This application claims priority of Taiwanese Utility Model Patent Application No.107205847, filed on May 4, 2018.
The disclosure relates to a preformed lead frame, and more particularly to a preformed lead frame formed with elongated grooves for solder reflowing. This disclosure also relates to a lead frame package made from the preformed lead frame.
Referring to
Referring to
Therefore, an object of the disclosure is to provides a preformed lead frame that can alleviates some of the drawbacks of the prior art. A lead frame package made from the preformed lead frame unit is also provided.
According to one aspect of the disclosure, a preformed lead frame includes at least two lead frame units, at least one connection bar extending along a singulation line and connecting between the at least two lead frame units, and a molding layer molded over the at least two lead frame units and the at least one connection bar. The molding layer has an upper surface, a lower surface opposite to the upper surface, and a plurality of spaced apart elongate grooves indented upwardly from the lower surface.
Each of the at least two lead frame units includes a row of spaced-apart leads. The leads of one of the at least two lead frame units are respectively and alignedly connected to the leads of the other one of the at least two lead frame units via the connection bar. Each of the leads has a wire connecting surface exposed from the upper surface of the molding layer, a grooved surface opposite to the wire connecting surface and exposed from the lower surface of the molding layer, and a grooved soldering surface indented upwardly from the grooved surface and exposed in one of the elongate grooves.
Each of the elongate grooves extends through the singulation line and has two opposite groove ends respectively bordered by the grooved surfaces of two of the leads that are alignedly connected to each other. Each of the elongate grooves has a first width at the singulation line, and two second widths at the two opposite groove ends. The first width is larger than the second widths.
According to another aspect of the disclosure, a lead frame package includes a molding layer, a lead frame unit and a chip unit.
The molding layer has an upper surface, a lower surface opposite to the upper surface, a lateral surface interconnecting the upper and lower surfaces, a framed portion extending from the upper surface to the lower surface, and a surrounding frame section disposed around the framed portion and extending from the upper surface to the lower surface. The framed portion and the surrounding frame section share each of the upper and lower surfaces.
The lead frame unit includes a plurality of spaced-apart leads embedded in the molding layer. Each of the leads has a wire connecting surface exposed from the upper surface of the molding layer, a grooved surface opposite to the wire connecting surface and exposed from the lower surface of the molding layer, a side face exposed from the lateral surface of the molding layer and extending downwardly from the wire connecting surface, and a grooved soldering surface indented upwardly from the grooved surface and extending sideward to connect the side face. The grooved soldering surface of each of the leads cooperates with the molding layer to define a solder-receiving groove. The solder-receiving groove has a first width measured at a line of a junction of the lateral surface and the lower surface of the molding layer, and a second width measured at a line of a junction of the grooved surface and the grooved soldering surface of a corresponding one of the leads, the first width being larger than the second width.
The chip unit includes a chip disposed on the framed portion of the molding layer, and a plurality of wires connected between the chip and the leads.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment with reference to the accompanying drawings, of which:
Referring to
The embodiment includes a molding layer 2, a lead frame unit 3, a chip unit 4 and an encapsulant layer 5.
The molding layer 2 may be made of an electrically insulating polymer, and has an upper surface 23, a lower surface 24 opposite to the upper surface 23, a lateral surface 25 interconnecting the upper and lower surfaces 23, 24, a framed portion 21 extending from the upper surface 23 to the lower surface 24, and a surrounding frame section 22 disposed around the framed portion 21 and extending from the upper surface 23 to the lower surface 24. The framed portion 21 and the surrounding frame section 22 share each of the upper and lower surfaces 23, 24.
The lead frame unit 3 includes a plurality of spaced-apart leads 32 that are electrically independent of each other and embedded in the surrounding frame portion 22.
The lead frame package further includes a die pad 31 embedded in the framed portion 21 of the molding layer 2. The die pad 31 has a pad top surface 311 exposed from and coplanar with the upper surface 23 of the molding layer 2 and a pad bottom surface 312 exposed from and coplanar with the lower surface 24 of the molding layer 2. In this embodiment, the die pad 31 constitutes a portion of the lead frame unit 3, and the leads 32 are spaced apart from the die pad 31. The die pad 31 and the leads 32 may be made of the same electrically conducting material, examples include, but are not limited to, cooper alloys or iron-nickel alloys.
