Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Information

  • Patent Grant
  • 10234770
  • Patent Number
    10,234,770
  • Date Filed
    Friday, June 7, 2013
    11 years ago
  • Date Issued
    Tuesday, March 19, 2019
    5 years ago
Abstract
There is disclosed a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state, the polarization-modulating element being made of an optical material with optical activity and having a circumferentially varying thickness profile.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The present invention relates to a polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method and, more particularly, to an exposure apparatus for production of microdevices such as semiconductor elements, image pickup elements, liquid crystal display elements, and thin-film magnetic heads by lithography.


Related Background Art


In the typical exposure apparatus of this type, a beam emitted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source as a substantial surface illuminant consisting of a number of light sources. Beams from the secondary light source (generally, an illumination pupil distribution formed on or near an illumination pupil of the illumination optical apparatus) are limited through an aperture stop disposed near the rear focal plane of the fly's eye lens and then enter a condenser lens.


The beams condensed by the condenser lens superposedly illuminate a mask on which a predetermined pattern is formed. The light passing through the pattern of the mask is focused on a wafer through a projection optical system. In this manner, the mask pattern is projected for exposure (or transcribed) onto the wafer. The pattern formed on the mask is a highly integrated pattern, and, in order to accurately transcribe this fine pattern onto the wafer, it is indispensable to obtain a uniform illuminance distribution on the wafer.


For example, Japanese Patent No. 3246615 owned by the same Applicant of the present application discloses the following technology for realizing the illumination condition suitable for faithful transcription of the fine pattern in arbitrary directions: the secondary light source is formed in an annular shape on the rear focal plane of the fly's eye lens and the beams passing the secondary light source of the annular shape are set to be in a linearly polarized state with a direction of polarization along the circumferential direction thereof (hereinafter referred to as a “azimuthal polarization state”).


SUMMARY OF THE INVENTION

An object of the embodiment is to transform incident light in a linearly polarized state having a direction of polarization virtually along a single direction, into light in a azimuthal polarization state having a direction of polarization virtually along a circumferential direction, while suppressing the loss of light quantity.


Another object of the embodiment is to form an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity, using a polarization-modulating element capable of transforming incident light in a linearly polarized state having a direction of polarization virtually along a single direction, into light in a azimuthal polarization state having a direction of polarization virtually along a circumferential direction.


Another object of the embodiment is to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput, using an illumination optical apparatus capable of forming an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.


In order to achieve the above objects, a first aspect of the embodiment is to provide a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state,


the polarization-modulating element being made of an optical material with optical activity and having a circumferentially varying thickness profile.


A second aspect of the embodiment is to provide an illumination optical apparatus comprising a light source for supplying illumination light, and the polarization-modulating element of the first aspect disposed in an optical path between the light source and a surface to be illuminated.


A third aspect of the embodiment is to provide an illumination optical apparatus for illuminating a surface to be illuminated, based on illumination light supplied from a light source,


the illumination optical apparatus satisfying the following relations:

RSPh(Ave)>70%, and RSPv(Ave)>70%,

where RSPh(Ave) is an average specific polarization rate about polarization in a first direction in a predetermined effective light source region in a light intensity distribution formed in an illumination pupil plane of the illumination optical apparatus or in a plane conjugate with the illumination pupil plane, and RSPv(Ave) is an average specific polarization rate about polarization in a second direction in the predetermined effective light source region.


The average specific polarization rates above are defined as follows:

RSPh(Ave)=Ix(Ave)/(Ix+Iy)Ave
RSPv(Ave)=Iy(Ave)/(Ix+Iy)Ave.


In the above equations, Ix(Ave) represents an average intensity of a polarization component in the first direction in a bundle of rays passing through the predetermined effective light source region and arriving at a point on an image plane, Iy(Ave) an average intensity of a polarization component in the second direction in a bundle of rays passing through the predetermined effective light source region and arriving at a point on the image plane, and (Ix+Iy)Ave an average intensity of an entire beam passing through the predetermined effective light source region. The illumination pupil plane of the illumination optical apparatus can be defined as a plane in the optical relation of Fourier transform with the surface to be illuminated and, where the illumination optical apparatus is combined with a projection optical system, it can be defined as a plane in the illumination optical apparatus optically conjugate with an aperture stop of the projection optical system. The plane conjugate with the illumination pupil plane of the illumination optical apparatus is not limited to a plane in the illumination optical apparatus, but, for example, in a case where the illumination optical apparatus is combined with a projection optical system, it may be a plane in the projection optical system, or may be a plane in a polarization measuring device for measuring a polarization state in the illumination optical apparatus (or in the projection exposure apparatus).


A fourth aspect of the embodiment is to provide an exposure apparatus comprising the illumination optical apparatus of the second aspect or the third aspect, the exposure apparatus projecting a pattern onto a photosensitive substrate through the illumination optical apparatus.


A fifth aspect of the embodiment is to provide an exposure method of projecting a pattern onto a photosensitive substrate, using the illumination optical apparatus of the second aspect or the third aspect.


A sixth aspect of the embodiment is to provide a production method of a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state, comprising:


a step of preparing an optical material with optical activity; and


a step of providing the optical material with a circumferentially varying thickness profile.


The polarization-modulating element of the embodiment is made of the optical material with optical activity, for example, like crystalline quartz, and has the circumferentially varying thickness profile. The thickness profile herein is set, for example, so that light in a linearly polarized state having a direction of polarization virtually along a single direction is transformed into light in a azimuthal polarization state having a direction of polarization virtually along the circumferential direction. In consequence, the embodiment realizes the polarization-modulating element capable of transforming the incident light in the linearly polarized state having the direction of polarization virtually along a single direction, into light in the azimuthal polarization state having the direction of polarization virtually along the circumferential direction, while suppressing the loss of light quantity. Particularly, since the polarization-modulating element is made of the optical material with optical activity, the invention has the advantage that the polarization-modulating element is extremely easy to produce, for example, as compared with wave plates.


Therefore, since the illumination optical apparatus of the embodiment uses the polarization-modulating element capable of transforming the incident light in the linearly polarized state having the direction of polarization virtually along a single direction, into the light in the azimuthal polarization state having the direction of polarization virtually along the circumferential direction, it is able to form an illumination pupil distribution of an annular shape in the azimuthal polarization state while well suppressing the loss of light quantity. Since the exposure apparatus and exposure method of the embodiment use the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, they are able to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput and, eventually, to produce good devices with high throughput.


The embodiment will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the embodiment.


Further scope of applicability of the embodiment will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention.



FIG. 2 is an illustration to illustrate the action of a conical axicon system on a secondary light source of an annular shape.



FIG. 3 is an illustration to illustrate the action of a zoom lens on a secondary light source of an annular shape.



FIG. 4 is a perspective view schematically showing an internal configuration of a polarization monitor in FIG. 1.



FIG. 5 is an illustration schematically showing a configuration of a polarization-modulating element in FIG. 1.



FIG. 6 is an illustration to illustrate the optical activity of crystalline quartz.



FIG. 7 is an illustration schematically showing a secondary light source of an annular shape set in a azimuthal polarization state by the action of the polarization-modulating element.



FIG. 8 is an illustration schematically showing a secondary light source of an annular shape set in a radially polarized state by the action of the polarization-modulating element.



FIG. 9 is an illustration showing a modification example in which a plurality of polarization-modulating elements are arranged in a replaceable state.



FIG. 10 is an illustration showing plural types of polarization-modulating elements 10a-10c mounted on a turret 10T as a replacing mechanism in FIG. 9.



FIGS. 11A, 11B, 11C, 11D and 11E are illustrations showing respective configurations of plural types of polarization-modulating elements 10a-10e, respectively.



FIGS. 12A, 12B and 12C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element, respectively.



FIG. 13 is an illustration schematically showing a configuration of polarization-modulating element 10f arranged rotatable around the optical axis AX.



FIGS. 14A, 14B and 14C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of polarization-modulating element 10f, respectively.



FIGS. 15A, 15B and 15C are illustrations schematically showing examples of the secondary light source obtained when the polarization-modulating element composed of elementary elements of a sector shape is arranged rotatable around the optical axis AX, respectively.



FIG. 16 is an illustration showing an example in which the polarization-modulating element is located at a position immediately before conical axicon system 8 (or at a position near the entrance side), among locations near the pupil of the illumination optical apparatus.



FIG. 17 is an illustration for explaining Conditions (1) and (2) to be satisfied in the modification example shown in FIG. 16.



FIG. 18 is an illustration showing an example in which the polarization-modulating element is located near the pupil position of imaging optical system 15, among locations near the pupil of the illumination optical apparatus.



FIG. 19 is an illustration showing a schematic configuration of wafer surface polarization monitor 90 for detecting a polarization state and light intensity of light illuminating a wafer W.



FIG. 20 is an illustration showing a secondary light source 31 of an annular shape obtained when a quartered polarization-modulating element 10f is used to implement quartered, circumferentially polarized annular illumination.



FIG. 21 is a flowchart of a procedure of producing semiconductor devices as microdevices.



FIG. 22 is a flowchart of a procedure of producing a liquid crystal display element as a microdevice.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will be described based on the accompanying drawings.



FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention. In FIG. 1, the Z-axis is defined along a direction of a normal to a wafer W being a photosensitive substrate, the Y-axis along a direction parallel to the plane of FIG. 1 in the plane of the wafer W, and the X-axis along a direction of a normal to the plane of FIG. 1 in the plane of wafer W. With reference to FIG. 1, the exposure apparatus of the present embodiment is provided with a light source 1 for supplying exposure radiation (light) [(illumination light)].


The light source 1 can be, for example, a KrF excimer laser light source for supplying light with the wavelength of 248 nm, an ArF excimer laser light source for supplying light with the wavelength of 193 nm, or the like. A nearly parallel beam emitted along the Z-direction from the light source 1 has a cross section of a rectangular shape elongated along the X-direction, and is incident to a beam expander 2 consisting of a pair of lenses 2a and 2b. The lenses 2a and 2b have a negative refracting power and a positive refracting power, respectively, in the plane of FIG. 1 (or in the YZ plane). Therefore, the beam incident to the beam expander 2 is enlarged in the plane of FIG. 1 and shaped into a beam having a cross section of a predetermined rectangular shape.


The nearly parallel beam passing through the beam expander 2 as a beam shaping optical system is deflected into the Y-direction by a bending mirror 3, and then travels through a quarter wave plate 4a, a half wave plate 4b, a depolarizer (depolarizing element) 4c, and a diffractive optical element 5 for annular illumination to enter an afocal lens 6. Here the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c constitute a polarization state converter 4, as described later. The afocal lens 6 is an afocal system (afocal optic) set so that the front focal position thereof approximately coincides with the position of the diffractive optical element 5 and so that the rear focal position thereof approximately coincides with the position of a predetermined plane 7 indicated by a dashed line in the drawing.


In general, a diffractive optical element is constructed by forming level differences with the pitch of approximately the wavelength of exposure light (illumination light) in a substrate and has the action of diffracting an incident beam at desired angles. Specifically, the diffractive optical element 5 for annular illumination has the following function: when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of an annular shape in its far field (or Fraunhofer diffraction region).


Therefore, the nearly parallel beam incident to the diffractive optical element 5 as a beam transforming element forms a light intensity distribution of an annular shape on the pupil plane of the afocal lens 6 and then emerges as a nearly parallel beam from the afocal lens 6. In an optical path between front lens unit 6a and rear lens unit 6b of the afocal lens 6 there is a conical axicon system 8 arranged on or near the pupil plane thereof, and the detailed configuration and action thereof will be described later. For easier description, the fundamental configuration and action will be described below, in disregard of the action of the conical axicon system 8.


The beam through the afocal lens 6 travels through a zoom lens 9 for variation of σ-value and a polarization-modulating element 10 and then enters a micro fly's eye lens (or fly's eye lens) 11 as an optical integrator. The configuration and action of the polarization-modulating element 10 will be described later. The micro fly's eye lens 11 is an optical element consisting of a number of micro lenses with a positive refracting power arranged lengthwise and breadthwise and densely. In general, a micro fly's eye lens is constructed, for example, by forming a micro lens group by etching of a plane-parallel plate.


Here each micro lens forming the micro fly's eye lens is much smaller than each lens element forming a fly's eye lens. The micro fly's eye lens is different from the fly's eye lens consisting of lens elements spaced from each other, in that a number of micro lenses (micro refracting surfaces) are integrally formed without being separated from each other. In the sense that lens elements with a positive refracting power are arranged lengthwise and breadthwise, however, the micro fly's eye lens is a wavefront splitting optical integrator of the same type as the fly's eye lens. Detailed explanation concerning the micro fly's eye lens capable of being used in the present invention is disclosed, for example, in U.S. Pat. No. 6,913,373(B2) which is incorporated herein by reference in its entirety.


The position of the predetermined plane 7 is arranged near the front focal position of the zoom lens 9, and the entrance surface of the micro fly's eye lens 11 is arranged near the rear focal position of the zoom lens 9. In other words, the zoom lens 9 arranges the predetermined plane 7 and the entrance surface of the micro fly's eye lens 11 substantially in the relation of Fourier transform and eventually arranges the pupil plane of the afocal lens 6 and the entrance surface of the micro fly's eye lens 11 approximately optically conjugate with each other.


Accordingly, for example, an illumination field of an annular shape centered around the optical axis AX is formed on the entrance surface of the micro fly's eye lens 11, as on the pupil plane of the afocal lens 6. The entire shape of this annular illumination field similarly varies depending upon the focal length of the zoom lens 9. Each micro lens forming the micro fly's eye lens 11 has a rectangular cross section similar to a shape of an illumination field to be formed on a mask M (eventually, a shape of an exposure region to be formed on a wafer W).


The beam incident to the micro fly's eye lens 11 is two-dimensionally split by a number of micro lenses to form on or near the rear focal plane (eventually on the illumination pupil) a secondary light source having much the same light intensity distribution as the illumination field formed by the incident beam, i.e., a secondary light source consisting of a substantial surface illuminant of an annular shape centered around the optical axis AX. Beams from the secondary light source formed on or near the rear focal plane of the micro fly's eye lens 11 travel through beam splitter 12a and condenser optical system 13 to superposedly illuminate a mask blind 14.


In this manner, an illumination field of a rectangular shape according to the shape and focal length of each micro lens forming the micro fly's eye lens 11 is formed on the mask blind 14 as an illumination field stop. The internal configuration and action of polarization monitor 12 incorporating a beam splitter 12a will be described later. Beams through a rectangular aperture (light transmitting portion) of the mask blind 14 are subject to light condensing action of imaging optical system 15 and thereafter superposedly illuminate the mask M on which a predetermined pattern is formed.


Namely, the imaging optical system 15 forms an image of the rectangular aperture of the mask blind 14 on the mask M. A beam passing through the pattern of mask M travels through a projection optical system PL to form an image of the mask pattern on the wafer W being a photosensitive substrate. In this manner, the pattern of the mask M is sequentially printed in each exposure area on the wafer W through full-wafer exposure or scan exposure with two-dimensional drive control of the wafer W in the plane (XY plane) perpendicular to the optical axis AX of the projection optical system PL.


In the polarization state converter 4, the quarter wave plate 4a is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it transforms incident light of elliptical polarization into light of linear polarization. The half wave plate 4b is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it changes the plane of polarization of linearly polarized light incident thereto. The depolarizer 4c is composed of a wedge-shaped crystalline quartz prism and a wedge-shaped fused silica prism having complementary shapes. The crystalline quartz prism and the fused silica prism are constructed as an integral prism assembly so as to be set into and away from the illumination optical path.


Where the light source 1 is the KrF excimer laser light source or the ArF excimer laser light source, light emitted from these light sources typically has the degree of polarization of 95% or more and light of almost linear polarization is incident to the quarter wave plate 4a. However, if a right-angle prism as a back-surface reflector is interposed in the optical path between the light source 1 and the polarization state converter 4, the linearly polarized light will be changed into elliptically polarized light by virtue of total reflection in the right-angle prism unless the plane of polarization of the incident, linearly polarized light agrees with the P-polarization plane or S-polarization plane.


In the case of the polarization state converter 4, for example, even if light of elliptical polarization is incident thereto because of the total reflection in the right-angle prism, light of linear polarization transformed by the action of the quarter wave plate 4a will be incident to the half wave plate 4b. Where the crystallographic axis of the half wave plate 4b is set at an angle of 0° or 90° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4b will pass as it is, without change in the plane of polarization.


Where the crystallographic axis of the half wave plate 4b is set at an angle of 45° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4b will be transformed into light of linear polarization with change of polarization plane of 90°. Furthermore, where the crystallographic axis of the crystalline quartz prism in the depolarizer 4c is set at an angle of 45° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will be transformed (or depolarized) into light in an unpolarized state.


The polarization state converter 4 is arranged as follows: when the depolarizer 4c is positioned in the illumination optical path, the crystallographic axis of the crystalline quartz prism makes the angle of 45° relative to the polarization plane of the incident, linearly polarized light. Incidentally, where the crystallographic axis of the crystalline quartz prism is set at the angle of 0° or 90° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will pass as it is, without change of the polarization plane. Where the crystallographic axis of the half wave plate 4b is set at an angle of 22.5° relative to the polarization plane of incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4b will be transformed into light in an unpolarized state including a linear polarization component directly passing without change of the polarization plane and a linear polarization component with the polarization plane rotated by 90°.


The polarization state converter 4 is arranged so that light of linear polarization is incident to the half wave plate 4b, as described above, and, for easier description hereinafter, it is assumed that light of linear polarization having the direction of polarization (direction of the electric field) along the Z-axis in FIG. 1 (hereinafter referred to as “Z-directionally polarized light”) is incident to the half wave plate 4b. When the depolarizer 4c is positioned in the illumination optical path and when the crystallographic axis of the half wave plate 4b is set at the angle of 0° or 90° relative to the polarization plane (direction of polarization) of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4b passes as kept as Z-directionally polarized light without change of the polarization plane and enters the crystalline quartz prism in the depolarizer 4c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the crystalline quartz prism is transformed into light in an unpolarized state.


The light depolarized through the crystalline quartz prism travels through the quartz prism as a compensator for compensating the traveling direction of the light and is incident into the diffractive optical element 5 while being in the depolarized state. On the other hand, if the crystallographic axis of the half wave plate 4b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4b will be rotated in the polarization plane by 90° and transformed into light of linear polarization having the polarization direction (direction of the electric field) along the X-direction in FIG. 1 (hereinafter referred to as “X-directionally polarized light”) and the X-directionally polarized light will be incident to the crystalline quartz prism in the depolarizer 4c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the incident, X-directionally polarized light as well, the light of X-directional polarization incident to the crystalline quartz prism is transformed into light in the depolarized state, and the light travels through the quartz prism to be incident in the depolarized state into the diffractive optical element 5.


In contrast, when the depolarizer 4c is set away from the illumination optical path, if the crystallographic axis of the half wave plate 4b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4b will pass as kept as Z-directionally polarized light without change of the polarization plane, and will be incident in the Z-directionally polarized state into the diffractive optical element 5. If the crystallographic axis of the half wave plate 4b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto on the other hand, the light of Z-directional polarization incident to the half wave plate 4b will be transformed into light of X-directional polarization with the polarization plane rotated by 90°, and will be incident in the X-directionally polarized state into the diffractive optical element 5.


In the polarization state converter 4, as described above, the light in the depolarized state can be made incident to the diffractive optical element 5 when the depolarizer 4c is set and positioned in the illumination optical path. When the depolarizer 4c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the Z-directionally polarized state can be made incident to the diffractive optical element 5. Furthermore, when the depolarizer 4c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the X-directionally polarized state can be made incident to the diffractive optical element 5.


In other words, the polarization state converter 4 is able to switch the polarization state of the incident light into the diffractive optical element 5 (therefore, the polarization state of light to illuminate the mask M and wafer W) between the linearly polarized state and the unpolarized state through the action of the polarization state converter consisting of the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c, and, in the case of the linearly polarized state, it is able to switch between mutually orthogonal polarization states (between the Z-directional polarization and the X-directional polarization).


Furthermore, when the polarization state converter 4 is so set that the half wave plate 4b and depolarizer 4c both are set away from the illumination optical path and that the crystallographic axis of the quarter wave plate 4a makes a predetermined angle relative to the incident, elliptically polarized light, light in a circularly polarized state can be made incident to the diffractive optical element 5. In general, the polarization state of incident light to the diffractive optical element 5 can also be set in a linearly polarized state having a direction of polarization along an arbitrary direction by the action of the half wave plate 4b.


Next, the conical axicon system 8 is composed of a first prism member 8a whose plane is kept toward the light source and whose refracting surface of a concave conical shape is kept toward the mask, and a second prism member 8b whose plane is kept toward the mask and whose refracting surface of a convex conical shape is kept toward the light source, in order from the light source side. The refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b are formed in a complementary manner so as to be able to be brought into contact with each other. At least one of the first prism member 8a and the second prism member 8b is arranged movable along the optical axis AX, so that the spacing can be varied between the refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b.


In a state in which the refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b are in contact with each other, the conical axicon system 8 functions as a plane-parallel plate and has no effect on the secondary light source of the annular shape formed. However, when the refracting surface of the concave conical shape of the first prism member 8a and the refracting surface of the convex conical shape of the second prism member 8b are spaced from each other, the conical axicon system 8 functions a so-called beam expander. Therefore, the angle of the incident beam to the predetermined plane 7 varies according to change in the spacing of the conical axicon system 8.



FIG. 2 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape. With reference to FIG. 2, the secondary light source 30a of the minimum annular shape formed in a state where the spacing of the conical axicon system 8 is zero and where the focal length of the zoom lens 9 is set at the minimum (this state will be referred to hereinafter as a “standard state”) is changed into secondary light source 30b of an annular shape with the outside diameter and inside diameter both enlarged and without change in the width (half of the difference between the inside diameter and the outside diameter: indicated by arrows in the drawing) when the spacing of the conical axicon system 8 is increased from zero to a predetermined value. In other words, an annular ratio (inside diameter/outside diameter) and size (outside diameter) both vary through the action of the conical axicon system 8, without change in the width of the secondary light source of the annular shape.



FIG. 3 is an illustration to illustrate the action of the zoom lens on the secondary light source of the annular shape. With reference to FIG. 3, the secondary light source 30a of the annular shape formed in the standard state is changed into secondary light source 30c of an annular shape whose entire shape is similarly enlarged by increasing the focal length of the zoom lens 9 from the minimum to a predetermined value. In other words, the width and size (outside diameter) both vary through the action of zoom lens 9, without change in the annular ratio of the secondary light source of the annular shape.



FIG. 4 is a perspective view schematically showing the internal configuration of the polarization monitor shown in FIG. 1. With reference to FIG. 4, the polarization monitor 12 is provided with a first beam splitter 12a disposed in the optical path between the micro fly's eye lens 11 and the condenser optical system 13. The first beam splitter 12a has, for example, the form of a non-coated plane-parallel plate made of quartz glass (i.e., raw glass), and has a function of taking reflected light in a polarization state different from a polarization state of incident light, out of the optical path.


The light taken out of the optical path by the first beam splitter 12a is incident to a second beam splitter 12b. The second beam splitter 12b has, for example, the form of a non-coated plane-parallel plate made of quartz glass as the first beam splitter 12a does, and has a function of generating reflected light in a polarization state different from the polarization state of incident light. The polarization monitor is so set that the P-polarized light for the first beam splitter 12a becomes the S-polarized light for the second beam splitter 12b and that the S-polarized light for the first beam splitter 12a becomes the P-polarized light for the second beam splitter 12b.


