Polishing composition

Abstract
A polishing composition of the present invention is to be used for polishing an object including a portion containing a high-mobility material and a portion containing a silicon material. The polishing composition comprises an oxidizing agent and abrasive grains having an average primary particle diameter of 40 nm or less. The polishing composition preferably further contains a hydrolysis-suppressing compound that bonds to a surface OH group of the portion containing a silicon material of the object to function to suppress hydrolysis of the portion containing a silicon material. Alternatively, a polishing composition of the present invention contains abrasive grains, an oxidizing agent, and a hydrolysis-suppressing compound. The polishing composition preferably has a neutral pH.
Description
TECHNICAL FIELD

The present invention relates to a polishing composition to be used for polishing an object including a portion containing a high-mobility material (hereinafter, also referred to as a high-mobility material portion), such as a group IV material and a group III-V compound, and a portion containing a silicon material (hereinafter, also referred to as a silicon material portion), such as silicon oxide. The present invention also relates to a polishing method and substrate production method using the polishing composition.


BACKGROUND ART

High-mobility channel materials, which are capable of improving the carrier mobility of transistors, have been studied as a means of reducing power consumption and improving performance (operating characteristic) of a transistor. Improving the carrier transport property of a channel increases the drain current flowing when the channel is in ON-state, thereby allowing the power supply voltage to be decreased while obtaining a sufficient ON-state current. This combination brings about higher MOSFET performance at low electric power.


Group III-V compounds, such as gallium arsenide (GaAs), group IV materials, such as silicon germanium (SiGe) and germanium (Ge), and graphene, which consists of only carbon (C), have higher electron and hole mobility than that of silicon and an excellent carrier transport property, and are expected to be used as the high-mobility channel material. Particularly, a channel using a group IV material, which is easier in introduction than a group III-V compound, is positively studied. There is as yet no established technique for growing a group III-V compound channel with high crystallinity and controlling the channel to have a desired shape. Also, the group III-V compound channel has no advantage in terms of cost over the channel using a group IV material.


A high-mobility material channel can be formed by polishing an object including a high-mobility material portion and a silicon material portion. In this case, when a polishing composition is used that can polish the high-mobility material portion with higher selectivity over the silicon material portion, the high-mobility material portion can be efficiently polished and removed. Also, since loss of oxide such as silicon oxide is decreased, a withstand voltage between wiring layers is secured. Further, in a subsequent photolithography process, the decreased loss of oxide facilitates focusing of the exposure light, thereby stabilizing the process (see Patent Document 1). However, a polishing composition described in, for example, Patent Document 2 or 3 and conventionally used for polishing a compound semiconductor substrate consisting of only a group IV compound does not, when used for polishing an object including a high-mobility material portion and a silicon material portion, exhibit sufficiently high polishing selectivity for the high-mobility material portion.


PRIOR ART DOCUMENTS

Patent Document 1: Japanese Laid-Open Patent Publication No. 11-204520


Patent Document 2: Japanese Laid-Open Patent Publication No. 2010-130009


Patent Document 3: Japanese National Phase Laid-Open Patent Publication No. 2010-519740


SUMMARY OF THE INVENTION
Problems that the Invention is to Solve

Accordingly, it is an objective of the present invention to provide a polishing composition that can, when used for polishing an object including a high-mobility material portion and a silicon material portion, exhibit high polishing selectivity for the high-mobility material portion and to provide a polishing method and substrate production method using the polishing composition.


Means for Solving the Problems

In order to achieve the above-mentioned objective and in accordance with a first aspect of the present invention, provided is a polishing composition to be used for polishing an object including a high-mobility material portion and a silicon material portion. The polishing composition contains an oxidizing agent and abrasive grains having an average primary particle diameter of 40 nm or less.


The polishing composition preferably further contains a hydrolysis-suppressing compound that bonds to a surface OH group of the silicon material portion to function to suppress hydrolysis of the silicon material portion.


In accordance with a second aspect of the present invention, provided is a polishing composition to be used for polishing an object including a high-mobility material portion and a silicon material portion. The polishing composition contains abrasive grains, an oxidizing agent, and a hydrolysis-suppressing compound that bonds to a surface OH group of the silicon material portion to function to suppress hydrolysis of the silicon material portion.


The polishing compositions of the first and second aspects preferably have a neutral pH.


In accordance with a third aspect of the present invention, provided is a method for polishing an object including a high-mobility material portion and a silicon material portion with the polishing composition of the first or second aspect.


In accordance with a fourth aspect of the present invention, provided is a method for producing a substrate by polishing an object including a high-mobility material portion and a silicon material portion with the polishing composition of the first or second aspect.


Effects of the Invention

The present invention succeeds in providing a polishing composition that can, when used for polishing an object including a high-mobility material portion and a silicon material portion, exhibit high polishing selectivity for the high-mobility material portion, and a polishing method and substrate production method using the polishing composition.


Modes for Carrying out the Invention

A first embodiment of the present invention will be described below.


A polishing composition of the present embodiment is prepared by mixing specific abrasive grains and an oxidizing agent with water. Therefore, the polishing composition contains a specific abrasive grains and an oxidizing agent.


