Relates to manufacturing of semiconductors and specifically to photolithography.
Roadmaps for semiconductor lithography that project continual shrinkage of feature size have been developed and indicate a need for increased manufacturing capability (see, for example, “International Technology Roadmap for Semiconductors, 2001 Edition, Lithography”, Semiconductor Industry Association, 2001). Some portion of this increased manufacturing capability will come from reduced wavelength (λ) EUV (see, H. Chapman et al., “First Lithographic Results from the Extreme Ultraviolet engineering Test Stand”, J. Vac. Scie. Technology, B 19(6), November/December 2001) or 157 nm optical lithography and increased projection imaging optic (lens) numerical aperture (NA). Immersion particularly increases NA (see, “Development of ArF Immersion Stepper for Mass-Production Applications”, Nikon Press Release available at www.nikon.co.jp/main/eng/news/2004immersion_e—04.htm, 2004, pp. 1-3). However, decreased process variation and machine-to-machine matching in the lithography cell is required to achieve the projected small process windows (see, “International Technology Roadmap for Semiconductors, 2001 Edition, Lithography, supra). Increased use of system on chip (SOC) architectures push application specific integrated circuit (ASIC) and processor overlay requirements into the dynamic Random Access memory (DRAM) domain (see, “ASC9: 90 nm CMOS Process Technology The Industry's First Practical 90 nm Embedded DRAM Process”, Sony Corporation, pp. 1-4).
Some recent techniques for process control that utilize structures on product masks and wafers are capable of allowing manufacturers to adjust gross focus or focal plane tilt, dose and low order distortion (see C. Ausschnitt et al., “Method for Overlay Control System”, U.S. Pat. No. 5,877,861, issued Mar. 2, 1999 and C. Ausschnitt et al, “Process for Controlling Exposure Dose or Focus Parameters Using Tone Reversing Pattern”, U.S. Pat. No. 5,976,740, issued Nov. 2, 1999).
Memory Manufacturing Steps
DRAM and other memory manufacturing processes are generally discussed in “ASC9: 90 nm CMOS Process Technology The Industry's First Practical 90 nm Embedded DRAM Process”, supra, “EE141-Fall 2003 Digital Integrated Circuits”, EE141—Lecture 28 Memory Perspectives, 2003, and J. Binder, “Micro, Nano and Below”, CeBIT 2003, Hannover, 2003, pp. 1-11.
ASIC or Microprocessor Manufacturing Steps
In ASIC or microprocessor manufacturing, the variation of the gate linewidth of individual transistors is the chip parameter with the lowest CPK and thus the most difficult to achieve. D. Chesebro et al., “Overview of Gate Linewidth Control in the Manufacture of CMOS Log Chips”, IBM J. Res. Development, January/March 1995, pp. 189-200 discusses the overall impact of gate linewidth in VLSI MOSFET transistors.
Process Variation
A simple example of process variation is shown in
For ease of illustration, the previous discussion was restricted to transverse misalignment and focus. The influence of lens aberrations on DRAM feature placement is discussed in R. Holscher et al., “Effect of Lens Aberrations on Pattern Placement Error”, Proc. Of SPIE, Vol. 4000, March 2000 and N. Seong et al., “Pattern Displacement Error Under Off Axis Illumination”, Jpn J. Applied Physics, Vol. 37, December 1998, pp. 6695-6697, while their influence on process variability is discussed in J. Gortych et al., “Effects of Higher-Order Aberrations on the Process Window”, Proc. Of SPIE, Vol. 1463, 1991, pp. 368-381. The effect of the illumination source (e.g., light source and combined scrambling and condenser optics) on process variability and feature shifts is in D. Peters, “The Effects of an Incorrect Condenser Lens Setup on Reduction Lens Printing Capabilities”, Interface 85, Kodak Publ., No. G-154, 1985 pp. 66-72, and Y. Borodovsky, “Impact of Local Partial Coherence Variations on Exposure Tool Performance”, Proc. of SPIE, Vol. 2440, 1995, pp. 750-770. N. Sullivan, “Semiconductor Pattern Overlay”, Proc. Of SPIE Critical Reviews, Vol. CR52, pp. 160-188 contains a discussion of various transverse overlay error sources.