Each of the leads 32 has a wire connecting surface 321 exposed from the upper surface 23 of the molding layer 2, a grooved surface 322 opposite to the wire connecting surface 321 and exposed from the lower surface 24 of the molding layer 2, a side face 323 exposed from the lateral surface 25 of the molding layer 2 and extending downwardly from the wire connecting surface 321, and a grooved soldering surface 324 indented upwardly from the grooved surface 322 and extending sideward to connect the side face 323. The grooved soldering surface 324 of each of the leads 32 cooperates with the molding layer 2 to define a solder-receiving groove 26, and is exposed from the solder-receiving groove 26. The soldering-grooves 26 independently penetrate from the lateral surface 25 through to the lower surface 24.
In one form, the wire connecting surface 321 of each of the 32 is coplanar with the upper surface 23 of the molding layer 2. The grooved surface 322 of each of the leads 32 is coplanar with the lower surface 24 of the molding layer 2. The side face 323 of each of the leads 32 is coplanar with the lateral surface 25 of the molding layer 2.
In particular, each of the solder-receiving grooves 26 has a first width D1 measured at a line of a junction of the lateral surface 25 and the lower surface 24 of the molding layer 2, and a second width measured at a line of a junction of the grooved surface 322 and the grooved soldering surface 324 of a corresponding one of the leads 32. The first width D1 is larger than the second width D2.
The solder-receiving grooves 26 may have, but are not limited to, a cross-section extending from the grooved soldering surface 324 to the side face 323 of one of the leads 32 that is trapezoid, semi-circular or semi-elliptic, as long as the first width D1 is the maximum width of the soldering hole 26. In this embodiment, as an example, the cross-section of the solder-receiving grooves 26 is trapezoid.
The molding layer 2 further includes a plurality of step formations 27, each of the step formations 27 protruding from the surrounding frame section 22 into a corresponding one of the solder-receiving grooves 26 of the leads 32 and onto a corresponding one of the grooved soldering surfaces 324 of the leads 32. Each of the step formations 27 has a thickness, which is measured from the grooved soldering surface 324 of a corresponding one of the leads 32 and is smaller than a half of a maximum depth of a corresponding one of the solder-receiving grooves 26 of the leads 32 measured from the lower surface 24 of the molding layer 2.
The chip unit 4 includes a chip 41 disposed on the framed portion 21 of the molding layer 2, and a plurality of wires 42 connected between the chip 41 and the leads 32.
The encapsulant layer 5 encapsulates the chip unit 4, and is made of an electrically insulating polymer that may be transparent. In this embodiment, as an example, the encapsulant layer 5 is made of a transparent material.
In the embodiment of the lead frame package according to this disclosure, because the first width D1 of each of the solder-receiving grooves 26 is the maximum width of the solder-receiving groove 26, the visible area for inspection after soldering is increased. Furthermore, the configuration of the solder-receiving grooves 26 allows a portion of the solder proximal to the lateral surface 25 of the molding layer 2 to be hemispherical due to cohesion of the solder, thereby easing visual inspection of soldering conditions. Each of the step formations 27 also form a step cut structure with the corresponding one of the solder-receiving grooves 26 which aids the solder in rising in the solder-receiving groove 26, making it more visible from the lateral surface 25.
In the following, the embodiment of a preformed lead frame 200A applicable to production of the aforementioned lead frame package is illustrated. The lead frame package is produced from performing the bonding and packaging of a chip and cutting on the preformed lead frame 200A.
Referring to
The molding layer 2 is molded over the two lead frame units 3 and the connection bar 33, and has a plurality of spaced apart elongate grooves 26A indented upwardly from the lower surface 24, and a plurality of the step formations 27. Each of the elongate grooves 26A extends through the two singulation lines 901 and has two opposite groove ends 261 respectively bordered by the grooved surfaces 322 of two of the leads 32 that are alignedly connected to each other. Each of the elongate grooves 26A has a first width D1 along the two singulation lines 901 which the elongate groove 26A extends through and two second widths D2 at the two opposite groove ends 261. The first width D1 is larger than the second widths D2, and is the maximum width of the elongated grooves 26A.
