Plasma etching systems and methods with secondary plasma injection

Information

  • Patent Grant
  • 10504700
  • Patent Number
    10,504,700
  • Date Filed
    Thursday, August 27, 2015
    9 years ago
  • Date Issued
    Tuesday, December 10, 2019
    5 years ago
Abstract
An apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products that pass, away from the first plasma source, through first apertures in the first planar electrode. The first plasma products continue through second apertures in the gas distribution device. The plasma blocking screen includes a third plate with fourth apertures, and faces the gas distribution device such that the first plasma products pass through the plurality of fourth apertures. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.
Description
TECHNICAL FIELD

The present disclosure relates to plasma processing systems.


BACKGROUND

In plasma processing, plasmas create ionized and/or energetically excited species for interaction with workpieces that may be, for example, semiconductor wafers. To create and/or maintain a plasma, one or more radio frequency (RF) and/or microwave generators typically generate oscillating electric and/or magnetic fields. In some wafer processing systems, a plasma is generated in the same location as one or more wafers being processed; in other cases, a plasma is generated in one location and moves to another location where the wafer(s) are processed. The plasmas produced often contain highly energetic and/or corrosive species and/or highly energetic electrons, such that the equipment that produces them sometimes degrades from contact with the energetic species and/or electrons. For example, materials that are exposed to highly energetic species and/or electrons may be etched and/or sputtered, generating etched and/or sputtered material that can move about, and can react or deposit on various surfaces.


SUMMARY

In an embodiment, an apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products. The first planar electrode includes a first plate that defines a plurality of first apertures therethrough, a first side of the first planar electrode being disposed relative to the first plasma source such that the first plasma products pass away from the first plasma source through the plurality of first apertures to a second side of the first planar electrode. The gas distribution device includes a second plate that defines a plurality of second apertures therethrough, a first side of the gas distribution device being disposed facing the second side of the first planar electrode, such that the first plasma products continue through the plurality of second apertures to a second side of the gas distribution device. The plasma blocking screen includes a third plate that defines a plurality of fourth apertures therethrough, a first side of the plasma blocking screen being disposed facing the second side of the gas distribution device such that the first plasma products pass through the plurality of fourth apertures to a second side of the plasma blocking screen. The workpiece chuck faces the second side of the plasma blocking screen, such that a process chamber is defined between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.


In an embodiment, a plasma processing chamber includes a workpiece holder and a planar electrode. The planar electrode defines parallel and opposing first and second planar surfaces, separated by a thickness, over a central region thereof. The second planar surface is disposed facing the workpiece holder. The planar electrode defines a plurality of apertures therethrough. Each of the apertures is characterized by a first aperture section and a second aperture section. The first aperture section defines an aperture axis and a first aperture minor lateral dimension perpendicular to the aperture axis, the first aperture section extending from the first planar surface through at least half of the thickness. The second aperture section defines a second aperture minor lateral dimension that is less than the first aperture minor lateral dimension, and extends from the second planar surface through less than half the thickness. The first and aperture sections adjoin axially to form a continuous one of the apertures from the first planar surface to the second planar surface.


In an embodiment, an apparatus for plasma processing includes a gas source, a first planar electrode, a second planar electrode, a first power supply, a plasma blocking screen, a workpiece chuck and a second power supply. The first planar electrode includes a first plate that defines a plurality of first apertures therethrough, a first side of the first planar electrode being disposed relative to the gas source such that gases from the gas source pass through the plurality of first apertures to a second side of the first planar electrode. The second planar electrode includes a second plate that defines a plurality of second apertures therethrough, a first side of the second planar electrode being disposed facing the second side of the first planar electrode. The first power supply couples radio frequency (RF) power across the first planar electrode and the second planar electrode. A first plasma is generated, from the gases, between the first planar electrode and the second planar electrode, and first plasma products from the first plasma pass through the plurality of second apertures to a second side of the second planar electrode. The plasma blocking screen includes a third plate that defines a plurality of third apertures therethrough, a first side of the plasma blocking screen being disposed facing the second side of the second planar electrode such that the first plasma products pass through the plurality of third apertures to a second side of the plasma blocking screen. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen. The second power supply couples radio frequency (RF) power across the plasma blocking screen and the workpiece chuck, generating a second plasma, from the gases, between the plasma blocking screen and the workpiece chuck.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be understood by reference to the following detailed description taken in conjunction with the drawings briefly described below, wherein like reference numerals are used throughout the several drawings to refer to similar components. It is noted that, for purposes of illustrative clarity, certain elements in the drawings may not be drawn to scale. Specific instances of an item may be referred to by use of a numeral followed by a second numeral within parentheses (e.g., plasma blocking screens 270(1), 270(2) etc.) while numerals not followed by a dash refer to any such item (e.g., plasma blocking screens 270). In instances where multiple instances of an item are shown, only some of the instances may be labeled, for clarity of illustration.



FIG. 1 schematically illustrates major elements of a plasma processing system, according to an embodiment.



FIG. 2 schematically illustrates major elements of a plasma processing system, in a cross-sectional view, according to an embodiment.



FIG. 3 illustrates a portion of a plasma blocking screen that is part of the plasma processing system of FIG. 2, according to an embodiment.



FIG. 4 illustrates a portion of another plasma blocking screen, according to an embodiment.



FIG. 5 is a graph of modeling data related to choice of a minor lateral dimension of second aperture sections of a plasma blocking screen, according to an embodiment.



FIG. 6 schematically illustrates a region noted in FIG. 2 in an enlarged view.



FIG. 7 schematically illustrates major elements of another plasma processing system, in a cross-sectional view, according to an embodiment.





Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the invention. The features and advantages of the invention may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.


DETAILED DESCRIPTION


FIG. 1 schematically illustrates major elements of a plasma processing system 100, according to an embodiment. System 100 is depicted as a single wafer, semiconductor wafer plasma processing system, but it will be apparent to one skilled in the art that the techniques and principles herein are applicable to plasma generation systems of any type (e.g., systems that do not necessarily process wafers or semiconductors). Processing system 100 includes a housing 110 for a wafer interface 115, a user interface 120, a plasma processing unit 130, a controller 140, one or more power supplies 150 and one or more radio frequency (RF) generators 165. Processing system 100 is supported by various utilities that may include gas(es) 155, external power 170, vacuum 160 and optionally others. Internal plumbing and electrical connections within processing system 100 are not shown, for clarity of illustration.


Processing system 100 is shown as a so-called indirect plasma processing system that generates a plasma in a first location and directs the plasma and/or plasma products (e.g., ions, molecular fragments, energized species and the like) to a second location where processing occurs. Thus, in FIG. 1, plasma processing unit 130 includes a plasma source 132 that supplies plasma and/or plasma products for a process chamber 134. Process chamber 134 includes one or more workpiece holders 135, upon which wafer interface 115 places a workpiece 50 (e.g., a semiconductor wafer, but could be a different type of workpiece) for processing. In operation, gas(es) 155 are introduced into plasma source 132, and at least one of the RF generators 165 supplies power to ignite a first plasma within plasma source 132. There may be multiple regions within plasma source 132 at which RF power is applied and plasmas are generated. Plasma and/or plasma products pass from plasma source 132 through a diffuser plate 137 to process chamber 134. Additional gases may be added to the plasma and/or plasma products in process chamber 134, RF power may also be provided within process chamber 134 to generate another plasma. Workpiece 50 is processed in process chamber 134.


Therefore, generally, plasmas may be ignited at one, two or more locations within a plasma processing system, and the techniques disclosed herein may be adapted to plasma processing systems that ignite and/or use plasmas formed at single or multiple locations. Certain electronics manufacturers may prefer systems with the flexibility of igniting and/or using plasmas in a variety of configurations, so that each system can be adapted for a corresponding variety of processing needs.



FIG. 2 schematically illustrates major elements of a plasma processing system 200, in a cross-sectional view, according to an embodiment. Plasma processing system 200 is an example of plasma processing unit 130, FIG. 1. Plasma processing system 200 includes a plasma source 210 and a process chamber 205 that may also generate a plasma, as discussed below. In the orientation of FIG. 2, a general direction of gas and/or plasma product flow is downwards, and this direction may be referred to as “downstream” herein, while an opposing direction upwards in the orientation of FIG. 2, may be referred to as “upstream.” Also, significant portions of the apparatus shown in FIG. 2 may be cylindrically symmetric about a central axis 201, with associated directions being defined as a radial direction 202 and an azimuthal direction 203. This convention of directions may be used herein, although one skilled in the art will understand that many of the principles described herein are not limited to cylindrically symmetric systems.


As shown in FIG. 2, plasma source 210 may introduce gases, and/or gases that are ionized by an upstream remote plasma source, as plasma source gases 212, through an RF electrode 215. RF electrode 215 is electrically tied to a first gas diffuser 220 and a face plate 225 that serve to redirect flow of the source gases so that gas flow is uniform across plasma source 210 (uniform from left to right in the view of FIG. 2). It should be noted that all of the diffusers or screens herein may be characterized as electrodes, as any such diffusers or screens may be tied to a particular electrical potential. An insulator 230 electrically insulates RF electrode 215, including face plate 225, from a diffuser 235 that is held at electrical ground. Diffuser 235 serves as a second electrode counterfacing face plate 225 of RF electrode 215. Surfaces of face plate 225, diffuser 235 and insulator 230 define a first plasma generation cavity where a first plasma 245 may be created when plasma source gases 212 are present and RF energy is provided at face plate 225 through RF electrode 215. RF electrode 215, face plate 225 and diffuser 235 may be formed of any conductor, and in embodiments are formed of aluminum (or an aluminum alloy, such as the known “6061” alloy type). Surfaces of face plate 225 and diffuser 235 that face plasma 245 directly may be coated with ceramic layers of, for example, yttria (Y2O3) or alumina (Al2O3) for resistance to bombardment by energetic plasma products generated in plasma 245. Other surfaces of face plate 225 and diffuser 235 that are not necessarily exposed directly to plasma, but are exposed to reactive gases and/or radicals generated by plasmas, may be coated either with ceramic layers (e.g., yttria, alumina) or with a suitable passivating layer (e.g., an anodized layer, or a chemically generated alumina layer) for chemical resistance. Insulator 230 may be any insulator, and in embodiments is formed of ceramic.


Plasma products generated in plasma 245 pass through diffuser 235 that again helps to promote the uniform distribution of plasma products, and may assist in electron temperature control. Upon passing through diffuser 235, the plasma products pass through an optional gas distribution device 260 that promotes uniformity. (Certain embodiments do not include gas distribution device 260; see, e.g., FIG. 7) Optional gas distribution device 260 is also held at electrical ground. Apertures that pass completely through optional gas distribution device 260 are of a diameter at least three times a diameter of apertures within diffuser 235. Also, gas distribution device 260 includes further gas channels 250 that may be used to introduce one or more further gases 155(2) to the plasma products as they enter process chamber 205 (that is, gases 155(2) emerge only from a side of gas distribution device 260 that is distal to diffuser 235). Optional gas distribution device 260 may also be made of aluminum or aluminum alloy, and like face plate 225 and diffuser 235 discussed above, may be at least coated with a passivating layer for chemical resistance, or may be coated with a ceramic layer.


Gases 155(1), 155(2) and/or plasma products from plasma 245 enter a plenum cavity 265, then pass through a plasma blocking screen 270(1) to process chamber 205. Plasma blocking screen 270(1) may form a thickness in the range of 0.15 to 1.0 inches, and forms many small apertures that are configured to allow gases and plasma products from upstream sources pass through into process chamber 205, while substantially blocking downstream plasmas and plasma products from upstream components, as discussed in detail below. In embodiments, plasma blocking screens 270 may advantageously form at least ten apertures per square inch in a central region thereof, and in certain embodiments may form thirty or more apertures per square inch. Like optional gas distribution device 260, plasma blocking screen 270(1) is also held at electrical ground. Like face plate 225 and diffuser 235 discussed above, surfaces of plasma blocking screen 270(1) that are exposed directly to plasma are advantageously coated with ceramic (e.g., alumina or yttria) while surfaces that are not exposed directly to plasma may also be coated with ceramic, and are advantageously at least coated with a passivating layer for chemical resistance to reactive gases and activated species. All of the gases and/or plasma products, generated as described above, interact with workpiece 50 within process chamber 205, and a further plasma 275 may be generated may be generated within process chamber 205. When a plasma is desired within process chamber 205, because diffuser 235 is held at electrical ground (and, when present, optional gas distribution device 260), RF power to create plasma 275 is applied to workpiece holder 135. A DC bias may also be applied to workpiece holder 135 to steer ions generated in plasma 275 to facilitate directional (anisotropic) etching of workpiece 50, as discussed below. Workpiece holder 135 may be switchably connected with RF and/or DC bias sources, so as to generate a plasma within process chamber 205 at selected times and not at other times. Workpiece holder 135 may be connected with the same RF power supply as is used to create plasma 245 between face plate 225 and diffuser 235, or may be connected with a different RF power supply.


The use of plasma blocking screen 270(1), the ability to choose whether to generate a plasma by providing RF power and/or DC bias to workpiece holder 135, or not to generate such plasma, and other features described herein, provide application flexibility to processing system 200. For example, at a first time, processing system 200 may be operated in a mode wherein plasma is not generated within process chamber 205. At the first time, the gases and/or plasma products provided by upstream portions of processing system 200 may provide isotropic etching, and workpiece holder 135 may be held at DC ground (although a DC offset may be provided across spatial portions of workpiece holder 135, to provide electrostatic wafer chucking). At a second time, processing system 200 may be operated in a mode wherein plasma is generated within process chamber 205, and plasma products thereof may be steered by DC bias between plasma blocking screen and workpiece holder 135. At the second time, the plasma products steered by the DC bias may provide anisotropic etching, for example to remove broad surface depositions on a workpiece while leaving sidewalls, or to clear materials within deep trenches in a workpiece. Features of plasma blocking screen 270(1) are illustrated in further detail in FIGS. 3 and 4, while an enlarged view of a portion noted as A in FIG. 2 is illustrated in detail in FIG. 6.



FIG. 3 illustrates a portion of a plasma blocking screen 270, such as plasma blocking screen 270(1), FIG. 2. Plasma blocking screen 270 defines parallel and opposing planar surfaces 268 and 269, and defines a plurality of apertures 271 extending through plasma blocking screen 270, as shown in FIG. 2. First planar surface 268 and second planar surface 269 characterize a central portion of plasma blocking screen 270; however, outside the central portion, plasma blocking screen may be thicker or thinner to provide attachment points for other structures of plasma processing system 200. Apertures 271 are specialized to allow significant passage of plasma products therethrough with minimal wall effects, but to block plasma from plasma 275 from other parts of plasma processing system 200, where the plasma can damage other components. FIG. 3 illustrates features of a single aperture 271 that is characterized by a first aperture section 272 and a second aperture section 273, as shown. First aperture sections 272 may be cylindrical, which may facilitate fabrication, but may also define other shapes, for example of rectangular or hexagonal cross-section. Any such cross-section is maintained relatively constant through a vertical depth H1 of first aperture section 272 (given the orientation of plasma blocking screen 270(1) as shown in FIGS. 2 and 3) and is considered to define an aperture axis (e.g., vertical, in FIGS. 2 and 3). A minor lateral dimension of first aperture section 272 in a lateral direction (e.g., perpendicular to the aperture axis) is shown as W1. “Minor lateral dimension” herein means the largest of any lateral dimensions characterizing an aperture having vertical sides (e.g., if first aperture section 272 is cylindrical, minor lateral dimension W1 is a diameter of the cylinder, if first aperture section 272 is rectangular, minor lateral dimension W1 is the smaller of the rectangle sides, and the like). Similarly, a vertical depth of second aperture section 273 is shown as H2, while a minor lateral dimension of second aperture section 273 in a lateral direction is shown as W2. The sum of H1 and H2 is the thickness of plasma blocking screen 270 between planar surfaces 268 and 269.


Referring now to both FIG. 2 and FIG. 3, dimensions H1, W1, H2 and W2 are selected to minimize wall effects as plasma products from above (in the orientation shown in FIG. 2) pass through aperture 271, but also to block products of plasma 275 from reaching optional gas distribution device 260 (when present) and/or other upstream components of plasma processing system 200. Research has shown (see FIG. 5) that even when aperture 271 is provided with a second aperture section 273 that is very short in height, an appropriate width W2 will significantly reduce electron density within first aperture section 272 and above. The electron density can be used to estimate an extent to which any plasma product will pass through aperture 271 and affect upstream components. In embodiments herein, width W2 is less than 0.050″, while height H2 is between 0.050″ and 0.100″. For mechanical integrity, H1 is typically larger than H2, and in embodiments herein, H1 is typically 0.10″ or greater. W1 is less critical than W2, but a larger W1 reduces wall effects (e.g., recombination of ions, deactivation of activated species and the like) to maintain activity of plasma products passing through aperture 271. W1 may be, for example, 0.02″ to 0.25″.