The time scale for the causes of process variation is significant when we wish to correct the causes; weekly or semi-weekly measurement of a machine setting we adjust once a month will improve a manufacturing process while the same metrology/adjustment schedule for causes that vary from wafer to wafer (˜1 minute time difference) will degrade it. Table 1 lists some process variation causes and their typical variation period. Most of these have variation periods of more than one week. The ones relating to reticle or wafer stage motion will have a repeatable part (typically determined as the average) that varies on a time scale of more than one day. Because of the relative constancy of these process variation causes, it would be desirable to directly measure and adjust the machines on a fab floor to minimize these sources of process variation.
Methods and apparatus utilizing a posteriori adjustments to a projection imaging machine used in manufacturing of semiconductor integrated circuits are described. Methods include providing measurements of degradation in a lithography processing of a projection imaging tool or machine. The operation of the projection imaging tool is adjusted in response to the measurements. Then, a substrate is exposed using the adjusted projection imaging tool. Examples of types of degradation include lens aberrations, illumination source variation, variation in transmission as a function of transverse ray direction, scan synchronization error, lens distortion in a dynamically scanned field, static lens distortion, static lens field curvature as a function of field position, dynamic lens field curvature as a function of cross scan direction field position, dynamic height and roll error as a function of scan position, and wafer stage grid and yaw error.
The projection imaging machine or tool can be adjusted in a single adjustment. The projection imaging machine can also be adjusted in a series of sub-adjustments. Likewise, only a single machine may be adjusted, or multiple machines used in the manufacture of semiconductor integrated circuits may be adjusted. The measurements may be made using in-situ metrology tests.
A projection imaging tool may include a controller configured to receive measurements of degradation in lithography processing of the projection imaging tool. The controller can then adjust operation of the projection imaging tool in response to the received measurements. The adjusted projection imaging tool may then be used to expose a substrate.
Another method of semiconductor manufacture includes emulating a projection imaging machine utilizing a database including historical and current machine states. The projection imaging machine process capability is evaluated. It is then determined if the machine needs adjustment, and if it does determining what adjustments are desired. The adjustments may be made in a single adjustment, or as a series of sub-adjustments.
Another method of semiconductor manufacture includes emulating a plurality of projection imaging machines utilizing a database including historical and current states of the plurality of machines. Machine-to-machine processing capabilities are evaluated. Then it is determined if any of the machines need adjustment, and if any do then determining what adjustments are desired. The adjustments can be made in a single adjustment or as a series of sub-adjustments. In addition, a set of machines can be adjusted in a single step and other machines adjusted in a series of sub-adjustments. For example, machines that have been offline, or are new, may be adjusted in a single step and other machines adjusted in a series of sub-adjustments. Likewise, machines that have been offline, or are new, may be adjusted in a series of sub-adjustments and other machines adjusted in a single step. In other words, any combination of machines may be adjusted in a single step and any other combination of machines may be adjusted in a series of sub-adjustments.
Other features and advantages of the present invention should be apparent from the following description of the preferred embodiment, which illustrates, by way of example, the principles of the invention.
Provide Process of Reference
First, a process of reference (POR) for manufacturing a chip is provided. In abbreviated and truncated form,
In Table 2, the photographic layer is the name of the lithographic layer in process. The machine model is the machine model (not specific identity) used. The XPOTYPE (exposure type) is the static/dynamic for stepper/scanner models. The LAID (lens aberration identifier) is the keyword typed into or selected on the machine in the recipe or at exposure time that sets the lens manipulators or adjusters to a specific state. The SID (source identifier) similar to LAID but specifies the source configuration utilized. The XID (exit pupil identifier) similar to LAID but specifies the exit pupil numerical aperture utilized. The TRID (track identifier) similar to LAID but specifies the photoresist coat/develop recipe utilized. The FIELD SIZE/LAYOUT is the description of the exposure field size and pitch on wafer; the last entry describes layout; can also contain scanner direction and scan speed.
The Fnom is the nominal machine focus in nanometers. The E is the nominal exposure dose in MJ/cm2.
