of tert-butyl (S)-6-(4-(4-(N-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)-2,2,2-trifluoroactamido)benzamido)-5-methoxy-5-oxopentanamido)hexanoate (13.1 g, 11.39 mmol, 1 eq.) in DCM (100 mL) was added TFA (7.79 g, 68.35 mmol, 5.06 mL, 6 eq.) at 0-5° C. and the mixture was stirred at 35-40° C. for 12 hours. The mixture was concentrated under reduced pressure to remove the solvent. The crude product was detected by HPLC and purified by prep-HPLC (column: Phenomenex luna C18 250*50 mm*10 um; mobile phase: [water (0.05% HCl)-ACN]; B %: 15%-35%, 20 min) to obtain (S)-6-(4-(4-(N-((2-amino-4-oxo-3,4-dihydropteridin-6-yl)methyl)-2,2,2-trifluoroacetamido)benzamido)-5-methoxy-5-oxopentanamido)hexanoic acid (1.51 g, 1.88 mmol, 32.96% yield, 82.627% purity). 1H NMR (400 MHz, DMSO-d6) δ=8.92 (br d, J=7.1 Hz, 1H), 8.74 (s, 1H), 7.93 (br d, J=8.4 Hz, 3H), 7.83 (br t, J=5.5 Hz, 1H), 7.66 (br d, J=8.3 Hz, 2H), 5.18 (s, 2H), 5.06-4.52 (m, 3H), 4.45-4.32 (m, 1H), 3.63 (s, 2H), 3.00 (q, J=6.2 Hz, 2H), 2.25-2.13 (m, 4H), 2.12-2.03 (m, 1H), 1.99-1.87 (m, 1H), 1.46 (quin, J=7.5 Hz, 2H), 1.35 (td, J=7.4, 14.9 Hz, 2H), 1.27-1.15 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ=174.91, 172.83, 171.50, 166.02, 159.47, 153.27, 149.15, 142.22, 134.71, 129.15, 128.99, 128.64, 54.27, 52.97, 52.38, 38.79, 34.05, 32.16, 29.29, 26.76, 26.40, 24.66. LCMS: M+H+=665.2.


Example 5. Synthesis of N6-Stearoyl-N2-(4-Sulfamoylbenzoyl)-L-Lysine



embedded image


Step 1. To a solution of stearic acid (8.00 g, 28.12 mmol) in DCM (210 m was added 1-hydroxypyrrolidine-2,5-dione (3.24 g, 28.12 mmol) followed by EDCI (5.39 g, 28.12 mmol) at 15° C. The mixture was stirred at 15° C. for 21 hr. TLC showed part of stearic acid remained. Additionally added 1-hydroxypyrrolidine-2,5-dione (0.32 g) and EDCI (1.07 g). Stirring was continued at 15° C. for 8 hr. TLC showed the reaction was completed. The solvent was evaporated under reduced pressure. The residue was dissolved in DCM (300 mL) and the solution washed with water (200 mL); the aqueous phase was then back-extracted with DCM (2*100 mL). The combined organic phase was dried (MgSO4) and the solvent evaporated under reduced pressure to yield 2,5-dioxopyrrolidin-1-yl stearate as a white solid. No further purification. The crude product 2,5-dioxopyrrolidin-1-yl stearate (10.70 g, crude) was used into the next step without further purification. TLC (Petroleum ether:Ethyl acetate=1:1) Rf=0.79.


Step 2. To a solution of (tert-butoxycarbonyl)-L-lysine (4.49 g, 18.24 mmol) and 2,5-dioxopyrrolidin-1-yl stearate (5.80 g, 15.20 mmol) in DMF (20 mL) was added DIPEA (5.89 g, 45.60 mmol, 7.96 mL). The mixture was stirred at 20° C. for 20 hour. TLC and LCMS showed the reaction was completed. The resulting mixture was concentrated to dry under reduced pressure. The residue was combined with 9 g crude compound, partitioned between water (200 mL) and EtOAc (300 mL) and DCM (80 mL). The separated aqueous layer was extracted with EtOAc (300 mL*3). The combined organic layers were washed with water (100 mL*2), dried over anhydrous MgSO4, filtered and concentrated to afford the product as a white solid (14.5 g). The crude product compound N2-(tert-butoxycarbonyl)-N6-stearoyl-L-lysine (7.70 g, crude) was used into the next step without further purification. 1H NMR (400 MHz, CHLOROFORM-d) δ=11.29 (br s, 1H), 7.97 (s, 1H), 5.88 (br s, 1H), 5.24 (br d, J=7.3 Hz, 1H), 4.21 (br d, J=5.1 Hz, 1H), 3.17 (q, J=6.5 Hz, 2H), 2.11 (t, J=7.6 Hz, 2H), 1.79 (br s, 1H), 1.64 (dt, J=7.9, 14.0 Hz, 1H), 1.58-1.42 (m, 4H), 1.41-1.28 (m, 11H), 1.18 (br s, 29H), 0.81 (t, J=6.7 Hz, 3H); LCMS: (M+Na+): 535.3; TLC (Petroleum ether:Ethyl acetate=1:1) Rf=0.01.


Step 3. To a solution of N2-(tert-butoxycarbonyl)-N6-stearoyl-L-lysine (12.50 g, 24.38 mmol) in DCM (120 mL) was added TFA (46.20 g, 405.20 mmol, 30 mL). The mixture was stirred at 15° C. for 4.5 hr. LCMS showed the reaction was almost completed. The resulting mixture was concentrated under reduced pressure on a rotary evaporator with water pump to give a gray crude solid. The crude product compound N6-stearoyl-L-lysine (12.80 g, crude, TFA salt) was used into the next step without further purification. 1H NMR (400 MHz, DMSO-d) δ=8.19 (br s, 3H), 7.77-7.65 (m, 1H), 3.88 (br d, J=4.9 Hz, 1H), 3.02 (br d, J=5.5 Hz, 2H), 2.03 (br t, J=7.3 Hz, 2H), 1.75 (br s, 2H), 1.56-1.34 (m, 6H), 1.24 (s, 28H), 0.86 (br t, J=6.4 Hz, 3H); LCMS: (M+H+): 413.3.


Step 4. To a solution of compound N6-stearoyl-L-lysine (5.00 g, 9.49 mmol, TFA salt) in DMF (150 mL) was added compound 2,5-dioxopyrrolidin-1-yl 4-sulfamoylbenzoate (3.98 g, 13.34 mmol) followed by DIPEA (9.40 g, 72.73 mmol, 12.70 mL). The mixture was stirred at 80° C. for 18 hr. LCMS showed the reaction was completed. The resulting mixture was concentrated under reduced pressure until 20 mL residue mixture left. To the residue was added DCM (80 mL) and petroleum ether (50 mL). After stood for 36 hr at 15° C., the precipitated solid was filtered and dried to give the product as a light yellow solid (1.9 g). The filtrate was concentrated to dry and triturated with ACN (100 mL), filtered and the filter cake was dried to give a crude (2.4 g). The filtrate was concentrated to give an oil messy crude. No further purification. N6-stearoyl-N2-(4-sulfamoylbenzoyl)-L-lysine (1.90 g, 33.60% yield) was obtained as a light yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 13.19-11.82 (m, 1H), 8.74 (br d, J=5.7 Hz, 1H), 8.04 (br d, J=6.6 Hz, 2H), 7.91 (br d, J=7.1 Hz, 2H), 7.74 (br s, 1H), 7.49 (br s, 2H), 4.35 (br s, 1H), 3.02 (br s, 2H), 2.02 (br s, 2H), 1.80 (br s, 2H), 1.23 (br s, 31H), 0.86 (br s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 174.06, 172.39, 165.94, 146.85, 137.28, 128.54, 125.99, 53.24, 38.55, 35.88, 31.76, 30.69, 29.50, 29.41, 29.24, 29.18, 25.78, 23.72, 22.55, 14.39; LCMS: (M+H+): 596.4, purity: 89.89%.


Example 6. Synthesis of 18-Oxo-18-((4-Sulfamoylphenethyl)Amino)Octadecanoic Acid



embedded image


To a solution of octadecanedioic acid (4.90 g, 15.58 mmol) and 4-(2-aminoethyl)benzenesulfonamide (3.12 g, 15.58 mmol) in DCM (50 mL) was added HATU (7.11 g, 18.70 mmol) and DIPEA (6.04 g, 46.74 mmol, 8.16 mL). The mixture was stirred at 10° C. for 16 hours. The resulting mixture was concentrated under reduced pressure to give a residue. The residue was washed by CH3CN (100 mL*2) to give the crude product (II g) as white solid. 1 g crude was dissolved by DMSO/DMF (V/V=3:1, 20 mL) purified by prep-HPLC (column: Phenomenex luna C18 250*50 mm*10 um; mobile phase: [water(0.1% TFA)-ACN]; B %: 45%-75%, 20 min) to give 40 mg product as a white solid. 10 g crude was added CH3CN/H2O (V/V=4:1, 100 mL) and stayed at ultrasonic instrument for 30 min, then filtered to give filter cake, filter cake was washed by petroleum ether (20 mL) and acetone (20 mL). Filter cake was concentrated under reduced pressure to give 6 g product as a yellow solid. Compound 18-oxo-18-((4-sulfamoylphenethyl)amino)octadecanoic acid (6.00 g, 77.53% yield) was obtained as a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ=7.86 (br t, J=5.3 Hz, 1H), 7.71 (d, J=8.2 Hz, 2H), 7.35 (d, J=7.9 Hz, 2H), 7.27 (s, 2H), 3.26 (q, J=6.6 Hz, 3H), 2.75 (br t, J=7.2 Hz, 2H), 2.15 (t, J=7.3 Hz, 1H), 2.00 (br t, =7.3 Hz, 2H), 1.44 (br d, J=6.6 Hz, 4H), 1.21 (s, 23H), 1.06 (d, =6.6 Hz, 3H). LCMS: (M+H+): 497.3, purity 67.72%.


Example 7. Synthesis of 1,7,14-trioxo-12,12-bis((3-oxo-3-((3-(4-sulfamoylbenzamido)propyl)amino)propoxy)methyl)-1-(4-sulfamoylphenyl)-10-oxa-2,6,13-triazaoctadecan-18-oic acid



embedded image


Step 1. A solution of di-tert-butyl 3,3′-((2-amino-2-((3-(tert-butoxy)-3- oxopropoxy)methyl)propane-1,3-diyl)bis(oxy))dipropanoate (4.0 g, 7.91 mmol) and dihydro-2H-pyran-2,6(3H)-dione (0.903 g, 7.91 mmol) in THF (40 mL) was stirred at 50° C. for 3 hrs and at rt for 3 hrs. LC-MS showed desired product. Solvent was evaporated to give 5-((9-((3-(tert-butoxy)-3-oxopropoxy)methyl)-2,2,16,16-tetramethyl-4,14-dioxo-3,7,11,15-tetraoxaheptadecan-9-yl)amino)-5-oxopentanoic acid, which was directly used for next step without purification.


Step 2. To a solution of 5-((9-((3-tert-butoxy)-3-oxopropoxy)methyl)-2,2,16,16-tetramethyl-4,14-dioxo-3,7,11,15-tetraoxaheptadecan-9-yl)amino)-5-oxopentanoic acid (4.90 g, 7.91 mmol) and (bromomethyl)benzene (1.623 g, 9.49 mmol) in DMF was added anhydrous K2CO3 (3.27 g, 23.73 mmol). The mixture was stirred at 40° C. for 4 hrs and at room temperature for overnight. Solvent was evaporated under reduced pressure. The reaction mixture was diluted with EtOAc, washed with water, dried over anhydrous sodium sulfate, concentrated under reduced pressure to give a residue, which was purified by ISCO eluting with 10% EtOAc in hexane to 50% EtOAc in hexane to give di-tert-butyl 3,3′-((2-(5-(benzyloxy)-5-oxopentanamido)-2-((3-(tert-butoxy)-3-oxopropox)methyl)propane-1,3-diyl)bis(oxy))dipropanoate (5.43 g, 7.65 mmol, 97% yield) as a colorless oil. 1H NMR (400 MHz, Chloroform-d)δ7.41-7.28 (m, 5H), 6.10 (s, 1H), 5.12 (s, 2H), 3.72-3.60 (m, 12H), 2.50-2.38 (in, 8H), 2.22 (t, J=7.3 Hz, 2H), 1.95 (p, J=7.4 Hz, 2H), 1.45 (s, 27H); MS(ESI), 710.5 (M+H)+.


Step 3. A solution of di-tert-butyl 3,3′-((2-(5-(benzyloxy)-5-oxopentanamido)-2-((3-(tert-butoxy)-3-oxopropoxy)methyl)propane-1,3-diyl)bis(oxy))dipropanoate (5.43 g, 7.65 mmol) in formic acid (50 mL) was stirred at room temperature for 48 hrs. LC-MS showed the reaction was not complete. Solvent was evaporated under reduced pressure. The crude product was re-dissolved in formic acid (50 mL) and was stirred at room temperature for 6 hrs. LC-MS showed the reaction was complete. Solvent was evaporated under reduced pressure, co-evaporated with toluene (3×) under reduced pressure, and dried under vacuum to give 3,3′-((2-(5-(benzyloxy)-5-oxopentanamido)-2-((2-carboxyethoxy)methyl)propane-1,3-diyl)bis(oxy))dipropanoic acid (4.22 g, 7.79 mmol, 100% yield) as a white solid. 1H NMR (500 MHz, DMSO-d6) δ 12.11 (s, 3H), 7.41-7.27 (m, 5H), 6.97 (s, 1H), 5.07 (s, 2H), 3.55 (d, J=6.4 Hz, 6H), 2.40 (t, J=6.3 Hz, 6H), 2.37-2.26 (m, 2H), 2.08 (t, J=7.3 Hz, 2H), 1.70 (p, J=7.4 Hz, 2H): MS (ESI), 542.3 (M+H)+.


Step 4. A solution of 3,3′-((2-(5-(benzyloxy)-5-oxopentanamido)-2-((2-carboxyethoxy)methyl)propane-1,3-diyl)bis(oxy))dipropanoic acid (4.10 g, 7.57 mmol) and HOBt (4.60 g, 34.1 mmol) in DCM (60 mL) and DMF (15 mL) at 0° C. was added tert-butyl (3-aminopropyl)carbamate (5.94 g, 34.1 mmol), EDAC HCl salt (6.53 g, 34.1 mmol) and DIPEA (10.55 ml, 60.6 mmol). The reaction mixture was stirred at 0° C. for 15 minutes and at room temperature for 20 hrs. LC-MS showed the reaction was not complete. EDAC HCl salt (2.0 g) and tert-butyl (3-aminopropyl)carbamate (1.0 g) was added into the reaction mixture. The reaction mixture was stirred at room temperature for 4 hrs. Solvent was evaporated to give a residue, which was dissolved in EtOAc (300 mL), washed with water (1×), saturated sodium bicarbonate (2×), 10% citric acid (2×) and water, dried over sodium sulfate, and concentrated to give a residue which was purified by ISCO (80 g gold catridge) eluting with DCM to 30% MeOH in DCM to give benzyl 15,15-bis(13,13-dimethyl-5,11-dioxo-2,12-dioxa-6,10-diazatetradecyl)-2,2-dimethyl-4,10,17-trioxo-3,13-dioxa-5,9,16-triazahenicosan-21-oate 5 (6.99 g, 6.92 mmol, 91% yield) as a white solid. 1H NMR (500 MHz, Chloroform-d) δ 7.35 (t, J=4.7 Hz, 5H), 6.89 (s, 3H), 6.44 (s, 1H), 5.22 (d, J=6.6 Hz, 3H), 5.12 (s, 2H), 3.71-3.62 (m, 12H), 3.29 (q, J=6.2 Hz, 6H), 3.14 (q, J=6.5 Hz, 6H), 2.43 (dt, J=27.0, 6.7 Hz, 8H), 2.24 (t, J=7.2 Hz, 2H), 1.96 (p, J=7.5 Hz, 2H), 1.69-1.59 (m, 6H), 1.43 (d, J=5.8 Hz, 27H); MS (ESI): 1011.5 (M+H)+.


Step 5. A solution of benzyl 15,15-bis(13,13-dimethyl-5,11-dioxo-2,12-dioxa-6,10-diazatetradecyl)-2,2-dimethyl-4,10,17-trioxo-3,13-dioxa-5,9,16-triazahenicosan-2-oate (1.84 g, 1.821 mmol) in DCM (40 mL) was added 2,2,2-trifluoroacetic acid (7.02 ml, 91 mmol). The reaction mixture was stirred at room temperature for overnight. Solvent was evaporated to give benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate as a colorless oil. MS (ESI), 710.6 (M+H)+.


Step 6. To a solution of 4-sulfamoylbenzoic acid (1.466 g, 7.28 mmol) and HATU (2.77 g, 7.28 mmol) in DCM (40 mL) followed by benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (1.293 g, 1.821 mmol) in DMF (4.0 mL). The mixture was stirred at room temperature for 5 hrs. Solvent was evaporated under reduced pressure to give a residue, which was purified by ISCO (40 g gold column) eluting with DCM to 50% MeOH in DCM to give benzyl 1,7,14-trioxo-12,12-bis((3-oxo-3-((3-(4-sulfamoylbenzamido)propyl)amino)-propoxy)methyl)-1-(4-sulfamoylphenyl)-10-oxa-2,6,13-triazaoctadecan-18-oate (0.36 g, 0.286 mmol, 16% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.60 (t, J=5.6 Hz, 3H), 7.96-7.81 (m, 15H), 7.44 (s, 6H), 7.35-7.23 (m, 5H), 7.04 (s, 1H), 5.02 (s, 2H), 3.50 (t, J=6.9 Hz, 6H), 3.48 (s, 6H), 3.23 (q, J=6.6 Hz, 6H), 3.06 (q, J=6.6 Hz, 6H), 2.29 (t, J=7.4 Hz, 2H), 2.24 (t, J=6.5 Hz, 6H), 2.06 (t, J=7.4 Hz, 2H), 1.69-1.57 (m, 8H).


Step 7. To a round bottom flask flushed with Ar was added 10% Pd/C (80 mg, 0.286 mmol) and EtOAc (15 mL). A solution of benzyl 1,7,14-trioxo-12,12-bis((3-oxo-3-((3-(4-sulfamoylbenzamido)propyl)amino)propoxy)methyl)-1-(4-sulfamoylphenyl)-10-oxa-2,6,13-triazaoctadecan-18-oate (360 mg) in methanol (15 mL) was added followed by diethyl(methyl)silane (0.585 g, 5.72 mmol) dropwise. The mixture was stirred at room temperature for 3 hrs. LC-MS showed the reaction was complete, diluted with EtOAc, and filtered through celite, washed with 20% MeOH in EtOAc, concentrated under reduced pressure to give 1,7,14-trioxo-12,12-bis((3-oxo-3-((3-(4-sulfamoylbenzamido)propyl)-amino)propoxy)methyl)-1-(4-sulfamoylphenyl)-10-oxa-2,6,13-triazaoctadecan-18-oic acid (360 mg, 100% yield) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ 8.60 (t, J=5.6 Hz, 3H), 7.94-7.81 (m, 15H), 7.44 (s, 6H), 7.04 (s, 1H), 3.50 (t, J=6.9 Hz, 6H), 3.48 (s, 6H), 3.23 (q, J=6.6 Hz, 6H), 3.06 (q, J=6.6 Hz, 6H), 2.24 (t, J=6.4 Hz, 6H), 2.14 (t, J=7.5 Hz, 2H), 2.05 (t, J=7.4 Hz, 2H), 1.66-1.57 (m, 8H); MS (ESI), 1170.4 (M+H)+.


Example & Synthesis of 2,5-dioxopyrrolidin-1-yl 4-oxo-4-((4-sulfamoylphenethyl)aminobutanoate



embedded image


Step 1. A solution of 4-(2-aminoethyl)benzenesulfonamide (20 g, 99.87 mmol), tetrahydrofuran-2,5-dione (9.99 g, 99.87 mmol) in THF (200 mL) was stirred at 60° C. for 16 hr. The reaction mixture was diluted with HCl (aq., 1 M, 100 mL) and extracted with EtOAc (200 mL*3). The combined organic layers were washed with brine (100 mL*2), dried over Na2SO4, filtered and concentrated under reduced pressure to give 4-oxo-4-((4-sulfamoylphenethyl)amino)butanoic acid (17 g, 55.60 mmol, 55.67% yield, 98.228% purity) was obtained as a white solid. 1H NMR (400 MHz, DMSO-d6)δ=7.94 (t, J=5.7 Hz, 1H), 7.72 (d, J=7.9 Hz, 2H), 7.37 (d, J=8.3 Hz, 2H), 3.30-3.20 (m, 22H), 2.75 (t, J=7.2 Hz, 2H), 2.53-2.44 (m, 4H), 2.44-2.35 (m, 3H), 2.32-2.23 (m, 2H). LCMS: (M+H+): 301.1.


