This application is based upon and claims the benefit of priority of Japanese Patent Application No. 2010-75423, filed on Mar. 29, 2010, the entire contents of which are incorporated herein by reference.
Embodiments discussed herein are related to a printed wiring board manufacturing method and a printed wiring board.
Some printed wiring boards employ a core substrate on which a pair of differential signal wirings is patterned. When the core substrate is fabricated by impregnating a glass fiber cloth, made up of warp yarns and weft yarns, with a resin, a delay in signal transmission in the core substrate due to the positional relationship between projected/recessed positions of the glass fiber cloth and the differential signal wirings may not cause a significant problem at a transmission frequency of 1.6 GHz or below, for example.
Meanwhile, in a case where the transmission frequency increases up to a range of 3 to 5 GHz, a delay in signal transmission may be generated with a difference at a level that is not negligible, or an impedance mismatch may be caused. To cope with the difference in the delay time and the impedance mismatch, a technique has been proposed which provides, e.g., a structure for adjusting the positional relationship between the projected/recessed positions of the glass fiber cloth and the differential signal wirings with more consideration paid to the projected/recessed positions of the glass fiber cloth.
In the stage where a differential signal wiring pattern is drawn, however, the surface of the substrate is covered with a copper foil and the glass fiber cloth in the substrate cannot be visually recognized. Also, even in the substrate (prepreg) in the stage where the copper foil is not yet coated over the surface of the substrate, it is difficult to visually recognize individual yarns (warp yarns and weft yarns) of the glass fiber cloth for the reason that the glass fiber cloth is impregnated with the resin. Recently, spread-type glass fibers, i.e., glass fibers collapsed to spread yarns (each made of the glass fibers) laterally, have often been used. In the case of the substrate using the spread-type glass fibers, a basket hole, i.e., a gap between individual yarns of a glass fiber cloth, is so very small as to further increase a difficulty in visual recognition of the yarns. Stated another way, it has become more difficult to recognize the individual yarns of the glass fiber cloth one by one.
On the other hand, it has been proposed to change respective colors of warp yarns and weft yarns for the purposes of evaluating distortions of fibers or identifying the properties of the fibers. It has also been proposed to employ a reinforced fabric of a structure obtained by stacking two fabrics, each being made up of warp yarns and weft yarns and each having a front texture and a rear texture, in such a state that respective orientations of the front texture and the rear texture are turned upside down and the positional relationship between the warp yarns and the weft yarns are further reversed. However, an improvement in signal transmission is not taken into consideration at all. Similar structures to the above-described printed circuit board are disclosed in JP-A-5-39372, JP-A-11-286847, and JP-A-2006-233369, for example.
According to an embodiment of the invention, a printed wiring board manufacturing method includes weaving a glass fiber cloth with warp and weft yarns such that the warp and weft yarns are visually distinguishable at least a region. The glass fiber cloth is impregnated with a resin to fabricate a substrate. A copper foil is formed on at least one surface of the substrate to fabricate a core substrate. The copper foil is removed within the region on the core substrate to form an opening. A pitch between the warp yarns or between the weft yarns which are presented in the opening is detected. A pitch between a pair of differential wirings to be patterned is determined based on the detected pitch between the warp yarns or between the weft yarns. The pair of differential wirings is patterned on the core substrate in accordance with the determined pitch between the pair of differential wirings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory, and are not restrictive of the invention.
Hereinafter, embodiments the present invention of a printed wiring board manufacturing method and a printed wiring board will be described with reference to the drawings.
The printed wiring board 10C includes a glass fiber cloth 20C that is obtained by weaving warp yarns 21C and weft yarns 22C into the form of a cloth, a resin plate 30C that is obtained by impregnating the glass fiber cloth 20C with a resin and hardening it after shaping into the form of a plate, and differential signal wirings 40C that are formed on the surface of the resin plate 30C.
The glass fiber cloth 20C constituting the printed wiring board 10C, illustrated in
The differential signal wirings 40C, illustrated in
In the printed wiring board 10C thus constructed, impedances of the two differential signal wirings 40C differ from each other depending on differences in properties of the glass fiber cloth 20C and the resin plate 30C, which are positioned right under those two differential signal wirings 40C. Therefore, delay times of signals transmitted through the two differential signal wirings 40C also differ from each other. When the frequency of the transmitted signal reaches a range as high as 3 to 5 GHz, for example, the difference in the signal delay time is increased to a level that is not negligible and may cause a failure in the circuit operation.
