This invention relates to microelectronic devices and fabrication methods, and more particularly to gallium nitride semiconductor devices and fabrication methods therefor.
Gallium nitride is being widely investigated for microelectronic devices including but not limited to transistors, field emitters and optoelectronic devices. It will be understood that, as used herein, gallium nitride also includes alloys of gallium nitride such as aluminum gallium nitride, indium gallium nitride and aluminum indium gallium nitride.
A major problem in fabricating gallium nitride-based microelectronic devices is the fabrication of gallium nitride semiconductor layers having low defect densities. It is known that one contributor to defect density is the substrate on which the gallium nitride layer is grown. Accordingly, although gallium nitride layers have been grown on sapphire substrates, it is known to reduce defect density by growing gallium nitride layers on aluminum nitride buffer layers which are themselves formed on silicon carbide substrates. Notwithstanding these advances, continued reduction in defect density is desirable.
It is also known to fabricate gallium nitride structures through openings in a mask. For example, in fabricating field emitter arrays, it is known to selectively grow gallium nitride on stripe or circular patterned substrates. See, for example, the publications by Nam et al. entitled “Selective Growth of GaN and Al0.2Ga0.8N on GaN/AlN/6H-SiC(0001) Multilayer Substrates Via Organometallic Vapor Phase Epitaxy”, Proceedings of the Materials Research Society, December 1996, and “Growth of GaN and Al0 2Ga0 8N on Patterened Substrates via Organometallic Vapor Phase Epitaxy”, Japanese Journal of Applied Physics., Vol. 36, Part 2, No. 5A, May 1997, pp. L532-L535. As disclosed in these publications, undesired ridge growth or lateral overgrowth may occur under certain conditions.
It is therefore an object of the present invention to provide improved methods of fabricating gallium nitride semiconductor layers, and improved gallium nitride layers so fabricated.
It is another object of the invention to provide methods of fabricating gallium nitride semiconductor layers that can have low defect densities, and gallium nitride semiconductor layers so fabricated.
These and other objects are provided, according to the present invention, by masking an underlying gallium nitride layer on a silicon carbide substrate with a mask that includes an array of openings therein and etching the underlying gallium nitride layer through the array of openings to define a plurality of posts in the underlying gallium nitride layer and a plurality of trenches therebetween. The posts each include a sidewall and a top having the mask thereon. The sidewalls of the posts are laterally grown into the trenches to thereby form a gallium nitride semiconductor layer. During this lateral growth, the mask prevents nucleation and vertical growth from the tops of the posts. Accordingly, growth proceeds laterally into the trenches, suspended from the sidewalls of the posts. This form of growth is referred to herein as pendeoepitaxy from the Latin “to hang” or “to be suspended”. Microelectronic devices may be formed in the gallium nitride semiconductor layer.
According to another aspect of the invention, the sidewalls of the posts are laterally grown into the trenches until the laterally grown sidewalls coalesce in the trenches to thereby form a gallium nitride semiconductor layer. The lateral growth from the sidewalls of the posts may be continued so that the gallium nitride layer grows vertically through the openings in the mask and laterally overgrows onto the mask on the tops of the posts, to thereby form a gallium nitride semiconductor layer. The lateral overgrowth can be continued until the grown sidewalls coalesce on the mask to thereby form a continuous gallium nitride semiconductor layer. Microelectronic devices may be formed in the continuous gallium nitride semiconductor layer.
It has been found, according to the present invention, that dislocation defects do not significantly propagate laterally from the sidewalls of the posts, so that the laterally grown sidewalls of the posts are relatively defect-free. Moreover, during growth, it has been found that significant vertical growth on the top of the posts is prevented by the mask so that relatively defect-free lateral growth occurs from the sidewalls onto the mask. Significant nucleation on the top of the posts also preferably is prevented. The overgrown gallium nitride semiconductor layer is therefore relatively defect-free.
Accordingly, the mask functions as a capping layer on the posts that forces the selective homoepitaxial growth of gallium nitride to occur only on the sidewalls. Defects associated with heteroepitaxial growth of the gallium nitride seed layer are pinned under the mask. By using a combination of growth from sidewalls and lateral overgrowth, a complete coalesced layer of relatively defect-free gallium nitride may be fabricated over the entire surface of a wafer in one regrowth step.