The polishing composition is used for polishing an object including a high-mobility material portion and a silicon material portion, and specifically for the purpose of selectively polishing a high-mobility material portion in an application for polishing the object to produce a substrate. A high-mobility material as referred to herein means a material having higher electron or hole mobility than that of a silicon material. Examples of the high-mobility material include group III-V compounds, such as gallium phosphide (GaP), indium phosphide (InP), gallium arsenide (GaAs), indium arsenide (InAs), and indium antimonide (InSb), and group IV group materials, such as silicon germanium (SiGe) and germanium (Ge). Examples of the silicon material include polysilicon, silicon oxide, and silicon nitride. For example, the silicon material has an electron mobility of 1,600 cm2/V·s and a hole mobility of 430 cm2/V·s. By contrast, the high-mobility material, that is, indium phosphide has an electron mobility of 5,400 cm2/V·s and a hole mobility of 200 cm2/V·s, gallium arsenide has an electron mobility of 8,500 cm2/V·s and a hole mobility of 400 cm2/V·s, indium arsenide has an electron mobility of 40,000 cm2/V·s and a hole mobility of 500 cm2/V·s; indium antimonide has an electron mobility of 77,000 cm2/V·s and a hole mobility of 850 cm2/V·s, and germanium has an electron mobility of 3,900 cm2/V·s and a hole mobility of 1,900 cm2/V·s. The high-mobility material has at least one of electron mobility and hole mobility values significantly higher than that of the silicon material.


(Abrasive Grains)


The abrasive grains contained in the polishing composition have an average primary particle diameter of 40 nm or less. When the abrasive grains having a small average primary particle diameter of 40 nm or less are used, the polishing rate of the silicon material portion with the polishing composition is advantageously much lower than the polishing rate of the high-mobility material portion with the polishing composition as compared with the case where abrasive grains having an average primary particle diameter of more than 40 nm are used. The value of the average primary particle diameter of the abrasive grains can be calculated, for example, based on the specific surface area of the abrasive grains measured by the BET method.


The abrasive grains in the polishing composition may be any of inorganic particles and organic particles. Specific examples of inorganic particles include particles made of a metal oxide, such as silica, alumina, ceria, and titania. Specific examples of organic particles include polymethyl methacrylate (PMMA) particles. Among them, silica particles are preferable, and colloidal silica is particularly preferable.


The content of the abrasive grains in the polishing composition is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less. As the abrasive grain content decreases, the material cost of the polishing composition can be reduced, and additionally, the aggregation of the abrasive grains is less likely to occur.


The average secondary particle diameter of the abrasive grains is preferably 170 nm or less, more preferably 150 nm or less, and still more preferably 120 nm or less. As the average secondary particle diameter of the abrasive grains decreases, a polished surface with fewer scratches is easily obtained by polishing the object with the polishing composition. The value of the average secondary particle diameter of the abrasive grains can be measured, for example, by a laser light scattering method.


(Oxidizing Agent)


Although the type of the oxidizing agent contained in the polishing composition is not particularly limited, the oxidizing agent preferably has a standard electrode potential of 0.3 V or more. When an oxidizing agent having a standard electrode potential of 0.3 V or more is used, the polishing rate of the high-mobility material portion with the polishing composition is advantageously enhanced as compared with when an oxidizing agent having a standard electrode potential of less than 0.3 V is used. Specific examples of an oxidizing agent having a standard electrode potential of 0.3 V or more include hydrogen peroxide, sodium peroxide, barium peroxide, an organic oxidizing agent, ozone water, a silver (II) salt, an iron (III) salt, permanganic acid, chromic acid, dichromic acid, peroxodisulfuric acid, peroxophosphoric acid, peroxosulfuric acid, peroxoboric acid, performic acid, peracetic acid, perbenzoic acid, perphthalic acid, hypochlorous acid, hypobromous acid, hypoiodous acid, chloric acid, chlorous acid, perchloric acid, bromic acid, iodic acid, periodic acid, sulfuric acid, persulfuric acid, citric acid, dichloroisocyanuric acid, and salts thereof. Among them, hydrogen peroxide, ammonium persulfate, hypochlorous acid, periodic acid, and sodium dichloroisocyanurate are preferable since the polishing rate of the high-mobility material portion with the polishing composition is greatly enhanced.


The standard electrode potential is represented by the following formula when all chemical species participating in an oxidation reaction are in a normal state:

E0=−ΔG0/nF=(RT/nF)ln K


where E0 is a standard electrode potential, ΔG0 is standard Gibbs energy change of the oxidation reaction, K is a parallel constant thereof, F is a Faraday constant, T is an absolute temperature, and n is the number of electrons participating in the oxidation reaction. Therefore, since the standard electrode potential fluctuates with a temperature, a standard electrode potential at 25° C. is utilized in the present specification. The standard electrode potential of an aqueous solution system is described in, for example, Handbook of Chemistry (fundamental part) II, revised 4th edition, pp. 464-468 (edited by the Chemical Society of Japan).


