U.S. patent application Ser. No. 09/732,968, Gilton, filed Dec. 8, 2000. |
U.S. patent application Ser. No. 09/779,983, Moore, filed Feb. 8, 2001. |
U.S. patent application Ser. No. 09/797,635, Moore et al., filed Mar. 1, 2001. |
U.S. patent application Ser. No. 09/921,518, Moore, filed Aug. 1, 2001. |
U.S. patent application Ser. No. 09/943,187, Campbell et al., filed Aug. 29, 2001. |
U.S. patent application Ser. No. 09/943,190, Campbell et al., filed Sep. 29, 2001. |
U.S. patent application Ser. No. 09/943,199, Campbell et al., filed Aug. 29, 2001. |
U.S. patent application Ser. No. 09/999,883, Moore et al., filed Oct. 31, 2001. |
U.S. patent application Ser. No. 10/061,825, Gilton et al., filed Jan. 31, 2002. |
U.S. patent application Ser. No. 10/077,867, Campbell et al., filed Feb. 20, 2002. |
U.S. patent application Ser. No. 10/193,529, Campbell, filed Jul. 10, 2002. |
U.S. patent application Ser. No. 10/227,316, Moore et al., filed Aug. 23, 2002. |
Axon Technologies Corporation, Technology Description: Programmable Metalization Cell (PMC), pp. 1-6 (Pre-May 2000). |
Das et al., Theory of the characteristic curves of the silver chalcogenide glass inorganic photoresists, 54 Appl. Phys. Lett., No. 18, pp. 1745-1747 (May 1989). |
Helbert et al., Intralevel hybrid resist process with submicron capability, SPIE vol. 333 Submicron Lithography, pp. 24-29 (1982). |
Hilt, Dissertation: Materials characterization of Silver Chalcogenide Programmable Metalization Cells, Arizona State University, pp. Title page-114 (UMI Company, May 1999). |
Hirose et al., High Speed Memory Behavior and Reliability of an Amorphous As2S3 Film Doped Ag, Phys. Stat. Sol. (a) 61, pp. 87-90 (1980). |
Hirose et al., Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photo-doped amorphous AS2S3 films, 47 J. Appl. Phys., No. 6, pp. 2767-2772 (Jun. 1976). |
Holmquist et al., Reaction and Diffusion in Silver-Arsenic Chalcogenide Glass Systems, 62 J. Amer. Ceram. Soc., No. 3-4, pp. 183-188 (Mar.-Apr. 1979). |
Huggett et al., Development of silver sensitized germanium selenide photoresist by reactive sputter etching in SF6 , 42 Appl. Phys. Lett., No. 7, pp. 592-594 (Apr. 1983). |
Johnson et al., Lateral Diffusion in Ag-Sa Thin-Film Couples, 40 J. Appl. Phys., No. 1, pp. 149-152 (Jan. 1969). |
Kawaguchi et al., Mechanism of photosurface deposition, 164-166 J. Non-Cryst. Solids, pp. 1231-1234 (1993). |
Kawaguchi et al., Optical, electrical, and structural properties of amorphous Ag-Ge-S and Ag-Ge-Se films and comparison of . . . , 79 J. Appl. Phys., No. 12, pp. 9096-9104 (Jun. 1996). |
Kluge et al., Silver photodiffusion in amorphous GexSe100-x 124 J. Non-Crystal. Solids, pp. 186-193 (1990). |
Kolobov et al., Photodoping of amorphous chalcogenides by metals, 40 Advances in Physics, No. 5, pp. 625-684 (1991). |
McHardy et al., The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation, 20 J. Phys. C.: Solid State Phys., pp. 4055-4075 (1987). |
Mitkova et al., Dual chemical Role of Ag as an Additive in Chalcogenide Glasses, 83 Phys. Rev. Lett., No. 19, pp. 3848-3851 (Nov. 1999). |
Mitkova, Real Time Optical Recording on Thin Films of Amorphous Semiconductors, Insulating and Semiconducting Glasses, pp. 813-843 (P. Boolchand ed., World Scientific 2000). |
Miyatani, Electrical properties of Ag2Se, 13 J. Phys. Soc. Japan, p. 317 (1958). |
Mizusaki et al., Kinetic Studies on the Selenization of Silver, 47 B. Chem. Soc. Japan, No. 11, pp. 2851-2855 (Nov. 1974). |
Owen et al., Metal-Chalcogenide Photoresists for High Resolution Lithography and Sub-Micron Structures, Nanostructure Physics and Fabrication, pp. 447-451 (M. Reed ed. 1989). |
Safran et al., TEM study of Ag2Se developed by the reaction of polycrystalline silver films and selenium, 317 Thin Solid Films, pp. 72-76 (1998). |
Shimakawa et al., Photoinduced effects and matastability in amorphous semiconductors and insulators, 44 Advances in Physics, No. 6, pp. 475-588 (1995). |
Shimizu et al., The Photo-Erasable Memory Switching Effect of Ag Photo-Doped Chalcogenide Glasses, 46 B. Chem. Soc. Japan, No. 12, pp. 3662-3365 (1973). |
Somogyi et al., Temperature Dependence of the Carrier Mobility in Ag2Se Layers Grown on NaCl and SiOx Substrates, 74 Acta Physica Hungarica, No. 3, pp. 245-255 (1994). |
Tai et al., Multilevel Ge-Se film based resist systems, SPIE vol. 333 Submicron Lithography, pp. 32-39 (1982). |
Tai et al., Submicron optical lithography using an inorganic resist/polymer bilevel scheme, 17 J. Vac. Sci .Technol., No. 5, pp. 1169-1175 (Sep./Oct. 1980). |
West, Dissertation: Electrically Erasable Non-Volatile Memory Via Electrochemical Deposition of Multifractal Aggregates, Arizona State University, pp. Title p. -168 (UMI Co., May 1998). |
West et al., Equivalent Circuit Modeling of the AG|As0.24S0.36Ag0.40|Ag System Prepared by Photodissolution of Ag, 145 J. Electrochem. Soc., No. 9, pp. 2971-2974 (Sep. 1998). |
Yoshikawa et al., A new inorganic electron resist of high contrast, 31 Appl. Phys. Lett., No. 3, pp. 161-163 (Aug. 1977). |
Yoshikawa et al., Dry development of Se-Ge inorganic photoresist, 36 Appl. Phys. Lett., No. 1, pp. 107-117 (Jan. 1980). |
Helbert et al., Intralevel hybrid resist process with submicron capability, SPIE vol. 333 Submicron Lithography, pp. 24-29 (1982). |
Kozicki, et al., “Applications of Programmable Resistance Changes in Metal-doped Chalcogenides”, Proceedings of the 1999 Symposium on Solid State Ionic Devices, Editors—E.D. Wachsman et al., The Electrochemical Society, Inc., 1-12 (1999). |
Kozicki, et al., Nanoscale effects in devices based on chalcogenide solid solutions, Superlattices and Microstructures, 27, 485-488 (2000). |
Kozicki, et al., Nanoscale phase separation in Ag-Ge-Se glasses, Microelectronic Engineering, vol. 63/1-3, 155-159 (2002). |
M.N. Kozicki and M. Mitkova, Silver incorporation in thin films of selenium rich Ge-Se glasses, Proceedings of the XIX International Congress on Glass, Society for Glass Technology, 226-227 (2001). |