The pendeoepitaxial gallium nitride semiconductor layer may be laterally grown using metalorganic vapor phase epitaxy (MOVPE). For example, the lateral gallium nitride layer may be laterally grown using triethylgallium (TEG) and ammonia (NH3) precursors at about 1000-1100° C. and about 45 Torr. Preferably, TEG at about 13-39 μmol/min and NH3 at about 1500 sccm are used in combination with about 3000 sccm H2 diluent. Most preferably, TEG at about 26 μmol/min, NH3 at about 1500 sccm and H2 at about 3000 sccm at a temperature of about 1100° C. and about 45 Torr are used. The underlying gallium nitride layer preferably is formed on a substrate such as 6H-SiC(0001), which itself includes a buffer layer such as aluminum nitride thereon. Other buffer layers such as gallium nitride may be used. Multiple substrate layers and buffer layers also may be used.
The underlying gallium nitride layer including the sidewall may be formed by forming trenches in the underlying gallium nitride layer, such that the trenches define the sidewalls. Alternatively, the sidewalls may be formed by forming masked posts on the underlying gallium nitride layer, the masked posts including the sidewalls and defining the trenches. A series of alternating trenches and masked posts is preferably formed to form a plurality of sidewalls. The posts are formed such that the top surface and not the sidewalls are masked. As described above, trenches and/or posts may be formed by masking and selective etching. Alternatively, selective epitaxial growth, combinations of etching and growth, or other techniques may be used. The mask may be formed on the post tops after formation of the posts. The trenches may extend into the buffer layer and/or into the substrate so that the trench floors are in the buffer layer and preferably are in the silicon carbide substrate.
The sidewalls of the posts in the underlying gallium nitride layer are laterally grown into the trenches, to thereby form a lateral gallium nitride layer of lower defect density than that of the underlying gallium nitride layer. Some vertical growth may also occur in the trenches, although vertical growth from the post tops is reduced and preferably suppressed by the mask thereon. The laterally grown gallium nitride layer is vertically grown through the openings in the mask while propagating the lower defect density. As the height of the vertical growth extends through the openings in the mask, lateral growth over the mask occurs while propagating the lower defect density to thereby form an overgrown lateral gallium nitride layer on the mask.
Gallium nitride semiconductor structures according to the invention comprise a silicon carbide substrate and a plurality of gallium nitride posts on the silicon carbide substrate. The posts each include a sidewall and a top and define a plurality of trenches therebetween. A capping layer is provided on the tops of the posts. A lateral gallium nitride layer extends laterally from the sidewalls of the posts into the trenches. The lateral gallium nitride layer may also be referred to as a pendeoepitaxial gallium nitride layer. The lateral gallium nitride layer may be a continuous lateral gallium nitride layer that extends between adjacent sidewalls across the trenches therebetween.
The lateral gallium nitride layer may also extend vertically through the array of openings. An overgrown lateral gallium nitride layer may also be provided that extends laterally onto the capping layer. The overgrown lateral gallium nitride layer may be a continuous overgrown lateral gallium nitride layer that extends between the adjacent sidewalls across the capping layer therebetween.
A plurality of microelectronic devices may be provided in the lateral gallium nitride layer and/or in the overgrown lateral gallium nitride layer. A buffer layer may be included between the silicon carbide substrate and the plurality of posts. The trenches may extend into the silicon carbide substrate, into the buffer layer or through the buffer layer and into the silicon carbide substrate. The gallium nitride posts may be of a defect density, and the lateral gallium nitride layer and the overgrown lateral gallium nitride layer are of lower defect density than the defect density. Accordingly, low defect density gallium nitride semiconductor layers may be produced, to thereby allow the production of high performance microelectronic devices.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout. It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or “onto” another element, it can be directly on the other element or intervening elements may also be present. Moreover, each embodiment described and illustrated herein includes its complementary conductivity type embodiment as well.
Referring now to
Continuing with the description of
As shown in
Still referring to
It will also be understood that although the sidewalls 105 are shown in cross-section in
Referring now to
Referring now to
Referring now to
Referring now to
Still referring to
Accordingly, in
The fabrication of the substrate 102 is well known to those having skill in the art and need not be described further. Fabrication of silicon carbide substrates are described, for example, in U.S. Pat. No. 4,865,685 to Palmour; Re 34,861 to Davis et al.; U.S. Pat. No. 4,912,064 to Kong et al. and U.S. Pat. No. 4,946,547 to Palmour et al., the disclosures of which are hereby incorporated herein by reference.
The underlying gallium nitride layer 104 is also included on the buffer layer 102b opposite the substrate 102a. The underlying gallium nitride layer 104 may be between about 0.5 and 2.0 μm thick, and may be formed using metalorganic vapor phase epitaxy (MOVPE). The underlying gallium nitride layer generally has an undesired relatively high defect density. For example, dislocation densities of between about 108 and 1010 cm−2 may be present in the underlying gallium nitride layer. These high defect densities may result from mismatches in lattice parameters between the buffer layer 102b and the underlying gallium nitride layer 104, and/or other causes. These high defect densities may impact the performance of microelectronic devices formed in the underlying gallium nitride layer 104.