Light transmitted by the second beam splitter 12b is detected by first light intensity detector 12c, while light reflected by the second beam splitter 12b is detected by second light intensity detector 12d. Outputs from the first light intensity detector 12c and from the second light intensity detector 12d are supplied each to a controller (not shown). The controller drives the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c constituting the polarization state converter 4, according to need.


As described above, the reflectance for the P-polarized light and the reflectance for the S-polarized light are substantially different in the first beam splitter 12a and in the second beam splitter 12b. In the polarization monitor 12, therefore, the reflected light from the first beam splitter 12a includes the S-polarization component (i.e., the S-polarization component for the first beam splitter 12a and P-polarization component for the second beam splitter 12b), for example, which is approximately 10% of the incident light to the first beam splitter 12a, and the P-polarization component (i.e., the P-polarization component for the first beam splitter 12a and S-polarization component for the second beam splitter 12b), for example, which is approximately 1% of the incident light to the first beam splitter 12a.


The reflected light from the second beam splitter 12b includes the P-polarization component (i.e., the P-polarization component for the first beam splitter 12a and S-polarization component for the second beam splitter 12b), for example, which is approximately 10%×1%=0.1% of the incident light to the first beam splitter 12a, and the S-polarization component (i.e., the S-polarization component for the first beam splitter 12a and P-polarization component for the second beam splitter 12b), for example, which is approximately 1%×10%=0.1% of the incident light to the first beam splitter 12a.


In the polarization monitor 12, as described above, the first beam splitter 12a has the function of extracting the reflected light in the polarization state different from the polarization state of the incident light out of the optical path in accordance with its reflection characteristic. As a result, though there is slight influence of variation of polarization due to the polarization characteristic of the second beam splitter 12b, it is feasible to detect the polarization state (degree of polarization) of the incident light to the first beam splitter 12a and, therefore, the polarization state of the illumination light to the mask M, based on the output from the first light intensity detector 12c (information about the intensity of transmitted light from the second beam splitter 12b, i.e., information about the intensity of light virtually in the same polarization state as that of the reflected light from the first beam splitter 12a).


The polarization monitor 12 is so set that the P-polarized light for the first beam splitter 12a becomes the S-polarized light for the second beam splitter 12b and that the S-polarized light for the first beam splitter 12a becomes the P-polarized light for the second beam splitter 12b. As a result, it is feasible to detect the light quantity (intensity) of the incident light to the first beam splitter 12a and, therefore, the light quantity of the illumination light to the mask M, with no substantial effect of the change in the polarization state of the incident light to the first beam splitter 12a, based on the output from the second light intensity detector 12d (information about the intensity of light successively reflected by the first beam splitter 12a and the second beam splitter 12b).


In this manner, it is feasible to detect the polarization state of the incident light to the first beam splitter 12a and, therefore, to determine whether the illumination light to the mask M is in the desired unpolarized state, linearly polarized state, or circularly polarized state, using the polarization monitor 12. When the controller determines that the illumination light to the mask M (eventually, to the wafer W) is not in the desired unpolarized state, linearly polarized state, or circularly polarized state, based on the detection result of the polarization monitor 12, it drives and adjusts the quarter wave plate 4a, half wave plate 4b, and depolarizer 4c constituting the polarization state converter 4 so that the state of the illumination light to the mask M can be adjusted into the desired unpolarized state, linearly polarized state, or circularly polarized state.


Quadrupole illumination can be implemented by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for quadrupole illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a quadrupole shape in the far field thereof. Therefore, the beam passing through the diffractive optical element for quadrupole illumination forms an illumination field of a quadrupole shape consisting of four circular illumination fields centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 11. As a result, the secondary light source of the same quadrupole shape as the illumination field formed on the entrance surface is also formed on or near the rear focal plane of the micro fly's eye lens 11.


In addition, ordinary circular illumination can be implemented by setting a diffractive optical element for circular illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for circular illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a circular shape in the far field. Therefore, a beam passing through the diffractive optical element for circular illumination forms a circular illumination field centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 11. As a result, the secondary light source of the same circular shape as the illumination field formed on the entrance surface is also formed on or near the rear focal plane of the micro fly's eye lens 11.


Furthermore, a variety of multipole illuminations (dipole illumination, octapole illumination, etc.) can be implemented by setting other diffractive optical elements for multipole illuminations (not shown), instead of the diffractive optical element 5 for annular illumination. Likewise, modified illuminations in various forms can be implemented by setting diffractive optical elements with appropriate characteristics (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.



FIG. 5 is an illustration schematically showing the configuration of the polarization-modulating element shown in FIG. 1. FIG. 6 is an illustration to illustrate the optical activity of crystalline quartz. FIG. 7 is an illustration schematically showing the secondary light source of the annular shape set in the azimuthal polarization state by the action of the polarization-modulating element. The polarization-modulating element 10 according to the present embodiment is located immediately before the micro fly's eye lens 11, i.e., on or near the pupil of the illumination optical apparatus (1 to PL). Therefore, in the case of the annular illumination, the beam having an approximately annular cross section centered around the optical axis AX is incident to the polarization-modulating element 10.


With reference to FIG. 5, the polarization-modulating element 10 has an effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of eight elementary elements of a sector shape as circumferentially equally divided around the optical axis AX. Among these eight elementary elements, a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic. Namely, the eight elementary elements include four types of elementary elements 10A-10D two each with different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (Y-direction).


Specifically, the thickness of the first elementary elements 10A is the largest, the thickness of the fourth elementary elements 10D is the smallest, and the thickness of the second elementary elements 10B is set larger than the thickness of the third elementary elements 10C. As a result, one surface (e.g., the entrance surface) of the polarization-modulating element 10 is planar, while the other surface (e.g., the exit surface) is uneven because of the differences among the thicknesses of the elementary elements 10A-10D. It is also possible to form the both surfaces (the entrance surface and exit surface) of the polarization-modulating element 10 in an uneven shape.


In the present embodiment, each elementary element 10A-10D is made of crystalline quartz as a crystalline material being an optical material with optical activity, and the crystallographic axis of each elementary element 10A-10D is set to be approximately coincident with the optical axis AX, i.e., with the traveling direction of incident light. The optical activity of crystalline quartz will be briefly described below with reference to FIG. 6. With reference to FIG. 6, an optical member 100 of a plane-parallel plate shape made of crystalline quartz and in a thickness d is arranged so that its crystallographic axis coincides with the optical axis AX. In this case, by virtue of the optical activity of the optical member 100, linearly polarized light incident thereto emerges in a state in which its-polarization direction is rotated by θ around the optical axis AX.


At this time, the rotation angle (angle of optical rotation) θ of the polarization direction due to the optical activity of the optical member 100 is represented by Eq (a) below, using the thickness d of the optical member 100 and the rotatory power ρ of crystalline quartz.

θ=d·ρ  (a)


In general, the rotatory power ρ of crystalline quartz has wavelength dependence (a property that the value of the optical rotatory power differs depending upon the wavelength of light used: optical rotatory dispersion) and, specifically, it tends to increase with decrease in the wavelength of light used. According to the description on page 167 in “Applied Optics II,” the rotatory power ρ of crystalline quartz for light having the wavelength of 250.3 nm is 153.9°/mm.


In the present embodiment, the first elementary elements 10A are designed in such a thickness dA that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +180° rotation of the Z-direction around the Y-axis, i.e., along the Z-direction. In this case, therefore, the polarization direction of beams passing through a pair of arc (bow shape) regions 31A formed by beams subject to the optical rotating action of a pair of first elementary elements 10A, in the secondary light source 31 of the annular shape shown in FIG. 7, is the Z-direction.


The second elementary elements 10B are designed in such a thickness dB that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +135° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from −45° rotation of the Z-direction around the Y-axis. In this case, therefore, the polarization direction of beams passing through a pair of arc (bow shape) regions 31B formed by beams subject to the optical rotating action of a pair of second elementary elements 10B, in the secondary light source 31 of the annular shape shown in FIG. 7, is a direction obtained by rotating the Z-direction by −45° around the Y-axis.


The third elementary elements 10C are designed in such a thickness dC that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +90° rotation of the Z-direction around the Y-axis, i.e., along the X-direction. In this case, therefore, the polarization direction of beams passing through a pair of arc (bow shape) regions 31C formed by beams subject to the optical rotating action of a pair of third elementary elements 10C, in the secondary light source 31 of the annular shape shown in FIG. 7, is the X-direction.


The fourth elementary elements 10D are designed in such a thickness dD that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +45° rotation of the Z-direction around the Y-axis. In this case, therefore, the polarization direction of beams passing through a pair of arc (bow shape) regions 31D formed by beams subject to the optical rotating action of a pair of fourth elementary elements 10D, in the secondary light source 31 of the annular shape shown in FIG. 7, is a direction obtained by rotating the Z-direction by +45° around the Y-axis.


The polarization-modulating element 10 can be constructed by combining the eight elementary elements prepared separately, or the polarization-modulating element 10 can also be constructed by forming the required uneven shape (level differences) in a crystalline quartz substrate of a plane-parallel plate shape. For allowing the ordinary circular illumination with the polarization-modulating element 10 being kept in the optical path, the polarization-modulating element 10 is provided with a central region 10E of a circular shape in the size not less than 3/10, preferably, not less than ⅓ of the radial size of the effective region of the polarization-modulating element 10 and without optical activity. The central region 10E may be made of an optical material without optical activity, for example, like quartz, or may be simply a circular aperture. It is, however, noted that the central region 10E is not an essential element for the polarization-modulating element 10. The size of the central region 10E determines the boundary between the region in the azimuthal polarization state and the other region.


In the present embodiment, on the occasion of the circumferentially polarized annular illumination (modified illumination in which beams passing through the secondary light source of the annular shape are set in the azimuthal polarization state), the linearly polarized light having the polarization direction along the Z-direction is made incident to the polarization-modulating element 10. As a result, as shown in FIG. 7, the secondary light source of the annular shape (illumination pupil distribution of annular shape) 31 is formed on or near the rear focal plane of the micro fly's eye lens 11, and beams passing through this secondary light source 31 of the annular shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective arc (bow shape) regions 31A-31D constituting the secondary light source 31 of the annular shape turn into a linearly polarized state having the polarization direction approximately coincident with a tangential direction to a circle centered around the optical axis AX, at the central position along the circumferential direction of each are region 31A-31D.


In this manner, the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the optical rotating action of the polarization-modulating element 10. In other words, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity. Furthermore, since the present embodiment uses the polarizing action of the optical elements, it has the excellent effect that the polarization-modulating element itself is extremely easy to produce and, typically, the thickness tolerance of each elementary element can be set to be extremely loose.


In the circumferentially polarized annular illumination based on the illumination pupil distribution of the annular shape in the azimuthal polarization state, the light illuminating the wafer W as a last surface to be illuminated is in a polarized state in which the principal component is S-polarized light. Here the S-polarized light is linearly polarized light having the polarization direction along a direction normal to the plane of incidence (i.e., polarized light with the electric vector oscillating in the direction normal to the plane of incidence). The plane of incidence is defined as follows: when light arrives at a boundary surface of a medium (surface to be illuminated: surface of wafer W), the plane of incidence is a plane including a normal to the boundary surface at that point and the direction of incidence of light.


Consequently, the circumferentially polarized annular illumination realizes an improvement in the optical performance (depth of focus and the like) of the projection optical system and enables formation of a mask pattern image with high contrast on the wafer (photosensitive substrate). Namely, since the exposure apparatus of the present embodiment uses the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, it is able to transcribe a fine pattern under an appropriate illumination condition faithfully and with high throughput.


Incidentally, the present embodiment enables radially polarized annular illumination (modified illumination in which beams passing through the secondary light source of the annular shape are set in a radially polarized state) by injecting linearly polarized light having the polarization direction along the X-direction into the polarization-modulating element 10 and thereby setting the beams passing through the secondary light source 32 of the annular shape in the radially polarized state as shown in FIG. 8. In the radially polarized state, beams passing through the respective are (bow shape) regions 32A-32D constituting the secondary light source 32 of the annular shape are in the linearly polarized state having the polarization direction approximately coincident with a radial direction of a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 32A-32D.


In the radially polarized annular illumination based on the illumination pupil distribution of the annular shape in the radially polarized state, the light illuminating the wafer W as a last surface to be illuminated is in a polarized state in which the principal component is P-polarized light. The P-polarized light herein is linearly polarized light having the polarization direction along a direction parallel to the plane of incidence defined as described above (i.e., polarized light with the electric vector oscillating in the direction parallel to the plane of incidence). In consequence, the radially polarized annular illumination enables formation of a good mask pattern image on the wafer (photosensitive substrate) while keeping the reflectance of light low on the resist applied onto the wafer W.


The above-described embodiment realizes the circumferentially polarized annular illumination and the radially polarized annular illumination by switching the beam incident to the polarization-modulating element 10 between the linearly polarized state having the polarization direction along the Z-direction and the linearly polarized state having the polarization direction along the X-direction. However, without having to be limited to this, it is also possible to realize the circumferentially polarized annular illumination and the radially polarized annular illumination, for example, by switching the polarization-modulating element 10 between a first state shown in FIG. 5 and a second state resulting from 90° rotation around the optical axis AX, for the incident beam in the linearly polarized state having the polarization direction along the Z-direction or along the X-direction.


In the foregoing embodiment the polarization-modulating element 10 is located immediately before the micro fly's eye lens 11. However, without having to be limited to this, the polarization-modulating element 10 can also be located generally on or near the pupil of the illumination optical apparatus (1 to PL), e.g., on or near the pupil of the projection optical system PL, on or near the pupil of the imaging optical system 15, or immediately before the conical axicon system 8 (on or near the pupil of afocal lens 6).


However, where the polarization-modulating element 10 is located in the projection optical system PL or in the imaging optical system 15, the required effective diameter (clear aperture diameter) of the polarization-modulating element 10 is prone to become large, and it is rather undesirable in view of the current circumstances in which it is difficult to obtain a large crystalline quartz substrate with high quality. When the polarization-modulating element 10 is located immediately before the conical axicon system 8, the required effective diameter (clear aperture diameter) of the polarization-modulating element 10 can be kept small. However, the distance is long to the wafer W being the last surface to be illuminated, and an element to change the polarization state like an antireflection coat on a lens or a reflecting film on a mirror is likely to be interposed in the optical path to the wafer. Therefore, this arrangement is not so preferable. In passing, the antireflection coat on the lens or the reflecting film on the mirror is likely to cause the difference of reflectance depending upon the polarization states (P-polarization and S-polarization) and angles of incidence and, in turn, to change the polarization state of light.


In the foregoing embodiment, at least one surface of the polarization-modulating element 10 (e.g., the exit surface) is formed in the uneven shape and, therefore, the polarization-modulating element 10 has a thickness profile discretely (discontinuously) varying in the circumferential direction. However, without having to be limited to this, at least one surface of the polarization-modulating element 10 (e.g., the exit surface) can also be formed in such a curved shape that the polarization-modulating element 10 has a thickness profile virtually discontinuously varying in the circumferential direction.


In the foregoing embodiment the polarization-modulating element 10 is composed of the eight elementary elements of the sector shape corresponding to the division of the effective region of the annular shape into eight segments. However, without having to be limited to this, the polarization-modulating element 10 can also be composed, for example, of eight elementary elements of a sector shape corresponding to division of the effective region of a circular shape into eight segments, or of four elementary elements of a sector shape corresponding to division of the effective region of a circular shape or annular shape into four segments, or of sixteen elementary elements of a sector shape corresponding to division of the effective region of a circular shape or annular shape into sixteen segments. Namely, a variety of modification examples can be contemplated as to the shape of the effective region of the polarization-modulating element 10, the number of segments in the division of the effective region (the number of elementary elements), and so on.


In the foregoing embodiment each elementary element 10A-10D (therefore, the polarization-modulating element 10) is made of crystalline quartz. However, without having to be limited to this, each elementary element can also be made of another appropriate optical material with optical activity. In this case, it is preferable to use an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Namely, use of an optical material with a small optical rotatory power is undesirable because the thickness necessary for obtaining the required rotation angle of the polarization direction becomes too large, so as to cause a loss of light quantity.


In the foregoing embodiment the polarization-modulating element 10 is fixedly provided in the illumination optical path, but the polarization-modulating element 10 may be arranged to be set into and away from the illumination optical path. The above embodiment showed the example as a combination of the annular illumination with the S-polarized light for the wafer W, but it is also possible to combine the S-polarized light for the wafer W with multipole illumination, such as dipole or quadrupole illumination, and with circular illumination. In the foregoing embodiment the illumination conditions for the mask M and the imaging conditions (numerical aperture, aberrations, etc.) for the wafer W can be automatically set, for example, according to the type of the pattern on the mask M or the like.



FIG. 9 shows a modification example in which a plurality of polarization-modulating elements are arranged in a replaceable state. The modification example of FIG. 9 has a configuration similar to the embodiment shown in FIG. 1, but it is different in that it has a turret 10T enabling replacement of the plurality of polarization-modulating elements.



FIG. 10 is an illustration showing plural types of polarization-modulating elements 10a-10e mounted on the turret 10T as a replacing mechanism in FIG. 9. In this modification example, as shown in FIGS. 9 and 10, the plural types of polarization-modulating elements 10a-10e are provided on the turret 10T rotatable around an axis along a direction parallel to the optical axis AX, and these plural types of polarization-modulating elements 10a-10e are arranged replaceable by rotation operation of the turret 10T. FIG. 9 depicts only the polarization-modulating elements 10a, 10b out of the plural types of polarization-modulating elements 10a-10e. The replacing mechanism for the polarization-modulating elements is not limited to the turret 10T, but may be, for example, a slider.



FIGS. 11A-11E are illustrations showing respective configurations of the plural types of polarization-modulating elements 10a-10e. In FIG. 11A, the first polarization-modulating element 10a has the same configuration as the polarization-modulating element 10 of the embodiment shown in FIG. 5. In FIG. 11B, the second polarization-modulating element 10b has a configuration similar to the polarization-modulating element 10a shown in FIG. 11A, but is different in that it is provided with a depolarizing member 104c in central region 10E. This depolarizing member 104c has a configuration similar to the depolarizer 4c shown in FIG. 1, and has a function of transforming incident light of linear polarization into light in a depolarized state.


In FIG. 11C, the third polarization-modulating element 10c has a configuration similar to the polarization-modulating element 10a shown in FIG. 11A, but is different in that the size of the central region 10E is larger (i.e., in that the width of the first to fourth elementary elements 10A-10D is smaller). In FIG. 11D, the fourth polarization-modulating element 10d has a configuration similar to the polarization-modulating element 10c shown in FIG. 11C, but is different in that a depolarizing member 104c is provided in the central region 10E.


In FIG. 11E, the fifth polarization-modulating element 10e is constructed by combining six elementary elements 10C, 10F, 10G, different from the eight elementary elements. The fifth polarization-modulating element 10e has the effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of six elementary elements 10C, 10F, 10G of a sector shape as equally divided in the circumferential direction around the optical axis AX. Among these six elementary elements 10C, 10F, 10G, a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic. Namely, the six elementary elements 10C, 10F, 10G include three types of elementary elements 10C, 10F, 10G with mutually different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (the Y-direction) two each.


The elementary elements 10C are members having the same function as the third elementary elements 10C shown in FIG. 7, and thus the description of the function thereof is omitted herein. The elementary elements 10F are designed in such a thickness dF that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +150° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from −30° rotation of the Z-direction around the Y-axis. The elementary elements 10G are designed in such a thickness dG that when linearly polarized light having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +30° rotation of the Z-direction around the Y-axis. A depolarizing member 104c may be provided in place of the central region 10E.


Referring again to FIG. 10, the turret 10T is provided with an opening 40 without any polarization-modulating element, and this opening 40 is located in the illumination optical path in a case where another polarized illumination is implemented different from the circumferentially polarized illumination, or in a case where unpolarized illumination is implemented under a large σ-value (σ value=numerical aperture on the mask side of the illumination optical apparatus/numerical aperture on the mask side of the projection optical system).


The above described only the examples wherein the central region 10E made of the circular opening or the material without optical activity, or the depolarizing member 104c was provided in the central region of the polarization-modulating elements 10a-10e mounted on the turret 10T, but it is also possible to mount polarization-modulating elements without central region 10E nor depolarizing member 104c (i.e., polarization-modulating elements consisting of elementary elements of a sector shape).



FIGS. 12A-12C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element. In FIGS. 12A-12C, the polarization-modulating element is also illustrated in a superimposed manner in order to facilitate understanding.



FIG. 12A shows the secondary light source 33 of an octapole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of an octapole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10a or 10b is located in the illumination optical path. Beams passing through the secondary light source 33 of the octapole shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective eight circular regions 33A-33D constituting the secondary light source 33 of the octapole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these eight circular regions 33A-33D, i.e., with a tangential direction to the circle connecting these eight circular regions 33A-33D. FIG. 12A shows the example wherein the secondary light source 33 of the octapole shape is composed of the eight circular regions 33A-33D, but the shape of the eight regions is not limited to the circular shape.



FIG. 12B shows the secondary light source 34 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10c or 10d is located in the illumination optical path. Beams passing through the secondary light source 34 of the quadrupole shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective four regions 34A, 34C constituting the secondary light source 34 of the quadrupole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these four regions 34A, 34C, i.e., with a tangential direction to the circle connecting these four regions 34A, 34C. FIG. 12B shows the example wherein the secondary light source 34 of the quadrupole shape is composed of four regions 34A, 34C of an almost elliptical shape, but the shape of the four regions is not limited to the almost elliptical shape.



FIG. 12C shows the secondary light source 35 of a hexapole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a hexapole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10e is located in the illumination optical path. Beams passing through the secondary light source 35 of the hexapole shape are set in the azimuthal polarization state. In the azimuthal polarization state, the beams passing through the respective six regions 35C, 35F, 35G constituting the secondary light source 35 of the hexapole shape are in the linearly polarized state having the polarization direction approximately coincident with a circumferential direction of a circle connecting these six regions 35C, 35F, 35G, i.e., with a tangential direction to the circle connecting these six regions 35C, 35F, 35G. FIG. 12C shows the example wherein the secondary light source 35 of the hexapole shape is composed of the four regions 35C, 35F, 35G of an almost trapezoidal shape, but the shape of the six regions is not limited to the almost trapezoidal shape.


The foregoing embodiment and modification example showed the polarization-modulating elements fixed around the optical axis thereof, but the polarization-modulating element may be arranged rotatable around the optical axis. FIG. 13 is an illustration schematically showing a configuration of polarization-modulating element 10f arranged rotatable around the optical axis AX.


In FIG. 13, the polarization-modulating element 10f is composed of a combination of four elementary elements 10A, 10C. The polarization-modulating element 10f has the effective region of an annular shape centered around the optical axis AX as a whole, and this effective region of the annular shape is composed of four elementary elements 10A, 10C of a sector shape as equally divided in the circumferential direction around the optical axis AX. Among these four elementary elements 10A, 10C, a pair of elementary elements facing each other with the optical axis AX in between have the same characteristic. Namely, the four elementary elements 10A, 10C include two types of elementary elements 10A, 10C two each with mutually different thicknesses (lengths in the direction of the optical axis) along the direction of transmission of light (the Y-direction).