Run In-Situ Metrology Test
For each lithographic layer of the process deemed as critical (low CPK) we run some or all of the in-situ metrology tests outlined and referenced in Table 3. As an example, Table 2 defines the lens manipulator settings (LAID) required for the Gate Definition Layer of process 80065. Machine model (not serial number or specific machine ID (MAID)) S2071 is qualified for that layer and the user would set or type in “abb1” on the machine console at exposure time or have it specified within the job deck for this process and layer on all machines of model S2071. To measure the lens aberrations, we would run each machine of model S2071 at LAID=“abb1” but with SID, XID, TRJD and field size/layout as described in U.S. Pat. No. 5,978,085, supra; the exposure portions of the process being detailed in
All of the patents and patent applications listed in Table 2 are incorporated by reference herein their entirety.
Adjust Machines
At this point we assess the current state of adjustment of our machines and correct them. The preferred method for assessing the current state of machine adjustment is a direct machine emulation that utilizes a database containing the history and current machine state (see, A. Smith et al., “Method of Emulation of Lithographic Projection Tools”, U.S. patent application Ser. No. 11/111,302, filed Apr. 20, 2005). Since we are concerned with corrections to slowly varying (>1 day) machine characteristics in the emulator, we turn off rapid (<1 day) machine variations and look at individual or machine-to-machine process capability. Based on these results, we then determine which machines require adjustment and by what amount. Continuing the gate layer/lens aberration example above, using the nominal focus and exposure dose, we calculate the gate linewidth as a function of focus and exposure at a collection of field points representative of the exposure field size. Including random focus errors at each field point gives us the focus process variation. From this information we can determine whether the machine requires adjustment and by what amount.
Having decided how much we need to adjust each machine, there are a number of ways to implement the adjustment, some being: 1) adjust all machines at once, 2) gradually adjust machines into compliance, and 3) a combination of 1) and 2), immediately adjust machines outside the general distribution and gradually adjust the balance.
Adjust Machines
This provides the simplest and shortest schedule for machine improvement. Minimizing yield loss to WIP fabricated on an out of adjustment machine precludes this strategy in all cases. We are thinking particularly of transverse, layer-to-layer misalignments that can be temporarily exacerbated by relatively large adjustments to critical machines. However, once the method of the present invention is adopted on the factory floor, large adjustments of critical machines should be exceptional and their (and all other) machine adjustments can be done at once. It is typically only on the introduction of this method to the factory floor that we generally cannot adjust all machines at once.
Phase In Adjustment
On introduction of this method, to minimize the transient yield loss to WIP, the adjustments should be phased in over a number of steps and time. First, each setting of each machine is scored according to its deviation from the target value, Qtar, relative to upper (USL) and lower (LSL) specification limits according to:
S=4|Qmax−Qtar|/(USL−LSL) Equation 1
where:
The first adjustment is then made to machine settings with scores, S, falling within the range
Nadj−1<S≦Nadj Equation 3
Before the next adjustment we should wait a time period
where:
Mixed adjustment is a combination of phased in and immediate adjustment. New machines or existing machines that have been offline (≧ΔT time period) will be immediately adjusted to the factory standard. Phase-in adjustment will be applied to the balance. Note, that in a well controlled factory, the phase-in adjustment will typically require only a single step (Nadj=1) and in that case, is equivalent to immediate adjustment.
Print Lithographic Layers
In a continuously run factory, product will be emerging as we follow the above steps. So, lithographic layers are defined in photoresist and developed.
1st Variation In-Situ Interferometer
In this variation, an in-situ interferometer of the type described in U.S. Pat. Nos. 5,978,085 and 5,828,455, supra and U.S. patent application Ser. No. 10/623,364, supra may be used to measure the projection lens aberrations. Exemplary steps for running the in-situ interferometer are outlined in
2nd Variation In-Situ Source Metrology
In this variation, an in-situ source metrology instrument of the type described in Reference U.S. Pat. No. 6,741,338, supra and U.S. patent application Ser. No. 10/828,579, supra may be used to measure the effective source radiant intensity, or effective source.