Step 2. To a solution of 4-oxo-4-((4-sulfamoylphenethyl)amino)butanoic acid (17 g, 56.60 mmol) and HOSu (10.42 g, 90.57 mmol) in DMF (200 mL) was added DCC (18.69 g, 90.57 mmol, 18.32 mL) at 0° C.-5° C. The mixture was stirred at 0-5° C. for 16 hr. LCMS showed the reaction was not complete. The mixture was stirred at 15° C. for 16 hr. LCMS showed the reaction was complete and one main peak with desired MS was detected. The white suspension of N,N′-dicyclohexylurea (DCU) was filtered and removed white solid. The filtrate was concentrated to an oil. This crude product was washed with hot 2-propanol (60 mL*3), affording an off-white solid. The crude product was added THF (100 mL), and Petroleum ether (50 mL) and stirred for 30 min. then filtered to give 2,5-dioxopyrrolidin-1-yl 4-oxo-4-((4-sulfamoylphenethyl)amino)butanoate (8 g, 16.58 mmol, 29.29% yield, 82.36% purity) as a white solid. 1H NMR (400 MHz, DMSO-d6) δ=8.12-7.96 (m, 1H), 7.71 (br d, J=7.9 Hz, 2H), 7.37 (br d, J=8.2 Hz, 2H), 3.58 (br t, J=6.7 Hz, 1H), 3.30-3.21 (m, 2H), 2.89-2.70 (m, 8H), 2.58 (s, 1H), 2.42 (br t, J=6.7 Hz, 2H); LCMS: (M+H+)): 398.0, LCMS purity: 82.36%.


Example 9. Synthesis of 4-oxo-4-((4-sufamoylphenyl)amino)butanoic acid



embedded image


To a solid reagent of 4-aminobenezensulfonamide (2.0 g, 11.61 mmol) and tetrahydofuran-2,5-dione (1.16 g, 11.61 mmol) was added THF (30 mL). The reaction mixture was stirred at 60° C. for 4 hrs, and white solid precipitated out. The reaction mixture was cooled to room temperature, and filtered to give a white solid. The white solid was dried under vacuum to give 4-oxo-4-(4-sulfamoylanilino)butanoic acid (2.115 g, 67% yield). 1H NMR (400 MHz, DMSO-d6) δ 10.31 (s, 1H), 7.74 (s, 4H), 7.23 (s, 2H), 2.65-2.51 (m, 4H).


Example 10. Synthesis of 3-((4-nitrophenoxy)carbonyl)oxy)propyl stearate



embedded image


Step 1. A mixture of propane-1,3-diol (9.80 g, 128.75 mmol, 9.33 mL), Pyridine (2.61 g, 33.01 mmol, 2.66 mL) in CHCl3 (50 mL) was degassed and purged with N2 for 3 times, and then the mixture was dropwised stearoyl chloride (10 g, 33.01 mmol) in CHCl3 (50 mL) at 0° C. and stirred at 20° C. for 20 hr under N2 atmosphere. The mixture was extracted with EtOAc (50 mL*2), and the combined organic layers were washed with 1N HCl (50 mL*2), aq. NaHCO3 (50 mL*2), H2O (50 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO2, Ethyl acetate/Petroleum ether=2%, 12.5%) to afford 3-hydroxypropyl stearate (9 g) as a white gum. 1H NMR (400 MHz, DMSO-d6) δ=4.24 (t, J=6.06 Hz, 2H), 3.69 (t, J=5.95 Hz, 2H), 2.31 (t, J=7.50 Hz, 2H), 1.87 (q, J=6.06 Hz, 2H), 1.56-1.68 (m, 2H), 1.22-1.31 (m, 24H), 0.88 (t, J=6.73 Hz, 3H); TLC (Petroleum ether:Ethyl acetate=3:1) Rf=0.54.


Step 2. A mixture of 3-hydroxypropyl stearate (9 g, 26.27 mmol), TEA (3.99 g, 39.41 mmol, 5.49 mL) in DCM (160 mL) was dropwised the solution of 4-nitrophenyl carbonochloridate (6.35 g, 31.53 mmol) in DCM (20 mL), then degassed and purged with N2 for 3 times at 0° C., and then the mixture was stirred at 20° C. for 16 hr under N2 atmosphere. TLC indicated compound was consumed completely and many new spots formed. The reaction was clean according to TLC. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by column chromatography (SiO2, Ethyl acetate/Petroleum ether=0%, 5%) to afford 3-(((4-nitrophenoxy)carbonyl)oxy)propyl stearate (5.73 g, 11.29 mmol, 42.96% yield) as an off-white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ=8.29 (d, J=9.21 Hz, 2H), 7.39 (d, J=9.21 Hz, 2H), 4.39 (t, J=6.36 Hz, 2H), 4.24 (t, J=6.14 Hz, 2H), 2.32 (t, J=7.45 Hz, 2H), 2.11 (t, J=6.36 Hz, 2H), 1.57-1.68 (m, 2H), 1.21-1.32 (m, 28H), 0.88 (t. J=6.80 Hz, 3H); 13C NMR (101 MHz, CHLOROFORM-d) δ=173.73, 155.44, 152.40, 145.37, 125.30, 121.74, 66.00, 60.22, 34.21, 31.91, 29.68, 29.67, 29.64, 29.60, 29.30, 27.92, 24.91, 22.69, 14.12; TLC (Petroleum ether:Ethyl acetate=3:1) Rf=0.72.


Example 11. Synthesis of(R)-3-(((4-nitrophenoxy)carbonyl)oxy)propane-1,2-diyl didodecanoate



embedded image


To a solution of 4-nitrophenyl carbonochloridate (69.51 mg, 0.34 mmol) in THF (3.0 ml) at room temperature was added (S)-3-hydroxypropane-1,2-diyl didodecanoate (1,2-dilaurin) and DIPEA (0.11 ml, 0.66 mmol). The reaction mixture was stirred at room temperature for 3 hrs. Solvent was evaporated under reduced pressure, diluted with EtOAc, washed with water, dried over sodium sulfate, concentrated to give the desired product (R)-3-(((4-nitrophenoxy)carbonyl)oxy)propane-1,2-diyl didodecanoate (204 mg, 100% yield). 1H NMR (400 MHz, Chloroform-d) δ 8.22 (d, J=8.9 Hz, 2H), 7.32 (d, J=8.9 Hz, 2H), 5.32-.528 (m, 1H), 4.34-4.09 (m, 4H), 2.31-2.23 (m, 4H), 1.58-0.79 (m, 42H).


Example 12. Synthesis of 4,10,17-trioxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methy)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propy)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-13-oxa-5,9,16-triazahenicosan-2-oic acid



embedded image


Step 1: To a solution of benzyl 15,15-bis(13,13-dimethyl-5,11-dioxo-2,12-dioxa-6,10-diazatetradecyl)-2,2-dimethyl-4,10,17-trioxo-3,13-dioxa-5,9,16-triazahenicosan-21-oate (0.95 g, 0.940 mmol) in DCM (5 mL) was added TFA (5 mL). The reaction mixture was stirred at room temperature for 4 hrs. LC-MS showed the reaction was completed. Solvent was evaporated under reduced pressure to give benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate as a colorless oil. Directly use for next step without purification.


Step 2: To a solution of benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (0.46 mmol) in DCM (6 mL) was added HOBt (62.16 mg, 0.46 mmol), HBTU (558.24 mg, 1.47 mmol), DIPEA (1.2 mL, 6.9 mmol) and a solution of 4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)ox)butanoic acid (1.10 g, 1.61 mmol) in acetonitrile (5 mL). The reaction mixture was stirred at rt for 3 hrs. Solvent was evaporated under reduced pressure to give a residue, which was diluted with EtOAc, washed with water, dried over anhydrous sodium sulfate to give a residue, which was purified by ISCO (24 g gold column) eluting with DCM to 20% MeOH in DCM to give 4,10,17-trioxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-13-oxa-5,9,16-triazahenicosan-2-anoic benzyl ester (1.14 g, 91.7%). MS (ESI), 1353.6 ((M/2+H)+.


Step 3. To a solution of 4,10,17-trioxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-13-oxa-5,9,16-triazahenicosan-21-anoic benzyl ester (1.09 g, 0.400 mmol) in EtOAc (50 mL) was added 10% Pd-C (200 mg). The reaction mixture was stirred at rt for 4 hrs under hydrogen balloon. LC-MS showed the reaction was not completed. The reaction mixture was added another 10% Pd-C (300 mg) and stirred at room temperature for 24 hrs under hydrogen balloon. The reaction mixture was filtered, washed with EtOAc/MeOH, concentrated to give 4,10,17-trioxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-13-oxa-5,9,16-triazahenicosan-2-oic acid (1.055 g, 100%). MS (ESI), 1308.1 ((M/2+H).


Example 13. Synthesis of 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-29-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazanonacosyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl-5-oxopentanoic acid



embedded image


embedded image


embedded image


Step 1 to 2. To a solid reagent 2,4,6-trichloro-1,3,5-triazine (0.500 g, 2.71 mmol) in THF (30 mL) was added tert-butyl 3-aminopropanoate HCl salt (0.985 g, 5.42 mmol) and DIPEA (2.36 ml, 13.56 mmol). The reaction mixture was stirred at room temperature for 5 hrs. LC-MS showed the desired product; MS(ESI): 402.4 (M+H)+. Solvent was evaporated under reduced pressure to give a residue, which was directly used for next step. To a solution of di-tert-butyl 3,3′-((6-chloro-1,3,5-triazine-2,4-diyl)bis(azanediyl))dipropionate (1.052 g, 2.71 mmol) in aceotnitrile (50 mL) was added benzyl 5-oxo-5-(piperazin-1-yl)pentanoate (1.103 g, 3.80 mmol) and K2CO3 (2.248 g, 16.27 mmol). The reaction mixture was stirred at room temperature for overnight and at 50° C. Diluted with EtOAc, filtered and concentrated under reduced pressure to give a residue, which was purified by ISCO (40 g gold) eluting with 20% EtOAc in hexane to 50° % EtOAc in hexane to give di-tert-butyl 3,3′-((6-(4-(5-(benzyloxy)-5-oxopentanoyl)piperazin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl))dipropionate (1.13 g, 64%) as a white solid. 1H NMR (400 MHz, Chloroform-d) δ 7.43-7.30 (m, 5H), 5.15 (s, 2H), 3.75 (brs, 4H), 3.63 (brs, 6H), 3.43 (brs, 2H4), 2.51 (q, J=7.0, 6.5 Hz, 6H), 2.42 (t, J=7.4 Hz, 2H), 2.09-1.96 (m, 2H), 1.48 (s, 18H); MS (ESI): 656.6 (M+H)+.


Step 3. A solution of di-tert-butyl 3,3′-((6-(4-(5-(benzyloxy)-5-oxopentanoyl)piperazin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl))dipropionate (1.10 g, 1.68 mmol) in formic acid (20 mL) was stirred at room temperature for overnight. LC-MS showed the reaction was not completed and solvent was evaporated. Formic acid (20 mL) was added to the reaction mixture and the reaction mixture was stirred at room temperature for 5 hrs. LC-MS showed the reaction was complete. Solvent was concentrated, co-evaporated with toluene (2×) and dried under vacuum for overnight to give 3,3′-((6-(4-(5-(benzyloxy)-5-oxopentanoyl)piperazin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl))dipropionic acid (0.91 g, 100% yield) as a white solid. MS (ESI), 544.2 (M+H)+.


Step 4. A solution of 3,3′-((6-(4-(5-(benzyloxy)-5-oxopentanoyl)piperazin-1-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl))dipropionic acid (0.91 g, 1.68 mmol) and HOBt (0.76 g, 4.36 mmol) in DCM (30 mL) and DMF (3 mL) at 0° C. was added tert-butyl (3-aminopropyl)carbamate (0.840 g, 4.36 mmol), EDC HCl salt (0.836 g, 4.36 mmol) and DIPEA (1.460 ml, 8.39 mmol). The reaction mixture was stirred at 0° C. for 15 minutes and at room temperature for 20 hrs. Solvent was evaporated to give a residue, which was dissolved in EtOAc (300 mL), washed with water (1×), saturated sodium bicarbonate (2×), 10% citric acid (2×) and water, dried over sodium sulfate, and concentrated to give a residue which was purified by ISCO (80 g gold catridge) eluting with DCM to 30% MeOH in DCM to give benzyl 5-(4-(4,6-bis((3-((3-((tert-butoxycarbonyl)amino)propyl)amino)-3-oxopropyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoate (1.11 g, 77% yield) as a white solid. MS (ESI): 857.5 (M+H).


Step 5. A solution of benzyl 5-(4-(4,6-bis((3-((3-((tert-butoxycarbonyl)amino)propyl)amino)-3-oxopropyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoate (75.93 mg, 0.090 mmol) in DCM (3 mL) was added TFA (0.5 mL). The reaction mixture was stirred at room temperature for 3 hrs. Solvent was evaporated under reduced pressure, use directly for next step without purification. MS (ESI): 656.3 (M+H)+.


Step 6. To a solution of 4,10,17-trioxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-13-oxa-5,9,16-triazahenicosan-21-oic acid (580 mg, 0.222 mmol) in DCM (10 mL) was added HBTU (84.1 mg, 0.220 mmol), HOBt (11.99 mg, 0.09 mmol) and DIPEA (0.15 ml, 0.890 mmol). The reaction mixture was stirred at rt for 5 minutes and a solution of benzyl 5-(4-(4,6-bis((3-((3-aminopropyl)amino)-3-oxopropyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoate TFA salt (0.090 mmol) in acetonitrile was added to the reaction mixture. The reaction mixture was stirred at rt for overnight. Solvent was evaporated under reduced pressure to give a residue, which was purified by ISCO (24 g gold) eluting with DCM to 40% MeOH in DCM to give 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-29-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazanonacosyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic benzyl ester (300 mg, 57.8%). MS (ESI), 1950.6 ((M/3+H)+.


Step 7. To a solution of 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-29-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazanonacosyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic benzyl ester (300 mg, 0.05 mmol) in EtOAc (10 ml) was added 10% Pd-C (100 mg). The reaction mixture was stirred at rt under hydrogen balloon for overnight. LC-MS showed the reaction was not complete. The reaction mixture was added MeOH (1 mL) and triethylsilane (2 mL). The reaction mixture was stirred at mom temperature for 4 hrs. LC-MS showed the desired product. The reaction mixture was filtered, washed with EtOAc/MeOH, and concentrated under reduced pressure to give a residue, which was purified by ISCO (50 g C18 catridge) eluting with 1% TFA in water to 100% acetonitrile and lyophilized to give 5(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-29-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazanonacosyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic acid (120 mg, 40.6% yield) as a white solid. MS (ES), 1920 ((M/3+H)+.


Example 14. Synthesis of 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methy-30-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazatriacontyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic acid



embedded image


embedded image


embedded image


Step 1. To a solution of 5-(2,S4,R6)3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanoic acid(2.43 g, 5.43 mmol) in DCM was added HBTU (2.06 g, 5.43 mmol), HOBt (183.36 mg, 1.36 mmol) and DIPEA (4.73 ml, 27.14 mmol). The reaction mixture was stirred at room temperature for 10 minutes, and a solution of benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate TFA salt (1.36 mmol) in acetonitrile was added. The reaction mixture was stirred at room temperature for 3 hrs. Solvent was concentrated under reduced pressure to give a residue, which was purified by ISCO (80 g gold catridge) eluting with 5% MeOH in DCM to 60% MeOH in DCM to give 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic benzyl ester (2.22 g, 81.8%). MS (ESI): 1002 (M/2+H)+.


Step 2. To a solution of 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic benzyl ester (2.20 g, 1.1 mmol) in EtOAc (30 mL) and MeOH (3 mL) was added 10% Pd-C (300 mg) and triethylsilane (1.8 mL, 11.3 mmol) slowly. The reaction mixture was stirred at room temperature for 1 hr. The reaction mixture was filtered through celite and concentrated to give 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic acid. MS (ESI), 1912 (M+H)+.


Step 3. To a solution of 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic acid (1911 mg, 0.580 mmol) in DCM (30 mL) was added HBTU (266 mg, 0.700 mmol), HOBt (31.56 mg, 0.23 mmol) and DIPEA (0.81 ml, 4.67 mmol). The reaction mixture was stirred at rt for 10 minutes and a solution of benzyl 5-(4-(4,6-bis((3-((3-aminopropyl)amino)-3-oxopropyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoate TFA salt (0.23 mmol) in acetonitrile (5 mL) was added to the reaction mixture. The reaction mixture was stirred at rt for 3 hrs. Solvent was evaporated under reduced pressure to give a residue, which was purified by ISCO (24 g gold) eluting with DCM to 50% MeOH in DCM to give 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-30-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazatriacontyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic benzyl ester (430 mg, 41.4%). MS (ESI), 1482.1 (M/3+H)+.


Step 4. A solution of 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-30-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazatriacontyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic benzyl ester (420 mg, 0.090 mmol) in EtOAc (15 mL) and MeOH (2 mL) was added 10% Pd-C (200 mg). The reaction mixture was stirred at room temperature under hydrogen balloon for overnight. The reaction mixture was filtered through celite, washed with 50% MeOH in EtOAc, and concentrated under reduced pressure to give 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-30-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazatriacontyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic acid. MS (ESI), 1452.0 (M/3+H)+.


Example 15. Synthesis of 3-(((4-nitrophenoxy)carbonyl)oxy)propyl (4E,8E,12E,16E)-4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenoate



embedded image


Step 1. To the solution of turbinaric acid (200 g, 4.992 mmol) in DCM (20 mL) was added 1,3-propanediol (1.8 mL, 24.96 mmol), EDC (1.91 g, 9.984 mmol) and DMAP (30.5 mg). The reaction mixture was stirred at rt for 5 hrs. LC-MS showed the reaction was complete. The reaction mixture was concentrated, diluted with EtOAc (100 mL), washed successively with 1N HC aq solution (20 ml), saturated NaHCO3 aq solution (20 mL), water (10 mL), and brine (5 mL), dried over sodium sulfate, filtered, and concentrated to give a residue, which was purified by ISCO (40 g gold catridge) using 0-100% EtOAc in hexane as the gradient to give 3-hydroxypropyl (4E,8E,12E,16E)-4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenoate (1.129 g, 49% yield). 1H NMR (400 MHz, DMSO-d6) δ 5.15-5.02 (m, 5H), 4.46 (t, J=5.1 Hz, 1H), 4.06 (t, J=6.6 Hz, 2H), 3.45 (td, J=6.3, 5.1 Hz, 2H), 2.40-2.31 (m, 2H), 2.20 (t, J=7.6 Hz, 2H), 2.08-1.90 (m, 16H), 1.70 (p, J=6.4 Hz, 2H), 1.64 (d, J=1.5 Hz, 3H), 1.56 (m, 15H); MS (EST), 481.3 (M+Na)+.


Step 2. To a solution of 3-hydroxypropyl (4E,8E,12E,16E)-4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenoate (1.12 g, 2.4416 mmol) in anhydrous DCM (12.5 mL) at 0° C. was added TEA (0.68 mL), and a solution of 4-nitrophenyl chloroformate (738 mg) in anhydrous DCM (5 ml) slowly. The reaction mixture was stirred at 0° C. for 40 min, and at room temperature for overnight. The reaction mixture was concentrated to give a residue, which was purified by ISCO (40 gold catridge) eluting with using 0-50% EtOAc in hexane to give 3-(((4-nitrophenoxy)carbonyl)oxy)propyl (4E,8E,12E,16E)-4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenoate (1.06 g, 70% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.34-8.29 (m, 2H), 7.58-7.51 (m, 2H), 5.13-5.01 (m, 5H), 4.32 (t, J=6.3 Hz, 2H), 4.13 (t, J=6.3 Hz, 2H), 2.44-2.34 (m, 2H), 2.21 (t, J=7.6 Hz, 2H), 2.07-1.87 (m, 18H), 1.63 (d, J=1.5 Hz, 3H), 1.55 (m, 15H).


Example 16. Preparation of Certain Chemical Moieties and Oligonucleotides Comprising Certain Chemical Moieties

In some embodiments, the present disclosure provides chemical moieties that can be incorporated into oligonucleotides. In some embodiments, a chemical moiety is a targeting moiety. In some embodiments, a chemical moiety is a carbohydrate moiety. In some embodiments, a chemical moiety is a lipid moiety. In some embodiments, chemical moieties may be incorporated into oligonucleotides to improve one or more properties, activities, and/or delivery. Certain chemical moieties, their preparation, and oligonucleotides comprising such moieties are described in the present example. Those skilled in the art appreciate that such chemical moieties may also be incorporated into oligonucleotides having other base sequences, modifications, etc.


Synthesis of 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,48,15-tetraazaicos-3-en-20-oic acid



embedded image


Step 1. To a solution of benzyl 15,15-bis(13,13-dimethyl-5,11-dioxo-2,12-dioxa-6,10-diazatetradecyl)-2,2-dimethyl-4,1017-trioxo-3,13-dioxa-5,9,16-triazahenicosan-21-oate (9.0 g, 8.91 mmo) in DCM (100 mL) was added TFA (30.47 g, 267.27 mmol, 19.79 mL) at 0′C. The mixture was stirred at 0-15° C. for 4 hr. The mixture was formed two phase. Lower phase was separated and concentrated under reduced pressure to give a crude, benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate TFA salt (13 g) was obtained as a yellow oil. 1H NMR (400 MHz, METHANOL-d4) Shift=7.39-7.27 (m, 5H), 5.12 (s, 2H), 3.70-3.63 (m, 13H), 3.32-3.30 (m, 2H), 3.26 (s, 2H), 2.94 (t, J=7.3 Hz, 7H), 2.49-2.38 (m, 9H), 2.23 (t, J=7.4 Hz, 2H), 1.94-1.78 (m, 9H). LCMS: M+H+=710.2.


