Power module for supporting high current densities

Information

  • Patent Grant
  • 11024731
  • Patent Number
    11,024,731
  • Date Filed
    Friday, October 26, 2018
    5 years ago
  • Date Issued
    Tuesday, June 1, 2021
    2 years ago
Abstract
A power module is disclosed that includes a housing with an interior chamber wherein multiple switch modules are mounted within the interior chamber. The switch modules comprise multiple transistors and diodes that are interconnected to facilitate switching power to a load. In one embodiment, at least one of the switch modules supports a current density of at least 10 amperes per cm2.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to electronic devices and in particular to power modules.


BACKGROUND

Power devices made with silicon carbide (SiC) are expected to show great advantages as compared to those on silicon for high speed, high power and/or high temperature applications due to the high critical field and wide band gap of SiC. For devices capable of blocking high voltages, such as voltages in excess of about 5 kV, it may be desirable to have bipolar operation to reduce the drift layer resistance via conductivity modulation resulting from injected minority carriers. However, one technical challenge for bipolar devices in silicon carbide is forward voltage degradation over time, possibly due to the presence of Basal Plane Dislocations (BPD) in single crystals of silicon carbide. Thus, unipolar devices such as SiC Schottky diodes and MOSFETs are typically used for high power applications, e.g., up to 10 kV or more.


SiC DMOSFET devices with a 10 kV blocking capability have been fabricated with a specific on-resistance of about 100 mΩ×cm2. DMOSFET devices may exhibit very fast switching speeds of, for example, less than 100 ns, due to their majority carrier nature. However, as the desired blocking voltage of devices increases, for example up to 15 kV or more, the on-resistance of a MOSFET device may increase substantially, due to the corresponding increase in the drift layer thickness. This problem may be exacerbated at high temperatures due to bulk mobility reduction, which may result in excessive power dissipation.


With the progress of SiC crystal material growth, several approaches have been developed to mitigate BPD related problems. See, e.g., B. Hull, M. Das, J. Sumakeris, J. Richmond, and S. Krishinaswami, “Drift-Free 10-kV, 20-A 4H-SiC PiN Diodes”, Journal of Electrical Materials, Vol. 34, No. 4, 2005, which is incorporated herein by reference in its entirety. These developments may enhance the development and/or potential applications of SiC bipolar devices such as thyristors, GTOs, etc. Even though thyristors and/or GTOs may offer low forward voltage drops, they may require bulky commutating circuits for the gate drive and protections. Accordingly, it may be desirable for a SiC bipolar device to have gate turn-off capability. Due to their superior on-state characteristics, reasonable switching speed, and/or excellent safe-operation-area (SOA), 4H-SiC insulated gate bipolar transistors (IGBTs) are becoming more suitable for power switching applications.


These devices are used in power modules, which operate to dynamically control large amounts of power through switching for motors, inverters, generators, and the like. There is a continuing need for power modules that are smaller and less expensive to manufacture while at the same time being capable of controlling larger loads.


SUMMARY

A power module is disclosed that supports high current densities. The power module includes a housing with an interior chamber wherein multiple switch modules are mounted within the interior chamber. The switch modules comprise multiple transistors and diodes that are interconnected to facilitate switching power to a load. In one embodiment, at least one of the switch modules supports a current density of at least 10 amperes per cm2.


In other embodiments, at least one transistor in a switch module includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region. The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region, and a source ohmic contact is in contact with the source contact regions and the body contact region.


The body contact region may include a plurality of body contact regions that are interspersed between the source contact regions. The plurality of body contact regions may be spaced apart from the channel region by the lateral source region.


The source ohmic contact may be in contact with the source region in a source contact area and the source ohmic contact may be in contact with the body contact region in a body contact region area.


In some embodiments, a ratio of a minimum dimension p1 of the contact region area to a minimum dimension w1 of the well region may be greater than 0.2. In further embodiments, the ratio of the minimum dimension p1 of the contact region area to the minimum dimension w1 of the well region may be greater than about 0.3.


The drift region may include a wide bandgap semiconductor material, such as silicon carbide.


The source region has a sheet resistance and the source ohmic contact has a sheet resistance that is greater than 75% of the contact resistance of the source region, and in some embodiments is greater than the contact resistance of the source region.


The transistor may have a reverse blocking voltage in excess of 1000 volts and a current density greater than 200 amps per square centimeter.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate certain embodiment(s) of the disclosure. In the drawings:



FIG. 1 is a circuit diagram of an H-bridge for an exemplary power module that is configured to drive a motor.



FIG. 2 illustrates a first current path in the H-bridge of FIG. 1 when driving the motor in a first direction.



FIG. 3 illustrates a second current path in the H-bridge of FIG. 1 when driving the motor in a second direction.



FIG. 4 is a circuit diagram of a switch module of the H-bridge of FIG. 1.



FIG. 5 is a top plan view of a power module according to one embodiment.



FIG. 6 is an isometric view of the power module of FIG. 5.



FIG. 7 is a circuit diagram of a metal-oxide-semiconductor field effect transistor (MOSFET) device.



FIG. 8 is a graph illustrating hypothetical on-state current-voltage characteristics for a MOSFET device.



FIG. 9 is a graph illustrating the effect of source resistance on gate voltage.



FIG. 10 is a partial cross sectional illustration of a cell of a conventional power MOSFET device.



FIGS. 11 and 12 are plan views illustrating layouts of conventional power MOSFET devices.



FIGS. 13 and 14 are plan views illustrating layouts of power MOSFET devices according to some embodiments.



FIGS. 15 and 16 are partial cross sectional illustrations of a cell of a power MOSFET device according to some embodiments.



FIG. 17 is a graph showing on-state current-voltage characteristics for a MOSFET device according to some embodiments.



FIG. 18 is a cross sectional illustration of a cell of a power MOSFET device according to some embodiments.



FIG. 19 is a cross sectional illustration of a cell of an insulated gate bipolar transistor device according to some embodiments.



FIG. 20 is a cross sectional illustration of a cell of a p-type insulated gate bipolar transistor device according to some embodiments.



FIG. 21 is a graph showing current-voltage characteristics of the P-IGBT device of FIG. 20.



FIG. 22A is a graph showing voltage blocking characteristics of the p-IGBT of FIG. 20.



FIG. 22B is a graph showing pulsed on-state current-voltage characteristics of the P-IGBT of FIG. 20.



FIG. 22C is a graph showing further on-state current-voltage characteristics of the P-IGBTs of FIG. 20 for temperatures ranging from room temperature to 300° C.



FIG. 22D is a graph showing on-state current-voltage characteristics of the P-IGBTs of FIG. 22 as a function of temperature.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE DISCLOSURE

Embodiments of the present disclosure now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the disclosure are shown. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Like numbers refer to like elements throughout.


It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.


It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.


Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “lateral” or “vertical” may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.


Embodiments of the disclosure are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the disclosure. The thickness of layers and regions in the drawings may be exaggerated for clarity. Additionally, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the disclosure should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a discrete change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the disclosure.


Some embodiments of the disclosure are described with reference to semiconductor layers and/or regions which are characterized as having a conductivity type such as n-type or p-type, which refers to the majority carrier concentration in the layer and/or region. Thus, n-type material has a majority equilibrium concentration of negatively charged electrons, while p-type material has a majority equilibrium concentration of positively charged holes. Some material may be designated with a “+” or “−” (as in n+, n−, p+, p−, n++, n−−, p++, p−−, or the like), to indicate a relatively larger (“+”) or smaller (“−”) concentration of majority carriers compared to another layer or region. However, such notation does not imply the existence of a particular concentration of majority or minority carriers in a layer or region.


An exemplary system that employs a power module is illustrated in FIG. 1. As depicted, the power module can include four switch modules SM1-SM4, which are controlled by a control CS1 to deliver power from a power supply PS1 to a load in a controlled manner. The switch modules SM1 and SM2 form a first half of an H-bridge, while switch modules SM3 and SM4 form a second half of the H-bridge. As noted, power modules are often used to drive an inductive load, such as that provided by a direct current (DC) motor M1. The details of the switch modules SM1-SM4 are described in further detail below.


For now, assume the switch modules SM1-SM4 can include at least one transistor in parallel with an internal or external diode that is connected in anti-parallel with the transistor. The transistors are illustrated as metal oxide field effect transistors (MOSFETs), and the diodes are illustrated as Schottky diodes for purposes of description. The MOSFETs may be replaced with other types of transistors, such as bipolar transistors, including insulated gate bipolar transistors (IGBTs), and various kinds of field effect transistors (FETs), such as junction field effect transistors (JFETs), and high electron mobility transistors (HEMTs). Similarly, the Schottky diodes may be replaced with traditional p-n diodes.


As illustrated, switch module SM1 may include either an n-channel or p-channel MOSFET Q1 that has a Schottky diode D1 connected in anti-parallel across the drain and source terminals of the MOSFET Q1. Switch modules SM2-SM4 are similarly configured. Switch module SM2 includes an n-channel MOSFET Q2 that has a Schottky diode D2 connected in anti-parallel across the drain and source terminals of the MOSFET Q2. Switch module SM3 may include either an n-channel or p-channel MOSFET Q3 that has a Schottky diode D3 connected in anti-parallel across the drain and source terminals of the MOSFET Q3. Switch module SM4 includes an n-channel MOSFET Q4 that has a Schottky diode D4 connected in anti-parallel across the drain and source terminals of the MOSFET Q4.


The switch modules SM1 and SM3 are considered on the “high” side, and the switch modules SM2 and SM4 are considered on the “low” side of the power module. The drains of MOSFETs Q1 and Q3 and the cathodes of diodes D1 and D3 are coupled together and to the power supply PS1. The source of MOSFET Q1, the anode of diode D1, the drain of MOSFET Q2, and the cathode of diode D2 are coupled together and to a first terminal of the motor M1. The source of MOSFET Q3, the anode of diode D3, the drain of MOSFET Q4, and the cathode of diode D4 are coupled together and to a second terminal of the motor M1. Finally, the sources of MOSFETs Q2 and Q4 and the anodes of diodes D2 and D4 are coupled to ground. The gates of MOSFETs Q1-Q4 are respectively driven by control signals S1-S4, which are provided by the control system CS1. Assume the motor M1 may be driven in both forward and reverse directions.


For forward operation, assume control signals S1-S4 are configured to turn on MOSFETs Q2 and Q3 and turn off MOSFETs Q1 and Q4, which corresponds to driving the motor M1 in a forward direction. As illustrated in FIG. 2, a forward current if flows from the power supply PS1 through MOSFET Q3, the motor M1, and the MOSFET Q2 to ground. If MOSFETs Q2 and Q3 stay on, the maximum forward current if is provided and the motor M1 will turn in the forward direction at a maximum speed, with maximum torque, or a combination thereof.


To control the speed or torque, one or both of the MOSFETs Q2 and Q3 may be switched off and on at a duty cycle that corresponds to the speed or torque desired from the motor M1. As a result, the voltage supplied to the motor M1 is pulse width modulated, wherein the on-to-off switching ratio of the MOSFETs Q2 and Q3 dictates the average voltage presented to the motor M1. The inductive nature of the motor M1 tries to keep the forward current if constant, and as a result, averages the voltage presented to the motor M1 to a level corresponding to the on-to-off switching ratio of the MOSFETs Q2 and Q3. The average voltage presented to the motor M1 dictates the forward current if that is passed through the motor M1, and thus, controls the actual speed or torque of the motor M1.


For reverse operation, assume control signals S1-S4 are configured to turn on MOSFETs Q1 and Q4 and turn off MOSFETs Q2 and Q3. As illustrated in FIG. 3, a reverse current ir flows from the power supply PS1 through MOSFET Q1, the motor M1, and the MOSFET Q4 to ground. If MOSFETs Q1 and Q4 stay on, the maximum reverse current ir is provided and the motor M1 will turn in the reverse direction at a maximum speed, with maximum torque, or a combination thereof. Notably, the term “reverse” when used as an adjective in the term “reverse current ir,” merely refers to the direction of operation for the motor M1. The arrows provided in FIGS. 2 and 3, respectively, indicate the direction of current flow for both the forward current if and the reverse current ir.


As described above, the various MOSFETs Q1-Q4 may be turned on and off at a relatively high frequency to provide pulse width modulated voltage to the motor M1 for either forward or reverse operation as well as to switch from forward operation to reverse operation. When a pair of MOSFETs, such as MOSFETs Q2 and Q3 transition from an on-state to an off-state during forward operation, the forward current if continues to flow through the motor M1 after the MOSFETs Q2 and Q3 are turned off, due to the electromagnetic field that is present in the inductive windings of the motor M1. At this point, all of the MOSFETs Q1-Q4 are off, yet the forward current if remains flowing through the motor M1. Since the forward current if cannot flow through any of the MOSFETS Q1-Q4 to a lower potential node, one or more of the Schottky diodes D1 though D4 may become forward biased and provide a path for the forward current if to flow to either ground or the power supply PS1.


To increase the power handling of a switch module SM1-SM4, each of the MOSFETs Q1-Q4 may represent an array of effectively parallel transistors. Similarly, each of the Schottky diodes D1-D4 may represent an array of effectively parallel diodes. This concept is represented in FIG. 4 where an exemplary embodiment of switch module SM1 is illustrated. The other switch modules SM2-SM3 may be similarly configured.