Embodiments of the invention will be described below in view of the comparative example described above.
A printed wiring board 10 according to the first embodiment can include, as in the printed wiring board 10C of
The warp yarns 21 and the weft yarns 22 forming the glass fiber cloth 20, illustrated in
In one embodiment, the differential signal wirings 40, illustrated in
The printed wiring board manufacturing method, illustrated in
In the core substrate fabrication step (S01), a plate-like substrate 51 (see
The substrate 51 can include a glass fiber cloth 60 that is obtained by weaving warp yarns 61 and weft yarns 62 into the form of a cloth, and a resin plate 70 that is obtained by impregnating the glass fiber cloth 60 with a resin and hardening it after shaping into the form of a plate. A gap defined by two adjacent warp yarns 61 and two adjacent weft yarns 62 is called a basket hole 63.
The warp yarns 61 and the weft yarns 62 forming the glass fiber cloth 60, illustrated in
A method of manufacturing the substrate 51 can be similar to that known in the art except that the warp yarns 61 and the weft yarns 62 of the glass fiber cloth 60 are made in different colors. Hence, a detailed description of the manufacturing method is omitted here.
The substrate 71 can include a glass fiber cloth 80 that is obtained by weaving warp yarns 81 and weft yarns 82 into the form of a cloth, and a resin plate 90 that is obtained by impregnating the glass fiber cloth 80 with a resin and hardening it after shaping into the form of a plate.
The warp yarns 81 and the weft yarns 82 forming the glass fiber cloth 80, illustrated in
As illustrated in the example depicted in
Stated another way, in the case of the glass fiber cloth 80 using the spread-type glass fibers, the basket hole is not formed in a sufficient size. Therefore, if glass fibers having the same features, including a color tone, are used as the warp yarns 81 and the weft yarns 82, it is more difficult to visually distinguish individual yarns one by one in comparison with the case of the glass fiber cloth using the ordinary-type glass fibers. In this embodiment, however, since the warp yarns 81 and the weft yarns 82 are made of different colored yarns, the individual yarns of the warp yarns 81 and the weft yarns 82 can be visually distinguished one by one with ease.
A method of manufacturing the substrate 71, illustrated in
The following description is continued assuming that the substrate 51 having the shape illustrated in
In the core substrate fabrication step (S01) of
The core substrate 50 can include the substrate 51, which is illustrated in
A method of manufacturing the core substrate 50 may be similar to that known in the art except that the warp yarns 61 and the weft yarns 62 of the glass fiber cloth 60 forming the substrate 51 are made to be different colors. Hence, a detailed description of the manufacturing method is omitted here.
After the core substrate 50 has been fabricated in the core substrate fabrication step (S01) of
In
Here, as illustrated in
While
Further, while the openings 521 are formed in both the surfaces of the core substrate 50 in this embodiment as illustrated in
After the opening formation step (S02) illustrated in
When the differential signal wirings are formed, a photoresist may be coated over the surface of the core substrate 50 as in the step of forming the openings 521. However, the photoresist is omitted in
The image recognition camera 101 is relatively movable with respect to the core substrate 50 such that it can look into each of the openings 521 formed in the core substrate 50. Further, the image recognition camera 101 picks up an image of the warp yarns 61 and the weft yarns 62 of the glass fiber cloth 60 (see
The processor 102 analyzes the picked-up image based on the image signal received from the image recognition camera 101, to thereby detect the arranged positions of the warp yarns 61 and the weft yarns 62, which is presented in the opening 521. The processor 102 further recognizes, based on the arranged positions of the warp yarns 61 and the weft yarns 62 presented in the opening 521, the arranged positions of the warp yarns 61 and the weft yarns 62 in the region where the differential signal wirings are to be formed.
The laser drawing machine 103 is also relatively movable with respect to the core substrate 50 under control by the processor 102.
The processor 102 recognizes the arranged positions of the warp yarns 61 and the weft yarns 62 over an entire region of the core substrate 50 based on images picked up by the image recognition camera 101 when looking into openings 521A, which are formed near the four corners of the core substrate 50. Further, regarding the regions where the differential signal wirings are to be formed, the processor 102 corrects the recognized results of the arranged positions of the warp yarns 61 and the weft yarns 62 based on images picked up by the image recognition camera 101 when looking into openings 521B, which are formed near the regions where the differential signal wirings are to be formed. Thus, in this embodiment, since the arranged positions of the warp yarns 61 and the weft yarns 62 are recognized based on the images picked up by the image recognition camera 101 when looking into the openings 521B, which are formed near the regions where the differential signal wirings are to be formed, the arranged positions of the warp yarns 61 and the weft yarns 62 can be more exactly recognized.
