The present invention relates generally to optical alignment in lithography, and in particular to methods of performing optical alignment when fabricating light-emitting diodes (LEDs) having a rough surface.
LEDs are used for a variety of lighting applications (e.g., full-color displays, lamps, traffic lights, etc.), and are increasingly finding additional applications as LED technology improves and the cost of LEDs decreases:
LEDs are fabricated using lithographic techniques, which include using alignment methods to aligning adjacent layers of the LED structure. Many LEDs include a rough upper surface with a surface roughness comparable to the wavelength of light generated by the LED. The rough surface allows light that is otherwise trapped by total internal reflection to escape the LED structure, thereby increasing the LED light output.
While the rough surface improves LED light output, it also interferes with the alignment imaging. Lithography requires precise alignment between an existing layer and a subsequent layer. Alignment is typically accomplished using pattern recognition techniques based on an alignment structures or “alignment marks.” In a preferred case, an image of wafer and reticle alignment marks respectively associated with the wafer and the reticle (mask) is captured by a Machine Vision System (MVS), such as described in U.S. Pat. No. 5,621,813. Typically, visible-wavelength light is used for alignment imaging. The alignment mark images are displayed so that an operator can check the relative alignment. The relative position of the alignment marks is used to adjust the relative position of the wafer and reticle of the lithography system until their alignment is established.
Unfortunately, the rough surface of the LED scatters the imaging light and degrades the quality of the MVS image (or the diffraction signal) used to carry out alignment. Accordingly, improved methods are needed to perform alignment when fabricating LEDs using lithographic techniques when the LEDs have a roughened surface that interferes with alignment mark imaging.
An aspect of the invention is a method of performing wafer alignment when lithographically fabricating a LED. The method includes forming at least one wafer alignment mark on the wafer. The method also includes forming a rough wafer surface on or above the wafer alignment mark, with the rough surface having a root-mean-square (RMS) surface roughness σS. The method also includes illuminating the at least one wafer alignment mark with alignment light having a wavelength λA that is in the range from about 2 σS to about 8 σS. The method also includes forming and detecting an image of the at least one wafer alignment mark with alignment light reflected from the at least one wafer alignment mark. The method further includes comparing the detected image to an alignment reference to establish wafer alignment.
Another aspect of the invention is a method of aligning a wafer when lithographically fabricating a LED. The method includes forming on the wafer at least one roughened alignment mark having a RMS surface roughness σS. The method also includes imaging the at least one roughened wafer alignment mark with alignment light having a wavelength λA that is in the range from about 2 σS to about 8 σS. The method also includes comparing the detected image to an alignment reference to establish wafer alignment.
Another aspect of the invention is a method of forming at least one electrical contact on a LED having an associated LED wavelength λLED and a LED structure. The method includes forming wafer alignment marks on an upper surface of the LED structure. The method further includes roughening the LED structure upper surface including the wafer alignment marks, thereby forming roughened wafer alignment marks, with the upper surface and roughened wafer alignment marks having a surface roughness σS. The method additionally includes imaging the at least one roughened wafer alignment mark with alignment light having a wavelength λA that is at least one of a) in the range from about 2 σS to about 8 σS, b) in the range from about 1 μm to about 2 μm, and c) in the range from about 2 λLED to about 8 λLED. The method further includes comparing the detected image to an alignment reference to establish wafer alignment, and forming the at least one electrical contact on the LED structure upper surface.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operations of the invention.
Reference is now made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same or like reference numbers and symbols are used throughout the drawings to refer to the same or like parts. The terms “above” and “below” are relative terms used to facilitate the description and are not intended as being strictly limiting.
LED 10 includes a substrate 20 having a surface 22. Example materials for substrate 20 include sapphire, SiC, GaN Si, etc. Disposed atop substrate 20 is a GaN multilayer structure 30 that includes a n-doped GaN layer (“n-GaN layer”) 40 and a p-doped GaN layer (“p-GaN layer”) 50 with a surface 52. The n-GaN layer 40 and the p-GaN layer 50 sandwich an active layer 60, with the n-GaN layer being adjacent substrate 20. In other Ga-based LED embodiments, GaN multilayer structure 30 is reversed so that the p-GaN layer 50 is adjacent substrate 20. Active layer 60 comprises, for example, a multiple quantum well (MQW) structure such as undoped GaInN/GaN superlattices. GaN multilayer structure 30 thus defines a p-n junction. A patterned reflective layer 70 is included at substrate surface 22. An example pitch for patterned layer 70 is between about 3 microns to about 6 microns.
