The invention generally relates to memory devices having controllably conductive layer(s) and methods of programming and using the memory devices. In particular, the invention relates to systems and methods for improving and controlling data retention of memory cells.
The complexity, volume and use of computer and electronic devices has greatly increased the demand for memory cells and memory cell data retention. Digital cameras, digital audio players, personal digital assistants, and the like generally require large capacity memory cells (e.g., flash memory, smart media, compact flash, and the like). Memory cells are typically employed in various types of storage devices. These storage devices include long-term storage mediums including, for example, hard disk drives, compact disk drives and corresponding media, digital video disk (DVD) drives, and the like. The long-term storage mediums typically store large amounts of information at a low cost, but are slower than other types of storage devices. Storage devices also include memory devices which are often, but not always, short term storage mediums.
Memory devices can be subdivided into volatile and non-volatile types. Volatile memory cells generally lose their information in the event of power loss and typically require periodic refresh cycles to maintain their information. Volatile memory cells include, for example, random access memory (RAM), DRAM, SRAM and the like. Non-volatile memory cells maintain their information with or without maintaining power to the device. Examples of non-volatile memory cells include, for example, read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM), flash EEPROM and the like. Compared to non-volatile memory cells, volatile memory cells generally provide faster operation at a lower cost. To retain the information, the stored data typically must be refreshed; that is, each capacitor must be periodically charged or discharged to maintain the capacitor's charged or discharged state. The maximum time allowable between refresh operations depends on the charge storage capabilities of the capacitors that form the memory cells in the array. A specified refresh time is generally provided by the memory device manufacturer to guarantee data retention in the memory cells.
Each memory cell in a memory device can be accessed or “read”, “written”, and “erased” with information. The memory cells maintain information in an “off” or an “on” state (e.g. are limited to 2 states), also referred to as “0” and “1”. Typically, a memory device is addressed to retrieve a specified number of byte(s) (e.g., 8 memory cells per byte). Such memory devices may be fabricated from semiconductor devices that perform these various functions and are capable of switching and maintaining the two states. The devices are often fabricated with inorganic solid state technology, such as, crystalline silicon devices. A common semiconductor device employed in memory devices is the metal oxide semiconductor field effect transistor (MOSFET).
Due to the escalating demand for information storage, memory device developers and manufacturers are constantly attempting to increase the data retention capability of memory devices. Concurrently, to achieve high storage densities, manufacturers typically focus on scaling down semiconductor device dimensions (e.g., at sub-micron levels). However, formation of various transistor type control devices typically required for programming memory cell arrays increases costs and reduces efficiency of circuit design.
Therefore, a need exists to overcome the aforementioned deficiencies associated with conventional devices.
The following is a summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
The invention relates to data retention and control of a memory device(s) containing at least one memory cell made of two electrodes with a controllably conductive media between the two electrodes, the controllably conductive media containing a low conductive layer and passive layer.
According to an aspect of the invention, a system for controlling data retention in a memory device is provided. The memory device has a memory storage medium containing a controllably conductive media between a first electrode and a second electrode. The system has a first component that provides a programming signal to the memory device and a second component that provides information to the first component based, at least in part, upon information associated with a measured current through the memory device. The second component controls an output, a programming signal, a pulse magnitude and/or a pulse width of the first component. The second component also provides information indicating the measured current surpassed a current level or range.
Yet another aspect of the invention is a method of controlling data retention of a memory device involving providing a memory cell having a memory storage medium with a controllably conductive media between a first electrode and a second electrode, applying a programming signal to the memory device and measuring the current through the memory cell. The method further involves monitoring the measured current to determine when the measured current reaches or exceeds a threshold current level. The method may further involve adjusting the programming signal based upon the monitored current level.
Still another aspect of the invention is a system for controlling data in a memory cell comprising a means for providing an input signal, a means for monitoring the programming state and a means for controlling the input signal based upon the programming state.
To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects and implementations of the invention. These are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
The invention is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It may be evident, however, that the invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the invention.
This invention involves improving data retention of a memory cell by controlling the program and erase wave shapes of memory cells containing at least two electrodes, as one or more electrode may be deposited between the two electrodes that sandwich a controllably conductive media. The electrodes are made of conductive material, such as conductive metal, conductive metal alloys, conductive metal oxides, conductive polymer films, semiconductor materials, and the like. Typically, the thickness of each electrode is independently about 0.01 μm or more and about 10 μm or less.
The controllably conductive media, disposed between the two electrodes, can be rendered conductive, semiconductive, or nonconductive in a controllable manner using an external stimuli. Generally, in the absence of an external stimuli, the controllably conductive media is nonconductive or has a high impedance. Further, in some embodiments, multiple degrees of conductivity/resistivity may be established for the controllably conductive media in a controllable manner. For example, the multiple degrees of conductivity/resistivity for the controllably conductive media may include a nonconductive state, a highly conductive state, and a semiconductive state. The controllably conductive media can be rendered conductive, non-conductive or any state therebetween (degree of conductivity) in a controllable manner by an external stimulus (external meaning originating from outside the controllably conductive media). For example, under an external electric field, radiation, and the like, a given nonconductive controllably conductive media is converted to a conductive controllably conductive media.
