Process for smoothening III-N substrates

Information

  • Patent Application
  • 20080023800
  • Publication Number
    20080023800
  • Date Filed
    July 26, 2007
    17 years ago
  • Date Published
    January 31, 2008
    17 years ago
Abstract
A process for preparing smoothened III-N, in particular smoothened III-N substrate or III-N template, wherein III denotes at least one element of group III of the Periodic System, selected from Al, Ga and In, utilizes a smoothening agent comprising cubic boron nitride abrasive particles. The process provides large-sized III-N substrates or III-N templates having diameters of at least 40 mm, at a homogeneity of very low surface roughness over the whole substrate or wafer surface. In a mapping of the wafer surface with a white light interferometer, the standard deviation of the rms-values is 5% or lower, with a very good crystal quality at the surface or in surface-near regions, measurable, e.g., by means of rocking curve mappings and/or micro-Raman mappings.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will subsequently be described in more detail by means of preferred embodiments and examples, which however are for illustration only and shall not be understood in a limiting manner, by referring to the annexed drawings, wherein



FIG. 1 shows a comparison of the surface roughness (rms) value of a GaN-wafer after mechanically polishing with cBN-containing slurry (invention) and with diamond-containing slurry (comparison), and



FIG. 2 shows a principle for a surface investigation which is suitable for the measurement of rms-values by means of white light interferometry.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The polishing process can be carried out on a commercially ordinary polishing machine, wherein, in a possible embodiment, the support plate and the wafer(s) fixed thereon are rotated and the wafer(s) additionally perform an oscillatory movement in the radial direction during polishing. The polishing plates, having polishing cloth fixed thereon, and the wafer(s) are compressed during polishing, wherein the slurry is dropped onto the polishing cloth.


The slurry is a dispersion of an aqueous basis having cBN as abrasive particles. In order to obtain optimal smooth surfaces optimally, multiple polishing steps are carried out, wherein the mean grain size of cBN decreases from one to the next polishing step. A possible gradation, for example, are mean grain sizes of 6 μm, 3 μm and 1 μm in three subsequent polishing steps.


The polishing cloth may be optionally conditionized during or, alternatively, before and inbetween the polishing runs (for example with “DiaGrid” Pad conditioner of Rohm and Haas, Feldkirchen, Germany).


The (Al,Ga,In)N-wafers or -templates to be polished may have been produced by various known vapour phase or solution growth methods. Directly after the growth step, further mechanical treatment steps (one or more), selected from the steps indicated in the following, may precede the polishing process:


round grinding,


grinding of flats and/or notches,


wire sawing,


etch rounding,


lapping,


wherein the last-mentioned lapping step may consist of multiple consecutive partial steps with decreasing mean grain sizes of the lapping agent. For example, silicon carbide, diamond or cubic boron nitride may be used as a lapping agent.


For mapping the wafer surface with a white light interferometer, wherein the standard deviation of the rms-value may serve as a measure for the homogeneity of a surface roughness, the wafer surface may, for example, be divided in a raster having respective maximal 5 mm distances orthogonal to each other. Taking account of an edge margin of 5 mm, a surface scan can now be carried out in each raster, wherein the scanning region should be at least 1% of the raster size. The rms-values may be measured in a standardized manner with a commercially available white light interferometer by using white light.


The crystal quality of the treated surface can be technically measured, for example by means of X-ray diffraction, e.g. as a spacial distribution of absolute values and/or of full-widths at half maximum (half-widths) of X-ray diffraction curves, corresponding to the diffraction at specific lattice planes. The homogeneity of the crystal quality in the growth plane or face may be ascertained for example by means of so-called rocking curve mappings (recording of Ω-scans at different locations of a sample surface), which have been recorded in a plane parallel to the growth plane or face. In the case of a growth in the [0001] direction, for example the reflection of the (0002) lattice planes can be used for the Ω-scans. The homogeneity of the crystal quality in the growth direction may be determined by means of the standard deviation of the mean values of the full-widths at half maximum (half-widths) of the (0002) Ω-scans of individualized substrates, which have been obtained from the corresponding bulk crystal.


A second method for the determination of the homogeneity of the crystal quality are Raman-mappings. Thus, for example the standard deviations of frequency and full-widths at half maximum (half-widths) of a E2-phonon in a scan of a plane parallel to the growth plane is a measure for the homogeneity of the crystal quality parallel to the growth plane.


The micro-Raman measurements may be carried out with a laser excitation wavelength of 532 nm (frequency doubled Nd:YAG laser), an excitation power of 3 mW (e.g. with a Labram800HR-spectrometer of Jobin Yvon), wherein the laser can be focussed onto the sample by means of microscopic optics to a beam diameter of ˜1 μm. When scanning on the surface, the increment in x- and y-direction, for example, is ˜2.5 mm. A suitable margin is chosen, for example, 2 mm from the wafer edge. When scanning on the wafer slit face lying perpendicular to the surface, the increment in z-direction is ˜10 μm. Frequency and fullwidth at half maximum (half-width) of the E2-phonon is determined by Lorentz line form analysis.