The content of the oxidizing agent in the polishing composition is preferably 0.01 mol/L or more, and more preferably 0.1 mol/L or more. As the oxidizing agent content increases, the polishing rate of the high-mobility material portion with the polishing composition is enhanced.


The content of the oxidizing agent in the polishing composition is also preferably 100 mol/L or less, and more preferably 50 mol/L or less. As the oxidizing agent content decreases, the material cost of the polishing composition can be reduced, and additionally, the burden of treating the polishing composition after use in polishing, that is, the burden of waste liquid treatment can be reduced.


(pH Adjusting Agent)


The pH of the polishing composition is preferably neutral. More specifically, the pH is preferably within a range of 5 or more and 9 or less. When the pH is neutral, the polishing rate of the silicon material portion with the polishing composition is advantageously reduced.


A pH adjusting agent may be used to adjust the pH of the polishing composition to a desired value. The pH adjusting agent to be used may be any of an acid and an alkali. The pH adjusting agent may be any of inorganic and organic compounds.


According to the present embodiment, the following advantages are obtained.

    • Abrasive grains having a small average primary particle diameter of 40 nm or less are used in the polishing composition of the present embodiment in order to reduce the polishing rate of the silicon material portion with the polishing composition. Therefore, the polishing composition has high polishing selectivity for the high-mobility material portion.
    • When the pH of the polishing composition is neutral, the polishing rate of the silicon material portion with the polishing composition is further reduced, which further improves the polishing selectivity of the polishing composition for the high-mobility material portion.


A second embodiment of the present invention will be described below.


A polishing composition of the second embodiment is prepared by mixing abrasive grains, an oxidizing agent, and a hydrolysis-suppressing compound with water. Therefore, the polishing composition contains abrasive grains, an oxidizing agent, and a hydrolysis-suppressing compound.


Like the polishing composition of the first embodiment, the polishing composition of the second embodiment is used for polishing an object including a portion containing a high-mobility material, such as gallium phosphide, indium phosphide, gallium arsenide, indium arsenide, indium antimonide, silicon germanium, and germanium, and a portion containing a silicon material, such as silicon oxide, and specifically for the purpose of selectively polishing a high-mobility material portion in an application for polishing the object to produce a substrate.


(Abrasive Grains)


The abrasive grains contained in the polishing composition of the second embodiment do not need to have an average primary particle diameter of 40 nm or less. Except for this difference, the abrasive grains are the same as the abrasive grains contained in the polishing composition of the first embodiment.


(Oxidizing Agent)


The oxidizing agent contained in the polishing composition of the second embodiment is the same as the oxidizing agent contained in the polishing composition of the first embodiment.


(Hydrolysis-Suppressing Compound)


The hydrolysis-suppressing compound contained in the polishing composition of the second embodiment bonds to a surface OH group of the silicon material portion to function to suppress the hydrolysis of the silicon material portion. In detail, a hydrogen bond is considered to be formed between a surface OH group of the silicon material portion and an oxygen atom contained in the hydrolysis-suppressing compound. Also, a hydrogen bond is considered to be formed between a surface OH group of the silicon material portion and a nitrogen atom contained in the hydrolysis-suppressing compound. Therefore, when the hydrolysis-suppressing compound is used, the polishing rate of the silicon material portion with the polishing composition is advantageously reduced. In light of the mechanism mentioned above, the hydrolysis-suppressing compound is preferably a compound having an oxygen atom or a compound having a nitrogen atom. Specific examples of the hydrolysis-suppressing compound having an oxygen atom include alcohols, such as 1-propanol, 2-propanol, 2-propyn-1-ol, allyl alcohol, ethylene cyanohydrin, 1-butanol, 2-butanol, (S)-(+)-2-butanol, 2-methyl-1-propanol, t-butyl alcohol, perfluoro-t-butyl alcohol, crotyl alcohol, 1-pentanol, 2,2-dimethyl-1-propanol, 2-methyl-2-butanol, 3-methyl-1-butanol, S-amyl alcohol, 1-hexanol, 4-hydroxy-4-methyl-2-pentanone, 4-methyl-2-pentanol, cyclohexanol, DL-3-hexyl alcohol, 1-heptanol, 2-ethyl hexyl alcohol, (S)-(+)-2-octanol, 1-octanol, DL-3-octyl alcohol, 2-hydroxybenzyl alcohol, 2-nitrobenzyl alcohol, 3,5-dihydroxybenzyl alcohol, 3,5-dinitrobenzyl alcohol, 3-fluorobenzyl alcohol, 3-hydroxybenzyl alcohol, 4-fluorobenzyl alcohol, 4-hydroxybenzyl alcohol, benzyl alcohol, m-(trifluoromethyl)benzyl alcohol, m-aminobenzyl alcohol, m-nitrobenzyl alcohol, o-aminobenzyl alcohol, o-hydroxybenzyl alcohol, p-hydroxybenzyl alcohol, p-nitrobenzyl alcohol, 2-(p-fluorophenyl)ethanol, 2-aminophenethyl alcohol, 2-methoxybenzyl alcohol, 2-methyl-3-nitrobenzyl alcohol, 2-methyl benzyl alcohol, 2-nitrophenethyl alcohol, 2-phenyl ethanol, 3,4-dimethyl benzyl alcohol, 3-methyl-2-nitrobenzyl alcohol, 3-methyl-4-nitrobenzyl alcohol, 3-methyl benzyl alcohol, 4-fluorophenethyl alcohol, 4-hydroxy-3-methoxybenzyl alcohol, 4-methoxybenzyl alcohol, 4-methyl-3-nitrobenzyl alcohol, 5-methyl-2-nitrobenzyl alcohol, DL-α-hydroxyethyl benzene, o-(trifluoromethyl)benzyl alcohol, p-(trifluoromethyl)benzyl alcohol, p-aminophenethyl alcohol, p-hydroxyphenyl ethanol, p-methylbenzyl alcohol, S-phenethyl alcohol, and acetyleneglycol; phenols, such as 4-methylphenol, 4-ethylphenol, and 4-propylphenol; glycols, such as ethylene glycol, propylene glycol, caprylyl glycol, butylene glycol, and acetylenediol; glucamines, such as n-decanol-n-methyl-D-glucamine, n-octanoyl-n-methyl-D-glucamine, and n-nonaynol-n-methyl-D-glucamine; esters, such as glycerin ester, sorbitan ester, methoxyacetic acid, ethoxyacetic acid, 3-ethoxypropionic acid, polyoxyethylene (hereinafter, referred to as POE) sorbitan fatty acid ester, POE glycol fatty acid ester, POE hexitan fatty acid ester, and alanine ethyl ester; ethers, such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene glycol, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol, alkenyl polypropylene glycol alkyl ether, alkenyl polypropylene glycol alkenyl ether, POE alkylene diglyceryl ether, POE alkyl ether, POE alkyl phenyl ether, and POE polypropylene alkyl ether; and a block/random copolymer of polyoxypropylene/polyoxyethylene.


