Photoresist strip processes for improved device integrity

Information

  • Patent Grant
  • 9613825
  • Patent Number
    9,613,825
  • Date Filed
    Monday, August 20, 2012
    12 years ago
  • Date Issued
    Tuesday, April 4, 2017
    8 years ago
Abstract
Provided herein are methods and apparatus of hydrogen-based photoresist strip operations that reduce dislocations in a silicon wafer or other substrate. According to various embodiments, the hydrogen-based photoresist strip methods can employ one or more of the following techniques: 1) minimization of hydrogen budget by using short processes with minimal overstrip duration, 2) providing dilute hydrogen, e.g., 2%-16% hydrogen concentration, 3) minimization of material loss by controlling process conditions and chemistry, 4) using a low temperature resist strip, 5) controlling implant conditions and concentrations, and 6) performing one or more post-strip venting processes. Apparatus suitable to perform the photoresist strip methods are also provided.
Description
BACKGROUND

Photoresist is a light sensitive material used in certain fabrication processes to form a patterned coating on a work piece, e.g., a semiconductor wafer, during processing. After exposing the photoresist coated surface to a pattern of high energy radiation, a portion of the photoresist is removed to reveal the surface below, leaving the rest of the surface protected. Semiconductor processes such as etching, depositing, and ion implanting can be performed on the uncovered surface and the remaining photoresist. After performing one or more semiconductor processes, the remaining photoresist is removed in a strip operation.


SUMMARY

Provided herein are methods and apparatus of hydrogen-based photoresist strip operations that reduce dislocations in a silicon wafer or other substrate. According to various embodiments, the hydrogen-based photoresist strip methods can employ one or more of the following techniques: 1) minimization of hydrogen budget by using short processes with minimal overstrip duration, 2) providing dilute hydrogen, e.g., 2%-16% hydrogen concentration, 3) minimization of material loss by controlling process conditions and chemistry, 4) using a low temperature resist strip, 5) controlling implant conditions and concentrations, and 6) performing one or more post-strip venting processes. Apparatus suitable to perform the photoresist strip methods are also provided.


A method including providing a substrate having photoresist disposed thereon to reaction chamber and exposing the substrate to a plasma generated from a process gas comprising nitrogen and hydrogen and having a hydrogen concentration [H] of between about 2% and 16% to thereby remove photoresist from the substrate. In certain embodiments, the process gas comprises molecular nitrogen (N2) and molecular hydrogen (H2). In certain embodiments, the process gas contains substantially no oxygen-containing compounds. In embodiments, wherein the hydrogen concentration is between about 2% and 10% and can be less than 8%. In some embodiments, the hydrogen concentration about 4%.


Examples of process gasses chemistries include H2/N2, H2/N2/Ar, and H2/N2/He. In some embodiments, the substrate is exposed to the plasma for a time t and the cross-product of [H] and the time t ([H]×t) is between about 50 and 2000 sccm-seconds, or about between about 50 and 500 sccm-seconds. In certain embodiments, the substrate temperature is below about 285° C., for example between about 200° C. and 250° C.


Another aspect of the disclosure provided herein is a method including providing a substrate having photoresist disposed thereon to reaction chamber; exposing the substrate to a plasma generated from a process gas comprising hydrogen to thereby remove photoresist from the substrate; and after exposing the substrate to the plasma, venting the substrate at a substrate temperature between about 200° C. and 450° C. In some embodiments, the methods further include, after venting the substrate, performing a high temperature implant drive process at a substrate temperature of at least about 800° C. The hydrogen concentration of the process gas can be 16% or greater in certain embodiments. In certain embodiments, the hydrogen concentration [H] of the process gas is less than 16%. In certain embodiments, the hydrogen concentration [H] of the process gas is less than 10%. In certain embodiments, the hydrogen concentration [H] of the process gas is less than 5%.


Another aspect of the subject matter disclosed herein is an apparatus including a plasma source, a gas inlet for introducing a gas mixture into the plasma source, a showerhead positioned downstream of the gas inlet, a substrate support downstream of the showerhead, said substrate support comprising a pedestal and temperature-controlling mechanism to control a temperature of a substrate supported on the substrate support, and, a controller for executing a set of instructions for performing the methods described herein. In some embodiments, the set of instructions include instructions to introduce a gas mixture to the gas inlet comprising nitrogen and hydrogen and having a hydrogen concentration [H] of between about 2% and 16%. In some embodiments, the set of instructions includes instruction to maintain the temperature of the substrate at about 285° C. or less.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D depicts various stages of semiconductor fabrication before and after ion implantation and stripping operations.



FIG. 2 shows a flow diagram illustrating certain operations of a photoresist strip process.



FIG. 3 is a graph showing the concentration of atoms up to a depth of 400 Å of silicon wafers after a) exposure to photoresist strip plasma using 16% H2, b) exposure to photoresist strip plasma using 4% H2, c) bare control Si wafer and d) after rapid thermal process (RTP) anneal at 900° C. for 30s.



FIG. 4 shows FTIR spectra for silicon wafers after a) exposure to photoresist strip using 16% H2, b) exposure to photoresist strip using 4% H2, and c) bare control Si wafer.



FIGS. 5A and 5B schematic illustrations of carbon doped silicon under a gate.



FIG. 6 shows an analysis of carbon content in crystalline Si as a function of exposure to hydrogen plasma.



FIG. 7 shows a flow diagram illustrating certain operations of a photoresist strip process.



FIG. 8 shows FTIR spectra of substrates after a) exposure to photoresist strip plasma using 16% H2 and a 12 hour 200° C. anneal in air and b) exposure to photoresist strip plasma using 4% H2 and 12 hour 200° C. anneal in air, compared to control.



FIG. 9 is a schematic illustration showing aspects of a downstream plasma apparatus suitable for practicing the methods described herein.



FIG. 10 is a simplified schematic showing a top view of a multi-station apparatus suitable for practicing the methods described herein.





DETAILED DESCRIPTION

In the following detailed description of the present invention, numerous specific embodiments are set forth in order to provide a thorough understanding of the invention. However, as will be apparent to those skilled in the art, the present invention may be practiced without these specific details or by using alternate elements or processes. In other instances well-known processes, procedures and components have not been described in detail so as not to unnecessarily obscure aspects of the present invention.


In this application, the terms “work piece”, “semiconductor wafer”, “wafer” and “partially fabricated integrated circuit” will be used interchangeably. One skilled in the art would understand that the term “partially fabricated integrated circuit” can refer to a silicon wafer during any of many stages of integrated circuit fabrication thereon. The following detailed description assumes the invention is implemented on a wafer. However, the invention is not so limited. The work piece may be of various shapes, sizes, and materials. In addition to semiconductor wafers, other work pieces that may take advantage of this invention include various articles such as displays, printed circuit boards, and the like.


Photoresist is a light sensitive material used in certain fabrication processes to form a patterned coating on a work piece, e.g., a semiconductor wafer, during processing. After exposing the photoresist coated surface to a pattern of high energy radiation, a portion of the photoresist is removed to reveal the surface below, leaving the rest of the surface protected. Semiconductor processes such as etching, depositing, and ion implanting are performed on the uncovered surface and the remaining photoresist. After performing one or more semiconductor processes, the remaining photoresist is removed in a strip operation.


Front-End-of-Line (FEOL) fabrication processes, including p and n MOSFET and other transistor fabrication processes, DRAM storage capacitor fabrication processes, and flash floating gate fabrication processes can involve multiple lithographic patterning operations, and multiple photoresist strip processes. In some embodiments, the photoresist strip processes may be or include high dose implantation strip (HDIS) or other implant strip processes.


During ion implantation, dopant ions, e.g., ions of boron, boron difluoride, indium, gallium, thallium, phosphorous, arsenic, antimony, bismuth, carbon, xenon, argon or germanium, are accelerated toward a work piece target. The ions implant in exposed regions of the work piece as well as in the remaining photoresist surface. The process may form well regions (source/drain), lightly doped drain (LDD), halo implant regions, and doubled diffused drain (DDD) regions, as well as other implanted regions. The ion implant impregnates the resist with the implant species and depletes the surface of hydrogen. The outer layer or crust of the resist forms a carbonized layer that may be much denser than the underlying bulk resist layer. These two layers have different thermal expansion rates and react to stripping processes at different rates.


The difference between the outer layer and bulk layer is quite pronounced in post high-dose ion implant resist. In high-dose implantation, the ion dose may be greater than 1×1015 ions/cm2 and the energy may be from 10 KeV to greater than 100 KeV. Traditional HDIS processes employ oxygen chemistries where monatomic oxygen plasma is formed away from the process chamber and then directed at the work piece surface. The reactive oxygen combines with the photoresist to form gaseous by-products which is removed with a vacuum pump. For HDIS, additional gases are needed to remove the implanted dopants with oxygen.