In example embodiments, a transparent conducting layer (TCL) 76 is formed atop GaN multilayer structure 30 (e.g., by coating the entire wafer), as illustrated in the close-up view of
With reference again to
In an example embodiment of LED 10, surfaces 42, 52 and 82 constitute portions of a rough surface 92. Rough surface 92 may be formed, for example, by plasma etching the entire wafer, as discussed in greater detail below. Here, “rough” is understood as being randomly or quasi-randomly textured to the point that it interferes with the optical imaging of wafer alignment marks. An example height of a surface feature formed on rough surface 92 using plasma etching is about 500 nm, which is very close to the 520 nm imaging wavelength used in most prior art MVS alignment tools. In an example embodiment, rough surface 92 has a root mean square (RMS) roughness σS which is determined by the LED output wavelength λLED in order to optimize LED light output. In one example, the RMS roughness σS is approximately 0.5 to 1.0 times the LED wavelength λLED in the layer that supports roughened surface 92 and that has a refractive index n. Hence, in an example embodiment the RMS surface roughness σS is in the range from about (0.5) λLED/n to about λLED/n, where n is the index of refraction of the media, e.g., of p-GaN layer 50, for which n is about 2.5 at a wavelength of about 470 nm. In another example embodiment, RMS surface roughness σS is between about λLED/n and about λLED.
Note that in the case where TCL 76 is used, this layer can be either directly roughened (e.g., via the aforementioned plasma etch) or can be deposited substantially conformally atop the existing roughened surface 92 so that its surface 78 is also roughened (
Lithography system 100 includes, along a system axis A1, an illuminator 106, a reticle stage 110, a projection lens 120, and a moveable wafer stage 130. Reticle stage 110 supports a reticle 112 having a surface 114 with a reticle pattern 115 and an alignment mark 116 (see also
When light 108 from illuminator 106 illuminates reticle 112 and pattern 115 thereon, the pattern is imaged onto wafer surface 134 over a select exposure field EF via projection lens 120. Pattern 115 includes alignment patterns 115W used to form wafer alignment marks 136. Wafer surface 132 is typically coated with a light-sensitive material such as photoresist (not shown) so that reticle pattern 115 can be recorded and transferred to wafer 132.
Wafer 132 typically includes many different layers that form the LED structure of LED 10, as described above. The typical wafer 132 is used to form a relatively large number (e.g., thousands) of LEDs, with each of the device layers being formed in a step-and-repeat or scanned fashion and then processed together. Thus, prior to imaging reticle pattern 115 onto wafer surface 134 for the different exposure fields EF, the reticle pattern must be properly aligned to the previously formed layer, and in particular to the previously formed exposure fields. This is accomplished by aligning wafer 132 relative to reticle 112 using one or more wafer alignment marks 136 and an alignment reference, which in alignment system 150 is one or more reticle alignment marks 116.
With reference again to
In the operation of alignment system 150, alignment light 153 from light source 152 travels along axis A2 and is reflected by beam splitter 154 along axis A3 towards lens 156. Light 153 passes through lens 156 and is reflected by fold mirror 158 to pass through reticle 112 and projection lens 120 and to illuminate a portion of wafer surface 132, including wafer alignment mark 136. A portion 153R of light 153 is reflected from wafer surface 132 and wafer alignment mark 136 and travels back through projection lens and through reticle 112, and particular through reticle alignment mark 116. In the case where wafer alignment mark 136 is diffractive, then the diffracted light from the wafer alignment mark is collected.
The combination of projection lens 120 and lens 156 forms from reflected light 153R a superimposed image of the wafer alignment mark 136 and reticle alignment mark 116 on image sensor 160 (see
Image sensor 160 generates an electrical signal S1 representative of the captured digital image and sends it to image processing unit 164. Image processing unit 164 is adapted (e.g., via image processing software embodied in a computer-readable medium such as a memory unit 165), to perform image processing of the received digital image. In particular, image processing unit 164 is adapted to perform pattern recognition of the superimposed wafer and reticle alignment mark images to measure their relative displacement and generate a corresponding stage control signal S2 that is sent to wafer stage 130. Image processing unit 164 also sends an image signal S3 to display unit 170 to display the superimposed wafer and reticle alignment mark images.
In response to stage control signal S2, wafer stage 130 moves in the X, Y plane (and also in the Z-plane, if necessary, for focusing purposes) until the images of reticle and wafer alignment marks 116 and 136 are aligned (i.e., directly superimposed), indicating proper alignment of reticle 112 and wafer 132.