FIG. 4 illustrates a portion of plasma blocking screen 270′, which is a modified case of plasma blocking screen 270, FIG. 3. Plasma blocking screen 270′ defines a plurality of apertures 271′ that, like apertures 271, are specialized to allow significant passage of plasma products therethrough with minimal wall effects, but to block plasma from plasma 275 from other parts of plasma processing system 200. FIG. 4 illustrates features of a single aperture 271′ that is characterized by a first aperture section 272 and a second aperture section 273′, as shown. First aperture sections 272 are identical in character to the same feature illustrated in FIG. 3, and similarly, and thus may be cylindrical, which may facilitate fabrication, but first aperture sections 272 may also define other shapes, for example rectangular or hexagonal cross-sections. Second aperture section 273′ defines a cylindrical upper portion 276 that adjoins first aperture section 272, and a lower portion 277 that flares outwardly from upper portion 276 toward second planar surface 269. Lower portion 277 may in fact be conical, as shown in FIG. 4, or may be simply curved outwards from the vertical. An angle θ from the aperture axis (e.g., vertical, in FIG. 4) of 15 to 65 degrees may be advantageous, as discussed below. Thus, upper portion 276 may be characterized as having a diameter, and a diameter of lower portion 277 is greater where lower portion 277 adjoins planar surface 269, than the diameter of upper portion 276. Upper portion 276 and lower portion 277 adjoin axially to complete aperture 271′ through plasma blocking screen 270′.


Forming apertures 271′ to include conical lower portions 277 has been found advantageous for fabricating plasma blocking screen 270 with a high quality, continuous coating of alumina or yttria on surfaces (such as second planar surface 269 and side surfaces of second aperture sections 273, 273′) that face active plasma. First planar surface 268 and side walls of first aperture section 272 are also, optionally, coated with alumina or yttria. As is known to those skilled in the art, certain deposition techniques such as sputtering tend to be highly directional, that is, the substance being deposited tends to travel in a straight line from a source and stick to the first thing that the substance encounters. This makes it difficult to provide films of uniform thickness and high density within narrow apertures (such as second aperture section 273, FIG. 3). Providing a conical or otherwise tapered edge section such as lower portion 277, FIG. 4, not only allows for improved deposition on the tapered edge, but also further back into upper portion 276, because each point of the interior wall of upper portion 276 “sees” a broader range of angles from which material may be deposited. For this reason, it is also appreciated that when lower portion 277 is present, certain aspect ratios of upper portion 276 (e.g., depth H3 of upper portion 276 relative to width W2 of upper portion 276, as shown in FIG. 4) and the corresponding angle θ thus created may be advantageous. When lower portion 277 provides relatively open access to sputtering sources, an aspect ratio within the range of 0.5 to 4.0 may advantageously provide a broad range of angles to each point on surfaces of upper portion 276.



FIG. 5 shows a graph 300 of modeling data that supports the choice of the minor lateral dimension of second aperture sections 273, 273′, FIGS. 3 and 4. In graph 300, the horizontal axis models position, with conductors (e.g., workpiece holder 135 and wafer 50) assumed to be present out to about 4 centimeters, a structural void (e.g., process chamber 205 with plasma 275 therein) from about four to almost 7 centimeters (noted in graph 300 as a broken line), and plasma blocking screen 270 assumed to extend from about 7 centimeters to the end of graph 300. The vertical axis indicates modeled electron density within a plasma region between the solid conductor and the workpiece holder. The modeling assumed that a plasma was ignited with He gas at a pressure of 1 Torr and a power of 200 W. Graph 300 shows modeled electron density data for plasma blocking screen 270 having several minor lateral dimensions of second aperture section 273. Electron densities in the range of about 102 to low 103 are regarded as showing regions that are essentially free of plasma, that is, a number of electrons and/or other plasma products is negligibly low. Electron density is high within the plasma region, and falls off at plasma blocking screen 270. Using the notation shown in FIG. 3, all of the plasma blocking screens 270 modeled assumed H2 in the range of 0.050″ to 0.100″, W1 in the range of 0.100″ to 0.150″ and H2 in the range of 0.300″ to 0.400″. Open circle data 310 is for second aperture section 273 having W2 in the range of 0.100″ to 0.150″, solid triangle data 320 is for second aperture section 273 having W2 in the range of 0.050″ to 0.100″, and solid rectangle data 330 is for second aperture section 273 having W2 in the range of 0.020″ to 0.050″.


Data 310 and 320 show that plasma blocking screens 270 having second apertures with the respective W2 noted will decrease electron density transmitted to an adjacent region (e.g., a region extending to the right hand side of graph 300, or above plasma blocking screen 270(1) in FIG. 2), but will not effectively block it. Data 330 shows that a plasma blocking screen 270 having W2 in the range of 0.020″ to 0.050″ will block plasma almost completely from the adjacent upstream region. Although effective at blocking active plasma from the upstream region, plasma blocking screen 270 does not block plasma products from upstream plasmas, and/or gases, from passing in the downstream direction.



FIG. 6 schematically illustrates region A noted in FIG. 2. As in FIG. 2, a workpiece 50 is shown on a workpiece holder 135 within process chamber 205. Gases 155 and/or previously formed plasma products flow through plasma blocking screen 270(1) into process chamber 205, where a further plasma 275 is formed. As noted above, plasma blocking screen 270(1) is held at electrical ground. RF energy, and a DC bias, are applied to workpiece holder 135 to provide energy for plasma 275. Due to the presence of both reactive species and ion bombardment sources within process chamber 205, interior surfaces of process chamber 205 are provided with materials (generally, but not limited to, ceramics) capable of resisting attack from such sources. Materials may also be chosen to manage electric field distributions, both in a DC sense and an AC sense, to maximize RF power delivery into plasma 275. For example, workpiece holder 135 may be coated with alumina or aluminum nitride, and plasma blocking screen 270(1) may be coated with alumina or yttria. An optional ceramic spacer 350 and/or an optional ceramic pumping liner 370 may be used to reduce lateral electric fields at the edge of workpiece holder 135. Ceramic spacer 350 and ceramic pumping liner 370 are ring shaped such that they extend about a periphery of process chamber 205, but not across the central region of process chamber 205, and are advantageously fabricated from low loss tangent materials such as high purity alumina, silicon nitride and/or silicon carbide. Materials having loss tangents within the range of 0.1 to 0.0001 provide useful results, while materials having loss tangents within the range of 0.005 to 0.001 represent a range of high performance at reasonable cost. Portions of both plasma blocking screen 270(1) and ceramic spacer 350 are disposed atop a portion of a grounded lift plate 390, as shown, and obtain mechanical support therefrom. Lift plate 390 is mechanically connected with plasma blocking screen 270(1), ceramic spacer 350 and other overlying structures so as to enable lifting of all such structures from the vicinity of workpiece holder 135 for assembly and/or maintenance purposes. Plasma blocking screen 270(1) is electrically grounded through contact with lift plate 390. A thickness of ceramic spacer 350 is controlled to leave a gap 360 between plasma blocking screen 270(1) and ceramic spacer 350, to ensure that ceramic spacer 350 does not interrupt continuous contact of plasma blocking screen 270(1) with lift plate 390 in the azimuthal direction, about a periphery of process chamber 205.


Forming ceramic spacer 350 and ceramic pumping liner 370 of low loss tangent dielectric materials is comparatively expensive (as compared to, for example, fabricating such items from aluminum with a ceramic coating) but reduces electric field effects at the edges of workpiece holder 135, and reduces reflected RF power when plasma 275 is generated within process chamber 205. Substituting ceramic spacer 350 and ceramic pumping liner 370 also reduces ion bombardment related contamination as compared with equivalent aluminum parts used in the same locations. Use of ceramic spacer 350 and ceramic pumping liner 370 thus promotes plasma and process stability, and reduces contamination. Electric fields are schematically illustrated using dotted arrows in FIG. 6; the primary electric field is between workpiece holder 135/workpiece 50 and plasma blocking screen 270(1). It is advantageous for the electric fields between workpiece holder 135/workpiece 50 and plasma blocking screen 270(1) be strong and uniform in direction, since the electric fields steer ions involved with anisotropic etching. That is, to clear material at the bottoms of vertical trenches, the electric fields steering the ions need to be correspondingly vertical. Weaker fields exist between workpiece holder 135 and grounded lift plate 390, through ceramic spacer 350 and ceramic pumping liner 370. These electric fields are weakened by the dielectric materials of ceramic spacer 350 and ceramic pumping liner 370 being interposed between workpiece holder 135 and lift plate 390. Weakening the sideways electric fields at edges of workpiece holder 135 has two benefits; (1) electric field directionality, and thus etch directionality, is maintained out to edges of workpiece 50, and (2) the weaker fields generate less sputtering damage than higher fields.



FIG. 7 schematically illustrates major elements of a plasma processing system 400, in a cross-sectional view, according to an embodiment. Plasma processing system 400 is an example of plasma processing unit 130, FIG. 1. Like plasma processing system 200, FIG. 2, plasma processing system 400 enables creation of a plasma 275 adjacent to workpiece 50. Plasma processing system 400 includes many components identical in structure and function to those found in plasma processing system 200, FIG. 2, but lacks optional gas distribution device 260 shown in plasma processing system 200. Also, plasma processing system 400 includes a plasma blocking screen 270(2) configured differently from the equivalent item shown in FIG. 2, and an insulator 280 between diffuser 235 and plasma blocking screen 270(2).


Similarly to plasma processing system 200, an insulator 230 electrically insulates RF electrode 215, including face plate 225, from a diffuser 235 that is held at electrical ground. Diffuser 235 serves as a second electrode counterfacing face plate 225 of RF electrode 215. Surfaces of face plate 225, diffuser 235 and insulator 230 define a first plasma generation cavity where a first plasma 245 may be created when plasma source gases 212 are present and RF energy is provided at face plate 225 through RF electrode 215. Plasma blocking screen 270(2) is also held at electrical ground, but insulator 280 allows plasma blocking screen 270(2) to be isolated from diffuser 235, providing an independent RF ground return path. Apertures within plasma blocking screen 270(2) are configured like those of plasma blocking screen 270(1), that is, they form shapes like those illustrated in FIGS. 3 and 4, with similar dimensions, so that upstream plasma products may pass through, but active plasma 275 is blocked from diffuser 235 and other upstream components.


Embodiments herein may be rearranged and may form a variety of shapes. For example, many components shown in FIG. 2 and FIG. 7, such as RF electrode 215, diffusers 220 and 235, gas distribution device 260, face plate 225, insulator 230, plasma blocking screens 270 and others may be substantially radially symmetric about a central axis, for processing a circular semiconductor wafer as workpiece 50. However, such features may be of any shape that is consistent with use as a plasma source. An exact number and placement of features for introducing and distributing gases and/or plasma products, such as diffusers, face plates and the like, may also vary. Moreover, in a similar manner to gas distribution device 260 including gas channels 250 to add gas 155(2) to plasma products from plasma 245 as they enter process chamber 205, other components of plasma processing system 200 may be configured to add or mix gases 155 with other gases and/or plasma products as they pass through the system to process chamber 205. As also suggested by FIG. 2, FIG. 6 and FIG. 7, many system components will form perforate planar shapes within central regions of a plasma processing unit so as to provide uniform process conditions to a planar workpiece, but may form different shapes such as flanges, thickness changes, solid imperforate surfaces, and the like at edges of the plasma processing unit for structural purposes. Extents of the central regions may vary, in embodiments, to accommodate different workpiece sizes, especially but not limited to, diameters of wafers as workpieces. When the workpiece is a wafer, the central region will generally encompass a central region that extends at least to one-half of a radius of each such system component.


Specific details are given in the above description to provide a thorough understanding of the embodiments. However, it is understood that the embodiments may be practiced without these specific details. For example, well-known processes, structures, and techniques may be shown without unnecessary detail in order to avoid obscuring the embodiments. While the principles of the disclosure have been described above in connection with specific apparatuses and methods, it is to be clearly understood that this description is made only by way of example and not as limitation on the scope of the disclosure.


It is appreciated that the arrangements shown are exemplary only; other embodiments may differ greatly in configuration, including how source gases are introduced, how electrodes and insulators are arranged, how plasma and/or plasma products are handled after generation, and how grooves are formed in insulators. It is contemplated that the techniques and apparatus disclosed herein are applicable to these and other arrangements wherein conductive material builds up during use and thereby creates leakage and/or discharge paths.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the electrode” includes reference to one or more electrodes and equivalents thereof known to those skilled in the art, and so forth. Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.