EXAMPLE

As a polishing machine, a PT 350 Premium of the company I-B-S Fertigungs-und Vertriebs-GmbH was used. GaN-wafer having (0001)-orientation had been adhered by means of Thermowax with the N-polar backside on a heated support plate, wherein the latter was cooled again to room temperature until the process started. The polishing cloth, which was a medium hard cloth based on polyurethane (Rohm and Haas SUBA IV) was adhered onto the polishing plate. The cBN-slurry (CBN Slurry W69S1 6 μm/3 μm HVY, dealer Dieter Manfred Böduel, Wittenberg, Germany) was dropped at a flow rate of ˜5 ml/min. The use of the cBN-slurry was accomplished in two mutually independent polishing steps, using 6 μm and 3 μm sized cBN particles, respectively (mean particle sizes, respectively). Polishing plate and sample were rotated with ˜30 min−1 and ˜20 min−1, respectively. In addition, the sample, fixed out-of-center, oscillated in radial direction. The compression during polishing was ˜1.700 g/cm2.


The Ga-polar surfaces of the thus polished wafers were compared with the Ga-polar surfaces of wafers, which were polished by the same conditions except for using diamond slurry (mean grain sizes of 6 μm and 3 μm), by means of a commercial white light interferometer (Zygo New View). The performance of the measurement is described in more detail below.



FIG. 1 shows a comparison of a mean surface roughness (rms-value) after the mechanical polishing with cBN slurry and diamond slurry.


As can be gathered from FIG. 1, significantly lower surface roughnesses, and, above all, a lower standard deviation of the absolute rms-values with respect to the mean value are obtained in each polishing step with the cBN slurry in comparison with the diamond slurry. Here, the rms-values were measured on an area of 350×260 μm2.


Analysis of the GaN-surfaces, specifically for measuring the roughness, including standard measurement of rms-values by means of a commercial white light interferometer (Zygo New View):


A principle of a white light interferometer is shown in FIG. 2 (source: zygoLOT). The measurement principle is based on a combination of a microscope with an interferometer. Here, light of a white light source is divided in two beams, wherein one partial beam is reflected at a reference mirror, whereas the other is reflected at the sample. Subsequently, both partial beams are super-imposed. Owing to the topography of the sample surface, different optical path lengths of both beams and thus an interference pattern are generated, whose analysis is performed by means of frequency domain analysis (FDA). The use of white light enables analysis of interferences of multiple light wavelengths. The relative position between the reference mirror and the sample surface may be displaced by means of a piezo actuator.


From the correlation of the exactly determined path variation between mirror and sample by means of the analysis of the interference signal, vertical accuracies up to 0.1 nm are obtained. A sample reflectivity of 0.4% is sufficient for the measurement, so that even weak reflecting surfaces can be measured. Micro-Raman measurements for the determination of the frequency and the full-width at half maximum (half-width) of the E2-phonon may be carried out by means of a commercial Labram800HR spectrometer of JobinYvon as follows:


laser excitation wavelength 532 nm (frequency-doubled Nd:YAG-laser),


excitation power 3 mW,


focussing of the laser line by means of microscopic optics to a beam diameter of ˜1 μm onto the sample.


The spectrometer is additionally calibrated by means of Ne-plasma lines. The measurements are carried out in back-scattering geometry, wherein the polarizer settings are chosen such that E2-phonons can be detected [scanning on surface: z(y x/y)-z; scanning on slit face: y(x x)-y]. When scanning on the surface, the increment in x- and y-direction is ˜2.5 mm. The margin from the wafer edge is 2 mm. When scanning on the wafer slit face lying perpendicular to the surface, the increment in z-direction is ˜10 μm. Frequency and full-width at half maximum (half-width) of E2-phonon is determined by Lorentz line form analysis.


The foregoing description of preferred embodiments of the invention has been presented for purposes of illustration and description only. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible and/or would be apparent in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and that the claims encompass all embodiments of the invention, including the disclosed embodiments and their equivalents.