Primary implant strip considerations include strip rate, amount of residue, and film loss of the exposed and underlying film layer. Residues are commonly found on the substrate surface after implant and stripping. They may result from sputtering during the high-energy implant, incomplete removal of crust, and/or oxidation of implant atoms in the resist. After stripping, the surface should be residue free or substantially residue free to ensure high yield and eliminate the need for additional residue removal processing. Residues may be removed by overstripping, i.e., a continuation of the strip process past the point nominally required to remove all photoresist. Unfortunately, in conventional implant strip operations, overstripping sometimes removes some of the underlying functional device structure. At the device layer, even very little silicon loss from the transistor source/drain regions may adversely affect device performance and yield, especially for ultra shallow junction devices fabricated at the <32 nm design rule or below.


In some embodiments, the methods and apparatus may be used to efficiently and effectively to remove photoresist materials after high-dose ion implantation. The methods and apparatus are not limited to high-dose implant strip (HDIS). The methods and apparatus are also not limited to any particular category of dopants implanted. For instance, described methods and apparatus may be effectively used with stripping after medium or low dose implant. Although specific dopant ions such as boron, arsenic, and phosphorous are discussed, the described methods and apparatus may be effectively used to strip resist impregnated with other dopants, such as nitrogen, oxygen, carbon, germanium, and aluminum. Further, the methods and apparatus are not limited to post-implant removal of photoresist, but may also be used to remove photoresist that has not undergone an implantation.


The methods and apparatus described herein employ hydrogen-based chemistries to remove photoresist and/or related residues. In some embodiments, the chemistries include hydrogen with an optional gas such as nitrogen, helium, argon and the like with substantially no oxidant or fluorine-based chemistries. In some other embodiments, the chemistries may include an oxygen-containing compound and/or a fluorine containing compound.


The strip processes described herein generally involve generating a plasma from a plasma from a gas including various component gases. As indicated, the strip chemistries described herein are hydrogen-based. Molecular hydrogen (H2) is typically a main component of the plasma-generating gas. In some embodiments, the strip chemistry for one or more of the operations of an overall strip process is generated from a gas consisting essentially of H2 and N2.


While hydrogen-based strip chemistries such as H2/N2 chemistries have resulted in clean, fast and effective removal of photoresist, certain hydrogen-based strip processes have been unexpectedly found to cause dislocations or other defects in silicon substrates during FEOL fabrication. These defects can compromise device integrity. Formation of dislocation in the Si crystal can be detrimental to device performance. In some cases dislocations can negate the positive effects of lattice straining and slow the device. In other cases dislocations can cause yield loss. In yet other cases, dislocations can create a device reliability problem, affecting long term operation. The methods and apparatus described herein provide effective photoresist stripping while reducing or minimizing defects.



FIGS. 1A-1D depicts various stages of semiconductor fabrication before and after ion implantation and stripping operations. While FIGS. 1A-1D provide an example of a fabrication process that may employ the methods described herein, the methods are not so limited and may be employed with any hydrogen-based photoresist strip process, with particular applications of FEOL processes. FIG. 1A shows a semiconductor substrate 101 coated with photoresist material 103. The substrate 101 may include one or more layers of deposited film, e.g., oxide film, silicide contact, and/or polysilicon film, or may be a bare silicon substrate, including for example a silicon-on-insulator type substrate. Initially, the photoresist material coats the entire substrate surface. The photoresist is then exposed to patterned radiation generated through a mask and developed to remove a portion of the material, e.g., the opening 104 shown in FIG. 1A between the remaining photoresist materials 103.


The substrate is then exposed to an ion implant process. During ion implant, the surface of the work piece or wafer is implanted with dopant ions. The process may be, for example, a plasma-immersion ion implantation (PIII) or ion beam implantation. The ions bombard the substrate surface, including the exposed silicon layer 101 and the photoresist 103. With high energy ion implantation, small amounts of the underlying material 107 may be sputtered to the photoresist sidewalls. See FIG. 1B. This material may include some of the implant species, other material in the plasma or ion beam, and by-products of the implantation. They include silicon, aluminum, carbon, fluorine, titanium, other contact materials such as cobalt, and oxygen in both elemental and compound forms. The actual species depend on the composition of the substrate before ion implant, the photoresist, and the implanted species.


At the exposed silicon layer 101, a doped region 109 is created. The ion energy or intensity of the bombardment determines the depth or thickness of the doped region. The density of the ion flux determines the extent of doping. The ions also impregnate the photoresist surface creating a crust layer 105. The crust layer 105 may be carbonized and highly cross-linked polymer chains. The crust is usually depleted of hydrogen and impregnated with the implant species. The crust layer 105 is denser than the bulk resist layer 103. The relative density depends on the ion flux while the thickness of the crust layer depends on the ion energy.


This crust layer 105 is harder to strip than the bulk photoresist 103 below. Removal rates of the crust layer may be 50% or 75% slower than the underlying bulk photoresist. The bulk photoresist contains relatively high levels of chemically bonded nitrogen and some of its original casting solvent. At elevated wafer temperature, e.g., above 150° C. to above 200° C., the bulk resist can outgas and expand relative to the crust layer. The entire photoresist can then “pop” as the underlying bulk photoresist builds up pressure under the crust. Photoresist popping is a source of particles and process defects because the residues are especially hard to clean from the wafer surface and chamber internal parts. With high-dose ion implantation, the density difference between the crust and underlying bulk photoresist layer is even higher. The crust may also be thicker.



FIG. 1C shows the substrate after a strip that fails to completely remove the photoresist 103 and the sidewall sputter residue 107. The sidewall sputter residue 107 may include particles that do not form a volatile compound under conventional strip chemistries. These particles may remain after a conventional strip operation. The residue may also include oxides of implanted species formed with the reactive oxygen used in the conventional strip chemistry, such as boron oxide and arsenic oxide. Portions of the crust 105 may also remain on the substrate. Crust sidewalls and corners at the bottom of photoresist vias may be hard to strip because of geometries. Stringers, long, narrow photoresist residue segments that may be left by non-exposure between two adjacent exposure areas, may also be present. These residue particles may be removed by overstripping. Overstrip is a continuation of the strip process past the point nominally required to remove all photoresist. If the photoresist is totally removed in some areas of the wafer but not others, continuation of the strip process would cause additional material, typically silicon and silicon oxide, to be removed from areas that are already stripped. FIG. 1D shows the substrate after all residue has been removed.


Described herein are hydrogen-containing plasma strip processes that can be used to strip photoresist after ion implantation or other post-patterning processing. For example, the methods and apparatus described herein can be implemented for post halo implant resist strip. The methods and apparatus reduce dislocations in a Si or other substrate that can compromise device integrity. As noted above, in certain embodiments, the hydrogen-containing plasmas may or may not contain other reactive species such as oxygen and fluorine species. Without being bound by a particular theory, it is believed that dislocations are more liable to be formed with hydrogen-based plasmas that do not contain oxygen, fluorine, or other species that can react with hydrogen. However, in some embodiments, the approaches described herein may be advantageously used with hydrogen-based plasmas that include oxygen, fluorine and other reactive species as well as those that do not.


According to various embodiments the hydrogen-based resist strip processes employ one or more of the following techniques: 1) minimization of hydrogen budget by using short processes with minimal overstrip duration, 2) providing dilute hydrogen, e.g., 2%-16% H2, 3) minimization of material loss by controlling process conditions and chemistry, 4) using a low temperature resist strip, 5) controlling implant conditions and concentrations, and 6) performing one or more post-strip venting processes. These are discussed below.



FIG. 2 shows a flow diagram illustrating certain operations of a photoresist strip process. The process 200 begins at block 201 with providing a substrate having photoresist thereon. Examples of substrates having photoresist are described above with respect to FIGS. 1A-1C. The substrate can be a silicon substrate for example, including a silicon-on-insulator substrate. The photoresist can be directly on the surface of the silicon substrate in some embodiments. In some embodiments, one or more layers of deposited film or material may be between a silicon or other substrate and the photoresist. In some embodiments, the photoresist and substrate may have undergone an ion implantation process. The process 200 continues at block 203 with a bulk photoresist strip. In some embodiments, block 203 may be preceded by or include one or more operations to remove a thin crust layer. In certain embodiments, block 203 involves a hydrogen-based strip chemistry. Examples of strip chemistries include: H2/N2, H2/N2/Ar, H2/N2/He, H2/N2/other noble gas, H2/Ar, H2/He, and H2/other noble gas. Other hydrogen-containing compounds may be used instead of or in addition to H2. Examples include NH2. Other inert compounds may be used instead of or in addition to the N2, Ar or He. In these examples, the strip chemistry does not include oxidizing agents or halogen-containing compounds. In some other embodiments, the strip chemistry may include an oxidizing agent and/or a fluorine or other halogen-containing compound in addition to or instead of the N2 and noble gases described. In some embodiments, an oxidizing agent may be a relatively strong oxidizing agent, such as O2, or a weak oxidizing agent. Examples of weak oxidizing agents include carbon oxides such as carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides such as nitrous oxide (N2O), nitric oxide (NO), nitrogen dioxide (NO2), and sulfur oxides such as sulfur oxide (SO) and sulfur dioxide (SO2). Examples of other weak oxides include any oxygen containing hydrocarbons (CxHyOz) and water (H2O). Other examples of strong oxidants include ozone (O3) and hydrogen peroxide (H2O2). Examples of fluorine-containing compounds include nitrogen trifluoride (NF3), sulfur hexafluoride (SF6), hexafluoroethane (C2F6), tetrafluoromethane (CF4), trifluoromethane (CHF3), difluoromethane (CH2F2), octofluoropropane (C3F8), octofluorocyclobutane (C4F8), octofluoro[1-]butane (C4F8), octofluoro[2-]butane (C4F8), octofluoroisobutylene (C4F8), fluorine (F2), and the like.