Claims
  • 1. An apparatus for plasma processing, comprising: a gas source;a first planar electrode comprising a first plate that defines a plurality of first apertures therethrough, a first side of the first planar electrode being configured with the gas source such that one or more gases from the gas source can pass through the plurality of first apertures to a second side of the first planar electrode;a second planar electrode comprising a second plate that defines a plurality of second apertures therethrough, a first side of the second planar electrode being disposed facing the second side of the first planar electrode;a first power supply configured to couple a first radio frequency (RF) power across the first planar electrode and the second planar electrode, wherein when the one or more gases pass through the plurality of first apertures and the first RF power couples across the first planar electrode and the second planar electrode, a first plasma is generated, from the one or more gases, between the first planar electrode and the second planar electrode, andfirst plasma products from the first plasma pass through the plurality of second apertures to a second side of the second planar electrode;a plasma blocking screen comprising a third planar electrode that defines a plurality of third apertures therethrough, a first side of the plasma blocking screen being disposed facing the second side of the second planar electrode such that the first plasma products can pass through the plurality of third apertures to a second side of the plasma blocking screen;a chuck that faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the chuck;a lift plate that surrounds the chuck in the plane of an upper surface of the chuck, wherein: the lift plate forms a radially inward portion, the plasma blocking screen being mechanically and electrically connected with an upward face of the radially inward portion;the lift plate forms an uppermost surface disposed above the radially inward portion; andthe first electrode and the second electrode are supported by the uppermost surface, such that lifting the lift plate away from the chuck lifts the first, second and third electrodes away from the chuck; anda second power supply that couples a second radio frequency (RF) power across the plasma blocking screen and the chuck, wherein when the one or more gases pass through the plurality of first apertures, the first RF power couples across the first planar electrode and the second planar electrode, and the second RF power couples across the plasma blocking screen and the chuck so that a second plasma is generated, from the one or more gases, between the plasma blocking screen and the chuck.
  • 2. The apparatus of claim 1, wherein each of the third apertures defined by the plasma blocking screen is characterized by a first aperture section that extends from the first side of the plasma blocking screen, and defines an aperture axis and a first aperture minor lateral dimension perpendicular to the aperture axis, anda second aperture section that extends from the second side of the plasma blocking screen, and defines a second aperture minor lateral dimension, where it adjoins the first aperture section, that is about 0.05 inches or less, and is less than the first aperture minor lateral dimension;wherein the first and second aperture sections adjoin axially to extend from the first side to the second side of the plasma blocking screen, to form the third aperture;at least a portion of the second aperture section flares outwardly from the aperture axis toward the second side of the plasma blocking screen; andat least the second side of the plasma blocking screen, and surfaces of the second aperture section, include a ceramic coating.
  • 3. The apparatus of claim 1, the apparatus further comprising a ceramic spacer having: a radial flange that rests on the upward face of the radially inward portion of the lift plate, anda body that extends radially inward and downward from the radial flange, so as to be disposed between the chuck and the upward face of the radially inward portion of the lift plate, to reduce radial electric fields between the chuck and the lift plate.
  • 4. The apparatus of claim 3, wherein: the plasma blocking screen forms a rim member that extends downwardly from the second side of the plasma blocking screen, wherein the rim member mechanically and electrically connects with the radially inward portion of the lift plate through surface to surface contact with the lift plate, and so that the second side of the plasma blocking screen is disposed at a clearance height above the radially inward portion of the lift plate; anda thickness of the radial flange of the ceramic spacer is less than the clearance height, so that the radial flange does not interrupt continuous, surface to surface electrical contact of the rim member of the plasma blocking screen with the radially inward portion of the lift plate.
  • 5. The apparatus of claim 3, further comprising a ceramic pumping liner, disposed below the ceramic spacer and between the chuck and the lift plate, to further reduce the radial electric fields between the chuck and the lift plate.
  • 6. The apparatus of claim 5, wherein the ceramic pumping liner is disposed below the radially inward portion of the lift plate.
  • 7. The apparatus of claim 5, wherein the plane of the upper surface of the chuck passes through the ceramic pumping liner.
  • 8. The apparatus of claim 5, wherein: a lowermost surface of the ceramic spacer is a horizontally planar surface;an uppermost surface of the ceramic pumping liner is a horizontally planar surface; andwhen the lift plate is in a lowered position, the lowermost surface of the ceramic spacer rests on the uppermost surface of the ceramic pumping liner, to reduce radial electric fields between the chuck and the lift plate.
  • 9. The apparatus of claim 5, wherein: an outer edge of a gas distribution device is disposed atop the lift plate;an outer edge of the second planar electrode is disposed atop the gas distribution device;an insulator is disposed atop the second planar electrode; andan outer edge of the first planar electrode is disposed atop the insulator, so that: the lift plate is electrically connected with the gas distribution device and the second planar electrode;the gas distribution device and the second planar electrode do not contact the lift plate directly; andthe gas distribution device and the second planar electrode are electrically isolated from the first planar electrode, so that the first RF power can be coupled across the first planar electrode and the second planar electrode.
  • 10. The apparatus of claim 9, wherein the second power supply provides RF energy with a DC bias as the second RF power across the plasma blocking screen and the chuck.
  • 11. The apparatus of claim 1, wherein at least a portion of the second plasma forms in the plane of the upward face of the radially inward portion of the lift plate.
  • 12. The apparatus of claim 1, wherein the plane of a lowermost extent of the lift plate passes through the chuck.
  • 13. An apparatus for plasma processing, comprising: a process chamber that is defined laterally by one or more sidewalls, wherein the one or more sidewalls extend vertically, from below a chuck disposed within the process chamber, and terminate at upwardly facing surfaces that lie in a single horizontal plane;a plasma source configured for generating first plasma products from one or more source gases, wherein the plasma source passes the first plasma products downwardly through first apertures of a planar electrode;a plasma blocking screen that defines a plurality of second apertures therethrough, a first side of the plasma blocking screen being disposed facing the planar electrode such that the first plasma products pass through the plurality of second apertures to a second side of the plasma blocking screen;a lift plate that is mechanically independent from the one or more sidewalls, and is configured to lift the plasma source and the plasma blocking screen upwards and away from the sidewalls, wherein the lift plate comprises an outermost element and an inward portion, wherein: the outermost element forms an uppermost surface and a lowermost surface;the uppermost surface is configured to support the plasma source and to lift the plasma source away from underlying structure when the lift plate is lifted;the lowermost surface is configured to rest upon the upwardly facing surfaces of the one or more sidewalls at the single horizontal plane;the inward portion is integrally formed with and extends radially inward from the outermost element;the inward portion forms an upper surface that is lower than the uppermost surface,radially inward face anda lower surface, andthe plasma blocking screen rests atop, and is electrically connected with, the upper surface of the inward portion of the lift plate;the apparatus further comprising: the chuck, wherein the chuck faces the second side of the plasma blocking screen.
  • 14. The apparatus of claim 13, wherein: the plasma blocking screen is electrically conductive, and the plasma blocking screen is electrically connected with the lift plate by making direct contact with the upper surface of the inward portion of the lift plate.
  • 15. The apparatus of claim 14, wherein: the plasma blocking screen forms a rim member that extends downwardly from the second side of the plasma blocking screen, wherein the rim member makes the direct contact with the upper surface of the inward portion of the lift plate.
  • 16. The apparatus of claim 15, further comprising: a ceramic spacer, comprising: a radial flange that rests on the upper surface of the inward portion of the lift plate, anda body that extends downward from the radial flange, a lowermost edge of the body extending at least to the lower surface of the inward portion of the lift plate;wherein the radial flange of the ceramic spacer rests on the upper surface of the inward portion of the lift plate at a position that is radially inward from an area of contact between the rim member of the plasma blocking screen and the upper surface of the inward portion of the lift plate.
  • 17. The apparatus of claim 16, further comprising a ceramic pumping liner that extends below the ceramic spacer, a portion of the ceramic pumping liner being disposed directly below the lower surface of the inward portion of the lift plate.
  • 18. The apparatus of claim 17, wherein: an uppermost surface of the ceramic pumping liner is planar;a lowermost surface of the ceramic spacer is planar; andwhen the lift plate is in a lowered position, the lowermost surface of the ceramic spacer is in face to face contact with the uppermost surface of the ceramic pumping liner, to reduce radial electric fields between the chuck and the lift plate.
  • 19. The apparatus of claim 17, wherein the ceramic spacer and the ceramic pumping liner extend radially inward to a substantially identical radial position as one another, the radial position being intermediate between an innermost extent of the inward portion of the lift plate, and an outer diameter of the chuck.
  • 20. The apparatus of claim 13, wherein: the plasma blocking screen is configured to be held at electrical ground; andthe chuck is configured to receive RF energy and a DC bias, relative to the plasma blocking screen, to provide energy for a plasma to be generated between the chuck and the plasma blocking screen.
US Referenced Citations (1941)
Number Name Date Kind
2369620 Sullivan et al. Feb 1945 A
3401302 Thorpe Sep 1968 A
3451840 Hough Jun 1969 A
3537474 Rohrer Nov 1970 A
3756511 Shinroku Sep 1973 A
3937857 Brummett et al. Feb 1976 A
3969077 Hill Jul 1976 A
4006047 Brummett et al. Feb 1977 A
4190488 Winters Feb 1980 A
4209357 Gorin et al. Jun 1980 A
4214946 Forget et al. Jul 1980 A
4232060 Mallory, Jr. Nov 1980 A
4234628 DuRose Nov 1980 A
4265943 Goldstein et al. May 1981 A
4340462 Koch Jul 1982 A
4341592 Shortes et al. Jul 1982 A
4361418 Tscheppe Nov 1982 A
4364803 Nidola et al. Dec 1982 A
4368223 Kobayashi et al. Jan 1983 A
4374698 Sanders et al. Feb 1983 A
4381441 Desmarais et al. Apr 1983 A
4397812 Mallory, Jr. Aug 1983 A
4468413 Bachmann Aug 1984 A
4565601 Kakehi et al. Jan 1986 A
4579618 Celestino et al. Apr 1986 A
4585920 Hoog et al. Apr 1986 A
4600464 Desilets Jul 1986 A
4610775 Phifer Sep 1986 A
4625678 Shloya et al. Dec 1986 A
4632857 Mallory, Jr. Dec 1986 A
4656052 Satou et al. Apr 1987 A
4656076 Vetanen et al. Apr 1987 A
4668335 Mockler May 1987 A
4690746 McInerney et al. Sep 1987 A
4715937 Moslehi et al. Dec 1987 A
4749440 Blackwood et al. Jun 1988 A
4753898 Parrillo et al. Jun 1988 A
4786360 Cote et al. Nov 1988 A
4792378 Rose Dec 1988 A
4793897 Dunfield et al. Dec 1988 A
4807016 Douglas Feb 1989 A
4810520 Wu Mar 1989 A
4816638 Ukai et al. Mar 1989 A
4820377 Davis et al. Apr 1989 A
4828649 Davis May 1989 A
4838990 Jucha et al. Jun 1989 A
4851370 Doklan et al. Jul 1989 A
4857140 Loewenstein Aug 1989 A
4865685 Palmour Sep 1989 A
4867841 Loewenstein et al. Sep 1989 A
4868071 Walsh et al. Sep 1989 A
4872947 Wang et al. Oct 1989 A
4878994 Jucha et al. Nov 1989 A
4886570 Davis et al. Dec 1989 A
4892753 Wang et al. Jan 1990 A
4894352 Lane et al. Jan 1990 A
4904341 Blaugher et al. Feb 1990 A
4904621 Lowenstein et al. Feb 1990 A
4913929 Moslehi et al. Apr 1990 A
4919750 Bausmith et al. Apr 1990 A
4946903 Gardella et al. Aug 1990 A
4951601 Maydan et al. Aug 1990 A
4960488 Law et al. Oct 1990 A
4980018 Mu et al. Dec 1990 A
4981551 Palmour Jan 1991 A
4985372 Narita et al. Jan 1991 A
4991542 Kohmura et al. Feb 1991 A