As illustrated, switch module SM1 includes an array of MOSFETs Q11-Q1N, which are effectively coupled in parallel, such that the drains are all coupled together and to the power supply PS1; the sources are all coupled together and to the motor M1 and switch module SM2; and the gates are coupled together and to the control system C1 (control signal S1). The Schottky diodes D11-D1N are coupled in anti-parallel across the drain and sources of the MOSFETs Q11-Q1N. The number (N) of MOSFETs Q11-Q1N and Schottky diodes D11-D1N may range from two to more than 100, depending on the capability of each individual device and the application. Notably, there may be two or more Schottky diodes D1 for each MOSFET Q1, even though there is only a one-to-one relationship in the illustration.



FIGS. 5 and 6 show top and perspective views of an exemplary power module. With reference to FIG. 5, rectangular housing H1 is provided with an interior chamber that holds one or more printed circuit boards PCB1 and PCB2. For clarity, the printed circuit boards PCB1 and PCB2 are not shown in FIG. 6. Each printed circuit board PCB1 and PCB2 is shown as having multiple transistors Q and diodes D that represent the primary components of the switch modules SM1-SM4. For example, the high and low side of the first half-H bridge formed by switch modules SM1 and SM2 are provided on printed circuit board PCB1, while the high and low side of the second half-H bridge formed by switch modules SM3 and SM4 are provided on printed circuit board PCB2. Together, the first and second half-H bridges form the above-described full-H bridge.


The necessary interconnects between the components on the printed circuit boards PCB1 and PCB2 are provided by metal traces (not shown) on the printed circuit boards PCB1 and PCB2. Bond wires may be used to make connections between the printed circuit boards PCB1 and PCB2 and one more connectors or buses B1 and B2. For example, bus B1 may be used to connect switch modules SM2 and SM4 to ground, and bus B2 may be used to connect switch modules SM1 and SM3 to the power supply PS1. These or other connectors may be used for the control signals S1-S4. The printed circuit boards PCB1 and PCB2 may be mounted to a mounting structure that is affixed to the housing H1. As illustrated, the mounting structure is a planar heat sink HS1 that also functions to dissipate heat generated by the switch modules SM1-SM4.


Again, the H-bridge configuration of the power module is just one of many available designs for power modules, especially those used to drive inductive loads. Alternatives to the H-bridge configuration for the power module include a half-H bridge and like known power switching or control circuits.


Regardless of the type of configuration of the power module, one metric for measuring the power handling capabilities of the device is current density of one of the switch modules SM1-SM4. This switch module current density is defined as the ratio of the maximum average current that a single switch module SM1-SM4 can handle to the interior area of the housing H1 that is allocated to the single switch module SM1-SM4. For the illustrated example, there are four switch modules SM1-SM4 of equal size. As such, the interior area of the housing H1 that is allocated to a single switch module SM1-SM4 is one-fourth (¼) the total interior area of the housing H1.


For example, assume the interior area of the housing H1 is 100 cm2, and the maximum average current handling of one of the switch modules SM1-SM4 is 250 amperes. As such, the interior area of the housing H1 that is allocated to a single switch module SM1-SM4 is one-fourth of 100 cm2, or 25 cm2. The switch module current density is calculated by dividing the maximum average current handling of 250 amperes by the interior area of the housing H1 that is allocated to the single switch module SM1-SM4, which yields 10 amperes/cm2.


The interior area of the housing H1 is defined as the maximum (two-dimensional) cross-sectional area of the interior of the housing H1 wherein the plane of measurement is along the plane in which one or more printed circuit boards PCB1 and PCB2 or one or more semiconductor die that provide the switch modules SM1-SM4 reside. For the illustrated example in FIG. 5, the interior area is defined by the perimeter of the inside wall of the housing H1. Notably, since the housing H1 may have various shapes and configurations in addition to the rectangular configuration shown in FIGS. 5 and 6, the interior areas need not be rectangular and the perimeter of the interior areas will follow the interior sidewalls of the housing H1. In one embodiment, the switch module current density is about 10 amperes/cm2 or greater. In another embodiment, the switch module current density is about 12 amperes/cm2 or greater. In another embodiment, the switch module current density is about 15 amperes/cm2 or greater.


The following description outlines several transistor configurations that can be used in the power module as MOSFETs Q1N-Q4N or alternatives thereto. Other transistor configurations may be employed. Some embodiments of the disclosure provide silicon carbide (SiC) insulated gate devices that are suitable for high power and/or high temperature applications.



FIG. 7 is a circuit diagram of a metal oxide semiconductor field effect transistor (MOSFET) device 10. As shown therein, a MOSFET device generally includes three terminals, namely, a drain terminal (D), a source terminal (S) and a gate terminal (G). The gate-to-source voltage of the device is denoted VGS, while the drain-to-source voltage of the device is denoted VDS. The device has a built in source resistance RS and a built-in drain resistance RD based on the physical characteristics of the device. The voltage over the built-in source resistance RS is denoted VRs.


In a MOSFET device, current passing through a channel of the device from the drain to the source is regulated by applying a voltage to the gate. The gate is insulated from the channel by a gate insulator, such as silicon dioxide. As the voltage on the gate terminal is increased, current passing through the device may increase.



FIG. 8 is a graph illustrating hypothetical curve 102 and actual 104 on-state current-voltage characteristics for a MOSFET device for a given gate-to-source voltage (VGS). As shown in FIG. 8, for a given gate voltage, the current through the device (ID) increases as the voltage between the drain and source (VDS) increases, up to a saturation point. In actual devices, the actual saturation current of a transistor is typically less than the ideal saturation current. Part of the reason for this relates to the source resistance of the device.


In particular, as the drain current ID passing through the device increases, the amount of voltage dropped over the source resistance RS increases in direct proportion. FIG. 9 is a graph illustrating the effect of source resistance on gate voltage. In FIG. 9, the voltage from the gate terminal to the source terminal is denoted VGS. A portion of the gate voltage VGS applied to the device across the gate and source terminals is dropped over the internal source resistance RS of the device. That portion of the gate voltage is denoted VRs in FIG. 9. The remainder of the gate-to-source voltage appears as a voltage across the gate insulator, denoted VGS,int in FIG. 9. Thus, VGS is equal to the sum of VRs and VGS,int.


As shown in FIG. 9, the gate-to-source voltage may remain constant as the drain current increases. However, the portion of the gate voltage VGS that is dropped over the internal source resistance of the device, VRs, increases as the drain current ID increases, while the portion of the gate-to-source voltage that appears as a voltage across the gate insulator, VGS,int, decreases as the drain current ID increases.


Thus, as the drain current increases the portion of the gate voltage that is being used to maintain the channel decreases, which may cause the device to go into saturation at a lower level of drain-to-source voltage. Accordingly, a high source resistance can adversely affect the operation of a MOSFET or other insulated gate controlled device.


A unit cell of a MOSFET structure according to some embodiments is shown in FIG. 10. The device of FIG. 10 includes an n− drift epitaxial layer 14 on an n-type, 8° off-axis 4H-SiC substrate 12. The n− drift layer 14 may have a thickness of about 100 μm to about 120 μm, and may be doped with n-type dopants at a doping concentration of about 2×1014 cm−3 to about 6×1014 cm−3 for a blocking capability of about 10 kV. Other doping concentrations/voltage blocking ranges are also possible. For a 1200V MOSFET device, the substrate may be 4° off-axis 4H-SiC and the drift layer may have a thickness of about 10 μm and may be doped with n-type dopants at a doping concentration of about 6×1015 cm−3.


The structure further includes a p+ well region 18 and an n+ source region 20 that may be formed by selective implantation of, for example, aluminum and nitrogen, respectively. The junction depth of the p+ well region 18 may be about 0.5 μm, although other depths are possible. The structure further includes a p+ contact region 22 that extends from a surface of the drift layer 14 into the p+ well region 18. A junction termination (not shown) may be provided around the device periphery.


All of the implanted dopants may be activated by annealing the structure at a temperature of about 1600° C. with a silicon over pressure and/or covered by an encapsulation layer such as a graphite film. A high temperature anneal may damage the surface of the silicon carbide epitaxy without these conditions. The silicon overpressure may be provided by the presence of silane, or the close proximity of silicon carbide coated objects that provide a certain amount of silicon overpressure. Alternatively or in combination with silicon overpressure, a graphite coating may be formed on the surface of the device. Prior to annealing the device to activate the implanted ions, a graphite coating may be applied to the top/front side of the structure in order to protect the surface of the structure during the anneal. The graphite coating may be applied by a conventional resist coating method and may have a thickness of about 1 μm. The graphite coating may be heated to form a crystalline coating on the drift layer 14. The implanted ions may be activated by a thermal anneal that may be performed, for example, in an inert gas at a temperature of about 1600° C. or greater. In particular the thermal anneal may be performed at a temperature of about 1600° C. in argon for 5 minutes. The graphite coating may help to protect the surface of the drift layer 14 during the high temperature anneal.


The graphite coating may then be removed, for example, by ashing and thermal oxidation.


After implant annealing, a field oxide of silicon dioxide (not shown) having a thickness of about 1 μm may be deposited and patterned to expose the active region of the device.


A gate oxide layer 36 may be formed by a gate oxidation process, with a final gate oxide thickness of 400-600 Å.


In particular, the gate oxide may be grown by a dry-wet oxidation process that includes a growth of bulk oxide in dry O2 followed by an anneal of the bulk oxide in wet O2 as described, for example, in U.S. Pat. No. 5,972,801, the disclosure of which is incorporated herein by reference in its entirety. As used herein, anneal of oxide in wet O2 refers to anneal of an oxide in an ambient containing both O2 and vaporized H2O. An anneal may be performed in between the dry oxide growth and the wet oxide growth. The dry O2 oxide growth may be performed, for example, in a quartz tube at a temperature of up to about 1200° C. in dry O2 for a time of at least about 2.5 hours. Dry oxide growth is performed to grow the bulk oxide layer to a desired thickness. The temperature of the dry oxide growth may affect the oxide growth rate. For example, higher process temperatures may produce higher oxide growth rates. The maximum growth temperature may be dependent on the system used.


In some embodiments, the dry O2 oxide growth may be performed at a temperature of about 1175° C. in dry O2 for about 3.5 hours. The resulting oxide layer may be annealed at a temperature of up to about 1200° C. in an inert atmosphere. In particular, the resulting oxide layer may be annealed at a temperature of about 1175° C. in Ar for about 1 hour. The wet O2 oxide anneal may be performed at a temperature of about 950° C. or less for a time of at least about 1 hour. The temperature of the wet O2 anneal may be limited to discourage further thermal oxide growth at the SiC/SiO2 interface, which may introduce additional interface states. In particular, the wet O2 anneal may be performed in wet O2 at a temperature of about 950° C. for about 3 hours. The resulting gate oxide layer may have a thickness of about 500 Å.


In some embodiments, the dry O2 oxide growth may be performed at a temperature of about 1175° C. in dry O2 for about 4 hours. The resulting oxide layer may be annealed at a temperature of up to about 1175° C. in an inert atmosphere. In particular, the resulting oxide layer may be annealed at a temperature of about 1175° C. in Ar for about a time duration ranging from 30 min to 2 hours. Then the oxide layer receives an anneal in NO ambient at a temperature ranging from 1175° C. to 1300C, for a duration ranging from 30 minutes to 3 hours. The resulting gate oxide layer may have a thickness of about 500 Å.


After formation of the gate oxide 36, a polysilicon gate 32 may be deposited and doped, for example, with boron followed by a metallization process to reduce the gate resistance. Al/Ni contacts may be deposited as the p-type ohmic source contact metal 34, and Ni as the n-type drain contact metal 26. All contacts may be sintered in a Rapid Thermal Annealer (RTA), and thick Ti/Au layers may be used for pad metals


Referring to FIG. 10, the source resistance of a MOSFET device has two primary components, namely, the contact resistance RC between the source ohmic contact 34 and the source region 20, and the sheet resistance Rsheet in the source region 20 between the source ohmic contact 34 and the channel. Thus, RS=RC+Rsheet. In a conventional silicon-based MOSFET device, the sheet resistance Rsheet is the dominant factor in determining the source resistance, because it is possible to form very low resistivity ohmic contacts to silicon and other narrow-bandgap semiconductors. However, in wide bandgap semiconductors (i.e., semiconductors having a bandgap greater than about 2.0 V), including compound semiconductor materials, such as silicon carbide and gallium nitride, diamond, and ZnO, the contact resistance RC may be the dominant contributor to the source resistance. In particular, it is difficult to form very low resistivity ohmic contacts to silicon carbide and other wide bandgap materials because of the high energy barrier associated with such materials.



FIGS. 11 and 12 are plan views illustrating layouts of conventional power MOSFET devices. In a conventional power MOSFET device, the layout is designed to reduce or minimize sheet resistance under the assumption that contact resistance is less important than sheet resistance. Thus, referring to FIG. 11, a conventional power MOSFET device typically includes a p-well 18 formed in a drift layer 14, an n+ source region 20 in the p-well 18, and a p+ contact region 22 in the n+ source region 20. Referring to FIG. 12, a source contact 34 is formed on the n+ source region 20 and the p+ contact region 22. A gate 32 is formed over the p-well 18 and overlaps the periphery of the n+ source region 20 and adjacent portions of the drift layer 14. Current flow from the drain to the source is indicated by the arrows 42 in FIG. 11.