Specific examples of the hydrolysis-suppressing compound having a nitrogen atom include water-soluble alkylamines, such as bishexamethylenetriamine (BHMT), tetramethylammonium hydroxide (TMAH), tetramethylamine (TMA), tetraethylamine (TEA), dimethylamine, trimethylamine, triethylamine, propylenediamine, methylamine, ethylamine, piperazine, and piperidine; amino alcohols, such as choline hydroxide (CH), triethanolamine, diethanolamine, and ethanolamine; and water-soluble amine compounds, such as ethylenediaminetetraacetic acid (EDTA), sodium diethyldithiocarbamate, and chitosan.


The content of the hydrolysis-suppressing compound in the polishing composition is preferably 10 ppm by mass or more, and more preferably 50 ppm by mass or more. As the hydrolysis-suppressing compound content increases, the polishing rate of the silicon material portion with the polishing composition is reduced.


The content of the hydrolysis-suppressing compound in the polishing composition is also preferably 100,000 ppm by mass or less, and more preferably 50,000 ppm by mass or less. As the hydrolysis-suppressing compound content decreases, the material cost of the polishing composition can be reduced, and additionally, the burden of treating the polishing composition after use in polishing, that is, the burden of waste liquid treatment can be reduced.


(pH Adjusting Agent)


Like the polishing composition of the first embodiment, the pH of the polishing composition of the second embodiment is preferably neutral, and more specifically within a range of 5 or more and 9 or less. When the pH is neutral, the polishing rate of the silicon material portion with the polishing composition is advantageously reduced.


A pH adjusting agent may be used to adjust the pH of the polishing composition of the second embodiment to a desired value. The pH adjusting agent to be used may be any of an acid and an alkali. The pH adjusting agent may be any of inorganic and organic compounds.


According to the second embodiment, the following advantages are obtained.

    • The hydrolysis-suppressing compound is used in the polishing composition of the second embodiment in order to reduce the polishing rate of the silicon material portion with the polishing composition. Therefore, the polishing composition has high polishing selectivity for the high-mobility material portion.
    • When the pH of the polishing composition is neutral, the polishing rate of the silicon material portion with the polishing composition is further reduced, which further improves the polishing selectivity of the polishing composition for the high-mobility material portion.


The embodiments described above may be modified as follows.

    • The polishing composition of each of the first and second embodiments may contain two or more types of abrasive grains. When the polishing composition of the first embodiment contains two or more types of abrasive grains, part of the abrasive grains does not need to necessarily have an average primary particle diameter of 40 nm or less.
    • The polishing composition of each of the first and second embodiments may contain two or more oxidizing agents.
    • The polishing composition of the second embodiment may contain two or more hydrolysis-suppressing compounds.
    • The polishing composition of the first embodiment may further contain a hydrolysis-suppressing compound. In this case, the polishing rate of the silicon material portion with the polishing composition is further reduced, which further improves the polishing selectivity of the polishing composition for the high-mobility material portion.
    • The polishing composition of each embodiment described above may further contain a known additive such as a preservative agent as required.
    • The polishing composition of each embodiment described above may be of a one-pack type or may be of a multi-pack type, such as a two-pack type.
    • The polishing composition of each embodiment described above may be prepared by diluting an undiluted solution of the polishing composition with water.