The elementary elements 10A are members having the same function as the first elementary elements 10A shown in FIG. 7, and the elementary elements 10C members having the same function as the third elementary elements 10C shown in FIG. 7. Therefore, the description of the functions is omitted herein. A depolarizing member 104c may be provided in place of the central region 10E.


This-polarization-modulating element 10f is arranged to be rotatable around the optical axis AX and, for example, is rotatable by +45° or −45° around the optical axis AX. FIGS. 14A-14C are illustrations schematically showing examples of the secondary light source set in the azimuthal polarization state by the action of the polarization-modulating element 10f. In FIGS. 14A-14C, the polarization-modulating element 10f is also illustrated in a superimposed manner in order to facilitate understanding.



FIG. 14A shows the secondary light source 36 (36A) of a dipole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a dipole shape in the far field (or Fraunhofer diffraction region) is set in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10f is located in a state at the rotation angle of 0° (standard state) in the illumination optical path. In this case, beams passing through the secondary light source 36 (36A) of the dipole shape are set in a vertically polarized state.



FIG. 14B shows the secondary light source 37 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element 5, and where the polarization-modulating element 10f is located in the state at the rotation angle of 0° (standard state) in the illumination optical path. In this case, beams passing through the secondary light source 37 of the quadrupole shape are set in the azimuthal polarization state. The light intensity distribution of the quadrupole shape in FIG. 14B is localized in the vertical direction (Z-direction) and in the horizontal direction (X-direction) in the plane of the drawing.


In the azimuthal polarization state, beams passing through the respective four circular regions 37A, 37C constituting the secondary light source 37 of the quadrupole shape are in the linearly polarized state having the polarization direction along a circumferential direction of a circle connecting these four circular regions 37A, 37C, i.e., with a tangential direction to the circle connecting these four circular regions 37A, 37C. FIG. 14B shows the example in which the secondary light source 37 of the quadrupole shape is composed of the four circular regions 37A, 37C, but the shape of the four regions is not limited to the circular shape.



FIG. 14C shows the secondary light source 38 of a quadrupole shape in a case where a diffractive optical element (beam transforming element) for forming a light intensity distribution of a quadrupole shape localized in the direction of +45° (−135°) in the plane of the drawing and in the direction of −45° (+135°) in the plane of the drawing in the far field (or Fraunhofer diffraction region) is located in the illumination optical path, instead of the diffractive optical element shown in FIG. 14B, and where the polarization-modulating element 10f is set in a rotated state at the rotation angle of +45° (i.e., in a state in which it is rotated by 45° clockwise relative to the standard state) in the illumination optical path.


In FIG. 14C, the half wave plate 4b in the polarization state converter 4 is rotated around the optical axis, whereby the linearly polarized light having the polarization direction along the direction of +45° (the direction of −135°) is made incident to the polarization-modulating element 10f. The elementary elements 10A have the function of rotating the polarization direction of the incident, linearly polarized light by 180°±n×180° (n is an integer), and the elementary elements 10C have the function of rotating the polarization direction of the incident, linearly polarized light by 90°±n×180° (n is an integer). Therefore, beams passing through the secondary light source 38 of the quadrupole shape are set in the azimuthal polarization state.


In the azimuthal polarization state shown in FIG. 14C, beams passing through the respective four circular regions 38B, 38D constituting the secondary light source 38 of the quadrupole shape are in the linearly polarized state having the polarization direction along a circumferential direction of a circle connecting these four circular regions 38B, 38D, i.e., with a tangential direction to the circle connecting these four circular regions 38B, 38D. FIG. 14C shows the example in which the secondary light source 38 of the quadrupole shape is composed of the four circular regions 38B, 38D, but the shape of the four regions is not limited to the circular shape.


Through the changing operation of the polarization direction by the polarization state converter 4 and the rotation operation of the polarization-modulating element 10f, as described above, the azimuthal polarization state can be realized by the secondary light source of the quadrupole shape localized in the +45° (−135°) direction and in the −45° (+135°) direction, by the secondary light source of the quadrupole shape localized in the 0° (+180°) direction and in the 90° (270°) direction or in the vertical and horizontal directions, or by the secondary light source of the dipole shape localized in the 0° (+180°) direction or in the 90° (270°) direction, i.e., in the vertical or horizontal direction.


The polarization-modulating element composed of the eight elementary elements of the sector shape as equally divided in the circumferential direction around the optical axis AX may be arranged rotatable around the optical axis AX. For example, when the polarization-modulating element composed of the eight divisional elementary elements (e.g., the polarization-modulating element 10a) is rotated by +45° around the optical axis AX, as shown in FIG. 15A, the beams passing through the respective eight circular regions 39A-39D constituting the secondary light source 39 of the octapole shape are in the linearly polarized state having the polarization direction resulting from −45° rotation relative to the circumferential direction of the circle connecting these eight circular regions 39A-39D (i.e., relative to the tangential direction to the circle connecting these eight circular regions 39A-39D).


In a case, as shown in FIG. 15B, where the beams passing through the respective eight circular regions constituting the secondary light source of the octapole shape are elliptically polarized light having the major axis along a direction resulting from +45° rotation relative to the circumferential direction of the circle connecting these eight circular regions (i.e., relative to the tangential direction to the circle connecting these eight circular regions), an approximately azimuthal polarization state can be achieved, as shown in FIG. 15C, by rotating the polarization-modulating element (e.g., polarization-modulating element 10a) by +45° around the optical axis AX as shown in FIG. 15A.



FIG. 16 shows an example in which the polarization-modulating element is located at a position immediately before the conical axicon system 8 (i.e., at a position near the entrance side), among locations near the pupil of the illumination optical apparatus. In this example of FIG. 16, the zoom action of the zoom lens system 9 results in changing the size of the image of the central region 10E projected onto the entrance surface of micro fly's eye lens 11 and the size of the images of the respective elementary elements 10A-10D projected onto the entrance surface of micro fly's eye lens 11, and the operation of the conical axicon system 8 results in changing the width in the radial direction around the optical axis AX in the images of the respective elementary elements 10A-10D projected onto the entrance surface of micro fly's eye lens 11.


Therefore, in a case where the polarization-modulating element having the central region 10E (or depolarizing member 104c) is located nearer the light source than the optical system with the zoom action (zoom lens 9) as in the modification example shown in FIG. 16, the size of the central region 10E can be determined with consideration to the fact that the region occupied by the central region 10E is changed with zooming of the zoom lens 9.


In a case where the polarization-modulating element having the central region 10E (or depolarizing member 104c) is located nearer the light source than the optical system with the action of changing the annular ratio (the conical axicon system 8) as in the modification example shown in FIG. 16, the apparatus is preferably configured to satisfy at least one of Conditions (1) and (2) below, as shown in FIG. 17.

(10in+ΔA)/10out<0.75  (1)
0.4<(10in+ΔA)/10out  (2)

The above conditions follow the following notation:



10in: effective radius of central region 10E of polarization-modulating element 10,



10out: outside effective radius of polarization-modulating element 10, and


ΔA: increase of the inside radius of the beam having passed through the optical system with the action of changing the annular ratio.


If Condition (1) is not met, the width of the region of the annular shape transformed into the azimuthal polarization state by the polarization-modulating element 10 will become too small to achieve the circumferentially polarized illumination based on the secondary light source of the annular shape or multipole shape at a small annular ratio; thus it is undesirable. If Condition (2) is not met, the diameter of the beam passing through the central region of the polarization-modulating element 10 will become too small to achieve small-σ illumination without change in the polarization state, for example, unless the polarization-modulating element 10 is set off the illumination optical path; thus it is undesirable.


As shown in FIG. 18, the polarization-modulating element may be located at a position nearer the mask than the micro fly's eye lens 11, among locations near the pupil of the illumination optical apparatus; specifically, near the pupil position of the imaging optical system 15 for projecting the image of mask blind 14 onto the mask. In the embodiments shown in FIG. 16 and in FIG. 18, the plurality of polarization-modulating elements may also be arranged replaceable as in the embodiment in FIGS. 9 to 11.


In the above-described embodiments, if an optical system (the illumination optical system or the projection optical system) nearer the wafer W than the polarization-modulating element 10 has-polarization aberration (retardation), the polarization direction can vary by virtue of this-polarization aberration. In this case, the direction of the plane of polarization rotated by the polarization-modulating element 10 can be set in consideration of the influence of the polarization aberration of these optical systems. In a case where a reflecting member is located in the optical path on the wafer W side with respect to the polarization-modulating element 10, a phase difference can occur between polarization directions of light reflected by this reflecting member. In this case, the direction of the plane of polarization rotated by the polarization-modulating element 10 can be set in consideration of the phase difference of the beam caused by the polarization characteristic of the reflecting surface.


An embodiment of a technique of evaluating the polarization state will be described below. In the present embodiment, the polarization state of the beam arriving at the wafer W as a photosensitive substrate is detected using a wafer surface polarization monitor 90 which can be attached to a side of a wafer stage (substrate stage) holding the wafer W as a photosensitive substrate. The wafer surface polarization monitor 90 may be provided in the wafer stage or in a measurement stage separate from the wafer stage.



FIG. 19 is an illustration showing a schematic configuration of the wafer surface polarization monitor 90 for detecting the polarization state and optical intensity of the light illuminating the wafer W. As shown in FIG. 19, the wafer surface polarization monitor 90 is provided with a pinhole member 91 which can be positioned at or near the position of the wafer W. Light passing through a pinhole 91a in the pinhole member 91 travels through a collimating lens 92 located so that its front focal position is at or near the position of the image plane of the projection optical system PL, to become a nearly parallel beam, and the beam is reflected by a reflector 93 to enter a relay lens system 94. The nearly parallel beam passing through the relay lens system 94 travels through a quarter wave plate 95 as a phase shifter and through a polarization beam splitter 96 as a polarizer, and then reaches a detection surface 97a of two-dimensional CCD 97. The detection surface 97a of two-dimensional CCD 97 is approximately optically conjugate with the exit pupil of the projection optical system PL and is thus approximately optically conjugate with the illumination pupil plane of the illumination optical apparatus.


The quarter wave plate 95 is arranged rotatable around the optical axis and a setting member 98 for setting the angle of rotation around the optical axis is connected to this quarter wave plate 95. In this configuration, when the degree of polarization of the illumination light on the wafer W is not 0, the light intensity distribution on the detection surface 97a of two-dimensional CCD 97 varies with rotation of the quarter wave plate 95 around the optical axis through the setting member 98. Therefore, the wafer surface polarization monitor 90 is able to detect the change in the light intensity distribution on the detection surface 97a with rotation of the quarter wave plate 95 around the optical axis by means of the setting member 98 and thereby to measure the polarization state of the illumination light from the detection result by the rotating compensator method.


The rotating compensator method is detailed, for example, in Tsuruta, “Pencil of Light-Applied Optics for optical engineers,”K.K. Shingijutsu Communications. In practice, the polarization state of the illumination light is measured at a plurality of positions on the wafer surface while the pinhole member 90 (therefore, pinhole 90a) is two-dimensionally moved along the wafer surface. At this time, the wafer surface polarization monitor 90 detects a change of the light intensity distribution on the two-dimensional detection surface 97a, whereby it can measure a distribution of polarization states of the illumination light in the pupil on the basis of the detected distribution information.


The wafer surface polarization monitor 90 can also be configured using a half wave plate instead of the quarter wave plate 95 as a phase shifter. With use of any kind of phase shifter, in order to measure the polarization state, i.e., the four Stokes parameters, it is necessary to detect the change of the light intensity distribution on the detection surface 97a in at least four different states, by changing the relative angle around the optical axis between the phase shifter and the polarizer (polarization beam splitter 96) or by moving the phase shifter or the polarizer away from the optical path. The present embodiment is configured to rotate the quarter wave plate 95 as a phase shifter around the optical axis, but the polarization beam splitter 96 as a polarizer may be rotated around the optical axis, or both of the phase shifter and the polarizer may be rotated around the optical axis. Instead of this operation, or in addition to this operation, one or both of the quarter wave plate 95 as a phase shifter and the polarization beam splitter 96 as a polarizer may be moved into and away from the optical path.


In the wafer surface polarization monitor 90, the polarization state of light can vary depending upon the polarization characteristic of the reflector 93. In this case, since the polarization characteristic of the reflector 93 is preliminarily known, the polarization state of the illumination light can be accurately measured by compensating the measurement result of the wafer surface polarization monitor 90 on the basis of the influence of the polarization characteristic of reflector 93 on the polarization state by some calculation. In other cases where the polarization state varies due to another optical component such as a lens, as well as the reflector, the polarization state of the illumination light can also be accurately measured by compensating the measurement result in the same manner.


The evaluation for the distribution of polarization states of illumination light in the pupil will be specifically described below. A degree of specific polarization DSP is first calculated for each of rays passing a point (or a microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane. The XYZ coordinate system used in FIGS. 1, 16, and 18 will be used in the description hereinafter. The above-described point (microscopic area) on the pupil corresponds to a pixel in the two-dimensional CCD 97, and the point (microscopic area) on the image plane to XY coordinates of the pinhole 90a.


This degree of specific polarization DSP is represented by the following equation:

DSP=(Ix−Iy)/(Ix+Iy),  (3)

where Ix is the intensity of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in a specific ray passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane, and Iy the intensity of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the specific ray. This degree of specific polarization DSP is synonymous with horizontal linear polarization intensity minus vertical linear polarization intensity S1 over total intensity S0, (S1/S0).


We can also define a right polarization rate RSPh for horizontal polarization (polarization to become S-polarization for diffracted light by a mask pattern horizontally extending in the pattern surface), and a right polarization rate RSPv for vertical polarization (polarization to become S-polarization for diffracted light by a mask pattern vertically extending in the pattern surface) according to Eqs (4) and (5) below from the intensity Ix of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in the specific ray passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane and the intensity Iy of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the specific ray.

RSPh=Ix/(Ix+Iy)  (4)
RSPv=Iy/(Ix+Iy)  (5)


RSPh and RSPv both are 50% in ideal unpolarized illumination, RSPh is 100% in ideal horizontal polarization, and RSPv is 100% in ideal vertical polarization.


When a polarization degree V is defined by Eqs (6)-(9) below for each of rays passing a point (or microscopic area) on the pupil and arriving at a point (microscopic area) on the image plane, an average polarization degree V(Ave) can be defined as Eq (10) below for a bundle of rays passing a predetermined effective light source region and arriving at a point (microscopic area) on the image plane.












V
=



(


S
1
2

+

S
2
2

+

S
3
2


)


1


/


2




/



S
0








=


(


S
1

'
2


+

S
2

'
2


+

S
3

'
2



)


1


/


2









(
6
)








S
1

'

=


S
1



/



S
0






(
7
)








S
2

'

=


S
2



/



S
0






(
8
)








S
3

'

=


S
3



/



S
0






(
9
)







In the above equations, S0 represents the total intensity, S1 horizontal linear polarization intensity minus vertical linear polarization intensity, S2 45° linear polarization intensity minus 135° linear polarization intensity, and S3 right-handed circular polarization intensity minus left-handed circular polarization intensity.

V(Ave)=Σ[S0(xi,yiV(xi,yi)]/ΣS0(xi,yi)  (10)


In Eq (10), S0(xi,yi) represents the total intensity S0 for rays passing a point (or microscopic area) on a predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, and V(xi,yi) the polarization degree of a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane.


In addition, we can define an average specific polarization rate RSPh(Ave) about horizontal polarization by Eq (11) below and an average specific polarization rate RSPh(Ave) about vertical polarization by Eq (12), for a bundle of rays passing the predetermined effective light source region and arriving at a point (microscopic area) on the image plane.














RSP
h



(
Ave
)


=


Ix


(
Ave
)




/



(

Ix
+
Iy

)


Ave







=


Σ


[



S
0



(


x
i

,

y
i


)


·


RSP
h



(


x
i

,

y
i


)



]




/


Σ







S
0



(


x
i

,

y
i


)










(
11
)











RSP
v



(
Ave
)


=


Iy


(
Ave
)




/



(

Ix
+
Iy

)


Ave







=


Σ


[



S
0



(


x
i

,

y
i


)


·


RSP
v



(


x
i

,

y
i


)



]




/


Σ







S
0



(


x
i

,

y
i


)










(
12
)







Ix(Ave) represents an average intensity of the component of X-directional polarization (polarization with the direction of oscillation along the X-direction on the pupil) in a bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, Iy(Ave) an average intensity of the component of Y-directional polarization (polarization with the direction of oscillation along the Y-direction on the pupil) in the bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, RSPh(xi,yi) a right polarization rate for horizontal polarization of a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, and RSPv(xi,yi) a right polarization rate for vertical polarization of a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane. In addition, (Ix+Iy)Ave is an average intensity of an entire beam passing the predetermined effective light source region.


Here, RSPh(xi,yi) and RSPv(xi,yi) both are 50% in ideal unpolarized illumination, RSPh(xi,yi) is 100% in ideal horizontal polarization, and RSPv(xi,yi) is 100% in ideal vertical polarization.


Then we can define an average specific polarization degree DSP(AVE) as Eq (13) below, for a bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane.













DSP


(
Ave
)


=


(

Ix
-
Iy

)


Ave


/



(

Ix
+
Iy

)


Ave







=

{


Σ


[


Ix


(


x
i

,

y
i


)


-

Iy


(


x
i

,

y
i


)



]




/



Σ


[


Ix


(


x
i

,

y
i


)


+

Iy


(


x
i

,

y
i


)



]



}







=



S
1





(
Ave
)








=

{

Σ






S
1



/


Σ






S
0


}








(
13
)







Here, (Ix−Iy)Ave represents an average of differences between intensities of the X-directional polarization component in a bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane and intensities of the Y-directional polarization component in the bundle of rays passing the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, Ix(xi,yi) the intensity of the X-directional polarization component in a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, Iy(xi,yi) the intensity of the Y-directional polarization component in a ray passing a point (or microscopic area) on the predetermined effective light source region (xi,yi) and arriving at a point (microscopic area) on the image plane, and S1′(Ave) an average of the S1′ component in the predetermined effective light source region (xi,yi).


In Eq (13), DSP(Ave) becomes 0 in ideal unpolarized illumination, DSP(Ave) becomes 1 in ideal horizontal polarization, and DSP(Ave) becomes −1 in ideal vertical polarization.


In the illumination optical apparatus of the present embodiment and, therefore, in the exposure apparatus, it can be assumed that the interior of the predetermined effective light source region is linear polarized light if the average specific polarization rates RSPh(Ave), RSPv(Ave) in the predetermined effective light source region satisfy the following relations:

RSPh(Ave)>70%, and RSPv(Ave)>70%.

Where the average specific polarization rates RSPh(Ave), RSPv(Ave) fail to satisfy the above conditions, the desired linear polarization state with the plane of polarization in the predetermined direction is not realized in the circumferentially polarized annular illumination, the circumferentially polarized quadrupole illumination, the circumferentially polarized dipole illumination, and so on, and it is thus infeasible to achieve an improvement in the imaging performance for a pattern with a thin line width having a specific pitch direction.


For example, in a case where the quartered, circumferentially polarized annular illumination is implemented by use of the quartered polarization-modulating element 10f shown in FIG. 13, the secondary light source 31 of the annular shape is divided into four segments, as shown in FIG. 20, and the average specific polarization rates RSPh(Ave), RSPv(Ave) are evaluated for each of the segmental regions 31A1, 31A2, 31C1, 31C2.


The exposure apparatus according to the foregoing embodiment is able to produce microdevices (semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.) by illuminating a mask (reticle) by the illumination optical apparatus (illumination step) and projecting a pattern for transcription formed on the mask, onto a photosensitive substrate by use of the projection optical system (exposure step). The following will describe an example of a procedure of producing semiconductor devices as microdevices by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate by means of the exposure apparatus of the foregoing embodiment, with reference to the flowchart of FIG. 9.


The first step 301 in FIG. 9 is to deposit a metal film on each of wafers in one lot. The next step 302 is to apply a photoresist onto the metal film on each wafer in the lot. Thereafter, step 303 is to sequentially transcribe an image of a pattern on a mask into each shot area on each wafer in the lot, through the projection optical system by use of the exposure apparatus of the foregoing embodiment. Subsequently, step 304 is to perform development of the photoresist on each wafer in the lot, and step 305 thereafter is to perform etching with the resist pattern as a mask on each wafer in the lot, thereby forming a circuit pattern corresponding to the pattern on the mask, in each shot area on each wafer. Thereafter, devices such as semiconductor elements are produced through execution of formation of circuit patterns in upper layers and others. The semiconductor device production method as described above permits us to produce the semiconductor devices with extremely fine circuit patterns at high throughput.


The exposure apparatus of the foregoing embodiment can also be applied to production of a liquid crystal display element as a microdevice in such a manner that predetermined patterns (a circuit pattern, an electrode pattern, etc.) are formed on a plate (glass substrate). An example of a procedure of this production will be described below with reference to the flowchart of FIG. 10. In FIG. 10, pattern forming step 401 is to execute a so-called photolithography step of transcribing a pattern on a mask onto a photosensitive substrate (a glass substrate coated with a resist or the like) by use of the exposure apparatus of the foregoing embodiment. In this photolithography step, the predetermined patterns including a number of electrodes and others are formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to steps such as a development step, an etching step, a resist removing step, etc., to form the predetermined patterns on the substrate, followed by next color filter forming step 402.


The next color filter forming step 402 is to form a color filter in which a number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or in which a plurality of sets of filters of three stripes of R, G and B are arrayed in the direction of horizontal scan lines. After the color filter forming step 402, cell assembly step 403 is carried out. The cell assembly step 403 is to assemble a liquid crystal panel (liquid crystal cell), using the substrate with the predetermined patterns obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and so on.


In the cell assembly step 403, for example, a liquid crystal is poured into the space between the substrate with the predetermined patterns obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402 to produce the liquid crystal panel (liquid crystal cell). Thereafter, module assembly step 404 is carried out to attach such components as an electric circuit, a backlight, and so on for implementing the display operation of the assembled liquid crystal panel (liquid crystal cell), to complete the liquid crystal display element. The production method of the liquid crystal display element described above permits us to produce the liquid crystal display elements with extremely fine circuit patterns at high throughput.


The foregoing embodiment is arranged to use the KrF excimer laser light (wavelength: 248 nm) or the ArF excimer laser light (wavelength: 193 nm) as the exposure light, but, without having to be limited to this, the present invention can also be applied to other appropriate laser light sources, e.g., an F2 laser light source for supplying laser light of the wavelength of 157 nm. Furthermore, the foregoing embodiment described the present invention, using the exposure apparatus with the illumination optical apparatus as an example, but it is apparent that the present invention can be applied to ordinary illumination optical apparatus for illuminating the surface to be illuminated, except for the mask and wafer.


In the foregoing embodiment, it is also possible to apply the so-called liquid immersion method, which is a technique of filling a medium (typically, a liquid) with a refractive index larger than 1.1 in the optical path between the projection optical system and the photosensitive substrate. In this case, the technique of filling the liquid in the optical path between the projection optical system and the photosensitive substrate can be selected from the technique of locally filling the liquid as disclosed in PCT International Publication No. WO99/49504, the technique of moving a stage holding a substrate as an exposure target in a liquid bath as disclosed in Japanese Patent Application Laid-Open No. 6-124873, the technique of forming a liquid bath in a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-Open No. 10-303114, and so on.