As noted above, in a wide bandgap semiconductor material system, the source resistance may be more affected by the contact resistance of the source ohmic contact than by the sheet resistance of the source layer. Accordingly, to decrease the source resistance of a wide bandgap power semiconductor device, it may be desirable to decrease the contact resistance of the source ohmic contact. In general, contact resistance can be decreased by increasing the minimum dimension of the contact, which is the smallest dimension of the contact in any direction. However, simply increasing the minimum dimension of the source ohmic contact of an electronic device can undesirably increase the cell to cell spacing, or pitch, of the device. The pitch of a MOSFET device may be proportional to the width of the p-well region of the device. Increasing the pitch of the device reduces the density of the devices that can be formed on a single substrate, reducing the devices yielded and increasing manufacturing costs.


According to some embodiments, an insulated gate device layout is provided that increases the minimum dimension of the source ohmic contact without increasing the pitch of the device and/or the width of the p-well region of the device. A device layout according to some embodiments may increase the sheet resistance of the device. Such an effect may be highly undesirable in a device based on a narrow bandgap semiconductor material. However, since sheet resistance is not the dominant factor in determining source resistance of a wide bandgap device, such a tradeoff may be acceptable for wide bandgap devices. In devices according to some embodiments, a ratio of the source sheet resistance to the source contact resistance may be greater than 0.75 (i.e. Rsheet/RC>0.75). In some embodiments, the device may have a source contact resistance that is less than the source sheet resistance. That is, in some embodiments, the ratio of the source sheet resistance to the source contact resistance may be greater than 1 (i.e. Rsheet/RC>1), and in further embodiments, the ratio of the source sheet resistance to the source contact resistance may be greater than 5.



FIGS. 13 and 14 are plan views illustrating layouts of MOSFET device cells according to some embodiments, and FIGS. 15 and 16 are partial cross sectional illustrations of a cell of a MOSFET device according to some embodiments. In particular, FIG. 15 is a cross section taken along line A-A′ of FIG. 13, while FIG. 16 is a cross section taken along line B-B′ of FIG. 14.


The device shown in FIGS. 13-16 includes an n− drift epitaxial layer 114 on an n-type, 8° off-axis 4H-SiC substrate 112. The n− drift layer 114 may have a thickness of about 100 μm to about 120 μm, and may be doped with n-type dopants at a doping concentration of about 2×1014 cm−3 to about 6×1014 cm−3 for a blocking capability of about 10 kV. For a 1200V MOSFET device, the substrate may be 4° off-axis 4H-SiC and the drift layer may have a thickness of about 10 μm and may be doped with n-type dopants at a doping concentration of about 6×1015 cm−3.


The structure further includes a p+ well region 118 and an n+ source region 120 that may be formed by selective implantation of, for example, aluminum and nitrogen, respectively. The junction depth of the p+ well region 118 may be about 0.5 μm. The structure further includes a plurality of p+ contact regions 122 that extend from a surface of the drift layer 114 into the p+ well region 118. A junction termination (not shown) may be provided around the device periphery.


Referring to FIG. 13, the n+ source region 120 includes a pair of lateral source regions 120A that are parallel to opposing channel regions 125 in the p-well 118. A plurality of source contact regions 120B extend between the lateral source regions 120A, and the plurality of p+ contact regions 122 are provided between the source contact regions 120B.


Referring to FIG. 14, gate contacts 132 are formed over the channel regions 125 and overlap the lateral source regions 120A. A source ohmic contact 134 is formed across the source contact regions 120B and the p+ contact regions 122. The source ohmic contact 134 overlaps the source contact regions 120B in a source contact region 136. The source ohmic contact 134 overlaps the p+ contact regions 122 in a body contact region 138.


The portion of the source contact regions 120B contacted by the source ohmic contact 134 may have a minimum dimension that is larger than the minimum dimension that can be obtained for a conventional layout such as the layout shown in FIGS. 11 and 12 for a similar pitch/p-well size. Accordingly, the source contact resistance may be reduced without substantially increasing the device pitch/p-well size. The “minimum dimension” of a feature refers to the smallest width of the feature in any cross section of the feature. For example, the minimum dimension p1 of the body contact region 138, the minimum dimension n1 of the n-type contact region 136, and the minimum dimension w1 of the p-well region 118 are shown in FIG. 14.


In a device having a layout as shown in FIGS. 13 and 14, current flow to the source contact flows through the source contact regions 120B, as indicated by the arrows 142 in FIG. 13. The source contact regions 120B may have an increased sheet resistance compared to the source region of a device having a conventional layout as shown in FIGS. 11 and 12. However, the increase in sheet resistance may be more than compensated by the decrease in contact resistance, thus providing an overall decrease in the source resistance of the device.



FIG. 17 is a graph of on-state current-voltage characteristics for a 7 mm×8 mm 1200 V silicon carbide MOSFET device according to some embodiments. In the device characteristics illustrated in FIG. 17, a drain current (ID) of 377 A was measured at a forward voltage drain-to-source voltage (VDS) of 3.8 V. The current density, normalized to the active area, was over 750 A/cm2.


The on-resistance of a MOSFET device is affected by the drain resistance, the channel resistance and the source resistance of the device. Accordingly, reducing the source resistance of the device also reduces the on-resistance of the device.


A wide bandgap MOSFET device having a layout according to some embodiments may be capable of substantially increased saturation current due to the lower on-resistance of the device and the fact that increased current levels have less of a de-biasing effect on the gate. That is, because of the lower source resistance, less voltage will be developed over the source resistance as the drain current increases. Thus, more of the gate-to-source voltage is applied to the channel of the device.



FIG. 18 is an idealized cross section of a device having a layout in accordance with some embodiments. In particular, FIG. 18 illustrates some dimensions of a device having a layout in accordance with some embodiments. For example, as shown in FIG. 18, the minimum dimension of the implanted cell area (i.e. the p-well 118) is denoted as width w1 in FIG. 18. It will be appreciated, however, that the minimum dimension of the p-well 118 may occur in a dimension that is different from the plane of the device illustrated in FIG. 18. For example, the minimum dimension of the p-well 118 may occur in a dimension that is perpendicular to the plane of the device illustrated in FIG. 18.


The minimum dimension of the n-type contact area is denoted as width n1 in FIG. 18, while the minimum dimension of the p-type contact area is denoted as width p1 in FIG. 18. The n-type contact area may be defined as the area of overlap between the source ohmic contact 132 and the n+ source region 120, while the p-type contact area may be defined as the area of overlap between the source ohmic contact 132 and the p+ contact regions 122.


An insulated gate bipolar transistor (IGBT) device 200 according to some embodiments is illustrated in FIG. 19. As shown therein, the IGBT device includes an n− drift epitaxial layer 214 on a p-type epitaxial layer 212. The p-type epitaxial layer 212 is formed on a heavily doped p-type, 8° off-axis 4H-SiC substrate or layer 210. The n− drift layer 214 may have a thickness of about 100 μm to about 120 μm, and may be doped with p-type dopants at a doping concentration of about 2×1014 cm−3 to about 6×1014 cm−3 for a blocking capability of about 10 kV.


The IGBT structure 200 further includes a p+ well region 218 and an n+ source/emitter region 220 that may be formed by selective implantation of, for example, aluminum and nitrogen, respectively. The junction depth of the p+ well region 218 may be about 0.5 μm. The structure 200 further includes a plurality of p+ body contact regions 222 that extend from a surface of the drift layer 214 into the p+ well region 218. The conductivity types may be reversed in some embodiments.


A gate contact 232 is on a gate insulator 236, a source/emitter contact 234 is on the source contact regions 220 and the body contact regions 222. A collector contact 226 contacts the substrate 210.


According to some embodiments, a transistor device may have a ratio of n1 to w1 that is greater than 0.2. In further embodiments, a transistor device may have a ratio of n1 to w1 that is greater than about 0.3. In further embodiments, a transistor device may have a ratio of n1 to w1 that is in the range of about 0.2 to 1. In further embodiments, a transistor device may have a ratio of n1 to w1 that is in the range of about 0.3 to 1. In further embodiments, transistor device may have a ratio of n1 to w1 that is greater than 0.5. For example, the minimum dimension n1 of the n-type contact area of a device having a layout according to some embodiments may be about 2 μm for a device having a minimum dimension of the implanted cell area of 6 μm.


According to some embodiments, a transistor device may have a ratio of p1 to w1 that is greater than 0.2. In further embodiments, a transistor device may have a ratio of p1 to w1 that is greater than about 0.3. In further embodiments, a transistor device may have a ratio of p1 to w1 that is greater than about 0.5. In further embodiments, a transistor device may have a ratio of p1 to w1 that is in the range of about 0.2 to 0.5. In further embodiments, a transistor device may have a ratio of p1 to w1 that is in the range of about 0.2 to 1.


Some embodiments provide transistor devices having increased current densities. Current density is defined as the total current divided by the area of the chip. For example, a wide bandgap transistor device according to some embodiments may be capable of current densities in excess of 200 A/cm2 and a blocking voltage of 1000 V or more. A wide bandgap transistor device according to further embodiments may be capable of a current of 100 A or greater at current densities in excess of 200 A/cm2, a forward voltage drop of less than 5 V and a blocking voltage of 1000 V or more. A wide bandgap transistor device according to still further embodiments may be capable of a current of 100 A or greater at current densities in excess of 300 A/cm2, a forward voltage drop of less than 5 V and a blocking voltage of 1000 V or more.


A semiconductor device according to some embodiments has a reverse blocking voltage in excess of 1000 volts and a current density greater than 200 amps per square centimeter at a current greater than 100 A.


A semiconductor device according to further embodiments has a reverse blocking voltage of 1000 volts or more and a forward current capability greater than 100 A at a forward voltage of 5 volts or less.


A metal-oxide semiconductor field effect transistor device according to some embodiments has a reverse blocking voltage of 1200 volts or more and a forward current capability greater than 100 A.


A metal-oxide semiconductor field effect transistor device according to some embodiments has a reverse blocking voltage of 1000 volts or more and a differential on-resistance less than 8 mOhms-cm2.


A semiconductor device having a blocking voltage less than 1000 V and configured to pass forward current at a current density greater than 200 amps per square centimeter at a forward voltage drop of 5 V or less.


Some embodiments may enable wide bandgap transistor devices to achieve drain currents of 100 Amps or higher at a drain to source voltage that is less than 4 Volts in a device having a cell pitch of less than 20 μm. Some embodiments may enable wide bandgap transistor devices to achieve drain currents of 100 Amps or higher at a drain to source voltage that is less than 4 Volts in a device having a cell pitch of less than 10 μm. Some embodiments may enable wide bandgap transistor devices to achieve drain currents of 80 Amps or higher at a drain to source voltage that is less than 5 Volts in a device having a cell pitch of less than 10 μm.


An IGBT device according to some embodiments with a voltage blocking capability of 10 kV or greater may have a differential specific on-resistance of less than 14 mOhm-cm2 with a forward voltage drop of 5.2 V or less at a current density of 100 A/cm2.


A p-type insulated gate bipolar transistor (p-IGBT) device 300 according to some embodiments is illustrated in FIG. 20. As shown therein, the IGBT device includes a p− drift epitaxial layer 314 on a p-type field stop buffer layer 311 formed on an n-type, 8° off-axis 4H-SiC substrate 310. The p− drift layer 314 may have a thickness of about 100 μm to about 200 μm, and may be doped with p-type dopants at a doping concentration of about 2×1014 cm−3 to about 6×1014 cm−3.


The p-IGBT structure 300 further includes an n+ well region 318 and a p+ source/emitter region 320 that may be formed by selective implantation of, for example, nitrogen and aluminum, respectively. The junction depth of the n+ well region 318 may be about 0.5 μm. The structure 300 further includes a plurality of n+ body contact regions 322 that extend from a surface of the drift layer 314 into the n+well region 318.


A gate contact 332 is on a gate insulator 336, a source/emitter contact 334 is on the source contact regions 320 and the body contact regions 322. A collector contact 326 contacts the substrate 310.


A 4H-SiC p-IGBT as shown in FIG. 20 was fabricated using a 2×1014 cm−3 doped, 140 μm thick p-type epilayer as the drift layer 314, and a 2 μm thick p-type Field-Stop buffer layer 311, with a doping concentration ranging from 1×1017 cm−3 to 5×1017 cm3. A multi-zone JTE (15 zone) edge termination structure (not shown) was formed by nitrogen ion implantation. JTE terminations are described, for example, in U.S. Pat. No. 6,002,159, which is incorporated herein by reference. MOS channels were formed on implanted n−wells 318. A 50 nm thick thermally grown oxide layer was used as the gate insulator 336.



FIG. 21 shows the ID-VGS characteristics of the p-IGBT device shown in FIG. 20, with VDS fixed at −50 mV. The ID-VGS characteristics were measured from a test MOSFET with a W/L of 200 μm/200 μm, fabricated on the same wafer. A threshold voltage of −10 V, and a peak MOS channel mobility of 10 cm2/Vs were extracted from the ID-VGS characteristics.