4992136 Tachi et al. Feb 1991 A
4993358 Mahawili Feb 1991 A
4994404 Sheng et al. Feb 1991 A
5000113 Wang et al. Mar 1991 A
5006192 Deguchi Apr 1991 A
5010842 Oda et al. Apr 1991 A
5013691 Lory et al. May 1991 A
5028565 Chang Jul 1991 A
5030319 Nishino et al. Jul 1991 A
5038713 Kawakami et al. Aug 1991 A
5045244 Marlett Sep 1991 A
5061838 Lane et al. Oct 1991 A
5069938 Lorimer et al. Dec 1991 A
5083030 Stavov Jan 1992 A
5089441 Moslehi Feb 1992 A
5089442 Olmer Feb 1992 A
5147692 Bengston Sep 1992 A
5156881 Okano et al. Oct 1992 A
5180435 Markunas et al. Jan 1993 A
5186718 Tepman et al. Feb 1993 A
5188706 Hori et al. Feb 1993 A
5198034 deBoer et al. Mar 1993 A
5200016 Namose Apr 1993 A
5203911 Sricharoenchalkit et al. Apr 1993 A
5215787 Homma Jun 1993 A
5221427 Koinuma et al. Jun 1993 A
5228501 Tepman et al. Jul 1993 A
5231690 Soma et al. Jul 1993 A
5235139 Bengston et al. Aug 1993 A
5238499 van de Ven et al. Aug 1993 A
5240497 Shacham et al. Aug 1993 A
5248371 Maher et al. Sep 1993 A
5248527 Uchida et al. Sep 1993 A
5252178 Moslehi Oct 1993 A
5266157 Kadomura Nov 1993 A
5269881 Sekiya Dec 1993 A
5270125 America et al. Dec 1993 A
5271972 Kwok et al. Dec 1993 A
5275977 Otsubo et al. Jan 1994 A
5277750 Wolgang Jan 1994 A
5279669 Lee Jan 1994 A
5279865 Chebi et al. Jan 1994 A
5288518 Homma Feb 1994 A
5290382 Zarowin et al. Mar 1994 A
5290383 Koshimizu Mar 1994 A
5292370 Tsai et al. Mar 1994 A
5292682 Stevens et al. Mar 1994 A
5300463 Cathey et al. Apr 1994 A
5302233 Kim et al. Apr 1994 A
5304250 Sameshima et al. Apr 1994 A
5306530 Strongin et al. Apr 1994 A
5314724 Tsukune et al. May 1994 A
5319247 Matsuura Jun 1994 A
5326427 Jerbic Jul 1994 A
5328218 Lowrey et al. Jul 1994 A
5328558 Kawamura et al. Jul 1994 A
5330578 Sakama Jul 1994 A
5334552 Homma Aug 1994 A
5345999 Hosokawa Sep 1994 A
5352636 Beinglass Oct 1994 A
5356478 Chen et al. Oct 1994 A
5362526 Wang et al. Nov 1994 A
5366585 Robertson et al. Nov 1994 A
5368897 Kurihara et al. Nov 1994 A
5378316 Franke et al. Jan 1995 A
5380560 Kaja et al. Jan 1995 A
5382311 Ishikawa et al. Jan 1995 A
5384284 Doan et al. Jan 1995 A
5385763 Okano et al. Jan 1995 A
5399237 Keswick et al. Mar 1995 A
5399529 Homma Mar 1995 A
5403434 Moslehi Apr 1995 A
5413670 Langan et al. May 1995 A
5413967 Matsuda et al. May 1995 A
5415890 Kloiber et al. May 1995 A
5416048 Blalock et al. May 1995 A
5420075 Homma et al. May 1995 A
5429995 Nishiyama et al. Jul 1995 A
5439553 Grant et al. Aug 1995 A
5451259 Krogh Sep 1995 A
5464499 Moslehi Nov 1995 A
5468342 Nulty et al. Nov 1995 A
5474589 Ohga et al. Dec 1995 A
5478403 Shinigawa et al. Dec 1995 A
5478462 Walsh Dec 1995 A
5483920 Pryor Jan 1996 A
5494494 Mizuno et al. Feb 1996 A
5500249 Telford et al. Mar 1996 A
5505816 Barnes et al. Apr 1996 A
5510216 Calabrese et al. Apr 1996 A
5516367 Lei et al. May 1996 A
5518962 Murao May 1996 A
5534070 Okamura et al. Jun 1996 A
5536360 Nguyen et al. Jun 1996 A
5531835 Fodor et al. Jul 1996 A
5549780 Koinuma et al. Aug 1996 A
5558717 Zhao et al. Sep 1996 A
5560779 Knowles et al. Oct 1996 A
5563105 Dobuzinsky et al. Oct 1996 A
5567243 Foster et al. Oct 1996 A
5571576 Qian et al. Nov 1996 A
5575853 Arami et al. Nov 1996 A
5578130 Hayashi et al. Nov 1996 A
5578161 Auda Nov 1996 A
5580421 Hiatt et al. Dec 1996 A
5591269 Arami et al. Jan 1997 A
5592358 Shamouilian Jan 1997 A
5597439 Salzman Jan 1997 A
5599740 Jang et al. Feb 1997 A
5614055 Fairbairn et al. Mar 1997 A
5616518 Foo et al. Apr 1997 A
5624582 Cain Apr 1997 A
5626922 Miyanaga et al. May 1997 A
5628829 Foster et al. May 1997 A
5635086 Warren, Jr. Jun 1997 A
5645645 Zhang et al. Jul 1997 A
5648125 Cane Jul 1997 A
5648175 Russell et al. Jul 1997 A
5656093 Burkhart et al. Aug 1997 A
5660957 Chou et al. Aug 1997 A
5661093 Ravi et al. Aug 1997 A
5670066 Barnes et al. Sep 1997 A
5674787 Zhao et al. Oct 1997 A
5676758 Hasgawa et al. Oct 1997 A
5679606 Wang et al. Oct 1997 A
5685946 Fathauer et al. Nov 1997 A
5688331 Aruga et al. Nov 1997 A
5695810 Dubin et al. Dec 1997 A
5712185 Tsai et al. Jan 1998 A
5716500 Bardos et al. Feb 1998 A
5716506 Maclay et al. Feb 1998 A
5719085 Moon et al. Feb 1998 A
5733816 Iyer et al. Mar 1998 A
5747373 Yu May 1998 A
5753886 Iwamura et al. May 1998 A
5755859 Brusic et al. May 1998 A
5756400 Ye et al. May 1998 A
5756402 Jimbo et al. May 1998 A
5772770 Suda et al. Jun 1998 A
5781693 Ballance et al. Jul 1998 A
5786276 Brooks et al. Jul 1998 A
5788825 Park et al. Aug 1998 A
5789300 Fulford Aug 1998 A
5792376 Kanai et al. Aug 1998 A
5800686 Littau et al. Sep 1998 A
5804259 Robles Sep 1998 A
5812403 Fong et al. Sep 1998 A
5814238 Ashby et al. Sep 1998 A
5814365 Mahawill Sep 1998 A
5820723 Benjamin et al. Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5830805 Schacham-Diamand et al. Nov 1998 A
5835334 McMillin et al. Nov 1998 A
5843538 Ehrsam et al. Dec 1998 A
5843847 Pu et al. Dec 1998 A
5844195 Fairbairn et al. Dec 1998 A
5846332 Zhao et al. Dec 1998 A
5846373 Pirkle et al. Dec 1998 A
5846375 Gilchrist et al. Dec 1998 A
5846598 Semkow et al. Dec 1998 A
5849639 Molloy et al. Dec 1998 A
5850105 Dawson et al. Dec 1998 A
5855681 Maydan et al. Jan 1999 A
5855685 Tobe et al. Jan 1999 A
5856240 Sinha et al. Jan 1999 A
5858876 Chew Jan 1999 A
5863376 Wicker Jan 1999 A
5865896 Nowak Feb 1999 A
5866483 Shiau et al. Feb 1999 A
5868897 Ohkawa Feb 1999 A
5872052 Iyer Feb 1999 A
5872058 Van Cleemput et al. Feb 1999 A
5882424 Taylor et al. Mar 1999 A
5882786 Nassau et al. Mar 1999 A
5883012 Chiou Mar 1999 A
5885404 Kim et al. Mar 1999 A
5885749 Huggins et al. Mar 1999 A
5888906 Sandhu et al. Mar 1999 A
5891349 Tobe et al. Apr 1999 A
5891513 Dubin et al. Apr 1999 A
5897751 Makowiecki Apr 1999 A
5899752 Hey et al. May 1999 A
5900163 Yi et al. May 1999 A
5904827 Reynolds May 1999 A
5907790 Kellam May 1999 A
5910340 Uchida et al. Jun 1999 A
5913147 Dubin et al. Jun 1999 A
5913978 Kato et al. Jun 1999 A
5915190 Pirkle Jun 1999 A
5918116 Chittipeddi Jun 1999 A
5919332 Koshiishi et al. Jul 1999 A
5920792 Lin Jul 1999 A
5926737 Ameen et al. Jul 1999 A
5932077 Reynolds Aug 1999 A
5933757 Yoshikawa et al. Aug 1999 A
5935334 Fong et al. Aug 1999 A
5935340 Xia et al. Aug 1999 A
5937323 Orczyk et al. Aug 1999 A
5939831 Fong et al. Aug 1999 A
5942075 Nagahata et al. Aug 1999 A
5944049 Beyer et al. Aug 1999 A
5944902 Redeker et al. Aug 1999 A
5948702 Rotondaro Sep 1999 A
5951601 Lesinski et al. Sep 1999 A
5951776 Selyutin et al. Sep 1999 A
5951896 Mahawill Sep 1999 A
5953591 Ishihara et al. Sep 1999 A
5953635 Andideh Sep 1999 A
5963840 Xia et al. Oct 1999 A
5968587 Frankel et al. Oct 1999 A
5968610 Liu et al. Oct 1999 A
5969422 Ting et al. Oct 1999 A
5976327 Tanaka Nov 1999 A
5990000 Hong et al. Nov 1999 A
5990013 Berenguer et al. Nov 1999 A
5993916 Zhao et al. Nov 1999 A
5994209 Yieh et al. Nov 1999 A
5997649 Hillman Dec 1999 A
5997962 Ogasawara et al. Dec 1999 A
6004884 Abraham Dec 1999 A
6007635 Mahawill Dec 1999 A
6007785 Liou Dec 1999 A
6010962 Liu et al. Jan 2000 A
6013191 Nasser-Faili et al. Jan 2000 A
6013584 M'Saad Jan 2000 A
6015724 Yamazaki et al. Jan 2000 A
6015747 Lopatin et al. Jan 2000 A
6017414 Koemtzopoulos et al. Jan 2000 A
6019848 Kiyama et al. Feb 2000 A
6020271 Yanagida Feb 2000 A
6030666 Lam et al. Feb 2000 A
6030881 Papasouliotis et al. Feb 2000 A
6035101 Sajoto et al. Mar 2000 A
6036878 Collins et al. Mar 2000 A
6037018 Jang et al. Mar 2000 A
6037266 Tao et al. Mar 2000 A
6039834 Tanaka et al. Mar 2000 A
6039851 Iyer Mar 2000 A
6053982 Halpin et al. Apr 2000 A
6059643 Hu et al. May 2000 A
6063683 Wu et al. May 2000 A
6063712 Gilton et al. May 2000 A
6065424 Shacham-Diamand et al. May 2000 A
6065425 Takaki May 2000 A
6072147 Koshiishi Jun 2000 A
6072227 Yau et al. Jun 2000 A
6074512 Collins et al. Jun 2000 A
6074514 Bjorkman et al. Jun 2000 A
6077384 Collins et al. Jun 2000 A
6077780 Dubin Jun 2000 A
6079356 Umotoy Jun 2000 A
6080529 Ye et al. Jun 2000 A
6081414 Flanigan et al. Jun 2000 A
6083344 Hanawa et al. Jul 2000 A
6083844 Bui-Le et al. Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6087278 Kim et al. Jul 2000 A
6090212 Mahawill Jul 2000 A
6093457 Okumura Jul 2000 A
6093594 Yeap et al. Jul 2000 A
6099697 Hausmann Aug 2000 A
6107199 Allen et al. Aug 2000 A
6110530 Chen et al. Aug 2000 A
6110832 Morgan et al. Aug 2000 A
6110836 Cohen et al. Aug 2000 A
6110838 Loewenstein Aug 2000 A
6113771 Landau et al. Sep 2000 A
6114216 Yieh et al. Sep 2000 A
6117245 Mandrekar et al. Sep 2000 A
6120640 Shih et al. Sep 2000 A
6136163 Cheung et al. Oct 2000 A
6136165 Moslehi et al. Oct 2000 A
6136685 Narwankar et al. Oct 2000 A
6136693 Chan et al. Oct 2000 A
6140234 Uzoh et al. Oct 2000 A
6144099 Lopatin et al. Nov 2000 A
6147009 Grill et al. Nov 2000 A
6148761 Majewski et al. Nov 2000 A
6149828 Vaartstra Nov 2000 A
6150628 Smith et al. Nov 2000 A
6153935 Edelstein et al. Nov 2000 A
6161500 Kopacz et al. Dec 2000 A
6161576 Maher et al. Dec 2000 A
6162302 Raghavan et al. Dec 2000 A
6162370 Hackett et al. Dec 2000 A
6165912 McConnell et al. Dec 2000 A
6167834 Wang et al. Jan 2001 B1
6169021 Akram et al. Jan 2001 B1
6170428 Redeker et al. Jan 2001 B1
6171661 Zheng et al. Jan 2001 B1
6174450 Patrick et al. Jan 2001 B1
6174810 Patrick et al. Jan 2001 B1
6174812 Hsuing et al. Jan 2001 B1
6176198 Kao et al. Jan 2001 B1
6176667 Fairbairn Jan 2001 B1
6177245 Ward et al. Jan 2001 B1
6179924 Zhao et al. Jan 2001 B1
6180523 Lee et al. Jan 2001 B1
6182602 Redeker et al. Feb 2001 B1
6182603 Shang et al. Feb 2001 B1
6184121 Buchwalter et al. Feb 2001 B1
6186091 Chu et al. Feb 2001 B1
6189483 Ishikawa et al. Feb 2001 B1
6190233 Hong et al. Feb 2001 B1
6194038 Rossman Feb 2001 B1
6197151 Kaji Mar 2001 B1
6197181 Chen Mar 2001 B1
6197364 Paunovic et al. Mar 2001 B1
6197680 Lin et al. Mar 2001 B1
6197688 Simpson Mar 2001 B1
6197705 Vassiliev Mar 2001 B1
6198616 Dahimene et al. Mar 2001 B1
6203863 Liu et al. Mar 2001 B1
6204200 Shieh et al. Mar 2001 B1
6210486 Mizukami et al. Apr 2001 B1
6217658 Orczyk et al. Apr 2001 B1
6220201 Nowak Apr 2001 B1
6225745 Srivastava May 2001 B1
6228233 Lakshmikanthan et al. May 2001 B1
6228751 Yamazaki et al. May 2001 B1
6228758 Pellerin et al. May 2001 B1
6235643 Mui et al. May 2001 B1
6237527 Kellerman et al. May 2001 B1
6238513 Arnold et al. May 2001 B1
6238582 Williams et al. May 2001 B1
6241845 Gadgil et al. Jun 2001 B1
6242349 Nogami et al. Jun 2001 B1
6244211 Nishikawa et al. Jun 2001 B1
6245396 Nogami Jun 2001 B1
6245670 Cheung et al. Jun 2001 B1
6251236 Stevens Jun 2001 B1
6251802 Moore et al. Jun 2001 B1
6258170 Somekh et al. Jul 2001 B1
6258220 Dordi et al. Jul 2001 B1
6258223 Cheung et al. Jul 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6261637 Oberle Jul 2001 B1
6277733 Smith Aug 2001 B1
6277752 Chen Aug 2001 B1
6277763 Kugimiya et al. Aug 2001 B1
6281072 Li et al. Aug 2001 B1
6281135 Han et al. Aug 2001 B1
6284146 Kim et al. Sep 2001 B1
6291282 Wilk et al. Sep 2001 B1
6291348 Lopatin et al. Sep 2001 B1
6302964 Umotoy et al. Oct 2001 B1
6303044 Koemtzopoulos Oct 2001 B1
6303418 Cha et al. Oct 2001 B1
6306772 Lin Oct 2001 B1
6308654 Schneider et al. Oct 2001 B1
6308776 Sloan Oct 2001 B1
6310755 Busato et al. Oct 2001 B1
6312554 Ye Nov 2001 B1
6312995 Yu Nov 2001 B1
6319387 Krishnamoorthy et al. Nov 2001 B1
6321587 Laush Nov 2001 B1
6322716 Qiao et al. Nov 2001 B1
6323128 Sambucetti et al. Nov 2001 B1
6335288 Kwan et al. Jan 2002 B1
6340435 Bjorkman et al. Jan 2002 B1
6342733 Hu et al. Jan 2002 B1
RE37546 Mahawill Feb 2002 E
6344410 Lopatin et al. Feb 2002 B1
6348407 Gupta et al. Feb 2002 B1
6350320 Sherstinsky et al. Feb 2002 B1
6350697 Richardson Feb 2002 B1
6351013 Luning et al. Feb 2002 B1
6352081 Lu et al. Mar 2002 B1
6355573 Okumura Mar 2002 B1
6364949 Or et al. Apr 2002 B1
6364954 Umotoy et al. Apr 2002 B2
6364957 Schneider et al. Apr 2002 B1
6375748 Yudovsky et al. Apr 2002 B1
6376386 Oshima Apr 2002 B1
6379575 Yin et al. Apr 2002 B1
6383896 Kirimura et al. May 2002 B1
6383951 Li May 2002 B1
6387207 Janakiraman et al. May 2002 B1
6391753 Yu May 2002 B1
6395150 Van Cleemput et al. May 2002 B1
6403491 Liu et al. Jun 2002 B1
6415736 Hao et al. Jul 2002 B1
6416647 Dordi et al. Jul 2002 B1
6416874 Cox et al. Jul 2002 B1
6423284 Arno Jul 2002 B1
6427623 Ko Aug 2002 B2
6429465 Yagi et al. Aug 2002 B1
6432819 Pavate et al. Aug 2002 B1
6432831 Dhindsa et al. Aug 2002 B2
6436193 Kasai et al. Aug 2002 B1
6436816 Lee et al. Aug 2002 B1
6440863 Tsai et al. Aug 2002 B1
6441492 Cunningham Aug 2002 B1
6446572 Brcka Sep 2002 B1
6448537 Nering Sep 2002 B1
6458718 Todd Oct 2002 B1
6461974 Ni et al. Oct 2002 B1
6462371 Weimer et al. Oct 2002 B1
6462372 Xia et al. Oct 2002 B1
6465051 Sahin et al. Oct 2002 B1
6465350 Taylor et al. Oct 2002 B1
6465366 Nemani et al. Oct 2002 B1
6477980 White et al. Nov 2002 B1
6479373 Dreybrodt et al. Nov 2002 B2
6488984 Wada et al. Dec 2002 B1
6494959 Samoilov et al. Dec 2002 B1
6499425 Sandhu et al. Dec 2002 B1
6500728 Wang Dec 2002 B1
6503843 Xia et al. Jan 2003 B1
6506291 Tsai et al. Jan 2003 B2
6509283 Thomas Jan 2003 B1
6509623 Zhao Jan 2003 B2
6516815 Stevens et al. Feb 2003 B1
6518548 Sugaya et al. Feb 2003 B2
6527968 Wang et al. Mar 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6528751 Hoffman et al. Mar 2003 B1
6537707 Lee Mar 2003 B1
6537733 Campana et al. Mar 2003 B2
6541397 Bencher Apr 2003 B1
6541671 Martinez et al. Apr 2003 B1
6544340 Yudovsky Apr 2003 B2
6547977 Yan et al. Apr 2003 B1
6551924 Dalton et al. Apr 2003 B1
6558564 Loewenhardt May 2003 B1
6565661 Nguyen May 2003 B1
6565729 Chen et al. May 2003 B2
6569773 Gellrich et al. May 2003 B1
6572937 Hakovirta et al. Jun 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6573606 Sambucetti et al. Jun 2003 B2
6585851 Ohmi et al. Jul 2003 B1