Step 2. To a solution of benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate TFA salt (13 g) in DCM (200 mL) was added DIPEA (15.97 g, 123.58 mmol, 21.53 mL) and HATU (15.51 g, 40.78 mmol). The mixture was stirred at 15° C. for 15 hr. LCMS showed compound 2 was consumed and desired MS was detected. The mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Agela innoval ods-2 250*80 mm; mobile phase: [water (0.1% TFA)-ACN]; B %: 8%-38%, 20 min) to give compound benzyl 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-oate (6.5 g, 52.37% yield) as a brown oil. LCMS: M/2+H+=503.1.


Step 3. To a solution of compound benzyl 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-oate (5.7 g, 5.68 mmol) in MeOH (30 mL) and H2O (6 mL) was added LiOH.H2O (1.67 g, 39.73 mmol). The mixture was stirred at 15° C. for 2 hr. LCMS showed compound 3 was consumed and desired MS was detected. The mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Phenomenex luna C18 250*50 mm*10 um: mobile phase: [water (0.1% TFA)-ACN]; B %: 0%-25%, 20 min). 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-oic acid (2.09 g, 2.25 mmol, 40% yield) was obtained as a yellow gum. 1HNMR (400 MHz, DMSO-d6) Shift=8.07 (br t, J=5.7 Hz, 3H), 7.75 (br t, J=5.0 Hz, 3H), 7.08 (s, 1H), 3.63-3.45 (m, 12H), 3.09 (q, J=6.1 Hz, 11H), 2.88 (br d, J=15.3 Hz, 36H), 2.29 (br t, J=6.4 Hz, 6H), 2.18 (t, J=7.5 Hz, 2H), 2.12-2.06 (m, 2H), 1.65 (br t, J=6.6 Hz, 8H). 13CNMR (101 MHz, DMSO-d6) Shift=173.10, 170.88, 169.27, 159.88, 157.61, 157.27, 156.93, 156.58, 119.48, 116.56, 113.63, 110.70, 67.13, 66.27, 58.46, 40.77, 34.82, 34.34, 33.88, 31.87, 28.23, 19.66, 0.00. LCMS: M+H+=915.7, purity: 98.265%.


Synthesis of 5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanoic acid



embedded image


Step 1. A mixture of phenylmethanol (864.10 g, 7.99 mol), compound 1 (100 g, 998.85 mmol), and cation exchange resin (1.92 g, 998.85 mmol.) was stirred at 75° C. with N2 for 4 hr, and then the mixture was stirred at 20° C. for 12 hr under N2 atmosphere. TLC showed compound 1 was consumed completely and two main peaks were detected. The reaction mixture was filtered and then the residue was washed with DCM (500 mL). The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO2, Petroleum ether/Ethyl acetate=10/1 to 3:1) to get compound 2 as a colorless oil (62 g, 29.81% yield). 1HNMR (400 MHz, CHLOROFORM-d): δ=7.41-7.27 (m, 5H), 5.11 (s, 2H), 3.62 (t, J=6.4 Hz, 2H), 2.39 (t, J=7.3 Hz, 2H), 1.77-1.70 (m, 2H), 1.65-1.51 (m, 2H); TLC (Petroleum ether/Ethyl acetate=3:1) Rf=0.20.


Step 2. To a solution of compound 3 (350 g, 896.66 mmol.) in DMF (2 L) was added acetic acid hydrazine (99.10 g, 1.08 mol). The mixture was stirred at 60° C. for Shr. TLC showed the starting material was consumed. The mixture was concentrated to move the most solvent and water (500 mL) was added, and the mixture was extracted with EtOAc (500 mL*3). The combined organic was dried over Na2SO4, filtered and concentrated to get the compound 4 as a brown oil (310 g, crude). 1HNMR (400 MHz, CHLOROFORM-d): δ=5.49 (t, J=9.9 Hz, 1H), 5.39 (d, J=3.5 Hz, 1H), 5.06-4.99 (m, 1H), 4.84 (dd, J=3.5, 10.1 Hz, 1H), 4.25-4.17 (m, 2H), 4.13-4.02 (m, 2H), 2.04-1.96 (m, 12H): TLC (Petroleum ether/Ethyl acetate=1:1), Rf=0.43.


Step 3. To a solution of compound 4 (310 g, 890.03 mmol.) in DCM (1.5 L) was added 2,2,2-trichloroacetonitrile (1.16 kg, 8.01 mol) at 0° C. The mixture was added drop-wise DBU (271.00 g, 1.78 mol) dissolved in DCM (1 L) at 0° C. The mixture was stirred at 20° C. for 1h. TLC showed the starting material was consumed. The mixture was concentrated to get the crude. The mixture was purified by silica gel chromatography (Petroleum ether/Ethyl acetate=20:1, 10:1, 5:1) to get compound 5 as a yellow oil (90 g, 20.52% yield). 1HNMR (400 MHz, CDCl3): δ=8.70 (s, 1H), 6.56 (br d, J=3.1 Hz, 1H), 5.57 (t, J=9.8 Hz, 1H), 5.24-5.08 (m, 2H), 4.35-4.15 (m, 2H), 2.11-1.99 (m, 12H); TLC (Petroleum ether/Ethyl acetate=1:1) Rf=0.31.


Step 4. To a solution compound 5 (89.5 g, 181.66 mmol) and compound 2 (75.66 g, 363.31 mmol) in DCM (800 mL) was added 4A MS (90 g), the mixture was stirred at −30° C. for 30 min. TMSOTf (40.37 g, 181.66 mmol.) was added to the reaction and the mixture was stirred at 25° C. for 3 hr. LCMS and TLC showed the starting material was consumed and LCMS showed the de-Ac MS was found. Sat. NaHCO3(aq., 100 mL) was added and the mixture was extracted with DCM (150 mL*3). The combined organic was dried over Na2SO4, filtered and concentrated to get the crude. Totally got the mixture of benzyl compound 6 and compound 6A (98 g) as a yellow oil, the mixture was used next step directly. TLC (Petroleum ether/Ethyl acetate=2:1) Rf=0.38.


Step 5. The mixture compound 6 and compound 6A (98 g crude) was dissolved in the pyridine (150 mL) and then Ac2O (150 mL) was added. The mixture was stirred at 20° C. for 12h. TLC showed the starting material was consumed. The mixture was concentrated to get the crude. The mixture was purified by MPLC (silica, Petroleum ether/Ethyl acetate=20:1, 10:1, 05:1) to get compound 6 as a yellow oil (41 g, 41.84% yield) and 12 g crude. 1HNMR (400 MHz, CDCl3): δ=7.39-7.31 (m, 5H), 5.23-4.93 (m, 3H), 4.48 (d, J=7.9 Hz, 1H), 4.37-4.22 (m, 1H), 4.17-4.05 (m, 1H), 3.92-3.81 (m, 1H), 3.71-3.63 (m, 1H), 3.48 (td, J=6.3, 9.8 Hz, 1H), 2.44-2.32 (m, 2H), 2.09-1.98 (m, 12H), 1.75-1.53 (m, 4H); LCMS: (M+Na+): 561.0; SFC: de %: 100%: TLC (Petroleum ether/Ethyl acetate=3:1) Rf=0.14.


Step 6. To a solution of compound 7 (19.5 g, 36.21 mmol) in EtOAc (200 mL) was added Pd/C (4 g, 17.64 mmol, 10% purity) under N2 atmosphere. The suspension was degassed and purged with H2 for 3 times. The mixture was stirred under H2 (25 Psi) at 20° C. for 2 hr. LCMS and TLC showed the starting material was consumed. The mixture was filtered, the cake was washed with MeOH (50 mL*3) and the combined filter was concentrated to get the crude. The mixture was purified by silica gel chromatography (Petroleum ether/Ethyl acetate=3:1, 1:1, 1:3) to get 5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanoic acid 7 as a white solid (23.9 g, 51.72 mmol, 71.41% yield, 97.03% LCMS purity). 1HNMR (400 MHz, CHLOROFORM-d): δ=5.24-5.17 (m, 1H), 5.12-4.96 (m, 2H), 4.50 (d, J=7.9 Hz, 1H), 4.26 (dd, J=4.7, 12.3 Hz, 1H), 4.20-4.02 (m, 1H), 3.95-3.85 (m, 1H), 3.75-3.64 (m, 1H), 3.55-3.46 (m, 1H), 2.42-2.32 (m, 2H), 2.15-1.99 (m, 12H), 1.76-1.57 (m, 4H); 13CNMR (101 MHz, CHLOROFORM-d): δ=178.85, 170.71, 170.30, 169.40, 169.35, 100.71, 72.81, 71.74, 71.25, 69.37, 68.42, 61.94, 33.36, 28.59, 21.09, 20.70, 20.56; LCMS: (M−H+): 447.1. LCMS purity: 97.03%; TLC (Petroleum ether/Ethyl acetate=1:1) Rf=0.03.


Synthesis of 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic acid



embedded image


Step 1: To a solution of benzyl 15,15-bis(13,13-dimethyl-5,11-dioxo-2,12-dioxa-6,10-diazatetradecyl)-2,2-dimethyl-4,10,17-trioxo-3,13-dioxa-5,9,16-triazahenicosan-2-oate (2.15 g, 2.1282 mmol) in DCM (20 mL) was added TFA (5 mL). The reaction mixture was stirred at room temperature for 4 hrs. LC-MS showed the reaction was completed. Solvent was evaporated under reduced pressure to give benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate as a colorless oil. Directly use for next step without purification.


Step 2: To a solution of 5-(((2R,3R,4S,5R6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanoic acid (3.817 g, 8.51 mmol) in DMF (20 mL) was added DIPEA (5.66 mL, 31.92 mmol) and HATU (2.824 g, 7.45 mmol) followed by benzyl 5-((1,19-diamino-10-((3-((3-aminopropyl)amino)-3-oxopropoxy)methyl)-5,15-dioxo-8,12-dioxa-4,16-diazanonadecan-10-yl)amino)-5-oxopentanoate (2.1282 mmol). The reaction mixture was stirred at room temperature for 3 hrs. Solvent was evaporated under reduced pressure to give a residue, which was purified by ISCO (120 g gold column) eluting with DCM to 50% MeOH in DCM to give 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic benzyl ester (5.08 g, 120%), which containing some impurities. MS (ESI), 1001.4 ((M/2+H)+.


Step 3. To a solution of 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic benzyl ester (5.08 g) in EtOAc (100 mL) and MeOH (10 mL) was added 10% Pd-C (500 mg). The reaction mixture was stirred at rt for 4 hrs under hydrogen balloon. LC-MS showed the reaction was completed. The reaction mixture was filtered, washed with EtOAc/MeOH, concentrated to give 45,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic acid (4.60 g, 95%). MS (ESI), 1912 ((M+H).


Synthesis of (S)-5,11,18,22-tetraoxo-6,16-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-28-(5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanamido)-14-oxa-6,10,17,23-tetraazanonacosan-29-oic acid



embedded image


Step 1: To a solution of 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic acid (987 mg, 0.520 mmol) in acetonitrile (3 mL) and DCM (10 ml) was added DIPEA (0.27 mL, 1.55 mmol) and HATU (150 mg, 0.400 mmol) followed by L-lysine benzyl ester di-4-toluensulfonate salt (100 mg, 0.170 mmol). The reaction mixture was stirred at room temperature for overnight. Solvent was evaporated under reduced pressure to give a residue, which was purified by ISCO (40 g gold column) eluting with DCM to 30% MeOH in DCM to give (S)-5,11,18,22-tetraoxo-16,16-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-28-(5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanamido)-14-oxa-6,10,17,23-tetraazanonacosan-29-oic benzyl ester (433 mg, 63%), which containing some impurities. MS (ESI), 1342.0 ((M/3+H)+.


Step 3. To a solution of (S)-5,11,18,22-tetraoxo-16,16-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-28-(5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanamido)-14-oxa-6,10,17,23-tetraazanonacosan-29-oic benzyl ester (430 mg) in EtOAc (15 mL) and MeOH (3 mL) was added 10% Pd-C (100 mg). The reaction mixture was stirred at it for 4 hrs under hydrogen balloon. LC-MS showed the reaction was completed. The reaction mixture was filtered, washed with EtOAc/MeOH, concentrated to give (S)-5,11,18,22-tetraoxo-16,16-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-28-(5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanamido)-14-oxa-6,10,17,23-tetraazanonacosan-29-oic acid (400 mg, 94%). MS (ESI), 1968 ((M/2+H)+.


Synthesis of WV-12567



embedded image


To a solution of WV-12566 in 0.4 ml NMP and 0.57 ml water was added DIPEA (20 μL) and a solution of 3-(((4-nitrophenoxy)carbonyl)oxy)propyl (4E,8E,12E,16E)-4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenoate (20 mg) in NMP (0.40 mL). The reaction mixture was shaken for 12 hours at 35° C. LC-MS showed the starting material was disappeared. The crude product was purified on RP HPLC (C8) using 50 mM TEAA in water and acetonitrile, and desalt to obtain 1.77 mg of the conjugate WV-12567. Deconvoluted mass: 7362; Calculated molecular weight: 7360.


Synthesis of WV-12570



embedded image


To a solution of (4E,8E,12E,16E)-4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenoic acid (turbinaric acid) (6.4 mg, 16 μmol) and HATU (5.4 mg, 14.4 μmol) was added DIPEA (17 μL). The mixture was shaken for 30 min at rt. The reaction mixture was added into a solution of WV 12569 (12.4 mg, 1.6 μmol) in water (0.20 mL) and NMP (0.20 ml) and stirred for 2 hrs at 35° C. LC-MS showed the starting material was disappeared. The crude product was purified on RP (C-8) HPLC using 50 mM TEAA in water and acetonitrile, and desalt to obtain 2.10 mg of the conjugate WV-12570. Deconvoluted mass: 8172; Calculated molecular weight: 8170.


Synthesis of WV-14333



embedded image


A solution of 4,10,17-trioxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)propoxy)methyl)-1-(((2R,3R,4S,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-13-oxa-5,9,16-triazahenicosan-21-oic acid (25.4 mg, 9.72 μmol) in acetonitrile (0.50 mL) was added HATU (3.32 mg, 8.75 μmol) and DIPEA (8.5 μL). The reaction mixture was stirred at room temperature for 30 minutes. The reaction mixture was added into a solution of WV-12566 (16.7 mg, 2.43 μmol) in 0.5 mL water. The reaction mixture was stirred at 30° C. for 2 hrs, and LC-MS showed the reaction was complete. The reaction mixture was transferred to the pressure tube, and 4 ml 28-30% ammonium hydroxide was added. The reaction mixture was stirred at 35° C. for overnight. LC-MS showed the reaction was completely de-protected. The crude product was purified by ISCO via 30 g C18 Catridge eluting with 50 mM TEAA to acetonitrile, and desalt to obtain 12.8 mg of the conjugate WV-14333. Deconvoluted mass: 8224; Calculated molecular weight: 8221.


Synthesis of WV-14332



embedded image


A solution of 4-nitrophenyl (2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6-yl) carbonate (7.24 mg, 12.15 μmol) and DIPEA (8.50 μL) in NMP (0.20 ml) was added to a solution of WV-12566 (16.7 mg, 2.43 μmol) in 0.5 ml DMSO and 0.05 mL water. The reaction mixture was shaken for 3 hours at 40° C. LC-MS showed the reaction was very clean. The crude product was lyophilized, purified on RP (C-8) HPLC using 50 mM TEAA in water and acetonitrile, and desalt to obtain 10 mg of the conjugate WV-14332. Deconvoluted mass: 7335; Calculated molecular weight: 7334.


Synthesis of WV-14346



embedded image


A solution of 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,8,15-tetraazaicos-3-en-20-oic acid (75.26 mg, 82.34 μmol) in DMF (1.0 mL) was added DIPEA (123 μL, 0.823 mmol) and HATU (28.1 mg, 74.12 μmol). The reaction mixture was stirred at room temperature for 15 minutes. The reaction mixture was added to a solution of WV-12566 (113.22 mg, 16.47 μmol) in 1.50 ml DMSO and 0.50 mL water. The reaction mixture was shaken for 2 hours at rt. LC-MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 84.3 mg of the conjugate WV-14346. Deconvoluted mass: 7772; Calculated molecular weight: 7771.


Synthesis of WV-14335



embedded image


Step 1. A solution of 3-(2-Pyridyldithio)-propionic acid-OSu (9.08 mg) in DMF (1.0 mL) was added into a solution of WV-12566 (100 mg, 14.54 in 1.5 ml 0.5 M sodium phosphate buffer (pH=8). The reaction mixture was stirred at room temperature for 1 hr. LC-MS showed that reaction was completed. Diluted with water, and lyophilized to give the desired product.


Synthesis of WV-14335

Step 1. A solution of 3-(2-Pyridyldithio)-propionic acid-OSu (9.08 mg) in DMF (1.0 mL) was added into a solution of WV-12566 (100 mg, 14.54 in 1.5 ml 0.5 M sodium phosphate buffer (pH=8). The reaction mixture was stirred at room temperature for 1 hr. LC-MS showed that reaction was completed. Diluted with water, and lyophilized to give the desired product.


Step 2. A solution of H-RRQPPRSISSHPC-OH (5.47 mg, 3.6 umol) in DMF (0.85 ml) and 0.1 M sodium bicarbonate (0.15 ml) was added to the above product (step 1) (12 mg, 1.8 μmol) in 0.1M sodium bicarbonate (0.50 mL). The reaction mixture was shaken for 1.5 hours at it. LC-MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 3.0 mg of the conjugate WV-14335. Deconvoluted mass: 8485; Calculated molecular weight: 8482.


Synthesis of WV-14347



embedded image


A solution of Ac-CHAIYPRH-OH (3.74 mg, 3.6 μmol) in DMF (0.85 mL) and 0.1 M NaHCO0(0.15 mL) was added to SPDP oligo (step 1 product of WV-14335) (12 mg, 1.8 μmol) in 0.10 M NaHCO3(0.50 mL). The reaction mixture was shaken for 1.5 hours at room temperature. LC-MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 8.8 mg of the conjugate WV-14347. Deconvoluted mass: 8003; Calculated molecular weight: 7999.


Synthesis of WV-14348



embedded image


A solution of Ac-CTHRPPMWSPVWP-OH (5.88 mg, 3.6 μmol) in DMF (0.85 mL) and 0.1 M NaHCO3(0.15 mL) was added to SPDP oligo (step 1 product of WV-14335) (12 mg, 1.8 μmol) in 0.10 M NaHCO3 (0.50 mL). The reaction mixture was shaken for 1.5 hours at room temperature. LC-MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 4.1 mg of the conjugate WV-14348. Deconvoluted mass: 8602; Calculated molecular weight: 8597.


Synthesis of WV-15074



embedded image


Step 1. A solution of 2,5-dioxopyrrolidin-1-vi 4-((2,5-dioxo-2,5-dihydro-H-pyrrol-1-yl)methyl)cyclohexane-1-carboxylate (8.25 mg, 24.71 μmol) in DMF (0.30 mL) was added to WV-12566 (113.22 mg, 16.47 μmol) and DIPEA (31 μL, 173 μmol) in DMSO (1.50 mL) and water (0.5 mL). The reaction mixture was stirred for 30 minutes at room temperature. LC-MS showed the reaction was almost complete.


Step 2. A solution of Ac-CHAIYPRH-OH (38.47 mg, 37.1 μmol) in DMF (0.50 mL) was added to the above reaction mixture. The reaction mixture was stirred at room temperature for 2 hr. LC_MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 66.0 mg of the conjugate WV-15074. Deconvoluted mass: 8133; Calculated molecular weight: 8132.


Synthesis of WV-15075



embedded image


Step 1. A solution of 2,5-dioxopyrrolidin-1-yl 4-((2,5-dioxo-2,5-dihydro-H-pyrrol-1-yl)methyl)cyclohexane-1-carboxylate (1.3 mg, 3.99 μmol) in DMF (0.10 mL) was added to a solution of WV-12566 (16.7 mg, 2.49 μmol) and DIPEA (3.5 μL) in DMSO (0.30 mL) and water (0.10 mL). The reaction mixture was shaken for 1 hr at room temperature. LC-MS showed the reaction was almost complete.


Step 2. A solution of Ac-CTHRPPMWSPVWP-OH (9.8 mg, 6.0 μmol) in DMF (0.20 mL) was added to the above reaction mixture. The reaction mixture was stirred at room temperature for 3 hrs. LC_MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 8.9 mg of the conjugate WV-15075. Deconvoluted mass: 8735; Calculated molecular weight: 8730.


Synthesis of WV-15076



embedded image


Step 1. A solution of 2,5-dioxopyrrolidin-1-yl 4-((2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)methyl)cyclohexane-1-carboxylate (1.3 mg, 3.99 umol) in DMF (0.10 mL) was added to a solution of WV-12566 (16.7 mg, 2.49 μmol) and DIPEA (3.5 μL) in DMSO (0.30 mL) and water (0.10 mL). The reaction mixture was shaken for 1 hr at room temperature. LC-MS showed the reaction was almost complete.


Step 2. A solution of H-RRQPPRSISSHPC-OH (9.1 mg, 6.0 μmol) in DMF (0.20 mL) was added to the above reaction mixture. The reaction mixture was stirred at room temperature for 3 hrs. LC_MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 4.7 mg of the conjugate WV-15076. Deconvoluted mass: 8735; Calculated molecular weight: 8730.