The process 200 continues at block 205 with bulk resist strip end point detection. Block 205 can involve infrared detection, optical detection, emission detection or other appropriate detection method. The process 200 continues at block 207 with an overstrip operation. In some embodiments, the overstrip chemistry and process conditions are the same as used for the bulk photoresist strip in block 203. In some other embodiments, block 205 may involve using a different chemistry, component concentration, or process conditions than used in block 203. Examples include using a lower temperature, or hydrogen concentration than in block 203.


An overstrip operation can be measured as a percent duration of the bulk strip operation. At least part of a Si wafer or other substrate is covered by resist until the end point. During overstrip, the substrate may be particularly vulnerable to dislocations caused by a hydrogen-based chemistry. The duration of the over strip step is determined experimentally and may be different at different mask levels and implant steps. In some embodiments, overstrip duration ranges from about 0 to 200% of the time to end point, for example, 0 to 50%, or 0 to 20%. Minimizing the overstrip also reduces thermal budget and substrate exposure to plasma.


In some embodiments, hydrogen absorption into the Si or other substrate is reduced by diluting the hydrogen with nitrogen or another inert gas. For example, hydrogen concentration [H] may be between about 2% and 16%, as measured in volumetric flow percentage. FIG. 3 is a graph showing the concentration of atoms (as measured by Secondary Ion Mass Spectrometry (SIMS)) up to a depth of 400 Å of silicon wafers after a) exposure to photoresist strip plasma using 16% H2, b) exposure to photoresist strip plasma using 4% H2, c) bare control Si wafer and d) after rapid thermal process (RTP) anneal at 900° C. for 30s. Nitrogen was used as the diluent for a) and b). FIG. 3 demonstrates that the number of H atoms in a wafer after strip is correlated to the [H] in the photoresist strip plasma. FIG. 3 also demonstrates that these atoms are driven out after RTP anneal, with the post-RTP curve not showing any signal above noise. Without being bound by a particular theory, it is believed that post-strip processing such as an RTP anneal that drives out H atoms may cause a shockwave in Si crystal that can cause dislocations.


While a strip process gas having [H] of 16% produces a clean that is fast and effective at removing stringers and other residue, it may cause dislocations in the substrate. Accordingly, in some embodiments, a strip process gas having an [H] of less than 16% is used, e.g., between 2% and 15% or 2% and 10%, to reduce defects. In some embodiments, the [H] is less than 8% or 5%.



FIG. 4 shows FTIR spectra for silicon wafers after a) exposure to photoresist strip using 16% H2, b) exposure to photoresist strip using 4% H2, and c) bare control Si wafer. As shown in FIG. 4, an increase in Si—H bonds are shown for the 4% and 16% spectra, while an increase in Si—H2 bonds is shown only for the 16% spectrum. This indicates that bonding in a Si wafer can be modulated by [H] in the strip chemistry.


In certain embodiments, hydrogen in the strip process gas is controlled to modulate the incorporation of hydrogen in the system as well as modulating bonding. This can be implemented by using a cross product [H]×time of between about 1 and 2400 sccm-seconds per layer, with [H] measured in volumetric flow and t. For example, [H]×time may be between about 50 and 2000 sccm-seconds, e.g., between 50 and 1000 sccm-seconds per layer, or between about 50 and 500 sccm-seconds per pass through the strip apparatus. Note that according to various embodiments, a strip operation having a cross product within these ranges may or may not also have an [H] of less than 16% as described above.


In some embodiments, a strip operation is performed a temperature between 100° C. and 400° C. In some embodiments, the temperature is below about 285° C., e.g., between 200° C. and 285° C., or between about 200° C. and 250° C. Both hydrogen absorption into the Si crystal, hydrogen diffusion inside the crystal, the formation of Si—H and Si—H2 bonds and dislocation formation and propagation may be affected by temperature. Kink pair formation and motion may be affected by temperature. Low temperature and in particular low thermal budget (defined as the product of time and temperature in units of s·K) may have a strong effect of the kinetics of dislocations formation and propagation. Without being bound to a particular theory, it believed that rates of hydrogen diffusion and/or formation of Si—H and Si—H2 bonds may exhibit Arrhenius behavior, exponentially related to temperature, with linear dependence on time and concentration. Accordingly, a process temperature of between 200° C. and 285° C., or between about 200° C. and 250° C. in some embodiments can reduce one or more mechanisms that may contribute comprising device integrity. The overall thermal budget may then be determined by minimizing material loss while leaving the substrate clean of residue.


In some embodiments, implant conditions and concentrations are controlled. FIG. 5A shows carbon doped silicon under a gate. The carbon impurities in a Si crystal, creating strain due the shorter Si—C bond. Tensile stress results in a larger than equilibrium lattice constant and longer Si—Si bonds. From the device perspective this is beneficial, causing higher density of charge carriers and a faster device. Mechanically, this is detrimental and is assisting in the formation of defects. In some embodiments, a hydrogen-based strip process can cause carbon depletion, creating a vacancy in the crystal and increasing strain. This is illustrated in FIG. 5B. FIG. 6 shows SIMS analysis of carbon content in crystalline Si as a function of exposure to hydrogen plasma. Lower levels of carbon are measured as hydrogen concentration in the plasma increases from 4% to 16%. The highest level of carbon is measured for the control, where no plasma was present. The interaction between implanted C and H from resist strip is shown in FIG. 6. In some embodiments, the effect of hydrogen on substrate straining due to reaction between hydrogen and carbon (or other doping element such as carbon, boron, phosphorous, arsenic etc.) is minimized by reducing dopant implant concentration. For example, a modulation of the carbon implant, by +/−15%, in conjunction with the hydrogen plasma process allows for straining engineering that enhances performance without undesired dislocations. According to various embodiments, a C implant dose range is 5*1014 to 5*1016 at energies of 6 to 10 KeV. For example, a process may use a dose of 6*1015 at 8 KeV. In some embodiments, a dopant implant dose calculated for a non-hydrogen based strip may be reduced by up to 15%.


In the same or other embodiments as described above, a venting process can be performed after one or more hydrogen-based photoresist strip processes. FIG. 7 shows a flow diagram illustrating certain operations of a photoresist strip process. The process 700 begins at block 701 with providing a substrate having photoresist on it. As indicated above, in some embodiments, the photoresist and substrate have previously undergone an implant process. The process 700 continues at block 703 with performing a hydrogen-based strip process. Strip chemistries are discussed above and may, for example, include essentially H2 diluted with N2 or other inert diluent. Note that according to various embodiments, block 703 can include one or more of a crust removal operation, a bulk photoresist operation and an overstrip operation. During block 703, hydrogen is incorporated into the substrate. The process 700 continues at block 705 with venting at a relatively low temperature, e.g., between about 200° C. and 450° C. FIG. 8 shows FTIR spectra after a) exposure to photoresist strip plasma using 16% H2 and a 12 hour 200° C. anneal in air and b) exposure to photoresist strip plasma using 4% H2 and 12 hour 200° C. anneal in air, compared to control. FIG. 8 shows that the incorporated hydrogen can be driven out at a relatively low temperature. Without being bound by a particular theory it is believed that these relatively low temperatures can drive out the hydrogen atoms without causing dislocations that occur at higher temperatures used, for example, with RTP processes. A low temperature vent can occur at less than about 450° C., less than 400° C., less than about 300° C. according to various embodiments.