The controllably conductive media contains one or more low conductive layers and one or more passive layers. The low conductive layer can be formed from various materials including organic semiconductor materials, inorganic semiconductor materials and mixtures of organic and inorganic semiconductor materials. Typically, the low conductive layer has a thickness of about 0.001 μm or more and about 5 μm or less.
The organic semiconductor layer contains at least one of an organic polymer (such as a conjugated organic polymer), an organometallic compound (such as a conjugated organometallic compound), an organometallic polymer (such as a conjugated organometallic polymer), a buckyball, a carbon nanotube (such as a C6-C60 carbon nanotubes), and the like. The organic polymers (or the organic monomers constituting the organic polymers) may be cyclic or acyclic. During formation or deposition, the organic polymer self assembles between the electrodes. Examples of conjugated organic polymers include one or more of polyacetylene; polyphenylacetylene; polydiphenylacetylene; polyaniline; poly(p-phenylene vinylene); polythiophene; polyporphyrins; porphyrinic macrocycles, thiol derivatized polyporphyrins; polymetallocenes such as polyferrocenes, polyphthalocyanines; polyvinylenes; polystiroles; poly(t-butyl)diphenylacetylene; poly(trifluoromethyl)diphenylacetylene; polybis(trifluoromethyl)acetylene; polybis(t-butyldiphenyl)acetylene; poly(trimethylsilyl) diphenylacetylene; poly(carbazole)diphenylacetylene; polydiacetylene; polypyridineacetylene; polymethoxyphenylacetylene; polymethylphenylacetylene; poly(t-butyl)phenylacetylene; polynitro-phenylacetylene; poly(trifluoromethyl) phenylacetylene; poly(trimethylsilyl)pheylacetylene; polydipyrrylmethane; polyindoqiunone; polydihydroxyindole; polytrihydroxyindole; furane-polydihydroxyindole; polyindoqiunone-2-carboxyl; polyindoqiunone; polybenzobisthiazole; poly(p-phenylene sulfide); polypyrrole; polystyrene; polyfuran; polyindole; polyazulene; polyphenylene; polypyridine; polybipyridine; polysexithiofene; poly(siliconoxohemiporphyrazine); poly(germaniumoxohemiporphyrazine); poly(ethylenedioxythiophene); polypyridine metal complexes; and the like.
Inorganic materials include transition metal sulfides, chalcogenides, and transition metal oxides. Examples include copper oxide (CuO, Cu2O), iron oxide (FeO, Fe3O4), manganese oxide (MnO2, Mn2O3, etc), titanium oxide (TiO2).
The active low conductive layer can be a mixture of organic and inorganic materials. The inorganic material (transition metal oxide/sulfide) is usually embedded in an organic semiconductor material. Examples include polyphenylacetylene mixed with Cu2S, polyphenylacetylene mixed with Cu2O, and the like.
The passive layer contains at least one conductivity facilitating compound that contributes to the controllably conductive properties of the controllably conductive media. The conductivity facilitating compound has the ability to donate and accept charges (holes and/or electrons). The passive layer thus may transport between an electrode and the low conductive layer/passive layer interface, facilitate charge/carrier injection into the low conductive layer, and/or increase the concentration of a charge carrier in the low conductive layer. Examples of conductivity facilitating compounds that may make up the passive layer include one or more of copper sulfide (CuxS, where x is from about 0.5 to about 3), silver sulfide (Ag2S, AgS), gold sulfide (Au2S, AuS), and the like. Typically, the passive layer containing the conductivity facilitating compound has a thickness of about 2 Å or more and about 0.1 μm or less.
The impedance of the controllably conductive media changes when an external stimuli, such as an applied electric field is imposed. A plurality of the memory cells, which may be referred to as an array, form, with other components, a memory device. The programming and erase of the memory cell is very sensitive to the applied pulse shape. Using equipment to generate different pulse types and by monitoring the current, a lower pulse may be sent to the memory device during or after cell switching. In this way, the pulse is used to control the data retention of the memory device without disturbing the final programming state.
While, for purposes of simplicity of explanation, the one or more methodologies shown herein, e.g., in the form of a flow chart, are shown and described as a series of acts, it is to be understood and appreciated that the invention is not limited by the order of acts, as some acts may, in accordance with the invention, occur in a different order and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a methodology may alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all illustrated acts may be required to implement a methodology in accordance with the invention.
The external stimuli may be applied via any system known in the art. For example, the system may be a tester that includes an arbitrary waveform generator (AWG) and a data acquisition system. The AWG may include a waveform generator capable of outputting a waveform based upon initial configuration parameters and which is capable of changing those parameters dynamically as the process continues. However, it is contemplated that any system capable of applying an external stimuli, in the form of a waveform, and controlling the waveform output based on the state of a memory cell may be utilized with this invention.