The liquid is preferably one that is transparent to the exposure light, that has the refractive index as high as possible, and that is stable against the projection optical system and the photoresist applied to the surface of the substrate; for example, where the exposure light is the KrF excimer laser light or the ArF excimer laser light, pure water or deionized water can be used as the liquid. Where the F2 laser light is used as the exposure light, the liquid can be a fluorinated liquid capable of transmitting the F2 laser light, e.g., fluorinated oil or perfluoropolyether (PFPE).


From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.

Claims
  • 1. An illumination optical apparatus which illuminates an object with illumination light, the illumination optical apparatus comprising: a fly's eye lens arranged in an optical path of the illumination light so that a rear focal plane of the fly's eye lens is substantially located on an illumination pupil plane of the illumination optical apparatus;a polarization modulator made of an optical material with optical activity and provided with an uneven profile on at least one of an entrance surface and an exit surface of the polarization modulator such that the polarization modulator has different thicknesses of the optical material with respect to different positions on the entrance surface, the polarization modulator being arranged in the optical path on an incidence side of the fly's eye lens such that a direction of an optic axis of the optical material is substantially coincident with a direction of an optical axis of the illumination optical apparatus; anda plurality of optical elements arranged in the optical path on the incidence side of the fly's eye lens, the plurality of optical elements being movable relative to each other and modulating a light intensity distribution of the illumination light on the illumination pupil plane by moving the plurality of optical elements relative to each other;wherein the polarization modulator rotates a polarization direction of the illumination light and forms a linearly polarized state of the illumination light on the illumination pupil plane by rotating the polarization direction of the illumination light, the linearly polarized state having polarization directions being substantially coincident with an azimuthal direction about the optical axis or a radial direction centered around the optical axis on the illumination pupil plane.
  • 2. The illumination optical apparatus according to claim 1, further comprising an optical system including a lens element arranged in the optical path of the illumination light from the fly's eye lens, which irradiates the object with the illumination light from the fly's eye lens in a polarization state in which a principal component is S-polarized light with respect to the object.
  • 3. The illumination optical apparatus according to claim 1, wherein a first thickness of the polarization modulator in an optical path of a first part of the illumination light is different from a second thickness of the polarization modulator in an optical path of a second part of the illumination light, and the first part of the illumination light passes through a first portion of the pupil plane away from the optical axis, and the second part of the illumination light passes through a second portion of the illumination pupil plane away from the optical axis, the first and second portions being different from each other.
  • 4. The illumination optical apparatus according to claim 3, further comprising a polarization state converter arranged in the optical path on an incidence side of the polarization modulator, wherein the polarization state converter converts a polarization state of the illumination light from a first polarization state including a substantially single polarization into a second polarization state different from the first polarization state.
  • 5. The illumination optical apparatus according to claim 4, wherein a principal component of the second polarization state is linearly polarized light polarized substantially in the single direction.
  • 6. The illumination optical apparatus according to claim 4, wherein a principal component of the first polarization state is linearly polarized light, circularly polarized light or elliptically polarized light.
  • 7. The illumination optical apparatus according to claim 4, wherein the polarization state converter comprises at least one of a half wavelength plate and a quarter wavelength plate.
  • 8. The illumination optical apparatus according to claim 4, wherein the first and second portions are included in an annular region about the optical axis.
  • 9. The illumination optical apparatus according to claim 4, wherein the first and second portions are substantially discrete from each other and are aligned along a circumference about the optical axis.
  • 10. The illumination optical apparatus according to claim 3, wherein the first and second portions are included in an annular region about the optical axis.
  • 11. The illumination optical apparatus according to claim 10, wherein the first and second portions are substantially discrete from each other.
  • 12. The illumination optical apparatus according to claim 3, wherein the first and second portions are substantially discrete from each other and are aligned along a circumference about the optical axis.
  • 13. The illumination optical apparatus according to claim 1, further comprising a polarization state converter arranged in the optical path on an incidence side of the polarization modulator, wherein the polarization state converter converts a polarization state of the illumination light from a first polarization state including a substantially single polarization into a second polarization state different from the first polarization state.
  • 14. The illumination optical apparatus according to claim 13, wherein a principal component of the second polarization state is linearly polarized light polarized substantially in the single direction.
  • 15. The illumination optical apparatus according to claim 13, wherein a principal component of the first polarization state is linearly polarized light, circularly polarized light or elliptically polarized light.
  • 16. The illumination optical apparatus according to claim 13, wherein the polarization state converter comprises at least one of a half wavelength plate and a quarter wavelength plate.
  • 17. An exposure apparatus which exposes a substrate to light via an object having a pattern, the exposure apparatus comprising: a stage which holds the substrate,the illumination optical apparatus as defined in claim 1 which illuminates the pattern with the light; anda projection optical system which projects an image of the pattern illuminated with the light onto the substrate held by the stage.
  • 18. The exposure apparatus according to claim 17, wherein the substrate is exposed to the light through liquid.
  • 19. The exposure apparatus according to claim 17, wherein the illumination optical apparatus illuminates the object with the light in a polarization state in which a principal component is S-polarized light with respect to the object.
  • 20. The exposure apparatus according to claim 17, wherein a first thickness of the polarization modulator in an optical path of a first part of the light is different from a second thickness of the polarization modulator in an optical path of a second part of the light, and the first part of the light passes through a first portion of the pupil plane away from the optical axis, and the second part of the light passes through a second portion of the illumination pupil plane away from the optical axis, the first and second portions being different from each other.
  • 21. The exposure apparatus according to claim 20, further comprising a polarization state converter arranged in the optical path on an incidence side of the polarization modulator, wherein the polarization state converter converts a polarization state of the illumination light from a first polarization state including a substantially single polarization into a second polarization state different from the first polarization state.
  • 22. The exposure apparatus according to claim 21, wherein a principal component of the second polarization state is linearly polarized light polarized substantially in the single direction.
  • 23. The exposure apparatus according to claim 21, wherein a principal component of the first polarization state is linearly polarized light, circularly polarized light or elliptically polarized light.
  • 24. The exposure apparatus according to claim 21, wherein the polarization state converter comprises at least one of a half wavelength plate and a quarter wavelength plate.
  • 25. The exposure apparatus according to claim 20, wherein the first and second portions are included in an annular region about the optical axis.
  • 26. The exposure apparatus according to claim 25, wherein the first and second portions are substantially discrete from each other.
  • 27. The exposure apparatus according to claim 20, wherein the first and second portions are substantially discrete from each other and are aligned along a circumference about the optical axis.
  • 28. A device manufacturing method, comprising: transferring a pattern to a substrate by using the exposure apparatus as defined in claim 17; anddeveloping the substrate to which the pattern is transferred.
  • 29. The device manufacturing method according to claim 28, wherein the pattern is transferred to the substrate with light through liquid.
  • 30. An exposure method which exposes a substrate to light via an object having a pattern, the exposure method comprising: holding the substrate by a stage;illuminating the pattern with the light by using the illumination optical apparatus as defined in claim 1; andprojecting an image of the pattern illuminated with the light onto the substrate held by the stage.
  • 31. The exposure method according to claim 30, wherein the substrate is exposed to the light through liquid.
  • 32. A device manufacturing method, comprising: transferring a pattern to a substrate by using the exposure method as defined in claim 30; anddeveloping the substrate to which the pattern is transferred.
  • 33. The device manufacturing method according to claim 32, wherein the pattern is transferred to the substrate with light through liquid.
Priority Claims (2)
Number Date Country Kind
2004-030555 Feb 2004 JP national
2004-358218 Dec 2004 JP national
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a Continuation of application Ser. No. 13/067,958 filed Jul. 11, 2011, which is a Continuation of application Ser. No. 12/461,801 filed Aug. 25, 2009 (abandoned), which is Continuation of application Ser. No. 11/347,421 filed Feb. 6, 2006 (abandoned), which is a Continuation-In-Part of Application No. PCT/JP2005/000407 filed on Jan. 14, 2005, which claims priority to Japanese Application Nos. 2004-030555 filed Feb. 6, 2004 and 2004-358218 filed Dec. 10, 2004. The disclosures of the prior applications are hereby incorporated herein by reference in their entireties.