FIG. 22A shows the blocking characteristics (VGE=0 V) of a 6.7 mm×6.7 mm 4H-SiC P-IGBT, with an active area of 0.16 cm2 at room temperature. The measurement voltage was limited to −15 kV, due to the limitation of probing equipment. The device showed a leakage current of 0.6 μA, which corresponds to a leakage current density of 1.2 μA/cm2 at a VCE of −15 kV. This is the highest blocking voltage ever reported in SiC power switches. FIG. 22B shows the pulsed on-state I-V characteristics of the p-IGBT, measured using a Tektronix 371 curve tracer. The device showed an on-state current of −145 A, which represents a current density of 906 A/cm2, at a VCE of −22.5 V and a VGE of −20 V. No evidence of parasitic thyristor latch-up was observed during this measurement. FIG. 22C shows IC-VGE characteristics of the 4H-SiC P-IGBTs for temperatures ranging from room temperature to 300° C. VCE was fixed at −10V for this measurement. The I-V characteristics shifted towards zero at elevated temperature. However, the device maintained normally-off properties throughout the temperature range. FIG. 22D shows the on-state I-V characteristics as a function of temperature. VGE was fixed at −20 V for this measurement. A monotonic decrease in forward voltage drop with increasing temperature was observed. This is believed due to the increase in minority carrier (electron) diffusion length, caused by increased carrier lifetime at elevated temperatures.


Accordingly, a p-IGBT according to some embodiments may have a reverse blocking voltage that is greater than about 10 kV, and in some cases greater than about 13 kV, and that has a forward current capability greater than 5 Amps.


It will be appreciated that although some embodiments of the disclosure have been described in connection with silicon carbide IGBT and MOSFET devices having n-type drift layers, the present disclosure is not limited thereto, and may be embodied in devices having p-type substrates and/or drift layers. Furthermore, the disclosure may be used in many different types of devices, including but not limited to insulated gate bipolar transistors (IGBTs), MOS controlled thyristors (MCTs), insulated gate commutated thyristors (IGCTs), junction field effect transistors (JFETs), high electron mobility transistors (HEMTs), etc.


In the drawings and specification, there have been disclosed typical embodiments of the disclosure and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the disclosure being set forth in the following claims.