Synthesis of WV-15367



embedded image


A solution of 5,1218-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2S3S,4S5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic acid (13.9 mg 7.29 μmol) in DMF (0.50 mL) was added DIPEA (6.3 μL, 36.4 mol) and HATU (2.3 mg, 6.0 μmol). The reaction mixture was stirred at room temperature for 30 minutes. The reaction mixture was added to a solution of WV-12566 (16.7 mg, 2.43 μmol) in 0.30 ml DMSO and 0.10 mL water. The reaction mixture was shaken for 2 hours at rt. LC_MS showed the reaction was complete. The reaction mixture was added 28-30% ammonium hydroxide, stirred at 40° C. for 3 hrs. LC_MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 9.2 mg of the conjugate WV-15367. Deconvoluted mass: 8269; Calculated molecular weight: 8263.


Synthesis of WV-15368



embedded image


A solution of 5-(4-(4,6-bis((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-30-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazatriacontyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)-5-oxopentanoic acid (31.7 mg, 7.29 μmol) in DMF (0.50 mL) was added DIPEA (6.3 μL 36.4 μmol) and HATU (2.3 mg, 6.0 μmol). The reaction mixture was stirred at room temperature for 30 minutes, the reaction mixture was added to a solution of W-12566 (16.7 mg, 2.43 μmol) in 0.30 ml DMSO and 0.10 mL water. The reaction mixture was shaken for 2 hours at t. LC_MS showed the reaction was complete. The reaction mixture was added 28-30% ammonium hydroxide (1.0 mL), stirred at 40° C. for 5 hrs. LC_MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 7.5 mg of the conjugate WV-15368. Deconvoluted mass: 10206; Calculated molecular weight: 10200.


Synthesis of WV-15882



embedded image


A solution of 5,12,18-trioxo-7,7-bis((3-oxo-3-((3-(5-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-22-(((2R,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-9-oxa-6,13,17-triazadocosanoic acid (102 mg, 53.43 μmol) in DMF (1.0 mL) was added DIPEA (46.8 μL, 266.5 μmol) and HATU (13.5 mg, 35.68 μmol). The reaction mixture was stirred at room temperature for 30 minutes. The reaction mixture was added to a solution of WV-12566 (122.65 mg, 17.84 μmol) in 1.5 ml DMSO and 0.50 mL water. The reaction mixture was shaken for 1.5 hours at rt. LC_MS showed the reaction was completed. The reaction mixture was added 28-20% ammonium hydroxide (5.0 mL) and stirred at 35° C. for 1.5 hrs. LC_MS showed the reaction was complete. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 83.8 mg of the conjugate WV-15882. Deconvoluted mass: 8263, Calculated molecular weight: 8264.


Some of the examples reference oligonucleotides which target Malat1. Some of these oligonucleotides are described elsewhere herein and/or below.















Oligo-





nucleotide
Modified Sequence
Naked Sequence
Stereo-chemistry







WV-2809
L001 * Geo * Geo * Geo * Teo * m5Ceo
GGGTCAGCTGC
XXXXXXXXXXX



* A * G * C * T * G * C * C * A * A * T
CAATGCTAG
XXXXXXXXX



* Geo * m5Ceo * Teo * Aeo * Geo




WV-3356
L001Geo * Geo * Geo * Teo * m5Ceo *
GGGTCAGCTGC
OXXXXXXXXXXX



A * G * C * T * G * C * C * A * A * T *
CAATGCTAG
XXXXXXXX



Geo * m5Ceo * Teo * Aeo * Geo




WV-7430
ModO43L001Geo * Geo * Geo * Teo *
GGGTCAGCTGC
OXXXXXXXXXXX



m5Ceo * A * G * C * T * G * C * C * A *
CAATGCTAG
XXXXXXXX



A* T* Geo * m5Ceo * Teo * Aeo * Geo




WV-7519
Mod009L001 * Geo * Geo * Geo * Teo *
GGGTCAGCTGC
XXXXXXXXXXX



m5Ceo * A * G * C * T * G * C * C * A *
CAATGCTAG
XXXXXXXXX



A * T * Geo * m5Ceo * Teo * Aeo * Geo




WV-7557
L001mU * Geo * Geo * Geo * Teo *
UGCCAGGCTG
OXXXXXXXXXXX



* C * T * G * G * T * T * A * T * mG *
GTTATGACUC
XXXXXXXX



mA * mC * mU * mC




WV-7558
Mod027L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-7559
Mod028L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-7560
Mod007L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-8448
Mod059L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-8927
Mod053L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G* T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-8929
Mod057L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-8930
Mod058L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G *C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-8931
Mod009L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G *C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-8934
Mod050L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-9385
Mod066L001mU * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T * 
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-9390
Mod074L001m1U * mG * mC * mC * mA
UGCCAGGCTG
OXXXXXXXXXXX



* G * G * C * T * G * G * T * T * A * T *
GTTATGACUC
XXXXXXXX



mG * mA * mC * mU * mC




WV-13809
Mod0971001mU *
UGCCAGGCTG
OSOOOSSRS



SGeom5Ceom5CeomA * SG * SG * RC * 
GTTATGACUC
SRSSRSSSSSS



ST * SG * RG * ST * ST * RA * ST *





SmG * SmA * SmC * SmU * SmC




WV-27145
mU * SGCCmA * SG * SG * RC *
UGCCAGGCTG
SOOOSSRSnXR



STn001G * RG * ST * ST * RA * ST
GTTATGACUC
SSRSSSSSSS



* SmG * SmA * SmC * SmU * SmC * 
U




SfU










The Modifications (e.g., designated by Mod followed by a number, such as Mod097, Mod074, etc.) are described in the legend to Table A11 or elsewhere herein.


Synthesis of WV-13809



embedded image


A solution of 4-nitrophenyl (2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl))chroman-6-yl) carbonate (activated vitamin E) (15 mg, 25 μmol) and DIPEA (21 μL) in NMP (0.20 ml) was added to a solution of WV-9696 in 0.5 ml DMSO and 0.05 ml water. The reaction mixture was shaken for 2 hrs at 50° C. LC-MS showed the reaction was completed. The crude product was lyophilized, purified on RP (C-8) HPLC using 50 mM TEAA in water and acetonitrile, and desalt to obtain 4.90 mg of the conjugate WV-13809. Deconvoluted mass: 7451; Calculated molecular weight: 7451.


Synthesis of WV-14349



embedded image


A solution of 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-916-dioxo-12-oxa-2,48,15-tetraazaicos-3-en-20-oic acid (19.61 mg, 21.45 μmol) in DMF (0.30 mL) was added DIPEA (75 μL) and HATU (7.32 mg, 19.31 μmol). The reaction mixture was stirred at rom temperature for 20 minutes. The reaction mixture was added to a solution of WV-9696 (30 mg, 4.29 μmol) in 0.4 ml DMSO and 0.10 mL water. The reaction mixture was shaken at rt for overnight. LC_MS showed the reaction was not complete. A solution of 3-(dimethylamino)-14,14-bis(3-(dimethylamino)-2-methyl-9-oxo-12-oxa-2,4,8-triazatridec-3-en-13-yl)-2-methyl-9,16-dioxo-12-oxa-2,4,815-tetraazaicos-3-en-20-oic acid (10 mg) in DMF (0.10 mL) was added DIPEA (38 μL) and HATU (3.7 mg). The reaction mixture was stirred at room temperature for 20 minutes. The reaction mixture was added into the above the reaction mixture with WV-9696. The reaction mixture was stirred at 30° C. for 2 hrs. LCMS showed the reaction was completed. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 9.1 mg of the conjugate WV-14349. Deconvoluted mass: 7893; Calculated molecular weight: 7889.


Synthesis of WV8448



embedded image


To solution of 4, 10, 17-trioxo-15,15-bis((3-oxo-3-((3-(4-(((2R,3R, 4S, 5R, 6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)butanamido)propyl)amino)methyl)-1-(((2R,3R,5R,6R)-3,4,5-tris(benzoyloxy)-6-((benzoyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-13-oxa-5,9,16-triazahenicosan-21-oic acid (57 mg, 21.8 μmol), HATU (7.5 mg, 19.6 μmol) and DIPEA (14.6 mg, 109 μmol) in DMF (2.0 mL) was stirred at room temperature for 15 minutes. To this solution was added 75 mg (10.9 μmol) of WV7557 in 1 ml water. Reaction mixture was stirred for 60 minutes to obtain the desired product. This product was heated at 40° C. with NH4OH for 3 hrs. LC_MS showed the reaction was completed. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 39.73 mg of the conjugate WV-8448. Deconvoluted mass: 8233; Calculated molecular weight: 8227.


Synthesis of WV8927



embedded image


To a solution of gambogic acid (21 mg, 33.6 μmol) in 2 ml dry DMF was added HATU (11.5 mg, 30.2 μmol) and DIPEA (3.6 mg, 28 μmol) and vortexed well. This solution was added WV7557 (42 mg, 5.6 μmol) in water (1 ml) and shaken for 4 hours. LC-Analysis indicated product formation, but starting material remained. Another 6 six equivalents of Gambogic acid-HATU complex (same amount used initially) was added and shaken well for 2 hours. LC analysis indicated more product formation. The reaction mixture was diluted with water (10 ml). Excess gambogic acid precipitated out. This precipitate was filtered off and the crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 19 mg of the conjugate WV-8927. Deconvoluted mass: 7496; Calculated molecular weight: 7492.


Synthesis of WV-7558



embedded image


To a solution of 4-sulfamoylbenzoic acid (7.3 mg, 36 μmol) in DMF (2.0 mL) was added HATU (12.4 mg, 32.7 μmol) and DIPEA (46 mg, 360 μmol) and vortexed. After 2 minutes WV7557 (50 mg, 7.27 μmol) in 1 ml water was added and shaken well. After 60 minutes the reaction mixture was diluted with water (5 ml) and filtered. The filtrate was purified by RP column chromatography (C-18) and desalted to obtain the product (17 mg). Mass calculated: 7064; Deconvoluted Mass: 7068.


Synthesis of WV-7559



embedded image


To a solution of 4-oxo-4-((4-sulfamoylphenethyl)amino)butanoic acid (8.7 mg, 29 μmol) in DMF (2.0 mL) was added HATU (9.9 mg, 26 μmol) and DIPEA (37 mg, 290 μmol) and vortexed. After 2 minutes WV7557 (40 mg, 5.81 μmol) in 1 ml water was added and shaken well. After 30 minutes the reaction mixture was diluted with water (5 ml) and filtered. The filtrate was purified by RP column chromatography (C-18) and desalted to obtain the product (13 mg). Mass calculated: 7163: Deconvoluted Mass: 7166.




embedded image


To a solution of WV7557 (62 mg, 9 μmol) in water (0.5 ml) and DMF (2.5 ml) was added DIPEA (11.6 mg, 90 μmol) and stirred well. To this solution was added 3-(2-Pyridyldithio)-propionic acid-OSu (4 mg, 12.6 μmol) and stirred well for 2h. The crude product was diluted with water and purified on ISCO (C18 column) using 50 mM TEAA and acetonitrile. Amount of product obtained: 46 mg.


Synthesis of WV-8929



embedded image


To a solution of the oligo (WV7557 derivative, 23.5 mg, 33 mol) in water DMF (2 ml -20+1 ml) mixture was added DIPEA (8.52 mg, 66 μmol), and vortexed for 5 minutes. To this solution was added H-RRQPPRSISSHPC-OH (10 mg 6.6 μmol) and again vortexed for 5 minutes. After 12 hours, the reaction mixture was analyzed by LC-MS. LC_MS showed the reaction was completed. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 14 mg of the conjugate WV-8929. Deconvoluted mass: 8496; Calculated molecular weight: 8490.


Synthesis of WV-8930



embedded image


To a solution of the oligo (WV7557 derivative, 23.5 mg, 3.3 μmol) in water-DMF (2 ml+1 ml) mixture was added DIPEA (8.52 mg, 66 μmol) and vortexed for 5 minutes. To this solution was added H-Arg-Arg-Cys-OH (4 mg, 10 μmol) and vortexed for 5 minutes. After 12 hours, the reaction mixture was analyzed by LC-MS. LC_MS showed the reaction was completed. The reaction mixture was diluted with water, and speed-vacuum to dry. The crude product was purified by RP-HPLC eluting with 50 mM TEAA in water to acetonitrile, and desalt to obtain 5 mg of the conjugate WV-8930. Deconvoluted mass: 7405; Calculated molecular weight: 7401.


Synthesis of WV8931



embedded image


To a solution of WV7557 (20 mg, 2.91 μmol) in 0.47 ml water was treated with DIPEA (3.76 mg, 29.1 μmol) and vortexed well for 5 minutes. To this solution was added a solution of (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (4-nitrophenyl) carbonate (activated cholesterol derivative) (10.50 mg, 19 μmol) in NMP (1.0 ml). The solution turned slightly yellowish. It was shaken at 40 degrees for 12 hours. A bright yellow solution was obtained. LC-MS analysis indicated product formation. This solution was diluted to 10 ml using water, filtered and purified on a RP-HPLC using a C-8 column and desalted. Amount of product obtained: 18 mg; Deconvoluted mass: 7298; Calculated molecular weight: 7293.


Synthesis of WV8934



embedded image


L-carnitine (3 mg, 17.5 μmol) and HATU (6 mg, 16 μmol) were mixed together and made in to a 1 ml solution in DMF. DIPEA (5.7 mg, 44 μmol) was added and stirred well for 3 minutes. To this solution was added a solution of WV-7557 (30 mg, 4.4 mmol) in 0.5 ml water and stirred well for 30 minutes. LC-MS analysis of the solution indicated product formation. But starting oligo was present in the reaction mixture. 4 equivalents more L-carnitine/HATU complex was added again and stirred well for 2h. The reaction mixture was diluted with water and the crude product was purified on a RP (C-18) column to obtain the product. Amount of product obtained: 12 mg, Calculated mass: 7025; De-convoluted mass: 7029.


Synthesis of WV-9390



embedded image


To solution of 5-oxo-5-(4-(4-((2,8,12,19,25-pentaoxo-14,14-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-29-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-16-oxa-3,7,13,20,24-pentaazanonacosyl)amino)-6-((3,9,13,20,26-pentaoxo-15,15-bis((3-oxo-3-((3-(5-(((2S,3S,4S,5R,6R)-3,4,5-triacetoxy -6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)pentanamido)propyl)amino)propoxy)methyl)-30 (((2S,3S,4S,5R,6R)-3,4,5-triacetoxy -6-(acetoxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-17-oxa-4,8,14,21,25-pentaazatriacontyl)amino)-1,3,5-triazin-2-yl)piperazin-1-yl)pentanoic acid (15 mg, 3.5 μmol) and HATU (1.33 mg, 35 μmol) in DMF (1.0 ml) was added DIPEA (4.5 mg, 35 μmol) and vortexed for 2 minutes. To this solution was added WV7557 (12 mg, 1.74 μmol) in water (0.5 ml) and shaken for 60 minutes. 5 ml water was added to it and the solvent was removed under vacuum. The crude product was purified on a RP column (C-8) obtain acetylated product (Mass calculated: 10207, Deconvoluted mass: 10212). This product was dissolved in 5 ml 30% ammonium hydroxide solution and heated at 40 degrees Celsius for 6 hours. Solvent was removed under vacuum and the crude product was purified on a RP column (C-8) to obtain the product. Amount of product obtained (10 mg). Calculated Mass: 10205; Deconvoluted Mass obtained: 10205.


Synthesis of WV 9430



embedded image


To a solution of 1,7,14-trioxo-12,12-bis((3-oxo-3-((3-(4-sulfamoylbenzamido)propyl)amino)propoxy)methyl)-1-(4-sulfamoylphenyl)-10-oxa-2,6,13-triazaoctadecan-8-oic acid (5.14 mg, 1.45 μmol) in DMF was added HATU (1.5 mg, 3.96 μmol) and DIPEA (2 mg, 15 μmol). The reaction mixture was stirred at room temperature for 2 minutes. A solution of WV7557 in 0.4 ml water was added and shaken well. After 30 minutes the reaction mixture was diluted with water (5 ml) and filtered. The filtrate was purified by RP column chromatography (C-18) and desalted to obtain the product WV-9430 (6 mg). Mass calculated: 8032; Deconvoluted Mass: 8031.


Synthesis of WV-9385



embedded image


WV7557 (48 mg, 6.9 μmol) was dissolved in 1 ml NMP and 0.5 ml water. DIPEA (14 mg, 103.5 μmol) was added to this solution. Vortexed for 5 minutes. To this solution was added 3-(((4-nitrophenoxy)carbonyl)oxy)propyl stearate (14 mg, 27.6 μmol) in 1 ml NMP. The reaction mixture was filtered and the filtrate was purified by RP column chromatography (C-8) to obtain the product. The purified material was desalted and 11 mg of product was obtained. Mass calculated: 7250; Deconvoluted Mass: 7254.


Synthesis of WV-7560



embedded image


12,12-bis((3-((3-(4-methoxybenzamido)propyl)amino)-3-oxopropoxy)methyl)-1-(4-methoxyphenyl)-1,7,14-trioxo-10-oxa-2,6,13-triazapentacosan-25-oic acid (triantennary anisamide) (32.5 mg, 29 μmol), HATU (10 mg, 26.1 μmol) and DIPEA (28 mg, 58 μmol) were dissolved in 2 ml DMF. After 2 minutes WV7557 (100 mg. 15 μmol) in 1 ml water was added and shaken well. After 60 minutes the reaction mixture was diluted with water (5 ml) and filtered. The filtrate was purified by RP column chromatography (C-8) and desalted to obtain the product (55 mg). Mass calculated: 7983; Deconvoluted Mass: 7987.


Synthesis of WV-7408



embedded image


A suspension of WV 3356 (40 mg, 5.3 μmol) and DIPEA (7 mg, 53 μmol) in 2 ml DMF was vortexed for five minutes. To this suspension was added a solution of 2,5-dioxopyrrolidin-1-yl 4-sulfamoylbenzoate (8 mg, 26.5 μmol)J in 1 ml DMF. The reaction mixture was shaken for 12 hours. Afterwards, the reaction mixture was diluted with 5 ml water and filtered. The filtrate was purified by RP (C-18) column chromatography and desalted to obtain the product (20 mg). Mass calculated: 7596; Deconvoluted mass: 7594.


Synthesis of WV7409



embedded image


To a solution of 4-oxo-4-((4-sulfamoylphenethyl)amino)butanoic acid (2.16 mg, 7.2 μmol), HATU (2.32 mg, 6.1 μmol) and DIPEA (3.1 mg, 24 μmol) were dissolved in 1 ml DMF and vortexed. After 2 minutes WV3356 (18 mg, 2.4 μmol) in 0.5 ml water was added and shaken well. After 60 minutes the reaction mixture was diluted with water (5 ml) and filtered. The filtrate was purified by RP column chromatography (C-18) and desalted to obtain the product (9 mg). Mass calculated: 7694; Deconvoluted Mass: 7695.


Synthesis of WV-7430



embedded image


To a solution of WV3356 (32 mg, 4.3 μmol) in DMF (2.0 mL) was added DIPEA (5.8 mg, 43 μmol) was added a solution of (R)-3-(((4-nitrophenoxy)carbonyl)oxy)propane-1,2-diyl didodecanoate (11 mg, 17.6 μmol) in acetonitrile (1.0 mL). Reaction mixture was shaken at 40° C. for 12 hours. LC-MS analysis indicated formation of product. The reaction mixture was diluted with water and filtered. The filtrate was purified by RP column chromatography (C-8) to obtain the product. The purified material was desalted and 11 mg of product was obtained. Mass calculated: 7895, Deconvoluted Mass:7896.


Synthesis of WV-7419



embedded image


To a suspension of WV-2809 (56 mg, 7.5 μmol, 125 mg support) in DMF (2.0 mL) was added DIPEA (19.3 mg, 150 μmol) and vortexed well for 5 minutes. To this suspension was added perfluorophenyl 18-oxo-18-((4-(N-(2,2,2-trifluoroacetyl)sulfamoyl)phenethyl)amino)octadecanoate (12 mg, 15 μmol) and shaken for 12 hours at room temperature. The solid support was washed with acetonitrile (20 ml×3) and dried. This support was treated with 20% DEA in acetonitrile (1 ml) for 10 minutes, the DEA solution was removed by filtration. The solid support was washed with acetonitrile (20 ml×3) and dried. The solid support was heated with 2 ml of 30% ammonium hydroxide for 12 hours. The support was filtered off and the filtrate was lyophilized to remove the solvent. The crude product was purified by RP column chromatography (C-8) and desalted to obtain the product (7 mg). Mass calculated:7906, Deconvoluted Mass:7909.


Synthesis of WV-7519



embedded image


To a suspension of WV2809 (60 mg, 8 μmol, 150 mg support) in 2 ml NMP was added DIPEA (11 mg, 80 μmol) and vortexed well for 5 minutes. To this suspension was added (8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl carbonochloridate (15 mg, 33 μmol) and shaken for 12 hours at room temperature. The solid support was washed with acetonitrile (20 ml×3) and dried. This support was treated with 20% DEA in acetonitrile (1 ml) for 10 minutes. The DEA solution was removed by filtration. The solid support was washed with acetonitrile (20 ml×3) and dried. The solid support was heated at 50° C. with 2 ml of 30% ammonium hydroxide for 12 hours. The support was filtered off and the filtrate was lyophilized to remove the solvent. The crude product was purified by RP column chromatography (C-8) and desalted to obtain the product (20 mg). Mass calculated:7840, Deconvoluted mass: 7841.