US Referenced Citations (284)
Number Name Date Kind
3146294 Koester et al. Aug 1964 A
3180216 Osterberg Apr 1965 A
3758201 MacNeille Sep 1973 A
3892469 Lotspeich Jul 1975 A
3892470 Lotspeich Jul 1975 A
4103260 Buchman Jul 1978 A
4175830 Marié Nov 1979 A
4198123 Kremen Apr 1980 A
4211471 Marié Jul 1980 A
4286843 Reytblatt Sep 1981 A
4346164 Tabarelli et al. Aug 1982 A
4370026 Dubroeucq et al. Jan 1983 A
4744615 Fan et al. May 1988 A
4755027 Schafer Jul 1988 A
4952815 Nishi Aug 1990 A
4981342 Fiala Jan 1991 A
5072126 Progler Dec 1991 A
5216541 Takesue et al. Jun 1993 A
5251222 Hester et al. Oct 1993 A
5253110 Ichihara et al. Oct 1993 A
5272501 Nishi et al. Dec 1993 A
5312513 Florence et al. May 1994 A
5345292 Shiozawa et al. Sep 1994 A
5348837 Fukuda et al. Sep 1994 A
5365371 Kamon Nov 1994 A
5382999 Kamon Jan 1995 A
5436761 Kamon Jul 1995 A
5448336 Shiraishi Sep 1995 A
5459000 Unno Oct 1995 A
5467166 Shiraishi Nov 1995 A
5473465 Ye Dec 1995 A
5541026 Matsumoto Jul 1996 A
5559583 Tanabe Sep 1996 A
5610683 Takahashi Mar 1997 A
5610684 Shiraishi Mar 1997 A
5621498 Inoue et al. Apr 1997 A
5627626 Inoue et al. May 1997 A
5631721 Stanton et al. May 1997 A
5663785 Kirk et al. Sep 1997 A
5673103 Inoue et al. Sep 1997 A
5675401 Wangler et al. Oct 1997 A
5677755 Oshida et al. Oct 1997 A
5677757 Taniguchi et al. Oct 1997 A
5684567 Shiozawa Nov 1997 A
5691803 Song et al. Nov 1997 A
5707501 Inoue et al. Jan 1998 A
5739898 Ozawa et al. Apr 1998 A
5838408 Inoue et al. Nov 1998 A
5841500 Patal Nov 1998 A
5933219 Unno Aug 1999 A
5969441 Loopstra et al. Oct 1999 A
6031658 Riza Feb 2000 A
6191829 Hashimoto Feb 2001 B1
6191880 Schuster Feb 2001 B1
6208407 Loopstra Mar 2001 B1
6211944 Shiraishi Apr 2001 B1
6229647 Takahashi et al. May 2001 B1
6233041 Shiraishi May 2001 B1
6238063 Tanitsu et al. May 2001 B1
6252647 Shiraishi Jun 2001 B1
6252712 Fürter et al. Jun 2001 B1
6259512 Mizouchi Jul 2001 B1
6304317 Taniguchi et al. Oct 2001 B1
6333776 Taniguchi Dec 2001 B1
6341007 Nishi et al. Jan 2002 B1
6361909 Gau et al. Mar 2002 B1
6366404 Hiraiwa et al. Apr 2002 B1
6373614 Miller Apr 2002 B1
6392800 Schuster May 2002 B2
6400441 Nishi et al. Jun 2002 B1
6404482 Shiraishi Jun 2002 B1
6406148 Marshall et al. Jun 2002 B1
6452662 Mulkens et al. Sep 2002 B2
6466303 Omura et al. Oct 2002 B1
6483573 Schuster Nov 2002 B1
6498869 Yao Dec 2002 B1
6522483 Kreuzer Feb 2003 B2
6535273 Maul Mar 2003 B1
6538247 Iizuka Mar 2003 B2
6549269 Nishi et al. Apr 2003 B1
6577379 Boettiger et al. Jun 2003 B1
6583931 Hiraiwa et al. Jun 2003 B2
6590634 Nishi et al. Jul 2003 B1
6597430 Nishi et al. Jul 2003 B1
6606144 Omura Aug 2003 B1
6636295 Shiozawa Oct 2003 B2
6646690 Takezawa Nov 2003 B1
6661499 Omura et al. Dec 2003 B2
6665119 Kurtz et al. Dec 2003 B1
6674513 Omura Jan 2004 B2
6674514 Shinoda Jan 2004 B2
6680798 Kreuzer Jan 2004 B2
6698891 Kato Mar 2004 B2
6710855 Shiraishi Mar 2004 B2
6762824 Mori Jul 2004 B2
6769273 Nakagawa et al. Aug 2004 B1
6771350 Nishinaga Aug 2004 B2
6774984 Gerhard Aug 2004 B2
6831731 Omura et al. Dec 2004 B2
6836365 Goto Dec 2004 B2
6836380 Kreuzer Dec 2004 B2
6842223 Tyminski Jan 2005 B2
6844982 Omura Jan 2005 B2
6856379 Schuster Feb 2005 B2
6864961 Omura Mar 2005 B2
6870668 Ozawa Mar 2005 B2
6876437 Kawahara Apr 2005 B2
6885493 Ljungblad et al. Apr 2005 B2
6891655 Grebinski et al. May 2005 B2
6900915 Nanjyo et al. May 2005 B2
6913373 Tanaka et al. Jul 2005 B2
6930758 Schuster et al. Aug 2005 B2
6934009 Terashi Aug 2005 B2
6958806 Mulder et al. Oct 2005 B2
6965484 Shaver Nov 2005 B2
6970233 Blatchford Nov 2005 B2
6977718 LaFontaine Dec 2005 B1
6999157 Kohno Feb 2006 B2
7009686 Kawashima et al. Mar 2006 B2
7031077 Kreuzer Apr 2006 B2
7038763 Mulder et al. May 2006 B2
7061583 Mulkens et al. Jun 2006 B2
7095546 Mala et al. Aug 2006 B2
7098992 Ohtsuki et al. Aug 2006 B2
7130025 Tsuji Oct 2006 B2
7145720 Krähmer et al. Dec 2006 B2
7217503 Saitoh et al. May 2007 B2
7239446 Kreuzer Jul 2007 B2
7245353 Mulkens et al. Jul 2007 B2
7245355 Mulkens et al. Jul 2007 B2
7295286 Matsuura Nov 2007 B2
7345740 Wagner et al. Mar 2008 B2
7408616 Gruner et al. Aug 2008 B2
7423731 Tanitsu et al. Sep 2008 B2
7433046 Everett et al. Oct 2008 B2
7446858 Kudo et al. Nov 2008 B2
7508493 Takeuchi et al. Mar 2009 B2
7847921 Gruner et al. Dec 2010 B2
8259393 Fiolka et al. Sep 2012 B2
8270077 Fiolka et al. Sep 2012 B2
8279524 Fiolka et al. Oct 2012 B2
8289623 Fiolka et al. Oct 2012 B2
8320043 Fiolka et al. Nov 2012 B2
9140992 Shiraishi Sep 2015 B2
9146474 Kudo et al. Sep 2015 B2
9164209 Toyoda Oct 2015 B2
9423697 Shiraishi Aug 2016 B2
9423698 Shiraishi Aug 2016 B2
9760014 Shiraishi Sep 2017 B2
9885872 Toyoda Feb 2018 B2
20010012154 Schuster Aug 2001 A1
20010019404 Schuster et al. Sep 2001 A1
20010035942 Hara et al. Nov 2001 A1
20010046038 Mulkens et al. Nov 2001 A1
20010052968 Shiozawa Dec 2001 A1
20020001134 Shinoda Jan 2002 A1
20020008863 Taniguchi et al. Jan 2002 A1
20020024008 Iizuka Feb 2002 A1
20020027719 Kreuzer Mar 2002 A1
20020080338 Taniguchi Jun 2002 A1
20020085176 Hiraiwa et al. Jul 2002 A1
20020085276 Tanitsu et al. Jul 2002 A1
20020101572 Shiraishi Aug 2002 A1
20020126380 Schuster Sep 2002 A1
20020152452 Socha Oct 2002 A1
20020167653 Mulkens et al. Nov 2002 A1
20020176166 Schuster Nov 2002 A1
20020177048 Saitoh et al. Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20020186462 Gerhard Dec 2002 A1
20020191288 Gruner et al. Dec 2002 A1
20020196416 Shiraishi Dec 2002 A1
20020196629 Terashi Dec 2002 A1
20030007158 Hill Jan 2003 A1
20030011756 Omura et al. Jan 2003 A1
20030025890 Nishinaga et al. Feb 2003 A1
20030038225 Mulder et al. Feb 2003 A1
20030038931 Toyoda et al. Feb 2003 A1
20030043356 Shiraishi Mar 2003 A1
20030053036 Fujishima et al. Mar 2003 A1
20030086071 McGuire, Jr. May 2003 A1
20030098959 Hagiwara et al. May 2003 A1
20030103196 Hirukawa Jun 2003 A1
20030128349 Unno Jul 2003 A1
20030160949 Komatsuda et al. Aug 2003 A1
20030174400 Patel et al. Sep 2003 A1
20030206289 Matsuyama Nov 2003 A1
20030214571 Ishikawa et al. Nov 2003 A1
20030227607 Kato et al. Dec 2003 A1
20040004771 Omura Jan 2004 A1
20040012764 Mulder et al. Jan 2004 A1
20040053148 Morohoshi Mar 2004 A1
20040057034 Zinn et al. Mar 2004 A1
20040057036 Kawashima et al. Mar 2004 A1
20040100629 Stokowski et al. May 2004 A1
20040104654 Lee et al. Jun 2004 A1
20040119954 Kawashima et al. Jun 2004 A1
20040120044 Kreuzer Jun 2004 A1
20040150806 Brunotte et al. Aug 2004 A1
20040160582 Lof et al. Aug 2004 A1
20040169924 Flagello et al. Sep 2004 A1
20040174512 Toyoda et al. Sep 2004 A1
20040184019 Totzeck et al. Sep 2004 A1
20040207386 Durr Oct 2004 A1
20040227923 Flagello et al. Nov 2004 A1
20040240073 Gerhard Dec 2004 A1
20050024612 Hirukawa et al. Feb 2005 A1
20050041232 Yamada et al. Feb 2005 A1
20050094268 Fiolka et al. May 2005 A1
20050095749 Krellmann et al. May 2005 A1
20050122499 Omura et al. Jun 2005 A1
20050128458 Blatchford Jun 2005 A1
20050134825 Schuster Jun 2005 A1
20050146704 Gruner et al. Jul 2005 A1
20050168790 Latypov et al. Aug 2005 A1
20050237509 Blatchford Oct 2005 A1
20050237527 Mori Oct 2005 A1
20050264885 Albert Dec 2005 A1
20050270608 Shiozawa et al. Dec 2005 A1
20060012769 Suzuki Jan 2006 A1
20060050261 Brotsack Mar 2006 A1
20060055834 Tanitsu et al. Mar 2006 A1
20060072095 Kudo et al. Apr 2006 A1
20060077370 Mulkens et al. Apr 2006 A1
20060092398 McCarthy May 2006 A1
20060132748 Fukuhara Jun 2006 A1
20060139611 Wagner et al. Jun 2006 A1
20060146384 Schultz et al. Jul 2006 A1
20060158624 Toyoda Jul 2006 A1
20060164711 Govil et al. Jul 2006 A1
20060170901 Tanitsu et al. Aug 2006 A1
20060171138 Muramatsu et al. Aug 2006 A1
20060203214 Shiraishi Sep 2006 A1
20060203341 Schuster Sep 2006 A1
20060232841 Toishi et al. Oct 2006 A1
20060291057 Fiolka et al. Dec 2006 A1
20070008511 De Boeij et al. Jan 2007 A1
20070019179 Fiolka et al. Jan 2007 A1
20070058151 Eurlings et al. Mar 2007 A1
20070081114 Fiolka et al. Apr 2007 A1
20070146676 Tanitsu et al. Jun 2007 A1
20070296941 Omura Jun 2007 A1
20070183017 Hembd Aug 2007 A1
20070201338 Yaoita et al. Aug 2007 A1
20070263199 Fiolka et al. Nov 2007 A1
20070296936 Kato et al. Dec 2007 A1
20080021948 Wilson et al. Jan 2008 A1
20080024747 Kudo et al. Jan 2008 A1
20080030706 Yamamoto Feb 2008 A1
20080030707 Tanaka et al. Feb 2008 A1
20080068572 Kudo et al. Mar 2008 A1
20080316459 Fiolka et al. Dec 2008 A1
20080316598 Fiolka et al. Dec 2008 A1
20090002675 Fiolka et al. Jan 2009 A1
20090073411 Tanitsu Mar 2009 A1
20090073414 Tanitsu et al. Mar 2009 A1
20090073441 Tanitsu et al. Mar 2009 A1
20090091730 Tanaka Apr 2009 A1
20090097007 Tanaka Apr 2009 A1
20090109417 Tanitsu Apr 2009 A1
20090116093 Tanitsu May 2009 A1
20090122292 Shiraishi May 2009 A1
20090128886 Hirota May 2009 A1
20090147233 Toyoda Jun 2009 A1
20090147234 Toyoda Jun 2009 A1
20090147235 Toyoda Jun 2009 A1
20090185154 Tanitsu Jul 2009 A1
20090185156 Kudo et al. Jul 2009 A1
20090284729 Shiraishi Nov 2009 A1
20090316132 Tanitsu Dec 2009 A1
20090323041 Toyoda Dec 2009 A1
20100141921 Omura Jun 2010 A1
20100141926 Omura Jun 2010 A1
20100142051 Omura Jun 2010 A1
20110037962 Tanitsu Feb 2011 A1
20110069296 Gruner et al. Mar 2011 A1
20110188019 Fiolka et al. Aug 2011 A1
20110205519 Kanayamaya et al. Aug 2011 A1
20110273692 Toyoda Nov 2011 A1
20110273693 Toyoda Nov 2011 A1
20110273697 Tanitsu et al. Nov 2011 A1
20110273698 Toyoda Nov 2011 A1
20110299055 Toyoda Dec 2011 A1
20170248853 Kudo et al. Aug 2017 A1
Foreign Referenced Citations (937)
Number Date Country
1453645 Nov 2003 CN
1501175 Jun 2004 CN
1573571 Feb 2005 CN
206 607 Feb 1984 DE
221 563 Apr 1985 DE
224 448 Jul 1985 DE
242 880 Feb 1987 DE
100 29 938 Jul 2001 DE
101 23 725 Nov 2002 DE
102 06 061 Sep 2003 DE
103 43 333 Apr 2005 DE
0 023 231 Feb 1981 EP
0 208 552 Jan 1987 EP
0 230 931 Aug 1987 EP
0 564 264 Oct 1993 EP
0 656 555 Jun 1995 EP
0 764 858 Aug 1996 EP
0 744 664 Nov 1996 EP
0 779 530 Jun 1997 EP
0 937 999 Aug 1999 EP
1 014 196 Jun 2000 EP
1 071 292 Jan 2001 EP
1069600 Jan 2001 EP
1 109 067 Jun 2001 EP
1 139 521 Oct 2001 EP
1 211 561 Jun 2002 EP
1 260 849 Nov 2002 EP
1 280 007 Jan 2003 EP
1 489 462 Dec 2004 EP
1 577 709 Sep 2005 EP
1 662 553 May 2006 EP
1 674 935 Jun 2006 EP
1 681 710 Jul 2006 EP
1 798 758 Jun 2007 EP
1 840 945 Oct 2007 EP
1 953 805 Aug 2008 EP
2 474 708 Jul 1981 FR
856621 Dec 1960 GB
A-44-4993 Feb 1969 JP
A-56-6666 Jan 1981 JP
A-57-117238 Jul 1982 JP
A-57-152129 Sep 1982 JP
A-57-153433 Sep 1982 JP
A-58-49932 Mar 1983 JP
U-58-45502 Mar 1983 JP
A-58-115945 Jul 1983 JP
A-58-202448 Nov 1983 JP
A-59-19912 Feb 1984 JP
A-59-155843 Sep 1984 JP
A-59-226317 Dec 1984 JP
A-61-44429 Mar 1986 JP
A-61-45923 Mar 1986 JP
A-61-91662 May 1986 JP
U-61-94342 Jun 1986 JP
A-61-156736 Jul 1986 JP
A-61-196532 Aug 1986 JP
A-61-217434 Sep 1986 JP
A-61-251025 Nov 1986 JP
A-61-270049 Nov 1986 JP
A-62-2539 Jan 1987 JP
A-62-2540 Jan 1987 JP
A-62-17705 Jan 1987 JP
A-62-65326 Mar 1987 JP
A-62-100161 May 1987 JP
A-62-120026 Jun 1987 JP
A-62-121417 Jun 1987 JP
A-62-122215 Jun 1987 JP
A-62-153710 Jul 1987 JP
A-62-183522 Aug 1987 JP
A-62-188316 Aug 1987 JP
A-62-203526 Sep 1987 JP
A-62-265722 Nov 1987 JP
A-63-12134 Jan 1988 JP
A-63-36526 Feb 1988 JP
A-63-73628 Apr 1988 JP
A-63-128713 Jun 1988 JP
A-63-131008 Jun 1988 JP
A-63-141313 Jun 1988 JP
A-63-157419 Jun 1988 JP
A-63-160192 Jul 1988 JP
A-63-231217 Sep 1988 JP
A-63-275912 Nov 1988 JP
A-63-292005 Nov 1988 JP
A-64-18002 Jan 1989 JP
A-64-26704 Feb 1989 JP
A-64-68926 Mar 1989 JP
A-1-91419 Apr 1989 JP
A-1-115033 May 1989 JP
A-1-147516 Jun 1989 JP
A-1-202833 Aug 1989 JP
A-1-214042 Aug 1989 JP
U-1-127379 Aug 1989 JP
A-1-255404 Oct 1989 JP
A-1-258550 Oct 1989 JP
A-1-276043 Nov 1989 JP
A-1-278240 Nov 1989 JP
A-1-286478 Nov 1989 JP
A-1-292343 Nov 1989 JP
A-1-314247 Dec 1989 JP
A-1-319964 Dec 1989 JP
A-2-42382 Feb 1990 JP
A-2-65149 Mar 1990 JP
A-2-65222 Mar 1990 JP
A-2-97239 Apr 1990 JP
A-2-106917 Apr 1990 JP
A-2-116115 Apr 1990 JP
A-2-139146 May 1990 JP
A-2-166717 Jun 1990 JP
A-2-261073 Oct 1990 JP
A-2-264901 Oct 1990 JP
A-02-285320 Nov 1990 JP
A-2-285320 Nov 1990 JP
A-2-287308 Nov 1990 JP
A-2-298431 Dec 1990 JP
A-2-311237 Dec 1990 JP
A-3-41399 Feb 1991 JP
A-3-64811 Mar 1991 JP
A-3-72298 Mar 1991 JP
A-3-94445 Apr 1991 JP
A-3-132663 Jun 1991 JP
A-3-134341 Jun 1991 JP
A-3-167419 Jul 1991 JP
A-3-168640 Jul 1991 JP
A-3-211812 Sep 1991 JP
A-3-263810 Nov 1991 JP
A-4-11613 Jan 1992 JP
A-4-32154 Feb 1992 JP
A-4-065603 Mar 1992 JP
A-4-96315 Mar 1992 JP
A-4-101148 Apr 1992 JP
A-04-101148 Apr 1992 JP
A-4-130710 May 1992 JP
A-4-132909 May 1992 JP
A-4-133414 May 1992 JP
A-4-152512 May 1992 JP
A-4-179115 Jun 1992 JP
A-4-186244 Jul 1992 JP
U-4-80052 Jul 1992 JP
A-4-211110 Aug 1992 JP
A-04-225357 Aug 1992 JP
A-4-225357 Aug 1992 JP
A-4-235558 Aug 1992 JP
A-4-265805 Sep 1992 JP
A-4-273245 Sep 1992 JP
A-4-273427 Sep 1992 JP
A-4-280619 Oct 1992 JP
A-4-282539 Oct 1992 JP
A-4-296092 Oct 1992 JP
A-4-297030 Oct 1992 JP
A-4-305915 Oct 1992 JP
A-4-305917 Oct 1992 JP
U-4-117212 Oct 1992 JP
A-4-330961 Nov 1992 JP
A-4-343307 Nov 1992 JP
A-4-350925 Dec 1992 JP
A-5-21314 Jan 1993 JP
A-5-45886 Feb 1993 JP
A-5-62877 Mar 1993 JP
A-5-90128 Apr 1993 JP
A-05-090128 Apr 1993 JP
A-05-109601 Apr 1993 JP
A-5-109601 Apr 1993 JP
A-5-127086 May 1993 JP
A-5-129184 May 1993 JP
A-5-134230 May 1993 JP
A-05-160002 Jun 1993 JP
A-5-160002 Jun 1993 JP
A-5-175098 Jul 1993 JP
A-5-199680 Aug 1993 JP
A-5-217837 Aug 1993 JP
A-5-217840 Aug 1993 JP
A-05-217840 Aug 1993 JP
A-5-226225 Sep 1993 JP
A-5-241324 Sep 1993 JP
A-5-243364 Sep 1993 JP
A-5-259069 Oct 1993 JP
A-05-283317 Oct 1993 JP
A-5-283317 Oct 1993 JP
A-5-304072 Nov 1993 JP
A-5-319774 Dec 1993 JP
A-5-323583 Dec 1993 JP
A-5-326370 Dec 1993 JP
A-05-326370 Dec 1993 JP
A-6-29204 Feb 1994 JP
A-6-42918 Feb 1994 JP
A-06-053120 Feb 1994 JP
A-6-53120 Feb 1994 JP
A-6-29102 Apr 1994 JP
A-6-97269 Apr 1994 JP
A-6-104167 Apr 1994 JP
A-6-118623 Apr 1994 JP
A-6-120110 Apr 1994 JP
B2-6-29102 Apr 1994 JP
A-6-36054 May 1994 JP
A-6-124126 May 1994 JP
A-6-124872 May 1994 JP
A-06-124872 May 1994 JP
A-6-124873 May 1994 JP
A-6-140306 May 1994 JP
A-6-148399 May 1994 JP
A-6-163350 Jun 1994 JP
A-06-163350 Jun 1994 JP
A-6-168866 Jun 1994 JP
A-6-177007 Jun 1994 JP
A-6-181157 Jun 1994 JP
H06-177006 Jun 1994 JP
A-6-186025 Jul 1994 JP
A-6-188169 Jul 1994 JP
A-06-196388 Jul 1994 JP
A-6-196388 Jul 1994 JP
A-6-204113 Jul 1994 JP
A-06-204121 Jul 1994 JP
A-6-204121 Jul 1994 JP
A-6-229741 Aug 1994 JP
A-6-241720 Sep 1994 JP
A-06-244082 Sep 1994 JP
A-6-244082 Sep 1994 JP
A-6-267825 Sep 1994 JP
A-06-267825 Sep 1994 JP
A-06-281869 Oct 1994 JP
A-6-283403 Oct 1994 JP
A-06-291023 Oct 1994 JP
A-6-310399 Nov 1994 JP
A-6-325894 Nov 1994 JP
A-6-326174 Nov 1994 JP
A-6-349701 Dec 1994 JP
A-7-057992 Mar 1995 JP
A-7-57993 Mar 1995 JP
A-7-69621 Mar 1995 JP
A-7-92424 Apr 1995 JP
A-07-122469 May 1995 JP
A-7-122469 May 1995 JP
A-7-132262 May 1995 JP
A-7-134955 May 1995 JP
A-7-135158 May 1995 JP
A-7-135165 May 1995 JP
A-7-147223 Jun 1995 JP
A-07-147223 Jun 1995 JP
A-7-161622 Jun 1995 JP
A-7-167998 Jul 1995 JP
A-7-168286 Jul 1995 JP
A-7-174974 Jul 1995 JP
A-7-176468 Jul 1995 JP
A-07-183201 Jul 1995 JP
A-7-183201 Jul 1995 JP
A-7-183214 Jul 1995 JP
A-7-190741 Jul 1995 JP
H07-176476 Jul 1995 JP
A-7-201723 Aug 1995 JP
A-07-201723 Aug 1995 JP
A-7-220989 Aug 1995 JP
A-7-220990 Aug 1995 JP
A-7-220995 Aug 1995 JP
A-07-220995 Aug 1995 JP
A-7-221010 Aug 1995 JP
A-7-230945 Aug 1995 JP
A-7-239212 Sep 1995 JP
A-7-243814 Sep 1995 JP
A-7-245258 Sep 1995 JP
A-7-263315 Oct 1995 JP
A-07-263315 Oct 1995 JP
A-7-283119 Oct 1995 JP
A-7-297272 Nov 1995 JP
A-07-307268 Nov 1995 JP
A-7-307268 Nov 1995 JP
A-7-318847 Dec 1995 JP
A-7-335748 Dec 1995 JP
A-8-10971 Jan 1996 JP
A-8-17709 Jan 1996 JP
A-8-22948 Jan 1996 JP
A-8-37149 Feb 1996 JP
A-8-37227 Feb 1996 JP
A-8-46751 Feb 1996 JP
A-8-63231 Mar 1996 JP
A-8-115868 May 1996 JP
A-8-136475 May 1996 JP
A-8-151220 Jun 1996 JP
A-8-162397 Jun 1996 JP
A-8-166475 Jun 1996 JP
A-8-171054 Jul 1996 JP
A-8-195375 Jul 1996 JP
A-8-203803 Aug 1996 JP
A-8-279549 Oct 1996 JP
A-8-288213 Nov 1996 JP
A-8-297699 Nov 1996 JP
A-8-316125 Nov 1996 JP
A-8-316133 Nov 1996 JP
A-8-330224 Dec 1996 JP
A-8-334695 Dec 1996 JP
A-8-335552 Dec 1996 JP
A-08-335552 Dec 1996 JP
A-9-7933 Jan 1997 JP
A-9-15834 Jan 1997 JP
A-9-22121 Jan 1997 JP
A-9-61686 Mar 1997 JP
A-9-82626 Mar 1997 JP
A-9-83877 Mar 1997 JP
A-9-92593 Apr 1997 JP
A-9-108551 Apr 1997 JP
A-9-115794 May 1997 JP
A-9-134870 May 1997 JP
A-9-148406 Jun 1997 JP
A-9-151658 Jun 1997 JP
A-9-160004 Jun 1997 JP
A-09-160219 Jun 1997 JP
A-9-160219 Jun 1997 JP
A-9-162106 Jun 1997 JP
A-9-178415 Jul 1997 JP
A-9-184787 Jul 1997 JP
A-09-184918 Jul 1997 JP
A-9-184918 Jul 1997 JP
A-9-186082 Jul 1997 JP
A-9-190969 Jul 1997 JP
A-9-213129 Aug 1997 JP
A-9-219358 Aug 1997 JP
A-09-219358 Aug 1997 JP
A-9-227294 Sep 1997 JP
A-9-232213 Sep 1997 JP
A-9-243892 Sep 1997 JP
A-9-246672 Sep 1997 JP
A-9-251208 Sep 1997 JP
A-9-281077 Oct 1997 JP
A-9-325255 Dec 1997 JP
A-9-326338 Dec 1997 JP
A-10-002865 Jan 1998 JP
A-10-3039 Jan 1998 JP
A-10-20195 Jan 1998 JP
A-10-32160 Feb 1998 JP
A-10-38517 Feb 1998 JP
A-10-38812 Feb 1998 JP
A-10-55713 Feb 1998 JP
A-10-62305 Mar 1998 JP
A-10-64790 Mar 1998 JP
A-10-79337 Mar 1998 JP
A-10-82611 Mar 1998 JP
A-10-503300 Mar 1998 JP
A-10-92735 Apr 1998 JP
A-10-97969 Apr 1998 JP
A-10-104427 Apr 1998 JP
A-10-116760 May 1998 JP
A-10-116778 May 1998 JP
A-10-135099 May 1998 JP
A-H10-116779 May 1998 JP
A-H10-125572 May 1998 JP
A-H10-134028 May 1998 JP
A-10-163099 Jun 1998 JP
A-10-163302 Jun 1998 JP
A-10-169249 Jun 1998 JP
A-10-189427 Jul 1998 JP
A-10-189700 Jul 1998 JP
A-10-206714 Aug 1998 JP
A-10-208993 Aug 1998 JP
A-10-209018 Aug 1998 JP
A-10-214783 Aug 1998 JP
A-10-228661 Aug 1998 JP
A-10-255319 Sep 1998 JP
A-10-294268 Nov 1998 JP
A-10-303114 Nov 1998 JP
A-10-340846 Dec 1998 JP
A-11-3849 Jan 1999 JP
A-11-3856 Jan 1999 JP
A-11-8194 Jan 1999 JP
A-11-14876 Jan 1999 JP
A-11-16816 Jan 1999 JP
A-11-40657 Feb 1999 JP
A-11-54426 Feb 1999 JP
A-11-74185 Mar 1999 JP
A-11-87237 Mar 1999 JP
A-11-111601 Apr 1999 JP
A-11-111818 Apr 1999 JP
A-11-111819 Apr 1999 JP
A-11-121328 Apr 1999 JP
A-11-135400 May 1999 JP
A-11-142556 May 1999 JP
A-11-150062 Jun 1999 JP
A-11-159571 Jun 1999 JP
A-11-162831 Jun 1999 JP
A-11-163103 Jun 1999 JP
A-11-164543 Jun 1999 JP
A-11-166990 Jun 1999 JP
A-11-98 Jul 1999 JP
A-11-176727 Jul 1999 JP
A-11-176744 Jul 1999 JP
A-11-195602 Jul 1999 JP
A-11-204390 Jul 1999 JP
A-11-204432 Jul 1999 JP
A-11-218466 Aug 1999 JP
A-11-219882 Aug 1999 JP
A-11-233434 Aug 1999 JP
A-11-238680 Aug 1999 JP
A-11-239758 Sep 1999 JP
A-11-260686 Sep 1999 JP
A-11-260791 Sep 1999 JP
A-11-264756 Sep 1999 JP
A-11-283903 Oct 1999 JP
A-11-288879 Oct 1999 JP
A-11-307610 Nov 1999 JP
A-11-312631 Nov 1999 JP
A-11-354624 Dec 1999 JP
A-2000-3874 Jan 2000 JP
A-2000-12453 Jan 2000 JP
A-2000-21742 Jan 2000 JP
A-2000-21748 Jan 2000 JP
A-2000-29202 Jan 2000 JP
A-2000-32403 Jan 2000 JP
A-2000-36449 Feb 2000 JP
A-2000-58436 Feb 2000 JP
A-2000-58441 Feb 2000 JP
A-2000-81320 Mar 2000 JP
A-2000-92815 Mar 2000 JP
A-2000-97616 Apr 2000 JP
A-2000-106340 Apr 2000 JP
A-2000-114157 Apr 2000 JP
A-2000-121491 Apr 2000 JP
A-2000-147346 May 2000 JP
A-2000-154251 Jun 2000 JP
A-2000-180371 Jun 2000 JP
A-2000-206279 Jul 2000 JP
A-2000-208407 Jul 2000 JP
A-2000-240717 Sep 2000 JP
A-2000-243684 Sep 2000 JP
A-2000-252201 Sep 2000 JP
A-2000-283889 Oct 2000 JP
A-2000-286176 Oct 2000 JP
A-2000-311853 Nov 2000 JP
A-2000-323403 Nov 2000 JP
A-2001-7015 Jan 2001 JP
A-2001-20951 Jan 2001 JP
A-2001-23996 Jan 2001 JP
A-2001-37201 Feb 2001 JP
A-2001-44097 Feb 2001 JP
A-2001-74240 Mar 2001 JP
A-2001-83472 Mar 2001 JP
A-2001-85307 Mar 2001 JP
A-2001-97734 Apr 2001 JP
A-2001-100311 Apr 2001 JP
A-2001-110707 Apr 2001 JP
A-2001-118773 Apr 2001 JP
A-2001-135560 May 2001 JP
A-2001-144004 May 2001 JP
3180133 Jun 2001 JP
A-2001-167996 Jun 2001 JP
A-2001-176766 Jun 2001 JP
A-2001-203140 Jul 2001 JP
2001-217188 Aug 2001 JP
A-2001-218497 Aug 2001 JP
A-2001-228401 Aug 2001 JP
A-2001-228404 Aug 2001 JP
A-2001-230323 Aug 2001 JP
A-2001-242269 Sep 2001 JP
A-2001-265581 Sep 2001 JP
A-2001-267227 Sep 2001 JP
A-2001-272764 Oct 2001 JP
A-2001-274083 Oct 2001 JP
A-2001-282526 Oct 2001 JP
A-2001-284228 Oct 2001 JP
A-2001-296105 Oct 2001 JP
A-2001-297976 Oct 2001 JP
A-2001-304332 Oct 2001 JP
A-2001-307982 Nov 2001 JP
A-2001-307983 Nov 2001 JP
A-2001-313250 Nov 2001 JP
B2-3246615 Nov 2001 JP
A-2001-338868 Dec 2001 JP
A-2001-345262 Dec 2001 JP
3246615 Jan 2002 JP
A-2002-14005 Jan 2002 JP
A-2002-15978 Jan 2002 JP
A-2002-16124 Jan 2002 JP
A-2002-43213 Feb 2002 JP
A-2002-57097 Feb 2002 JP
2002-075859 Mar 2002 JP
A-2002-66428 Mar 2002 JP
A-2002-71513 Mar 2002 JP
A-2002-75816 Mar 2002 JP
A-2002-075816 Mar 2002 JP
A-2002-75835 Mar 2002 JP
A-2002-075835 Mar 2002 JP
A-2002-91922 Mar 2002 JP
A-2002-93686 Mar 2002 JP
A-2002-93690 Mar 2002 JP
A-2002-100561 Apr 2002 JP
A-2002-118058 Apr 2002 JP
A-2002-141270 May 2002 JP
A-2002-158157 May 2002 JP
A-2002-162655 Jun 2002 JP
A-2002-170495 Jun 2002 JP
A-2002-190438 Jul 2002 JP
A-2002-195912 Jul 2002 JP
A-2002-198284 Jul 2002 JP
A-2002-202221 Jul 2002 JP
A-2002-203763 Jul 2002 JP