Returning to FIG. 7, in some embodiments, the process 700 continues at block 707 with a high temperature implant drive. A high temperature implant drive may involve a RTP process for example at temperatures of 800° C. or higher. In some embodiments, prior to block 707, blocks 703 and 705 are both performed multiple times, e.g., a vent operation can be performed each time a photoresist strip is performed during FEOL processing. In some other embodiments, block 703 is performed multiple times for different FEOL devices (e.g., once of NMOS fabrication, once for PMOS fabrication, etc.), with a single vent performed prior to block 707. In some other embodiments, multiple vent processes may be performed prior to block 707. For example, if block 703 is performed ten times, block 705 can be performed from one to ten times.


Inlet Gas


A hydrogen-containing gas, typically including molecular hydrogen, is introduced to the plasma source. The gas introduced to the plasma source contains the chemically active species that will be ionized or otherwise in the plasma source to form a plasma. As indicated above, in certain embodiments, an inlet gas may consist essentially of molecular hydrogen and one or more inert gases such as nitrogen. In some embodiments, the inlet gas includes no oxygen-containing compound. In some embodiments, the inlet gas includes only oxygen-containing compounds that are weak oxidants. One having ordinary skill in the art will understand that that trace amounts of other species may be present. The gas introduced to the plasma source may be premixed, partially mixed or unmixed.


Plasma Generation


Various types of plasma sources may be used in accordance with the invention, including RF, DC, and microwave based plasma sources. In a preferred embodiment, a downstream RF plasma source is used. Example RF plasma power for a 300 mm wafer ranges between about 300 Watts to about 10 Kilowatts. In some embodiments, the RF plasma power is between about 2000 Watts and 5000 Watts, e.g., 3500 W.


Showerhead Assembly


According to various embodiments, the plasma gas is distributed to the work surface via a showerhead assembly. The showerhead assembly may be grounded or have an applied voltage to attract some charge species while not affecting the flow of neutral species to the wafer, e.g., 0-1000 watt bias. Many of the electrically charged species in the plasma recombine at the showerhead. The assembly includes the showerhead itself which may be a metal plate having holes to direct the plasma and inert gas mixture into the reaction chamber. The showerhead redistributes the active hydrogen from the plasma source over a larger area, allowing a smaller plasma source to be used. The number and arrangement of the showerhead holes may be set to optimize strip rate and strip rate uniformity. If the plasma source is centrally located over the wafer, the showerhead holes are preferably smaller and fewer in the center of the showerhead in order to push the active gases toward the outer regions. The showerhead may have at least 100 holes. Suitable showerhead includes the Gamma xPR showerhead or the GxT drop-in showerhead available from Novellus Systems, Inc. of San Jose, Calif. In embodiments in which there is no showerhead assembly, the plasma enters the process chamber directly.


Process Chamber


The process chamber may be any suitable reaction chamber for the strip operation being performed. It may be one chamber of a multi-chambered apparatus or it may simply be a single chamber apparatus. The chamber may also include multiple stations where different wafers are processed simultaneously. The process chamber may be the same chamber where the implant, etch, or other resist-mediated process takes place. In other embodiments, a separate chamber is reserved for the strip. Process chamber pressure may range from about 600 mTorr to 2 Torr. In certain embodiments, the pressure ranges from about 0.9 Ton to 1.5 Torr.


The process chamber includes one or more processing stations on which strip operations are performed. In certain embodiments, the one or more processing stations includes a preheat station, at least one strip station, and an over-ash station. The wafer support is configured to support the wafer during processing. The wafer support may also transfer heat to and from the wafer during processing to adjust the wafer temperature as necessary. In certain embodiments, the wafer is supported on a plurality of minimum contacts and does not physically contact the wafer support surface plane. A spindle picks up the wafer and transfers the wafer from one station to another.



FIG. 9 is a schematic illustration showing aspects of a downstream plasma apparatus 900 suitable for practicing the present invention on wafers. Apparatus 900 has a plasma producing portion 911 and an exposure chamber 901 separated by a showerhead assembly 917. Inside exposure chamber 901, a wafer 903 rests on a platen (or stage) 905. Platen 905 is fitted with a heating/cooling element. In some embodiments, platen 905 is also configured for applying a bias to wafer 903. Low pressure is attained in exposure chamber 901 via vacuum pump via conduit 907. Sources of gaseous hydrogen (with or without dilution/carrier gas) and carbon dioxide (or other weak oxidizing agent) provide a flow of gas via inlet 909 into plasma producing portion 911 of the apparatus. Plasma producing portion 911 is surrounded in part by induction coils 913, which are in turn connected to a power source 915. During operation, gas mixtures are introduced into plasma producing portion 911, induction coils 913 are energized and a plasma is generated in plasma producing portion 911. Showerhead assembly may have an applied voltage or be grounded directs the flow of species into exposure chamber 901. As mentioned, wafer 903 may be temperature controlled and/or a RF bias may be applied. Various configurations and geometries of the plasma source 911 and induction coils 913 may be used. For example, induction coils 913 may loop around the plasma source 911 in an interlaced pattern. In another example, the plasma source 911 may be shaped as a dome instead of a cylinder.


Another aspect of the disclosure is an apparatus configured to accomplish the methods described herein. A suitable apparatus includes hardware for accomplishing the process operations and a system controller having instructions for controlling process operations in accordance with the present invention. Machine-readable media may be coupled to the controller and contain instructions for controlling process conditions for these operations. The system controller will typically include one or more memory devices and one or more processors configured to execute the instructions so that the apparatus will perform a method in accordance with embodiments of the present invention. Machine-readable media containing instructions for controlling process operations may be coupled to the system controller. In FIGS. 9 and 10, for example, a controller 950 may be connected to components of the process chamber, and control process gas composition, pressure, temperature and wafer indexing of the stripping operations.


Instructions for controlling process operations may be hardcoded or software. In some embodiments, the system controller includes programs, which can include logic of any form. For example, it can include logic hard coded on digital signal processors and similar processers that have specific algorithms implemented as hardware. It can also include software of firmware instructions that may be executed on a general purpose computer.


Suitable plasma chambers and systems include the Gamma 2100, 2130 I2CP (Interlaced Inductively Coupled Plasma), G400, and GxT offered by Novellus Systems, Inc. of San Jose, Calif. Other systems include the Fusion line from Axcelis Technologies Inc. of Rockville, Md., TERA21 from PSK Tech Inc. in Korea, and the Aspen from Mattson Technology Inc. in Fremont, Calif. Additionally, various strip chambers may be configured onto cluster tools. For example, a strip chamber may be added to a Centura cluster tool available from Applied Materials of Santa Clara, Calif.



FIG. 10 is a simplified schematic showing a top view of a multi-station apparatus including stations 1, 2, 3, 4, 5 and 6. Wafers enter the apparatus at station 1 via chamber 1001, are transferred to each station in sequence for a processing operation at that station and exit from station 6 via chamber 1002 after the process is complete.


The apparatus/process described hereinabove may be used in conjunction with lithographic patterning tools or processes, for example, for the fabrication or manufacture of semiconductor devices, displays, LEDs, photovoltaic panels and the like. Typically, though not necessarily, such tools/processes will be used or conducted together in a common fabrication facility. Lithographic patterning of a film typically comprises some or all of the following steps, each step enabled with a number of possible tools: (1) application of photoresist on a workpiece, i.e., substrate, using a spin-on or spray-on tool; (2) curing of photoresist using a hot plate or furnace or UV curing tool; (3) exposing the photoresist to visible or UV or x-ray light with a tool such as a wafer stepper; (4) developing the resist so as to selectively remove resist and thereby pattern it using a tool such as a wet bench; (5) transferring the resist pattern into an underlying film or workpiece by using a dry or plasma-assisted etching tool; and (6) removing the resist using a tool such as an RF or microwave plasma resist stripper.


While this invention has been described in terms of a few preferred embodiments, it should not be limited to the specifics presented above. Many variations on the above-described preferred embodiments may be employed.