Synthesis of WV-7422



embedded image


To a suspension of WV2809 (56 mg, 7.5 μmol, 125 mg support) in 2 ml DMF was added DIPEA (19.3 mg, 150 μmol) and vortexed well for 5 minutes. To this suspension was added perfluorophenyl 3-(4-(N-(2,2,2-trifluoroacetyl)sulfamoyl)phenyl)propanoate (37 mg, 75 μmol) and shaken for 12 hours at room temperature. The solid support was washed with acetonitrile (20 ml×3) and dried. This support was treated with 20% DEA in acetonitrile (1 ml) for 10 minutes. The DEA solution was removed by filtration. The solid support was washed with acetonitrile (20 ml×3) and dried. The solid support was heated at 50° C. with 2 ml of 30% ammonium hydroxide for 12 hours. The support was filtered off and the filtrate was lyophilized to remove the solvent. The crude product was purified by RP column chromatography (C-8) and desalted to obtain the product (18 mg). Mass calculated:7638, Deconvoluted Mass:7641.


Synthesis of WV-7421



embedded image


2-(4-sulfamoylphenyl)acetic acid (17.2 mg, 80 μmol), HATU (28 mg, 76 molμ) and DIPEA (20.6 mg, 160 μmol) in 2 ml NMP was vortexed well for 2 minutes. To this suspension was added WV2809 (60 mg, 8 μmol, 150 mg support) and shaken well for 12 hours at room temperature. The solid support was washed with acetonitrile (20 ml×3) and dried. This support was treated with 20% DEA in acetonitrile (1 ml) for 10 minutes. The DEA solution was removed by filtration. The solid support was washed with acetonitrile (20 ml×3) and dried. The solid support was heated at 50° C. with 2 ml of 30% ammonium hydroxide for 12 hours. The support was filtered off and the filtrate was lyophilized to remove the solvent. The crude product was purified by RP column chromatography (C-18) and desalted to obtain the product (20 mg). Mass calculated:7624, Deconvoluted Mass:7627.


Synthesis of WV-7417



embedded image


A suspension of 1,7,14-trioxo-12,12-bis((3-oxo-3-((3-(4-sulfamoylbenzamido)propyl)amino)propoxy)methyl)-1-(4-sulfamoylphenyl)-10-oxa-2,6,13-triazaoctadecan-18-oic acid (40 mg, 34 μmol), HATU (12 mg, 76 μmol) and DIPEA (44 mg, 340 μmol) in 2 ml NMP was vortexed well for 3 minutes. To this suspension was added WV2809 (60 mg, 8 μmol, 150 mg support) and shaken well for 12 hours at 40° C. The solid support was washed with acetonitrile (20 ml×3) and dried. This support was treated with 20% DEA in acetonitrile (1 ml) for 10 minutes. The DEA solution was removed by filtration. The solid support was washed with acetonitrile (20 ml×3) and dried. The solid support was heated at 50° C. with 2 ml of 30% ammonium hydroxide for 12 hours. The support was filtered off and the filtrate was lyophilized to remove the solvent. The crude product was purified by RP column chromatography (C-18) and desalted to obtain the product (10 mg). Mass calculated:8579, Deconvoluted Mass:8577.


Example 17. General Procedure for the Deprotection of Amine



embedded image


15.2 g of NHBoc amine was dissolved in dry DCM (100 ml) then TFA (50 ml) was added dropwise at RT. Reaction mixture was stirred at RT overnight. Solvents were removed under reduced pressure then co-evaporated with toluene (2×50 mL) then used for the next step without any further purification. NMR in CD3OD confirmed the NHBoc deprotection.


Example 18. General Procedure for the Anisamide Formation



embedded image


Procedure-A: The crude amine from the previous step was dissolved in a mixture of DCM (100 ml) and Et3N (10 equ.) at RT. During this process, the reaction mixture was cooled with a water bath. Then 4-Methoxybenzoyl chloride (4 equ) was added dropwise to the reaction mixture under argon atmosphere at RT, stirring continued for 3 h. Reaction mixture was diluted with water and extracted with DCM. Organic layer was extracted with aq. NaHCO3, 1N HCl, brine then dried with magnesium sulfate evaporated to dryness. The crude product was purified by silica column chromatography using DCM-MeOH as eluent.


Procedure-B: The crude amine (0.27 equ), acid and HOBt (1 equ) were dissolved in a mixture of DCM and DMF (2:1) in an appropriate sized RBF under argon. EDAC.HCl (1.25 equ) was added portion wise to the reaction mixture under constant stirring. After 15 mins, the reaction mixture was cooled to ˜10° C. then DIEA (2.7 equ) was added over a period of 5 mins. Slowly warmed the reaction mixture to ambient temperature and stirred under argon for overnight. TLC indicated completion of the reaction TLC condition, DCM:MeOH (9.5:0.5). Solvents were removed under reduced pressure, then water was added to the residue, and a gummy solid separated out. The clear solution was decanted, and the solid residue was dissolved in EtOAc and washed successively with water, 10% aqueous citric acid, aq. NaHCO3, followed by saturated brine. The organic layer was separated and dried over magnesium sulfate. Solvent was removed under reduced pressure then the crude product was purified with silica column to get the pure product.




embedded image


Anisamide was obtained from the amine in 32% yield over 2 steps using the above procedure-B: 1H NMR (CDCl3): δ=7.74 (d, 6H), 7.44 (t, 2H), 7.34 (t, 1H), 7.26 (m, 5H), 7.05 (m, 3H), 6.83 (d, 6H), 6.46 (s, 1H), 5.01 (s, 2H), 3.75 (s, 9H), 3.57 (m, 12H), 3.37 (m, 6H), 3.25 (m, 6H), 2.31 (m, 8H), 2.11 (m, 2H), 1.84 (m, 2H), 1.62 (m, 6H) ppm.




embedded image


Anisamide was obtained from the amine in 57% yield over 2 steps using the above procedure-A: 1H NMR (CDCl3): δ=7.75 (m, 3H), 7.73 (d, 6H), 7.43 (t, 3H), 7.25 (m, 5H), 6.80 (d, 6H), 6.51 (brs, 1H), 5.01 (s, 2H), 3.72 (s, 9H), 3.58 (m, 6H), 3.21 (m, 12H), 2.33 (t, 3H), 2.25 (t, 2H), 2.02 (t, 2H), 1.64 (q, 6H), 1.52 (p, 2H), 1.41 (q, 2H), 1.12 (m, 12H) ppm.


General Procedure for Debenzylation.




embedded image


The benzyl ester (10 g) was dissolved in a mixture of ethyl acetate (100 ml) and methanol (25 ml) then Pd/C, 1 g (10% palladium content) was added under argon atmosphere then the reaction mixture was vacuumed and flushed with hydrogen and stirred at RT under H2 atmosphere for 3 h. TLC indicated completion of the reaction, filtered through pad of celite and washed with methanol, evaporated to dryness to yield a foamy white solid.




embedded image


Yield 98% 1H NMR (CD3OD): δ=8.35 (t, 1H), 8.01 (t, 1H), 7.82 (d, 6H), 7.27 (d, 1H), 6.99 (d, 6H), 3.85 (s, 9H), 3.68 (m, 12H), 3.41 (m, 6H), 3.29 (m, 6H), 2.42 (m, 6H), 2.31 (q, 2H), 2.21 (td, 21), 1.80 (m, 8H) ppm.




embedded image


Yield 94%, 1H NMR (CD3OD): δ=8.36 (t, 2H), 8.02 (t, 2H), 7.82 (d, 6H), 7.23 (d, 1H), 6.98 (d, 6H), 3.85 (s, 911), 3.70 (s, 6H), 3.67 (t, 6H), 3.41 (q, 4H), 3.28 (m, 8H), 2.42 (t, 6H), 2.27 (t, 2H), 2.13 (t, 2H), 1.79 (p, 6H), 1.54 (dp, 4H), 1.25 (m, 12H) ppm.


Example 19. Timelines for ‘Pre-Differentiation’ of Patient Myoblasts for Gymnotic Dosing

Various technologies, e.g., those described in U.S. Pat. Nos. 9,394,333, 9,744,183, 9,605,019, 9,598,458, US 2015/0211006, US 2017/0037399, WO 2017/015555, WO 2017/192664, WO 2017/015575, WO 2017/062862, WO 2017/160741, WO 2017/192679, and WO 2017/210647, etc., can be utilized in accordance with the present disclosure to assess properties and/or activities of technologies of the present disclosure. In some embodiments, technologies of the present disclosure, e.g., oligonucleotides and compositions and methods of use thereof, demonstrate unexpectedly superior results compared to a suitable reference technology (e.g., a technology based on a stereorandom composition of oligonucleotides having the same base sequence but no neutral and/or cationic internucleotidic linkages at physiological pH). Described below are example technologies that can be useful for assessing properties and/or activities of oligonucleotides described in the present disclosure. Those skilled in the art understand that conditions illustrated below may be varied/modified, and additionally and/or alternatively, other suitable reagents, temperatures, conditions, time periods, amounts, etc., may be utilized in accordance with the present disclosure.


Maintenance of Patient Derived Myoblast Cell Lines:


DMD Δ52 and DMD Δ45-52 myoblast cells were maintained in complete Skeletal Muscle Growth Medium (Promocell, Heidelberg, Germany) supplemented with 5% FBS, 1× Penicillin-Streptomycin and 1× L-Glutamine. Flasks or plates were coated with Matrigel:DMEM solution (1:100) for a suitable period of time, e.g., 30 mins, after which Matrigel:DMEM solution was removed via aspiration before seeding of cells in complete Skeletal Muscle Growth Medium.


Standard Dosing Procedure (0 Days Pre-Differentiation)


On Day 1: Coat suitable cell growth containers, e.g., 6-well plates or 24-well plates, with Matrigel: DMEM Solution. Incubate at a condition, e.g., 37° C., 5% CO2 for a suitable period of time, e.g., 30 mins. Aspirate, and seed a suitable number of cells to cell growth containers, e.g., 150K cells/well in a total of 1500 μl of complete growth medium in 6-well plate, and 30K cells/well in 500 ul of growth medium in a 24-well plate. Incubate at a suitable condition for a suitable period of time, e.g., 37° C., 5% CO2 overnight.


On Day 2: Prepare a suitable Differentiation medium, e.g., DMEM+5% Horse Serum+10 μg/ml Insulin. Prepare suitable oligonucleotide dilutions in Differentiation Medium, e.g., serial dilutions of 30 uM, 10 uM, 3.33 uM, 1.11 uM, 0.37 uM. Aspirate growth medium off of adherent cells, and add oligonucleotide:Differentiation Medium solution to cells. Oligonucleotides remain on cells (no media change) until cell harvesting.


On Day 6: Obtain RNA. In a typical procedure, a suitable number of cells, e.g., cells from wells of a 24-well plate, were washed. e.g., with cold PBS, followed by addition of a suitable amount of a reagent for RNA extraction and storage of sample/RNA extraction, e.g., 500 ul/well TRIZOL in 24-well plate and freezing plate at −80° C. or continuing with RNA extraction to obtain RNA.


On Day 8: Obtain protein. In a typical procedure, a suitable number of cells, e.g., cells in wells of 6-well plate, were washed, e.g., with cold PBS. A suitable amount of a suitable lysis buffer was then added—e.g., in a typical procedure, 200 ul/well of RIPA supplemented with protease inhibitors for a 6-well plate. After lysis the sample can be stored, e.g., freezing at −80° C., or continue with protein extraction.


Other suitable procedures may be employed, for example, those described below. As appreciated by those skilled in the art, many parameters, such as reagents, temperatures, conditions, time periods, amounts, etc., may be modified.


4 Days Pre-Differentiation Dosing Procedure


On Day 1: Coat 6-well plates or 24-well plates with Matrigel: DMEM Solution. Incubate at 37° C., 5% CO2 for 30 mins. Aspirate, seed 150K cells/well in a total of 1500 μl of complete growth medium in 6-well plate, and 30K cells/well in 500 ul of growth medium in a 24-well plate. Incubate at 37° C., 5% CO2 overnight.


On Day 2: Prepare Differentiation medium as follows: DMEM+5% Horse Serum+10 μg/ml Insulin. Aspirate Growth Media and replace with Differentiation Media.


On Day 6: Cells have differentiated for 4 days. Prepare oligonucleotide dilutions in Differentiation Medium, for example serial dilutions of 30 uM, 10 uM, 3.33 uM, 1.11 uM, 0.37 uM. Aspirate Differentiation medium off of adherent cells, and add oligonucleotide:Differentiation Medium solution to cells. Oligonucleotides remain on cells (no media change) until cell harvesting.


On Day 10: Wash cells in 24-well plate with cold PBS, add 500 ul/well TRIZOL in 24-well plate and freeze plate at −80° C. or continue with RNA extraction.


On Day 12: Wash cells in 6-well plate with cold PBS. Add 200 ul/well of RIPA supplemented with protease inhibitors. Freeze plate at −80° C. or continue with protein Extraction.


7 dais Pre-Differentiation Dosing Procedure


On Day 1: Coat 6-well plates or 24-well plates with Matrigel: DMEM Solution. Incubate at 37° C., 5% CO2 for 30 mins. Aspirate, seed 150K cells/well in a total of 1500 μl of complete growth medium in 6-well plate, and 30K cells/well in 500 ul of growth medium in a 24-well plate. Incubate at 37° C. 5% CO2 overnight.


On Day 2: Prepare Differentiation medium as follows: DMEM+5% Horse Serum+10 μg/ml Insulin. Aspirate Growth Media and replace with Differentiation Media.


On Day 9: Cells have differentiated for 7 days. Prepare oligonucleotide dilutions in Differentiation Medium, for example serial dilutions of 30 uM, 10 uM, 3.33 uM, 1.11 uM, 0.37 uM. Aspirate Differentiation medium off of adherent cells, and add oligonucleotid:Differentiation Medium solution to cells. Oligonucleotides remain on cells (no media change) until cell harvesting.


On Day 13: Wash cells in 24-well plate with cold PBS, add 500 ul/well TRIZOL in 24-well plate and freeze plate at −80° C. or continue with RNA extraction.


On Day 15: Wash cells in 6-well plate with cold PBS. Add 200 ul/well of RIPA supplemented with protease inhibitors. Freeze plate at −80° C. or continue with protein extraction.


10 Days Pre-Differentiation Dosing Procedure


On Day 1: Coat 6-well plates or 24-well plates with Matrigel: DMEM Solution. Incubate at 37° C., 5% CO2 for 30 mins. Aspirate, seed 150K cells/well in a total of 1500 μl of complete growth medium in 6-well plate, and 30K cells/well in 500 ul of growth medium in a 24-well plate. Incubate at 37° C. 5% CO2 overnight.


On Day 2: Prepare Differentiation medium as follows: DMEM+5% Horse Serum+10 μg/ml Insulin. Aspirate Growth Media and replace with Differentiation Media.


On Day 12: Cells have differentiated for 10 days. Prepare oligonucleotide dilutions in Differentiation Medium, for example serial dilutions of 30 uM, 10 uM, 3.33 uM, 1.11 uM, 0.37 uM. Aspirate Differentiation medium off of adherent cells, and add oligonucleotide:Differentiation Medium solution to cells. Oligonucleotides remain on cells (no media change) until cell harvesting.


On Day 16: Wash cells in 24-well plate with cold PBS, add 500 ul/well TRIZOL in 24-well plate and freeze plate at −80° C. or continue with RNA extraction.


On Day 18: Wash cells in 6-well plate with cold PBS. Add 200 ul/well of RIPA supplemented with protease inhibitors. Freeze plate at −80° C. or continue with protein extraction.


Example 20. Multi-Exon Skipping Assay

The assay described herein can be adapted to detect any gene's splice-variants with frequency of each variant (quantification). DMD Exon43-Exon64 is used as an example.


Among other things, a unique feature of this assay is that an unique-molecular-identifier (UMI) is introduced in the reverse transcription primers with an unique PCR handler sequence (this can be any sequence without homology to genomic or transcriptome sequences). Therefore, each cDNA has its unique UMI (bar-code) that can be used in later sequencing analysis to eliminate PCR and sequencing bias toward smaller amplicons.


In a typical procedure, the steps include: Reverse RT primer containing a PCR handle at 5′-end, then 8-16 sequences of randomly incorporated nucleotides that create UMI/bar code and reverse complement sequence in exon 64 (Reverse RT primer in table), was used to prime the reverse transcription by a RT kit (e.g., SuperScript IV, ThermoFisher, Cambridge, Mass.). Then primary and nested PCR were run to amplify gene-specific fragments used for PacBio long range sequencing or Oxford Nanopore MinION platform.


The NGS sequences (BAM files) were mapped to reference sequence (DMD for example) to identify splice variants (exon junctions). The UMI were counted in each splice variant, and frequency of variant was calculated by UMI counts in each variant divided by total UMI counts in all variants.


An illustration of this process is shown in FIG. 2.


Example Reverse RT primer:











5'-CAGTGGTATCAACGCAGAGTACG-NNNNNNNN-



ctgagaatctgacacagg-3'







5′-capital letter=N1 binding sequence (nested secondary)


N . . . N=UMI

underline=gene specific sequence in exon64


Forward primer (exon 43):


Fnest=5′-gaagctctctcccagcttgat-3′


Among other things, the present disclosure provides the following Example Embodiments:


1. An oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers, and


4) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 chirally controlled internucleotidic linkages; and


the oligonucleotide composition being characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


2. The composition of any one of the preceding embodiment, wherein the transcript is a Dystrophin transcript.


3. The composition of any one of the preceding embodiments, wherein splicing of the transcript is altered such that the level of skipping of exon 45, 51, or 53, or multiple exons is increased.


4. The composition of any one of the preceding embodiments, wherein each chiral internucleotidic linkage of the oligonucleotides of the plurality is independently a chirally controlled internucleotidic linkage.


5. The composition of any one of the preceding embodiments, wherein each chiral modified internucleotidic linkage independently has a stereopurity of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% at its chiral linkage phosphorus.


6. The composition of any one of the preceding embodiments, wherein the base sequence is or comprises or comprises 15 contiguous bases of the base sequence of any oligonucleotide in Table A1.


7. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage.


8. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage which is a neutral internucleotidic linkage.


9. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one neutral internucleotidic linkage which is or comprises a triazole, neutral triazole, alkyne, or a cyclic guanidine.


10. The composition of any one of the preceding embodiments, wherein the oligonucleotide type comprises any of: cholesterol; L-carnitine (amide and carbamate bond); Folic acid; Gambogic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand; CPP; Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).


11. The composition of any one of the preceding embodiments, wherein the oligonucleotide type is any oligonucleotide listed in Table A1.


12. A composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


which composition is chirally controlled and it is enriched, relative to a substantially racemic preparation of oligonucleotides having the same base sequence, pattern of backbone linkages and pattern of backbone phosphorus modifications, for oligonucleotides of the particular oligonucleotide type,


wherein:


the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of skipping of an exon is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


13. The composition of any one of the preceding embodiments, wherein the transcript is a Dystrophin transcript.


14. The composition of any one of the preceding embodiments, wherein the exon is DMD exon 45, 51 or 53 or multiple DMD exons, and wherein the splicing of the transcript is altered such that the level of skipping of exon 45, 51, or 53, or multiple exons is increased.


15. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least one Sp.


16. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least one Rp.


17. The composition of any one of the preceding embodiments, wherein the composition is a chirally pure composition.


18. The composition of any one of the preceding embodiments, wherein each chiral modified internucleotidic linkage independently has a stereopurity of at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% at its chiral linkage phosphorus.


19. The composition of any one of the preceding embodiments, wherein the base sequence is or comprises or comprises 15 contiguous bases of the base sequence of any oligonucleotide in Table A1.


20. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage.


21. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage which is a neutral internucleotidic linkage.


22. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one neutral internucleotidic linkage which is or comprises a triazole, neutral triazole, alkyne, or a cyclic guanidine.


23. The composition of any one of the preceding embodiments, wherein the oligonucleotide type comprises any of: cholesterol; L-carnitine (amide and carbamate bond); Folic acid; Gambogic acid; Cleavable lipid (1,2-dilaurin and ester bond): Insulin receptor ligand; CPP; Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).


24. The composition of any one of the preceding embodiments, wherein the oligonucleotide type is any oligonucleotide listed in Table A1.


25. A composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages; and


3) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 non-negatively charged internucleotidic linkages;


the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of skipping of an exon is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


26. The composition of any one of the preceding embodiments, wherein the transcript is a Dystrophin transcript.


27. The composition of any one of the preceding embodiments, wherein the exon is DMD exon 45, 51, or 53 or multiple DMD exons, and the splicing of the transcript is altered such that the level of skipping of exon 45, 51, or 53, or multiple exons is increased.


28. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage is independently an internucleotidic linkage at least 50% of which exists in its non-negatively charged form at pH 7.4.


29. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage is independently a neutral internucleotidic linkage, wherein at least 50% of the internucleotidic linkage exists in its neutral form at pH 7.4.


30. The composition of any one of the preceding embodiments, wherein the neutral form of each non-negatively charged internucleotidic linkage independently has a pKa no less than 8, 9, 10, 11, 12, 13, or 14.