A-2002-208562 Jul 2002 JP
A-2002-520810 Jul 2002 JP
A-2002-222754 Aug 2002 JP
A-2002-227924 Aug 2002 JP
A-2002-231619 Aug 2002 JP
A-2002-258487 Sep 2002 JP
A-2002-261004 Sep 2002 JP
A-2002-263553 Sep 2002 JP
A-2002-277742 Sep 2002 JP
A-2002-289505 Oct 2002 JP
A-2002-305140 Oct 2002 JP
A-2002-323658 Nov 2002 JP
A-2002-324743 Nov 2002 JP
A-2002-329651 Nov 2002 JP
A-2002-334836 Nov 2002 JP
2002-359176 Dec 2002 JP
A-2002-353105 Dec 2002 JP
A-2002-357715 Dec 2002 JP
A-2002-359174 Dec 2002 JP
A-2002-362737 Dec 2002 JP
A-2002-365783 Dec 2002 JP
A-2002-367523 Dec 2002 JP
A-2002-367886 Dec 2002 JP
A-2002-373849 Dec 2002 JP
A-2003-15040 Jan 2003 JP
A-2003-015314 Jan 2003 JP
A-2003-17003 Jan 2003 JP
A-2003-17404 Jan 2003 JP
A-2003-28673 Jan 2003 JP
A-2003-35822 Feb 2003 JP
A-2003-035822 Feb 2003 JP
A-2003-43223 Feb 2003 JP
A-2003-45219 Feb 2003 JP
A-2003-45712 Feb 2003 JP
A-2003-59799 Feb 2003 JP
A-2003-59803 Feb 2003 JP
A-2003-059821 Feb 2003 JP
A-2003-59821 Feb 2003 JP
A-2003-59826 Feb 2003 JP
2003-068607 Mar 2003 JP
A-2003-068600 Mar 2003 JP
A-2003-68600 Mar 2003 JP
A-2003-068604 Mar 2003 JP
A-2003-75703 Mar 2003 JP
A-2003-81654 Mar 2003 JP
A-2003-84445 Mar 2003 JP
A-2003-090978 Mar 2003 JP
A-2003-98651 Apr 2003 JP
A-2003-100597 Apr 2003 JP
A-2003-114387 Apr 2003 JP
A-2003-124095 Apr 2003 JP
A-2003-130132 May 2003 JP
A-2003-149363 May 2003 JP
A-2003-151880 May 2003 JP
A-2003-161882 Jun 2003 JP
A-2003-163158 Jun 2003 JP
A-2003-166856 Jun 2003 JP
A2003-173957 Jun 2003 JP
A-2003-188087 Jul 2003 JP
A-2003-224961 Aug 2003 JP
A-2003-229347 Aug 2003 JP
A-2003-233001 Aug 2003 JP
A-2003-234285 Aug 2003 JP
A-2003-238577 Aug 2003 JP
A-2003-240906 Aug 2003 JP
A-2003-249443 Sep 2003 JP
A-2003-258071 Sep 2003 JP
A-2003-262501 Sep 2003 JP
A-2003-263119 Sep 2003 JP
A-2003-272837 Sep 2003 JP
A-2003-273338 Sep 2003 JP
A-2003-282423 Oct 2003 JP
A-2003-297727 Oct 2003 JP
A-2003-532281 Oct 2003 JP
A-2003-532282 Oct 2003 JP
A-2003-311923 Nov 2003 JP
A-2004-7417 Jan 2004 JP
A-2004-14642 Jan 2004 JP
A-2004-14876 Jan 2004 JP
A-2004-15187 Jan 2004 JP
A-2004-22708 Jan 2004 JP
A-2004-38247 Feb 2004 JP
A-2004-39952 Feb 2004 JP
A-2004-40039 Feb 2004 JP
A-2004-45063 Feb 2004 JP
A-2004-051717 Feb 2004 JP
A-2004-63847 Feb 2004 JP
A-2004-71851 Mar 2004 JP
A-2004-078136 Mar 2004 JP
A-2004-85612 Mar 2004 JP
A-2004-87987 Mar 2004 JP
A-2004-087987 Mar 2004 JP
A-2004-95653 Mar 2004 JP
U-3102327 Mar 2004 JP
A-2004-98012 Apr 2004 JP
A-2004-101362 Apr 2004 JP
A-2004-103674 Apr 2004 JP
A-2004-104654 Apr 2004 JP
A-2004-111569 Apr 2004 JP
A-2004-119497 Apr 2004 JP
A-2004-119717 Apr 2004 JP
A-2004-128307 Apr 2004 JP
A-2004-134682 Apr 2004 JP
A-2004-140145 May 2004 JP
A-2004-145269 May 2004 JP
A-2004-146702 May 2004 JP
A-2004-152705 May 2004 JP
A-2004-153064 May 2004 JP
A-2004-153096 May 2004 JP
A-2004-163555 Jun 2004 JP
A-2004-165249 Jun 2004 JP
A-2004-165416 Jun 2004 JP
A-2004-172471 Jun 2004 JP
A-2004-177468 Jun 2004 JP
A-2004-179172 Jun 2004 JP
A-2004-187401 Jul 2004 JP
A-2004-193252 Jul 2004 JP
A-2004-193425 Jul 2004 JP
A-2004-198748 Jul 2004 JP
A-2004-205698 Jul 2004 JP
A-2004-207696 Jul 2004 JP
A-2004-207711 Jul 2004 JP
A-2004-260115 Jul 2004 JP
A-2004-520618 Jul 2004 JP
A-2004-221253 Aug 2004 JP
A-2004-224421 Aug 2004 JP
A-2004-228497 Aug 2004 JP
A-2004-241666 Aug 2004 JP
A-2004-247527 Sep 2004 JP
A-2004-258670 Sep 2004 JP
A-2004-259828 Sep 2004 JP
A-2004-259966 Sep 2004 JP
A-2004-259985 Sep 2004 JP
A-2004-260043 Sep 2004 JP
A-2004-260081 Sep 2004 JP
A-2004-294202 Oct 2004 JP
A-2004-301825 Oct 2004 JP
A-2004-302043 Oct 2004 JP
A-2004-303808 Oct 2004 JP
A-2004-304135 Oct 2004 JP
A-2004-307264 Nov 2004 JP
A-2004-307265 Nov 2004 JP
A-2004-307266 Nov 2004 JP
A-2004-307267 Nov 2004 JP
A-2004-319724 Nov 2004 JP
A-2004-320017 Nov 2004 JP
A-2004-327660 Nov 2004 JP
A-2004-335808 Nov 2004 JP
A-2004-335864 Nov 2004 JP
A-2004-336922 Nov 2004 JP
A-2004-342987 Dec 2004 JP
A-2004-349645 Dec 2004 JP
A-2004-356410 Dec 2004 JP
A-2005-5295 Jan 2005 JP
A-2005-5395 Jan 2005 JP
A-2005-005521 Jan 2005 JP
A-2005-5521 Jan 2005 JP
A-2005-11990 Jan 2005 JP
A-2005-012190 Jan 2005 JP
A-2005-12228 Jan 2005 JP
A-2005-19628 Jan 2005 JP
A-2005-19864 Jan 2005 JP
A-2005-26634 Jan 2005 JP
A-2005-51147 Feb 2005 JP
A-2005-55811 Mar 2005 JP
A-2005-64210 Mar 2005 JP
A-2005-64391 Mar 2005 JP
A-2005-79222 Mar 2005 JP
A-2005-79584 Mar 2005 JP
A-2005-79587 Mar 2005 JP
A-2005-86148 Mar 2005 JP
A-2005-91023 Apr 2005 JP
A-2005-93324 Apr 2005 JP
A-2005-093522 Apr 2005 JP
A-2005-93948 Apr 2005 JP
A-2005-97057 Apr 2005 JP
A-2005-108925 Apr 2005 JP
A-2005-108934 Apr 2005 JP
A-2005-114882 Apr 2005 JP
A-2005-116570 Apr 2005 JP
A-2005-116571 Apr 2005 JP
A-2005-116831 Apr 2005 JP
A-2005-123586 May 2005 JP
A-2005-127460 May 2005 JP
A-2005-136404 May 2005 JP
A-2005-140999 Jun 2005 JP
A-2005-150759 Jun 2005 JP
A-2005-156592 Jun 2005 JP
A-2005-166871 Jun 2005 JP
A-2005-167254 Jun 2005 JP
A-2005-175176 Jun 2005 JP
A-2005-175177 Jun 2005 JP
A-2005-191344 Jul 2005 JP
A-2005-203483 Jul 2005 JP
A-2005-209705 Aug 2005 JP
A-2005-209706 Aug 2005 JP
A-2005-524112 Aug 2005 JP
A-2005-233979 Sep 2005 JP
A-2005-234359 Sep 2005 JP
A-2005-236088 Sep 2005 JP
A-2005-243770 Sep 2005 JP
A-2005-243904 Sep 2005 JP
A-2005-251549 Sep 2005 JP
A-2005-257740 Sep 2005 JP
A-2005-259789 Sep 2005 JP
A-2005-259830 Sep 2005 JP
A-2005-268700 Sep 2005 JP
A-2005-268741 Sep 2005 JP
A-2005-268742 Sep 2005 JP
A-2005-276932 Oct 2005 JP
A-2005-302826 Oct 2005 JP
A-2005-303167 Oct 2005 JP
A-2005-311020 Nov 2005 JP
A-2005-315918 Nov 2005 JP
A-2005-340605 Dec 2005 JP
A-2005-366813 Dec 2005 JP
A-2006-1821 Jan 2006 JP
A-2006-5197 Jan 2006 JP
A-2006-17895 Jan 2006 JP
A-2006-019702 Jan 2006 JP
A-2006-19702 Jan 2006 JP
A-2006-24706 Jan 2006 JP
A-2006-24819 Jan 2006 JP
A-2006-32750 Feb 2006 JP
A-2006-41302 Feb 2006 JP
A-2006-54364 Feb 2006 JP
A-2006-73584 Mar 2006 JP
A-2006-73951 Mar 2006 JP
A-2006-80281 Mar 2006 JP
A-2006-86141 Mar 2006 JP
A-2006-86442 Mar 2006 JP
A-2006-100363 Apr 2006 JP
A-2006-100686 Apr 2006 JP
A-2006-113437 Apr 2006 JP
A-2006-513442 Apr 2006 JP
A-2006-120985 May 2006 JP
A-2006-128192 May 2006 JP
A-2006-135165 May 2006 JP
A-2006-140366 Jun 2006 JP
A-2006-170811 Jun 2006 JP
A-2006-170899 Jun 2006 JP
A-2006-177865 Jul 2006 JP
A-2006-184414 Jul 2006 JP
A-2006-194665 Jul 2006 JP
A-2006-250587 Sep 2006 JP
A-2006-253572 Sep 2006 JP
A-2006-269762 Oct 2006 JP
A-2006-278820 Oct 2006 JP
A-2006-289684 Oct 2006 JP
A-2006-524349 Oct 2006 JP
A-2006-332355 Dec 2006 JP
A-2006-349946 Dec 2006 JP
A-2006-351586 Dec 2006 JP
A-2007-5830 Jan 2007 JP
A-2007-43980 Feb 2007 JP
A-2007-48819 Feb 2007 JP
A-2007-51300 Mar 2007 JP
A-2007-87306 Apr 2007 JP
A-2007-93546 Apr 2007 JP
A-2007-103153 Apr 2007 JP
A-2007-113939 May 2007 JP
A-2007-119851 May 2007 JP
A-2007-120333 May 2007 JP
A-2007-120334 May 2007 JP
A-2007-142313 Jun 2007 JP
A-2007-144864 Jun 2007 JP
A-2007-515768 Jun 2007 JP
A-2007-170938 Jul 2007 JP
A-2007-187649 Jul 2007 JP
A-2007-207821 Aug 2007 JP
A-2007-227637 Sep 2007 JP
A-2007-235041 Sep 2007 JP
A-2007-527549 Sep 2007 JP
A-2007-274881 Oct 2007 JP
A-2007-280623 Oct 2007 JP
A-2007-295702 Nov 2007 JP
A-2008-3740 Jan 2008 JP
A-2008-58580 Mar 2008 JP
A-2008-64924 Mar 2008 JP
A-2008-103737 May 2008 JP
A-2008-180492 Aug 2008 JP
A-2009-17540 Jan 2009 JP
A-2009-60339 Mar 2009 JP
A-2010-514716 May 2010 JP
B2-4582096 Sep 2010 JP
A-2010-226117 Oct 2010 JP
B2-4747844 Aug 2011 JP
A-2011-233911 Nov 2011 JP
B2-4976015 Jul 2012 JP
B2-4976094 Jul 2012 JP
1995-0009365 Apr 1995 KR
10-0474578 Jan 1997 KR
10-1997-0016641 Apr 1997 KR
10-2011-0036050 Apr 1997 KR
10-2000-0048227 Jul 2000 KR
2000-0076783 Dec 2000 KR
2001-0051438 Jun 2001 KR
A-2001-0053240 Jun 2001 KR
10-2002-0042462 Jun 2002 KR
10-2003-0036105 May 2003 KR
10-2006-0132598 Dec 2006 KR
10-0839686 Jun 2008 KR
10-0869390 Nov 2008 KR
10-2010-0061551 Jun 2010 KR
10-1020378 Mar 2011 KR
10-1020455 Mar 2011 KR
480585 Mar 2002 TW
516097 Jan 2003 TW
518662 Jan 2003 TW
200301848 Jul 2003 TW
094100817 Aug 2005 TW
WO 2006019124 Feb 1923 WO
WO 9711411 Mar 1997 WO
WO 9815952 Apr 1998 WO
WO 9824115 Jun 1998 WO
WO 9859364 Dec 1998 WO
WO 9923692 May 1999 WO
WO 9927568 Jun 1999 WO
WO 9931716 Jun 1999 WO
WO 9934255 Jul 1999 WO
WO 9949366 Sep 1999 WO
WO 9949504 Sep 1999 WO
WO 9950712 Oct 1999 WO
WO 9966370 Dec 1999 WO
WO 0002092 Jan 2000 WO
WO 0011706 Mar 2000 WO
WO 0067303 Nov 2000 WO
WO 0103170 Jan 2001 WO
WO 01003170 Jan 2001 WO
WO 0110137 Feb 2001 WO
WO 0120733 Mar 2001 WO
WO 0122480 Mar 2001 WO
WO 0123935 Apr 2001 WO
WO 0127978 Apr 2001 WO
WO 0135451 May 2001 WO
WO 0159502 Aug 2001 WO
WO 2001059502 Aug 2001 WO
WO 0165296 Sep 2001 WO
WO 0181977 Nov 2001 WO
WO 0216993 Feb 2002 WO
WO 02063664 Aug 2002 WO
WO 02069049 Sep 2002 WO
WO 02080185 Oct 2002 WO
WO 02084720 Oct 2002 WO
WO 02084850 Oct 2002 WO
WO 02093209 Nov 2002 WO
WO 02101804 Dec 2002 WO
WO 03003429 Jan 2003 WO
WO 03023832 Mar 2003 WO
WO 03063212 Jul 2003 WO
WO 03077036 Sep 2003 WO
WO 03085708 Oct 2003 WO
WO 2004051717 Jun 2004 WO
WO 2004053596 Jun 2004 WO
WO 2004053950 Jun 2004 WO
WO 2004053951 Jun 2004 WO
WO2004053952 Jun 2004 WO
WO 2004053952 Jun 2004 WO
WO 2004053953 Jun 2004 WO
WO 2004053954 Jun 2004 WO
WO 2004053955 Jun 2004 WO
WO 2004053956 Jun 2004 WO
WO 2004053957 Jun 2004 WO
WO 2004053958 Jun 2004 WO
WO 2004053959 Jun 2004 WO
WO 2004071070 Aug 2004 WO
WO 2004086468 Oct 2004 WO
WO 2004086470 Oct 2004 WO
WO 2004090956 Oct 2004 WO
WO 2004091079 Oct 2004 WO
WO 2004094940 Nov 2004 WO
WO 2004104654 Dec 2004 WO
WO 2004105106 Dec 2004 WO
WO 2004105107 Dec 2004 WO
WO 2004107048 Dec 2004 WO
WO 2004107417 Dec 2004 WO
WO 2004109780 Dec 2004 WO
WO 2004114380 Dec 2004 WO
WO 2005006415 Jan 2005 WO
WO 2005006418 Jan 2005 WO
WO 2005008754 Jan 2005 WO
WO 2005022615 Mar 2005 WO
WO 2005026843 Mar 2005 WO
WO 2005027207 Mar 2005 WO
WO 2005029559 Mar 2005 WO
WO 2005031467 Apr 2005 WO
WO 2005036619 Apr 2005 WO
WO 2005036620 Apr 2005 WO
WO 2005036622 Apr 2005 WO
WO 2005036623 Apr 2005 WO
WO 2005041276 May 2005 WO
WO 2005041277 May 2005 WO
WO 2005048325 May 2005 WO
WO 2005048326 May 2005 WO
WO 2005050718 Jun 2005 WO
WO 2005057636 Jun 2005 WO
WO 2005067013 Jul 2005 WO
WO 2005069081 Jul 2005 WO
WO 2005071717 Aug 2005 WO
WO 2005076045 Aug 2005 WO
WO 2005076321 Aug 2005 WO
WO 2005076323 Aug 2005 WO
WO 2005081291 Sep 2005 WO
WO 2005081292 Sep 2005 WO
WO 2005104195 Nov 2005 WO
WO 2006006730 Jan 2006 WO
WO 2006016551 Feb 2006 WO
WO 2006019124 Feb 2006 WO
WO 2006025341 Mar 2006 WO
WO 2006028188 Mar 2006 WO
WO 2006030727 Mar 2006 WO
WO 2006030910 Mar 2006 WO
WO 2006-035775 Apr 2006 WO
WO 2006049134 May 2006 WO
WO 2006051909 May 2006 WO
WO 2006064851 Jun 2006 WO
WO 2006068233 Jun 2006 WO
WO 2006077958 Jul 2006 WO
WO 2006080285 Aug 2006 WO
WO 2006085524 Aug 2006 WO
WO 2006100889 Sep 2006 WO
WO 2006118108 Nov 2006 WO
WO 2007003563 Jan 2007 WO
WO 2007018127 Feb 2007 WO
WO 2007055120 May 2007 WO
WO 2007055237 May 2007 WO
WO 2007055373 May 2007 WO
WO 2007066692 Jun 2007 WO
WO 2007066758 Jun 2007 WO
WO 2007097198 Aug 2007 WO
WO 2007132862 Nov 2007 WO
WO 2007141997 Dec 2007 WO
WO 2008041575 Apr 2008 WO
WO 2008059748 May 2008 WO
WO 2008061681 May 2008 WO
WO 2008065977 Jun 2008 WO
WO 2008074673 Jun 2008 WO
WO 2008075613 Jun 2008 WO
WO 2008078688 Jul 2008 WO
WO 2008090975 Jul 2008 WO
WO 2008139848 Nov 2008 WO
WO 2008139848 Nov 2008 WO
WO 2009153925 Dec 2009 WO
WO 2009157154 Dec 2009 WO
WO 2010001537 Jan 2010 WO
Non-Patent Literature Citations (559)
Entry
Office Action issued Feb. 22, 2012 in Chinese Patent Application No. 200910173715.6 (with translation).
Office Action issued Mar. 30, 2012 in U.S. Appl. No. 12/318,216.
Office Action issued Mar. 8, 2012 in Taiwanese Patent Application No. 093131767 (with translation).
Office Action issued Nov. 28, 2011 in U.S. Appl. No. 12/801,043.
Office Action issued Jan. 25, 2012 in U.S. Appl. No. 12/801,043.
May 16, 2013 Taiwanese Office Action issued in Taiwanese Patent Application No. 098115513 (with translation).
Jun. 13, 2013 Extended European Search Report issued in European Patent Application No. 13156325.6.
May 29, 2013 European Office Action issued in European Patent Application No. 04799453.8.
Jun. 18, 2013 Extended European Search Report issued in European Patent Application No. 13156322.3.
Jun. 21, 2013 Extended European Search Report issued in European Patent Application No. 13156324.9.
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3937 issued in Korean Patent Application No. 10-2006-7008368 (with translation).
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3920 issued in Korean Patent Application No. 10-2007-7022489 (with translation).
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3944 issued in Korean Patent Application No. 10-2008-7019081 (with translation).
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3951 issued in Korean Patent Application No. 10-2008-7019082 (with translation).
Jul. 1, 2013 Definition of Technical Terms (with translation).
Doosan Encyclopedia, Optic axis (with translation).
Bass et al., “Handbook of Optics”, McGraw-Hill, 1995.
Buhrer, “Four waveplate dual tuner for birefringent filters and multiplexers”, Applied Optics vol. 26, No. 17, Sep. 1, 1987, pp. 3628-3632.
Niziev et al., “Influence of Beam Polarization on Laser Cutting Efficiency”, Journal of Physics D Applied Physics 32, 1999, pp. 1455-1461.
Bagini et al., “The Simon-Mukunda polarization gadget”, Eur. J. Phys. 17, 1996, pp. 279-284.
McGuire Jr., et al., “Analysis of spatial pseudodepolarizers in imaging systems”, Optical Engineering, vol. 29 No. 12, 1990, pp. 1478-1484.
Mar. 5, 2013 Office Action issued in Chinese Patent Application No. 200710110949.7 (with translation).
Mar. 5, 2013 Office Action issued in Chinese Patent Application No. 200710110951.4 (with translation).
Sep. 4, 2012 Office Action issued in Japanese Patent Application No. 2010-087010 (with translation).
Jun. 11, 2012 Office Action issued in Korean Patent Application No. 10-2012-7003793 (with translation).
Jul. 30, 2012 Office Action issued in Korean Patent Application No. 10-2006-7018069 (with translation).
Jun. 4, 2012 Office Action issued in Chinese Patent Application No. 200710110950.X (with translation).
Oct. 26, 2012 Office Action issued in Taiwanese Patent Application No. 097117893 (with translation).
Aug. 20, 2012 Notice of Allowance issued in Taiwanese Patent Application No. 097117881 (with translation).
Nov. 21, 2012 Office Action issued in European Patent Application No. 05703646.9.
Apr. 30, 2012 Office Action issued in Korean Patent Application No. 10-2006-7012265 (with translation).
Apr. 30, 2012 Office Action issued in Korean Patent Application No. 10-2010-7001898 (with translation).
Apr. 30, 2012 Office Action issued in Korean Patent Application No. 10-2010-7001907 (with translation).
Jun. 8, 2012 Office Action issued in Korean Patent Application No. 10-2007-7005320 (with translation).
Jun. 28, 2012 Office Action issued in Korean Patent Application No. 10-2012-7008342 (with translation).
Jun. 27, 2012 Office Action issued in Korean Patent Application No. 10-2009-7010158 (with translation).
Oct. 17, 2012 Notice of Allowance issued in Korean Patent Application No. 10-2010-7001907 (with translation).
Feb. 27, 2013 Office Action issued in Korean Patent Application No. 10-2012-7034128 (with translation).
Feb. 24, 2013 Office Action issued in Korean Patent Application No. 2012-7034127 (with translation).
Jan. 2, 2013 Office Action issued in Korean Patent Application No. 10-2007-7005320 (with translation).
Oct. 30, 2012 Office Action issued in Korean Patent Application No. 10-2012-7023534 (with translation).
Apr. 26, 2012 Office Action issued in Chinese Patent Application No. 200910126047.1 (with translation).
May 9, 2012 Office Action issued in Chinese Patent Application No. 200810211496.1 (with translation).
May 21, 2012 Office Action issued in Chinese Patent Application No. 201010128876.6 (with translation).
Sep. 18, 2012 Office Action issued in Chinese Patent Application No. 200910173718.X (with translation).
Oct. 8, 2012 Office Action issued in Chinese Patent Application No. 200910173716.0 (with translation).
Oct. 10, 2012 Office Action issued in Chinese Patent Application No. 200910173717.5 (with translation).
Jun. 29, 2012 Office Action issued in Chinese Patent Application No. 200910173714.1 (with translation).
Jan. 7, 2013 Office Action issued in Chinese Patent Application No. 200910173715.6 (with translation).
Jan. 14, 2013 Office Action issued in Chinese Patent Application No. 201010128876.6 (with translation).
Jan. 16, 2013 Office Action issued in Chinese Patent Application No. 200910173714.1 (with translation).
Jan. 14, 2013 Office Action issued in Chinese Patent Application No. 200910126047.1 (with translation).
Jan. 18, 2013 Office Action issued in Chinese Patent Application No. 200810211496.1 (with translation).
May 4, 2012 Office Action issued in Taiwanese Patent Application No. 096138500 (with translation).
Sep. 11, 2012 Office Action issued in Taiwanese Patent Application No. 097117896 (with translation).
Dec. 5, 2012 Office Action issued in Taiwanese Patent Application No. 096138500 (with translation).
Dec. 26, 2012 Office Action issued in Taiwanese Patent Application No. 097151814 (with translation).
Dec. 26, 2012 Office Action issued in Taiwanese Patent Application No. 097151805 (with translation).
Dec. 27, 2012 Office Action issued in Taiwanese Patent Application No. 095100035 (with translation).
Dec. 27, 2012 Office Action issued in Taiwanese Patent Application No. 097151801 (with translation).
Jun. 1, 2012 Office Action issued in European Patent Application No. 09 015 058.2.
Sep. 20, 2012 Office Action issued in European Patent Application No. 04 817 303.3.
Sep. 18, 2012 Office Action issued in Japanese Patent Application No. 2010-094216 (with translation).
Sep. 18, 2012 Office Action issued in Japanese Patent Application No. 2011-144669 (with translation).
Dec. 18, 2012 Office Action issued in Japanese Patent Application No. 2009-149426 (with translation).
Feb. 19, 2013 Office Action issued in Japanese Patent Application No. P2010-087010 (with translation).
Feb. 19, 2013 Office Action issued in Japanese Patent Application No. P2011-138703 (with translation).
Mar. 19, 2013 Office Action issued in Japanese Patent Application No. 2010-145155 (with translation).
Jul. 17, 2012 Office Action issued in U.S. Appl. No. 11/902,277.
Jul. 19, 2012 Office Action issued in U.S. Appl. No. 11/902,282.
Jul. 17, 2012 Office Action issued in U.S. Appl. No. 12/382,277.
Aug. 6, 2012 Office Action issued in U.S. Appl. No. 13/137,004.
Aug. 7, 2012 Office Action issued in U.S. Appl. No. 13/137,003.
Aug. 3, 2012 Office Action issued in U.S. Appl. No. 13/137,342.
Aug. 10, 2012 Office Action issued in U.S. Appl. No. 13/137,002.
Oct. 12, 2012 Office Action issued in U.S. Appl. No. 12/458,635.
Nov. 9, 2012 Office Action issued in U.S. Appl. No. 11/644,966.
Dec. 12, 2012 Notice of Allowance issued in U.S. Appl. No. 12/289,515.
Feb. 25, 2013 Office Action issued in U.S. Appl. No. 12/382,277.
Aug. 20, 2012 Written Opinion against the Written Answer submitted in Korean Patent Application No. 10-0869390 (with translation).
Aug. 20, 2012 Written Opinion against the Written Answer submitted in Korean Patent Application No. 10-0839686 (with translation).
Aug. 20, 2012 Written Opinion against the Written Answer submitted in Korean Patent Application No. 10-1020455 (with translation).
Aug. 20, 2012 Written Opinion against the Written Answer submitted in Korean Patent Application No. 10-1020378 (with translation).
Nov. 6, 2012 Written Opinion against the Written Answer issued in Korean Patent Application No. 10-839686, Appeal No. 2011Dang301 (with translation).
Nov. 6, 2012 Written Opinion against the Written Answer issued in Korean Patent Application No. 10-869390, Appeal No. 2011Dang302 (with translation).
Nov. 26, 2012 Written Opinion against the Written Answer issued in Korean Patent Application No. 10-1020455, Appeal No. 2011Dang510 (with translation).
Nov. 26, 2012 Written Opinion against the Written Answer issued in Korean Patent Application No. 10-1020378, Appeal No. 2011Dang511 (with translation).
Jan. 9, 2013 Technical Presentation Document submitted in Invalidation Trial against Korean Patent Application No. 10-2007-7022489, Appeal No. 839686 (2011Dang301) (with translation).
Jan. 9, 2013 Technical Presentation Document submitted in Invalidation Trial against Korean Patent Application No. 10-2006-7008368, Appeal No. 869390 (2011Dang302) (with translation).
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2006-7008368, Appeal No. 2011Dang301, 2011Dang510, and 2011Dang511 (with translation).
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2007-7022489, Appeal No. 2011Dang301, 2011Dang302, and 2011Dang510 (with translation).
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2008-7019081, Appeal No. 2011Dang302, 2011Dang510, and 2011Dang511 (with translation).
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2008-7019082, Appeal No. 2011Dang301, 2011Dang302, and 2011Dang511 (with translation).