Next, examples of the present invention and comparative examples will be described.







Examples 101 to 117 and Comparative Examples 101 and 102

Polishing compositions of Examples 101 to 117 and Comparative Examples 101 and 102 were prepared by mixing colloidal silica and an oxidizing agent, and a hydrolysis-suppressing compound and a pH adjusting agent as required, with water. The details of the components in each of the polishing compositions and the results obtained by measuring the pH of each polishing composition are shown in Table 1.













TABLE 1









Colloidal silica
Oxidizing agent














Primary
Secondary

Standard
















particle
particle

electrode

Hydrolysis-suppressing compound


















diameter
diameter
Content

potential
Content

Content




[nm]
[nm]
[% by mass]
Type
[V]
[mol/L]
Type
[ppm by mass]
pH




















Example 101
12.0
25.2
1.0
H2O2
1.7
1.00


7


Example 102
25.0
39.3
1.0
H2O2
1.7
1.00


11


Example 103
33.3
64.3
1.0
H2O2
1.7
1.00


7


Example 104
33.3
64.3
1.0
H2O2
1.7
1.00


11


Example 105
33.3
64.3
1.0
APS
2
1.00


7


Example 106
33.3
64.3
1.0
Sodium
1.6
1.00


7






dichloro-






isocyanurate


Example 107
33.3
64.3
1.0
H2O2
1.7
1.00
Polyoxyethylene
200
7









polyoxypropylene









block polymer


Example 108
33.3
64.3
1.0
H2O2
1.7
1.00
Polyoxyethylene
1000
7









polyoxypropylene









block polymer


Example 109
33.3
64.3
1.0
H2O2
1.7
1.00
Polyoxyethylene
5000
7









polyoxypropylene









block polymer


Example 110
33.3
64.3
1.0
H2O2
1.7
1.00
Polyoxyethylene
5000
7









alkylene diglyceryl









ether


Example 111
33.3
64.3
1.0
H2O2
1.7
1.00
Polypropylene glycol
5000
7


Example 112
33.3
64.3
1.0
H2O2
1.7
1.00
Polyethylene glycol
5000
7


Example 113
33.3
64.3
1.0
H2O2
1.7
1.00
n-decanol-n-methyl-D-
5000
7









glucamine


Example 114
90
211
1.0
H2O2
1.7
1.00
Polyoxyethylene
5000
7









polyoxypropylene









block polymer


Example 115
33.3
64.3
1.0
H2O2
1.7
1.00
Tetramethylammonium
100
7









hydroxide


Example 116
33.3
64.3
1.0
H2O2
1.7
1.00
Trimethylamine
100
7


Example 117
33.3
64.3
1.0
H2O2
1.7
1.00
Triethanolamine
100
7


Comparative
90
211
1.0
H2O2
1.7
1.00


7


Example 101


Comparative



H2O2
1.7
1.00
Polyoxyethylene
5000
7


Example 102






polyoxypropylene









block polymer









In Table 1, “H2O2” represents hydrogen peroxide and “APS” represents ammonium persulfate. Acetic acid or potassium hydroxide was used as the pH adjusting agent.


The values of polishing rates obtained when the surfaces of a silicon germanium blanket wafer, germanium blanket wafer, and tetraethyl orthosilicate (TEOS) blanket wafer are polished under the conditions shown in Table 2 with each of the polishing compositions of Examples 101 to 117 and Comparative Examples 101 and 102 are shown in the columns entitled “polishing rate of SiGe”, “polishing rate of Ge”, and “polishing rate of TEOS”, respectively, of Table 3. The value of the polishing rate of the TEOS blanket wafer was obtained by dividing by polishing time the difference between the thicknesses of the wafer before and after polishing measured using an optical interferometric film thickness measurement apparatus. The value of the polishing rate of the silicon germanium blanket wafer and the value of the polishing rate of the germanium were obtained by dividing by the density and polishing time the difference between the weights of each of the wafers before and after polishing. The value obtained by dividing the thus obtained polishing rate of silicon germanium with each of the polishing compositions of Examples 101 to 117 and Comparative Examples 101 and 102 by the thus obtained polishing rate of TEOS with the same polishing composition is shown in the column entitled “polishing rate of SiGe/polishing rate of TEOS” of Table 3. The value obtained by dividing the thus obtained polishing rate of germanium with each polishing composition by the thus obtained polishing rate of TEOS with the same polishing composition is shown in the column entitled “polishing rate of Ge/polishing rate of TEOS” of Table 3.


The acceptable level of the polishing rate of TEOS is 300 Å/min or less, more preferably 200 Å/min or less, and still more preferably 100 Å/min or less. The acceptable level of the value obtained by dividing the polishing rate of silicon germanium by the polishing rate of TEOS is 5 or more, more preferably 10 or more, and still more preferably 15 or more. The acceptable level of the value obtained by dividing the polishing rate of germanium by the polishing rate of TEOS is 10 or more.









