The present invention relates to an optical arrangement and in particular to an optical arrangement for use in electron microscopy applications.
Materials with electro-optical properties play an important role in e.g. telecommunication, electronics, sensors, signal systems etc. Their importance is expected to grow further in the future as they will play a central role in components for energy harvesting in photovoltaic systems as well as in light-emitting devices (LED), the latter becoming a very important application as conventional light bulbs are replaced by more energy-efficient and mercury-free lighting systems. These trends are also exemplified by the large investments currently being made in research and production facilities
Today, the research activity around nanostructured materials (nano wires, nano tubes, nano particles, nano films) is intense, since the limited dimensions of these materials have proven to amplify or modify e.g. their electro-optical properties, which in turn enables new applications of such materials.
Efforts towards developing nanostructured materials are entirely dependent on suitable methods for characterization, and as the particular needs for such methods vary, it is necessary to develop flexible and modifiable technologies for their realization. One example of a method which has tremendous flexibility is transmission electron microscopy (TEM) which, together with its' auxiliary equipment plays a central role in the investigation of nanostructured materials.
In order to characterise electro-optic materials on the nano scale, it may be useful, besides generating and detecting light, to be able to apply and measure electrical potentials and/or currents with a spatial resolution on the nano level. Moreover, a system for simultaneous high resolution imaging is needed, both to monitor the positioning of the probes onto the material and to study possible structural changes in the material during the course of the measurement. To achieve this, it is beneficial to combine several methods, integrated with each other, for example scanning tunnelling microscopy (STM) for electrical probing, TEM for high resolution imaging, and optical systems for application and detection of light.
Technology is provided that allows three-dimensional positioning and manipulation with sub-Angstrom resolution with several millimeters range. The device used for the manipulation is small enough to be integrated into a sample holder e.g. for a transmission electron microscope (TEM) or scanning electron microscope (SEM).
Based on this technology various sample probing systems have been developed. One example of such a probing system is an STM for sample investigation in situ in a TEM. In this case, the manipulator is used to position a sharp needle very close to or in contact with the sample for electrical characterisation of the sample. Simultaneously, the TEM is used to monitor the approach and positioning of the probe onto individual nanostructures on the sample and to study and characterise any morphological, structural or compositional changes of the same structure during the experiment.
Such a known system is shown in
While the device of
Example embodiments of the present invention are directed towards solutions for measuring optical characteristics in an electron microscope. According to example embodiments the electron microscope may include optical measurement technology that may be configured to simultaneously provide optical measurements possibly in combination with scanning probe techniques.
Example embodiments may include an electron microscope sample holder arrangement for use in an electron microscope. The sample holder may be located so as to position the sample in a beam of an electron path of the electron microscope. A probe may be located so as to be positioned by a positioning unit in the beam of electron path. An optical input device may be located to receive light that has interacted with the sample and/or probe.
Example embodiments may further include an optical output device that may be arranged to direct light to an interaction area of the sample. The optical output device may be located through a positioning unit. Example embodiments may also include a light guiding device.
Example embodiments may also include a system for characterizing material properties of a sample in an electron microscope. The system may include a sample holder arrangement and a control device for controlling the sample holder arrangement and obtaining signals from the sample holder arrangement. The system may also include a light source that may be arranged to direct light to the sample holder arrangement, and a light detector that may receive light from the sample holder arrangement. The system may further include a computing device in communication with the control electronics that may be used for the analysis of signals from the sample holder arrangement and to control the sample holder arrangement.
Other example embodiments may include a method of characterizing material properties of a sample. The method may include positioning a sample in an electron microscope, and interacting a probe with the sample. The method may further include propagating light onto the sample/probe interaction area and detecting light from the interaction area simultaneously with obtaining images from the electron microscope. The method may also include obtaining signals from the light detector and obtaining images from the electron microscope, and relating obtained signals and images with each other in time.
Example embodiments may also include an electron microscope holder which may include a designated imaging area. The designated imaging area may be configured to position a sample in an electron beam of the electron microscope for structural characterization. The holder may also include an optical source configured to direct light on to the sample for optical characterization, where the structural and optical characterization may be simultaneous. The optical source may be, for example, an optical fibre. The optical source may also be inverted. The holder may optionally include a second optical source.
The holder may also include a probe that may be configured to interact with the sample for simultaneous structural and/or mechanical characterization. The holder may further include a manipulator that may be configured to adjust a position of the optical source. The holder may also include an optical input configured to receive light that has interacted with the sample.
The number of measurement possibilities and material property analysis/characterization increases with the solution according to the example embodiments presented herein.
In the following the invention will be described in a non-limiting way and in more detail with reference to exemplary embodiments illustrated in the enclosed drawings, in which:
In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular components, elements, techniques, etc. in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known methods and elements are omitted so as not to obscure the description of the present invention.
In
The electron microscope may be any type, e.g. a scanning electron microscope (SEM), a transmission electron microscope (TEM), a reflection electron microscope (REM), or a scanning transmission electron microscope (STEM).