Still continuing with the description of
Continuing with the description of
As shown in
Still referring to
Referring now to
Referring now to
Referring now to
Additional discussion of methods and structures of the present invention will now be provided. The trenches 107 and are preferably rectangular trenches that preferably extend along the <11
The amount of lateral growth generally exhibits a strong dependence on trench orientation. The lateral growth rate of the <1
The different morphological development as a function of orientation appears to be related to the stability of the crystallographic planes in the gallium nitride structure. Trenches oriented along <11
The morphologies of the gallium nitride layers selectively grown from trenches oriented along <1
The morphological development of the gallium nitride regions also appears to depend on the flow rate of the TEG. An increase in the supply of TEG generally increases the growth rate in both the lateral and the vertical directions. However, the lateral/vertical growth rate ratio decrease from about 1.7 at the TEG flow rate of about 13 μmol/min to 0.86 at about 39 μmol/min. This increased influence on growth rate along <0001> relative to that of <11
Continuous 2 μm thick gallium nitride semiconductor layers may be obtained using 7 μm wide trenches spaced 3 μm apart and oriented along <1
The continuous gallium nitride semiconductor layers may have a microscopically flat and pit-free surface. The surfaces of the laterally grown gallium nitride layers may include a terrace structure having an average step height of 0.32 nm. This terrace structure may be related to the laterally grown gallium nitride, because it is generally not included in much larger area films grown only on aluminum nitride buffer layers. The average RMS roughness values may be similar to the values obtained for the underlying gallium nitride layer 104.
Threading dislocations, originating from the interface between the underlying gallium nitride layer 104 and the buffer layer 102b, appear to propagate to the top surface of the underlying gallium nitride layer 104. The dislocation density within these regions is approximately 109 cm−2. By contrast, threading dislocations do not appear to readily propagate laterally. Rather, the lateral gallium nitride layer 108a and the overgrown lateral gallium nitride layer 108b contain only a few dislocations. In the lateral gallium nitride layer 108a, the few dislocations may be formed parallel to the (0001) plane via the extension of the vertical threading dislocations after a 90° bend in the regrown region. These dislocations do not appear to propagate to the top surface of the overgrown gallium nitride layer.
As described, the formation mechanism of the selectively grown gallium nitride layers is lateral epitaxy. The two main stages of this mechanism are lateral (or pendeoepitaxial) growth and lateral overgrowth. During pendeoepitaxial growth, the gallium nitride grows simultaneously both vertically and laterally. The deposited gallium nitride grows selectively on the sidewalls more rapidly than it grows on the mask 109, apparently due to the much higher sticking coefficient, s, of the gallium atoms on the gallium nitride sidewall surface (s−1) compared to on the mask (s<<1) and substrate (s<1). Ga or N atoms should not readily bond to the mask and substrate surface in numbers and for a time sufficient to cause gallium nitride nuclei to form. They would either evaporate or diffuse along the mask and substrate surface to the ends of the mask or substrate and onto the sidewalls. During lateral overgrowth, the gallium nitride also grows simultaneously both vertically and laterally. Once the pendeoepitaxial growth emerges over the masks, Ga or N atoms should still not readily bond to the mask surface in numbers and for a time sufficient to cause gallium nitride nuclei to form. They would still either evaporate or diffuse along the mask to the ends of the mask and onto the pendeoepitaxial gallium nitride vertical surfaces.
Surface diffusion of gallium and nitrogen on the gallium nitride may play a role in gallium nitride selective growth. The major source of material appears to be derived from the gas phase. This may be demonstrated by the fact that an increase in the TEG flow rate causes the growth rate of the (0001) top facets to develop faster than the (1
In conclusion, pendeoepitaxial and lateral epitaxial overgrowth may be obtained from sidewalls of an underlying masked gallium nitride layer via MOVPE. The growth may depend strongly on the sidewall orientation, growth temperature and TEG flow rate. Coalescence of pendeoepitaxial grown and lateral overgrown gallium nitride regions to form regions with both extremely low densities of dislocations and smooth and pit-free surfaces may be achieved through 3 μm wide trenches between 2 μm wide posts and extending along the <1
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
This application is a continuation of application Ser. No. 09/717,717, filed Nov. 21, 2000 (now U.S. Pat. No. 6,462,355), entitled Pendeoepitaxial Methods of Fabricating Gallium Nitride Semiconductor Layers On Silicon Carbide Substrates by Lateral Growth From Sidewalls of Masked Posts, and Gallium Nitride Semiconductor Structures Fabricated Thereby, which itself is a continuation of application Ser. No. 09/198,784, filed Nov. 24, 1998 (now U.S. Pat. No. 6,177,688), entitled Pendeoepitaxial Gallium Nitride Semiconductor Layers on Silicon Carbide Substrates. Both of these applications are assigned to the assignee of the present application, the disclosures of both of which are hereby incorporated herein by reference in their entirety as if set forth fully herein.