TABLE 2







Apparatus: One-side CMP polisher


Polishing pad: Politex (trade name) manufactured by Rodel Incorporated


Polishing pressure: 100 g/cm2


Rotational speed of platen: 50 rpm


Feeding rate of polishing composition: 100 mL/min






















TABLE 3







Polishing rate
Polishing rate

Polishing rate of SiGe/
Polishing rate of Ge/



of SiGe [Å/min]
of Ge [Å/min]
Polishing rate of TEOS [Å/min]
polishing rate of TEOS
polishing rate of TEOS





















Example 101
2010
3015
80
25.1
37.7


Example 102
1420
2130
198
7.2
10.8


Example 103
2091
3140
85
24.6
36.9


Example 104
1550
2325
218
7.1
10.7


Example 105
2400
3600
77
10.4
46.8


Example 106
1650
2475
92
17.9
26.9


Example 107
2374
3560
35
67.8
101.7


Example 108
2306
3460
27
85.4
128.1


Example 109
2242
3363
18
124.6
186.8


Example 110
2354
3531
38
61.9
92.9


Example 111
2302
3453
36
63.9
95.9


Example 112
2378
3567
59
40.3
60.5


Example 113
2520
3780
22
114.5
171.8


Example 114
2620
3930
78
33.6
50.4


Example 115
2428
3642
12
202.3
303.5


Example 116
2380
3570
15
158.7
238.0


Example 117
2250
3375
50
45.0
67.5


Comparative
2560
3840
1620
1.6
2.4


Example 101


Comparative
88
132
18
4.9
7.3


Example 102









As shown in Table 3, in the case of the polishing compositions of Examples 101 to 117, the value obtained by dividing the polishing rate of silicon germanium by the polishing rate of TEOS was 5 or more, or the value obtained by dividing the polishing rate of germanium by the polishing rate of TEOS was 10 or more. The obtained results are at a level that can be satisfactorily used for the purpose of selectively polishing the high-mobility material portion. Particularly, in Examples 101, 103, and 105 to 116, in which the pH is adjusted to 7, both the value obtained by dividing the polishing rate of silicon germanium by the polishing rate of TEOS and the value obtained by dividing the polishing rate of germanium by the polishing rate of TEOS were 10 or more, which is a particularly favorable result.


On the other hand, in the case of the polishing composition of Comparative Example 101, the value obtained by dividing the polishing rate of silicon germanium by the polishing rate of TEOS was less than 5 and was below the acceptable level. The obtained result is not at a level that can be satisfactorily used for the purpose of selectively polishing the high-mobility material portion.


Examples 201 to 216 and Comparative Example 201

Polishing compositions of Examples 201 to 216 and Comparative Example 201 were prepared by mixing colloidal silica and an oxidizing agent, and a hydrolysis-suppressing compound and a pH adjusting agent as required, with water. The details of the components in each of the polishing compositions and the results obtained by measuring the pH of each polishing composition are shown in Table 4.













TABLE 4









Colloidal silica
Oxidizing agent














Primary
Secondary

Standard

















particle
particle

electrode

Hydrolysis-suppressing compound
Type of



















diameter
diameter
Content

potential
Content

Content
pH adjusting




[nm]
[nm]
[% by mass]
Type
[V]
[mol/L]
Type
[ppm by mass]
agent
pH





















Example 201
12
25.2
1
H2O2
1.7
0.2



7


Example 202
25
39.3
1
H2O2
1.7
0.2


KOH
11


Example 203
33.3
64.3
1
H2O2
1.7
0.2



7


Example 204
33.3
64.3
1
H2O2
1.7
0.2


KOH
11


Example 205
33.3
64.3
1
APS
2
0.2



7


Example 206
33.3
64.3
1
Sodium
1.6
0.2



7






dichloro-






isocyanurate


Example 207
33.3
64.3
1
H2O2
1.7
0.2
Polyoxyethylene
200

7









polyoxypropylene









block polymer


Example 208
33.3
64.3
1
H2O2
1.7
0.2
Polyoxyethylene
1000

7









polyoxypropylene









block polymer


Example 209
33.3
64.3
1
H2O2
1.7
0.2
Polyoxyethylene
5000

7









polyoxypropylene









block polymer


Example 210
33.3
64.3
1
H2O2
1.7
0.2
Polyoxyethylene alkylene
5000

7









diglyceryl ether


Example 211
33.3
64.3
1
H2O2
1.7
0.2
Polypropylene glycol
5000

7


Example 212
33.3
64.3
1
H2O2
1.7
0.2
Polyethylene glycol
5000

7


Comparative
90
211
1
H2O2
1.7
0.2



7


Example 201


Example 213
90
211
1
H2O2
1.7
0.2
Polyoxyethylene
5000

7









polyoxypropylene









block polymer


Example 214
33.3
64.3
1
H2O2
1.7
0.2
Tetramethylammonium
100

7









hydroxide


Example 215
33.3
64.3
1
H2O2
1.7
0.2
Trimethylamine
100

7


Example 216
33.3
64.3
1
H2O2
1.7
0.2
Triethanolamine
100

7









In Table 4, “H2O2” represents hydrogen peroxide, “APS” represents ammonium persulfate, and “KOH” represents potassium hydroxide.