6586163 Okabe et al. Jul 2003 B1
6596599 Guo Jul 2003 B1
6596654 Bayman et al. Jul 2003 B1
6602434 Hung et al. Aug 2003 B1
6602806 Xia et al. Aug 2003 B1
6603269 Vo et al. Aug 2003 B1
6605874 Leu et al. Aug 2003 B2
6616967 Test Sep 2003 B1
6627532 Gaillard et al. Sep 2003 B1
6635575 Xia et al. Oct 2003 B1
6635578 Xu et al. Oct 2003 B1
6638810 Bakli et al. Oct 2003 B2
6645301 Sainty et al. Nov 2003 B2
6645550 Cheung et al. Nov 2003 B1
6656831 Lee et al. Dec 2003 B1
6656837 Xu et al. Dec 2003 B2
6656848 Scanlan et al. Dec 2003 B1
6663715 Yuda et al. Dec 2003 B1
6677242 Liu et al. Jan 2004 B1
6679981 Pan et al. Jan 2004 B1
6688375 Turner Feb 2004 B1
6713356 Skotnicki et al. Mar 2004 B1
6713835 Horak et al. Mar 2004 B1
6717189 Inoue et al. Apr 2004 B2
6720213 Gambino et al. Apr 2004 B1
6736147 Satoh et al. May 2004 B2
6736987 Cho May 2004 B1
6740247 Han et al. May 2004 B1
6740585 Yoon et al. May 2004 B2
6740977 Ahn et al. May 2004 B2
6743473 Parkhe et al. Jun 2004 B1
6743732 Lin et al. Jun 2004 B1
6756235 Liu et al. Jun 2004 B1
6759261 Shimokohbe et al. Jul 2004 B2
6762127 Boiteux et al. Jul 2004 B2
6762435 Towle Jul 2004 B2
6764958 Nemani et al. Jul 2004 B1
6765273 Chau et al. Jul 2004 B1
6767834 Chung et al. Jul 2004 B2
6768079 Kosakai Jul 2004 B2
6770166 Fisher Aug 2004 B1
6772827 Keller et al. Aug 2004 B2
6792889 Nakano et al. Sep 2004 B2
6794290 Papasouliotis et al. Sep 2004 B1
6794311 Huang et al. Sep 2004 B2
6796314 Graff et al. Sep 2004 B1
6797189 Hung et al. Sep 2004 B2
6800336 Fornsel et al. Oct 2004 B1
6800830 Mahawili Oct 2004 B2
6802944 Ahmad et al. Oct 2004 B2
6808564 Dietze Oct 2004 B2
6808747 Shih et al. Oct 2004 B1
6808748 Kapoor et al. Oct 2004 B2
6815633 Chen et al. Nov 2004 B1
6821571 Huang Nov 2004 B2
6823589 White et al. Nov 2004 B2
6828241 Kholodenko et al. Dec 2004 B2
6830624 Janakiraman et al. Dec 2004 B2
6835995 Li Dec 2004 B2
6846745 Papasouliotis et al. Jan 2005 B1
6849854 Sainty Feb 2005 B2
6852550 Tuttle et al. Feb 2005 B2
6852584 Chen et al. Feb 2005 B1
6853533 Parkhe et al. Feb 2005 B2
6858153 Bjorkman et al. Feb 2005 B2
6861097 Goosey et al. Mar 2005 B1
6861332 Park et al. Mar 2005 B2
6869880 Krishnaraj et al. Mar 2005 B2
6875280 Ikeda et al. Apr 2005 B2
6878206 Tzu et al. Apr 2005 B2
6879981 Rothschild et al. Apr 2005 B2
6886491 Kim et al. May 2005 B2
6892669 Xu et al. May 2005 B2
6893967 Wright et al. May 2005 B1
6897532 Schwarz et al. May 2005 B1
6900596 Yang et al. May 2005 B2
6903511 Chistyakov Jun 2005 B2
6908862 Li et al. Jun 2005 B2
6911112 An Jun 2005 B2
6911401 Khandan et al. Jun 2005 B2
6916399 Rozenzon et al. Jul 2005 B1
6921556 Shimizu et al. Jul 2005 B2
6924191 Liu et al. Aug 2005 B2
6930047 Yamazaki Aug 2005 B2
6935269 Lee et al. Aug 2005 B2
6942753 Choi et al. Sep 2005 B2
6946033 Tsuel et al. Sep 2005 B2
6951821 Hamelin et al. Oct 2005 B2
6958175 Sakamoto et al. Oct 2005 B2
6958286 Chen et al. Oct 2005 B2
6969619 Winniczek Nov 2005 B1
6995073 Liou Feb 2006 B2
7017269 White et al. Mar 2006 B2
7018941 Cui et al. Mar 2006 B2
7030034 Fucsko et al. Apr 2006 B2
7037846 Srivastava et al. May 2006 B2
7049200 Arghavani et al. May 2006 B2
7052553 Shih et al. May 2006 B1
7071532 Geffken et al. Jul 2006 B2
7084070 Lee et al. Aug 2006 B1
7115525 Abatchev et al. Oct 2006 B2
7122949 Strikovski Oct 2006 B2
7138767 Chen et al. Nov 2006 B2
7145725 Hasel et al. Dec 2006 B2
7148155 Tarafdar et al. Dec 2006 B1
7166233 Johnson et al. Jan 2007 B2
7183214 Nam et al. Feb 2007 B2
7196342 Ershov et al. Mar 2007 B2
7226805 Hallin et al. Jun 2007 B2
7235137 Kitayama et al. Jun 2007 B2
7244474 Hanawa et al. Jul 2007 B2
7252011 Traverso Aug 2007 B2
7252716 Kim et al. Aug 2007 B2
7253123 Arghavani et al. Aug 2007 B2
7256370 Guiver Aug 2007 B2
7274004 Benjamin et al. Sep 2007 B2
7288482 Panda et al. Oct 2007 B2
7291360 Hanawa et al. Nov 2007 B2
7316761 Doan et al. Jan 2008 B2
7329608 Babayan et al. Feb 2008 B2
7341633 Lubomirsky et al. Mar 2008 B2
7344912 Okoronyanwu Mar 2008 B1
7358192 Merry et al. Apr 2008 B2
7361865 Maki et al. Apr 2008 B2
7364956 Saito Apr 2008 B2
7365016 Ouellet et al. Apr 2008 B2
7396480 Kao et al. Jul 2008 B2
7396773 Blosse et al. Jul 2008 B1
7416989 Liu et al. Aug 2008 B1
7465358 Weidman et al. Dec 2008 B2
7465953 Koh et al. Dec 2008 B1
7468319 Lee Dec 2008 B2
7479303 Byun et al. Jan 2009 B2
7484473 Keller et al. Feb 2009 B2
7488688 Seung-Pil et al. Feb 2009 B2
7494545 Lam et al. Feb 2009 B2
7500445 Zhao et al. Mar 2009 B2
7513214 Okumura et al. Apr 2009 B2
7520957 Kao et al. Apr 2009 B2
7553756 Hayashi et al. Jun 2009 B2
7575007 Tang et al. Aug 2009 B2
7581511 Mardian et al. Sep 2009 B2
7604708 Wood et al. Oct 2009 B2
7611980 Wells Nov 2009 B2
7628897 Mungekar et al. Dec 2009 B2
7658799 Ishikawa et al. Feb 2010 B2
7682518 Chandrachood et al. Mar 2010 B2
7695590 Hanawa et al. Apr 2010 B2
7708859 Huang et al. May 2010 B2
7722925 White et al. May 2010 B2
7723221 Hayashi May 2010 B2
7749326 Kim et al. Jul 2010 B2
7780790 Nogami Aug 2010 B2
7785672 Choi et al. Aug 2010 B2
7790634 Munro et al. Sep 2010 B2
7806077 Lee et al. Oct 2010 B2
7806078 Yoshida Oct 2010 B2
7807578 Bencher et al. Oct 2010 B2
7825038 Ingle et al. Nov 2010 B2
7837828 Ikeda et al. Nov 2010 B2
7845309 Condrashoff et al. Dec 2010 B2
7867926 Satoh et al. Jan 2011 B2
7915139 Lang et al. Mar 2011 B1
7922863 Ripley Apr 2011 B2
7932181 Singh et al. Apr 2011 B2
7976631 Burrows Apr 2011 B2
7939422 Ingle et al. May 2011 B2
7968441 Xu Jun 2011 B2
7977249 Liu Jul 2011 B1
7981806 Jung Jul 2011 B2
7989365 Park et al. Aug 2011 B2
8008166 Sanchez et al. Aug 2011 B2
8043811 Feustel et al. Nov 2011 B2
8058179 Draeger et al. Nov 2011 B1
8071482 Kawada Dec 2011 B2
8074599 Choi et al. Dec 2011 B2
8076198 Lee et al. Dec 2011 B2
8083853 Choi et al. Dec 2011 B2
8114245 Ohmi et al. Feb 2012 B2
8119530 Hori et al. Feb 2012 B2
8133349 Panagopoulos Mar 2012 B1
8173228 Choi et al. May 2012 B2
8187486 Liu et al. May 2012 B1
8211808 Sapre et al. Jul 2012 B2
8216486 Dhindsa Jul 2012 B2
8222128 Sasaki et al. Jul 2012 B2
8252194 Kiehlbauch et al. Aug 2012 B2
8272346 Bettencourt et al. Sep 2012 B2
8295089 Jeong et al. Oct 2012 B2
8298627 Minami et al. Oct 2012 B2
8298959 Cheshire Oct 2012 B2
8309440 Sanchez et al. Nov 2012 B2
8312839 Baek Nov 2012 B2
8313610 Dhindsa Nov 2012 B2
8328939 Choi et al. Dec 2012 B2
8329262 Miller et al. Dec 2012 B2
8336188 Monteen Dec 2012 B2
8357435 Lubomirsky Jan 2013 B2
8361892 Tam et al. Jan 2013 B2
8368308 Banna et al. Feb 2013 B2
8390980 Sansoni et al. Mar 2013 B2
8427067 Espiau et al. Apr 2013 B2
8435902 Tang et al. May 2013 B2
8440523 Guillorn et al. May 2013 B1
8466073 Wang et al. Jun 2013 B2
8475674 Thadani et al. Jul 2013 B2
8480850 Tyler et al. Jul 2013 B2
8491805 Kushibiki et al. Jul 2013 B2
8501629 Tang et al. Aug 2013 B2
8506713 Takagi Aug 2013 B2
8512509 Bera et al. Aug 2013 B2
8528889 Sansoni et al. Sep 2013 B2
8540844 Hudson et al. Sep 2013 B2
8551891 Liang Oct 2013 B2
8573152 De La Llera Nov 2013 B2
8622021 Taylor et al. Jan 2014 B2
8623148 Mitchell et al. Jan 2014 B2
8623471 Tyler et al. Jan 2014 B2
8633423 Lin et al. Jan 2014 B2
8642481 Wang et al. Feb 2014 B2
8652298 Dhindsa et al. Feb 2014 B2
8668836 Mizukami et al. Mar 2014 B2
8679982 Wang et al. Mar 2014 B2
8679983 Wang et al. Mar 2014 B2
8691023 Bao et al. Apr 2014 B2
8702902 Blom et al. Apr 2014 B2
8741778 Yang et al. Jun 2014 B2
8747680 Deshpande Jun 2014 B1
8748322 Feng et al. Jun 2014 B1
8765574 Zhang et al. Jul 2014 B2
8771536 Zhang et al. Jul 2014 B2
8771539 Zhang et al. Jul 2014 B2
8772888 Jung et al. Jul 2014 B2
8778079 Begarney et al. Jul 2014 B2
8801952 Wang et al. Aug 2014 B1
8802572 Nemani et al. Aug 2014 B2
8808563 Wang et al. Aug 2014 B2
8815720 Godet et al. Aug 2014 B2
8846163 Kao et al. Sep 2014 B2
8869742 Dhindsa Oct 2014 B2
8871651 Choi et al. Oct 2014 B1
8888087 Okabe et al. Nov 2014 B2
8894767 Goradia et al. Nov 2014 B2
8895449 Zhu et al. Nov 2014 B1
8900364 Wright Dec 2014 B2
8921234 Liu et al. Dec 2014 B2
8927390 Sapre et al. Jan 2015 B2
8932947 Han et al. Jan 2015 B1
8937017 Cheshire et al. Jan 2015 B2
8945414 Su et al. Feb 2015 B1
8951429 Liu et al. Feb 2015 B1
8956980 Chen et al. Feb 2015 B1
8969212 Ren et al. Mar 2015 B2
8970114 Busche et al. Mar 2015 B2
8980005 Carlson et al. Mar 2015 B2
8980758 Ling et al. Mar 2015 B1
8980763 Wang et al. Mar 2015 B2
8992733 Sorensen et al. Mar 2015 B2
8999656 Zhang et al. Apr 2015 B2
8999839 Su et al. Apr 2015 B2
8999856 Zhang Apr 2015 B2
9012302 Sapre et al. Apr 2015 B2
9017481 Pettinger et al. Apr 2015 B1
9023732 Wang et al. May 2015 B2
9023734 Chen et al. May 2015 B2
9034770 Park et al. May 2015 B2
9040422 Wang et al. May 2015 B2
9064815 Zhang et al. Jun 2015 B2
9064816 Kim et al. Jun 2015 B2
9072158 Ikeda et al. Jun 2015 B2
9093371 Wang et al. Jul 2015 B2
9093389 Nemani Jul 2015 B2
9093390 Wang et al. Jul 2015 B2
9111877 Chen et al. Aug 2015 B2
9111907 Kamineni Aug 2015 B2
9114438 Hoinkis et al. Aug 2015 B2
9117855 Cho et al. Aug 2015 B2
9132436 Liang et al. Sep 2015 B2
9136273 Purayath et al. Sep 2015 B1
9144147 Yang et al. Sep 2015 B2
9153442 Wang et al. Oct 2015 B2
9159606 Purayath et al. Oct 2015 B1
9165783 Nemani et al. Oct 2015 B2
9165786 Purayath et al. Oct 2015 B1
9184055 Wang et al. Nov 2015 B2
9190290 Xue et al. Nov 2015 B2
9190293 Wang et al. Nov 2015 B2
9190302 Ni Nov 2015 B2
9202708 Chen et al. Dec 2015 B1
9209012 Chen et al. Dec 2015 B2
9236265 Korolik et al. Jan 2016 B2
9236266 Zhang et al. Jan 2016 B2
9240315 Hsieh et al. Jan 2016 B1
9245762 Zhang et al. Jan 2016 B2
9263278 Purayath et al. Feb 2016 B2
9269590 Luere et al. Feb 2016 B2
9275834 Park et al. Mar 2016 B1
9287095 Nguyen et al. Mar 2016 B2
9287134 Wang et al. Mar 2016 B2
9293568 Ko Mar 2016 B2
9299537 Kobayashi et al. Mar 2016 B2
9299538 Kobayashi et al. Mar 2016 B2
9299575 Park et al. Mar 2016 B2
9299582 Ingle et al. Mar 2016 B2
9299583 Wang et al. Mar 2016 B1
9309598 Wang et al. Apr 2016 B2
9324576 Zhang et al. Apr 2016 B2
9343272 Pandit et al. May 2016 B1
9343327 Zhange et al. May 2016 B2
9349605 Xu et al. May 2016 B1
9355856 Wang et al. May 2016 B2
9355862 Pandit et al. May 2016 B2
9355922 Park et al. May 2016 B2
9362163 Danek et al. Jun 2016 B2
9368364 Park et al. Jun 2016 B2
9373522 Wang et al. Jun 2016 B1
9378969 Hsu et al. Jun 2016 B2
9384997 Ren et al. Jul 2016 B2
9396961 Arghavani et al. Jul 2016 B2
9418858 Wang et al. Aug 2016 B2
9425041 Berry et al. Aug 2016 B2
9425058 Kim et al. Aug 2016 B2
9431268 Lill et al. Aug 2016 B2
9343358 Montgomery Sep 2016 B1
9437451 Chen et al. Sep 2016 B2
9443749 Smith Sep 2016 B2
9449845 Liu et al. Sep 2016 B2
9449846 Liu et al. Sep 2016 B2
9449850 Wang et al. Sep 2016 B2
9460959 Xie et al. Oct 2016 B1
9466469 Khaja Oct 2016 B2
9472412 Ingle et al. Oct 2016 B2
9478432 Chen et al. Oct 2016 B2
9478433 Zhou et al. Oct 2016 B1
9478434 Wang et al. Oct 2016 B2
9493879 Hoinkis et al. Nov 2016 B2
9496167 Purayath et al. Nov 2016 B2
9499898 Nguyen et al. Nov 2016 B2
9502258 Xue et al. Nov 2016 B2
9508529 Valcore et al. Nov 2016 B2
9520303 Wang et al. Dec 2016 B2
9543163 Ling et al. Jan 2017 B2
9564296 Kobayashi et al. Feb 2017 B2
9564338 Zhang et al. Feb 2017 B1
9576788 Liu et al. Feb 2017 B2
9576809 Korolik et al. Feb 2017 B2
9607856 Wang et al. Mar 2017 B2
9613822 Chen et al. Apr 2017 B2
9659753 Cho et al. May 2017 B2
9659791 Wang et al. May 2017 B2
9659792 Wang et al. May 2017 B2
9666449 Koval et al. May 2017 B2
9691645 Ayers Jun 2017 B2
9704723 Wang et al. Jul 2017 B2
9711366 Ingle et al. Jul 2017 B2
9721789 Yang et al. Aug 2017 B1
9728437 Tran et al. Aug 2017 B2
9741593 Benjaminson et al. Aug 2017 B2
9754800 Zhang et al. Sep 2017 B2
9768034 Xu et al. Sep 2017 B1
9773648 Cho et al. Sep 2017 B2
9773695 Purayath et al. Sep 2017 B2
9779956 Zhang et al. Oct 2017 B1
9822009 Kagaya et al. Nov 2017 B2
9831097 Ingle et al. Nov 2017 B2
9837249 Kobayashi et al. Dec 2017 B2
9837284 Chen et al. Dec 2017 B2
9837286 Yang et al. Dec 2017 B2
9842744 Zhang et al. Dec 2017 B2
9865484 Citla et al. Jan 2018 B1
9881805 Li et al. Jan 2018 B2
9885117 Lubomirsky et al. Feb 2018 B2
9887096 Park et al. Feb 2018 B2
9903020 Kim et al. Feb 2018 B2
9934942 Lubomirsky Apr 2018 B1
9947549 Park et al. Apr 2018 B1
9966240 Park et al. May 2018 B2
9978564 Liang et al. May 2018 B2
9991134 Wang et al. Jun 2018 B2
10026621 Ko et al. Jul 2018 B2
10032606 Yang et al. Jul 2018 B2
10043674 Korolik et al. Aug 2018 B1
10043684 Arnepalli et al. Aug 2018 B1
10049891 Wang et al. Aug 2018 B1
10062578 Zhang et al. Aug 2018 B2
10062579 Chen et al. Aug 2018 B2
10062585 Lubomirsky Aug 2018 B2
10062587 Chen et al. Aug 2018 B2
20010006093 Tabuchi Jul 2001 A1
20010008803 Takamatsu et al. Jul 2001 A1
20010015175 Masuda et al. Aug 2001 A1
20010015261 Kobayashi et al. Aug 2001 A1
20010028093 Yamazaki et al. Oct 2001 A1
20010028922 Sandhu Oct 2001 A1
20010029891 Oh et al. Oct 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010034121 Fu et al. Oct 2001 A1
20010035124 Okayama et al. Nov 2001 A1
20010036706 Kitamura Nov 2001 A1
20010037856 Park Nov 2001 A1
20010037941 Thompson Nov 2001 A1
20010039921 Rolfson et al. Nov 2001 A1
20010041444 Shields et al. Nov 2001 A1
20010042512 Xu et al. Nov 2001 A1
20010047760 Moslehi Dec 2001 A1
20010053585 Kikuchi et al. Dec 2001 A1
20010053610 Athavale Dec 2001 A1
20010054381 Umotoy et al. Dec 2001 A1
20010054387 Frankel et al. Dec 2001 A1
20010055842 Uh et al. Dec 2001 A1
20020000202 Yuda et al. Jan 2002 A1
20020001778 Latchford et al. Jan 2002 A1
20020009560 Ozono Jan 2002 A1
20020009885 Brankner et al. Jan 2002 A1
20020011210 Satoh et al. Jan 2002 A1
20020011214 Kamarehi et al. Jan 2002 A1
20020016080 Khan et al. Feb 2002 A1
20020016085 Huang et al. Feb 2002 A1
20020023899 Khater et al. Feb 2002 A1
20020028582 Nallan et al. Mar 2002 A1