In this embodiment, a process of detecting the arranged positions of the warp yarns 61 and the weft yarns 62 of the core substrate 50 by using both the image recognition camera 101 and the processor 102 corresponds to the first detection step (S03) illustrated in
After detecting and recognizing the arranged positions of the warp yarns 61 and the weft yarns 62, the processor 102 drives the laser drawing machine 103. More specifically, the processor 102 moves the laser drawing machine 103 to a position corresponding to the differential signal wiring that is going to be formed, and operates the laser drawing machine 103 to emit a laser beam. With the aid of the laser beam emitted, the laser drawing machine 103 draws a pattern 53, which serves to form the differential signal wiring, at a location where the positional relationship relative to the warp yarns 61 and the weft yarns 62 becomes a predetermined positional relationship.
In this embodiment, a process of drawing the pattern 53, which serves to form the differential signal wiring, through the movement of the laser drawing machine 103 by the processor 102 and through the operation of the laser drawing machine 103 corresponds to part of the wiring formation step (S04) illustrated in
Although, in
The prepreg is a plate-like member that is sandwiched between two core substrates when the printed wiring board is fabricated in multiple layers. Though not illustrated, the prepreg is, for example, a resin plate obtained by impregnating a glass fiber cloth, which is prepared by weaving warp yarns and weft yarns into the form of a cloth, with a resin and hardening it after shaping into the form of a plate, similarly to each of the substrate bodies 51 and 71 illustrated in
In the prepreg fabrication step (S11) of
In the second detection step (S12) of
The second guide portion formation step (S13) illustrated in
In the first guide portion formation step (S05) and the second guide portion formation step (S13), guide holes for alignment (positioning) are formed in both the core substrate 50 and the prepreg in accordance with the arranged positions of the warp yarns and the weft yarns of the core substrate 50 and the prepreg, which have been recognized by the image recognition camera 101 and the processor 102 as described above. Herein, however, because relative alignment between the core substrate 50 and the prepreg is just needed, the first guide portion formation step (S05) or the second guide portion formation step (S13) is not necessarily required to be executed in the sequence illustrated in
More specifically, the sequence may be modified such that guide holes are formed in one of the core substrate 50 and the prepreg (or one of all plates when the core substrate 50 and the prepreg are present three or more in total) before confirming the arranged positions of the warp yarns and the weft yarns, and guide holes are formed in the remaining one or more plates at positions, which are aligned with the guide holes formed in the other of the core substrate 50 and the prepreg (or the one plate) before confirming the arranged positions of the warp yarns and the weft yarns, after confirming the arranged positions of the warp yarns and the weft yarns in the remaining one or more plates.
In the first guide portion formation step (S05) and the second guide portion formation step (S13) of
The formation of the guide holes 57 and 117 has been performed in the past, and the first guide portion formation step (S05) and the second guide portion formation step (S13) of
While this embodiment has been described above in connection with the case of forming the guide holes 57 and 117, a guide portion defined in an embodiment of the invention is not always required to be a guide hole and it may be, for example, a notch formed in a lateral surface of the core substrate 50 or the prepreg 110.
Alternatively, the guide portion may be a mark enabling the arranged positions of the warp yarns and the weft yarns to be aligned between the core substrate 50 and the prepreg 110 when the core substrate 50 and the prepreg 110 are stacked one above the other. However, the following description is continued on condition that the guide holes 57 and 117 are formed as the guide portions.
When a multilayer printed wiring board is fabricated as described later, a relative lateral shift may occur between the core substrate and the prepreg due to influences of pressure and heat that are applied in a process of fabricating the multilayer printed wiring board. In such a case, it is preferable to confirm the amount of the lateral shift in advance and to form the guide portions, e.g., the guide holes, at positions shifted in a direction opposite to the direction of the lateral shift by the same amount so that the arranged positions of the warp yarns and the weft yarns of the glass fiber cloths are aligned between the core substrate and the prepreg after the multilayer printed wiring board has been fabricated. However, the following description is made on condition that the lateral shift does not occur.
After the end of both the first guide portion formation step (S05) and the second guide portion formation step (S13) illustrated in
The core substrate 50 used herein may be one obtained in the stage after the wiring formation step (S04) and the first guide portion formation step (S05) illustrated in
The guide holes 57 and 117 (see
In the multilayer plate fabrication step (S06), the core substrates 50 and the prepregs 110 are inserted through the guide rods 122 of the guide member 120 and alternately stacked such that the prepreg 110 is sandwiched between two core substrates 50.