Claims
  • 1. A method comprising: providing a substrate having an exposed silicon surface and an ion-implanted photoresist, the ion-implanted photoresist including a bulk photoresist and a carbonized outer layer on the bulk photoresist, disposed thereon to reaction chamber;exposing the substrate to a plasma generated from a process gas consisting essentially of nitrogen (N2) and hydrogen (H2), wherein the volumetric flow percentage of H2 in the process gas is between about 2% and 16% and the balance of the process gas is N2, to thereby remove photoresist from the substrate, wherein the substrate temperature is between about 200° C. and 285° C. and the chamber pressure is between 600 mTorr and 2 Torr.
  • 2. The method of claim 1, wherein the volumetric flow percentage of H2 is between about 2% and 10%.
  • 3. The method of claim 1, wherein the volumetric flow percentage of H2 is less than about 8%.
  • 4. The method of claim 1, wherein the volumetric flow percentage of H2 is about 4%.
  • 5. The method of claim 1, wherein the substrate is exposed to the plasma for a time t and the cross-product of the volumetric flow percentage of H2 [H] and the time t ([H]×t) is between about 50 and 2000 sccm-seconds.
  • 6. The method of claim 5, wherein [H]×t is between about 50 and 500 sccm-seconds.
  • 7. The method of claim 1, wherein the substrate temperature is between about 200° C. and 250° C.
  • 8. The method of claim 1, further comprising applying photoresist to the substrate, exposing the photoresist to light, patterning the photoresist and transferring the pattern to the substrate.
  • 9. A method comprising: providing a substrate having photoresist disposed thereon to reaction chamber;exposing the substrate to a plasma generated from a process gas consisting essentially of hydrogen gas (H2) and nitrogen gas (N2) wherein H2 is present at a first volumetric flowrate and the balance of the process gas is N2 and the N2 is present in a higher volumetric flow percentage than H2 to thereby remove photoresist from the substrate, wherein the substrate temperature is between about 200° C. and 285° C. and the chamber pressure is between 600 mTorr and 2 Torr;after exposing the substrate to the plasma, venting the substrate by exposing the substrate to a thermal anneal at a substrate temperature between about 200° C. and 450° C. to thereby remove incorporated hydrogen from a crystalline silicon (Si) surface of the substrate.
  • 10. The method of claim 9, further comprising after venting the substrate, performing a high temperature implant drive process at a substrate temperature of at least about 800° C.
  • 11. The method of claim 9, wherein the volumetric flow percentage of H2 in the process gas is 16% or greater.
  • 12. The method of claim 9, wherein the volumetric flow percentage of H2 in the process gas is less than 16%.
  • 13. The method of claim 9, wherein the volumetric flow percentage of H2 in the process gas is less than 10%.
  • 14. The method of claim 9, wherein the volumetric flow percentage of H2 in the process gas is less than 5%.
  • 15. The method of claim 9, wherein the substrate is vented at a temperature less than 400° C.
  • 16. The method of claim 9, wherein hydrogen is incorporated into the crystalline silicon surface during the exposing operation.
  • 17. An apparatus comprising: a plasma source,a gas inlet for introducing a gas mixture into the plasma source,a showerhead positioned downstream of the gas inlet, and
  • 18. The apparatus of claim 17, wherein [H]×t is between about 50 and 500 sccm-seconds.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims benefit under 35 USC §119(e) of U.S. Provisional Patent Application No. 61/528,029, filed Aug. 26, 2011, which is incorporated by reference herein.