The values of polishing rates obtained when the surfaces of a gallium arsenide blanket wafer and tetraethyl orthosilicate (TEOS) blanket wafer are polished under the conditions shown in Table 5 with each of the polishing compositions of Examples 201 to 216 and Comparative Example 201 are shown in the columns entitled “polishing rate of GaAs” and “polishing rate of TEOS”, respectively, of Table 6. The value of the polishing rate of the TEOS blanket wafer was obtained by dividing by polishing time the difference between the thicknesses of the wafer before and after polishing measured using an optical interferometric film thickness measurement apparatus. The value of the polishing rate of the gallium arsenide blanket wafer was obtained by dividing by the density and polishing time the difference between the weights of the wafer before and after polishing. The value obtained by dividing the thus obtained polishing rate of gallium arsenide with each of the polishing compositions of Examples 201 to 216 and Comparative Example 201 by the thus obtained polishing rate of TEOS with the same polishing composition is shown in the column entitled “polishing rate of GaAs/polishing rate of TEOS” of Table 6.


The acceptable level of the polishing rate of TEOS is 300 Å/min or less, more preferably 200 Å/min or less, and still more preferably 100 Å/min or less. The acceptable level of the value obtained by dividing the polishing rate of gallium arsenide by the polishing rate of TEOS is 5 or more, more preferably 10 or more, and still more preferably 15 or more.









TABLE 5







Apparatus: One-side CMP polisher


Polishing pad: Politex (trade name) manufactured by Rodel Incorporated


Polishing pressure: 100 g/cm2


Rotational speed of platen: 50 rpm


Feeding rate of polishing composition: 100 mL/min




















TABLE 6








Polishing
Polishing



Polishing rate of
rate of
rate of GaAs/



of GaAs [Å/min]
TEOS [Å/min]
polishing rate of TEOS



















Example 201
723
36
20


Example 202
3911
91
43


Example 203
697
85
8


Example 204
4134
258
16


Example 205
1563
77
20


Example 206
11818
92
128


Example 207
687
76
9


Example 208
653
32
21


Example 209
621
8
81


Example 210
677
38
18


Example 211
651
36
18


Example 212
689
59
12


Comparative
615
243
3


Example 201


Example 213
548
23
24


Example 214
714
42
17


Example 215
690
39
18


Example 216
752
50
15









As shown in Table 6, in the case of the polishing compositions of Examples 201 to 216, the polishing rate of TEOS was 100 Å/min or less, or the value obtained by dividing the polishing rate of gallium arsenide by the polishing rate of TEOS was 15 or more. The obtained results are at a level that can be satisfactorily used for the purpose of selectively polishing the high-mobility material portion.


On the other hand, in the case of the polishing composition of Comparative Example 201, the value obtained by dividing the polishing rate of gallium arsenide by the polishing rate of TEOS was below the acceptable level. The obtained result is not at a level that can be satisfactorily used for the purpose of selectively polishing the high-mobility material portion.