Claims
  • 1. A power module comprising: a housing with an interior chamber; anda plurality of switch modules mounted within the interior chamber and comprising at least two transistors wherein at least one of the two transistors comprises: a drift layer having a first conductivity type;a well region having a second conductivity type that is opposite the first conductivity type;a source region in the well region, the source region having the first conductivity type;a plurality of body contact regions that are interspersed between portions of the source region, the plurality of body contact regions having the second conductivity type in contact with the well region; anda source ohmic contact that overlaps the source region in a source contact area and that overlaps the plurality of body contact regions in a plurality of body contact region areas;wherein a ratio of a minimum dimension p1 of a body contact region area of the plurality of body contact region areas to a minimum dimension w1 of the well region is greater than 0.2.
  • 2. The power module of claim 1 wherein the source ohmic contact completely overlaps the plurality of the body contact regions.
  • 3. The power module of claim 1 wherein the power module further comprises a plurality of diodes interconnected to facilitate switching power to a load.
  • 4. The power module of claim 3 wherein a diode of the plurality of diodes is an internal diode.
  • 5. The power module of claim 3 wherein a diode of the plurality of diodes is an external diode.
  • 6. The power module of claim 1 wherein a ratio of a minimum dimension n1 of the source contact area to the minimum dimension w1 of the well region is greater than 0.2.
  • 7. The power module of claim 6 wherein the ratio of the minimum dimension n1 of the source contact area to the minimum dimension w1 of the well region is in a range of 0.2 to 1.
  • 8. A power module comprising: a housing with an interior chamber; anda plurality of switch modules mounted within the interior chamber and comprising at least two transistors wherein at least one of the two transistors comprises: a drift layer having a first conductivity type;a well region having a second conductivity type that is opposite the first conductivity type;a source region in the well region, the source region having the first conductivity type;a body contact region having the second conductivity type in contact with the well region; anda source ohmic contact that overlaps the source region in a source contact area and that overlaps the body contact region in a body contact region area, wherein a ratio of a minimum dimension n1 of the source contact area to a minimum dimension w1 of the well region is greater than 0.2.
  • 9. The power module of claim 8 wherein the power module further comprises a plurality of diodes interconnected to facilitate switching power to a load.
  • 10. The power module of claim 9 wherein a diode of the plurality of diodes is an internal diode.
  • 11. The power module of claim 9 wherein a diode of the plurality of diodes is an external diode.
  • 12. The power module of claim 8 wherein the ratio of the minimum dimension n1 of the source contact area to the minimum dimension w1 of the well region is greater than about 0.3.
  • 13. The power module of claim 8 wherein the ratio of the minimum dimension n1 of the source contact area to the minimum dimension w1 of the well region is greater than about 0.5.
  • 14. The power module of claim 8 wherein the ratio of the minimum dimension n1 of the source contact region area to the minimum dimension w1 of the well region is in a range of 0.2 to 1.
  • 15. A power module comprising a housing with an interior chamber; anda plurality of switch modules mounted within the interior chamber and comprising at least two transistors wherein at least one of the two transistors comprises: a drift layer having a first conductivity type;a well region having a second conductivity type that is opposite the first conductivity type;a source region in the well region, the source region having the first conductivity type;a body contact region having the second conductivity type in contact with the well region; anda source ohmic contact that overlaps the source region in a source contact area and that overlaps the body contact region in a body contact region area, wherein a ratio of a minimum dimension p1 of the body contact region area to a minimum dimension w1 of the well region is greater than 0.2.
  • 16. The power module of claim 15 wherein the power module further comprises a plurality of diodes interconnected to facilitate switching power to a load.
  • 17. The power module of claim 16 wherein a diode of the plurality of diodes is an internal diode.
  • 18. The power module of claim 16 wherein a diode of the plurality of diodes is an external diode.
  • 19. The power module of claim 15, wherein the ratio of the minimum dimension p1 of the body contact region area to the minimum dimension w1 of the well region is greater than about 0.3.
  • 20. The power module of claim 15 wherein the ratio of the minimum dimension p1 of the body contact region area to the minimum dimension w1 of the well region is greater than about 0.5.
  • 21. The power module of claim 15 wherein the ratio of the minimum dimension p1 of the body contact region area to the minimum dimension w1 of the well region is in a range of 0.2 to 1.
  • 22. The power module of claim 1 wherein the ratio of the minimum dimension p1 of the body contact region area of the plurality of body contact region areas to the minimum dimension w1 of the well region is in a range of 0.2 to 1.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/482,936 filed on Apr. 10, 2017, now U.S. Pat. No. 10,153,364, which is a continuation of U.S. patent application Ser. No. 13/588,329 filed on Aug. 17, 2012, which issued as U.S. Pat. No. 9,673,283 on Jun. 6, 2017, which claims the benefit of U.S. provisional patent application No. 61/533,254 filed Sep. 11, 2011, the disclosures of which are incorporated herein by reference in their entireties. The present application is a continuation of U.S. patent application Ser. No. 15/482,936 filed on Apr. 10, 2017, now U.S. Pat. No. 10,153,364, which is a continuation of U.S. patent application Ser. No. 13/588,329 filed on Aug. 17, 2012, which issued as U.S. Pat. No. 9,673,283 on Jun. 6, 2017, which is related to U.S. Pat. No. 9,142,662 issued on Sep. 22, 2015, which is a continuation in part of U.S. Pat. No. 9,029,945 issued on May 12, 2015. The present application is related to U.S. Pat. No. 9,142,662 issued on Sep. 22, 2015, which is a continuation in part of U.S. Pat. No. 9,029,945 issued on May 12, 2015, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (308)
Number Name Date Kind
3439189 Petry Apr 1969 A
3629011 Tohi et al. Dec 1971 A
3924024 Naber et al. Dec 1975 A
4160920 Courier de Mere Jul 1979 A
4242690 Temple Dec 1980 A
4466172 Batra Aug 1984 A
4581542 Steigerald Apr 1986 A
4644637 Temple Feb 1987 A
4811065 Cogan Mar 1989 A
4875083 Palmour Oct 1989 A
4927772 Arthur et al. May 1990 A
4945394 Palmour et al. Jul 1990 A
4946547 Palmour et al. Aug 1990 A
5005462 Jasper, Jr. et al. Apr 1991 A
5011549 Kong et al. Apr 1991 A
5028977 Kenneth et al. Jul 1991 A
5032888 Seki Jul 1991 A
5111253 Korman et al. May 1992 A
5155289 Bowles Oct 1992 A
5168139 Bettge et al. Dec 1992 A
5170231 Fujii et al. Dec 1992 A
5170455 Goossen et al. Dec 1992 A
5184199 Fujii et al. Feb 1993 A
5192987 Khan et al. Mar 1993 A
5200022 Kong et al. Apr 1993 A
5210051 Carter, Jr. May 1993 A
5270554 Palmour Dec 1993 A
5292501 Degenhardt et al. Mar 1994 A
5296395 Khan et al. Mar 1994 A
5348895 Smayling et al. Sep 1994 A
5371383 Miyata et al. Dec 1994 A
5384270 Ueno et al. Jan 1995 A
5385855 Brown et al. Jan 1995 A
RE34861 Davis et al. Feb 1995 E
5393993 Edmond et al. Feb 1995 A
5393999 Malhi Feb 1995 A
5396085 Baliga Mar 1995 A
5459107 Palmour Oct 1995 A
5468654 Harada Nov 1995 A
5479316 Smrtic et al. Dec 1995 A
5488236 Baliga et al. Jan 1996 A
5506421 Palmour Apr 1996 A
5510281 Ghezzo et al. Apr 1996 A
5510630 Agarwal et al. Apr 1996 A
5523589 Edmond et al. Jun 1996 A
5539217 Edmond et al. Jul 1996 A
5545905 Muraoka et al. Aug 1996 A
5587870 Anderson et al. Dec 1996 A
5629531 Palmour May 1997 A
5703383 Nakayama Dec 1997 A
5710059 Rottner Jan 1998 A
5726463 Brown et al. Mar 1998 A
5726469 Chen Mar 1998 A
5734180 Malhi Mar 1998 A
5739564 Kosa et al. Apr 1998 A
5763905 Harris Jun 1998 A
5776837 Palmour Jul 1998 A
5804483 Harris Sep 1998 A
5808451 Endou et al. Sep 1998 A
5814859 Ghezzo et al. Sep 1998 A
5831288 Singh et al. Nov 1998 A
5837572 Gardner et al. Nov 1998 A
5851908 Harris et al. Dec 1998 A
5877041 Fuller Mar 1999 A
5877045 Kapoor Mar 1999 A
5885870 Maiti et al. Mar 1999 A
5914500 Bakowski et al. Jun 1999 A
5917203 Bhatnagar et al. Jun 1999 A
5917204 Bhatnagar et al. Jun 1999 A
5939763 Hao et al. Aug 1999 A
5960289 Tsui et al. Sep 1999 A
5969378 Singh Oct 1999 A
5972801 Lipkin et al. Oct 1999 A
5976936 Miyajima et al. Nov 1999 A
5977605 Bakowsky et al. Nov 1999 A
6002159 Bakowski et al. Dec 1999 A
6020600 Miyajima et al. Feb 2000 A
6025233 Terasawa Feb 2000 A
6025608 Harris et al. Feb 2000 A
6028012 Wang Feb 2000 A
6040237 Bakowski et al. Mar 2000 A
6048766 Gardner et al. Apr 2000 A
6054352 Ueno Apr 2000 A
6054728 Harada et al. Apr 2000 A
6063698 Tseng et al. May 2000 A
6083814 Nilsson et al. Jul 2000 A
6091108 Harris et al. Jul 2000 A
6096607 Ueno Aug 2000 A
6100169 Suvorov et al. Aug 2000 A
6104043 Hermansson et al. Aug 2000 A
6107142 Suvorov et al. Aug 2000 A
6117735 Ueno Sep 2000 A
6121633 Singh et al. Sep 2000 A
6133587 Takeuchi et al. Oct 2000 A
6136727 Ueno Oct 2000 A
6136728 Wang Oct 2000 A
6165822 Okuno et al. Dec 2000 A
6180958 Cooper, Jr. Jan 2001 B1
6190973 Berg et al. Feb 2001 B1
6204135 Peters et al. Mar 2001 B1
6204203 Narwankar et al. Mar 2001 B1
6211035 Moise et al. Apr 2001 B1
6218254 Singh et al. Apr 2001 B1
6218680 Carter, Jr. et al. Apr 2001 B1
6221700 Okuno et al. Apr 2001 B1
6228720 Kitabatake et al. May 2001 B1
6238967 Shiho et al. May 2001 B1
6239463 Williams et al. May 2001 B1
6239466 Elasser et al. May 2001 B1
6246076 Lipkin et al. Jun 2001 B1
6252258 Chang et al. Jun 2001 B1
6252288 Chang Jun 2001 B1
6297100 Kumar et al. Oct 2001 B1
6297172 Kashiwagi Oct 2001 B1
6303508 Alok Oct 2001 B1
6310775 Nagatomo et al. Oct 2001 B1
6316791 Schörner et al. Nov 2001 B1
6316793 Sheppard et al. Nov 2001 B1
6329675 Singh et al. Dec 2001 B2
6344663 Slater, Jr. et al. Feb 2002 B1
6344676 Yun et al. Feb 2002 B1
6365462 Baliga Apr 2002 B2
6365932 Kouno et al. Apr 2002 B1
6388271 Mitlehner et al. May 2002 B1
6399996 Chang et al. Jun 2002 B1
6420225 Chang et al. Jul 2002 B1
6429041 Ryu et al. Aug 2002 B1
6448160 Chang et al. Sep 2002 B1
6455892 Okuno et al. Sep 2002 B1
6475889 Ring Nov 2002 B1
6515303 Ring Feb 2003 B2
6524900 Dahlqvist et al. Feb 2003 B2
6534367 Peake et al. Mar 2003 B2
6548333 Smith Apr 2003 B2
6551865 Kumar et al. Apr 2003 B2
6573534 Kumar et al. Jun 2003 B1
6593620 Hshieh et al. Jul 2003 B1
6610366 Lipkin Aug 2003 B2
6627539 Zhao et al. Sep 2003 B1
6649497 Ring Nov 2003 B2
6653659 Ryu et al. Nov 2003 B2
6696705 Barthelmess et al. Feb 2004 B1
6703642 Shah Mar 2004 B1
6743703 Rodov et al. Jun 2004 B2
6767843 Lipkin et al. Jul 2004 B2
6861723 Willmeroth Mar 2005 B2
6936850 Friedrichs et al. Aug 2005 B2
6946739 Ring Sep 2005 B2
6956238 Ryu et al. Oct 2005 B2
6974720 Sumakeris et al. Dec 2005 B2
6979863 Ryu Dec 2005 B2
7026650 Ryu et al. Apr 2006 B2
7074643 Ryu Jul 2006 B2
7118970 Das et al. Oct 2006 B2
7125786 Ring et al. Oct 2006 B2
7221010 Ryu May 2007 B2
7230275 Kumar et al. Jun 2007 B2
7253031 Takahashi et al. Aug 2007 B2
7276747 Loechelt et al. Oct 2007 B2
7279115 Sumakeris Oct 2007 B1
7304363 Shah Dec 2007 B1
7365363 Kojima et al. Apr 2008 B2
7381992 Ryu Jun 2008 B2
7407837 Tsuji Aug 2008 B2
7425757 Takubo Sep 2008 B2
7498633 Cooper et al. Mar 2009 B2
7528040 Das et al. May 2009 B2
7544963 Saxler Jun 2009 B2
7548112 Sheppard Jun 2009 B2
7649213 Hatakeyama et al. Jan 2010 B2
7687825 Zhang Mar 2010 B2
7728402 Zhang et al. Jun 2010 B2
7829402 Matocha et al. Nov 2010 B2
7855384 Yamamoto Dec 2010 B2
7855464 Shikano Dec 2010 B2
8035112 Cooper et al. Oct 2011 B1
8541787 Zhang Sep 2013 B2
9029945 Ryu et al. May 2015 B2
9142662 Ryu et al. Sep 2015 B2
9373617 Das et al. Jun 2016 B2
9640617 Das et al. May 2017 B2
9673283 Henning Jun 2017 B2
20010011729 Singh et al. Aug 2001 A1
20010033502 Blair et al. Oct 2001 A1
20010050383 Hatade et al. Dec 2001 A1
20010055852 Moise et al. Dec 2001 A1
20020030191 Das et al. Mar 2002 A1
20020038891 Ryu et al. Apr 2002 A1
20020047125 Fukuda et al. Apr 2002 A1
20020071293 Eden et al. Jun 2002 A1
20020072247 Lipkin et al. Jun 2002 A1
20020102358 Das et al. Aug 2002 A1
20020121641 Alok et al. Sep 2002 A1
20020125482 Friedrichs et al. Sep 2002 A1
20020125541 Korec et al. Sep 2002 A1
20020185679 Baliga Dec 2002 A1
20030025175 Asano et al. Feb 2003 A1
20030107041 Tanimoto et al. Jun 2003 A1
20030137010 Friedrichs et al. Jul 2003 A1
20030142513 Vinciarelli Jul 2003 A1