US Referenced Citations (252)
Number Name Date Kind
4201579 Robinson et al. May 1980 A
4357203 Zelez Nov 1982 A
4699689 Bersin Oct 1987 A
4861424 Fujimura et al. Aug 1989 A
4961820 Shinagawa et al. Oct 1990 A
5122225 Douglas Jun 1992 A
5158644 Cheung et al. Oct 1992 A
5292393 Maydan et al. Mar 1994 A
5354386 Cheung et al. Oct 1994 A
5593541 Wong et al. Jan 1997 A
5626678 Sahin et al. May 1997 A
5633073 Cheung et al. May 1997 A
5651860 Li Jul 1997 A
5660682 Zhao et al. Aug 1997 A
5707485 Rolfson et al. Jan 1998 A
5767021 Imai et al. Jun 1998 A
5773201 Fujimura et al. Jun 1998 A
5792269 Deacon et al. Aug 1998 A
5811358 Tseng et al. Sep 1998 A
5814155 Solis et al. Sep 1998 A
5817406 Cheung et al. Oct 1998 A
5820685 Kurihara et al. Oct 1998 A
5830775 Maa et al. Nov 1998 A
5844195 Fairbairn et al. Dec 1998 A
5895272 Li Apr 1999 A
5900351 Lutsic et al. May 1999 A
5908672 Ryu et al. Jun 1999 A
5911834 Fairbairn et al. Jun 1999 A
5968324 Cheung et al. Oct 1999 A
5980770 Ramachandran et al. Nov 1999 A
6013574 Hause et al. Jan 2000 A
6030901 Hopper et al. Feb 2000 A
6039834 Tanaka et al. Mar 2000 A
6045618 Raoux et al. Apr 2000 A
6054379 Yau et al. Apr 2000 A
6072227 Yau et al. Jun 2000 A
6077764 Sugiarto et al. Jun 2000 A
6083852 Cheung et al. Jul 2000 A
6086952 Lang et al. Jul 2000 A
6098568 Raoux et al. Aug 2000 A
6107184 Mandal et al. Aug 2000 A
6121091 Wang Sep 2000 A
6125788 Hills et al. Oct 2000 A
6127262 Huang et al. Oct 2000 A
6129091 Lee et al. Oct 2000 A
6130166 Yeh Oct 2000 A
6156149 Cheung et al. Dec 2000 A
6162323 Koshimizu Dec 2000 A
6171945 Mandal et al. Jan 2001 B1
6177347 Liu et al. Jan 2001 B1
6184134 Chaudhary et al. Feb 2001 B1
6187072 Cheung et al. Feb 2001 B1
6193802 Pang et al. Feb 2001 B1
6194628 Pang et al. Feb 2001 B1
6203657 Collison et al. Mar 2001 B1
6204192 Zhao et al. Mar 2001 B1
6209484 Huang et al. Apr 2001 B1
6230652 Tanaka et al. May 2001 B1
6242350 Tao et al. Jun 2001 B1
6245690 Yau et al. Jun 2001 B1
6277733 Smith Aug 2001 B1
6281135 Han et al. Aug 2001 B1
6287990 Cheung et al. Sep 2001 B1
6303523 Cheung et al. Oct 2001 B2
6306564 Mullee Oct 2001 B1
6319842 Khosla et al. Nov 2001 B1
6324439 Cheung et al. Nov 2001 B1
6340435 Bjorkman et al. Jan 2002 B1
6342446 Smith et al. Jan 2002 B1
6348725 Cheung et al. Feb 2002 B2
6350701 Yamazaki Feb 2002 B1
6352936 Jehoul et al. Mar 2002 B1
6358573 Raoux et al. Mar 2002 B1
6361707 Tanaka et al. Mar 2002 B1
6365516 Frenkel et al. Apr 2002 B1
6395092 Sugiarto et al. May 2002 B1
6413583 Moghadam et al. Jul 2002 B1
6426304 Chien et al. Jul 2002 B1
6432830 Merry Aug 2002 B1
6448187 Yau et al. Sep 2002 B2
6465964 Taguchi et al. Oct 2002 B1
6511903 Yau et al. Jan 2003 B1
6511909 Yau et al. Jan 2003 B1
6517913 Cheung et al. Feb 2003 B1
6537422 Sakuma et al. Mar 2003 B2
6537929 Cheung et al. Mar 2003 B1
6541282 Cheung et al. Apr 2003 B1
6555472 Aminpur Apr 2003 B2
6562544 Cheung et al. May 2003 B1
6562690 Cheung et al. May 2003 B1
6569257 Nguyen et al. May 2003 B1
6593247 Huang et al. Jul 2003 B1
6596655 Cheung et al. Jul 2003 B1
6632735 Yau et al. Oct 2003 B2
6638875 Han et al. Oct 2003 B2
6656832 Pan et al. Dec 2003 B1
6660656 Cheung et al. Dec 2003 B2
6660663 Cheung et al. Dec 2003 B1
6663715 Yuda et al. Dec 2003 B1
6667244 Cox et al. Dec 2003 B1
6669858 Bjorkman et al. Dec 2003 B2
6680164 Nguyen et al. Jan 2004 B2
6680420 Pang et al. Jan 2004 B2
6689930 Pang et al. Feb 2004 B1
6693043 Li et al. Feb 2004 B1
6709715 Lang et al. Mar 2004 B1
6720132 Tsai et al. Apr 2004 B2
6730593 Yau et al. May 2004 B2
6734115 Cheung et al. May 2004 B2
6743737 Yau et al. Jun 2004 B2
6764940 Rozbicki et al. Jul 2004 B1
6770556 Yau et al. Aug 2004 B2
6777173 Chen et al. Aug 2004 B2
6787452 Sudijono et al. Sep 2004 B2
6797188 Shen et al. Sep 2004 B1
6800571 Cheung et al. Oct 2004 B2
6806207 Huang et al. Oct 2004 B2
6837967 Berman et al. Jan 2005 B1
6848455 Shrinivasan et al. Feb 2005 B1
6858153 Bjorkman et al. Feb 2005 B2
6869896 Cheung et al. Mar 2005 B2
6900135 Somekh et al. May 2005 B2
6902682 Shang et al. Jun 2005 B2
6930061 Cheung et al. Aug 2005 B2
7023092 Yau et al. Apr 2006 B2
7070657 Cheung et al. Jul 2006 B1
7074298 Gondhalekar et al. Jul 2006 B2
7160821 Huang et al. Jan 2007 B2
7186648 Rozbicki et al. Mar 2007 B1
7202176 Goto et al. Apr 2007 B1
7205249 Cheung et al. Apr 2007 B2
7227244 Bjorkman et al. Jun 2007 B2
7256134 Kim et al. Aug 2007 B2
7288484 Goto et al. Oct 2007 B1
7297635 Toda et al. Nov 2007 B2
7344993 Balasubramaniam et al. Mar 2008 B2
7390755 Chen et al. Jun 2008 B1
7432209 Delgadino et al. Oct 2008 B2
7465680 Chen et al. Dec 2008 B2
7468326 Chen et al. Dec 2008 B2
7556712 Yi et al. Jul 2009 B2
7560377 Cheung et al. Jul 2009 B2
7569492 Chen et al. Aug 2009 B1
7585777 Goto et al. Sep 2009 B1
7595005 Balasubramaniam Sep 2009 B2
7597816 Chang et al. Oct 2009 B2
7601272 Nguyen et al. Oct 2009 B2
7628864 Moriya et al. Dec 2009 B2
7651949 Jo Jan 2010 B2
7740768 Goto et al. Jun 2010 B1
7799685 Savas Sep 2010 B2
8034176 Tsukamoto et al. Oct 2011 B2
8058178 Goto et al. Nov 2011 B1
8058181 Chen et al. Nov 2011 B1
8097527 Yang Jan 2012 B2
8129281 Cheung et al. Mar 2012 B1
8173547 Winniczek et al. May 2012 B2
8193096 Goto et al. Jun 2012 B2
8435895 Chen et al. May 2013 B2
8444869 Goto et al. May 2013 B1
8591661 Cheung et al. Nov 2013 B2
8598037 Winniczek et al. Dec 2013 B2
8641862 Goto et al. Feb 2014 B2
8716143 Cheung et al. May 2014 B1
8721797 Cheung et al. May 2014 B2
9373497 Chen et al. Jun 2016 B2
20010014529 Chen et al. Aug 2001 A1
20010027023 Ishihara Oct 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020005392 Luo et al. Jan 2002 A1
20020039625 Powell et al. Apr 2002 A1
20020045331 Aminpur Apr 2002 A1
20020072016 Chen et al. Jun 2002 A1
20020078976 Nguyen Jun 2002 A1
20020081854 Morrow et al. Jun 2002 A1
20020090827 Yokoshima Jul 2002 A1
20020111041 Annapragada et al. Aug 2002 A1
20020132486 Williams et al. Sep 2002 A1
20020139775 Chang et al. Oct 2002 A1
20020151156 Hallock et al. Oct 2002 A1
20020153099 Wang et al. Oct 2002 A1
20020185151 Qingyuan et al. Dec 2002 A1
20020185226 Lea et al. Dec 2002 A1
20020187643 Gu et al. Dec 2002 A1
20020197870 Johnson Dec 2002 A1
20030036284 Chou et al. Feb 2003 A1
20030045115 Fang Mar 2003 A1
20030045131 Verbeke et al. Mar 2003 A1
20040084412 Waldfried et al. May 2004 A1
20040209469 Harada et al. Oct 2004 A1
20040237997 Rui et al. Dec 2004 A1
20040245091 Karim et al. Dec 2004 A1
20040248414 Tsai et al. Dec 2004 A1
20050022839 Savas et al. Feb 2005 A1
20050026430 Kim et al. Feb 2005 A1
20050079723 Niimi et al. Apr 2005 A1
20050106888 Chiu et al. May 2005 A1
20050158667 Nguyen et al. Jul 2005 A1
20050196967 Savas et al. Sep 2005 A1
20060046482 Verhaverbeke Mar 2006 A1
20060051881 Ditizio Mar 2006 A1
20060102197 Chiang et al. May 2006 A1
20060138399 Itano et al. Jun 2006 A1
20060141758 Naumann et al. Jun 2006 A1
20060154471 Minami Jul 2006 A1
20060163202 Shimitz Jul 2006 A1
20060182875 Ose et al. Aug 2006 A1
20060191478 Gondhalekar et al. Aug 2006 A1
20060201623 Yoo Sep 2006 A1
20060289384 Pavel et al. Dec 2006 A1
20070037396 Verhaverbeke Feb 2007 A1
20070040172 Kawakami et al. Feb 2007 A1
20070068900 Kim et al. Mar 2007 A1
20070144673 Yeom Jun 2007 A1
20070173066 Kokura et al. Jul 2007 A1
20070178698 Okita et al. Aug 2007 A1
20070224826 Delgadino et al. Sep 2007 A1
20070235137 Tsukamoto et al. Oct 2007 A1
20070281491 Kamp Dec 2007 A1
20080026589 Hubacek et al. Jan 2008 A1
20080044995 Kang et al. Feb 2008 A1
20080102646 Kawaguchi et al. May 2008 A1
20080160729 Krueger et al. Jul 2008 A1
20080248656 Chen et al. Oct 2008 A1
20080286697 Verhaverbeke et al. Nov 2008 A1
20090053901 Goto et al. Feb 2009 A1
20090056875 Goto et al. Mar 2009 A1
20090061623 Chang et al. Mar 2009 A1
20090117746 Masuda May 2009 A1
20090200268 Tappan et al. Aug 2009 A1
20090221148 Udo et al. Sep 2009 A1
20090277472 Rivkin et al. Nov 2009 A1
20090277871 Berry et al. Nov 2009 A1
20100015812 Nishikawa Jan 2010 A1
20100062591 Lin et al. Mar 2010 A1
20100130017 Luo et al. May 2010 A1
20100216312 Yamamoto et al. Aug 2010 A1
20100308463 Yu et al. Dec 2010 A1
20110006034 Hilkene et al. Jan 2011 A1
20110031493 Yamazaki et al. Feb 2011 A1
20110139175 Cheung et al. Jun 2011 A1
20110139176 Cheung et al. Jun 2011 A1
20110143548 Cheung et al. Jun 2011 A1