20020028585 Chung et al. Mar 2002 A1
20020029747 Powell et al. Mar 2002 A1
20020033233 Savas Mar 2002 A1
20020036143 Segawa et al. Mar 2002 A1
20020040764 Kwan et al. Apr 2002 A1
20020040766 Takahashi Apr 2002 A1
20020043690 Doyle et al. Apr 2002 A1
20020045966 Lee et al. Apr 2002 A1
20020046991 Smith et al. Apr 2002 A1
20020054962 Huang May 2002 A1
20020062549 Hewson et al. May 2002 A1
20020062954 Getchel et al. May 2002 A1
20020069820 Yudovsky Jun 2002 A1
20020070414 Drescher et al. Jun 2002 A1
20020074573 Takeuchi et al. Jun 2002 A1
20020086501 O'Donnell et al. Jul 2002 A1
20020090781 Skotnicki et al. Jul 2002 A1
20020090835 Chakravarti et al. Jul 2002 A1
20020094378 O'Donnell Jul 2002 A1
20020094591 Sill et al. Jul 2002 A1
20020096493 Hattori Jul 2002 A1
20020098681 Hu et al. Jul 2002 A1
20020106845 Chao et al. Aug 2002 A1
20020112819 Kamarehi et al. Aug 2002 A1
20020124867 Kim et al. Sep 2002 A1
20020129769 Kim Sep 2002 A1
20020129902 Babayan Sep 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020153808 Skotnicki et al. Oct 2002 A1
20020164885 Lill et al. Nov 2002 A1
20020170678 Hayashi et al. Nov 2002 A1
20020177322 Li et al. Nov 2002 A1
20020179248 Kabansky et al. Dec 2002 A1
20020182878 Hirose et al. Dec 2002 A1
20020187280 Johnson et al. Dec 2002 A1
20020187655 Tan et al. Dec 2002 A1
20020197823 Yoo et al. Dec 2002 A1
20030000647 Yudovsky et al. Jan 2003 A1
20030003757 Naltan et al. Jan 2003 A1
20030007910 Lazarovich et al. Jan 2003 A1
20030010645 Ting et al. Jan 2003 A1
20030019428 Ku Jan 2003 A1
20030019580 Strang Jan 2003 A1
20030026060 Hiramatsu et al. Feb 2003 A1
20030029566 Roth Feb 2003 A1
20030029567 Dhindsa et al. Feb 2003 A1
20030029715 Yu et al. Feb 2003 A1
20030031905 Saito et al. Feb 2003 A1
20030032284 Enomoto et al. Feb 2003 A1
20030038127 Liu et al. Feb 2003 A1
20030038305 Wasshuber Feb 2003 A1
20030054608 Tseng et al. Mar 2003 A1
20030066482 Pokharna et al. Apr 2003 A1
20030071035 Brailove Apr 2003 A1
20030072639 White et al. Apr 2003 A1
20030075808 Inoue et al. Apr 2003 A1
20030077857 Xia et al. Apr 2003 A1
20030077909 Jiwari Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030087488 Fink May 2003 A1
20030087531 Kang et al. May 2003 A1
20030091938 Fairbairn et al. May 2003 A1
20030094134 Minami et al. May 2003 A1
20030098125 An May 2003 A1
20030109143 Hsieh et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116439 Seo et al. Jun 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030121609 Ohmi et al. Jul 2003 A1
20030124465 Lee et al. Jul 2003 A1
20030124842 Hytros et al. Jul 2003 A1
20030127049 Han et al. Jul 2003 A1
20030127740 Hsu et al. Jul 2003 A1
20030129106 Sorensen et al. Jul 2003 A1
20030129827 Lee et al. Jul 2003 A1
20030129850 Olgado et al. Jul 2003 A1
20030132319 Hytros et al. Jul 2003 A1
20030140844 Maa et al. Jul 2003 A1
20030141018 Stevens et al. Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030148035 Lingampalli Aug 2003 A1
20030150530 Lin et al. Aug 2003 A1
20030152691 Baude et al. Aug 2003 A1
20030159307 Sago et al. Aug 2003 A1
20030164226 Kanno et al. Sep 2003 A1
20030168439 Kanno et al. Sep 2003 A1
20030170945 Igeta et al. Sep 2003 A1
20030173333 Wang et al. Sep 2003 A1
20030173347 Guiver Sep 2003 A1
20030173675 Watanabe Sep 2003 A1
20030181040 Ivanov et al. Sep 2003 A1
20030183244 Rossman Oct 2003 A1
20030190426 Padhi et al. Oct 2003 A1
20030196760 Tyler et al. Oct 2003 A1
20030199170 Li Oct 2003 A1
20030200929 Otsuki Oct 2003 A1
20030205329 Gujer et al. Nov 2003 A1
20030205479 Lin et al. Nov 2003 A1
20030209323 Yokogaki et al. Nov 2003 A1
20030215570 Seutter et al. Nov 2003 A1
20030215963 AmRhein et al. Nov 2003 A1
20030216044 Lin et al. Nov 2003 A1
20030221780 Lei et al. Dec 2003 A1
20030224217 Byun et al. Dec 2003 A1
20030224617 Baek et al. Dec 2003 A1
20030230385 Bach et al. Dec 2003 A1
20040003828 Jackson Jan 2004 A1
20040005726 Huang Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040020801 Zhao et al. Feb 2004 A1
20040026371 Nguyen et al. Feb 2004 A1
20040033678 Arghavani et al. Feb 2004 A1
20040033684 Li Feb 2004 A1
20040050328 Kumagai et al. Mar 2004 A1
20040058070 Takeuchi et al. Mar 2004 A1
20040058293 Nguyen et al. Mar 2004 A1
20040060514 Janakiraman et al. Apr 2004 A1
20040061447 Saigusa Apr 2004 A1
20040069225 Fairbairn et al. Apr 2004 A1
20040070346 Choi Apr 2004 A1
20040072446 Liu et al. Apr 2004 A1
20040076529 Gnauck et al. Apr 2004 A1
20040083967 Yuda et al. May 2004 A1
20040087139 Yeh et al. May 2004 A1
20040089420 Ng et al. May 2004 A1
20040092063 Okumura May 2004 A1
20040099285 Wange et al. May 2004 A1
20040099378 Kim et al. May 2004 A1
20040101667 O'Loughlin et al. May 2004 A1
20040102010 Khamankar et al. May 2004 A1
20040103844 Chou et al. Jun 2004 A1
20040107908 Collins et al. Jun 2004 A1
20040108067 Fischione et al. Jun 2004 A1
20040108068 Senzaki et al. Jun 2004 A1
20040115876 Goundar et al. Jun 2004 A1
20040124280 Shih et al. Jul 2004 A1
20040129671 Ji et al. Jul 2004 A1
20040137161 Segawa et al. Jul 2004 A1
20040140053 Srivastava et al. Jul 2004 A1
20040144311 Chen et al. Jul 2004 A1
20040144490 Zhao et al. Jul 2004 A1
20040147126 Yamashita et al. Jul 2004 A1
20040149223 Collison et al. Aug 2004 A1
20040149394 Doan et al. Aug 2004 A1
20040152342 Li Aug 2004 A1
20040154535 Chen et al. Aug 2004 A1
20040157444 Chiu Aug 2004 A1
20040161921 Ryu Aug 2004 A1
20040163590 Tran et al. Aug 2004 A1
20040175913 Johnson et al. Sep 2004 A1
20040175929 Schmitt et al. Sep 2004 A1
20040182315 Laflamme et al. Sep 2004 A1
20040187787 Dawson Sep 2004 A1
20040192032 Ohmori et al. Sep 2004 A1
20040194799 Kim et al. Oct 2004 A1
20040195216 Strang Oct 2004 A1
20040200499 Harvey Oct 2004 A1
20040211357 Gadgil et al. Oct 2004 A1
20040219723 Peng et al. Nov 2004 A1
20040219737 Quon Nov 2004 A1
20040219789 Wood et al. Nov 2004 A1
20040221809 Ohmi et al. Nov 2004 A1
20040231706 Bhatnagar et al. Nov 2004 A1
20040237897 Hanawa et al. Dec 2004 A1
20040263827 Xu Dec 2004 A1
20050000432 Keller et al. Jan 2005 A1
20050001276 Gao et al. Jan 2005 A1
20050003676 Ho et al. Jan 2005 A1
20050009340 Saijo et al. Jan 2005 A1
20050009358 Choi et al. Jan 2005 A1
20050026430 Kim et al. Feb 2005 A1
20050026431 Kazumi et al. Feb 2005 A1
20050035455 Hu et al. Feb 2005 A1
20050039679 Kleshock Feb 2005 A1
20050051094 Schaepkens et al. Mar 2005 A1
20050056218 Sun et al. Mar 2005 A1
20050073051 Yamamoto et al. Apr 2005 A1
20050079706 Kumar et al. Apr 2005 A1
20050085031 Lopatin et al. Apr 2005 A1
20050087517 Ott et al. Apr 2005 A1
20050090078 Ishihara Apr 2005 A1
20050090120 Hasegawa et al. Apr 2005 A1
20050098111 Shimizu et al. May 2005 A1
20050101130 Lopatin et al. May 2005 A1
20050103267 Hur May 2005 A1
20050105991 Hofmeister et al. May 2005 A1
20050109279 Suzuki May 2005 A1
20050112876 Wu May 2005 A1
20050112901 Ji et al. May 2005 A1
20050123690 Derderian et al. Jun 2005 A1
20050136188 Chang Jun 2005 A1
20050145341 Suzuki Jul 2005 A1
20050164479 Perng et al. Jul 2005 A1
20050167394 Liu et al. Aug 2005 A1
20050176258 Hirose et al. Aug 2005 A1
20050178746 Gorin Aug 2005 A1
20050181588 Kim Aug 2005 A1
20050183666 Tsuji et al. Aug 2005 A1
20050194094 Yasaka Sep 2005 A1
20050196967 Savas et al. Sep 2005 A1
20050199489 Stevens et al. Sep 2005 A1
20050205110 Kao et al. Sep 2005 A1
20050205862 Koemtzopoulos et al. Sep 2005 A1
20050208215 Eguchi et al. Sep 2005 A1
20050208217 Shinriki Sep 2005 A1
20050214477 Hanawa et al. Sep 2005 A1
20050217582 Kim et al. Oct 2005 A1
20050218507 Kao et al. Oct 2005 A1
20050219786 Brown et al. Oct 2005 A1
20050221552 Kao et al. Oct 2005 A1
20050224181 Merry et al. Oct 2005 A1
20050229848 Shinriki Oct 2005 A1
20050230350 Kao et al. Oct 2005 A1
20050236694 Wu et al. Oct 2005 A1
20050238807 Lin et al. Oct 2005 A1
20050239282 Chen et al. Oct 2005 A1
20050251990 Choi et al. Nov 2005 A1
20050266622 Arghavani et al. Dec 2005 A1
20050266650 Ahn et al. Dec 2005 A1
20050266691 Gu et al. Dec 2005 A1
20050269030 Kent et al. Dec 2005 A1
20050274324 Takahashi et al. Dec 2005 A1
20050279454 Snijders Dec 2005 A1
20050283321 Yue et al. Dec 2005 A1
20050287688 Won et al. Dec 2005 A1
20050287755 Bachmann Dec 2005 A1
20050287771 Seamons et al. Dec 2005 A1
20060000802 Kumar et al. Jan 2006 A1
20060000805 Todorow et al. Jan 2006 A1
20060005930 Ikeda et al. Jan 2006 A1
20060006057 Laermer Jan 2006 A1
20060008676 Ebata et al. Jan 2006 A1
20060011298 Lim et al. Jan 2006 A1
20060011299 Condrashoff et al. Jan 2006 A1
20060019456 Bu et al. Jan 2006 A1
20060019477 Hanawa et al. Jan 2006 A1
20060019486 Yu et al. Jan 2006 A1
20060021574 Armour et al. Feb 2006 A1
20060021701 Tobe Feb 2006 A1
20060021703 Umotoy et al. Feb 2006 A1
20060024954 Wu et al. Feb 2006 A1
20060024956 Zhijian et al. Feb 2006 A1
20060033678 Lubomirsky et al. Feb 2006 A1
20060040055 Nguyen et al. Feb 2006 A1
20060043066 Kamp Mar 2006 A1
20060046412 Nguyen et al. Mar 2006 A1
20060046419 Sandhu et al. Mar 2006 A1
20060046470 Becknell Mar 2006 A1
20060051966 Or et al. Mar 2006 A1
20060051968 Joshi et al. Mar 2006 A1
20060054184 Mozetic et al. Mar 2006 A1
20060057828 Omura et al. Mar 2006 A1
20060060942 Minixhofer et al. Mar 2006 A1
20060065629 Chen et al. Mar 2006 A1
20060073349 Aihara et al. Apr 2006 A1
20060076108 Holland et al. Apr 2006 A1
20060087644 McMillin et al. Apr 2006 A1
20060090700 Satoh et al. May 2006 A1
20060093756 Rajagopalan et al. May 2006 A1
20060097397 Russell et al. May 2006 A1
20060102076 Smith et al. May 2006 A1
20060102587 Kimura May 2006 A1
20060113038 Gondhalekar et al. Jun 2006 A1
20060118178 Desbiolles et al. Jun 2006 A1
20060118240 Holber et al. Jun 2006 A1
20060118765 Lubomirsky Jun 2006 A1
20060121724 Duofeng et al. Jun 2006 A1
20060124151 Yamasaki et al. Jun 2006 A1
20060124242 Kanarik et al. Jun 2006 A1
20060130971 Chang et al. Jun 2006 A1
20060151115 Kim et al. Jul 2006 A1
20060157449 Takahashi et al. Jul 2006 A1
20060162661 Jung et al. Jul 2006 A1
20060166107 Chen et al. Jul 2006 A1
20060166515 Karim et al. Jul 2006 A1
20060169327 Shajii et al. Aug 2006 A1
20060169410 Maeda et al. Aug 2006 A1
20060178008 Yeh et al. Aug 2006 A1
20060183270 Humpston Aug 2006 A1
20060185592 Matsuura Aug 2006 A1
20060191479 Mizukami et al. Aug 2006 A1
20060191637 Zajac et al. Aug 2006 A1
20060207504 Hasebe et al. Sep 2006 A1
20060207595 Ohmi et al. Sep 2006 A1
20060207971 Moriya et al. Sep 2006 A1
20060210713 Brcka Sep 2006 A1
20060210723 Ishizaka Sep 2006 A1
20060215347 Wakabayashi et al. Sep 2006 A1
20060216878 Lee Sep 2006 A1
20060219360 Iwasaki Oct 2006 A1
20060222481 Foree Oct 2006 A1
20060226121 Aoi Oct 2006 A1
20060228889 Edelberg et al. Oct 2006 A1
20060240661 Annapragada et al. Oct 2006 A1
20060244107 Sugihara Nov 2006 A1
20060245852 Iwabuchi Nov 2006 A1
20060246717 Weidman et al. Nov 2006 A1
20060251800 Weidman et al. Nov 2006 A1
20060251801 Weidman et al. Nov 2006 A1
20060252252 Zhu et al. Nov 2006 A1
20060252265 Jin et al. Nov 2006 A1
20060254716 Mosden et al. Nov 2006 A1
20060260750 Rueger Nov 2006 A1
20060261490 Su et al. Nov 2006 A1
20060264043 Stewart et al. Nov 2006 A1
20060266288 Choi Nov 2006 A1
20060286774 Singh et al. Dec 2006 A1
20060289384 Pavel et al. Dec 2006 A1
20060292846 Pinto et al. Dec 2006 A1
20070004201 Lubomirsky et al. Jan 2007 A1
20070022952 Ritchie et al. Feb 2007 A1
20070024362 Radomski et al. Feb 2007 A1
20070025907 Rezeq Feb 2007 A1
20070039548 Johnson Feb 2007 A1
20070048977 Lee et al. Mar 2007 A1
20070051471 Kawaguchi et al. Mar 2007 A1
20070056925 Liu et al. Mar 2007 A1
20070062453 Ishikawa Mar 2007 A1
20070066084 Wajda et al. Mar 2007 A1
20070071888 Shanmugasundram et al. Mar 2007 A1
20070072408 Enomoto et al. Mar 2007 A1
20070077737 Kobayashi Apr 2007 A1
20070079758 Holland et al. Apr 2007 A1
20070090325 Hwang et al. Apr 2007 A1
20070099428 Shamiryan et al. May 2007 A1
20070099431 Li May 2007 A1
20070099438 Ye et al. May 2007 A1
20070107750 Sawin et al. May 2007 A1
20070108404 Stewart et al. May 2007 A1
20070111519 Lubomirsky et al. May 2007 A1
20070117331 Khamankar et al. May 2007 A1
20070117396 Wu et al. May 2007 A1
20070119370 Ma et al. May 2007 A1
20070119371 Ma et al. May 2007 A1
20070123051 Arghavani et al. May 2007 A1
20070128864 Ma Jun 2007 A1
20070131274 Stollwerck et al. Jun 2007 A1
20070145023 Holber et al. Jun 2007 A1
20070154838 Lee Jul 2007 A1
20070163440 Kim et al. Jul 2007 A1
20070175861 Hwang et al. Aug 2007 A1
20070181057 Lam et al. Aug 2007 A1
20070193515 Jeon et al. Aug 2007 A1
20070197028 Byun et al. Aug 2007 A1
20070207275 Nowak et al. Sep 2007 A1
20070212288 Holst Sep 2007 A1
20070221620 Sakthivel et al. Sep 2007 A1
20070227554 Satoh et al. Oct 2007 A1
20070231109 Pak et al. Oct 2007 A1
20070232071 Balseanu et al. Oct 2007 A1
20070235134 Iimuro Oct 2007 A1
20070238199 Yamashita Oct 2007 A1
20070238321 Futase et al. Oct 2007 A1
20070243685 Jiang et al. Oct 2007 A1
20070243714 Shin et al. Oct 2007 A1
20070254169 Kamins et al. Nov 2007 A1
20070259467 Tweet et al. Nov 2007 A1
20070264820 Liu Nov 2007 A1
20070266946 Choi Nov 2007 A1
20070277734 Lubomirsky et al. Dec 2007 A1
20070280816 Kurita et al. Dec 2007 A1
20070281106 Lubomirsky et al. Dec 2007 A1
20070287292 Li et al. Dec 2007 A1
20070296967 Gupta et al. Dec 2007 A1
20070298585 Lubomirsky et al. Dec 2007 A1
20080003836 Nishimura et al. Jan 2008 A1
20080017104 Matyushkin et al. Jan 2008 A1
20080020570 Naik Jan 2008 A1
20080029484 Park et al. Feb 2008 A1
20080035608 Thomas et al. Feb 2008 A1
20080044593 Seo et al. Feb 2008 A1
20080044990 Lee Feb 2008 A1
20080050538 Hirata Feb 2008 A1
20080063810 Park et al. Mar 2008 A1
20080075668 Goldstein Mar 2008 A1
20080081483 Wu Apr 2008 A1
20080085604 Hoshino et al. Apr 2008 A1
20080099147 Myo May 2008 A1
20080099431 Kumar et al. May 2008 A1
20080099876 Seto May 2008 A1
