The present invention relates to an image sensor package, and more particularly, to an image sensor package using a substrate cover having a chip cavity to accommodate a COF or COG type image sensor chip and to prevent the image sensor chip from damage and contamination of a liquid sealant.
Image sensor devices have been widely implemented in everyday lives such as cellular phones, personal digital assistants (PDA), digital still cameras (DSC), digital video cameras (DV), video phones; video conferences, and so on. As shown in
Furthermore, another known image sensor package is disclosed in R.O.C. Taiwan patent publication No. 542493, entitled “Image sensor structure”. The package comprises a substrate, a protrusion layer, an image sensor chip, and a light-transmission layer (glass cover). The image sensor chip is disposed in the chip cavity formed by the substrate and the protrusion layer. A plurality of signal input terminals are formed on the upper surface of the protrusion layer to provide electrical connections to the image sensor chip by a plurality of bonding wires. Then, through the circuit on the sidewalls of the protrusion layer and the sidewalls of the substrate, the electrical signals are transmitted to the substrate. An adhesive is partially disposed on the upper surface of the protrusion layer to adhere the light-transmission layer. However, during the packaging processes, the protrusion layer has to be formed on top of the substrate to form the chip cavity, which is very complicated. The depth of the chip cavity is much larger than the thickness of the image sensor chip, and the loop height of the bonding wires are always higher than the upper surface of the protrusion layer. When the light-transmission layer is attached to the protrusion layer, the bonding wires will be damaged resulting in electrical short or open.
The main purpose of the present invention is to provide an image sensor package in which an image sensor chip is flip-chip mounted on a flexible circuit on a transparent carrier or a glass substrate, and a substrate cover is mounted on the flexible circuit/glass substrate. The substrate cover has a chip cavity and a plurality of electrical terminals. When disposition of the substrate cover, the chip cavity will accommodate the image sensor chip and the terminals of the substrate cover are electrically connected to the image sensor chip by the flexible circuit/glass substrate to replace the conventional bonding wires in the chip cavity. The image sensor package can meet the development of miniaturization with excellent protection of the image sensor chip.
The secondary purpose of the present invention is to provide an image sensor package in which an annular gap is formed between the substrate cover and the image sensor chip to prevent a liquid sealant from wetting the image sensor chip. The liquid sealant such as underfill material is formed between the substrate cover and the flexible circuit/glass substrate, can be used for hermetically sealing the image sensor chip without contaminating a sensing area of the image sensor chip.
The third purpose of the present invention is to provide an image sensor package in which the spacing between the substrate cover and the flexible circuit/glass substrate is smaller than that between the image sensor chip and the flexible circuit/glass substrate. The liquid sealant is formed between the substrate cover and the flexible circuit/glass substrate, can be used for hermetically sealing the image sensor chip without contaminating the image sensor chip.
According to the present invention, an image sensor package mainly includes a transparent carrier having a flexible circuit or including a glass substrate, an image sensor chip, and a substrate cover. The flexible circuit has a plurality of traces, a plurality of first leads and a plurality of second leads. The image sensor chip is flip-chip mounted on the flexible circuit, wherein a plurality of bumps are formed on the active surface of the image sensor chip and bonded to the first leads. The substrate cover is also mounted on the flexible circuit, the substrate cover has a first surface, a second surface, and a chip cavity in the first surface. Therein a plurality of inner terminals are formed on the first surface, and a plurality of outer terminals are formed on the second surface and electrically connected to the corresponding inner terminals.
Please refer to the attached drawings, the present invention will be described by means of embodiment(s),below.
The flexible circuit 130 is attached to the transparent carrier 140 by adhesive 153. The flexible circuit 130 may be selected from a COF (Chip-On-Film) tape, a TCP (Tape Automated Package) tape, or a high-density FPC. The flexible circuit 130 has a plurality of traces 131, a plurality of first leads 132, and a plurality of second leads 133. Therein the materials of the traces 131 may be chosen from copper, aluminum, or nickel, such as 0.07 mm of copper foil. In this embodiment, the flexible circuit 130 has an opening 134 which is aligned with a sensing area 124 of the image sensor chip 120. The trace 131 connect the corresponding first leads 132 and the corresponding second leads 133, wherein the first leads 132 are used for electrical connection of a plurality of bumps 123 of the image sensor chip 120.
The image sensor chip 120 is flip-chip mounted on the flexible circuit 130. The image sensor chip 120 may be a charged coupled device (CCD), or a CMOS image sensor chip enables to convert the received light signals into digital electrical signals. The image sensor chip 120 has an active surface 121 and a back surface 122, and also is a bumped chip, where a plurality of bumps 123 are formed on the peripheries of the active surface 121, such as solder bumps, gold bumps, or conductive polymer bumps. Using ultrasonic bonding, reflowing, thermal compression bonding, ACP, ACF connection, or NCP connection, the flip-chip mounting can be accomplished. Therein ultrasonic bonding is preferable to mount the image sensor chip 120 under low temperature (about 150° C.). Accordingly, the bumps 123 are bonded to the first leads 132.
As shown in
Preferably, a thermal interface material (TIM) 151 or other thermal grease is located between the back surface 122 of the image sensor chip 120 and the chip cavity of the substrate cover 110 to improve thermal dissipation of the image sensor chip 120.
Furthermore, a liquid sealant 152 is disposed between the substrate cover 110 and the flexible circuit 130 to hermetically sealing the image sensor chip 120 in the chip cavity 113. The liquid sealant 152 is a thermosetting resin with high fluidity prior to curing, such as underfill material. Referring to
The above description of embodiments of this invention is intended to be illustrative and not limiting. Other embodiments of this invention will be obvious to those skilled in the art in view of the above disclosure.
Number | Date | Country | Kind |
---|---|---|---|
093216783 | Oct 2004 | CN | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11254660 | Oct 2005 | US |
Child | 11713715 | Mar 2007 | US |