31. The composition of any one of the preceding embodiments, wherein the neutral form of each non-negatively charged internucleotidic linkage, when the units which it connects are replaced with —CH3, independently has a pKa no less than 8, 9, 10, 11, 12, 13, or 14.


32. The composition of any one of the preceding embodiments, wherein the reference condition is absence of the composition.


33. The composition of any one of the preceding embodiments, wherein the reference condition is presence of a reference composition.


34. The composition of any one of the preceding embodiments, wherein the reference composition is an otherwise identical composition wherein the oligonucleotides of the plurality comprise no chirally controlled internucleotidic linkages.


35. The composition of any one of the preceding embodiments, wherein the reference composition is an otherwise identical composition wherein the oligonucleotides of the plurality comprise no non-negatively charged internucleotidic linkages.


36. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises one or more backbone linkages selected from phosphodiester, phosphorothioate and phosphodithioate linkages.


37. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise one or more sugar modifications.


38. The composition of any one of the preceding embodiments, wherein the sugar modifications comprise one or more modifications selected from: 2′-O-methyl, 2′-MOE, 2′-F, morpholino and bicyclic sugar moieties.


39. The composition of any one of the preceding embodiments, wherein one or more sugar modifications are 2′-F modifications.


40. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise a 5′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety.


41. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise a 3′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety.


42. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality each comprise a middle region between the 5′-end region and the 3′-region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotidic units comprising a phosphodiester linkage.


43. The composition of any one of the preceding embodiments, wherein the base sequence is or comprises or comprises 15 contiguous bases of the base sequence of any oligonucleotide in Table A1.


44. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage.


45. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage which is a neutral internucleotidic linkage.


46. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one neutral internucleotidic linkage which is or comprises a triazole, neutral triazole, alkyne, or a cyclic guanidine.


47. The composition of any one of the preceding embodiments, wherein the oligonucleotide type comprises any of: cholesterol; L-carnitine (amide and carbamate bond); Folic acid; Gambogic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand; CPP; Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).


48. The composition of any one of the preceding embodiments, wherein the oligonucleotide type is any oligonucleotide listed in Table A1.


49. A composition comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages; and


3) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise:


1) a 5′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety;


2) a 3′-end region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety; and


3) a middle region between the 5′-end region and the 3′-region comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotidic units comprising a phosphodiester linkage.


50. The composition of embodiment 43 or 49, wherein the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered in that level of skipping of an exon is increased relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


51. The composition of any one of the preceding embodiments, wherein the transcript is a Dystrophin transcript.


52. The composition of any one of the preceding embodiments, wherein the exon is DMD exon 45, 51, or 53 or multiple DMD exons, and the splicing of the transcript is altered such that the level of skipping of exon 45, 51, or 53, or multiple exons is increased.


53. The composition of any one of the preceding embodiments, wherein the 5′-end region comprises 1 or more nucleoside units not comprising a 2′-F modified sugar moiety.


54. The composition of any one of the preceding embodiments, wherein the 3′-end region comprises 1 or more nucleoside units not comprising a 2′-F modified sugar moiety.


55. The composition of any one of the preceding embodiments, wherein the middle region comprises 1 or more nucleotidic units comprising no phosphodiester linkage.


56. The composition of any one of the preceding embodiments, wherein the first of the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety and a modified internucleotidic linkage of the 5′-end is the first, second, third, fourth or fifth nucleoside unit of the oligonucleotide from the 5′-end, and the last of the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleoside units comprising a 2′-F modified sugar moiety and a modified internucleotidic linkage of the 3′-end is the last, second last, third last, fourth last, or fifth last nucleoside unit of the oligonucleotide.


57. The composition of any one of the preceding embodiments, wherein the 5′-end region comprising 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


58. The composition of any one of the preceding embodiments, wherein the 5′-end region comprising 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


59. The composition of any one of the preceding embodiments, wherein the 3′-end region comprising 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


60. The composition of any one of the preceding embodiments, wherein the 3′-end region comprising 5, 6, 7, 8, 9, 10 or more consecutive nucleoside units comprising a 2′-F modified sugar moiety.


61. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage between two nucleoside units comprising a 2′-F modified sugar moiety in the 5′-end region is independently a modified internucleotidic linkage.


62. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage between two nucleoside units comprising a 2′-F modified sugar moiety in the 3′-end region is independently a modified internucleotidic linkage.


63. The composition of embodiment 61 or 62, wherein each modified internucleotidic linkage is independently a chiral internucleotidic linkage.


64. The composition of embodiment 61 or 62, wherein each modified internucleotidic linkage is independently a chirally controlled internucleotidic linkage.


65. The composition of embodiment 61 or 62, wherein each modified internucleotidic linkage is a phosphorothioate internucleotidic linkage.


66. The composition of embodiment 61 or 62, wherein each modified internucleotidic linkage is a chirally controlled phosphorothioate internucleotidic linkage.


67. The composition of embodiment 61 or 62, wherein each modified internucleotidic linkage is a Sp chirally controlled phosphorothioate internucleotidic linkage.


68. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more natural phosphate linkages.


69. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more natural phosphate linkages each independently between a nucleoside unit comprising a 2′-OR1 modified sugar moiety and a nucleoside unit comprising a 2′-F modified sugar moiety, or between two nucleoside units each independently comprising a 2′-OR1 modified sugar moiety, wherein R1 is optionally substituted C1-6 alkyl.


70. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


71. The composition of any one of the preceding embodiments, wherein the middle region comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages each independently between a nucleoside unit comprising a 2′-OR1 modified sugar moiety and a nucleoside unit comprising a 2′-F modified sugar moiety, or between two nucleoside units each independently comprising a 2′-OR1 modified sugar moiety, wherein R1 is optionally substituted C1-6 alkyl.


72. The composition of embodiment 69 or 71, wherein 2′-OR1 is 2′-OCH3.


73. The composition of embodiment 69 or 71, wherein 2′-OR1 is 2′-OCH2CH2OCH3.


74. The composition of any one of the preceding embodiments, wherein the 5′-end region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 chiral modified internucleotidic linkages.


75. The composition of any one of the preceding embodiments, wherein the 5′-end region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 consecutive chiral modified internucleotidic linkages.


76. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage in the 5′-end region is a chiral modified internucleotidic linkage.


77. The composition of any one of the preceding embodiments, wherein the 3′-end region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 chiral modified internucleotidic linkages.


78. The composition of any one of the preceding embodiments, wherein the 3′-end region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 consecutive chiral modified internucleotidic linkages.


79. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage in the 3′-end region is a chiral modified internucleotidic linkage.


80. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 chiral modified internucleotidic linkages.


81. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 consecutive chiral modified internucleotidic linkages.


82. The composition of any one of embodiments 74-81, wherein each chiral modified internucleotidic linkage is independently a chirally controlled internucleotidic linkage.


83. The composition of any one of embodiments 74-81, wherein each chiral modified internucleotidic linkage is independently a chirally controlled internucleotidic linkage wherein its chirally controlled linkage phosphorus has a Sp configuration.


84. The composition of any one of embodiments 74-83, wherein each chiral modified internucleotidic linkage is independently a chirally controlled phosphorothioate internucleotidic linkage.


85. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 non-negatively charged internucleotidic linkages.


86. The composition of any one of the preceding embodiments, wherein the middle region comprises at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 neutral internucleotidic linkages.


87. The composition of any one of the preceding embodiments, wherein a neutral internucleotidic linkage is a chiral internucleotidic linkage.


88. The composition of any one of the preceding embodiments, wherein a neutral internucleotidic linkage is a chirally controlled internucleotidic linkage independently of Rp or Sp at its linkage phosphorus.


89. The composition of any one of the preceding embodiments, wherein the base sequence comprises a sequence having no more than 5 mismatches from a 20 base long portion of the dystrophin gene or its complement.


90. The composition of any one of the preceding embodiments, wherein the length of the base sequence of the oligonucleotides of the plurality is no more than 50 bases.


91. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 chirally controlled centers independently of Rp or Sp.


92. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 5 chirally controlled centers independently of Rp or Sp.


93. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 6 chirally controlled centers independently of Rp or Sp.


94. The composition of any one of the preceding embodiments, wherein the pattern of backbone chiral centers comprises at least 10 chirally controlled centers independently of Rp or Sp.


95. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the particular oligonucleotide type are capable of mediating skipping of one or more exons of the dystrophin gene.


96. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 45, 51 or 53 of the dystrophin gene.


97. The composition of embodiment 96, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 45 of the dystrophin gene.


98. The composition of embodiment 96, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 51 of the dystrophin gene.


99. The composition of embodiment 96, wherein the oligonucleotides of the plurality are capable of mediating the skipping of exon 53 of the dystrophin gene.


100. The composition of embodiment 97, wherein the base sequence comprises a sequence having no more than 5 mismatches from the sequence of any oligonucleotide disclosed herein.


101. The composition of embodiment 97, wherein the base sequence comprises or is the sequence of any oligonucleotide disclosed herein.


102. The composition of embodiment 97, wherein the base sequence is that of any oligonucleotide disclosed herein.


103. The composition of embodiment 97, wherein the base sequence comprises a sequence having no more than 5 mismatches from the sequence of any oligonucleotide disclosed herein.


104. The composition of embodiment 97, wherein the base sequence comprises or is any oligonucleotide disclosed herein.


105. The composition of embodiment 97, wherein the base sequence is any oligonucleotide disclosed herein.


106. The composition of any of the preceding embodiments, wherein the oligonucleotides of the plurality are any oligonucleotide disclosed herein.


107. The composition of embodiment 18, wherein oligonucleotides of the particular oligonucleotide type are any oligonucleotide disclosed herein.


108. The composition of any one of the preceding embodiments, wherein the base sequence is or comprises or comprises 15 contiguous bases of the base sequence of any oligonucleotide in Table A1.


109. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage.


110. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


111. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chirally controlled non-negatively charged internucleotidic linkages.


112. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive non-negatively charged internucleotidic linkages.


113. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive chirally controlled non-negatively charged internucleotidic linkages.


114. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure.


115. The composition of any one of the preceding embodiments, wherein a wing comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


116. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a wing comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chirally controlled non-negatively charged internucleotidic linkages.


117. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a wing comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive non-negatively charged internucleotidic linkages.


118. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a wing comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive chirally controlled non-negatively charged internucleotidic linkages.


119. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise or consist of a wing-core-wing structure, and wherein only one wing comprise one or more non-negatively charged internucleotidic linkages.


120. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


121. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more chirally controlled non-negatively charged internucleotidic linkages.


122. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive non-negatively charged internucleotidic linkages.


123. The composition of any one of the preceding embodiments, wherein the oligonucleotides comprise a wing-core-wing, core-wing, or wing-core structure, and wherein a core comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more consecutive chirally controlled non-negatively charged internucleotidic linkages.


124. The composition of any one of the preceding embodiments, wherein 40%, 45%, 50%, 55%, 600%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of internucleotidic linkages of a wing is independently a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage or a Rp chiral internucleotidic linkage.


125. The composition of any one of the preceding embodiments, wherein 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90°, 95%, or 100% of internucleotidic linkages of a wing is independently a non-negatively charged internucleotidic linkage or a natural phosphate internucleotidic linkage.


126. The composition of any one of the preceding embodiments, wherein 400, 45%, 50%, 55%, 60%0, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of internucleotidic linkages of a wing is independently a non-negatively charged internucleotidic linkage.


127. The composition of any one of embodiments 124-126, wherein the percentage is 50% or more.


128. The composition of any one of embodiments 124-126, wherein the percentage is 60% or more.


129. The composition of any one of embodiments 124-126, wherein the percentage is 75% or more.


130. The composition of any one of embodiments 124-126, wherein the percentage is 80% or more.


131. The composition of any one of embodiments 124-126, wherein the percentage is 900 or more.


132. The composition of any one of the preceding embodiments, wherein the oligonucleotides each comprise a non-negatively charged internucleotidic linkage and a natural phosphate internucleotidic linkage.


133. The composition of any one of the preceding embodiments, wherein the oligonucleotides each comprise a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage and a Rp chiral internucleotidic linkage.


134. The composition of any one of the preceding embodiments, wherein a wing comprises a non-negatively charged internucleotidic linkage and a natural phosphate internucleotidic linkage.


135. The composition of any one of the preceding embodiments, wherein a wing comprises a non-negatively charged internucleotidic linkage, a natural phosphate internucleotidic linkage and a Rp chiral internucleotidic linkage.


136. The composition of any one of the preceding embodiments, wherein a core comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more non-negatively charged internucleotidic linkages.


137. The composition of any one of the preceding embodiments, wherein all non-negatively charged internucleotidic linkages of the same oligonucleotide have the same constitution.


138. The composition of any one of the preceding embodiments, wherein each of the non-negatively charged internucleotidic linkages independently has the structure of formula I-n-1, I-n-2, I-n-3, I-n-4, II, I-a-1, H-a-2, I-b-1, H-b-2, I-c-1, II-c-2, H-d-1, II-d-2, or a salt form thereof.


139. The composition of any one of the preceding embodiments, wherein each of the non-negatively charged internucleotidic linkages independently has the structure of formula I-n-1, I-n-2,1-n-3, 1-n-4, II, II-a-1,11-a-2,11-b-1,11-b-2,11-c-1,11-c-2,11-d-1, II-d-2, or a salt form thereof.


140. The composition of any one of the preceding embodiments, wherein each of the non-negatively charged internucleotidic linkages independently has the structure of formula II, I-a-1, II-a-2, I-b-1, II-b-2, I-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


141. The composition of any one of the preceding embodiments, wherein each of the non-negatively charged internucleotidic linkages independently has the structure of formula II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, II-d-2, or a salt form thereof.


142. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage which is a neutral internucleotidic linkage.


143. The composition of any one of the preceding embodiments, wherein the pattern of backbone linkages comprises at least one neutral internucleotidic linkage which is or comprises a triazole, neutral triazole, alkyne, or a cyclic guanidine.


144. The composition of any one of the preceding embodiments, wherein the oligonucleotide type comprises any of: cholesterol; L-carnitine (amide and carbamate bond); Folic acid; Gambogic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand; CPP; Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).


145. The composition of any one of the preceding embodiments, wherein the oligonucleotide type is any oligonucleotide listed in Table A1.


146. The composition of any one of the preceding embodiments, wherein each of the oligonucleotides comprises a chemical moiety conjugated to the oligonucleotide chain of the oligonucleotide optionally through a linker moiety, wherein the chemical moiety comprises a carbohydrate moiety, a peptide moiety, a receptor ligand moiety, or a moiety having the structure of —N(R1)2, —N(R1)3, or —N═C(N(R1)2)2.


147. The composition of any one of the preceding embodiments, wherein each of the oligonucleotides comprises a chemical moiety conjugated to the oligonucleotide chain of the oligonucleotide optionally through a linker moiety, wherein the chemical moiety comprises a guanidine moiety.


148. The composition of any one of the preceding embodiments, wherein each of the oligonucleotides comprises a chemical moiety conjugated to the oligonucleotide chain of the oligonucleotide optionally through a linker moiety, wherein the chemical moiety comprises —N═C(N(CH3)2)2.


149. The composition of any one of the preceding embodiments, wherein at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the oligonucleotides in the composition that have the base sequence of the particular oligonucleotide type are oligonucleotides of the particular oligonucleotide type.


150. The composition of any one of the preceding embodiments, wherein at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the oligonucleotides in the composition that have the base sequence, pattern of backbone linkages, and pattern of backbone phosphorus modifications of the particular oligonucleotide type are oligonucleotides of the particular oligonucleotide type.


151. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the particular type are structurally identical.


152. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage is a phosphoramidate linkage.


153. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage comprises a guanidine moiety.


154. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I:




embedded image


or a salt form thereof, wherein:


PL is P(═W), P, or P→B(R′)3;


W is O, N(-L-R5), S or Se;


each of R1 and R5 is independently —H, -L-R′, halogen, —CN, —NO2, -L-Si(R′)3, —OR′, —SR′, or —N(R′)2;


each of X. Y and Z is independently —O—, —S—, —N(-L-R5)—, or L;


each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R′)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —OP(O)(SR′)O—, —OP(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL;


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms.


each R′ is independently —R. —C(O)R, —C(O)OR, or—S(O)2R;


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom. 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


155. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I or a salt form thereof.


156. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-1 or a salt form thereof:




embedded image


157. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-1 or a salt form thereof.


158. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-2 or a salt form thereof:




embedded image


159. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-3 or a salt form thereof:




embedded image


160. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-3 or a salt form thereof.


161. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


162. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


163. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted 5-membered monocyclic ring having no more than two nitrogen atoms.


164. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula I-n-3 or a salt form thereof, wherein one R′ from one —N(R′)2 and one R′ from the other —N(R′)2 are taken together with their intervening atoms to form an optionally substituted 5-membered monocyclic ring having no more than two nitrogen atoms.


165. The composition of any one of embodiments 159-162, wherein the ring formed is a saturated ring.


166. The composition of any one of embodiments 159-162, wherein the ring formed is a partially unsaturated ring.


167. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-4 or a salt form thereof:




embedded image


168. The composition of embodiment 167, wherein La is a covalent bond.


169. The composition of embodiment 167, wherein La is —N(R′)—.


170. The composition of embodiment 167, wherein La is —N(R′)—.


171. The composition of embodiment 167, wherein La is —N(R)—.


172. The composition of embodiment 167, wherein La is —S(O)—.


173. The composition of embodiment 167, wherein La is —S(O)2—.


174. The composition of embodiment 167, wherein La is —S(O)2N(R′)—.


175. The composition of any one of embodiments 167-174, wherein Lb is a covalent bond.


176. The composition of any one of embodiments 167-174, wherein L is —N(R)—.


177. The composition of any one of embodiments 167-174, wherein L is —N(R′)—.


178. The composition of any one of embodiments 167-174, wherein L is —N(R)—.


179. The composition of any one of embodiments 167-174, wherein L is —S(O)—.


180. The composition of any one of embodiments 167-174, wherein Lb is —S(O)2—.


181. The composition of any one of embodiments 167-174, wherein Lb is —S(O)2N(R′)—.


182. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II:




embedded image


or a salt form thereof, wherein:


PL is P(═W), P, or P→B(R′)3;


W is O, N(-L-R5), S or Se;


each of X, Y and Z is independently —O—, —S—, —N(-L-R5)—, or L;


R5 is —H, -L-R′, halogen, —CN, —NO2, -L-Si(R′)3, —OR′, —SR′, or —N(R′)2;


Ring AL is an optionally substituted 3-20 membered monocyclic, bicyclic or polycyclic ring having 0-10 heteroatoms;


each Rs is independently —H, halogen, —CN, —N3, —NO, —NO2, -L-R′, -L-Si(R)3, -L-OR′, -L-SR′, -L-N(R′)2, —O-L-R′, -θ-L-Si(R)3, —O-L-OR′, —O-L-SR′, or —O-L-N(R′)2:


g is 0-20:


each L is independently a covalent bond, or a bivalent, optionally substituted, linear or branched group selected from a C1-30 aliphatic group and a C1-30 heteroaliphatic group having 1-10 heteroatoms, wherein one or more methylene units are optionally and independently replaced with C1-6 alkylene, C1-6 alkenylene, —C≡C—, a bivalent C1-C6 heteroaliphatic group having 1-5 heteroatoms, —C(R′)2—, -Cy-, —O—, —S—, —S—S—, —N(R′)—, —C(O)—, —C(S)—, —C(NR′)—, —C(O)N(R)—, —N(R′)C(O)N(R′)—, —N(R′)C(O)O—, —S(O)—, —S(O)2—, —S(O)2N(R′)—, —C(O)S—, —C(O)O—, —P(O)(OR′)—, —P(O)(SR′)—, —P(O)(R′)—, —P(O)(NR′)—, —P(S)(OR′)—, —P(S)(SR′)—, —P(S)(R′)—, —P(S)(NR′)—, —P(R′)—, —P(OR′)—, —P(SR′)—, —P(NR′)—, —P(OR′)[B(R′)3]—, —OP(O)(OR′)O—, —P(O)(SR′)O—, —P(O)(R′)O—, —OP(O)(NR′)O—, —OP(OR′)O—, —OP(SR′)O—, —OP(NR′)O—, —OP(R′)O—, or —OP(OR′)[B(R′)3]O—, and one or more CH or carbon atoms are optionally and independently replaced with CyL;


each -Cy- is independently an optionally substituted bivalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each CyL is independently an optionally substituted trivalent or tetravalent group selected from a C3-20 cycloaliphatic ring, a C6-20 aryl ring, a 5-20 membered heteroaryl ring having 1-10 heteroatoms, and a 3-20 membered heterocyclyl ring having 1-10 heteroatoms;


each R′ is independently —R, —C(O)R, —C(O)OR, or —S(O)2R;


each R is independently —H, or an optionally substituted group selected from C1-30 aliphatic, C1-30 heteroaliphatic having 1-10 heteroatoms, C6-30 aryl, C6-30 arylaliphatic, C6-30 arylheteroaliphatic having 1-10 heteroatoms, 5-30 membered heteroaryl having 1-10 heteroatoms, and 3-30 membered heterocyclyl having 1-10 heteroatoms, or


two R groups are optionally and independently taken together to form a covalent bond, or


two or more R groups on the same atom are optionally and independently taken together with the atom to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the atom, 0-10 heteroatoms, or


two or more R groups on two or more atoms are optionally and independently taken together with their intervening atoms to form an optionally substituted, 3-30 membered, monocyclic, bicyclic or polycyclic ring having, in addition to the intervening atoms, 0-10 heteroatoms.


183. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II, or a salt form thereof.


184. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-a-1:




embedded image


or a salt form thereof.


185. The composition any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-a-2:




embedded image


or a salt form thereof.


186. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-a-1 or II-a-2, or a salt form thereof.


187. The composition of any one of embodiments 182-186, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-b-1:




embedded image


or a salt form thereof, wherein g is 0-18.


188. The composition of any one of embodiments 182-187, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-b-2:




embedded image


or a salt form thereof, wherein g is 0-18.


189. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-b-1 or II-b-2, or a salt form thereof.


190. The composition of any one of embodiments 182-188, wherein Ring AL is an optionally substituted 3-20 membered monocyclic ring having 0-10 heteroatoms (in addition to the two nitrogen atoms for formula II-b-1 or II-b-2).


191. The composition of any one of embodiments 182-188, wherein Ring AL is an optionally substituted 5-membered monocyclic saturated ring.


192. The composition of any one of embodiments 182-191, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-c-1:




embedded image


or a salt form thereof, wherein g is 0-4.


193. The composition of any one of embodiments 182-193, wherein a non-negatively charged internucleotidic linkage has the structure of formula II-c-2:




embedded image


or a salt form thereof, wherein g is 0-4.


194. The composition of any one of the preceding embodiments, wherein each non-negatively charged internucleotidic linkage independently has the structure of formula II-c-1 or II-c-2, or a salt form thereof.


195. The composition of any one of embodiments 182-193, wherein each non-negatively charged internucleotidic linkage has the same structure.


196. The composition of any one of the preceding embodiments, wherein, if applicable, each internucleotidic linkage in the oligonucleotides of the plurality that is not a non-negatively charged internucleotidic linkage independently has the structure of formula I.


197. The composition of any one of the preceding embodiments, wherein each internucleotidic linkage in the oligonucleotides of the plurality independently has the structure of formula I.


198. The composition of any one of the preceding embodiments, wherein one or more PL is P(═W).


199. The composition of any one of the preceding embodiments, wherein each PL is independently P(═W).


200. The composition of any one of the preceding embodiments, wherein one or more W is O.


201. The composition of any one of the preceding embodiments, wherein each W is O.


202. The composition of any one of the preceding embodiments, wherein one or more W is S.


203. The composition of any one of the preceding embodiments, wherein one or more W is independently N(-L-R5).


204. The composition of any one of the preceding embodiments, wherein one or more internucleotidic linkage independently has the structure of formula III or salt form thereof:




embedded image


205. The composition of embodiment 204, wherein PN is P(═N-L-R5).


206. The composition of embodiment 204, wherein PN is




embedded image


207. The composition of embodiment 204, wherein PN is




embedded image


208. The composition of embodiment 207, wherein La is a covalent bond.


209. The composition of embodiment 207, wherein La is —N(R)—.


210. The composition of embodiment 207, wherein La is —N(R′)—.


211. The composition of embodiment 207, wherein La is —N(R)—.


212. The composition of embodiment 207, wherein La is —S(O)—.


213. The composition of embodiment 207, wherein La is —S(O)2—.


214. The composition of embodiment 207, wherein La is —S(O)2N(R′)—.


215. The composition of embodiment 204, wherein PN is




embedded image


216. The composition of embodiment 204, wherein PN is




embedded image


217. The composition of embodiment 204, wherein PN is




embedded image


218. The composition of any one of the preceding embodiments, wherein one or more Y is O.


219. The composition of any one of the preceding embodiments, wherein each Y is O.


220. The composition of any one of the preceding embodiments, wherein one or more Z is O.


221. The composition of any one of the preceding embodiments, wherein each Z is O.


222. The composition of any one of the preceding embodiments, wherein one or more X is O.


223. The composition of any one of the preceding embodiments, wherein one or more X is S.


224. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of




embedded image


225. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of




embedded image


226. The composition of any one of the preceding embodiments, wherein a non-negatively charged internucleotidic linkage has the structure of




embedded image


227. The composition of any one of the preceding embodiments, wherein for each internucleotidic linkage of formula I or a salt fore thereof that is not a non-negatively charged internucleotidic linkage, X is independently O or S, and -L-R1 is —H (natural phosphate linkage or phosphorothioate linkage, respectively).


228. The composition of any one of the preceding embodiments, wherein each phosphorothioate linkage, if any, in the oligonucleotides of the plurality is independently a chirally controlled internucleotidic linkage.


229. The composition of any one of the preceding embodiments, wherein at least one non-negatively charged internucleotidic linkage is a chirally controlled internucleotidic linkage.


230. The composition of any one of the preceding embodiments, wherein at least one non-negatively charged internucleotidic linkage is a chirally controlled internucleotidic linkage.


231. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality comprise a targeting moiety wherein the targeting moiety is independently connected to an oligonucleotide backbone through a linker.


232. The composition of embodiment 231, wherein the targeting moiety is a carbohydrate moiety.


233. The composition of embodiment 231 or 232, wherein the targeting moiety comprises or is a GalNac moiety.


234. The composition of any one of the preceding embodiments, wherein the oligonucleotides of the plurality comprise a lipid moiety wherein the lipid moiety is independently connected to an oligonucleotide backbone through a linker.


235. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein one or more non-neutral internucleotidic linkages at the condition of the composition independently exist as a salt form.


236. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein one or more negatively-charged internucleotidic linkages at the condition of the composition independently exist as a salt form.


237. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein one or more negatively-charged internucleotidic linkages at the condition of the composition independently exist as a metal salt.


238. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein each negatively-charged internucleotidic linkage at the condition of the composition independently exists as a metal salt.


239. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein each negatively-charged internucleotidic linkage at the condition of the composition independently exists as sodium salt.


240. The composition of any one of the preceding embodiments, wherein oligonucleotides of the plurality exist as salts, wherein each negatively-charged internucleotidic linkage is independently a natural phosphate linkage (the neutral form of which is —O—P(O)(OH)—O) or phosphorothioate internucleotidic linkage (the neutral form of which is —O—P(O)(SH)—O).


241. An oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


wherein:


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 chirally controlled internucleotidic linkages; and


oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 non-negatively charged internucleotidic linkages.


242. The composition of any one of the preceding embodiments, wherein at least one non-negatively charged internucleotidic linkage is a neutral internucleotidic linkage.


243. The composition of any one of the preceding embodiments, wherein a neutral internucleotidic linkage is or comprises a triazole, neutral triazole, alkyne, or a cyclic guanidine.


244. The oligonucleotide composition of any one of the preceding embodiments, wherein the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


245. The oligonucleotide composition of any one of the preceding embodiments, wherein the transcript is a Dystrophin transcript.


246. The oligonucleotide composition of any one of the preceding embodiments, wherein the splicing of the transcript is altered such that the level of skipping of exon 45, 51, or 53, or multiple exons is increased.


247. The oligonucleotide composition of any one of the preceding embodiments, wherein the oligonucleotide composition is capable of mediating knockdown of a target gene.


248. An oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by:


1) base sequence;


2) pattern of backbone linkages;


3) pattern of backbone chiral centers; and


4) pattern of backbone phosphorus modifications,


wherein:


the oligonucleotides of the plurality comprise cholesterol; L-carnitine (amide and carbamate bond); Folic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand; Gambogic acid; CPP: Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).


249. The composition of embodiment 248, wherein the oligonucleotides of the plurality comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 chirally controlled internucleotidic linkages.


250. The composition of any one of the preceding embodiments, wherein the oligonucleotide composition is characterized in that, when it is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.


251. The composition of any one of the preceding embodiments, wherein the transcript is a Dystrophin transcript.


252. The composition of any one of the preceding embodiments, wherein the splicing of the transcript is altered such that the level of skipping of exon 45, 51, or 53, or multiple exons is increased.


253. The composition of any one of the preceding embodiments, wherein the oligonucleotide composition is capable of mediating knockdown of a target gene.


254. The composition of any one of the preceding embodiments, wherein each heteroatom is independently boron, nitrogen, oxygen, silicon, sulfur, or phosphorus.


255. A pharmaceutical composition comprising an oligonucleotide composition of any one of the preceding embodiments and a pharmaceutically acceptable carrier.


256. A method for altering splicing of a target transcript, comprising administering an oligonucleotide composition of any one of the preceding embodiments.


257. The method of embodiment 256, wherein the splicing of the target transcript is altered relative to absence of the composition.


258. The method of any one of the preceding embodiments, wherein the alteration is that one or more exon is skipped at an increased level relative to absence of the composition.


259. The method of any one of the preceding embodiments, wherein the target transcript is pre-mRNA of dystrophin.


260. The method of any one of the preceding embodiments, wherein exon 45 of dystrophin is skipped at an increased level relative to absence of the composition.


261. The method of any one of the preceding embodiments, wherein exon 51 of dystrophin is skipped at an increased level relative to absence of the composition.


262. The method of any one of embodiments 256-259, wherein exon 53 of dystrophin is skipped at an increased level relative to absence of the composition.


263. The method of any one of the preceding embodiments, wherein a protein encoded by the mRNA with the exon skipped provides one or more functions better than a protein encoded by the corresponding mRNA without the exon skipping.


264. A method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising administering to a subject susceptible thereto or suffering therefrom a composition of any one of the preceding embodiments.


265. A method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising administering to a subject susceptible thereto or suffering therefrom a composition comprising any oligonucleotide disclosed herein.


266. A method for treating muscular dystrophy. Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising (a) administering to a subject susceptible thereto or suffering therefrom a composition comprising any oligonucleotide disclosed herein, and (b) administering to the subject additional treatment which is capable of preventing, treating, ameliorating or slowing the progress of muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD).


267. The method of embodiment 266, wherein the additional treatment is a second oligonucleotide.


268. The composition of any of the preceding embodiments, wherein the transcript splicing system comprises a myoblast or myotubule.


269. The composition of any of the preceding embodiments, wherein the transcript splicing system comprises a myoblast cell.


270. The composition of any of the preceding embodiments, wherein the transcript splicing system comprises a myoblast cell, which is contacted with the composition after 0.4 or 7 days of pre-differentiation.


271. A composition comprising a combination comprising: (a) a first composition of any of the preceding embodiments; (b) a second composition of any of the preceding embodiments; and, optionally (c) a third composition of any of the preceding embodiments, wherein the first, second and third compositions are different.


272. A method for preparing an oligonucleotide or an oligonucleotide composition thereof, comprising providing a compound having the structure of:




embedded image


or a salt thereof.


273. A method for preparing an oligonucleotide or an oligonucleotide composition thereof, comprising providing a compound having the structure of:




embedded image


or a salt thereof.


274. A method for preparing an oligonucleotide or an oligonucleotide composition thereof, comprising providing a compound having the structure of




embedded image


or salt thereof.


275. The method of any one of embodiments 272-274, wherein the compound is stereochemically pure.


276. The method of any one of embodiments 272-275, wherein the compound is a compound of Tables CA-1, CA-2, CA-3, CA-4, CA-5, CA-6, CA-7, CA-8, CA-9, CA-10, CA-11, or CA-12, or a related diastereomer or enantiomer thereof.


277. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-2 or a related diastereomer or enantiomer thereof.


278. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-3 or a related diastereomer or enantiomer thereof.


279. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-4 or a related diastereomer or enantiomer thereof.


280. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-5 or a related diastereomer or enantiomer thereof.


281. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-6 or a related diastereomer or enantiomer thereof.


282. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-7 or a related diastereomer or enantiomer thereof.


283. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-8 or a related diastereomer or enantiomer thereof.


284. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-9 or a related diastereomer or enantiomer thereof.


285. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-10 or a related diastereomer or enantiomer thereof.


286. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-11 or a related diastereomer or enantiomer thereof.


287. The method of any one of embodiments 272-275, wherein the compound is a compound of Table CA-12 or a related diastereomer or enantiomer thereof.


288. A method for preparing an oligonucleotide or an oligonucleotide composition thereof, comprising providing a phosphoramidite compound comprising a chiral auxiliary moiety having the structure of




embedded image


289. A method for preparing an oligonucleotide or an oligonucleotide composition thereof, comprising providing a phosphoramidite compound having the structure of:




embedded image


embedded image


or salt thereof.


290. The method of any one of embodiments 272-289, wherein W1 is -NG5-.


291. The method of any one of embodiments 272-290, wherein G5 and one of G3 and G4 are taken together to form an optionally substituted 3-8 membered saturated ring having 0-3 heteroatoms in addition to the nitrogen of -NG5-.


292. The method of any one of embodiments 272-290, wherein G5 and one of G3 and G4 are taken together to form an optionally substituted 5-membered saturated ring having no heteroatoms in addition to the nitrogen of -NG5-.


293. The method of any one of embodiments 272-292, wherein W2 is —O—.


294. The method of any one of embodiments 272-293, wherein G2 comprises an electron-withdrawing group.


295. The method of any one of embodiments 272-293, wherein G2 is methyl substituted with one or more electron-withdrawing groups.


296. The method of any one of embodiments 294-295, wherein an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R′, —S(O)2R′, —P(W)(R′)2, —P(O)(R′)2, —P(O)(OR′)2, or —P(S)(R′)2, or aryl or heteroaryl substituted with one or more of —CN, —NO2, halogen. —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R′)2, —P(O)(OR′)2, or —P(S)(R1)2.


297. The method of any one of embodiments 294-295, wherein an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2, or phenyl substituted with one or more of —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R′)2, —P(O)(OR1)2, or —P(S)(R′)2.


298. The method of any one of embodiments 294-295, wherein an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2. —P(O)(OR′)2, or —P(S)(R1)2.


299. The method of any one of embodiments 272-294, wherein G2 is -L′-L″-R′, wherein L′ is —C(R)2— or optionally substituted —CH2—, and L″ is a covalent bond, —P(O)(R′)—, —P(O)(R′)O—, —P(O)(OR′)—, —P(O)(OR′)O—, —P(O)[N(R′)]—. —P(O)[N(R′)]O—, —P(O)[N(R′)][N(R′)]—, —P(S)(R′)—, —S(O)2—, —S(O)2—, —S(O)2O—, —S(O)—, —C(O)—, or —C(O)N(R′)—.


300. The method of any one of embodiments 272-294, wherein G2 is -L′-L″-R′, wherein L′ is —C(R)2— or optionally substituted —CH2—, and L″ is —P(O)(R′)—, —P(O)(R′)O—, —P(O)(OR′)—, —P(O)(OR′)O—, —P(O)[N(R′)]—, —P(O)[N(R′)]O—, —P(O)[N(R′)][N(R′)]—, —P(S)(R′)—, —S(O)2—, —S(O)2—, —S(O)2O—, —S(O)—, —C(O)—, or —C(O)N(R′)—.


301. The method of any one of embodiments 272-300, wherein G2 is -L′-S(O)2R′.


302. The method of embodiment 301, wherein R′ is optionally substituted C1-6 aliphatic.


303. The method of embodiment 301, wherein R′ is optionally substituted C1-6 alkyl.


304. The method of embodiment 301, wherein R′ is methyl, isopropyl or t-butyl.


305. The method of embodiment 301, wherein R′ is optionally substituted phenyl.


306. The method of embodiment 301, wherein R′ is phenyl.


307. The method of embodiment 301, wherein R′ is substituted phenyl.


308. The method of any one of embodiments 272-300, wherein G2 is -L′-P(O)(R′)2.


309. The method of embodiment 308, wherein one R′ is optionally substituted C1-6 aliphatic.


310. The method of embodiment 308, wherein one R′ is optionally substituted C1-6 alkyl.


311. The method of embodiment 308, wherein one R′ is optionally substituted phenyl.


312. The method of embodiment 308, wherein one R′ is phenyl.


313. The method of embodiment 308, wherein one R′ is substituted phenyl.


314. The method of any one of embodiments 309-313, wherein the other R′ is optionally substituted C1-6 aliphatic.


315. The method of any one of embodiments 309-313, wherein the other R′ is optionally substituted C1-6 alkyl.


316. The method of any one of embodiments 309-313, wherein the other R′ is optionally substituted phenyl.


317. The method of any one of embodiments 309-313, wherein the other R′ is phenyl.


318. The method of any one of embodiments 309-313, wherein the other R′ is substituted phenyl.


319. The method of any one of embodiments 299-318, wherein L′ is —C(R′)2—.


320. The method of any one of embodiments 299-318, wherein L′ is optionally substituted —CH2—.


321. The method of any one of embodiments 299-318, wherein L′ is —CH2—.


322. The method of any one of embodiments 272-321, comprising providing one or more additional compounds, wherein each compound is independently a compound of any one of embodiments 272-321.


323. The method of embodiment 322, wherein an additional compound has a different structure than the compound.


324. The method of embodiment 322, wherein in an additional compound. G2 is -L′-Si(R), wherein each R is independently not —H.


325. The method of embodiment 322, wherein in an additional compound, G2 is —CH2SiCH3Ph2.


326. The method of any one of embodiments 272-325, comprising one or more cycles, each of which independently comprises or consisting of:


1) deblocking;


2) coupling;


3) optionally a first capping;


4) modifying; and


5) optionally a second capping.


327. A method for preparing an oligonucleotide or a composition thereof, comprising one or more cycles, each of which independently comprises or consisting of:


1) deblocking;


2) coupling;


3) optionally a first capping;


4) modifying; and


5) optionally a second capping.


328. The method of any one of embodiments 326-327, wherein at least one cycle comprises or consists of 1) to 5).


329. The method of any one of embodiments 326-328, wherein the steps are performed sequentially from 1) to 5).


330. The method of any one of embodiments 326-329, wherein the cycles are performed until a desired length of an oligonucleotide is achieved.


331. The method of any one of embodiments 326-330, wherein deblocking removes a protection group on 5′-OH and provides a free 5′-OH.


332. The method of embodiment 331, wherein the protection group is R′—C(O)—.


333. The method of embodiment 331, wherein the protection group is DMTr.


334. The method of any one of embodiments 331-333, comprising contacting the oligonucleotides to be de-blocked with an acid.


335. The method of any one of embodiments 272-334, comprising a coupling that comprises: 1) providing a phosphoramidite; and 2) reacting the phosphoramidite with an oligonucleotide, wherein a P-O bond is formed between the phosphorus of the phosphoramidite and the 5′-OH of the oligonucleotide.


336. The method of any one of embodiments 272-335, comprising a coupling that comprises: 1) providing a phosphoramidite; and 2) reacting the phosphoramidite with an oligonucleotide, wherein a P-O bond is formed between the phosphorus of the phosphoramidite and the 5′-OH of the oligonucleotide, wherein the phosphoramidite is a compound of any one of embodiments 288-321.


337. The method of any one of embodiments 272-336, comprising a coupling that comprises: 1) providing a phosphoramidite; and 2) reacting the phosphoramidite with an oligonucleotide, wherein a P-O bond is formed between the phosphorus of the phosphoramidite and the 5′-OH of the oligonucleotide, wherein the phosphoramidite is a compound of any one of embodiments 288-293, wherein G2 is -L′-Si(R)3, wherein each R is independently not —H.


338. The method of embodiment 337, wherein G2 is —CH2SiCH3Ph2.


339. The method of any one of embodiments 336-338, wherein the coupling forms an internucleotidic linkage with a stereoselectivity of 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more.


340. The method of embodiment 339, wherein the internucleotidic linkage formed is an internucleotidic linkage of formula I or a salt form thereof.


341. The method of embodiment 340, wherein -X-L-R1 is




embedded image


342. The method of embodiment 340 or 341, wherein PL is P.


343. The method of any one of embodiments 272-342, comprising a coupling that comprises: 1) providing a phosphoramidite; and 2) reacting the phosphoramidite with an oligonucleotide, wherein a P-O bond is formed between the phosphorus of the phosphoramidite and the 5′-OH of the oligonucleotide, wherein the phosphoramidite is a standard phosphoramidite for oligonucleotide synthesis wherein the phosphorus atom is bonded to a protected nucleoside, —N(i-Pr)2, and 2-cyanoethyl.


344. The method of any one of embodiments 272-343, comprising a first capping comprises: 1) providing an acylating reagent, and 2) contacting an oligonucleotide with the acylating reagent, wherein the first capping caps an amino group of an internucleotidic linkage.


345. The method of any one of embodiments 272-344, comprising a first capping which forms an internucleotidic linkage of formula I or a salt form thereof, wherein -X-L-R1 is




embedded image


346. The method of embodiment 345, wherein PL is P and R1 is —C(O)R.


347. The method of any one of embodiments 272-346, wherein a first capping is performed after each coupling of embodiment 339.


348. The method of any one of embodiments 272-347, comprising a modifying step which is or comprises sulfurization.


349. The method of embodiment 348, wherein the sulfurization installs ═S on a linkage phosphorus.


350. The method of embodiment 348 or 349, wherein the sulfurization forms an internucleotidic linkage of formula I or a salt form thereof, wherein PL is P(═S).


351. The method of embodiment 350, wherein -X-L-R1 is




embedded image


352. The method of embodiment 351, wherein R1 is —C(O)R.


353. The method of any one of embodiments 272-352, comprising a modifying step which is or comprises oxidation.


354. The method of embodiment 348, wherein the sulfurization installs ═O on a linkage phosphorus.


355. The method of any one of embodiments 272-354, comprising a modifying step which installs ═N-L-R5 on a linkage phosphorus.