Another metal plate 131 is placed on a multilayer assembly made up of the core substrates 50 and the prepregs 110 which are stacked as described above. Further, the multilayer assembly sandwiched between the two metal plates 121 and 131 is placed on a pressure plate 140 including a built-in heater, and another pressure plate 150 including a built-in heater is placed on the multilayer assembly. Then, the multilayer assembly is pressed under heating from above and below through the two pressure plates 140 and 150. As a result, the resin is softened to such an extent that the core substrates 50 and the prepregs 110 are integrated with each other, thereby providing the multilayer printed wiring board in which wiring layers are formed within the board.
A multilayer printed wiring board 130, illustrated in
In the multilayer printed wiring board 130 illustrated in
Differential signal wirings 70 formed in the multilayer printed wiring board 130 can include differential signal wirings 70a formed on outer surfaces of the multilayer printed wiring board 130 and differential signal wirings 70b formed on inner surfaces of the multilayer printed wiring board 130, and positions of those differential signal wirings 70a and 70b can be aligned in relation to warp yarns and weft yarns forming multilayer glass fiber cloths.
While the above description is made, for the sake of easier understanding, in connection with the case of aligning the positions of all the differential signal wirings 70 in relation to the warp yarns and the weft yarns, all the differential signal wirings are not always required to be aligned in their positions. It is sufficient that the positions of the differential signal wirings are aligned for only the differential signal wirings of which impedances, for example, need to be held uniform with high reliability, such as when the positional relationships with respect to warp yarns and weft yarns of glass fiber cloths have to be aligned between two differential signal wirings for transmitting high-frequency differential signals.
Further, the foregoing embodiments are described on the premise that the warp yarns and the weft yarns forming the glass fiber cloth are colored over the entire surfaces of the core substrate(s) and the prepreg(s). However, the warp yarns and the weft yarns forming the glass fiber cloth may be colored only in partial regions, such as regions of the core substrate where the openings are formed and regions of the prepreg, which correspond to the openings in the core substrates.
While the foregoing embodiments are described as coloring all the warp yarns and the weft yarns, the warp yarns and the weft yarns may be colored intermittently, namely one or two yarns apart, for respective yarns of the warp yarns and the weft yarns. In other words, it is just required that the warp yarns and the weft yarns are colored to be able to detect the arranged positions of the warp yarns and the weft yarns by analyzing the image picked up the image recognition camera 101 illustrated in
In addition, individual yarns of the warp yarns and the weft yarns are just required to be visually distinguishable therebetween. Accordingly, features enabling the warp yarns and the weft yarns to be visually distinguishable are not limited to the difference in color. Thus, the warp yarns and the weft yarns may be visually distinguishable from each other based on the difference in, e.g., shade or the intensity of fluorescence.
The printed wiring board 10 (see
All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventors to further the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the invention have been described in detail, it will be understood by those of ordinary skill in the relevant art that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention as set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-75423 | Mar 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7056571 | Tomekawa et al. | Jun 2006 | B2 |
8119225 | Peng et al. | Feb 2012 | B2 |
20040142154 | Tomekawa et al. | Jul 2004 | A1 |
20040181764 | Brist et al. | Sep 2004 | A1 |
20050025967 | Lawton et al. | Feb 2005 | A1 |
20100116530 | Okazaki | May 2010 | A1 |
Number | Date | Country |
---|---|---|
101494949 | Jul 2009 | CN |
2 079 289 | Jul 2009 | EP |
2 086 293 | Aug 2009 | EP |
59-131170 | Sep 1984 | JP |
03-206148 | Sep 1991 | JP |
05039372 | Feb 1993 | JP |
11286847 | Oct 1999 | JP |
2004-221558 | Aug 2004 | JP |
2006233369 | Sep 2006 | JP |
2009-164416 | Jul 2009 | JP |
2007109483 | Sep 2007 | WO |
Entry |
---|
European Search Report application No. 11158357.1 dated Jul. 4, 2011. |
Office Action from EPO application No. 11 158 357.1 dated May 14, 2012. |
Office Action mailed Nov. 19, 2013, issued in corresponding JP Patent Application No. 2010-075423 (with partial English translation). |
Number | Date | Country | |
---|---|---|---|
20110232949 A1 | Sep 2011 | US |