D. Halliday, et al., “Fundamental of Physics: Extended, 4/e”, Jul. 25, 1995, John Wiley & Sons, Inc. (with partial translation).
Feb. 22, 2013 Written Opinion against the Reference Opinion submitted in Korean Patent Application No. 10-2007-7022489 (with translation).
Feb. 22, 2013 Written Opinion against the Reference Opinion submitted in Korean Patent Application No. 10-2006-7008368 (with translation).
Feb. 22, 2013 Written Opinion against the Reference Opinion submitted in Korean Patent Application No. 10-2008-7019081 (with translation).
Feb. 22, 2013 Written Opinion against the Reference Opinion submitted in Korean Patent Application No. 10-2008-7019082 (with translation).
Feb. 4, 2013 Written Opinion submitted in Korean Patent Application No. 10-0869390, Appeal No. 2011(Dang302) (with translation).
Feb. 4, 2013 Written Opinion submitted in Korean Patent Application No. 10-0839686, Appeal No. 2011(Dang301) (with translation).
Eugene Hecht, “Optics Fourth Edition”, Addison Wesley, 2002.
Eugene Hecht, “Optics Second Edition”, Addison Wesley, 1987 (with translation).
Michael Bass, “Handbook of Optics, vol. 1, Fundamental, Techniques, and Design”, Second Edition, McGraw-Hill, 1995, 5.22-5.25.
Hans-Peter Herzig, “Micro-optics, Elements, Systems and Applications”, Taylor & Francis, 1997.
Jan. 30, 2013 Technical Presentation Document submitted in Invalidation Trial against Korean Patent Application No. 10-2008-7019081, Appeal No. 10-1020455(2011Dang510) (with translation).
Jan. 30, 2013 Technical Presentation Document submitted in Invalidation Trial against Korean Patent Application No. 10-2008-7019082, Appeal No. 10-1020378(2011Dang511) (with translation).
Feb. 28, 2013 Trial Decision issued in Korean Patent No. 10-0839686, Appeal No. 2011Dang301 (with translation).
Feb. 28, 2013 Trial Decision issued in Korean Patent No. 10-0869390, Appeal No. 2011Dang302 (with translation).
Feb. 28, 2013 Trial Decision issued in Korean Patent No. 10-1020455, Appeal No. 2011Dang510 (with translation).
Feb. 28, 2013 Trial Decision issued in Korean Patent No. 10-1020378, Appeal No. 2011Dang511 (with translation).
Mar. 20, 2013 Office Action issued in U.S. Appl. No. 11/902,282.
Apr. 2, 2013 Translation of Office Action issued in Japanese Patent Application No. 2010-286303.
Apr. 2, 2013 Office Action issued in Japanese Patent Application No. 2010-290979 (with translation).
Mar. 26, 2013 Office Action issued in U.S. Appl. No. 11/902,277.
Apr. 9, 2013 Office Action issued in Korean Patent Application No. 10-2012-7008342 (with translation).
Apr. 17, 2013 Office Action issued in Korean Patent Application No. 10-2013-7002721 (with translation).
Apr. 3, 2013 Office Action issued in Chinese Patent Application No. 200910173717.5 (with translation).
May 7, 2013 Office Action issued in European Patent Application No. 04 817 303.3.
Apr. 3, 2013 Office Action issued in Chinese Patent Application No. 200910173716.0 (with translation).
Apr. 18, 2013 Office Action issued in Korean Patent Application No. 10-2012-7003793 (with translation).
Sep. 11, 2013 Office Action issued in U.S. Appl. No. 13/890,603.
Aug. 23, 2013 Reply Brief, Patent Invalidation Action 2013HEO3975 issued in Korean Patent Application No. 10-2007-7022489 (with translation).
Aug. 23, 2013 Reply Brief, Patent Invalidation Action 2013HEO3982 issued in Korean Patent Application No. 10-2008-7019081 (with translation).
Jul. 23, 2013 Office Action issued in U.S. Appl. No. 12/458,635.
Jun. 4, 2013 Chinese Office Action issued in Chinese Patent Application No. 200710110950.X (with translation).
Jul. 15, 2013 Notice of Allowance and Fee(s) Due issued in U.S. Appl. No. 13/067,958.
Jul. 23, 2013 Office Action issued in U.S. Appl. No. 11/410,952.
Jul. 15, 2013 Chinese Office Action issued in Chinese Patent Application No. 200910173718.X (with translation).
Oct. 17, 2013 Notice of Allowance issued in Korean Patent Application No. 10-2012-7008342 (with translation).
Oct. 21, 2013 Office Action issued in U.S. Appl. No. 13/137,002.
Oct. 29, 2013 Office Action issued in U.S. Appl. No. 13/890,142.
Nov. 20, 2013 Office Action issued in U.S. Appl. No. 12/289,515.
H. G. Oh, “Notarial Certificate of affiant Professor H. G. Oh” Oct. 22, 2013, pp. 1-15 (with full translation).
Totzek, “Declaration of Dr. Michael Totzeck”, Oct. 8, 2013 pp. 1-32 (with full translation).
Korean Patent Office guidelines for examination, 2010 (with partial translation).
Preparatory Document (2-1) submitted on Oct. 25, 2013 for Korean Invalidation Action 2013HEO03937 (with translation).
Preparatory Document (2-2) submitted on Oct. 25, 2013 for Korean Invalidation Action 2013HEO03937 (with translation).
Dec. 13, 2013 Office Action issued in European Patent Application No. 09015058.2.
Apr. 4, 2014 Office Action issued in Chinese Patent Application No. 200910173718.X (with translation).
Apr. 16, 2014 Office Action issued in U.S. Appl. No. 12/458,635.
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3920, issued in Korean Patent Application No. 10-2007-7022489 (with translation).
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3937, issued in Korean Patent Application No. 10-2006-7008368 (with translation).
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3944, issued in Korean Patent Application No. 10-2008-7019081 (with translation).
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3951, issued in Korean Patent Application No. 10-2008-7019082 (with translation).
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3975, issued in Korean Patent Application No. 10-2007-7022489 (with translation).
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3982, issued in Korean Patent Application No. 10-2008-7019081 (with translation).
Apr. 29, 2014 Office Action issued in European Patent Application No. 13156325.6.
Apr. 29, 2014 Office Action issued in European Patent Application No. 13156324.9.
Apr. 29, 2014 Office Action issued in European Patent Application No. 13156322.3.
Mar. 14, 2014 Office Action issued in U.S. Appl. No. 13/889,798.
Jan. 23, 2014 Reference Document, Patent Invalidation Action 2013HEO3920 issued in Korean Patent Application No. 10-2007-7022489 (with translation).
Jan. 23, 2014 Reference Document, Patent Invalidation Action 2013HEO3937 issued in Korean Patent Application No. 10-2006-7008368 (with translation).
Jan. 23, 2014 Reference Document, Patent Invalidation Action 2013HEO3944 issued in Korean Patent Application No. 10-2008-7019081 (with translation).
Jan. 23, 2014 Reference Document, Patent Invalidation Action 2013HEO3951 issued in Korean Patent Application No. 10-2008-7019082 (with translation).
Jan. 23, 2014 Reference Document, Patent Invalidation Action 2013HEO3975 issued in Korean Patent Application No. 10-2007-7022489 (with translation).
Jan. 23, 2014 Reference Document, Patent Invalidation Action 2013HEO3982 issued in Korean Patent Application No. 10-2008-7019081 (with translation).
Oct. 15, 2013 Office Action issued in U.S. Appl. No. 13/889,965.
Oct. 15, 2013 Office Action issued in U.S. Appl. No. 13/137,342.
Oct. 16, 2013 Office Action issued in U.S. Appl. No. 13/137,003.
Oct. 29, 2013 Office Action issued in U.S. Appl. No. 13/890,547.
Oct. 18, 2013 Office Action issued in U.S. Appl. No. 11/902,282.
Oct. 17, 2013 Notice of Allowance issued in U.S. Appl. No. 11/902,277.
Nov. 5, 2013 Office Action issued in Japanese Patent Application No. P2012-080675 (with translation).
Nov. 5, 2013 Office Action issued in Japanese Patent Application No. P2012-080678 (with translation).
Nov. 7, 2013 Office Action issued in U.S. Appl. No. 12/289,518.
Nov. 12, 2013 Office Action issued in U.S. Appl. No. 13/889,860.
Nov. 13, 2013 Office Action issued in U.S. Appl. No. 13/889,965.
Oct. 10, 2013 Office Action issued in U.S. Appl. No. 13/890,547.
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent invalidation Action No. 2013HEO3920 (with English translation).
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent invalidation Action No. 2013HEO3937 (with English translation).
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent invalidation Action No. 2013HEO3944 (with English translation).
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent invalidation Action No. 2013HEO3951 (with English translation).
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent invalidation Action No. 2013HEO3975 (with English translation).
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent invalidation Action No. 2013HEO3982 (with English translation).
Jun. 6, 2014 Office Action issued in Taiwanese Patent Application No. 101103772 (with translation).
Jun. 13, 2014 Office Action issued in Taiwanese Patent Application No. 101133189 (with translation).
Jun. 13, 2014 Office Action issued in Taiwanese Patent Application No. 101141665 (with translation).
Aug. 11, 2014 Office Action issued in Taiwanese Patent Application No. 101102214 (with translation).
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/889,965.
Jul. 16, 2014 Office Action issued in U.S. Appl. No. 12/289,515.
Jun. 25, 2014 Office Action issued in U.S. Appl. No. 13/889,860.
Aug. 28, 2014 Office Action issued in Korean Patent Application No. 10-2012-7034128 (with English translation).
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/137,342.
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/137,003.
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/137,002.
Sep. 10, 2014 Office Action issued in U.S. Appl. No. 13/890,547.
Sep. 11, 2014 Office Action issued in U.S. Appl. No. 12/382,277.
Sep. 12, 2014 Office Action issued in U.S. Appl. No. 13/890,142.
Feb. 5, 2014 Office Action issued in U.S. Appl. No. 12/382,277.
Feb. 6, 2014 Office Action issued in U.S. Appl. No. 13/890,142.
Feb. 6, 2014 Office Action issued in U.S. Appl. No. 13/890,547.
Jun. 5, 2014 Office Action issued in U.S. Appl. No. 13/890,603.
Oct. 21, 2014 Office Action issued in Japanese Application No. 2013-272100.
Dec. 2, 2014 Office Action issued in Japanese Application No. 2013-272068.
Nov. 5, 2014 Office Action issued in Chinese Application No. 200910126047.1.
Jun. 3, 2014 Office Action issued in Japanese Patent Application No. 2013-157042 (with translation).
Jun. 3, 2014 Office Action issued in Japanese Patent Application No. 2013-157044 (with translation).
Dec. 10, 2014 Office Action issued in U.S. Appl. No. 12/289,518.
Jun. 24, 2014 Office Action issued in European Patent Application No. 04 817 303.3.
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 334.7.
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 335.4.
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 338.8.
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 340.4.
Jun. 23, 2015 Office Action issued in Japanese Application No. 2014-158994.
Dec. 13, 2013 The Second Division of Korean Patent Court, Preparatory Document (3), Re: Patent Invalidation Action 2013HEO3920.
Oct. 30, 2013 The Second Division of Korean Patent Court, Preparatory Document (2), Re: Patent Invalidation Action 2013HEO3920.
Dec. 13, 2013 The Second Division of Korean Patent Court, Preparatory Document (3), Re: Patent Invalidation Action 2013HEO3937.
Dec. 13, 2013 The Second Division of Korean Patent Court, Preparatory Document (3), Re: Patent Invalidation Action 2013HEO3944.
Oct. 30, 2013 The Second Division of Korean Patent Court, Preparatory Document (2), Re: Patent Invalidation Action 2013HEO3944.
Dec. 13, 2013 The Second Division of Korean Patent Court, Preparatory Document (3), Re: Patent Invalidation Action 2013HEO3951.
Oct. 30, 2013 The Second Division of Korean Patent Court, Preparatory Document (2), Re: Patent Invalidation Action 2013HEO3951.
Jan. 14, 2014 The Second Division of Korean Patent Court, Reference Document, Re: Patent Invalidation Action 2013HEO3975.
Mar. 24, 2015 Office Action issued in Japanese Patent Application No. P2014-087750.
Apr. 21, 2015 Office Action issued in U.S. Appl. No. 13/890,547.
Apr. 24, 2015 Office Action issued in U.S. Appl. No. 13/890,142.
Apr. 27, 2015 Office Action issued in Korean Patent Application No. 10-2014-7009172.
Apr. 6, 2015 Office Action issued in U.S. Appl. No. 14/048,563.
Feb. 5, 2015 Office Action issued in U.S. Appl. No. 12/289,515.
Feb. 10, 2015 Office Action issued in Korean Patent Application No. 10-2014-7003559.
Feb. 11, 2015 Office Action issued in Korean Patent Application No. 10-2010-7008441.
Jan. 29, 2015 Office Action issued in U.S. Appl. No. 13/889,860.
Jan. 6, 2014 Office Action issued in Chinese Application No. 200910173717.5.
Jul. 20, 2015 Notice of Allowance issued in U.S. Appl. No. 13/067,958.
Jul. 15, 2015 Office Action issued in U.S. Appl. No. 12/289,515.
Jul. 16, 2015 Office Action issued in U.S. Appl. No. 13/889,860.
Nov. 16, 2015 Office Action issued in Korean Patent Application No. 10-2014-7003559.
Oct. 6, 2015 Office Action issued in Japanese Patent Application No. JP2014-256977.
Oct. 8, 2015 Office Action issued in Korean Patent Application No. 10-2010-7008441.
Oct. 22, 2015 Office Action issued in U.S. Appl. No. 14/713,428.
Oct. 22, 2015 Office Action issued in U.S. Appl. No. 14/048,563.
Aug. 4, 2015 Office Action issued in Japanese Patent Application No. 2014-197119.
Aug. 4, 2015 Office Action issued in Japanese Patent Application No. 2014-216961.
Aug. 4, 2015 Office Action issued in Japanese Patent Application No. 2014-216964.
Sep. 6, 2016 Office Action issued in Japanese Patent Application No. 2015-238871.
Sep. 28, 2016 Office Action issued in Korean Patent Application No. 10-2015-7022796.
Oct. 3, 2016 Office Action issued in Korean Patent Application No. 10-2014-7036570.
Oct. 11, 2016 Office Action issued in Korean Patent Application No. 10-2015-7005285.
Dec. 1, 2015 Office Action issued in Korean Patent Application No. 10-2014-7036570.
Jan. 5, 2016 Office Action issued in Japanese Patent Application No. 2015-018675.
Dec. 30, 2015 Office Action issued in Taiwanese Patent Application No. 102142028.
Jan. 21, 2016 Office Action issued in U.S. Appl. No. 12/289,515.
Jan. 21, 2016 Office Action issued in U.S. Appl. No. 13/889,860.
Jan. 12, 2016 Office Action issued in Taiwanese Application No. 103116064.
Mar. 23, 2016 Office Action issued in U.S. Appl. No. 13/890,142.
Mar. 24, 2016 Office Action issued in U.S. Appl. No. 13/890,547.
Jan. 27, 2016 Office Action issued in Taiwanese Patent Application No. 103116066.
Feb. 1, 2016 Office Action issued in Korean Patent Application No. 10-2015-7005285.
May 17, 2016 Office Action issued in U.S. Appl. No. 14/713,385.
May 24, 2016 Office Action issued in Japanese Patent Application No. 2015-165058.
Jun. 14, 2016 Office Action issued in Japanese Patent Application No. 2014-256977.
Nov. 29, 2016 Office Action issued in Japanese Patent Application No. 2016-043787.
Jul. 22, 2013 Notice of Allowance issued in U.S. Appl. No. 12/289,515.
Aug. 1, 2013 Office Action issued in U.S. Appl. No. 12/318,216.
Aug. 6, 2013 Office Action issued in U.S. Appl. No. 13/889,798.
Dec. 4, 2013 Office Action issued in Chinese Patent Application No. 200710110950.X (with translation).
Dec. 17, 2013 Office Action issued in Korean Patent Application No. 10-2013-7026632 (with translation).
Dec. 18, 2013 Office Action issued in Korean Patent Application No. 10-2012-7034127 (with translation).
Dec. 21, 2016 Office Action issued in U.S. Appl. No. 14/818,788.
Jan. 17, 2017 Search Report issued in European Patent Application No. 16167687.9.
Brunner, Timothy A., et al. “High NA Lithographic Imaging at Brewster's Angle.” SPIE (U.S.A.), vol. 4691, pp. 1-24, 2002.
Tsuruta, T. “Applied Optics II,” Baifukan Co., Ltd., pp. 166-167, Jul. 1990.
Oct. 29, 2009 Office Action in U.S. Appl. No. 12/289,515.
Feb. 26, 2009 Office Action in U.S. Appl. No. 11/347,421.
Jan. 7, 2010 Office Action in U.S. Appl. No. 12/289,518.
Apr. 21, 2010 Office Action in U.S. Appl. No. 12/289,518.
May 31, 2010 Translation of Korean Office Action in Korean Patent Application No. 10-2008-7019082.
May 31, 2010 Translation of Korean Office Action in Korean Patent Application No. 10-2008-7019081.
Aug. 23, 2010 Office Action in Chinese Application No. 200810211496.1 (with English Translation).
Sep. 20, 2010 Notice of Allowance in U.S. Appl. No. 11/410,952.
Sep. 29, 2010 European Search Report in European Patent Application No. 10174843.2.
Oct. 4, 2010 European Search Report in EP 05 70 3646.
Jul. 20, 2010 Korean Office Action in Korean Patent Application No. 10-2010-7008438 (with English translation).
Jul. 20, 2010 Korean Office Action in Korean Patent Application No. 10-2010-7008441 (with English translation).
Jul. 20, 2010 Korean Office Action in Korean Patent Application No. 10-2010-7008444 (with English translation).
Feb. 26, 2009 Office Action in U.S. Appl. No. 11/319,057.
Nov. 30, 2010 Notice of Allowance in Korean Patent Application No. 10-2008-7019082.
Nov. 30, 2010 Notice of Allowance in Korean Patent Application No. 10-2008-7019081.
Aug. 3, 2010 Notice of Allowance in Japanese Patent Application No. 2006-553907.
Jan. 11, 2011 Office Action in U.S. Appl. No. 12/461,801.
Jul. 12, 2010 Office Action in U.S. Appl. No. 12/461,801.
Apr. 15, 2009 Office Action in U.S. Appl. No. 11/902,277.
Apr. 15, 2010 Office Action in U.S. Appl. No. 10/587,254.
Apr. 15, 2011 Office Action in European Patent Application No. 04 817 303.3.
Apr. 20, 2011 Office Acton in Chinese Patent Application No. 200710110949.7 (with English translation).
Apr. 22, 2010 Office Action in Japanese Patent Application No. P-2006-553907 (with English translation).
Apr. 24, 2009 Office Action in Chinese Patent Application No. 2006800006868 (with English translation).
Apr. 25, 2011 Office Action in Korean Patent Application No. 10-2011-7001502 (with English translation).
Apr. 25, 2011 Office Action in Korean Patent Application No. 10-2010-7008438 (with English translation).
Apr. 26, 2011 Office Action in Chinese Patent Application No. 200710110950.X (with English translation).
Apr. 26, 2011 Office Action in Chinese Patent Application No. 200710110951.4 (with English translation).
Apr. 26, 2011 Office Action in U.S. Appl. No. 11/902,282.
Apr. 28, 2011 Office Action in Korean Patent Application No. 10-2006-7012265 (with English translation).
Apr. 28, 2011 Office Action in Korean Patent Application No. 10-2010-7001898 (with English translation).
Apr. 28, 2011 Office Action in Korean Patent Application No. 10-2010-7001907 (with English translation).
Apr. 28, 2011 Office Action in Korean Patent Application No. 10-2009-7023904 (with English translation).
Apr. 5, 2011 Office Action in Japanese Patent Application No. P2009-149426 (with English translation).
Apr. 6, 2011 Office Action in Taiwanese Patent Application No. 093131323 (with English translation).
Apr. 8, 2011 Office Action in Chinese Patent Application No. 200810211496.1 (with English translation).
Aug. 11, 2011 Office Action in Korean Patent Application No. 10-2010-7000897 (with English translation).
Aug. 11, 2011 Office Action in Korean Patent Application No. 10-2010-7000893 (with English translation).
Aug. 3, 2010 Office Action in Japanese Patent Application No. P-2005-515570 (with English translation).
Dec. 1, 2009 Office Action in U.S. Appl. No. 11/902,277.
Dec. 14, 2009 Office Action in U.S. Appl. No. 11/902,282.
Dec. 7, 2010 Extended Search Report in European Patent Application No. 10012876.8.
Feb. 1, 2011 Office Action in Japanese Patent Application No. P-2006-262588 (with English translation).
Feb. 1, 2011 Office Action in Japanese Patent Application No. P-2006-262590 (with English translation).
Feb. 1, 2011 Office Action in Japanese Patent Application No. P-2005-517637 (with English translation).
Feb. 1, 2011 Office Action in Chinese Application No. 200810126659.6 (with English translation).
Feb. 15, 2011 Office Action in European Patent Application No. 05 703 646.9.
Feb. 15, 2011 Office Action in U.S. Appl. No. 11/902,277.
Feb. 23, 2010 Office Action in Japanese Patent Application No. P-2006-262589 (with English translation).
Feb. 23, 2010 Office Action in Japanese Patent Application No. P-2005-515570 (with English translation).
Feb. 24, 2011 Office Action in Chinese Patent Application No. 201010128876.6 (with English translation).
Feb. 24, 2011 Office Action in Chinese Patent Application No. 200910173717.5 (with English translation).
Feb. 25, 2010 Extended Search Report in European Patent Application No. 06822564.8.
Feb. 28, 2011 Office Action in Korean Patent Application No. 10-2010-7008441 (with English translation).
Feb. 8, 2011 Office Action in U.S. Appl. No. 12/320,465.
Feb. 9, 2009 Office Action in U.S. Appl. No. 11/902,282.
Jan. 14, 2011 Office Action in U.S. Appl. No. 12/461,852.
Jan. 14, 2011 Office Action in U.S. Appl. No. 12/320,480.
Jan. 14, 2011 Office Action in U.S. Appl. No. 12/320,468.
Jan. 24, 2011 Office Action in Korean Patent Application No. 2009-7010158 (with English translation).
Jan. 24, 2011 Office Action in Korean Patent Application No. 2005-7018973 (with English translation).
Jan. 25, 2010 Extended Search Report in European Patent Application No. 09015058.2.