20080100222 Lewington et al. May 2008 A1
20080102570 Fischer et al. May 2008 A1
20080102640 Hassan et al. May 2008 A1
20080102646 Kawaguchi et al. May 2008 A1
20080104782 Hughes May 2008 A1
20080105555 Iwazaki et al. May 2008 A1
20080115726 Ingle et al. May 2008 A1
20080116542 Niimi et al. May 2008 A1
20080121179 Park et al. May 2008 A1
20080121970 Aritome May 2008 A1
20080124937 Xu et al. May 2008 A1
20080124944 Park et al. May 2008 A1
20080142831 Hua et al. Jun 2008 A1
20080153306 Cho et al. Jun 2008 A1
20080156631 Fair et al. Jul 2008 A1
20080156771 Jeon et al. Jul 2008 A1
20080157225 Datta et al. Jul 2008 A1
20080160210 Yang et al. Jul 2008 A1
20080169588 Shih Jul 2008 A1
20080171407 Nakabayashi et al. Jul 2008 A1
20080173906 Zhu Jul 2008 A1
20080176412 Komeda Jul 2008 A1
20080178797 Fodor Jul 2008 A1
20080178805 Paterson et al. Jul 2008 A1
20080182381 Kiyotoshi Jul 2008 A1
20080182382 Ingle et al. Jul 2008 A1
20080182383 Lee et al. Jul 2008 A1
20080185284 Chen et al. Aug 2008 A1
20080196666 Toshima Aug 2008 A1
20080202688 Wu et al. Aug 2008 A1
20080202892 Smith et al. Aug 2008 A1
20080216901 Chamberlain et al. Sep 2008 A1
20080216958 Goto et al. Sep 2008 A1
20080230519 Takahashi Sep 2008 A1
20080233709 Conti et al. Sep 2008 A1
20080236751 Aramaki et al. Oct 2008 A1
20080254635 Benzel et al. Oct 2008 A1
20080261404 Kozuka et al. Oct 2008 A1
20080264337 Sano et al. Oct 2008 A1
20080268589 Farber et al. Oct 2008 A1
20080268645 Kao et al. Oct 2008 A1
20080292798 Huh et al. Nov 2008 A1
20080293248 Park et al. Nov 2008 A1
20080296304 Tran et al. Dec 2008 A1
20090000550 Tran et al. Jan 2009 A1
20090000743 Iizuka Jan 2009 A1
20090001480 Cheng Jan 2009 A1
20090004849 Eun Jan 2009 A1
20090004873 Yang Jan 2009 A1
20090014127 Shah et al. Jan 2009 A1
20090014323 Yendler et al. Jan 2009 A1
20090014324 Kawaguchi et al. Jan 2009 A1
20090017227 Fu et al. Jan 2009 A1
20090034147 Narendrnath et al. Feb 2009 A1
20090034148 Lubomirsky et al. Feb 2009 A1
20090034149 Lubomirsky et al. Feb 2009 A1
20090036292 Sun et al. Feb 2009 A1
20090045167 Maruyama Feb 2009 A1
20090072401 Arnold et al. Mar 2009 A1
20090081878 Dhindsa Mar 2009 A1
20090084317 Wu et al. Apr 2009 A1
20090087960 Cho et al. Apr 2009 A1
20090087979 Raghuram Apr 2009 A1
20090093129 Park et al. Apr 2009 A1
20090095221 Tam et al. Apr 2009 A1
20090095222 Tam et al. Apr 2009 A1
20090095621 Kao et al. Apr 2009 A1
20090098276 Burrows Apr 2009 A1
20090098706 Kim et al. Apr 2009 A1
20090104738 Ring et al. Apr 2009 A1
20090104782 Lu et al. Apr 2009 A1
20090104789 Mallick et al. Apr 2009 A1
20090111280 Kao et al. Apr 2009 A1
20090117270 Yamasaki et al. May 2009 A1
20090120368 Lubomirsky et al. May 2009 A1
20090120464 Rasheed et al. May 2009 A1
20090120584 Lubomirsky et al. May 2009 A1
20090162647 Sun et al. Jun 2009 A1
20090170221 Jacques et al. Jul 2009 A1
20090170331 Cheng et al. Jul 2009 A1
20090179300 Arai Jul 2009 A1
20090189246 Wu et al. Jul 2009 A1
20090189287 Yang et al. Jul 2009 A1
20090191711 Rui et al. Jul 2009 A1
20090194233 Tamura Aug 2009 A1
20090194810 Kiyotoshi et al. Aug 2009 A1
20090197418 Sago Aug 2009 A1
20090202721 Nogami et al. Aug 2009 A1
20090214825 Sun et al. Aug 2009 A1
20090223928 Colpo Sep 2009 A1
20090236314 Chen Sep 2009 A1
20090255902 Satoh et al. Oct 2009 A1
20090258162 Furuta et al. Oct 2009 A1
20090261276 Lubomirsky et al. Oct 2009 A1
20090266299 Rasheed et al. Oct 2009 A1
20090269934 Kao et al. Oct 2009 A1
20090274590 Willwerth et al. Nov 2009 A1
20090275146 Takano et al. Nov 2009 A1
20090275205 Kiehlbauch et al. Nov 2009 A1
20090275206 Katz et al. Nov 2009 A1
20090277587 Lubomirsky et al. Nov 2009 A1
20090277874 Rui et al. Nov 2009 A1
20090280650 Lubomirsky et al. Nov 2009 A1
20090283217 Lubomirsky et al. Nov 2009 A1
20090286400 Heo et al. Nov 2009 A1
20090286405 Okesaku Nov 2009 A1
20090293809 Cho et al. Dec 2009 A1
20090294898 Feustel et al. Dec 2009 A1
20090317978 Higashi Dec 2009 A1
20090320756 Tanaka Dec 2009 A1
20100000683 Kadkhodayan et al. Jan 2010 A1
20100003824 Kadkhodayan et al. Jan 2010 A1
20100006032 Hinckley et al. Jan 2010 A1
20100006543 Sawada et al. Jan 2010 A1
20100022030 Ditizio Jan 2010 A1
20100025370 Dieguez-Campo et al. Feb 2010 A1
20100039747 Sansoni Feb 2010 A1
20100041207 Lee et al. Feb 2010 A1
20100047080 Bruce Feb 2010 A1
20100048027 Cheng et al. Feb 2010 A1
20100048028 Rasheed et al. Feb 2010 A1
20100055408 Lee et al. Mar 2010 A1
20100055917 Kim Mar 2010 A1
20100059724 Lubomirsky et al. Mar 2010 A1
20100059889 Gosset et al. Mar 2010 A1
20100062603 Ganguly et al. Mar 2010 A1
20100075503 Bencher Mar 2010 A1
20100081285 Chen et al. Apr 2010 A1
20100093151 Arghavani et al. Apr 2010 A1
20100093168 Naik Apr 2010 A1
20100096367 Jeon et al. Apr 2010 A1
20100098882 Lubomirsky et al. Apr 2010 A1
20100099236 Kwon et al. Apr 2010 A1
20100099263 Kao et al. Apr 2010 A1
20100101727 Ji Apr 2010 A1
20100105209 Winniczek et al. Apr 2010 A1
20100116788 Singh et al. May 2010 A1
20100119843 Sun et al. May 2010 A1
20100129974 Futase et al. May 2010 A1
20100130001 Noguchi May 2010 A1
20100139889 Kurita et al. Jun 2010 A1
20100144140 Chandrashekar et al. Jun 2010 A1
20100147219 Hsieh et al. Jun 2010 A1
20100151149 Ovshinsky Jun 2010 A1
20100164422 Shu et al. Jul 2010 A1
20100173499 Tao et al. Jul 2010 A1
20100178748 Subramanian Jul 2010 A1
20100178755 Lee et al. Jul 2010 A1
20100180819 Hatanaka et al. Jul 2010 A1
20100183825 Becker et al. Jul 2010 A1
20100187534 Nishi et al. Jul 2010 A1
20100187588 Gil-Sub et al. Jul 2010 A1
20100187694 Yu et al. Jul 2010 A1
20100190352 Jaiswal Jul 2010 A1
20100197143 Nishimura Aug 2010 A1
20100203739 Becker et al. Aug 2010 A1
20100207205 Grebs et al. Aug 2010 A1
20100224324 Kasai Sep 2010 A1
20100240205 Son Sep 2010 A1
20100243165 Um Sep 2010 A1
20100243606 Koshimizu Sep 2010 A1
20100244204 Matsuoka et al. Sep 2010 A1
20100252068 Kannan et al. Oct 2010 A1
20100258913 Lue Oct 2010 A1
20100267224 Choi et al. Oct 2010 A1
20100267248 Ma et al. Oct 2010 A1
20100273290 Kryliouk Oct 2010 A1
20100273291 Kryliouk et al. Oct 2010 A1
20100288369 Chang et al. Nov 2010 A1
20100294199 Tran et al. Nov 2010 A1
20100310785 Sasakawa et al. Dec 2010 A1
20100314005 Saito et al. Dec 2010 A1
20100330814 Yokota et al. Dec 2010 A1
20110005607 Desbiolles et al. Jan 2011 A1
20110005684 Hayami et al. Jan 2011 A1
20110008950 Xu Jan 2011 A1
20110011338 Chuc et al. Jan 2011 A1
20110034035 Liang et al. Feb 2011 A1
20110039407 Nishizuka Feb 2011 A1
20110042799 Kang et al. Feb 2011 A1
20110045676 Park Feb 2011 A1
20110048325 Choie et al. Mar 2011 A1
20110053380 Sapre et al. Mar 2011 A1
20110058303 Migita Mar 2011 A1
20110061810 Ganguly et al. Mar 2011 A1
20110061812 Ganguly et al. Mar 2011 A1
20110065276 Ganguly et al. Mar 2011 A1
20110076401 Chao et al. Mar 2011 A1
20110081782 Liang et al. Apr 2011 A1
20110100489 Orito May 2011 A1
20110104393 Hilkene et al. May 2011 A1
20110111596 Kanakasabapathy May 2011 A1
20110114601 Lubomirsky et al. May 2011 A1
20110115378 Lubomirsky et al. May 2011 A1
20110124144 Schlemm et al. May 2011 A1
20110127156 Foad et al. Jun 2011 A1
20110133650 Kim Jun 2011 A1
20110136347 Kovarsky et al. Jun 2011 A1
20110140229 Rachmady et al. Jun 2011 A1
20110143542 Feurprier et al. Jun 2011 A1
20110146909 Shi et al. Jun 2011 A1
20110147363 Yap et al. Jun 2011 A1
20110151674 Tang et al. Jun 2011 A1
20110151677 Wang et al. Jun 2011 A1
20110151678 Ashtiani et al. Jun 2011 A1
20110155181 Inatomi Jun 2011 A1
20110159690 Chandrashekar et al. Jun 2011 A1
20110165057 Honda et al. Jul 2011 A1
20110165347 Miller et al. Jul 2011 A1
20110165771 Ring et al. Jul 2011 A1
20110174778 Sawada et al. Jul 2011 A1
20110180847 Ikeda et al. Jul 2011 A1
20110195575 Wang Aug 2011 A1
20110198034 Sun et al. Aug 2011 A1
20110204025 Tahara Aug 2011 A1
20110207332 Liu et al. Aug 2011 A1
20110217851 Liang et al. Sep 2011 A1
20110226734 Sumiya et al. Sep 2011 A1
20110227028 Sekar et al. Sep 2011 A1
20110230008 Lakshmanan et al. Sep 2011 A1
20110230052 Tang et al. Sep 2011 A1
20110232737 Ruletzki et al. Sep 2011 A1
20110232845 Riker Sep 2011 A1
20110244686 Aso et al. Oct 2011 A1
20110244693 Tamura et al. Oct 2011 A1
20110256421 Bose et al. Oct 2011 A1
20110265884 Xu et al. Nov 2011 A1
20110265887 Lee et al. Nov 2011 A1
20110265951 Xu Nov 2011 A1
20110266252 Thadani et al. Nov 2011 A1
20110266256 Cruse et al. Nov 2011 A1
20110266682 Edelstein et al. Nov 2011 A1
20110278260 Lai et al. Nov 2011 A1
20110287633 Lee et al. Nov 2011 A1
20110294300 Zhang et al. Dec 2011 A1
20110298061 Siddiqui et al. Dec 2011 A1
20110304078 Lee et al. Dec 2011 A1
20120003782 Byun et al. Jan 2012 A1
20120009796 Cui et al. Jan 2012 A1
20120025289 Liang et al. Feb 2012 A1
20120031559 Dhindsa Feb 2012 A1
20120034786 Dhindsa et al. Feb 2012 A1
20120035766 Shajii et al. Feb 2012 A1
20120037596 Eto Feb 2012 A1
20120040492 Ovshinsky et al. Feb 2012 A1
20120052683 Kim et al. Mar 2012 A1
20120055402 Moriya et al. Mar 2012 A1
20120068242 Shin et al. Mar 2012 A1
20120070982 Yu et al. Mar 2012 A1
20120070996 Hao Mar 2012 A1
20120073501 Lubomirsky et al. Mar 2012 A1
20120074126 Bang et al. Mar 2012 A1
20120091108 Lin et al. Apr 2012 A1
20120097330 Iyengar et al. Apr 2012 A1
20120100720 Winniczek et al. Apr 2012 A1
20120103518 Kakimoto May 2012 A1
20120104564 Won et al. May 2012 A1
20120119225 Shiomi et al. May 2012 A1
20120122319 Shimizu May 2012 A1
20120129354 Luong May 2012 A1
20120135576 Lee et al. May 2012 A1
20120145079 Lubomirsky et al. Jun 2012 A1
20120148369 Michalski et al. Jun 2012 A1
20120149200 Culp et al. Jun 2012 A1
20120161405 Mohn et al. Jun 2012 A1
20120164839 Nishimura Jun 2012 A1
20120171852 Yuan et al. Jul 2012 A1
20120180954 Yang et al. Jul 2012 A1
20120181599 Lung Jul 2012 A1
20120182808 Lue et al. Jul 2012 A1
20120187844 Hoffman et al. Jul 2012 A1
20120193456 Lubomirsky et al. Aug 2012 A1
20120196447 Yang et al. Aug 2012 A1
20120196451 Mallick Aug 2012 A1
20120202408 Shajii et al. Aug 2012 A1
20120208361 Ha Aug 2012 A1
20120211462 Zhang et al. Aug 2012 A1
20120211722 Kellam et al. Aug 2012 A1
20120222616 Han et al. Sep 2012 A1
20120222815 Sabri et al. Sep 2012 A1
20120223048 Paranjpe et al. Sep 2012 A1
20120223418 Stowers et al. Sep 2012 A1
20120225557 Serry et al. Sep 2012 A1
20120228642 Aube et al. Sep 2012 A1
20120234945 Olgado Sep 2012 A1
20120238102 Zhang et al. Sep 2012 A1
20120238103 Zhang et al. Sep 2012 A1
20120238108 Chen et al. Sep 2012 A1
20120241411 Darling et al. Sep 2012 A1
20120247390 Sawada et al. Oct 2012 A1
20120247670 Dobashi et al. Oct 2012 A1
20120247671 Sugawara Oct 2012 A1
20120247677 Himori et al. Oct 2012 A1
20120255491 Hahidi Oct 2012 A1
20120258600 Godet et al. Oct 2012 A1
20120267346 Kao et al. Oct 2012 A1
20120269968 Rayner Oct 2012 A1
20120282779 Arnold et al. Nov 2012 A1
20120285619 Matyushkin et al. Nov 2012 A1
20120285621 Tan Nov 2012 A1
20120291696 Clarke Nov 2012 A1
20120292664 Kanike Nov 2012 A1
20120304933 Mai et al. Dec 2012 A1
20120309204 Kang et al. Dec 2012 A1
20120309205 Wang et al. Dec 2012 A1
20120322015 Kim Dec 2012 A1
20130001899 Hwang et al. Jan 2013 A1
20130005103 Liu et al. Jan 2013 A1
20130005140 Jeng et al. Jan 2013 A1
20130012030 Lakshmanan et al. Jan 2013 A1
20130012032 Liu et al. Jan 2013 A1
20130023062 Masuda et al. Jan 2013 A1
20130023122 Nemani et al. Jan 2013 A1
20130023124 Nemani et al. Jan 2013 A1
20130026135 Kim Jan 2013 A1
20130032574 Liu et al. Feb 2013 A1
20130034666 Liang et al. Feb 2013 A1
20130034968 Zhang et al. Feb 2013 A1
20130037919 Sapra et al. Feb 2013 A1
20130045605 Wang et al. Feb 2013 A1
20130052804 Song Feb 2013 A1
20130052827 Wang et al. Feb 2013 A1
20130052833 Ranjan et al. Feb 2013 A1
20130059440 Wang et al. Mar 2013 A1
20130062675 Thomas Mar 2013 A1
20130065398 Ohsawa et al. Mar 2013 A1
20130082197 Yang et al. Apr 2013 A1
20130084654 Gaylord et al. Apr 2013 A1
20130087309 Volfovski Apr 2013 A1
20130089988 Wang et al. Apr 2013 A1
20130098868 Nishimura et al. Apr 2013 A1
20130105085 Yousif et al. May 2013 A1
20130105086 Banna et al. May 2013 A1
20130105303 Lubomirsky May 2013 A1
20130105948 Kewley May 2013 A1
20130109190 Lill et al. May 2013 A1
20130115372 Pavol et al. May 2013 A1
20130118686 Carducci May 2013 A1
20130119016 Kagoshima May 2013 A1
20130119457 Lue et al. May 2013 A1
20130119483 Alptekin et al. May 2013 A1
20130130507 Wang et al. May 2013 A1
20130150303 Kungl et al. Jun 2013 A1
20130153148 Yang et al. Jun 2013 A1
20130155568 Todorow et al. Jun 2013 A1
20130161726 Kim et al. Jun 2013 A1
20130171810 Sun et al. Jul 2013 A1
20130175654 Muckenhim et al. Jul 2013 A1
20130187220 Surthi Jul 2013 A1
20130193108 Zheng Aug 2013 A1
20130207513 Lubomirsky et al. Aug 2013 A1
20130213935 Liao et al. Aug 2013 A1
20130216821 Sun et al. Aug 2013 A1
20130217243 Underwood et al. Aug 2013 A1
20130224953 Salinas et al. Aug 2013 A1
20130224960 Payyapilly et al. Aug 2013 A1
20130260533 Sapre et al. Oct 2013 A1
20130260564 Sapre et al. Oct 2013 A1
20130273313 Sun et al. Oct 2013 A1
20130273327 Sun et al. Oct 2013 A1
20130276980 Lubomirsky et al. Oct 2013 A1
20130279066 Lubomirsky et al. Oct 2013 A1
20130284369 Kobayashi et al. Oct 2013 A1
20130284370 Kobayashi et al. Oct 2013 A1
20130284373 Sun et al. Oct 2013 A1
20130284374 Lubomirsky et al. Oct 2013 A1
20130286530 Lin et al. Oct 2013 A1
20130288483 Sadjadi et al. Oct 2013 A1
20130295297 Chou et al. Nov 2013 A1
20130298942 Ren et al. Nov 2013 A1
20130302980 Chandrashekar et al. Nov 2013 A1
20130306758 Park et al. Nov 2013 A1
20130337655 Lee et al. Dec 2013 A1
20130343829 Benedetti et al. Dec 2013 A1
20140004707 Thedjoisworo et al. Jan 2014 A1
20140004708 Thedjoisworo Jan 2014 A1
20140008880 Miura et al. Jan 2014 A1
20140020708 Kim et al. Jan 2014 A1
20140021673 Chen et al. Jan 2014 A1