20110223756 Schaeffer Sep 2011 A1
20120211462 Zhang et al. Aug 2012 A1
20120211473 Goto et al. Aug 2012 A1
20130157465 Chen et al. Jun 2013 A1
20140080309 Park et al. Mar 2014 A1
20140120733 Cheung et al. May 2014 A1
20140182619 Goto et al. Jul 2014 A1
20150332933 Cheung et al. Nov 2015 A1
20150357202 Thedjoisworo et al. Dec 2015 A1
Foreign Referenced Citations (48)
Number Date Country
1402316 Mar 2003 CN
1720349 Jan 2006 CN
1815697 Aug 2006 CN
1868043 Nov 2006 CN
101015042 Aug 2007 CN
101057314 Oct 2007 CN
101131928 Feb 2008 CN
0 304 068 Feb 1989 EP
1 077 476 Feb 2001 EP
1081754 Jul 2001 EP
1 956 638 Aug 2008 EP
2300303 Oct 1996 GB
S64-048418 Feb 1989 JP
H01-200628 Aug 1989 JP
H05-275326 Oct 1993 JP
H06-208972 Jul 1994 JP
08-293487 Nov 1996 JP
H09-36099 Feb 1997 JP
H10-209118 Aug 1998 JP
H11-087307 Mar 1999 JP
2000-286248 Oct 2000 JP
2001-110775 Apr 2001 JP
2001-189305 Jul 2001 JP
2001-308078 Nov 2001 JP
2003-100718 Apr 2003 JP
2003-264170 Sep 2003 JP
2005-268312 Sep 2005 JP
2006-073612 Mar 2006 JP
2006-351594 Dec 2006 JP
2007019367 Jan 2007 JP
2007-53344 Mar 2007 JP
2007-109744 Apr 2007 JP
2007-515781 Jun 2007 JP
2007-266610 Oct 2007 JP
2008-218997 Sep 2008 JP
2008-300704 Dec 2008 JP
2010-098279 Apr 2010 JP
10-2004-0103073 Dec 2004 KR
387097 Apr 2000 TW
200535277 Nov 2005 TW
WO 2004051702 Jun 2004 WO
WO 2004102640 Nov 2004 WO
WO 2005017983 Feb 2005 WO
WO 2006028858 Mar 2006 WO
WO 2011071980 Jun 2011 WO
WO 2011072042 Jun 2011 WO
WO 2011072061 Jun 2011 WO
WO 2012018375 Feb 2012 WO
Non-Patent Literature Citations (164)
Entry
Kikuchi et al., Native Oxide Removal on Si Surfaces by NF3-Added Hydrogen and Water Vapor Plasma Downstream Treatment, Jpn J. Appl. Phys. vol. 33 (1994), pp. 2207-2211, Part 1, No. 4B, Apr. 1994.
Woody K. Chung, “Downstream Plasma Removal of Mobile Ion Impurity From SIO2”, Published Proceedings of the 8th International Plasma Processing Symposium, Fall 1990, 7 pages.
Woody K, Chung, “Low Damage, Downstream RF Plasma Ashing of High Energy, Heavily Doped Implanted Resists,” Semicon Korea, Dec. 1989.
A. Kalnitsky and W. K. Chung, “Characterization and Optimization of a Single Wafer Downstream Plasma Stripper,” Journal of the Electrochemical Society, vol. 135, No. 9, Sep. 1988, pp. 2338-2341.
Goto et al , “Enhanced Stripping of Low-K Films Using Downstream Gas Mixing,” Novellus Systems, Inc., U.S. Appl. No. 10/890,653, filed Jul. 13, 2004.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Jul. 27, 2005.
U.S. Final Office Action for U.S. Appl. No. 10/890,653 mailed Jan. 10, 2006.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Jun. 26, 2006.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Oct. 11, 2006.
U.S. Office Action for U.S. Appl. No. 10/890,653 mailed Apr. 5, 2007.
Notice of Allowance for U.S. Appl. No. 10/890,653 mailed Jun. 15, 2007.
Supplemental Notice of Allowance for U.S. Appl. No. 10/890,653 mailed Jul. 23, 2007.
Goto et al., “Enhanced Stripping of Low-K Films Using Downstream Gas Mixing,” Novellus Systems, Inc., U.S. Appl. No. 11/011,273, filed Dec. 13, 2004.
Notice of Allowance for U.S. Appl. No. 11/011,273 mailed Nov. 28, 2006.
Goto et al , “Enhanced Stripping of Low-K Films Using Downstream Gas Mixing,” Novellus Systems, Inc., U.S. Appl. No. 11/712,253, filed Feb. 27, 2007, pp. 1-28.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Dec. 23, 2008.
Goto, ct al., “Photoresist Strip Method for Low-K Dielectrics,” U.S. Appl. No. 11/859,727, filed Sep. 21, 2007.
U.S. Office Action for U.S. Appl. No. 11/859,727 mailed Oct. 6, 2008.
Notice of Allowance for U.S. Appl. No. 11/859,727 mailed May 1, 2009.
Goto, et al., “High Dose Implantation Strip (HDIS) in H2 Base Chemistry,” Novellus Systems, Inc., U.S. Appl. No. 12/251,305, filed Oct. 14, 2008.
Goto, et al., “Photoresist Strip Method for Low-K Dielectrics,” U.S. Appl. No. 12/533,461, filed Jul. 31, 2009.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Jul. 17, 2009.
Chen, et al., “Method for Post-Etch Cleans,” U.S. Appl. No. 10/137,096, May 1, 2002.
U.S. Office Action for U.S. Appl. No. 10/137,096 mailed Jul. 11, 2003.
U.S. Final Office Action for U.S. Appl. No. 10/137,096 mailed Jul. 27, 2007.
Notice of Allowance for U.S. Appl. No. 10/137,096 mailed Jan. 15, 2008.
Chen, et al., “Method for Post-Etch Cleans,” U.S. Appl. No. 12/111,095, filed Aug. 28, 2008.
U.S. Office Action for U.S. Appl. No. 12/111,095 mailed Aug. 25, 2008.
Notice of Allowance for U.S. Appl. No. 12/111,095 mailed Apr. 3, 2009.
Chen, et al., “Method for Post-Etch Cleans,” U.S. Appl. No. 12/502,130, filed Jul. 31, 2009.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Jan. 29, 2010.
Notice of Allowance for U.S. Appl. No. 11/548,801 mailed Feb. 17, 2010.
Cheung, et al., “Plasma Based Photoresist Removal System for Cleaning Post Ash Residue,” U.S. Appl. No. 11/128,930, filed May 12, 2005.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Sep. 13, 2006.
U.S. Final Office Action for U.S. Appl. No. 11/128,930 mailed Mar. 8, 2007.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Mar. 19, 2007.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Jun. 29, 2007.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Dec. 10, 2007.
U.S. Final Office Action for U.S. Appl. No. 11/128,930 mailed Jul. 21, 2008.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Mar. 20, 2009.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Sep. 17, 2009.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed Feb. 26, 2010.
U.S. Final Office Action for U.S. Appl. No. 11/128,930 mailed Sep. 9, 2010.
S. Wolf and R.N. Tauber, (Silicon Processing for the VLSI Era, vol. 1—Process Technology, Lattice Press, 1986), pp. 539-543.
U.S. Office Action for U.S. Appl. No. 12/533,461 mailed Nov. 5, 2010.
U.S. Office Action for U.S. Appl. No. 12/502,130 mailed Dec. 8, 2010.
Cheung, et al. “Ultra Low Silicon Loss High Dose Implant Strip,” U.S. Appl. No. 12/636,582, filed Dec. 11, 2009.
Cheung, et al. “Low Damage Photoresist Strip Method for Low-K Dielectrics,” U.S. Appl. No. 12/636,601, filed Dec. 11, 2009.
Cheung, et al. “Enhanced Passivation Process to Protect Silicon Prior to High Dose Implant Strip,” U.S. Appl. No. 12/963,503, filed Dec. 8, 2009.
U.S. Office Action for U.S. Appl. No. 11/712,253 mailed Mar. 1, 2011.
U.S. Office Action for U.S. Appl. No. 11/128,930 mailed May 10, 2011.
U.S. Final Office Action for U.S. Appl. No. 12/533,461 mailed May 26, 2011.
International Search Report and Written Opinion for Application No. PCT/US2010/059388 mailed Jun. 27, 2011.
International Search Report and Written Opinion for Application No. PCT/US2010/059547 mailed Jul. 13, 2011.
International Search Report and Written Opinion for Application No. PCT/US2010/059517 mailed Jul. 14, 2011.
Notice of Allowance for U.S. Appl. No. 12/533,461 mailed Aug. 12, 2011.
Notice of Allowance for U.S. Appl. No. 12/502,130 mailed Aug. 12, 2011.
U.S. Office Action for U.S. Appl. No. 12/251,305 mailed Nov. 2, 2011.
U.S. Office Action for U.S. Appl. No. 12/786,230 mailed Nov. 10, 2011.
Notice of Allowance for U.S. Appl. No. 11/128,930 mailed Oct. 28, 2011.
Chen, et al., “Methods for Stripping Photoresist and/or Cleaning Metal Regions,” U.S. Appl. No. 11/696,633, filed Apr. 7, 2007.
Office Action mailed Dec. 15, 2009, for U.S. Appl. No. 11/696,633.
Office Action mailed May 26, 2010, for U.S. Appl. No. 11/696,633.
Final Office Action mailed Sep. 20, 2010, for U.S. Appl. No. 11/696,633.
Office Action mailed Jun. 6, 2011, for U.S. Appl. No. 11/696,633.
Final Office Action mailed Sep. 28, 2011, for U.S. Appl. No. 11/696,633.
Office Action mailed Jan. 27, 2012, for U.S. Appl. No. 11/696,633.
Notice of Allowance for U.S. Appl. No. 12/251,305 mailed Feb. 17, 2012.
U.S. Final Office Action for U.S. Appl. No. 12/786,230 mailed Apr. 26, 2012.
Singapore Written Opinion and Search Report mailed Feb. 2, 2012, for Application No. 201104086-2.
Office Action mailed Mar. 30, 2012, for U.S. Appl. No. 12/636,601.
Goto, et al., “High Dose Implantation Strip (HDIS) in H2 Base Chemistry,” Novellus Systems, Inc., U.S. Appl. No. 13/462,660, filed May 2, 2012.
Final Office Action mailed May 15, 2012, for U.S. Appl. No. 11/696,633.
Office Action mailed Jul. 27, 2012, for U.S. Appl. No. 12/963,503.
