1. Field of the Invention
The invention relates to a memory element and fabrication method thereof, and more particularly to a phase-change memory element and fabrication method thereof.
2. Description of the Related Art
Electronic devices use different types of memories, such as DRAM, SRAM and flash memory or a combination based on the requirements of the application, the operating speed, the memory size and the cost considerations of the equipment. Current developments in the memory technology field include FeRAM, MRAM and phase-change memory. Among these alternative memories, phase-change memory is most likely to be mass manufactured in the near future.
Phase-change memory is targeted for applications currently utilizing flash non-volatile memory. Such applications are typically mobile devices which require low power consumption, and hence, minimal programming currents. A phase-change memory cell is designed with several goals in mind: low programming current, higher reliability (including electromigration risk), smaller cell size, and faster phase transformation speed. These requirements often set contradictory requirements on feature size, but a careful choice and arrangement of materials used for the components can often widen the tolerance.
To reduce the programming current, the most straightforward way is to shrink the heating area. A benefit of this strategy is simultaneous reduction of cell size. Assuming a fixed required current density, the current will shrink in proportion to the area. In reality, however, cooling becomes significant for smaller structures, and loss to surroundings becomes more important due to increasing surface/volume ratio. As a result, the required current density must increase as heating area is reduced. This poses an electromigration concern for reliability. Hence, it is important to use materials in the cell which do not pose an electromigration concern. It is also important to improve the heating efficiency, by increasing heating flux in the active programming region while reducing heat loss to the surroundings.
U.S. Pat. No. 6,750,079 discloses a method for fabricating a phase-change memory element 10, referring to
Therefore, it is necessary to develop a phase-change memory to solve the previously described problems.
An exemplary embodiment a phase-change memory element comprises a substrate. A first electrode is formed on the substrate. A circular or linear phase-change layer is electrically connected to the first electrode. A second electrode formed on the phase-change layer and electrically connected to the phase-change layer, wherein at least one of the first electrode and the second electrode comprises phase-change material.
Methods of manufacturing phase-change memory elements are also provided. An exemplary embodiment of a method comprises the following steps: providing a substrate; forming a first electrode on the substrate; forming a first dielectric layer on the first electrode; patterning the first dielectric layer to form a dielectric pillar, wherein the top view of the dielectric pillar is circle or polygon; conformally forming a phase-change material to cover the dielectric pillar and etching back the phase-change material to remove phase-change material on the top surface of the dielectric pillar and first electrode, remaining a phase-change material spacer on the side walls of the dielectric pillar; forming a second dielectric layer on the substrate and etching back the second dielectric layer to expose the top surface of the phase-change material spacer; and forming a second electrode on the dielectric pillar and second dielectric layer to electrically connect to the phase-change material.
According to another exemplary embodiment of the invention, the method of manufacturing phase-change memory element comprises the following steps. providing a substrate; forming a first electrode on the substrate; forming a first dielectric layer on the first electrode; patterning the first dielectric layer to form an opening, wherein the top view of the opening is circle or polygon; conformally forming a phase-change material on the first dielectric layer to cover the opening and etching back the phase-change material to remain a phase-change material spacer on the side walls of the opening; forming a second dielectric layer on the substrate and etching back the second dielectric layer to expose the top surface of the phase-change material spacer; and forming a second electrode on the opening and the second dielectric layer to electrically connect to the phase-change material spacer.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
a-2g are cross sections of a method of fabricating a phase-change memory element according to an embodiment of the invention.
a-5c are cross sections of a method of fabricating a phase-change memory element according to another embodiment of the invention.
a to 8g are cross sections of a method of fabricating a phase-change memory element according to still another embodiment of the invention.
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
First, referring to
Next, referring to
Next, referring to
Referring to
Referring to
Next, referring to
Finally, referring to
According to another embodiment of the invention, after the process as disclosed in
a to 8g are sectional diagrams illustrating another embodiment of the manufacturing process of the phase-change memory element 200.
First, referring to
Next, a first dielectric layer 203 is formed on first electrode 201. The dielectric layer 203 can be silicon-containing compound, such as silicon nitride or silicon oxide. Referring to
Next, referring to
Referring to
The phase-change material spacer 206 can be a closed curve, such as a circular phase-change material spacer. It should be noted that the width of the phase-change material spacer 206 has a dimension less than the resolution limit of photolithography process. Further, the dimensions of phase-change material spacer 206 from top to bottom are the same, and the phase-change material spacer 206 is essentiality perpendicular to the first electrode and second electrode. The phase-change material spacer 206 has a width of 2 nm˜120 nm, or 10 nm˜50 nm, such as 20 nm. The height of the phase-change material spacer 206 is 1 nm˜200 nm, or 5 nm˜80 nm, such as 20 nm.
Referring to
Next, referring to
Finally, referring to
Accordingly, embodiments of the invention provide method for fabricating phase-change material spacer, wherein the width of the top and bottom surfaces can be less than the resolution limit of photolithography process. Since the dimensions of phase-change material spacer from top to bottom are the same and the phase-change layer is essentiality, the disclosed phase-change memory element exhibits great temperature uniformity when applying a voltage pulse. Moreover, the fabrication process is relatively simple and can accommodate various cell designs, and low cost can be maintained.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
96103661 A | Feb 2007 | TW | national |
This application is a Divisional of application Ser. No. 12/010,885, filed on Jan. 30, 2008 now abandoned, the entire contents of which are hereby incorporated by reference and for which priority is claimed under 35 U.S.C. §120. This application also claims priority under 35 U.S.C. §119(a) on patent application Ser. No. 96/103,661 filed Feb. 1, 2007, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3271591 | Ovshinsky | Sep 1966 | A |
5166758 | Ovshinsky et al. | Nov 1992 | A |
5177567 | Klersy et al. | Jan 1993 | A |
5789758 | Reinberg | Aug 1998 | A |
6607974 | Harshfield | Aug 2003 | B2 |
6750079 | Lowrey et al. | Jun 2004 | B2 |
6830952 | Lung | Dec 2004 | B2 |
7545668 | Philipp et al. | Jun 2009 | B2 |
7667222 | Iwasaki | Feb 2010 | B2 |
20030219924 | Bez et al. | Nov 2003 | A1 |
20050030800 | Johnson et al. | Feb 2005 | A1 |
20050212037 | Pinnow et al. | Sep 2005 | A1 |
20060039192 | Ha et al. | Feb 2006 | A1 |
20060245236 | Zaidi | Nov 2006 | A1 |
20070018149 | Sato | Jan 2007 | A1 |
20070246766 | Liu | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20110177667 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12010885 | Jan 2008 | US |
Child | 13079840 | US |