20140026813 Wang et al. Jan 2014 A1
20140030486 Sun et al. Jan 2014 A1
20140030533 Sun et al. Jan 2014 A1
20140053866 Baluja et al. Feb 2014 A1
20140057447 Yang et al. Feb 2014 A1
20140062285 Chen Mar 2014 A1
20140065827 Kang et al. Mar 2014 A1
20140065842 Anthis et al. Mar 2014 A1
20140080308 Chen et al. Mar 2014 A1
20140080309 Park Mar 2014 A1
20140080310 Chen et al. Mar 2014 A1
20140083362 Lubomirsky et al. Mar 2014 A1
20140087488 Nam et al. Mar 2014 A1
20140097270 Liang Apr 2014 A1
20140099794 Ingle et al. Apr 2014 A1
20140102367 Ishibashi Apr 2014 A1
20140124364 Yoo et al. May 2014 A1
20140134842 Zhang et al. May 2014 A1
20140134847 Seya May 2014 A1
20140141621 Ren et al. May 2014 A1
20140147126 Linnartz et al. May 2014 A1
20140152312 Snow et al. Jun 2014 A1
20140154668 Chou et al. Jun 2014 A1
20140154889 Wang et al. Jun 2014 A1
20140165912 Kao et al. Jun 2014 A1
20140166617 Chen Jun 2014 A1
20140166618 Tadigadapa et al. Jun 2014 A1
20140177123 Thach et al. Jun 2014 A1
20140186772 Pohlers et al. Jul 2014 A1
20140190410 Kim Jul 2014 A1
20140191388 Chen Jul 2014 A1
20140199850 Kim et al. Jul 2014 A1
20140199851 Nemani et al. Jul 2014 A1
20140209027 Lubomirsky et al. Jul 2014 A1
20140209245 Yamamoto et al. Jul 2014 A1
20140213070 Hong et al. Jul 2014 A1
20140216337 Swaminathan et al. Aug 2014 A1
20140225504 Kaneko et al. Aug 2014 A1
20140227881 Lubomirsky et al. Aug 2014 A1
20140234466 Gao et al. Aug 2014 A1
20140248773 Tsai et al. Sep 2014 A1
20140248780 Ingle et al. Sep 2014 A1
20140252134 Chen et al. Sep 2014 A1
20140256131 Wang et al. Sep 2014 A1
20140256145 Abdallah et al. Sep 2014 A1
20140262031 Belostotskiy et al. Sep 2014 A1
20140262038 Wang et al. Sep 2014 A1
20140263172 Xie et al. Sep 2014 A1
20140263173 Rosslee et al. Sep 2014 A1
20140263272 Duan et al. Sep 2014 A1
20140264507 Lee et al. Sep 2014 A1
20140264533 Simsek-Ege Sep 2014 A1
20140271097 Wang et al. Sep 2014 A1
20140273373 Makala et al. Sep 2014 A1
20140273406 Wang et al. Sep 2014 A1
20140273451 Wang et al. Sep 2014 A1
20140273462 Simsek-Ege et al. Sep 2014 A1
20140273487 Deshmukh et al. Sep 2014 A1
20140273489 Wang et al. Sep 2014 A1
20140273491 Zhang et al. Sep 2014 A1
20140273492 Anthis et al. Sep 2014 A1
20140273496 Kao Sep 2014 A1
20140288528 Py et al. Sep 2014 A1
20140302678 Paterson et al. Oct 2014 A1
20140302680 Singh Oct 2014 A1
20140308758 Nemani et al. Oct 2014 A1
20140308816 Wang et al. Oct 2014 A1
20140311581 Belostotskiy et al. Oct 2014 A1
20140342532 Zhu Nov 2014 A1
20140342569 Zhu et al. Nov 2014 A1
20140349477 Chandrashekar et al. Nov 2014 A1
20140357083 Ling et al. Dec 2014 A1
20140361684 Ikeda et al. Dec 2014 A1
20140363979 Or et al. Dec 2014 A1
20140366953 Lee et al. Dec 2014 A1
20150011096 Chandrasekharan et al. Jan 2015 A1
20150014152 Hoinkis et al. Jan 2015 A1
20150031211 Sapre et al. Jan 2015 A1
20150037980 Rha Feb 2015 A1
20150041430 Yoshino et al. Feb 2015 A1
20150047786 Lubomirsky et al. Feb 2015 A1
20150050812 Smith Feb 2015 A1
20150060265 Cho et al. Mar 2015 A1
20150064809 Lubomirsky Mar 2015 A1
20150064918 Ranjan et al. Mar 2015 A1
20150072508 Or et al. Mar 2015 A1
20150076110 Wu et al. Mar 2015 A1
20150076586 Rabkin et al. Mar 2015 A1
20150079301 Nemani et al. Mar 2015 A1
20150079797 Chen et al. Mar 2015 A1
20150083042 Kobayashi et al. Mar 2015 A1
20150093891 Zope Apr 2015 A1
20150118822 Zhang et al. Apr 2015 A1
20150118858 Takaba Apr 2015 A1
20150123541 Baek et al. May 2015 A1
20150126035 Diao et al. May 2015 A1
20150126039 Korolik et al. May 2015 A1
20150126040 Korolik et al. May 2015 A1
20150129541 Wang et al. May 2015 A1
20150129545 Ingle et al. May 2015 A1
20150129546 Ingle et al. May 2015 A1
20150132953 Nowling et al. May 2015 A1
20150132968 Ren et al. May 2015 A1
20150152072 Cantat et al. Jun 2015 A1
20150155177 Zhang et al. Jun 2015 A1
20150170879 Nguyen et al. Jun 2015 A1
20150170920 Purayath et al. Jun 2015 A1
20150170924 Nguyen et al. Jun 2015 A1
20150170926 Michalak Jun 2015 A1
20150170935 Wang et al. Jun 2015 A1
20150170943 Nguyen et al. Jun 2015 A1
20150171008 Luo Jun 2015 A1
20150179464 Wang et al. Jun 2015 A1
20150187625 Busche et al. Jul 2015 A1
20150200042 Ling et al. Jul 2015 A1
20150206764 Wang et al. Jul 2015 A1
20150214066 Luere et al. Jul 2015 A1
20150214067 Zhang et al. Jul 2015 A1
20150214092 Purayath et al. Jul 2015 A1
20150214337 Ko et al. Jul 2015 A1
20150221479 Chen et al. Aug 2015 A1
20150221541 Nemani et al. Aug 2015 A1
20150228456 Ye et al. Aug 2015 A1
20150235809 Ito et al. Aug 2015 A1
20150235860 Tomura et al. Aug 2015 A1
20150235863 Chen Aug 2015 A1
20150235865 Wang et al. Aug 2015 A1
20150235867 Nishizuka Aug 2015 A1
20150241362 Kobayashi et al. Aug 2015 A1
20150247231 Nguyen et al. Sep 2015 A1
20150249018 Park et al. Sep 2015 A1
20150270105 Kobayashi et al. Sep 2015 A1
20150270140 Gupta et al. Sep 2015 A1
20150275361 Lubomirsky et al. Oct 2015 A1
20150275375 Kim et al. Oct 2015 A1
20150279687 Xue et al. Oct 2015 A1
20150294980 Lee et al. Oct 2015 A1
20150311043 Sun et al. Oct 2015 A1
20150332930 Wang et al. Nov 2015 A1
20150340225 Kim et al. Nov 2015 A1
20150349021 Edwards et al. Dec 2015 A1
20150349022 Edwards et al. Dec 2015 A1
20150357201 Chen et al. Dec 2015 A1
20150357205 Wang et al. Dec 2015 A1
20150366004 Nangoy et al. Dec 2015 A1
20150371861 Li et al. Dec 2015 A1
20150371864 Hsu et al. Dec 2015 A1
20150371865 Chen et al. Dec 2015 A1
20150371866 Chen et al. Dec 2015 A1
20150380431 Kanamori et al. Dec 2015 A1
20160005572 Liang et al. Jan 2016 A1
20160005833 Collins et al. Jan 2016 A1
20160027654 Kim et al. Jan 2016 A1
20160027673 Wang et al. Jan 2016 A1
20160035586 Purayath et al. Feb 2016 A1
20160035614 Purayath et al. Feb 2016 A1
20160042968 Purayath et al. Feb 2016 A1
20160043099 Purayath et al. Feb 2016 A1
20160056167 Wang et al. Feb 2016 A1
20160064212 Thedjoisworo et al. Mar 2016 A1
20160064233 Wang et al. Mar 2016 A1
20160079062 Zheng et al. Mar 2016 A1
20160079072 Wang et al. Mar 2016 A1
20160086772 Khaja Mar 2016 A1
20160086807 Park et al. Mar 2016 A1
20160086808 Zhang et al. Mar 2016 A1
20160086815 Pandit et al. Mar 2016 A1
20160086816 Wang et al. Mar 2016 A1
20160093505 Chen et al. Mar 2016 A1
20160093506 Chen et al. Mar 2016 A1
20160093737 Li et al. Mar 2016 A1
20160104606 Park et al. Apr 2016 A1
20160109863 Valcore et al. Apr 2016 A1
20160117425 Povolny et al. Apr 2016 A1
20160118227 Valcore et al. Apr 2016 A1
20160118268 Ingle et al. Apr 2016 A1
20160118396 Rabkin et al. Apr 2016 A1
20160126118 Chen et al. May 2016 A1
20160133480 Ko et al. May 2016 A1
20160148805 Jongbloed et al. May 2016 A1
20160148821 Singh et al. May 2016 A1
20160163512 Lubomirsky Jun 2016 A1
20160163513 Lubomirsky Jun 2016 A1
20160172216 Marakhtanov et al. Jun 2016 A1
20160181112 Xue et al. Jun 2016 A1
20160181116 Berry et al. Jun 2016 A1
20160189933 Kobayashi et al. Jun 2016 A1
20160196969 Berry et al. Jul 2016 A1
20160196984 Lill et al. Jul 2016 A1
20160196985 Tan et al. Jul 2016 A1
20160204009 Nguyen et al. Jul 2016 A1
20160222522 Wang et al. Aug 2016 A1
20160225651 Tran et al. Aug 2016 A1
20160225652 Tran et al. Aug 2016 A1
20160237570 Tan et al. Aug 2016 A1
20160240389 Zhang et al. Aug 2016 A1
20160240402 Park et al. Aug 2016 A1
20160260588 Park et al. Sep 2016 A1
20160260616 Li et al. Sep 2016 A1
20160260619 Zhang et al. Sep 2016 A1
20160284556 Ingle et al. Sep 2016 A1
20160293438 Zhou et al. Oct 2016 A1
20160300694 Yang et al. Oct 2016 A1
20160307772 Choi et al. Oct 2016 A1
20160307773 Lee et al. Oct 2016 A1
20160314961 Liu et al. Oct 2016 A1
20160314985 Yang et al. Oct 2016 A1
20160319452 Eidschun et al. Nov 2016 A1
20160343548 Howald et al. Nov 2016 A1
20170040175 Xu et al. Feb 2017 A1
20170040190 Benjaminson et al. Feb 2017 A1
20170040191 Benjaminson et al. Feb 2017 A1
20170040207 Purayath Feb 2017 A1
20170040214 Lai et al. Feb 2017 A1
20170053808 Kamp et al. Feb 2017 A1
20170110290 Kobayashi et al. Apr 2017 A1
20170110335 Yang et al. Apr 2017 A1
20170110475 Liu et al. Apr 2017 A1
20170133202 Berry May 2017 A1
20170178894 Stone et al. Jun 2017 A1
20170178899 Kabansky et al. Jun 2017 A1
20170178924 Chen et al. Jun 2017 A1
20170207088 Kwon et al. Jul 2017 A1
20170226637 Lubomirsky et al. Aug 2017 A1
20170229287 Xu et al. Aug 2017 A1
20170229289 Lubomirsky et al. Aug 2017 A1
20170229291 Singh et al. Aug 2017 A1
20170229293 Park et al. Aug 2017 A1
20170229326 Tran et al. Aug 2017 A1
20170229328 Benjaminson et al. Aug 2017 A1
20170236691 Liang et al. Aug 2017 A1
20170236694 Eason et al. Aug 2017 A1
20170309509 Tran et al. Oct 2017 A1
20170338133 Tan et al. Nov 2017 A1
20170338134 Tan et al. Nov 2017 A1
20180005850 Citla et al. Jan 2018 A1
20180025900 Park et al. Jan 2018 A1
20180069000 Bergendahl et al. Mar 2018 A1
20180076031 Yan et al. Mar 2018 A1
20180076044 Choi et al. Mar 2018 A1
20180076083 Ko et al. Mar 2018 A1
20180082861 Citla et al. Mar 2018 A1
20180096818 Lubomirsky Apr 2018 A1
20180096819 Lubomirsky et al. Apr 2018 A1
20180096821 Lubomirsky et al. Apr 2018 A1
20180096865 Lubomirsky et al. Apr 2018 A1
20180102255 Chen et al. Apr 2018 A1
20180102256 Chen et al. Apr 2018 A1
20180102259 Wang et al. Apr 2018 A1
20180138049 Ko et al. May 2018 A1
20180138055 Xu et al. May 2018 A1
20180138075 Kang et al. May 2018 A1
20180138085 Wang et al. May 2018 A1
20180182633 Pandit et al. Jun 2018 A1
20180226223 Lubomirsky Aug 2018 A1
20180226230 Kobayashi et al. Aug 2018 A1
20180226259 Choi et al. Aug 2018 A1
20180226278 Arnepalli et al. Aug 2018 A1
20180226425 Purayath Aug 2018 A1
20180226426 Purayath Aug 2018 A1
20180261516 Lin et al. Sep 2018 A1
20180261686 Lin et al. Sep 2018 A1
Foreign Referenced Citations (94)
Number Date Country
1124364 Jun 1996 CN
1847450 Oct 2006 CN
101236893 Aug 2008 CN
101378850 Mar 2009 CN
102893705 Jan 2013 CN
1675160 Jun 2006 EP
S59-126778 Jul 1984 JP
S62-45119 Feb 1987 JP
63301051 Dec 1988 JP
H01-200627 Aug 1989 JP
H02-114525 Apr 1990 JP
H07-153739 Jun 1995 JP
H08-31755 Feb 1996 JP
H08-107101 Apr 1996 JP
H08-264510 Oct 1996 JP
H09-260356 Oct 1997 JP
2001-313282 Nov 2001 JP
2001-332608 Nov 2001 JP
2002-075972 Mar 2002 JP
2002-083869 Mar 2002 JP
2003-174020 Jun 2003 JP
2003-282591 Oct 2003 JP
2004-508709 Mar 2004 JP
2004-296467 Oct 2004 JP
2005-050908 Feb 2005 JP
2006-041039 Feb 2006 JP
2006-066408 Mar 2006 JP
2008-288560 Nov 2008 JP
4191137 Dec 2008 JP
2009-141343 Jun 2009 JP
2009-530871 Aug 2009 JP
2009-239056 Oct 2009 JP
2010-180458 Aug 2010 JP
2011-508436 Mar 2011 JP
2011-518408 Jun 2011 JP
4763293 Aug 2011 JP
2011-171378 Sep 2011 JP
2012-19164 Jan 2012 JP
2012-019194 Jan 2012 JP
2012-512531 May 2012 JP
2013-243418 Dec 2013 JP
5802323 Oct 2015 JP
2016-111177 Jun 2016 JP
10-2000-008278 Feb 2000 KR
10-2000-0064946 Nov 2000 KR
10-2001-0056735 Jul 2001 KR
2003-0023964 Mar 2003 KR
10-2003-0054726 Jul 2003 KR
10-2003-0083663 Oct 2003 KR
100441297 Jul 2004 KR
10-2005-0007143 Jan 2005 KR
10-2005-0042701 May 2005 KR
2005-0049903 May 2005 KR
10-2006-0080509 Jul 2006 KR
1006-41762 Nov 2006 KR
10-2006-0127173 Dec 2006 KR
100663668 Jan 2007 KR
100678696 Jan 2007 KR
100712727 Apr 2007 KR
2007-0079870 Aug 2007 KR
10-2008-0063988 Jul 2008 KR
10-0843236 Jul 2008 KR
10-2009-0040869 Apr 2009 KR
10-2009-0128913 Dec 2009 KR
10-2010-0013980 Feb 2010 KR
10-2010-00933558 Aug 2010 KR
10-2011-0086540 Jul 2011 KR
10-2011-0114538 Oct 2011 KR
10-2011-0126675 Nov 2011 KR
10-2012-0022251 Mar 2012 KR
10-2012-0082640 Jul 2012 KR
10-2016-0002543 Jan 2016 KR
2006-12480 Apr 2006 TW
200709256 Mar 2007 TW
2007-35196 Sep 2007 TW
2011-27983 Aug 2011 TW
2012-07919 Feb 2012 TW
2012-13594 Apr 2012 TW
2012-33842 Aug 2012 TW
2008-112673 Sep 2008 WO
2009-009611 Jan 2009 WO
2009-084194 Jul 2009 WO
2010-010706 Jan 2010 WO
2010-113946 Oct 2010 WO
2011-027515 Mar 2011 WO
2011-031556 Mar 2011 WO
2011070945 Jun 2011 WO
2011-095846 Aug 2011 WO
2011-149638 Dec 2011 WO
2012-050321 Apr 2012 WO
2012-118987 Sep 2012 WO
2012-125656 Sep 2012 WO
2012-148568 Nov 2012 WO
2013-118260 Aug 2013 WO
Non-Patent Literature Citations (15)
Entry
Manual No. TQMA72E1. “Bayard-Alpert Pirani Gauge FRG-730: Short Operating Instructions” Mar. 2012. Agilent Technologies, Lexington, MA 02421, USA. pp. 1-45.
H. Xiao, Introduction to Semiconductor Manufacturing Technology, published by Prentice Hall, 2001, ISBN 0-13-022404-9, pp. 354-356.
International Search Report and Written Opinion of PCT/US2016/045551 dated Nov. 17, 2016, all pages.
International Search Report and Written Opinion of PCT/US2016/045543 dated Nov. 17, 2016, all pages.
Instrument Manual: Vacuum Gauge Model MM200, Rev D. TELEVAC (website: www.televac.com), A Division of the Fredericks Company, Huntingdonvalley, PA, US. 2008. pp. 162.
J.J. Wang and et al., “Inductively coupled plasma etching of bulk 1-20 6H-SiC and thin-film SiCN in NF3 chemistries,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, 2204 (1998).
“Liang et al. Industrial Application of Plasma Process vol. 3, pp. 61-74, 2010”.
International Search Report and Written Opinion of PCT/US2017/047209 dated Nov. 24, 2017, all pages.
International Search Report and Written Opinion of PCT/US2017/033362 dated Aug. 24, 2017, all pages.
Won et al. Derwent 2006-065772; Sep. 7, 2014, 10 pages.
International Search Report and Written Opinion of PCT/US2017/060696 dated Jan. 25, 2018, all pages.
International Search Report and Written Opinion of PCT/US2017/055431 dated Jan. 19, 2018, all pages.
International Search Report and Written Opinion of PCT/US2018/016261 dated May 21, 2018, all pages.
International Search Report and Written Opinion of PCT/US2018/016648 dated May 18, 2018, all pages.
Office action dated Dec. 26, 2018 in Chinese Patent Application No. 201610724716.5, all pages.
Related Publications (1)
Number Date Country
20170062184 A1 Mar 2017 US