20030178672 Hatakeyama et al. Sep 2003 A1
20030201455 Takahashi et al. Oct 2003 A1
20040016929 Nakatsuka et al. Jan 2004 A1
20040041229 Chol et al. Mar 2004 A1
20040082116 Kub et al. Apr 2004 A1
20040183079 Kaneko et al. Sep 2004 A1
20040207968 Martin et al. Oct 2004 A1
20040211980 Ryu Oct 2004 A1
20040212011 Ryu Oct 2004 A1
20040227231 Maly et al. Nov 2004 A1
20040256659 Kim et al. Dec 2004 A1
20040259339 Tanabe et al. Dec 2004 A1
20050012143 Tanaka et al. Jan 2005 A1
20050035364 Sano et al. Feb 2005 A1
20050104072 Slater, Jr. et al. May 2005 A1
20050139936 Li Jun 2005 A1
20050151138 Slater, Jr. et al. Jul 2005 A1
20050152100 Rodriguez et al. Jul 2005 A1
20050181536 Tsuji Aug 2005 A1
20050230686 Kojima et al. Oct 2005 A1
20050275055 Parthasarathy et al. Dec 2005 A1
20060011128 Ellison et al. Jan 2006 A1
20060055027 Kitabatake et al. Mar 2006 A1
20060060884 Ohyanagi et al. Mar 2006 A1
20060071295 Chang Apr 2006 A1
20060086997 Kanaya et al. Apr 2006 A1
20060108589 Fukuda et al. May 2006 A1
20060170835 Jun et al. Aug 2006 A1
20060211210 Bhat et al. Sep 2006 A1
20060216896 Saito et al. Sep 2006 A1
20060244010 Saxler Nov 2006 A1
20060255423 Ryu et al. Nov 2006 A1
20060261347 Ryu et al. Nov 2006 A1
20060261876 Agarwal et al. Nov 2006 A1
20060267021 Rowland et al. Nov 2006 A1
20060270103 Das et al. Nov 2006 A1
20070066039 Agarwal et al. Mar 2007 A1
20070090415 Ronsisvalle Apr 2007 A1
20070096081 Sugawara May 2007 A1
20070114606 Hoshino et al. May 2007 A1
20070120148 Nogome May 2007 A1
20070164321 Sheppard et al. Jul 2007 A1
20070170436 Sugawara Jul 2007 A1
20070241427 Mochizuki et al. Oct 2007 A1
20070262324 Kaneko Nov 2007 A1
20080001158 Das et al. Jan 2008 A1
20080006848 Chen et al. Jan 2008 A1
20080029838 Zhang et al. Feb 2008 A1
20080048258 de Fresart et al. Feb 2008 A1
20080105949 Zhang May 2008 A1
20080191304 Zhang et al. Aug 2008 A1
20080224316 Kroeninger et al. Sep 2008 A1
20080230787 Suzuki et al. Sep 2008 A1
20080251793 Mazzola et al. Oct 2008 A1
20080258252 Shimizu et al. Oct 2008 A1
20080277669 Okuno et al. Nov 2008 A1
20080296771 Das et al. Dec 2008 A1
20090008709 Yedinak et al. Jan 2009 A1
20090039498 Bayerer Feb 2009 A1
20090095979 Saito et al. Apr 2009 A1
20090101918 Uchida et al. Apr 2009 A1
20090121319 Zhang et al. May 2009 A1
20090146154 Zhang et al. Jun 2009 A1
20090168471 Tsugawa et al. Jul 2009 A1
20090212301 Zhang et al. Aug 2009 A1
20090225578 Kitabatake Sep 2009 A1
20090272982 Nakamura et al. Nov 2009 A1
20090289262 Zhang et al. Nov 2009 A1
20090321746 Harada et al. Dec 2009 A1
20100032685 Zhang et al. Feb 2010 A1
20100127371 Tschirbs May 2010 A1
20100127652 Morita et al. May 2010 A1
20100133549 Zhang et al. Jun 2010 A1
20100133550 Zhang et al. Jun 2010 A1
20100140628 Zhang Jun 2010 A1
20100163888 Saggio et al. Jul 2010 A1
20100227515 VanSlembrouck et al. Sep 2010 A1
20100244047 Hull et al. Sep 2010 A1
20100295062 Uchida et al. Nov 2010 A1
20100301335 Ryu Dec 2010 A1
20110012132 Otsuka Jan 2011 A1
20110018004 Shimizu et al. Jan 2011 A1
20110018040 Smith et al. Jan 2011 A1
20110058293 Pardoen et al. Mar 2011 A1
20110101375 Zhang May 2011 A1
20110128707 Rozman et al. Jun 2011 A1
20110193412 Lacarnoy Aug 2011 A1
20110199792 Friebe et al. Aug 2011 A1
20110246794 Liao Oct 2011 A1
20110292617 Darroman et al. Dec 2011 A1
20110317729 Matsumoto et al. Dec 2011 A1
20120012861 Nakano Jan 2012 A1
20120025263 Yamaguchi Feb 2012 A1
20120044720 Shea et al. Feb 2012 A1
20120248094 Strotmann et al. Oct 2012 A1
20120292636 Zhang Nov 2012 A1
20130000170 Dueck et al. Jan 2013 A1
20130001703 Sugawara Jan 2013 A1
20130016542 Nakamura et al. Jan 2013 A1
20130056755 Hatai et al. Mar 2013 A1
20130083485 Tong et al. Apr 2013 A1
20130207123 Henning et al. Aug 2013 A1
20130248883 Das et al. Sep 2013 A1
20130307500 Nojiri et al. Nov 2013 A1
20140246681 Das et al. Sep 2014 A1
20150214205 Tokuyama et al. Jul 2015 A1
20160204101 Das et al. Jul 2016 A1
20170213811 Das et al. Jul 2017 A1
Foreign Referenced Citations (72)
Number Date Country
3942640 Aug 1990 DE
19809554 Sep 1998 DE
19832329 Feb 1999 DE
19900171 Jul 1999 DE
19817444 Sep 1999 DE
10036208 Feb 2002 DE
0176778 Apr 1986 EP
0372412 Jun 1990 EP
0389863 Oct 1990 EP
0637069 Feb 1995 EP
0837508 Apr 1996 EP
0735591 Oct 1996 EP
0865085 Sep 1998 EP
1058317 Dec 2000 EP
1361614 Nov 2003 EP
1460681 Sep 2004 EP
1503425 Feb 2005 EP
1693896 Aug 2006 EP
1806787 Jul 2007 EP
1845561 Oct 2007 EP
2015364 Jan 2009 EP
2124257 Nov 2009 EP
2432014 Mar 2012 EP
60240158 Nov 1985 JP
1117363 May 1989 JP
03034466 Feb 1991 JP
03157974 Jul 1991 JP
3225870 Oct 1991 JP
08264766 Oct 1996 JP
H08340103 Dec 1996 JP
09205202 Aug 1997 JP
H10290562 Oct 1998 JP
11191559 Jul 1999 JP
11238742 Aug 1999 JP
11261061 Sep 1999 JP
11266017 Sep 1999 JP
11274487 Oct 1999 JP
2000049167 Feb 2000 JP
2000082812 Mar 2000 JP
2000106371 Apr 2000 JP
2000252461 Sep 2000 JP
2000252478 Sep 2000 JP
2002314099 Oct 2002 JP
2004363328 Dec 2004 JP
2007234722 Sep 2007 JP
2007258742 Oct 2007 JP
2008277400 Nov 2008 JP
2010010505 Jan 2010 JP
WO 20140110246 Mar 2010 JP
2010183840 Aug 2010 JP
2011030424 Feb 2011 JP
2012156548 Aug 2012 JP
9603774 Feb 1996 WO
9708754 Mar 1997 WO
9717730 May 1997 WO
9739485 Oct 1997 WO
9802916 Jan 1998 WO
9802924 Jan 1998 WO
9808259 Feb 1998 WO
9832178 Jul 1998 WO
9963591 Dec 1999 WO
0013236 Mar 2000 WO
0178134 Oct 2001 WO
2004020706 Mar 2004 WO
2004079789 Sep 2004 WO
2005020308 Mar 2005 WO
2006135031 Dec 2006 WO
2007040710 Apr 2007 WO
2009128382 Oct 2009 WO
2010004715 Jan 2010 WO
2010074275 Jul 2010 WO
2013036370 Mar 2013 WO
Non-Patent Literature Citations (244)
Entry
Notice of Reasons for Rejection for Japanese Patent Application No. 2016-567562, dated Feb. 5, 2019, 10 pages.
Advisory Action for U.S. Appl. No. 15/483,039, dated Jan. 10, 2019, 3 pages.
Minutes of Oral Proceedings for European Patent Application No. 12762112.6, mailed Jul. 30, 2019, 5 pages.
Decision to Refuse for European Patent Application No. 12762112.6, dated Jul. 31, 2019, 14 pages.
Notification of the Third Office Action for Chinese Patent Application No. 2015800376807, dated Jul. 15, 2019, 16 pages.
Decision of Rejection for Japanese Patent Application No. 2016-567562, dated Oct. 1, 2019, 9 pages.
Second Office Action for Chinese Patent Application No. 2015800376807, dated Mar. 8, 2019, 14 pages.
Intention to Grant for European Patent Application No. 14730035.4, dated Oct. 12, 2020, 7 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2012/051429, dated Mar. 20, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/588,329, dated Apr. 22, 2014, 21 pages.
International Search Report and Written Opinion for PCT/US2014/037977, dated Sep. 15, 2014, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/588,329, dated Sep. 24, 2014, 16 pages.
Berning, David W. et al., “High-Voltage Isolated Gate Drive Circuit for 10 kV, 100 A SiC MOSFET/JBS Power Modules,” IEEE Industry Applications Society Annual Meeting, Oct. 5-9, 2008, IEEE, pp. 1-7.
Grider David et al., “10kV/120 A SiC DMOSFET Half H-Bridge Power Modules for 1 MVA Solid State Power Substation,” IEEE Electric Ship Technologies Symposium (ESTS), Apr. 10-13, 2011, IEEE, pp. 131-134.
Mauch, Daniel et al., “High Power Lateral Silicon Carbide Photoconductive Semiconductor Switches and Investigation of Degradation Mechanisms,” IEEE Transactions on Plasma Science, vol. 43, Issue 6, Jun. 2015, IEEE, pp. 2021-2031.
Moran, S.L. et al., “Hydrogen spark switches for rep-rated accelerators,” 9th International Conference on High-Power Particle Beams, May 25-29, 1992, IEEE, 1 page, Abstract.
Rognlien, S., “Electric power supply with rectifier installation for the Alnor aluminum works at Karmoy,” Elektroteknisk Tidsskrift, vol. 81, Issue 20, Oct. 17, 1968, Oslo, Ingeniørforlaget, 1 page, Abstract.
Wang, Jun et al., “Characterization, Modeling, and Application of 10-kV SiC MOSFET,” IEEE Transactions on Electron Devices, vol. 55, Issue 8, Aug. 2008, IEEE, pp. 1798-1806.
Yu, Lei et al., “Design of 150 kV all-solid-state high voltage pulsed power generator,” High Power Laser and Particle Beams, vol. 24, Issue 3, Mar. 2012, Nuclear Society of China, 1 page, Abstract.
Zorngiebel, Volker et al., “Modular 50-kV IGBT Switch for Pulsed-Power Applications,” IEEE Transactions on Plasma Science, vol. 39, Issue 1, Jan. 2011, IEEE, pp. 364-367.
Second Office Action for Chinese Patent Application No. 201280055081.4, dated Nov. 8, 2016, 20 pages.
Third Office Action for Chinese Patent Application No. 201280055081.4, dated Apr. 1, 2017, 19 pages.
Report of Reexamination before Appeal for Japanese Patent Application No. 2014-529750, mailed Aug. 18, 2016, 6 pages.
Decision on Appeal for Japanese Patent Application No. 2014-529750, mailed May 10, 2017, 41 pages.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2015/030853, dated Nov. 24, 2016, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/588,329, dated Jun. 27, 2016, 19 pages.
Notice of Allowance for U.S. Appl. No. 13/588,329, dated Dec. 23, 2016, 10 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/588,329, dated Jan. 25, 2017, 7 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/588,329, dated Mar. 13, 2017, 7 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/588,329, dated May 8, 2017, 6 pages.
Examination Report for European Patent Application No. 12762112.6, dated Feb. 1, 2017, 4 pages.
Advisory Action for U.S. Appl. No. 13/893,998, dated Aug. 31, 2016, 3 pages.
Notice of Allowance for U.S. Appl. No. 13/893,998, dated Dec. 15, 2016, 9 pages.
Notice of Allowability for U.S. Appl. No. 13/893,998, dated Jan. 10, 2017, 6 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/893,998, dated Jan. 25, 2017, 6 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/893,998, dated Feb. 16, 2017, 6 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/893,998, dated Mar. 14, 2017, 6 pages.
Corrected Notice of Allowability and Response to Rule 312 Communication for U.S. Appl. No. 13/893,998 dated Mar. 30, 2017, 7 pages.
Afanasev, V. et al., “Intrinsic SiC/SiO2 Interface States”, Phys. Stat. Sol., Jan. 31, 1997, vol. 162, pp. 321-337.
Agarwal et al., “9kV, 1xcm SiC Super GTO Technology Development for Pulse Power,” Pulsed Power Conference, 2009, presented Jun. 28-Jul. 2, 2009, pp. 264-269.
Agarwal, A.K. et al., “700-V Assymetrical 4H-SiC Gate Turn-Off Thyristors (GTO's),” IEEE Electron Device Letters, vol. 18, No. 11, Nov. 1997, pp. 518-520.
Agarwal, A.K. et al., “1.1 kV 4H-SiC Power UMOSFETs”, IEEE Electron Devices Letters, Dec. 1997, vol. 18, No. 12, pp. 586-588.
Agarwal, A.K. et al., “1400 V 4H-SiC Power MOSFETs”, Materials Science Forum, Jan. 1998, vols. 264-268, pp. 989-992.
Agarwal, A.K. et al., “A Critical Look at the Performance Advantages and Limitations of 4H-SiC Power UMOSFET Structures”, Proceedings of the International Symposium on Power Semiconductor Devices and IC's, May 20-23, 1996, pp. 119-122.
Agarwal, A.K. et al., “Investigation of Lateral RESURF, 6H-SiC MOSFETs”, Materials Science Forum, Copyright: 2000, vols. 338-342, pp. 1307-1310.
Agarwal, A.K. et al., “Temperature Dependence of Fowler-Nordheim Current in 6H- and 4H-SiC MOS Capacitors”, IEEE Electron Device Letters, Dec. 1997, vol. 18, No. 12, pp. 592-594.
Alok, Dev. et al., “Process Dependence of Inversion Layer Mobility in 4H-SiC Devices”, Silicon Carbide and Related Materials, Oct. 10-15, 1999, pp. 1077-1080.
Asano, K. et al., “Dynamic Characteristics of 6.2 kV High Voltage 4H-SiC pn Diode with Low Loss”, Transactions of be Institute of Electrical Engineers of Japan, May 2003, vol. 123-D, No. 5, pp. 623-627.
Author Unknown, “Definition of Overlap,” The American Heritage Dictionary of the English Language, Fourth Edition, Sep. 2003, 3 pages, http://www.thefreedictionary.com/overlap.
Author Unknown, “Insulated-Gate Bipolar Transistor,” Wikipedia—The Free Encyclopedia, Jun. 21, 2010, 6 pages, http://en.wikipedia.org/wiki/Insulated-gate_bipolar_transistor.
Author Unknown, “Motorola Power MOSFET Transistor Databook”, 4th Edition, Motorola, Inc., Copyright: 1989, pp. 254-257.
Author Unknown, “The Insulated Gate Biopolar Transistor (IGBT)”, University of Glasgow, Updated: Feb. 14, 2007, Retrieved Jul. 7, 2006, http://www.elec.gla.ac.uk/groups/dev_mod/papers/igbt/igbt.html.
Ayalew, T., “4.43.1 MPS Diode Structure”, Tu Wien. Jul. 6, 2006, http://www.iue.tuwien.ac.at/phd/ayalew/node88.html.
Baliga, B., “Chapter 7: Power Mosfet”, Power Semiconductor Devices, May 2, 1995, pp. 335-425, Boston, MA, PWS Publishing Company.
Baliga, B., “Chapter 8: Insulated Gate Bipolar Transistor”, Power Semiconductor Devices, May 2, 1995, pp. 426-502, Boston, MA, PWS Publishing Company.
Bhatnagar et al., “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” Transactions on Electron Devices, vol. 40, No. 3, Mar. 1993, pp. 645-655.
Buchner, R. et al., “Laser Recrystallization of Polysilicon for Improved Device Quality”, Springer Proceedings in Physics, Copyright: 1989, vol. 55, pp. 289-294.
Capano, M.A. et al., “Ionization Energies and Electron Mobilities in Phosphorus- and Nitrogen-Implanted 4H Silicon Carbide”, IEEE ICSCRM Conference 1999, Oct. 10-13, 1999, 4 pages.