This invention was made with Government support under Office of Naval Research Contract Nos. N00014-96-1-0765, N00014-98-1-0384, and N00014-98-1-0654. The Government may have certain rights to this invention.
Number | Name | Date | Kind |
---|---|---|---|
4127792 | Nakata | Nov 1978 | A |
4522661 | Morrison et al. | Jun 1985 | A |
4651407 | Bencuya | Mar 1987 | A |
4865685 | Palmour | Sep 1989 | A |
4876210 | Barnett et al. | Oct 1989 | A |
4912064 | Kong et al. | Mar 1990 | A |
4946547 | Palmour et al. | Aug 1990 | A |
5122845 | Manabe et al. | Jun 1992 | A |
5156995 | Fitzgerald, Jr. et al. | Oct 1992 | A |
RE34861 | Davis et al. | Feb 1995 | E |
5389571 | Takeuchi et al. | Feb 1995 | A |
5397736 | Bauser et al. | Mar 1995 | A |
5549747 | Bozler et al. | Aug 1996 | A |
5710057 | Kenney | Jan 1998 | A |
5760426 | Marx et al. | Jun 1998 | A |
5786606 | Nishio et al. | Jul 1998 | A |
5815520 | Furushima | Sep 1998 | A |
5877070 | Goesele et al. | Mar 1999 | A |
5880485 | Marx et al. | Mar 1999 | A |
5912477 | Negley | Jun 1999 | A |
5915194 | Powell et al. | Jun 1999 | A |
6046465 | Wang et al. | Apr 2000 | A |
6051849 | Davis et al. | Apr 2000 | A |
6064078 | Northrup et al. | May 2000 | A |
6100104 | Haerle | Aug 2000 | A |
6100111 | Konstantinov | Aug 2000 | A |
6121121 | Koide | Sep 2000 | A |
6153010 | Kiyoku et al. | Nov 2000 | A |
6156584 | Itoh et al. | Dec 2000 | A |
6177688 | Linthicum et al. | Jan 2001 | B1 |
6255198 | Linthicum et al. | Jul 2001 | B1 |
6261929 | Gehrke et al. | Jul 2001 | B1 |
6265289 | Zheleva et al. | Jul 2001 | B1 |
6325850 | Beaumont et al. | Dec 2001 | B1 |
6380108 | Linthicum et al. | Apr 2002 | B1 |
6403451 | Linthicum et al. | Jun 2002 | B1 |
6459712 | Tanaka et al. | Oct 2002 | B2 |
6462355 | Linthicum et al. | Oct 2002 | B1 |
6521514 | Gehrke et al. | Feb 2003 | B1 |
6627974 | Kozaki et al. | Sep 2003 | B2 |
6720586 | Kidoguchi et al. | Apr 2004 | B1 |
6872982 | Hayashi et al. | Mar 2005 | B2 |
6924500 | Okuyama et al. | Aug 2005 | B2 |
20020069816 | Gehrke et al. | Jun 2002 | A1 |
Number | Date | Country |
---|---|---|
2258080 | Oct 1998 | CA |
0 551 721 | Jul 1993 | EP |
0 852 416 | Jul 1998 | EP |
0 942 459 | Sep 1999 | EP |
0 951 055 | Oct 1999 | EP |
3-132016 | Jun 1991 | JP |
4-188678 | Jul 1992 | JP |
5-7016 | Jan 1993 | JP |
5-41536 | Feb 1993 | JP |
8-18159 | Jan 1996 | JP |
08-064791 | Mar 1996 | JP |
8-116093 | May 1996 | JP |
8-125251 | May 1996 | JP |
8-153931 | Jun 1996 | JP |
9-93315 | Apr 1997 | JP |
11-145516 | May 1999 | JP |
WO 9711518 | Mar 1997 | WO |
WO 9847170 | Oct 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20020179911 A1 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09717717 | Nov 2000 | US |
Child | 10193823 | US | |
Parent | 09198784 | Nov 1998 | US |
Child | 09717717 | US |