US Final Office Action, dated Sep. 5, 2012, issued in U.S. Appl. No. 12/636,601.
US Office Action, dated Sep. 6, 2012, issued in U.S. Appl. No. 12/636,582.
U.S. Appl. No. 13/274,638, filed Oct. 17, 2011, entitled “Photoresist Strip Method for Low-K Dielectrics.”
U.S. Appl. No. 14/066,587, filed Oct. 29, 2013, entitled “Low Damage Photoresist Strip Method for Low-K Dielectrics.”
U.S. Appl. No. 13/370,689, filed Feb. 10, 2012, entitled “Plasma Based Photoresist Removal System for Cleaning Post Ash Residue”.
US Office Action dated Feb. 15, 2013, U.S. Appl. No. 13/274,638.
US Office Action, dated Apr. 26, 2013, issued in U.S. Appl. No. 13/462,660.
US Notice of Allowance, dated Sep. 30, 2013, issued in U.S. Appl. No. 13/462,660.
US Notice of Allowance, dated Dec. 31, 2013, issued in U.S. Appl. No. 13/462,660.
US Final Office Action, dated May 13, 2013, issued in U.S. Appl. No. 12/636,582.
US Advisory Action Before the Filing of an Appeal Brief, dated Sep. 20, 2013, issued in U.S. Appl. No. 12/636,582.
US Office Action, dated Feb. 12, 2013, issued in U.S. Appl. No. 12/636,601.
US Notice of Allowance, dated Jul. 23, 2013, issued in U.S. Appl. No. 12/636,601.
US Final Office Action, dated Jan. 22, 2013, issued in U.S. Appl. No. 12/963,503.
US Office Action, dated Aug. 23, 2013, issued in U.S. Appl. No. 12/963,503.
US Notice of Allowance dated Jan. 24, 2013, issued in U.S. Appl. No. 12/786,230.
US Office Action dated Feb. 22, 2013, issued in U.S. Appl. No. 13/370,689.
US Final Office Action dated Aug. 20, 2013, issued in U.S. Appl. No. 13/370,689.
US Office Action, dated Jul. 19, 2013, issued in U.S. Appl. No. 13/759,958.
US Final Office Action, dated Nov. 12, 2013, issued in U.S. Appl. No. 13/759,958.
Chinese Office Action dated Jul. 20, 2012, issued in Application No. 200810187894.4.
Chinese Office Action dated Jun. 19, 2013, issued in Application No. 200810187894.4.
Japanese Office Action dated Sep. 25, 2012, issued in Application No. 2009-018046.
Japanese Description of details of Reasons for Rejection dated Oct. 9, 2012, issued in Application No. 2009-018046.
Japanese Summary of Reasons for Rejection dated Sep. 3, 2013, issued in Application No. 2009-018046.
PCT International Preliminary Report on Patentability and Written Opinion, dated Jun. 21, 2012, issued in Application No. PCT/US2010/059388.
Singapore Second Written Opinion, dated Aug. 17, 2012, issued in Application No. 201104086-2.
PCT International Preliminary Report on Patentability and Written Opinion, dated Jun. 21, 2012, issued in Application No. PCT/US2010/059517.
Singapore Written Opinion, dated Jul. 15, 2013, issued in Application No. 201204092-9.
PCT International Preliminary Report on Patentability and Written Opinion, dated Jun. 21, 2012, issued in Application No. PCT/US2010/059547.
Singapore Office Action dated Aug. 1, 2013 issued in Applivcation No. 201203361-9.
European Partial Search Report dated Apr. 17, 2013 issued in Application No. 12 18 1659.
European Partial Search Report dated Aug. 19, 2013 issued in Application No. 12 18 1659.
Ghandhi, Sorab K., (1983) “VLSI Fabrication Principles,” by John wiley & Sons, Inc., pp. 517-520.
U.S. Appl. No. 14/301,155, filed Jun. 10, 2014, entitled “Peroxide-Vapor Treatment for Enhancing Photoresist-Strip Performance and Modifying Organic Films.”
US Office Action, dated Dec. 4, 2013, issued in U.S. Appl. No. 12/636,582.
US Office Action, dated Aug. 13, 2014, issued in U.S. Appl. No. 12/636,582.
US Supplemental Notice of Allowability, dated Nov. 5, 2013, issued in U.S. Appl. No. 12/636,601.
US Office Action, dated Apr. 10, 2014, issued in U.S. Appl. No. 14/066,587.
US Final Office Action, dated Oct. 9, 2014, issued in U.S. Appl. No. 14/066,587.
US Notice of Allowance, dated Feb. 12, 2014, issued in U.S. Appl. No. 12/963,503.
US Notice of Allowance dated Jan. 17, 2014, issued in U.S. Appl. No. 13/370,689.
US Notice of Allowance, dated Oct. 29, 2012, issued in U.S. Appl. No. 11/696,633.
US Notice of Allowance, dated Apr. 28, 2014, issued in U.S. Appl. No. 13/759,958.
US Notice of Allowance, dated Sep. 22, 2014, issued in U.S. Appl. No. 13/759,958.
Taiwan Search Report dated Feb. 17, 2014 issued in TW 097146496.
Taiwan Office Action dated Jun. 19, 2014 issued in TW 097146496.
Chinese First Office Action dated Sep. 24, 2014 issued in CN Application No. 201080056124.1.
Japanese Office Action dated Nov. 11, 2014 issued in JP 2012-543229.
Chinese First Office Action and Search Report dated Aug. 5, 2014 issued in CN 201080056102.5.
Japanese Office Action dated Nov. 11, 2014 issued in JP 2012-543254.
Singapore Examination Report, dated Mar. 21, 2014, issued in Application No. 201204092-9.
Chinese First Office Action and Search Report dated Sep. 1, 2014 issued in CN 201080055428.6.
Japanese Office Action dated Oct. 28, 2014 issued in JP 2012-543261.
Singapore Second Written Opinion dated Apr. 5, 2014 issued in Application No. 201203361-9.
Singapore Final Examination Report dated Nov. 3, 2014 issued in Application No. 201203361-9.
Singapore Search Report and Written Opinion dated Dec. 13, 2013 issued in SG 201206236-0.
Singapore Search and Examination Report dated Jul. 7, 2014, 2014 issued in SG 201206236-0.
Abe et al. (Aug. 2003) “Novel photoresist stripping technology using ozone/vaporized water mixture,” IEEE Trans. Semicon. Manufact., 16(3):401-408.
De Gendt et al. (1999) “A Novel Resist and Post-Etch Residue Removal Process Using Ozonated Chemistry,” Solid State Phenomena vols. 65-66:165-168.
Noda et al. (2003) “Development of a Photoresist Removal Method Using Ozone Gas with Water Vapor for LCD Manufacturing,” J. Electrochem. Soc. 150(9):G537-G542.
US Final Office Action, dated Feb. 26, 2015, issued in U.S. Appl. No. 12/636,582.
US Office Action, dated Mar. 18, 2015, issued in U.S. Appl. No. 14/066,587.
US Final Office Action, dated Jul. 10, 2015, issued in U.S. Appl. No. 14/066,587.
Korean Office Action dated Feb. 25, 2015, issued in Application No. 2008-0116792.
Chinese Second Office Action dated Jun. 3, 2015 issued in CN Application No. 201080056124.1.
Chinese Second Office Action and Search Report dated Feb. 13, 2015 issued in CN 201080056102.5.
Taiwan Office Action dated Mar. 23, 2015, issued in Application No. 099143368.
Taiwan Office Action [Decision] dated Jul. 14, 2015, issued in Application No. 099143368.
Chinese Second Office Action dated Jun. 23, 2015 issued in CN 201080055428.6.
Taiwan Office Action dated Jun. 16, 2015 issued in Application No. 099143366.
US Office Action, dated Oct. 14, 2015, issued in U.S. Appl. No. 14/301,155.
US Final Office Action, dated Mar. 16, 2016, issued in U.S. Appl. No. 14/301,155.
US Office Action, dated Sep. 16, 2015, issued in U.S. Appl. No. 14/721,977.
Korean Office Action dated Nov. 19, 2015, issued in Application No. 2008-0116792.
Chinese Third Office Action dated Dec. 10, 2015 issued in CN Application No. 201080056124.1.
Japanese Office Action (Notice of Reasons for Rejection) dated Sep. 1, 2015 issued in JP 2012-543229.
Taiwan Office Action and Search Report, dated Nov. 20, 2015, issued in TW 099143367.
Chinese Third Office Action dated Sep. 28, 2015 issued in CN 201080056102.5.
Japanese Office Action [Decision of Rejection] dated Sep. 8, 2015 issued in JP 2012-543254.
Chinese Third Office Action dated Jan. 4, 2016 issued in CN 201080055428.6.
Chinese Fourth Office Action dated Apr. 5, 2016 issued in CN 201080055428.6.
US Notice of Allowance, dated Aug. 2, 2016, issued in U.S. Appl. No. 14/301,155.
US Final Office Action, dated May 13, 2016, issued in U.S. Appl. No. 14/721,977.
Chinese Fourth Office Action dated Jun. 14, 2016 issued in CN Application No. 201080056124.1.
US Notice of Allowance, dated Sep. 28, 2016, issued in U.S. Appl. No. 14/721,977.
Korean Office Action [Final Rejection] dated Sep. 8, 2015, issued in Application No. KR KR 2008-0116792.
Korean Notice of Scheduled date of Ruling mailed Oct. 18, 2016, for Application No. KR 2008-0116792.
Japanese Office Action dated Sep. 20, 2016 issued in Application No. JP 2012-186425.
Taiwan Office Action and Search Report dated Oct. 4, 2016 issued in Application No. TW 101130809.
Related Publications (1)
Number Date Country
20130048014 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
61528029 Aug 2011 US