Claims
  • 1. A process for preparing a smoothened surface of a III-N compound material, comprising: polishing the surface to be smoothened of a material which comprises, at said surface, a III-N compound, wherein III denotes at least one element of group III of the Periodic System, selected from Al, Ga and In, with a slurry in the form of an aqueous suspension comprising cubic boron nitride abrasive particles;wherein the polishing includes multiple consecutive polishing steps wherein said abrasive particles have a decreasing consecutive mean grain size in at least one subsequent step.
  • 2. The process according to claim 1, wherein the slurry contains at least one substance, selected from the group consisting of ammonia, potassium hydroxide, sodium hydroxide, hydrogen peroxide and an organic base.
  • 3. The process according to claim 1, wherein said material is selected from the group consisting of a free-standing III-N substrate and a III-N template, wherein the III-N template comprises a foreign substrate, an upper III-layer and optionally at least one intermediate layer formed of III-N or another material.
  • 4. The process according to claim 3, further comprising subjecting the surface to be smoothened to a lapping process with a slurry comprising cubic boron nitride abrasive particles.
  • 5. The process according to claim 3, wherein said material of the foreign substrate is selected from the group consisting of sapphire, silicon carbide, gallium nitride, aluminum nitride, gallium arsenide, zinc oxide, silicon, lithium aluminate, and lithium gallate.
  • 6. The process according to claim 3, wherein said free-standing III-N substrate or said III-N template, respectively, has a surface to be smoothened being defined by an exactly oriented c-, a-, m- or r-plane, or by a plane having a misorientation of 0.1-30° owards a c-, a-, m- or r-plane.
  • 7. The process according to claim 3, wherein said free-standing III-N substrate or said III-N template, respectively, has a surface to be smoothened being defined by an exactly oriented III-polar c-plane, or a plane having a misorientation of 0.1-1° towards a III-polar c-plane.
  • 8. The process according to claim 1, wherein, in three consecutive polishing steps, the abrasive particles have mean grain sizes in ranges of 4 to 7 μm, 2 to 4 μm and 0.5 to 2 μm, respectively.
  • 9. The process according to claim 8, wherein, in said three consecutive polishing steps, the mean grain sizes are about 6 μm, about 3 μm and about 1 μm, respectively.
  • 10. The process according to claim 1, further comprising a lapping process carried out before said polishing.
  • 11. The process according to claim 10, wherein cubic boron nitride is used as a lapping agent.
  • 12. The process according to claim 1, wherein the cubic boron nitride-containing slurry is applied towards a III-polar surface [0001] of the III-N material.
  • 13. A free-standing III-N substrate, wherein III denotes at least one element of group III of the Periodic System, selected from Al, Ga and In, having a diameter of greater than 40 mm, and produced by a process according to claim 3.
  • 14. A III-N template, wherein III denotes at least one element of group III of the Periodic system, selected from Al, Ga and In, wherein said template comprises a foreign substrate, an upper III-N layer and optionally at least one intermediate layer formed of III-N or another material, having a diameter of greater than 40 mm, and produced by a process according to claim 3.
  • 15. A free-standing III-N substrate, wherein III denotes at least one element of group III of the Periodic System, selected from Al, Ga and In, having a diameter of greater than 40 mm, wherein, in a mapping on a surface by means of white light interferometry, a standard deviation of rms-values is 5% or lower.
  • 16. A free-standing III-N substrate according to claim 15, wherein, in a rocking curve mapping on the surface parallel to a growth plane, a standard deviation of the measured full-width at half maximum is 5% or lower.
  • 17. A free-standing III-N substrate according to claim 15, wherein, in a micro-Raman mapping on the surface parallel to a growth plane, a standard deviation of the measured full-width at half maximum of E2-phonon is 5% or lower.
  • 18. A III-N template, wherein III denotes at least one element of group III of the Periodic System, selected from Al, Ga and In, wherein said template comprises a foreign substrate, an upper III-N layer and optionally at-least one intermediate layer formed of Ill-N or another material, and has a diameter of greater than 40 mm, wherein, in a mapping on a surface by means of white light interferometry, a standard deviation of the rms-values is 5% or lower.
  • 19. A III-N template according to claim 18, wherein, in a rocking curve mapping on the surface parallel to a growth plane, a standard deviation of the measured full-width at half maximum is 5% or lower.
  • 20. A III-N template according to claim 18, wherein, in a micro-Raman mapping on the surface parallel to a growth plane, a standard deviation of the measured full-width at half maximum of E2-phonon is 5% or lower.
  • 21. A device comprising an optic, electronic or opto-electronic component formed on a III-N substrate, wherein the substrate comprises a substrate according to claim 15.
  • 22. A device comprising an optic, electronic or opto-electronic component formed on III-N template, wherein the template comprises a template according to claim 18.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application claims priority from Provisional Application U.S. Application 60/833,280, filed Jul. 26, 2006, the entire contents of which, including the specification, drawings, claims and abstract, are incorporated herein by reference. This application is also a continuation of International Patent Application PCT/EP2006/007413, filed Jul. 26, 2006, the entire contents of which, including the specification, drawings, claims and abstract, are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60833280 Jul 2006 US
Continuations (1)
Number Date Country
Parent PCT/EP06/00741 Jul 2006 US
Child 11878713 US