Capano, M.A. et al., “Surface Roughening in Ion Implanted 4-H Silicon Carbide”, Journal of Electronic Materials, Jul. 20, 1998, vol. 28, No. 3, pp. 214-218.
Casady, J.B. et al., “900 V DMOS and 1100 V UMOS 4H-SiC Power FETs”, Northrop Grumman Science and Technology Center, Published: 1997, 2 Pages.
Chakraborty, Supratic et al., “Interface Properties of N2O-Annealed SiO2/SiC System”, 2008 IEEE Proceedings of the Electron Devices Meeting, Dec. 15-17, 2000, pp. 108-111, Hong Kong.
Chang, H.R. et al., “500-V n-Channel Insulated-Gate Bipolar Transistor with a Trench Gate Structure,” IEEE Transactions on Electron Devices, vol. 36, No. 9, Sep. 1989, pp. 1824-1829.
Chang, K.C. et al., “Observation of a Non-Stoichiometric Layer at the Silicon Dioxide—Silicon Carbide Interface: Effect of Oxidation Temperature and Post-Oxidation Processing Conditions”, Materials Research Social Symposium Procedures, vol. 640, Nov. 29-Dec. 2, 2011, 6 pages.
Chen, Jia-Rong et al., “Theoretical Analysis of Current Crowding Effect in Metal/AlGaN/GaN Schottky Diodes and its Reduction by Using Polysilicon in Anode”, Chinese Physics Letters, Jul. 2007, vol. 24, No. 7, pp. 2112-2114.
Cho, Won-Ju et al., “Improvement of Charge Trapping by Hydrogen Post-Oxidation Annealing in Gate Oxide of 4H-SiC metal-oxide-semiconductor capacitors”, Applied Physical Letters, Aug. 21, 2000, vol. 77, No. 8, 1215-1217.
Chung, G.Y. et al., “The Effect of Si:C Source Ratio on S102 /SiC Interface State Density for Nitrogen Doped 4H and 6H SiC”, Materials Science Forum, Copyright: 2000, vol. 338-342, pp. 1097-1100.
Chung, G.Y. et al., “Effect of Nitric Oxide Annealing on the Interface Trap Densities Near the Band Edges in the 4H Polytype Silicon Carbide”, Applied Physics Letters, Mar. 27, 2000, vol. 76, No. 13, pp. 1713-1715.
Chung, G.Y. et al., “Improved Inversion Channel Mobility for 4h-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide”, IEEE Electron Device Letters, Apr. 2001, vol. 22, No. 4, pp. 176-178.
Chung, Gilyong et al., “Effects of Anneals in Ammonia on the Interface Trap Density Near the Band Edges in 4H-Silicon Carbide Metal-Oxide-Semiconductor Capacitors”, Applied Physical Letters, Nov. 27, 2000, vol. 77, No. 22, pp. 3601-3603.
Dahlquist, F. et al., “A 2.8kV, Forward Drop JBS Diode with Low Leakage”, Materials Science Forum, Jan. 2000, vols. 338-342, pp. 1179-1182.
Das, M.K. et al., “High Mobility 4H-SiC Inversion Mode MOSFETs Using Thermally Grown”, No Annealed SiO2,, IEEE 58th Device Research Conference, Jun. 19-21, 2000, 3 Pages.
Das, M.K. et al., “Inversion Channel Mobility in 4H- and 6H-SiC MOSFETs”, School of Electrical and Computer Engineering at Purdue University, Published: 1998, 2 pages.
Das, Mrinal K. et al., “A 13 kV 4H-SiC n-Channel IGBT with Low Rdiff on and Fast Switching”, DARPA Contract, Sep. 2008, 4 Pages.
Das, Mrinal K., “Fundamental Studies of the Silicon Carbide MOS Structure”, Thesis submitted to Purdue University for Doctorate of Philosophy Program, Dec. 1999, 160 Pages.
Dastidar, Sujoyita, “A Study of P-Type Activation in Silicon Carbide”, Thesis submitted to Faculty of Purdue University, May 1998, 102 Pages.
De Meo, R.C. et al., “Thermal Oxidation of SiC in N2O”, The Electrochemical Society, Inc., Nov. 1994, vol. 141, No. 11, pp. L150-L152.
Del Prado, A. et al., “Full Composition Range Silicon Oxynitride Films Deposited by ECR-PECVD at Room Temperature”, Thin Solid Films, Apr. 1999, vols. 343-344, pp. 437-440.
Dimitrijev, Sima et al., “Nitridation of Silicon-Dioxide Films Grown on 6H Silicon Carbide”, IEEE Electron Device Letters, May 1997, vol. 18, No. 5, pp. 175-177.
Fisher, C.A. et al., “The Performance of High-Voltage Field Relieved Schottky Barrier Diodes”, IEE Proceedings, Dec. 1985, vol. 132, Pt. 1, No. 6, pp. 257-260.
Fukuda, Kenji et al., “Improvement of SiO2/4H-SiC Interface by Using High Temperature Hydrogen Annealing at 1000° C.”, External Abstracts of the 1998 International Conference on Solid State Devices and Materials, Published: 1998, pp. 100-101.
Fukuda, Kenji et al., “Improvement of SiO2/4H-SiC Interface Using High-Temperature Hydrogen Annealing at Low Pressure and Vacuum Annealing”, Japanese Journal of Applied Physics, Apr. 1999, vol. 38, pp. 2306-2309.
Hubel, Kerstin, “Hybrid Design Improves Diode Robustness and Boosts Efficiency”, Compound Semiconductor. Net, Updated: May 2006, Retrieved: Jul. 7, 2006, http://www.compoundsemiconductor.net.
Hull, Brett A. et al., “Drift-Free 10-kV, 20-A 4H-SiC PiN Diodes”, Journal of Electronic Materials, Apr. 2005, vol. 34, No. 4, pp. 341-344.
Jamet, P. et al., “Physical Properties of N/sub 2/0 and No—Nitrided Fate Oxides Grown on 4H SiC”, Applied Physics Letters, Jul. 2001, vol. 79, No. 3, pp. 323-325.
Kinoshita, Kozo et al., “Guard Ring Assisted RESURF: A New Termination Structure Providing Stable and High Breakdown Voltage for SiC Power Devices”, Proceedings of the 14th International Symposium on Power Semiconductor Devces and ICs, Jun. 7, 2002, pp. 253-256.
Kobayashi, K. et al., “Dielectric Breakdown and Current Conduction of Oxide/Nitride/Oxide Multi-Layer Structures”, 1990 Symposium of VLSI Technology, Jun. 4-7, 1990, pp. 119-120.
Krishnaswami, Sumi et al., “High Temperature Characterization of 4H-SiC Bipolar Junction Transistors”, Materials Science Forum, Jan. 1, 2009, vols. 527-529, pp. 1437-1440.
Lai, P.T. et al., “Effects of Nitridation and Annealing on Interface Properties of Thermally Oxidized SlO2 /SiC Metal-Oxide-Semiconductor System”, Applied Physics Letters, Jun. 19, 2000, vol. 75, No. 25, pp. 3744-3748.
Hull, B.A., et al., “1700V, 20A 4H-SiC DMOSFETs Optimized for High Temperature Operation,” Materials Science Forum, vols. 679-680, Jan. 1, 2011, Trans Tech Publications, pp. 633-636.
Qingxin, X., “Frequency Converter Maintenance Quick Start,” China Electric Power Press, Jan. 1, 2013, 6 pages.
Summons to Attend Oral Proceedings for European Patent Application No. 14730035.4, mailed Feb. 12, 2020, 12 pages.
Notification of the Fourth Office Action for Chinese Patent Application No. 2015800376807, dated Jan. 21, 2020, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/483,039, dated Apr. 9, 2020, 15 pages.
Hull, Brett A. et al., “Performance of 60 A, 1200 V 4H-Sic DMOSFETs,” Materials Science Forum, vol. 315-617, 2009, Trans Tech Publications, pp. 749-752.
Kazuhiro, I. et al., “Simultaneous Formation of Ni/Al Ohmic Contacts to Both n- and p-Type 4H-SiC,” Journal of Electronic Materials, vol. 37, No. 11, 2008, TMS, pp. 1674-1680.
First Office Action and Search Report for Chinese Patent Application No. 201280055081.4, dated Feb. 1, 2016, 31 pages.
Decision of Rejection for Japanese Patent Application No. 2014-529750, dated Feb. 26, 2016, 6 pages.
Extended European Search Report for European Patent Application No. 12782360.7, dated Oct. 7, 2014, 7 pages.
Office Action for Japanese Patent Application No. 2014-509288, dated Nov. 25, 2014, 10 pages.
Reason for Rejection for Japanese Patent Application No. 2014-529750, dated Apr. 15, 2015, 8 pages.
International Preliminary Report on Patentability for PCT/US2012/027255, dated Nov. 21, 2013, 7 pages.
International Preliminary Report on Patentability for PCT/US2014/037977, dated Nov. 26, 2015, 8 pages.
International Search Report and Written Opinion for No. PCT/US2015/030853, dated Nov. 5, 2015, 15 pages.
Final Office Action for U.S. Appl. No. 13/102,510, dated Nov. 29, 2013, 22 pages.
Advisory Action for U.S. Appl. No. 13/102,510, dated Feb. 6, 2014, 3 pages.
Non-Final Office Action for U.S. Appl. No. 13/102,510, dated Mar. 13, 2014, 10 pages.
Final Office Action for U.S. Appl. No. 13/102,510, dated Aug. 29, 2014, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/102,510, dated Jan. 12, 2015, 9 pages.
Corrected Notice of Allowability for U.S. Appl. No. 13/102,510, dated Mar. 26, 2015, 4 pages.
Non-Final Office Action for U.S. Appl. No. 13/108,440, dated Dec. 30, 2013, 104 pages.
Final Office Action for U.S. Appl. No. 13/108,440, dated Jun. 24, 2014, 69 pages.
Non-Final Office Action for U.S. Appl. No. 13/108,440, dated Jan. 14, 2015, 10 pages.
Notice of Allowance for U.S. Appl. No. 13/108,440, dated Jun. 2, 2015, 16 pages.
Final Office Action for U.S. Appl. No. 13/588,329, dated Feb. 20, 2015, 18 pages.
Corrected Advisory Action for U.S. Appl. No. 13/588,329, dated Aug. 19, 2015, 3 pages.
Non-Final Office Action for U.S. Appl. No. 13/588,329, dated Feb. 3, 2016, 18 pages.
Non-Final Office Action for U.S. Appl. No. 13/893,998, dated Jan. 2, 2015, 7 pages.
Final Office Action for U.S. Appl. No. 13/893,998, dated May 19, 2015, 11 pages.
Advisory Action for U.S. Appl. No. 13/893,998, dated Jul. 29, 2015, 3 pages.
Non-Final Office Action for U.S. Appl. No. 13/893,998, dated Jan. 4, 2016, 12 pages.
Final Office Action for U.S. Appl. No. 13/893,998, dated May 17, 2016, 12 pages.
Non-Final Office Action for U.S. Appl. No. 14/277,820, dated Jun. 16, 2015, 13 pages.
Notice of Allowance for U.S. Appl. No. 14/277,820, dated Nov. 27, 2015, 9 pages.
Notice of Allowance for U.S. Appl. No. 14/277,820, dated May 25, 2016, 6 pages.
Das, Mrinal K., et al., “State of the Art 10 kV NMOS Transistors,” Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC's, May 18-22, 2008, Orlando, Florida, USA, pp. 253-255.
Summons to Attend Oral Proceedings for European Patent Application No. 12762112.6, mailed Oct. 12, 2018, 6 pages.
Examination Report for European Patent Application No. 14730035.4, dated Jun. 28, 2018, 9 pages.
First Office Action for Chinese Patent Application No. 2015800376807, dated Jun. 5, 2018, 7 pages.
Office Action for German Patent Application No. 112015002272.4, dated Sep. 12, 2018, 13 pages.
Notice of Reasons for Rejection for Japanese Patent Application No. 2016-567562, dated Mar. 13, 2018, 8 pages.
Non-Final Office Action for U.S. Appl. No. 15/482,936, dated Feb. 23, 2018, 12 pages.
Notice of Allowance for U.S. Appl. No. 15/482,936, dated Jul. 23, 2018, 8 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/482,936, dated Sep. 11, 2018, 5 pages.
Corrected Notice of Allowability for U.S. Appl. No. 15/482,936, dated Nov. 13, 2018, 5 pages.
Non-Final Office Action for U.S. Appl. No. 15/483,039, dated Feb. 22, 2018, 22 pages.
Final Office Action for U.S. Appl. No. 15/483,039, dated Oct. 11, 2018, 23 pages.
Non-Final Office Action for U.S. Appl. No. 15/077,329, dated Oct. 2, 2017, 13 pages.
Notice of Allowance for U.S. Appl. No. 151077,329, dated Mar. 26, 2018, 8 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/077,329, dated Jun. 13, 2018, 5 pages.
Corrected Notice of Allowance for U.S. Appl. No. 15/077,329, dated Oct. 29, 2018, 5 pages.
Lai, P.T. et al., “Interface properties of N2O-Annealed NH3-Treated 6H-SiC MOS Capacitor”, Proceedings of the IEEE Hong Kong Electron Devices Meeting, Jun. 26, 1999, pp. 46-49.
Leonhard et al. “Long Term Stability of Gate-Oxides on n- and P-Type Silicon Carbide Studied by Charge Injection Techniques,” Materials Science Engineering, vol. 46, No. 1-3, Apr. 1997, pp. 263-266.
Levinshtein, Michael E. et al., “On the Homogeneity of the Turn-On Process in High-Voltage 4H-SiC Thyristors”, Solid-State Electronics, Feb. 2005, vol. 49, pp. 233-237.
Li, H.F. et al., “Improving SiO2 Grown on P-Type 4H-SiC by NO Annealing”, Materials Science Forum, Feb. 1998, vol. 264-268, pp. 869-872.
Li, Y. et al., “High-Voltage (3 kV) UMOSFETs in 4H-SiC”, IEEE Transactions on Electron Devices, Jun. 2002, vol. 49, No. 6, pp. 972-975.
Lipkin, L.A. et al., “Low Interfaces State Density Oxides on P-Type SiC”, Materials Science Forum, Jan. 1998, vols. 264-268, pp. 853-856.
Lipkin, Lori et al., “Challenges and State-of-the-Art of Oxides on SiC”, Material Research Social Symposium Proceedings, Nov. 2000, vol. 640, pp. 89-98.
Lipkin, Lori et al., “Insulator Investigation on SiC for Improved Reliability”, IEEE Transactions on Electron Devices, Mar. 1999, vol. 46, No. 3, pp. 525-532.
Losee, P.A. et al., “High-Voltage 4H-SiC PiN Rectifiers with Single-Implant, Multi-Zone JTE Termination”, Proceedings for 2004 International Symposium on Power Semiconductor Devices & ICs, May 2004, pp. 301-304.
Losse, P.A. et al., “Degraded Blocking Performance of 4H-SiC Rectifiers Under High dV/dt Conditions”, Proceedings for 17th International Symposium on Power Semiconductor Devices & ICs, May 23-26, 2005, pp. 1-4.
Ma, Y. et al., “Fixed and Trapped Charges at Oxide-Nitride-Oxide Heterostructure Interfaces Formed by Remote Plasma Enhanced Chemical Vapor Deposition”, American Vacuum Society, Jul. 1993, vol. 11, No. 4, pp. 1533-1540.
Miura, Naruhisa et al., “Successful Development of 1.2 kV 4H-SiC MOSFETs with the Very Low On-Resistance of 5 mΩm2,” Proceedings of the 18th International Symposium on Power Semiconductor Devices & IC's, Jun. 4-8, 2006, 4 pages, Naples Italy.
Mondal, K. et al., “An Integrated 500-V Power DMOSFET/Antiparallel Rectifier Device with Improved Diode Reverse Recovery Characteristics”, IEEE Electron Device Letters, Sep. 2002, vol. 23, No. 9, pp. 562-564.
