Johnson, et al.; Use of Variable Frequency Microwave Furnace For Large-Area, Uniform Processing; The American Ceramic Society; pp. 563-570; (Apr. 1993). |
Rudder et al.; Diamond Chemical Vapor Deposition (CVD) Via Microwave-Excited Plasma From Water-Ethanol Solutions; The American Ceramic Society; pp. 377-384 (Apr. 1993). |
Lauf et al.; Materials Processing Using A Variable Frequency Microwave Furnace; The American Ceramic Society; pp. 571-579 (Apr. 1993). |
Lauf et al.; Polymer Curing in a Variable Frequency Microwave Oven; U.S. Department of Energy; pp. 150-155; (Jul. 1993). |
Lauf et al.; 2 to 18 GHz Broadband Microwave Heating Systems; Microwave Journal; (Nov. 1993). |
Johnson et al.; Effect of Bandwidth on Uniformity of Energy Distribution In a Multi-Mode Cavity; (Apr. 1994). |
Everleigh et al.; Use of High-Power Traveling Wave Tubes As A Microwave Heating Source; (Apr. 1994). |
Demeuse et al.; Variable Frequency Microwave Processing of Thermoset Polymer Matrix Composites; (Apr. 1994). |
Johnson et al.; Use of Variable Frequency Microwave Energy As a Flexible Plasma Tool; (Apr. 1994). |
DeMeuse et al.; Microwave Processing Of Isocyanate/Epoxy Composites; Proceedings of 1994 Samp Conference; (May 1994). |
Espinosa et al; Use of Variable Frequency Microwave Power To Achieve Uniform Results Throughout Large Volumes For Material Processing; (Jul. 1993). |
Bible et al.; Multikilowatt Variable Frequency Microwave Furnace; Mat. Res. Soc. Symp. Proc., vol. 269 (Apr. 1992). |
International Search Report for PCT/US96/11043. |
International Search Report for PCT/US 96/11040. |
J.G. Ameen et al.; Microwave Heating of Electronic Components IBM Technical Disclosure Bulletin 22, No. 9:3393 (1980). |