Often, the location of the individual LEDs 10 on wafer 132 is accurate to a few nanometers. Alignment systems such as optical alignment system 150 typically identify and locate a small number of the aforementioned global alignment marks 136G (typically 3-5 marks). This information, along with other information provided through the alignment algorithm in image processing unit 160, allows for the image processing unit to calculate the Cartesian coordinate system and the location of each individual exposure field EF on the wafer 132. This type of alignment is called Enhanced Global Alignment or EGA. This approach can accommodate linear corrections to the coordinate system (i.e., linear magnification terms in X, and Y, and a rotation angle between the two coordinate systems).
As illustrated in the schematic diagram of
The value of σS is typically chosen to optimize light extraction of LED light of wavelength λLED and so cannot be reduced without sacrificing the improvement to LED output. This results in the wafer alignment marks 136 formed on or beneath rough surface 92 being essentially invisible when the alignment wavelength λA is the same as or close to the value of σS. Such a wafer alignment mark 136 is referred to hereinbelow as a “roughened wafer alignment mark” and has the same or substantially the same roughness as rough surface 92. Roughened wafer alignment marks 136 make it difficult if not impossible to place p-contact 90p and n-contact 90n in their proper locations on the LED structure.
It is recognized in the present invention that the degradation in the alignment capability when attempting to form at least one of electrical contacts 90 is driven by Rayleigh scattering. With reference now to the schematic diagram of
The alignment wavelength λA used strikes a balance between reducing the effects of Rayleigh scattering and the ability to resolve the roughened wafer alignment marks 136. If the alignment wavelength λA is too long, then the resolving capability of alignment system 150 is reduced. On the other hand, if the alignment wavelength λA is too short, the effects of Rayleigh scattering are not sufficiently reduced. In addition, conventional image sensors 160 (as well as lens 156) tend to operate best at wavelengths less than about 2 μm. Lens 156 is designed to work in conjunction with projection lens 120 so that the superimposed reticle and wafer alignment mark image is in focus on image sensor 160. However, in the case where alignment system 150 is an off-axis alignment system (i.e., that does not have an optical path through projection lens 120), then lens 156 is designed as an imaging lens that images the reticle and wafer alignment marks 116 and 136 onto image sensor 160.
Thus, an example method of the present invention involves lithographically forming one or more LED 10 and includes forming at least one wafer alignment mark 136 on the wafer, and then forming a rough wafer surface on or above the wafer alignment mark, wherein the rough surface has a RMS surface roughness σS. The method also includes illuminating the at least one wafer alignment mark 136 with alignment light 153 having a wavelength λA that is in the range from about 2 σS to about 8 σS, and then forming and detecting an image of the illuminated wafer alignment mark at image sensor 160. The light for forming the wafer alignment mark image is reflected light 153R form by reflecting alignment light 153 from the at least one wafer alignment mark. The method then involves comparing the detected image of the at least one wafer alignment mark to an alignment reference (e.g., reticle alignment mark 116) to establish wafer alignment.
Another example method of the invention is a method of aligning wafer 132 when forming at least one electrical contact 90 on the LED structure when lithographically forming a LED 10. The method includes forming on wafer 132 at least one roughened alignment mark having a RMS surface roughness σS, and then imaging the at least one roughened wafer alignment mark with alignment light (e.g., reflected alignment light 153R) having a wavelength λA that is in the range from about 2 σS to about 8 σS. The method then involves comparing the detected image to an alignment reference to establish wafer alignment. The method then includes forming the at least one electrical contact 90 on the LED based on the established alignment. In one example, both p-contact 90p and n-contact 90n are formed.
Another example method of the invention includes forming at least one electrical contact 90 when lithographically forming LED 10. The method includes forming wafer alignment marks 136 on an upper surface 92 of the LED structure. The method then includes roughening the LED structure upper surface 92, including the wafer alignment marks thereon, thereby forming roughened wafer alignment marks, with the roughened upper surface 92 and roughened wafer alignment marks 136 having a surface roughness σS. The method also includes imaging the at least one roughened wafer alignment mark with alignment light having a wavelength λA that is at least one of a) in the range from about 2 σS to about 8 σS, b) in the range from about 1 μm to about 2 μm, and c) in the range from about 2 λLED to about 8 λLED. The method then involves comparing the detected image to an alignment reference to establish wafer alignment, and forming the at least one electrical contact 90 (e.g., the p-contact 90p) on the LED structure upper surface (e.g., p-GaN layer 50 or atop the surface 78 transparent conducting layer 76).
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.