3rd Variation, In-Situ Exit Pupil Mapping
In this variation, an in-situ exit pupil transmission mapper of the type described in U.S. patent application Ser. No. 11/105,799, supra may be used to measure the transmission as a function of transverse ray direction cosine T(nx,ny). From this, quantities such as the overall numerical aperture, NA as a function of field position can be assessed.
4th Variation, In-Situ Transverse Scanning Synchronization Error
In this variation, a special reticle as described in U.S. patent application Ser. No. 10/252,021, supra and wafer with predisposed alignment marks may be used to determine the scanning synchronization error in X, Y and Yaw.
5th Variation of Main Embodiment, In-Situ Dynamic Lens Distortion (Dynamic a2, a3)
In this variation, the substantially similar reticle and wafer of the fourth variation are used to determine the contribution of lens distortion in a dynamically scanned field to overall overlay error. An exemplary technique for determining lens distortion is described in U.S. patent application Ser. No. 10/252,020.
6th Variation, In-Situ Measurement of Static Lens Distortion (Static a2, a3)
In this variation, a substantially similar reticle and wafer of the fourth variation may be used to determine the static lens distortion or tilt Zernike coefficients a2 and a3. An exemplary technique for determining this is described in Reference U.S. Pat. No. 6,573,986 B2.
7th Variation, In-Situ Measurement of Static Lens Field Curvature
In this variation, a focusing fiducial reticle may be used to determine the static lens field curvature. U.S. patent application Ser. No. 10/844,939, supra describes an exemplary technique for performing this. The result is the static lens field curvature or focus Zernike (a4) as a function of field position. By using the method of U.S. patent application Ser. No. 10/844,939, supra, the final result is independent of wafer height variations.
8th Variation, In-Situ Measurement of Dynamic Lens Field Curvature
In this variation, a focusing fiducial reticle is provided and may be used to determine dynamic lens field curvature. U.S. patent application Ser. No. 10/833,557, supra illustrates an exemplary technique for determining lens field curvature. The result is the dynamic lens field curvature focus Zernike (a4) as a function of cross scan (X) direction field position. Using this technique, results independent of wafer height are obtained.
9th Variation, In-Situ Measurement of Dynamic Z and Roll Synchronization Error
In this variation, a focusing fiducial reticle is provided and dynamic Z and roll synchronization error is determined. U.S. patent application Ser. No. 10/833,781, supra illustrates an exemplary technique for making these measurements. The result is the dynamic height (Z) and roll error as a function of the scan position (Y).
10th Variation, In-Situ Measurement of Wafer Stage Grid and Yaw Errors
In this variation, a reticle is provided and exposed on a wafer to determine wafer stage grid and yaw errors illustrates an exemplary technique for making these measurements. U.S. Pat. No. 6,734,971, supra. The result is the wafer stage grid and Yaw stepping error.
Manufacturing of Integrated Circuits
The controller C can be configured to receive measurements of degradation in lithography processing of the projection imaging tool. The controller can then adjust the operation of the projection imaging tool in response to the received measurements. For example, the controller can adjust the operation of the reticle stage RS, the illumination source S, the wafer stage WS, or other operations of the projection imaging tool. The adjusted imaging tool may then be used to expose a substrate, for example, a substrate that is positioned by the wafer stage WS at the output of the imaging objective IMO for a semiconductor integrated circuit manufacturing process.
The present invention has been described above in terms of a presently preferred embodiment so that an understanding of the present invention can be conveyed. There are, however, many configurations for semiconductor manufacturing not specifically described herein but with which the present invention is applicable. The present invention should therefore not be seen as limited to the particular embodiments described herein, but rather, it should be understood that the present invention has wide applicability with respect to semiconductor manufacturing generally. All modifications, variations, or equivalent arrangements and implementations that are within the scope of the attached claims should therefore be considered within the scope of the invention.
This application claims the benefit of priority of U.S. Provisional Patent Application Ser. No. 60/578,909, entitled “Process for Manufacture of Semiconductor Chips Utilizing a Posteriori Corrections to Machine Control System and Settings”, filed Jun. 11, 2004. Priority of the filing date of Jun. 11, 2004 is hereby claimed, and the disclosure of U.S. Provisional Patent Application Ser. No. 60/578,909 is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60578909 | Jun 2004 | US |