Mutin, P. Hubert, “Control of the Composition and Structure of Silicon Oxycarbide and Oxynitride Glasses Derived from Polysiloxane Precursors”, Journal of Sol-Gel Science and Technology, Mar. 1999, pp. 27-38.
Myer-Ward, R.L. et al., “Turning of Basal Plane Dislocations During Epitaxial Growth on 4 Off-Axis 4h-SiC”, 7th European Conference on Silicon Carbide and Related Materials, Sep. 7-11, 2008, retrieved Jul. 1, 2009, http://escrm08.com/invited_presentations.html, Barcelona, Spain.
Palmour, J.W. et al., “SiC Device Technology: Remaining Issues”, Diamond and Related Materials, Aug. 1997, vol. 5, pp. 1400-1404.
Palmour, John, “Silicon Carbide npnp Thyristors”, NASA Tech Briefs. Updated: Dec. 1, 2000, Retrieved Sep. 2, 2010, http://www.techbriefs.com/component/content/article/7031.
Pankin, D. et al., “Electrical and Microstructural Properties of Highly Boron-Implantation Doped 6H-SiC”, Journal of Applied Physics, Mar. 15, 2001, vol. 89, No. 6, pp. 3162-3167.
Pantelides, S.T. et al., “Atomic-Scale Engineering of the SiC-SiO2 Interface”, Materials Science Forum, Oct. 1999, vols. 338-342, pp. 1133-1136.
Patel, R. et al., “Phosphorus-Implanted High-Voltage N+P 4H-SiC Junction Rectifiers”, Proceedings of 1998 International Symposium on Power Semiconductor Devices & Ics, Jun. 1998, pp. 387-390.
Rao et al., “Al and N Ion Implantations in 6H-SiC,” Inst. Phys. Conf. Ser. No. 142, Chapter 3, Jan. 1996, pp. 521-524.
Rao, Mulpuri V. et al., “P-N Junction Formation in 6H-SiC Acceptor Implantation into a N-Type Substrate”, Nuclear Instructions and Mechanics in Physics Res., Dec. 1995, vol. 106, pp. 333-338.
Rao, Mulpuri V., “Maturing Ion-Implantation Technology and its Device Applications in SiC”, Solid State Electronics, Feb. 2003, vol. 47, pp. 213-222.
Rao, S. et al., “Silane Overpressure Post-Implant Annealing of A1 Dopants in SiC: Cold Wall CVD Apparatus”, Applied Surface Science, Mar. 2006, vol. 252, pp. 3837-3842.
Richmond, J.T. et al., “Hybrid 4H-SiC MOS Gated Transistor (MGT)”, DARPA Contract #N00014-99-C-0377, Sep. 2002, 6 pages.
Ryu, Sei-Hyung et al., “27 mΩ-cm2, 1.6 kV Power DiMOSFETs in 4H-SiC”, Proceedings of the 14th International Symposium on Power Semiconductor Devices & ICs 2002, ISPSD '02 Proceedings, Jun. 4-7, 2002, pp. 65-68, Santa Fe, NM.
Salem, T.E. et al., “High-Temperature High-Power Operation of a 100 A SiC DMOSFET Module,” Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Feb. 2009, pp. 653-657.
Schörner, Reinhold et al., “Rugged Power MOSFETs in 6H-SiC with Blocking Capability up to 1800V”, Silicon carbide and Related Materials, Jan. 2000, vols. 338-342, pp. 1295-1298.
Schörner, Reinhold et al., “Significantly Improved Performance of MOSFET's on Silicon Carbide Using the 15R-SiC Polytype”, IEEE Electron Device Letters, May 1999, vol. 20, No. 3, pp. 241-244.
Senzaki, Junji et al., “Effects of Pyrogenic Reoxidation Annealing on Inversion Channel Mobility of 4H-SiC Metal-Oxide-Semiconductor Field-effect Transistor Fabricated on (1120) Face”, The Japanese Society of Applied Physics, Nov. 15, 2001, vol. 40, pp. 1201-1203.
Shenoy, Jayarama N. et al., “High-Voltage Double-Implanted Power MOSFET's in 6H-SiC”, IEEE Electron Device Letters, Mar. 1997, vol. 18, No. 3, pp. 93-95.
Shenoy, Praveen M. et al., “The Planar 6H-SiC Accufet: A New High-Voltage Power MOSFET Structure”, IEEE Electron Device Letters, Sep. 1999, vol. 18, No. 12, pp. 589-591.
Singh, R. et al., “Planar Terminations in 4H-SIC Schottky Diodes with Low Leakage and High Yields”, ISPSD '97, May 1997, pp. 157-160.
Singh, R. et al., “High Temperature, High Current, 4H-SiC Accu-DMOSFET”, Silicon Carbide and Related Materials, Copyright: 2000, vols. 338-342, pp. 1271-1274.
Sridevan, S. et al., “Lateral N-Channel Inversion Mode 4H-SiC MOSFET'S”, IEEE Electron Devices Letters, Jul. 1998, vol. 19, No. 7, pp. 228-230.
Sridevan, S. et al., “On the Presence of Aluminum in Thermally Grown Oxides on 6H-Silicon Carbide”, IEEE Electron Devices Letters, Mar. 1996, vol. 17, No. 3, pp. 136-138.
Stengl, R. et al., “Variation of Lateral Doping—A New Concept to Avoid High Voltage Breakdown of Planar Junctions”, Science Research Laboratories, Jan. 12, 1985, 4 pages.
Stengl, R. et al., “Variation of Lateral Doping as a Field Terminator for High-Voltage Power Devices”, IEEE Transactions on Electron Devices, Mar. 1986, vol. ED-33, No. 3, pp. 426-428.
Streetman, Ben G., “Chapter 7: Bipolar Junction Transistors”, Solid State Electronic Devices, Mar. 1980, pp. 228-284, Englewood Cliffs, NJ, Prentice-Hall, Inc.
Sugawara, Yoshitaka et al., “3.6 kV 4H-SiC JBS Diodes with Low RonS”, Materials Science Forum: Silicon Carbide and Related Materials, Sep. 2000, vol. 338-342, pp. 1183-1186.
Sundaresan, Siddarth G. et al., “Ultra-Low Resistivity A1+ Implanted 4H-SiC Obtained by Microwave Annealing and a Protective Graphite Cap”, Solid-State Electronics 52, Jan. 2008, pp. 140-145.
Suvorov, A.V. et al., “4H-Sic Self-Aligned Implant-Diffused Structure for Power DMOSFETs”, Materials Science Forum, Jan. 2000, vols. 338-342, pp. 1275-1278.
Suzuki, Seiji et al., “Effect of Post-Oxidation-Annealing in Hydrogen on SiO2 /4H-SiC Interface”, Materials Science Forums, Jan. 2000, vols. 338-342, pp. 1073-1076.
Sze, S.M., “Si-SiO2 MOS Diode”, Physics of Semiconductor Devices, 2nd Edition, Jan. 1998, pp. 383-390, Korea, John Wiley & Sons, Inc.
Sze, S.M., “Chapter 5: Bipolar Transistor and Related Devices”, Semiconductor Devices Physics and Technology, Jan. 2002, p. 130, United States of America, John Wiley & Sons, Inc.
Tamaki, Tomohiro et al., “Optimization of On-State and Switching Performances for 15-20-kV 4H-SiC IGBTs,” IEEE Transactions on Electron Devices, vol. 55, No. 8, Aug. 2008, pp. 1920-1927.
Tan, J. et al., “High-Voltage Accumulation-Layer UMOSFET's in 4H-SiC”, IEEE Electron Device Letters, Sep. 1998, vol. 49, No. 12, pp. 487-489.
Thomas, Chris et al., “Annealing of Ion Implantation Damage in SiC Using a Graphite Mask”, Materials Research Society Symposium Proc., Apr. 1999, vol. 572, pp. 45-50.
Tobin, Philip et al., “Furnace Formation of Silicon Oxynitride Thin Dielectrics in Nitrous Oxide N2O: The Role of Nitric Oxide (NO)”, Junior Applied Physics, Feb. 1, 1994, vol. 75, No. 3, pp. 1811-1817.
Tone, Kiyoshi et al., “4H-SiC Normally-Off Vertical Junction Field-Effect Transistor With High Current Density,” IEEE Electron Device Letters, vol. 24, No. 7, Jul. 2003, pp. 463-465.
Final Office Action for U.S. Appl. No. 15/483,039, dated Sep. 24, 2020, 16 pages.
Treu, M. et al., “A Surge Current Stable and Avalanche Rugged SiC Merged pn Schottky Diode Blocking 600V Especially Suited for PFC Applications”, Materials Science Forum: Silicon Carbide and Related Materials, Oct. 2006, vol. 527-539, pp. 1155-1158.
Ueno, Katsunori et al., “The Guard-Ring Termination for High-Voltage SiC Schottky Barrier Diodes”, IEEE Electron Device Letters, Jul. 1995, vol. 16, No. 7, pp. 331-332.
Ueno, Katsunori et al., “4H-SiC MOSFET's Utilizing the H2 Surface Cleaning Technique”, IEEE Electron Device Letters, Jul. 1998, vol. 19, No. 7, pp. 244-246.
Ueno, Katsunori et al., “Counter-Doped MOSFET's of 4H-SiC”, IEEE Electron Device Letters, Dec. 1999, vol. 20, No. 12, pp. 624-626.
Vassilveski, K. et al., “High Voltage Silicon Carbide Schottky Diodes with Single Zone Junction Termination Extension”, Materials Science Forum, Sep. 2007, pp. 873-876, Switzerland, Trans Tech Publications.
Vassilveski, K.V. et al., “Protection of Selectively Implanted and Patterned Silicon Carbide Surfaces with Graphite Capping Layer During Post-Implantation Annealing”, Semiconductor Science and Technology, Feb. 3, 2005, pp. 271-278, Switzerland, Trans Tech Publications.
Vathulya, Vickram et al., “A Novel 6H-SiC Power DMOSFET with Implanted P-Well Spacer”, IEEE Electron Device Letters, Jul. 1999, vol. 20, No. 7, pp. 354-356.
Vathulya, Vickram et al., “Characterization of Channel Mobility of Implanted SiC to Determine Polytype Suitability or the Power DIMOS Structure”, Powerpoint Presentation at Lehigh University, Presented 1999, 26 total slides, 13 pages.
Wang, Xiewen W. et al., “High Temperature Characteristics of High-Quality SiC MIS Capacitors with O/N/O Gate Dielectric”, IEEE Transactions on Electron Devices, Feb. 2000, vol. 47, No. 2, pp. 450-462.
Wang, Y. et al., “Accumulation-Mode SiC Power MOSFET Design Issues”, Material Science Forum, Feb. 2000, vols. 338-342, pp. 1287-1290.
Williams, J.R. et al., “Passivation of the 4H-SiC/SiO2 Interface with Nitric Oxide”, Materials Science Forum, Jan. 2002, vols. 389-393, pp. 967-972.
Xu, J.P. et al., “Improved Performance and Reliability of N20-Grown Oxynitride on 6H-SiC”, IEEE Electron Device Letters, Jun. 2000, vol. 21, No. 6, pp. 298-300.
Yilmaz, Hamza, “Optimization and Surface Charge Sensitivity of High Voltage Blocking Structures with Shallow Junctions”, IEEE Transactions on Electron Devices, Jul. 1991, vol. 38, No. 7, pp. 1666-1675.
Zhang, Qingchun at al., “A 10-K Monolithic Darlington Transistor with βforced of 336 in 4H-SiC”, Feb. 2009, IEEE Electron Device Letters, Feb. 2009, vol. 30, No. 2, pp. 142-144.
Zhang, Qingchun et al., “12 Kv 4H-SiC p-IGBTs with Record Low Specific On-Resistance”, Materials Science Forum, Sep. 2008, vols. 600-603, 4 pages.
Zhang, Qingchun et al., “Design and Fabrications of High Voltage IGBTs on 4H-SiC”, Power semiconductor devices and IC's, 2006 IEEE International Symposium, Jun. 4-8, 2006, pp. 1-4.
Office Action for Chinese Patent Application No. 2007800294605, dated Jan. 22, 2010, 7 pages.
European Search Report for European Patent Application No. 09177558.5, dated Feb. 22, 2010, 6 pages.
European Search Report for European Patent Application No. 07120038.0, dated Jun. 16, 2008, 7 pages.
European Search Report for European Patent Application No. 09163424.6, dated Apr. 9, 2010, 10 pages.
Extended European Search Report for European Patent Application No. 07112298.0, dated Feb. 18, 2009, 12 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/051429 dated Nov. 22, 2012, 15 pages.
International Search Report for International Patent Application No. PCT/US01/30715 dated Jun. 5, 2002, 9 pages.
International Search Report for International Patent Application No. PCT/US01/42414, dated Apr. 23, 2002, 10 pages.
International Search Report for International Patent Application No. PCT/US02/11691, dated Dec. 17, 2002, 9 pages.
International Search Report for International Patent Application No. PCT/US2004/004982 dated Jul. 22, 2004, 9 pages.
International Search Report for International Patent Application No. PCT/US2010/025053, dated Jul. 2, 2010, 18 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/27255 dated Jun. 13, 2012, 10 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2007/0014139, dated Feb. 4, 2008, 15 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/0008574, dated Sep. 26, 2008, 15 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/0010538, dated Dec. 22, 2008, 13 pages.
International Search Report for International Patent Application No. PCT/US2009/0000734, dated Apr. 23, 2009, 13 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/0003089, dated Aug. 20, 2009, 16 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/0065251, dated Jun. 1, 2010, 14 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0020071, dated Mar. 26, 2010, 14 pages.
Invitation to Pay Additional Fee for International Patent Application No. PCT/US2007/0010192, dated Oct. 29, 2007, 10 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/004239, dated Mar. 2, 2009, 11 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0026632, dated Oct. 8, 2010, 13 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0028612, dated Jun. 17, 2010, 9 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0035713, dated Jul. 27, 2010, 11 pages.
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0042075, dated Sep. 24, 2010, 12 pages.
Non-Final Office Action for U.S. Appl. No. 13/108,440, dated Aug. 2, 2012, 23 pages.
Non-Final Office Action for U.S. Appl. No. 13/102,510, dated Aug. 2, 2012, 32 pages.
Final Office Action for U.S. Appl. No. 13/108,440, dated Jan. 17, 2013, 36 pages.
Final Office Action for U.S. Appl. No. 13/102,510, dated Feb. 12, 2013, 27 pages.
Advisory Action for U.S. Appl. No. 13/108,440, dated Mar. 25, 2013, 4 pages.
Advisory Action for U.S. Appl. No. 13/102,510, dated Apr. 19, 2013, 3 pages.
Non-Final Office Action for U.S. Appl. No. 13/102,510, dated Jun. 20, 2013, 28 pages.
Restriction Requirement for U.S. Appl. No. 13/588,329, dated Aug. 26, 2013, 7 pages.
Advisory Action for U.S. Appl. No. 15/483,039, dated Nov. 25, 2020, 3 pages.
Non-Final Office Action for U.S. Appl. No. 15/483,039, dated Jan. 6, 2021, 14 pages.
Notice of Reasons for Rejection for Japanese Patent Application No. 2016-567562, dated Dec. 15, 2020, 15 pages.
Notice of Reasons for Rejection for Japanese Patent Application No. 2020-015417, dated Mar. 23, 2021, 11 pages.
Related Publications (1)
Number Date Country
20190067468 A1 Feb 2019 US
Provisional Applications (1)
Number Date Country
61533254 Sep 2011 US
Continuations (2)
Number Date Country
Parent 15482936 Apr 2017 US
Child 16171521 US
Parent 13588329 Aug 2012 US
Child 15482936 US