Jan. 25, 2011 Office Action in Korean Patent Application No. 2009-7010159 (with English translation).
Jan. 26, 2011 Office Action in Chinese Patent Application No. 200910173715.6 (with English translation).
Jan. 28, 2010 Extended Search Report in European Patent Application No. 06711853.9.
Jan. 6, 2011 Office Action in U.S. Appl. No. 11/902,282.
Jan. 8, 2009 Office Action in U.S. Appl. No. 11/410,952.
Jul. 13, 2011 Notice of Allowance in U.S. Appl. No. 11/410,952.
Jul. 20, 2010 Notice of Allowance in U.S. Appl. No. 12/289,515.
Jul. 20, 2011 Office Action in Taiwanese Patent Application No. 094100817 (with English translation).
Jul. 26, 2011 Office Action in Korean Patent Application No. 10-2006-7018069 (with English translation).
Jul. 3, 2008 Office Action in U.S. Appl. No. 11/319,057.
Jul. 5, 2011 Office Action in Chinese Patent Application No. 201010128136.2 (with English translation).
Jul. 8, 2011 Office Action in U.S. Appl. No. 12/318,216.
Jun. 10, 2011 Office Action in U.S. Appl. No. 12/289,515.
Jun. 14, 2011 Office Action in Korean Patent Application No. 10-2011-7006842 (with English translation).
Jun. 15, 2011 Notice of Allowance in U.S. Appl. No. 12/289,518.
Jun. 16, 2010 Office Action in U.S. Appl. No. 11/410,952.
Jun. 23, 2011 Office Action in Chinese Patent Application No. 200910173714.1 (with English translation).
Jun. 25, 2008 Office Action in U.S. Appl. No. 11/902,277.
Jun. 25, 2008 Office Action in U.S. Appl. No. 11/902,282.
Jun. 25, 2009 Office Action in U.S. Appl. No. 11/644,966.
Jun. 9, 2011 Office Action in U.S. Appl. No. 11/902,277.
Levinson, Harry J., “Principles of Lithography,” Bellingham, WA: SPIE Press, 2001, pp. 205-206.
Mar. 21, 2008 Office Action in Chinese Patent Application No. 2004800341246 (with English translation).
Mar. 23, 2011 Office Action in Chinese Patent Application No. 200910173718.X (with English translation).
Mar. 26, 2010 Office Action in U.S. Appl. No. 11/902,277.
Mar. 26, 2010 Office Action in U.S. Appl. No. 11/902,282.
Mar. 29, 2011 Office Action in Japanese Patent Application No. P2007-251263 (with English translation).
Mar. 31, 2011 Notice of Allowance in U.S. Appl. No. 11/410,952.
Mar. 8, 2011 Office Action in Chinese Patent Application No. 200910173716.0 (with English translation).
May 11, 2011 Office Action in European Patent Application No. 04724369.6.
Feb. 6, 2007 Written Opinion in International Patent Application No. PCT/JP2006/321607 (with English translation).
May 14, 2008 English translation of International Preliminary Report on Patentability in International Patent Application No. PCT/JP2006/321607.
May 24, 2011 Office Action in U.S. Appl. No. 12/382,277.
Nov. 12, 2010 Office Action in Chinese Patent Application No. 200710110948.2 (with English translation).
Nov. 12, 2010 Office Action in Chinese Patent Application No. 200910126047.1 (with English translation).
Nov. 25, 2009 Office Action in U.S. Appl. No. 11/410,952.
Nov. 3, 2010 Office Action in European Patent Application No. 09015058.2.
Nov. 6, 2009 Office Action in Chinese Patent Application No. 2008102114957 (with English translation).
Oct. 18, 2010 Office Action in U.S. Appl. No. 12/382,277.
Oct. 26, 2010 Office Action in Japanese Patent Application No. P-2005-517637 (with English translation).
Oct. 26, 2010 Office Action in Japanese Patent Application No. P-2006-262588 (with English translation).
Oct. 26, 2010 Office Action in Japanese Patent Application No. 2006-262590 (with English translation).
Oct. 4, 2010 International Search Report in International Patent Application No. PCT/JP2010/061300.
Oct. 4, 2010 Written Opinion of the International Searching Authority in International Patent Application No. PCT/JP2010/061300.
Oct. 8, 2010 Office Action in Chinese Patent Application No. 200810126659.6 (with English translation).
Sep. 1, 2011 Office Action in U.S. Appl. No. 11/902,277.
Sep. 11, 2009 Office Action in Chinese Patent Application No. 2008102114976 (with English translation).
Sep. 15, 2008 Office Action in U.S. Appl. No. 11/644,966.
Sep. 27, 2010 Office Action in U.S. Appl. No. 10/587,254.
Sep. 30, 2011 Office Action in Korean Patent Application No. 10-2005-7018973 (with English translation).
Sep. 6, 2011 Notice of Allowance in U.S. Appl. No. 11/644,966.
Sep. 13, 2011 Office Action in European Patent Application No. 04 799 453.8.
Aug. 4, 2011 Office Action in Taiwanese Patent Application No. 093131767 (with English translation).
Nov. 15, 2011 Office Action issued in Korean Patent Application No. 10-2009-7010158 (with English translation).
Nov. 15, 2011 Office Action issued in Korean Patent Application No. 10-2009-7010159 (with English translation).
Feb. 8, 2011 Third Party Submission Information Statement issued in Korean Patent No. 10-0869390 (with English translation).
Nov. 12, 2008 Patent Register of Korean Patent No. 10-0869390.
Feb. 8, 2011 Third Party Submission Information Statement issued in Korean Patent No. 10-0839686 (with English translation).
Jun. 12, 2008 Patent Register of Korean Patent No. 10-0839686.
Mar. 9, 2011 Third Party Submission Information Statement issued in Korean Patent No. 10-1020455 (with English translation).
Feb. 28, 2011 Patent Register of Korean Patent No. 10-1020455.
Mar. 9, 2011 Third Party Submission Information Statement issued in Korean Patent No. 10-1020378 (with English translation).
Feb. 28, 2011 Patent Register of Korean Patent No. 10-1020378.
Carl Zeiss SMT GmbH—Microsoft Internet Explorer, “Semiconductor Technologies”, http://www.zeiss.com.
Wave Plate, Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Wave_plate, Feb. 7, 2011, pp. 16-1-16-16.
Marc D. Himel et al., “Design and fabrication of customized illumination patterns for low k1 lithography: a diffractive approach”, Proceedings of SPIE, vol. 4346, pp. 11-1-11-7.
Oct. 10, 2011 Office Action issued in Chinese Patent Application No. 200710110952.9 (with English translation).
Oct. 18, 2011 Office Action issued in Japanese Patent Application No. 2006-262589 (with English translation).
Oct. 18, 2011 Office Action issued in Japanese Patent Application No. 2005-515570 (with English translation).
Nov. 15, 2011 Office Action issued in European Patent Application No. 09 167 707.0.
Nov. 10, 2011 Office Action issued in European Patent Application No. 07 017 146.7.
Nov. 25, 2011 Office Action issued in European Patent Application No. 06 711 853.9.
Nov. 30, 2011 Office Action issued in U.S. Appl. No. 11/902,282.
Dec. 14, 2011 Office Action issued in U.S. Appl. No. 11/902,277.
Dec. 15, 2011 Office Action issued in U.S. Appl. No. 12/382,277.
Nov. 17, 2011 Office Action issued in Taiwanese Patent Application No. 096119463 (with English translation).
Nov. 22, 2011 Office Action issued in Chinese Patent Application No. 200910173718.X (with English translation).
Dec. 12, 2011 Office Action issued in European Patent Application No. 10 174 843.2.
Korean Language Dictionary, 5th Edition, Jan. 10, 2002, MinJungseorim, Seoul, Korea (with English translation).
“Polarizer,” Wikipedia, http://en.wikipedia.org/wiki/Polarizer, Oct. 18, 2011 (11 pp.).
Nov. 29, 2011 Written Rebuttal against the Written Answer filed by the Respondent in Korean Patent Application No. 10-2006-7008368 (with English translation).
Nov. 29, 2011 Written Rebuttal against the Written Answer filed by the Respondent in Korean Patent Application No. 10-2007-7022489 (with English translation).
Nov. 29, 2011 Written Rebuttal against the Written Answer filed by the Respondent in Korean Patent Application No. 10-2008-7019081 (with English translation).
Nov. 29, 2011 Written Rebuttal against the Written Answer filed by the Respondent in Korean Patent Application No. 10-2008-7019082 (with English translation).
Jan. 19, 2012 Office Action issued in U.S. Appl. No. 12/458,635.
Feb. 10, 2012 Office Action issued in European Patent Application No. 10 012 876.8.
Jan. 18, 2012 Office Action issued in European Patent Application No. 10 174 843.2.
Feb. 13, 2013 Office Action issued in Taiwanese Patent Application No. 094100817 (with English translation).
Mar. 6, 2012 Notice of Allowance issued in U.S. Appl. No. 12/289,515.
Office Action dated Feb. 22, 2012 in Chinese Patent Application No. 200910173715.6 (with translation).
Office Action dated Mar. 30, 2012 in U.S. Appl. No. 12/318,216.
Office Action dated Mar. 8, 2012 in Taiwanese Patent Application No. 093131767 (with translation).
Office Action dated Nov. 28, 2011 in U.S. Appl. No. 12/801,043.
Office Action dated Jan. 25, 2012 in U.S. Appl. No. 12/801,043.
Japanese Office Action issued in Japanese Application No. JP 2005-515570 dated Jan. 17, 2012 (w/ Translation).
Japanese Office Action issued in Japanese Application No. JP 2006-262589 dated Jan. 17, 2012 (w/ Translation).
Oct. 18, 2007 European Search Report issued in European Patent Application No. 07017146.7.
Apr. 2, 2007 European Search Report issued in European Patent Application No. 04724369.6.
Oct. 1, 2008 Supplemental European Search Report issued in European Patent Application No. 04817303.3.
Apr. 24, 2008 Supplemental European Search Report issued in European Patent Application No. 08002882.2.
Jun. 25, 2010 European Search Report issued in European Patent Application No. 09167707.0.
Oct. 13, 2009 European Search Report issued in European Patent Application No. 09167707.0.
Feb. 23, 2009 Office Action issued in European Patent Application No. 08002882.2.
Mar. 31, 2009 Office Action issued in European Patent Application No. 04 799 453.8.
May 26, 2010 Office Action issued in European Patent Application No. 07 017 146.7.
May 12, 2009 Office Action issued in European Patent Application No. 04 724 369.6.
Jul. 12, 2010 Office Action issued in European Patent Application No. 06 711 853.9.
Oct. 8, 2010 Office Action issued in European Patent Application No. 06822564.8.
Oct. 7, 2009 Office Action issued in European Patent Application No. 04 799 453.8.
Sep. 25, 2007 Office Action issued in European Patent Application No. 04 799 453.8.
Jan. 18, 2010 Office Action issued in Korean Patent Application No. 10-2008-701908.1 (with translation).
Nov. 15, 2007 Office Action issued in Korean Patent Application No. 10-2007-7022489 (with translation).
Apr. 3, 2008 Office Action issued in Korean Patent Application No. 10-2006-7008368 (with translation).
Jan. 4, 2008 Office Action issued in Korean Patent Application No. 10-2006-7008368 (with translation).
Feb. 2, 2007 Office Action issued in Korean Patent Application No. 10-2006-7008368 (with translation).
Jan. 18, 2010 Office Action issued in Korean Patent Application No. 10-2008-7019082 (with translation).
Dec. 3, 2010 Office Action issued in Korean Patent Application No. 10-2008-7029536 (with translation).
Nov. 19, 2010 Office Action issued in Korean Patent Application No. 10-2008-7029535 (with translation).
Oct. 27, 2010 Office Action issued in Korean Patent Application No. 10-2005-7009937 (with translation).
Mar. 27, 2009 Office Action issued in Chinese Patent Application No. 2007101956440 (with translation).
Dec. 14, 2010 Office Action issued in Chinese Patent Application No. 200380104450.5 (with translation).
Jun. 13, 2008 Office Action issued in Chinese Patent Application No. 2003801044505 (with translation).
Jan. 18, 2008 Office Action issued in Chinese Patent Application No. 2003801044505 (with translation).
Jun. 29, 2007 Office Action issued in Chinese Patent Application No. 2003801044505 (with translation).
Oct. 24, 2008 Office Action issued in Chinese Patent Application No. 2007101109529 (with translation).
Nov. 13, 2009 Office Action issued in Chinese Patent Application No. 200810211496.1 (with translation).
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 200710110949.7 (with translation).
Aug. 21, 2009 Office Action issued in Chinese Patent Application No. 200810126659.6 (with translation).
May 5, 2010 Office Action issued in Chinese Patent Application No. 200810126659.6 (with translation).
Dec. 4, 2009 Office Action issued in Chinese Patent Application No. 2007101109529 (with translation).
Apr. 13, 2010 Office Action issued in Chinese Patent Application No. 2007101109529 (with translation).
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109497 (with translation).
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109482 (with translation).
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 2007101109482 (with translation).
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109529 (with translation).
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109514 (with translation).
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 2007101109514 (with translation).
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 200710110950X (with translation).
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 200710110950X (with translation).
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101956421 (with translation).
Apr. 28, 2010 Office Action issued in Chinese Patent Application No. 200710195642.1 (with translation).
Dec. 18, 2009 Office Action issued in Chinese Patent Application No. 2007101956421 (with translation).
Dec. 18, 2009 Office Action issued in Chinese Patent Application No. 2007101956417 (with translation).
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101956417 (with translation).
Dec. 18, 2009 Office Action issued in Chinese Patent Application No. 2007101956440 (with translation).
Aug. 7, 2009 Office Action issued in Chinese Patent Application No. 2007101956440 (with translation).
Jan. 8, 2010 Office Action issued in Chinese Patent Application No. 2003801044505 (with translation).
Oct. 26, 2004 Office Action issued in Chinese Patent Application No. 200480031414.5 (with translation).
Jun. 10, 2010 Office Action issued in Chinese Patent Application No. 200810211497.6 (with translation).
Feb. 6, 1996 Office Action issued in Taiwanese Patent Application No. 093109836 (with translation).
Jul. 27, 2009 Office Action issued in Taiwanese Patent Application No. 092133642 (with translation).
Mar. 17, 2008 Office Action issued in Taiwanese Patent Application No. 092133642 (with translation).
Jul. 13, 2006 Office Action issued in Taiwanese Patent Application No. 092133642 (with translation).
May 4, 2005 Office Action issued in Taiwanese Patent Application No. 092133642 (with translation).
Dec. 3, 2004 Office Action issued in Taiwanese Patent Application No. 092133642 (with translation).
Jan. 28, 2010 Office Action issued in Japanese Patent Application No. 2008-077129 (with translation).
Jun. 14, 2010 Office Action issued in Japanese Patent Application No. 2010-006125 (with translation).
Apr. 15, 2010 Office Action issued in Japanese Patent Application No. 2007-251263 (with translation).
Mar. 24, 2011 Office Action issued in Japanese Patent Application No. 2007-251263 (with translation).
Aug. 3, 2010 Office Action issued in Japanese Patent Application No. 2006-262589 (with translation).
Jan. 28, 2010 Office Action issued in Japanese Patent Application No. 2005-515005 (with translation).
Feb. 20, 2009 Office Action issued in Japanese Patent Application No. 2005-505207 (with translation).
Mar. 8, 2010 Office Action issued in Japanese Patent Application No. 2005-505207 (with translation).
Aug. 5, 2009 Office Action issued in Japanese Patent Application No. 2004-570728 (with translation).
Nov. 9, 2009 Office Action issued in Japanese Patent Application No. 2003-402584 (with translation).
Nov. 10, 2009 Office Action issued in Japanese Patent Application No. 2003-390672 (with translation).
Apr. 24, 2012 Office Action issued in Japanese Patent Application No. 2009-149426 (with translation).
Sep. 27, 2011 Office Action issued in Japanese Patent Application No. 2010-003941 (with translation).
Feb. 14, 2012 Office Action issued in Japanese Patent Application No. 2010-003941 (with translation).
Sep. 27, 2011 Office Action issued in Japanese Patent Application No. 2010-003938 (with translation).
Feb. 14, 2012 Office Action issued in Japanese Patent Application No. 2010-003938 (with translation).
Mar. 6, 2012 Office Action issued in Japanese Patent Application No. 2007-544099 (with translation).
Sep. 20, 2011 Office Action issued in Japanese Patent Application No. 2009-225810 (with translation).
May 31, 2011 Office Action issued in Japanese Patent Application No. 2009-225810 (with translation).
Jul. 14, 2008 Notice of Allowance issued in U.S. Appl. No. 11/246,642.
Feb. 20, 2007 Office Action issued in U.S. Appl. No. 11/246,642.
May 17, 2007 Office Action issued in U.S. Appl. No. 11/246,642.
Dec. 4, 2007 Office Action issued in U.S. Appl. No. 11/246,642.
Jun. 20, 2008 Corrected Notice of Allowance issued in U.S. Appl. No. 11/140,103.
Apr. 25, 2007 Office Action issued in U.S. Appl. No. 11/140,103.
Jul. 12, 2007 Office Action issued in U.S. Appl. No. 11/140,103.
Feb. 14, 2008 Office Action issued in U.S. Appl. No. 11/140,103.
Nov. 6, 2008 Office Action issued in U.S. Appl. No. 12/155,301.
Apr. 16, 2009 Office Action issued in U.S. Appl. No. 12/155,301.
Sep. 14, 2009 Office Action issued in U.S. Appl. No. 12/155,301.
Apr. 22, 2010 Office Action issued in U.S. Appl. No. 12/155,301.
Aug. 31, 2011 Office Action issued in U.S. Appl. No. 12/093,303.
Jan. 4, 2010 Notice of Allowance issued in U.S. Appl. No. 11/644,966.
Apr. 14, 2010 Notice of Allowance issued in U.S. Appl. No. 11/644,966.
Aug. 2, 2010 Notice of Allowance issued in U.S. Appl. No. 11/644,966.
Feb. 8, 2011 Notice of Allowance issued in U.S. Appl. No. 11/644,966.
Apr. 22, 2008 Office Action issued in U.S. Appl. No. 11/644,966.
Apr. 5, 2012 Notice of Allowance issued in U.S. Appl. No. 11/644,966.
Nov. 12, 2008 Office Action issued in U.S. Appl. No. 11/410,952.
Nov. 30, 2010 Notice of Allowance issued in U.S. Appl. No. 12/289,518.
Nov. 18, 2010 Notice of Allowance issued in U.S. Appl. No. 12/289,515.
Mar. 23, 2011 Notice of Allowance issued in U.S. Appl. No. 12/289,515.
Feb. 7, 2017 Office Action issued in Taiwanese Application No. 104133625.
Feb. 7, 2017 Office Action issued in Japanese Application No. 2015-198071.
Mar. 16, 2017 Office Action issued in Taiwanese Patent Application No. 105123963.
Apr. 25, 2017 Office Action issued in Japanese Patent Application No. 2016-145649.
May 16, 2017 Office Action issued in Korean Patent Application No. 10-2016-7013759.
Jun. 15, 2017 Office Action issued in U.S. Appl. No. 15/497,883.
Oct. 17, 2017 Office Action issued in Japanese Application No. 2016-145649.
Jul. 11, 2017 Office Action issued in U.S. Appl. No. 13/889,860.
Jul. 10, 2017 Office Action issued in U.S. Appl. No. 12/289,515.
Jul. 24, 2017 Office Action issued in Korean Patent Application No. 10-2015-7022796.
Oct. 3, 2017 Office Action issued in Japanese Application No. 2017-000747.
Sep. 25, 2017 Office Action issued in European Application No. 17 170 796.1.
Nov. 28, 2017 Office Action issued in Korean Application No. 10-2010-7008441.
Dec. 19, 2017 Office Action issued in U.S. Appl. No. 14/818,788.
Feb. 5, 2018 Office Action issued in U.S. Appl. No. 15/497,861.
Jan. 26, 2018 Office Action issued in Korean Application No. 10-2016-7000485.
Mar. 13, 2018 Office Action issued in Japanese Application No. 2017-063051.
Mar. 14, 2018 Office Action issued in Korean Application No. 10-2016-7013759.
Apr. 10, 2018 Office Action issued in Japanese Application No. 2016-220063.
May 17, 2018 Office Action issued in U.S. Appl. No. 13/137,002.
May 15, 2018 Office Action issued in Japanese Application No. 2016-145649.
May 24, 2018 Office Action issued in U.S. Appl. No. 15/425,532.
May 17, 2018 Office Action issued in Taiwanese Application No. 106144296.
Jul. 2, 2018 Office Action issued in U.S. Appl. No. 15/662,948.
Jul. 12, 2018 Office Action issued in European Application No. 17 170 800.1.
Jul. 18, 2018 Office Action issued in European Application No. 17 170 796.1.
Jul. 10, 2018 Office Action issued in Japanese Application No. 2017-160467.
Jul. 20, 2018 Office Action issued in Korean Application No. 10-2010-7008441.
Jul. 24, 2018 Office Action issued in U.S. Appl. No. 15/425,554.
Aug. 31, 2018 Office Action issued in U.S. Appl. No. 14/818,788.
Sep. 19, 2018 Office Action issued in U.S. Appl. No. 16/055,452.
Oct. 15, 2018 Office Action issued in Korean Application No. 10-2017-7003484.
Sep. 21, 2018 Office Action issued in European Application No. 16167687.9.
Nov. 5, 2018 Office Action issued in U.S. Appl. No. 15/497,861.
Nov. 13, 2018 Office Action issued in Japanese Application No. 2018-017563.
Nov. 28, 2018 Office Action issued in U.S. Appl. No. 15/497,883.
Nov. 26, 2018 Office Action issued in Korean Application No. 10-2015-7005285.
Jan. 15, 2019 Office Action issued in Japanese Application No. 2016-220063.
Related Publications (1)
Number Date Country
20130271945 A1 Oct 2013 US
Continuations (3)
Number Date Country
Parent 13067958 Jul 2011 US
Child 13912832 US
Parent 12461801 Aug 2009 US
Child 13067958 US
Parent 11347421 Feb 2006 US
Child 12461801 US
Continuation in Parts (1)
Number Date Country
Parent PCT/JP2005/000407 Jan 2005 US
Child 11347421 US