The sample holder arrangement may be configured in such as a way as to fit into standard electron microscopes, for instance, for a TEM solution, the gap between magnetic lenses are small and the sample holder arrangement geometry will need to be thin in order to fit into this gap. Furthermore, the geometry of the sample holder arrangement is conformed to standard configurations in order to not disturb any analytical instrumentation attached to the electron microscope and allow for holder goniometer arrangements of the microscope.
In
It should be appreciated that the sample and probe may be arranged in an opposite configuration as described, i.e. the sample may be positioned on the positioning unit and the probe positioned in a fixed position. It should be noted that the sample holder arrangement and measurement unit may be arranged with a suitable electron beam transmission path, e.g. using holes and/or electron transparent materials in the beam path. Optionally, the measurement unit and the sample holder arrangement may be arranged with a tilt mechanism. Furthermore, light noise reduction solutions may be used in order to reduce light emissions from noise sources (e.g. heat from the electron emission filament or ambient light from view port holes).
The positioning unit may comprise a ball unit connected to a piezo electric device and a probe holder may be clamped frictionally to the ball unit. By changing an applied voltage to the piezo electric device rapidly with appropriate signal characteristics, the probe holder position relative to the ball unit may be changed using an inertial slider effect, thereby changing the position of the probe relative to the sample. It should be appreciated that other electromechanical positioning technologies may be used depending on required resolution, noise characteristics, and full scale movement of the probe relative to the sample.
In one embodiment an excitation and/or detection optical fiber may be located as probe as will be discussed later in this document. In some example embodiments, optical excitation may not be provided directly by an optical fiber, but may be provided by other types of devices, such as for instance the electron beam in the electron microscope, so called e-cathode luminescence, electron emission from the probe using an electrical field emanating from the probe, contact current between probe and sample, strain induced in the sample, or using a SNOM based system. Example embodiments may further include a nanowire laser that may be used as light source which may be employed as a light probe.
It should be appreciated that various types of measurements may be performed using the example embodiments presented herein. For example, Raman spectroscopy measurements may be utilized in the optical EM sample holder. Cathodoluminescence may also be measured using example embodiments. Cathodoluminescence is photon emission when an electron beam from the microscope is hitting the sample. By scanning the sample or the focused beam laterally over the sample the optical signal or optical spectrum can be used for local analysis of the sample. This technique can be used for many different kinds of investigations including studies of direct bandgap semiconductors such as GaAs or mapping of defects in integrated circuits.
Example embodiments may also include a system 600 comprising an opto-STM-TEM sample holder 601, light sources 603, light detectors 605, and control systems including a computing device 607 and controller 608, is shown in
Another embodiment of an opto-STM-TEM holder 700 is shown in
Another example embodiment is shown in
In another example embodiment, illustrated in
The embodiments discussed above involving an optical sensor arrangement may be utilized in combination with a number of different scanning probe microscopy applications, such as, but not limited to:
1. SPotM (Scanning Tunneling Potentiometry Microscopy)
2. SCM (Scanning Capacitance Microscopy)
3. SSRM (Scanning Spreading Resistance Microscopy)
4. AFM (Atomic Force Microscopy)
5. MFM (Magnetic Force Microscopy)
6. SFM (Scanning Force Microscopy)
7. SNOM (Scanning Near-Field Optical Microscopy, also known as NSOM)
301. positioning a sample in an electron microscope;
302. interacting a probe with the sample;
303. propagating light onto the sample/probe interaction area;
304. detecting light from the interaction area simultaneously with obtaining images from the electron microscope;
305. obtaining signals from the light detector and obtaining images from the electron microscope; and
306. relating obtained signals and images with each other in time.
The optical detector may be used for detecting the temperature of the sample, for example, by measuring the black body radiation, thus providing a temperature sensor to the measurement setup. This is a useful application because in many electrical conducting samples of nanometer dimensions such as carbon nanotubes, nanowires, point contacts, or other conductors, the critical current density before failure is remarkably high. This high current leads to Joule heating of the conductor, and due to the small volume a large increase in the temperature. However, the temperatures of such small objects are hard to measure using standard ways, but with this technique it is possible to obtain a black body spectrum from such small objects and thus get the temperature. The temperature is also useful in other situations such as, but not limited to, field emission, under mechanical pressure (using an AFM or indenter), during friction measurements (using an AFM), and in situ chemical reactions.
It should be appreciated that the optical techniques discussed in this document are not limited to the visible part of the spectrum but other wavelengths may be utilized, e.g. ultraviolet, infrared spectrum, or x-ray parts.
It should be noted that the word “comprising” does not exclude the presence of other elements or steps than those listed and the words “a” or “an” preceding an element do not exclude the presence of a plurality of such elements. It should further be noted that any reference signs do not limit the scope of the claims, and that several “means”, “units” or “devices” may be represented by the same item of hardware. It should be noted that the scales shown in the Figs are only shown as examples and that other scaling may be used depending on type and make of electron microscope.
The above mentioned and described embodiments are only given as examples and should not be limiting to the present invention. Other solutions, uses, objectives, and functions within the scope of the invention as claimed in the below described patent claims should be apparent for the person skilled in the art.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE10/50405 | 4/15/2010 | WO | 00 | 1/30/2012 |
Number | Date | Country | |
---|---|---|---|
61169442 | Apr 2009 | US |