Each of the step formations 27 protrudes from the molding layer 2 into one of the elongate grooves 26A. Each of the step formations 27 has a thickness smaller than a half of a maximum depth of a corresponding one of the elongate grooves 26A measured from the lower surface 24 of the molding layer 2. The thickness of each of the step formations 27 is measured along a direction of the depth of a corresponding one of the elongate grooves 26A.
Each of the two lead frame units 3 includes a row of the spaced-apart leads 32. The leads 32 of each of the two lead frame units 3 are respectively and alignedly connected to the leads 32 of another one of the lead frame units 3 via the connection bar 33. Each of the leads 32 has the wire connecting surface 321 exposed from the upper surface 23 of the molding layer 2; the grooved surface 322 opposite to the wire connecting surface 321 and exposed from the lower surface 24 of the molding layer 2; and the grooved soldering surface 324 indented upwardly from the grooved surface 322, that cooperatively defines the elongate groove 26A with the molding layer 2, and is exposed in the elongate groove 26A.
In one form, the wire connecting surface 321 of each of the leads 32 is coplanar with the upper surface 23 of the molding layer 2. The grooved surface 322 of each of the leads 32 is coplanar with the lower surface 24 of the molding layer 2.
The preformed lead frame 200A also includes two of the die pads 31. Each of the die pads 31 is embedded in each of the framed portions 21 of the molding layer 2. Each of the die pads 31 has the pad top surface 311 exposed from and coplanar with the upper surface 23 of the molding layer 2 and the pad bottom surface 312 exposed from and coplanar with the lower surface 24 of the molding layer 2.
Specifically, the preformed lead frame 200A is produced using etching and preforming.
Referring to
Referring to
Then, etching is performed on the back surface of the semi-finished product. Referring to
A portion of the second lead-forming portions 32B is removed by etching to expose the first lead-forming portion 32A to form the elongate grooves 26A and the step formations 27 disposed within the elongate grooves 26A. The preformed lead frame 200A shown in
Referring to
Since the second lead-forming portions 32B of the preformed lead frame 200A have maximum widths along the two singulation lines 901, the elongate grooves 26A formed after etching would also have a maximum width along the two singulation lines 901. Thus, after cutting is done along the singulation lines 901, the solder-receiving grooves 26 formed from the elongate grooves 26A would also have a maximum width (the first width D1) where it is cut, forming solder-receiving grooves 26 with a maximum viewing angle on the side of the lead frame package.
In some embodiments, depending on different requirements, the solder-receiving groove 26 may not contain the step formation 27. When this is the case, the first lead-forming portions 32A would not have the neck portion 325, and instead may have the same shape as the second lead-forming portions 32B so that the first and second lead-forming portions 32A, 32B can be formed simultaneously during etching, as long as the widths of the first and second lead-forming portions 32A and 32B at the intersections of the singulation lines 901 and themselves are respectively the maximum widths of the first and second lead-forming portions 32A and 32B.
Further, when the lead frame package is of a smaller dimension or heat dissipation is of lower importance, the framed portions 21 of the molding layer 2 may serve as the die pads 31 and the chips 41 may be directly disposed thereon.
Referring to
In view of the foregoing, due to the structural design of the preformed lead frame 200A, which is formed with the preformed elongate grooves 26A and the step formations 27 formed in the elongate grooves 26A, with the preformed elongate grooves 26A having maximum width along the two singulation lines 901, the preformed lead frame 200A has the elongate grooves 26A with a maximum viewing angle. Furthermore, the lead frame package formed from the cutting the preformed lead frame 200A has the solder-receiving grooves 26 with a maximum width where it is cut, i.e., along the corresponding singulation line 901. Each of the solder-receiving grooves 26 can define a step cut structure with the step formation 27, can allow the surface of the corresponding lead 32 to be exposed and has a maximum width at the contact between the lateral surface 25 and the lower surface 24 of the molding layer 2. Thus, not only is the visible area increased for later soldering inspections, the ease of inspection is also improved using the step cut structure, as the step cut structure encourages reflow of the solder so that the solder rises from the solder-receiving grooves 26 to be more exposed on the lateral surface 25.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment(s). It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects, and that one or more features or specific details from one embodiment may be practiced together with one or more features or specific details from another embodiment, where appropriate, in the practice of the disclosure.
While the disclosure has been described in connection with what is considered the exemplary embodiments, it is understood that this disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
107205847 | May 2018 | TW | national |