Claims
  • 1. A method for polishing, comprising: providing an object including a portion containing a group III-V compound and a portion containing a silicon material; andusing a polishing composition to polish the object, wherein the polishing composition comprises:abrasive grains;an oxidizing agent; anda hydrolysis-suppressing compound that bonds to a surface OH group of the portion containing a silicon material to function to suppress hydrolysis of the portion containing a silicon material.
  • 2. The method according to claim 1, wherein the polishing composition has a neutral pH.
  • 3. The method according to claim 1, wherein the hydrolysis-suppressing compound is selected from the group consisting of n-decanol-n-methyl-D-glucamine, n-octanoyl-n-methyl-D-glucamine, n-nonaynol-n-methyl-D-glucamine, glycerin ester, sorbitan ester, methoxyacetic acid, ethoxyacetic acid, 3-ethoxypropionic acid, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene glycol fatty acid ester, polyoxyethylene hexitan fatty acid ester, alanine ethyl ester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene glycol, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol, alkenyl polypropylene glycol alkyl ether, alkenyl polypropylene glycol alkenyl ether, polyoxyethylene alkylene diglyceryl ether, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polypropylene alkyl ether, a block/random copolymer of polyoxypropylene/polyoxyethylene, bishexamethylenetriamine, tetramethylammonium hydroxide, tetramethylamine, tetraethylamine, dimethylamine, trimethylamine, triethylamine, propylenediamine, methylamine, ethylamine, piperazine, piperidine, choline hydroxide, triethanolamine, diethanolamine, ethanolamine, ethylenediaminetetraacetic acid, sodium diethyldithiocarbamate, and chitosan.
  • 4. The method according to claim 1, wherein the hydrolysis-suppressing compound is selected from the group consisting of a polyoxyethylene ester, polyethylene glycol and its derivative, and polypropylene glycol and its derivative.
  • 5. The method according to claim 1, wherein the hydrolysis-suppressing compound is selected from the group consisting of polyoxyethylene polyoxypropylene block polymer, polyoxyethylene alkylene diglyceryl ether, polypropylene glycol, polyethylene glycol, n-decanol-n-methyl-D-glucamine, tetramethylammonium hydroxide, trimethylamine, and triethanolamine.
  • 6. The method according to claim 1, wherein the hydrolysis-suppressing compound is contained in the polishing composition in an amount of 10 ppm by mass or more and 100,000 ppm by mass or less.
  • 7. The method according to claim 1, wherein the group III-V compound is selected from the group consisting of gallium phosphide, indium phosphide, gallium arsenide, and indium antimonide.
  • 8. The method according to claim 1, wherein the polishing composition has a pH range of 5 or more and 9 or less.
  • 9. The method according to claim 1, wherein the hydrolysis-suppressing compound is selected from the group consisting of an alcohol, a phenol, a glycol, a glucamine, an ester, an ether, a block/random copolymer of polyoxypropylene/polyoxyethylene, a water-soluble alkylamine, an amino alcohol, and a water-soluble amine compound.
  • 10. A method for polishing, comprising: providing an object including a portion containing a group III-V compound and a portion containing a silicon material; andusing a polishing composition to polish the object, wherein the polishing composition comprises:abrasive grains having an average primary particle diameter of 40 nm or less; andan oxidizing agent.
  • 11. The method according to claim 10, further comprising adding, prior to said using, to the polishing composition a hydrolysis-suppressing compound that bonds to a surface OH group of the portion containing a silicon material to function to suppress hydrolysis of the portion containing a silicon material.
  • 12. The method according to claim 11, wherein the hydrolysis-suppressing compound is selected from the group consisting of an alcohol, a phenol, a glycol, a glucamine, an ester, and ether, a block/random copolymer of polyoxypropylene/polyoxyethylene, a water-soluble alkylamine, an amino alcohol, and a water-soluble amine compound.
  • 13. The method according to claim 10, wherein the pH of the polishing composition is 5 or more and 7 or less.
  • 14. The method according to claim 10, wherein the pH of the polishing composition is 7.
  • 15. The method according to claim 10, wherein the abrasive grains are colloidal silica.
  • 16. The method according to claim 15, wherein the abrasive grains have an average secondary particle diameter of 170 nm or less.
  • 17. The method according to claim 10, wherein the group III-V compound is selected from the group consisting of gallium phosphide, indium phosphide, gallium arsenide, and indium antimonide.
  • 18. The method according to claim 10, wherein the polishing composition has a neutral pH.
  • 19. The method according to claim 10, wherein the polishing composition has a pH range of 5 or more and 9 or less.
Priority Claims (2)
Number Date Country Kind
2011-258343 Nov 2011 JP national
2012-061154 Mar 2012 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2012/080219 11/21/2012 WO 00
Publishing Document Publishing Date Country Kind
WO2013/077369 5/30/2013 WO A
US Referenced Citations (28)
Number Name Date Kind
4954141 Takiyama et al. Sep 1990 A
6022264 Cook et al. Feb 2000 A
7250085 Abbadie et al. Jul 2007 B2
7595511 Kang Sep 2009 B2
8338302 Schwandner et al. Dec 2012 B2
8647985 Schwandner et al. Feb 2014 B2
20030139122 Lawing Jul 2003 A1
20040214434 Atwater et al. Oct 2004 A1
20050026432 Atwater et al. Feb 2005 A1
20060278614 Wang et al. Dec 2006 A1
20060288929 Slack et al. Dec 2006 A1
20070074457 Ito et al. Apr 2007 A1
20070075041 Ishibashi et al. Apr 2007 A1
20080120918 Hattori et al. May 2008 A1
20080169534 Dip et al. Jul 2008 A1
20080200033 Takemiya Aug 2008 A1
20090159845 Ishibashi et al. Jun 2009 A1
20090203215 Yoshikawa et al. Aug 2009 A1
20100072515 Park et al. Mar 2010 A1
20100130012 Schwandner et al. May 2010 A1
20110012233 Ishibashi et al. Jan 2011 A1
20110117740 Martinez et al. May 2011 A1
20120088344 van Dal Apr 2012 A1
20120164833 Ishibashi et al. Jun 2012 A1
20120276742 Lee et al. Nov 2012 A1
20120276819 Lee et al. Nov 2012 A1
20140170852 Noller et al. Jun 2014 A1
20140199841 Noller et al. Jul 2014 A1
Foreign Referenced Citations (13)
Number Date Country
63-150155 Jun 1988 JP
11-204520 Jul 1999 JP
2000-160138 Jun 2000 JP
2003-109920 Apr 2003 JP
2004-327614 Nov 2004 JP
2007-103514 Apr 2007 JP
2008-135452 Jun 2008 JP
2010-030041 Feb 2010 JP
2010-130009 Jun 2010 JP
2010-519740 Jun 2010 JP
2011-238763 Nov 2011 JP
WO 2007029465 Mar 2007 WO
WO 2008099245 Aug 2008 WO
Related Publications (1)
Number Date Country
20140322913 A1 Oct 2014 US