356. The method of any one of embodiments 272-354, comprising a modifying step which converts a linkage phosphorus into




embedded image


357. The method of any one of embodiments 272-356, comprising a modifying step which comprises contact the oligonucleotide with an azido imidazolinium salt.


358. The method of any one of embodiments 272-356, comprising a modifying step which comprises contact the oligonucleotide with a compound comprising




embedded image


359. The method of any one of embodiments 272-356, comprising a modifying step which comprises contact the oligonucleotide with a compound having the structure of




embedded image


wherein Q is an anion.


360. The method of embodiment 359, wherein Q is F, Cl, Br, BF4, PF6, TfO, Tf2N, AsF6, ClO4, or SbF6.


361. The method of embodiment 360, wherein Q is PF6.


362. The method of any one of embodiments 272-362, wherein a modifying step forms an internucleotidic linkage of formula I or a salt form thereof, wherein PL is P(═N-L-R5).


363. The method of any one of embodiments 272-362, wherein a modifying step forms an internucleotidic linkage of formula III or a salt form thereof.


364. The method of embodiment 362 or 363, wherein -X-L-R1 is




embedded image


365. The method of embodiment 364, wherein R1 is —C(O)R.


366. The method of any one of embodiments 272-365, comprising a second capping which caps free 5′-OH.


367. The method of any one of embodiments 272-366, comprising a second capping which caps free 5′-OH, wherein a second capping is performed in each cycle.


368. The method of any one of embodiments 272-366, comprising a second capping which caps free 5′-OH, wherein a second capping is performed in each cycle that is followed by another cycle.


369. The method of any one of embodiments 366-368, wherein a 5′-OH is capped as -OAc.


370. The method of any one of embodiments 272-369, wherein the oligonucleotide is attached to a solid support.


371. The method of embodiment 370, wherein the solid support is CPG.


372. The method of any one of embodiments 370-371, comprising a contact in which the oligonucleotide is contacted with a base.


373. The method of embodiment 372, wherein the contact is performed substantially absent of water.


374. The method of embodiment 372 or 373, wherein the contact is after the oligonucleotide length is achieved before deprotection and cleavage of oligonucleotide.


375. The method of any one of embodiments 372-374, wherein the base is an amine base having the structure of NR3.


376. The method of embodiment 375, wherein the base is triethylamine.


377. The method of embodiment 375, wherein the base is N, N-diethylamine.


378. The method of any one of embodiments 372-377, wherein the contact removes a chiral auxiliary.


379. The method of any one of embodiments 372-378, wherein the contact removes a -X-L-R1 group.


380. The method of embodiment 379, wherein -X-L-R1 is




embedded image


381. The method of any one of embodiments 372-380, wherein the contact forms an internucleotidic linkage of formula I-n-1, I-n-2, I-n-3, I-n-4, II, II-a-1, II-a-2, II-b-1, II-b-2, II-c-1, II-c-2, II-d-1, or II-d-2, wherein PL is P(O).


382. The method of any one of embodiments 364-381, wherein G2 comprises an electron-withdrawing group.


383. The method of any one of embodiments 364-382, wherein G2 is methyl substituted with one or more electron-withdrawing groups.


384. The method of any one of embodiments 382-383, wherein an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2, or aryl or heteroaryl substituted with one or more of —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R, —S(O)2R, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2.


385. The method of any one of embodiments 382-383, wherein an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2, or phenyl substituted with one or more of —CN, —NO2, halogen. —C(O)R1, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2.


386. The method of any one of embodiments 382-383, wherein an electron-withdrawing group is —CN, —NO2, halogen, —C(O)R, —C(O)OR′, —C(O)N(R′)2, —S(O)R1, —S(O)2R1, —P(W)(R1)2, —P(O)(R1)2, —P(O)(OR′)2, or —P(S)(R1)2.


387. The method of any one of embodiments 364-386, wherein G2 is -L′-L″-R′, wherein L′ is —C(R)2- or optionally substituted —CH2—, and L″ is a covalent bond, —P(O)(R′)—, —P(O)(R′)O—, —P(O)(OR′)—, —P(O)(OR′)O—, —P(O)[N(R′)]—, —P(O)[N(R′)]O—, —P(O)[N(R′)][N(R′)]—, —P(S)(R′)—, —S(O)2—, —S(O)2—, —S(O)2O—, —S(O)—, —C(O)—, or —C(O)N(R′)—.


388. The method of any one of embodiments 364-386, wherein G2 is -L′-L″-R′, wherein L′ is —C(R)2— or optionally substituted —CH2—, and L″ is —P(O)(R′)—, —P(O)(R′)O—, —P(O)(OR′)—, —P(O)(OR′)O—, —P(O)[N(R′)]—, —P(O)[N(R′)]O—, —P(O)[N(R′)N(R′)]—, —P(S)(R′)—, —S(O)2—, —S(O)2—, —S(O)2O—, —S(O)—, —C(O)—, or —C(O)N(R′)—.


389. The method of any one of embodiments 364-388, wherein G2 is -L′-S(O),R′.


390. The method of embodiment 389, wherein R′ is optionally substituted C1-6 aliphatic.


391. The method of embodiment 389, wherein R′ is optionally substituted C1-6 alkyl.


392. The method of embodiment 389, wherein R′ is methyl, isopropyl or t-butyl.


393. The method of embodiment 389, wherein R′ is optionally substituted phenyl.


394. The method of embodiment 389, wherein R′ is phenyl.


395. The method of embodiment 389, wherein R′ is substituted phenyl.


396. The method of any one of embodiments 364-388, wherein G2 is -L′-P(O)(R′)2.


397. The method of embodiment 396, wherein one R′ is optionally substituted C1-6 aliphatic.


398. The method of embodiment 396, wherein one R′ is optionally substituted C1-6 alkyl.


399. The method of embodiment 396, wherein one R′ is optionally substituted phenyl.


400. The method of embodiment 396, wherein one R′ is phenyl.


401. The method of embodiment 396, wherein one R′ is substituted phenyl.


402. The method of any one of embodiments 397401, wherein the other R′ is optionally substituted C1-6 aliphatic.


403. The method of any one of embodiments 397401, wherein the other R′ is optionally substituted C1-6 alkyl.


404. The method of any one of embodiments 309-313, wherein the other R′ is optionally substituted phenyl.


405. The method of any one of embodiments 309-313, wherein the other R′ is phenyl.


406. The method of any one of embodiments 309-313, wherein the other R′ is substituted phenyl.


407. The method of any one of embodiments 387-406, wherein L′ is —C(R′)2—.


408. The method of any one of embodiments 387406, wherein L′ is optionally substituted —CH2—.


409. The method of any one of embodiments 387406, wherein L′ is —CH2—.


410. The method of any one of embodiments 372409, wherein the contact removes 2′-cyanoethyl.


411. The method of any one of embodiments 372-410, wherein the contact forms a natural phosphate linkage or a salt form thereof.


412. The method of any one of embodiments 272-410, comprising removing of another chiral auxiliary or group that having a different structure than that of any one of embodiments 378-410.


413. The method of any one of embodiments 272410, comprising removing of




embedded image


wherein G2 is -L′-Si(R)3, wherein each R is independently not —H.


414. The method of embodiment 413, wherein G2 is —CH2SiCH3Ph2.


415. The method of any one of embodiments 412-414, comprising contacting an oligonucleotide with a fluoride.


416. The method of any one of embodiments 412414, comprising contacting an oligonucleotide with a solution comprising TEA-HF and a base.


417. The method of any one of embodiments 272416, comprising cleaving oligonucleotide from a solid support.


418. The method of any one of embodiments 272417, wherein the oligonucleotide or a composition thereof is an oligonucleotide or composition of any one of embodiments 1-254.


419. The compound of any one of embodiments 272-321, or a related diastereomer or enantiomer.


420. An oligonucleotide, wherein the oligonucleotide is, WV-20104, WV-20103, WV-20102, WV-20101, WV-20100, WV-20099, WV-20098, WV-20097, WV-20096, WV-20095, WV-20094, WV-20106, WV-20119, WV-20118, WV-13739, WV-13740, WV-9079, WV-9082, WV-9100, WV-9096, WV-9097, WV-9106, WV-9133, WV-9148, WV-9154, WV-9898, WV-9899, WV-9900, WV-9906, WV-9907. WV-9908, WV-9909, WV-9756, WV-9757, WV-9517, WV-9714, WV-9715, WV-9519, WV-9521, WV-9747, WV-9748, WV-9749, WV-9897, WV-9898, WV-9900, WV-9899, WV-9906, WV-9912, WV-9524, WV-9912, WV-9906, WV-9900, WV-9899, WV-9899, WV-9898, WV-9898, WV-9898, WV-9898, WV-9898, WV-9897, WV-9897, WV-9897, WV-9897, WV-9897, WV-9747, WV-9714, WV-9699, WV-9517. WV-9517, WV-13409, WV-13408, WV-12887, WV-12882, WV-12881. WV-12880, WV-12880, WV-WV12880, WV-12878, WV-12877, WV-12877, WV-12876, WV-12873, WV-12872, WV-12559, WV-12559, WV-12558, WV-12558, WV-12557, WV-12556, WV-12556, WV-12555, WV-12555, WV-12554, WV-12553, WV-12129, WV-12127, WV-12125, WV-12123, WV-11342, WV-11342, WV-11341, WV-11341, WV-11340, WV-10672. WV-10671, WV-10670, WV-10461, WV-10455, WV-9897, WV-9898, WV-13826, WV-13827, WV-13835, WV-12880, WV-14344, WV-13864, WV-13835, WV-14791, WV-14344, WV-13754, WV-13766, WV-11086, WV-11089, WV-17859, WV-17860, WV-20070, WV-20073, WV-20076, WV-20052, WV-20099, WV-20049, WV-20085, WV-20087, WV-20034, WV-20046, WV-20052, WV-20061, WV-20064, WV-20067, WV-20092, WV-20091. WV-20093, WV-20084, WV-9738. WV-9739, WV-9740, WV-9741, WV-15860. WV-15862, WV-11084, WV-11086, WV-11088, WV-11089, WV-14522, WV-14523, WV-17861, WV-17862, WV-13815, WV-13816, WV-13817, WV-13780, WV-17862, WV-17863, WV-17864, WV-17865, WV-17866, WV-20082, WV-20081, WV-20080, WV-20079, WV-20076, WV-20075, WV-20074, WV-20073, WV-20072, WV-20071, WV-20064, WV-20059. WV-20058, WV-20057, WV-20056, WV-20053, WV-20052, WV-20051, WV-20050, WV-20049, WV-20094, WV-20095, or a salt form thereof.


EQUIVALENTS

Having described some illustrative embodiments of the disclosure, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other illustrative embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the disclosure. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Acts, elements, and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments. Further, for the one or more means-plus-function limitations, if any, recited in the following claims, the means are not intended to be limited to the means disclosed herein for performing the recited function, but are intended to cover in scope any means, known now or later developed, for performing the recited function.


Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. Similarly, use of a), b), etc., or i), ii), etc. does not by itself connote any priority, precedence, or order of steps in the claims. Similarly, the use of these terms in the specification does not by itself connote any required priority, precedence, or order.


The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present disclosure is not to be limited in scope by examples provided. Examples are intended as illustration of one or more aspect of an invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. Advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.

Claims
  • 1. An oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by: 1) base sequence;2) pattern of backbone linkages;3) pattern of backbone chiral centers, and4) pattern of backbone phosphorus modifications,
  • 2. An oligonucleotide composition, comprising a plurality of oligonucleotides of a particular oligonucleotide type defined by: 1) base sequence;2) pattern of backbone linkages;3) pattern of backbone chiral centers; and4) pattern of backbone phosphorus modifications,
  • 3. The oligonucleotide of claim 2, wherein the pattern of backbone linkages comprises at least one non-negatively charged internucleotidic linkage.
  • 4. The oligonucleotide composition of claim 1, wherein when the oligonucleotide composition is contacted with a transcript in a transcript splicing system, splicing of the transcript is altered relative to that observed under a reference condition selected from the group consisting of absence of the composition, presence of a reference composition, and combinations thereof.
  • 5. The oligonucleotide of any one of claims 1-4, wherein one or more non-negatively charged internucleotidic linkage are independently chirally controlled.
  • 6. The composition of claim 5, wherein a non-negatively charged internucleotidic linkage has the structure of formula I:
  • 7. The composition of claim 5, wherein a non-negatively charged internucleotidic linkage has the structure of formula I-n-3:
  • 8. The composition of claim 5, wherein a non-negatively charged internucleotidic linkage has the structure of
  • 9. The composition of claim 8, wherein the non-negatively charged internucleotidic linkage
  • 10. The composition of claim 8, wherein the transcript is a Dystrophin transcript.
  • 11. The composition of claim 10, wherein splicing of the transcript is altered such that the level of skipping of exon 45, 51, or 53, or multiple exons is increased.
  • 12. The composition of claim 8, wherein each chiral internucleotidic linkage of the oligonucleotides of the plurality is independently a chirally controlled internucleotidic linkage.
  • 13. The composition of claim 8, wherein the base sequence is or comprises or comprises 15 contiguous bases of the base sequence of any oligonucleotide in Table A1.
  • 14. The composition of claim 11, wherein the oligonucleotide type comprises any of: cholesterol; L-carnitine (amide and carbamate bond): Folic acid; Gambogic acid; Cleavable lipid (1,2-dilaurin and ester bond); Insulin receptor ligand: CPP; Glucose (tri- and hex-antennary); or Mannose (tri- and hex-antennary, alpha and beta).
  • 15. The composition of claim 11, wherein each non-negatively charged internucleotidic linkage is independently an internucleotidic linkage at least 50% of which exists in its non-negatively charged form at pH 7.4.
  • 16. The composition of claim 11, wherein the oligonucleotides of the plurality each comprise one or more sugar modifications.
  • 17. The composition of claim 16, wherein one or more sugar modifications are 2′-F modifications.
  • 18. The composition of any one of the preceding claims, wherein each heteroatom is independently boron, nitrogen, oxygen, silicon, sulfur, or phosphorus.
  • 19. A pharmaceutical composition comprising an oligonucleotide composition of any one of the preceding claims and a pharmaceutically acceptable carrier.
  • 20. A method for altering splicing of a target transcript, comprising administering an oligonucleotide composition of any one of the preceding claims.
  • 21. The method of claim 20, wherein the target transcript is pre-mRNA of dystrophin.
  • 22. The method of claim 21, wherein exon 45 of dystrophin is skipped at an increased level relative to absence of the composition.
  • 23. The method of claim 21, wherein exon 51 of dystrophin is skipped at an increased level relative to absence of the composition.
  • 24. The method of claim 21, wherein exon 53 of dystrophin is skipped at an increased level relative to absence of the composition.
  • 25. A method for treating muscular dystrophy, Duchenne (Duchenne's) muscular dystrophy (DMD), or Becker (Becker's) muscular dystrophy (BMD), comprising administering to a subject susceptible thereto or suffering therefrom a composition of any one of the preceding claims.
  • 26. A method for preparing an oligonucleotide or an oligonucleotide composition thereof, wherein the oligonucleotide comprises one or more non-negatively charged internucleotidic linkages, comprising providing a phosphoramidite compound having the structure of:
  • 27. The method of claim 26, wherein G5 and one of G3 and G4 are taken together to form an optionally substituted 3-8 membered saturated ring having 0-3 heteroatoms in addition to the nitrogen of -NG5-.
  • 28. The method of claim 26, wherein the oligonucleotide comprises an internucleotidic linkage having the structure of
  • 29. The method of any one of claims 26-28, wherein G2 comprises an electron-withdrawing group.
  • 30. The method of claim 29, wherein G2 is -L′-S(O)2R′, wherein L′ is optionally substituted —CH2—.
  • 31. The method of claim 30, wherein R′ is optionally substituted C1-6 aliphatic.
  • 32. The method of claim 30, wherein R′ is t-butyl.
  • 33. The method of claim 30, wherein R′ is optionally substituted phenyl.
  • 34. The method of claim 30, wherein R′ is phenyl.
  • 35. The method of claim 29, comprising one or more cycles, each of which independently comprises or consisting of: 1) deblocking;2) coupling;3) optionally a first capping;4) modifying; and5) optionally a second capping.
  • 36. An oligonucleotide, comprising an internucleotidic linkage having the structure of formula III:
  • 37. The oligonucleotide of claim 36, wherein G2 is -L′-S(O)2R′, wherein L′ is optionally substituted —CH2—.
  • 38. The oligonucleotide of claim 37, wherein R′ is optionally substituted C1-6 aliphatic.
  • 39. The oligonucleotide of claim 38, wherein R′ is t-butyl.
  • 40. The oligonucleotide of claim 37, wherein R′ is optionally substituted phenyl.
  • 41. The oligonucleotide of claim 40, wherein R′ is phenyl.
  • 42. The oligonucleotide of any one of claims 36-41, wherein R′ is —C(O)R′.
  • 43. The oligonucleotide of claim 42, wherein R′ is —CH3.
  • 44. The oligonucleotide of any one of claims 36-41, wherein Q− is F−, Cl−, Br−, BF4−, PF6−, Tfo−, Tf2N−, AsF6−, ClO4−, or SbF6−.
  • 45. The oligonucleotide of any one of claims 36-44, wherein the oligonucleotide is attached to a solid support.
  • 46. The oligonucleotide of claim 45, wherein the solid support is CPG.
  • 47. A method for preparing an oligonucleotide, comprising contacting an oligonucleotide of any one of claims 36-46 with a base.
  • 48. The method of claim 47, wherein the contact is performed substantially absent of water.
  • 49. The method of claim 47 or 48, wherein the contact is after the oligonucleotide length is achieved before deprotection and cleavage of oligonucleotide.
  • 50. The method of any one of claims 47-49, wherein the base is an amine base having the structure of NR3.
  • 51. The method of claim 50, wherein the base is N,N-diethylamine.
  • 52. The oligonucleotide, compound or method of any one of Example Embodiments 1420.
  • 53. An oligonucleotide, wherein the oligonucleotide is, WV-20104, WV-20103, WV-20102, WV-20101, WV-20100, WV-20099, WV-20098, WV-20097, WV-20096, WV-20095, WV-20094, WV-20106, WV-20119, WV-20118, WV-13739, WV-13740, WV-9079, WV-9082, WV-9100, WV-9096, WV-9097, WV-9106, WV-9133, WV-9148, WV-9154, WV-9898, WV-9899, WV-9900, WV-9906, WV-9907, WV-9908, WV-9909, WV-9756, WV-9757, WV-9517, WV-9714, WV-9715, WV-9519, WV-9521, WV-9747, WV-9748, WV-9749, WV-9897, WV-9898, WV-9900, WV-9899, WV-9906, WV-9912, WV-9524, WV-9912, WV-9906, WV-9900, WV-9899, WV-9899, WV-9898, WV-9898, WV-9898, WV-9898, WV-9898, WV-9897, WV-9897, WV-9897, WV-9897, WV-9897, WV-9747, WV-9714, WV-9699, WV-9517, WV-9517, WV-13409, WV-13408, WV-12887, WV-12882, WV-12881, WV-12880, WV-12880, WV-WV12880, WV-12878, WV-12877, WV-12877, WV-12876, WV-12873, WV-12872, WV-12559, WV-12559, WV-12558, WV-12558, WV-12557, WV-12556, WV-12556, WV-12555, WV-12555, WV-12554, WV-12553, WV-12129, WV-12127, WV-12125, WV-12123, WV-11342, WV-11342, WV-11341, WV-11341, WV-11340, WV-10672, WV-10671, WV-10670, WV-10461, WV-10455, WV-9897, WV-9898, WV-13826, WV-13827, WV-13835, WV-12880, WV-14344, WV-13864, WV-13835, WV-14791, WV-14344, WV-13754, WV-13766, WV-11086, WV-11089, WV-17859, WV-17860, WV-20070, WV-20073, WV-20076, WV-20052, WV-20099, WV-20049, WV-20085, WV-20087, WV-20034, WV-20046, WV-20052, WV-20061, WV-20064, WV-20067, WV-20092, WV-20091, WV-20093, WV-20084, WV-9738, WV-9739, WV-9740, WV-9741, WV-15860, WV-15862, WV-11084, WV-11086, WV-11088, WV-11089, WV-14522, WV-14523, WV-17861, WV-17862, WV-13815, WV-13816, WV-13817, WV-13780, WV-17862, WV-17863, WV-17864, WV-17865, WV-17866, WV-20082, WV-20081, WV-20080, WV-20079, WV-20076, WV-20075, WV-20074, WV-20073, WV-20072, WV-20071, WV-20064, WV-20059, WV-20058, WV-20057, WV-20056, WV-20053, WV-20052, WV-20051, WV-20050, WV-20049, WV-20094, WV-20095, or a salt form thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to United States Provisional Application Nos. 62/656,949, filed Apr. 12, 2018, 62/670,709, filed May 11, 2018, 62/715,684, filed Aug. 7, 2018, 62/723,375, filed Aug. 27, 2018, and 62/776,432, filed Dec. 6, 2018, the entirety of each of which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US19/27109 4/11/2019 WO
Provisional Applications (5)
Number Date Country
62776432 Dec 2018 US
62723375 Aug 2018 US
62715684 Aug 2018 US
62670709 May 2018 US
62656949 Apr 2018 US