As the external stimuli is applied to the memory cell, the voltage across and current through the memory cell increases, indicating the cell is switching. This increase in current and voltage is due to the impedance of the controllably conductive media changing when the external stimuli is imposed. Under various conditions, the memory cell is either conductive (low impedance or “on” state) or non-conductive (high impedance or “off” state).
The memory cell may further have more than one conductive or low impedance state, such as a very high conductive state (very low impedance state), a highly conductive state (low impedance state), a conductive state (medium level impedance state), and a non-conductive state (high impedance state) thereby enabling the storage of multiple bits of information in a single memory cell, such as 2 or more bits of information or 4 or more bits of information.
The increase in voltage and current indicates the cell has switched to a programming state, for example. Switching a memory device to a particular state is referred to as programming or writing. Programming is accomplished by applying a particular voltage (e.g., 9 volts, 2 volts, 1 volt, . . . ) across a selectively conductive media via electrodes. The particular voltage, also referred to as a threshold voltage, varies according to a respective desired state and is generally substantially greater than voltages employed during normal operation of the memory device. Thus, there is typically a separate threshold voltage that corresponds to respective desired states (e.g., “off”, “on”, “write” etc.).
Switching the memory cell to the “on” state from the “off” state occurs when an external stimuli exceeds a threshold value. Switching the memory cell to the “off” state from the “on” state occurs when an external stimuli does not exceed a threshold value or does not exist. The threshold value varies depending upon a number of factors including the identity of the materials that constitute the memory cell, the low conductive layer, and the passive layer, the thickness of the various layers, and the like. Thus, the threshold voltage to achieve each state may be predetermined based on the characteristics of the memory cell.
Generally speaking, the presence of an external stimuli such as an applied electric field that exceeds a threshold value (“on” state) permits an applied voltage to write or erase information into/from the memory cell and the presence of an external stimuli such as an applied electric field that is less than a threshold value permits an applied voltage to read information from the memory cell; whereas the absence of the external stimuli that exceeds a threshold value (“off” state) prevents an applied voltage to write or erase information into/from the memory cell.
To write information into the memory cell, a voltage or pulse signal that exceeds the threshold is applied. To read information written into the memory cell, a voltage or electric field of any polarity is applied. To erase information written into the memory cell, a negative voltage or a polarity opposite the polarity of the writing signal that exceeds a threshold value is applied.
With continuing reference to
At 130, the controller and/or test system may adjust the input stimuli, for example, the controller may decrease or otherwise change the pulse magnitude and width of an external stimuli based upon information obtained regarding current levels and whether the threshold level has been reached or surpassed. When the current exceeds a threshold or current level, indicating programming, a smaller magnitude pulse with a defined pulse width may be applied via an external stimuli to the memory cell to control data retention levels. Based on the pulse magnitude and width, the cell data retention is controlled without disturbing the final programming state of the memory cell.
Referring to
The controller 220 provides information to the programming signal source 230 based, at least in part, upon information associated with a current measurement of the semiconductor memory device 210. For example, the information associated with the current across the memory device 210 can be received from a measurement device(s) 240 and 250 (e.g., an amp meter).
By determining the current of the memory device 210, the controller 220 can determine a programming state of the memory device 210. Based, at least in part, upon information associated with the current of the memory device 210, the controller 220 can provide information to the programming signal source 230. For example, based on the current of the memory device 210, the controller 220 can determine a suitable voltage and/or pulse width required to place the memory device 210 into a desired state.
The programming signal source 230 generates a waveform, which is applied to the memory cell 210. The pulse generated may be any number of types or shapes. For example, as depicted in
Referring now to
Vertical line 560 represents the period when programming begins and the cell is switching to a lower resistance state. At 560, the voltage begins to increase and the current increases thereafter. Horizontal line 515 is the current threshold value. Once the current meets or exceeds this pre-defined minimum threshold value, the memory cell switches into the program state. The controller detects this increase in current and sends a lower external pulse to the memory device causing the voltage level 580 and current level 590 to decrease. A smaller voltage reduces the current stress after programming which enhances data retention without overstressing the cell with high current. While
With reference to
The test system 600 can be applied to any equipment, device, or circuit that is chosen to be tested, even to consumer-level devices. Particularly, the system can be used to characterize polymer cell electrical behavior and be the basic tool for model generation. The tester is designed to drive the cell into “programmed” and “erased” states while monitoring the current through the cell and voltage across it. The tester may also record the data for further processing.
Referring now to
Referring now to
The software components 800 also include a data acquisition software module 806 that manages data acquisition and data communication of the DAS. Where the tester interfaces to an external computer, the data acquisition module can also communicate the data to the computer for processing and presentation. A UI software module 808 facilitates inputting, presenting, and viewing of the tester information, such as data and signals, for example. The user can input system parameters, test parameters, control the application operating mode, repetition rate, waveform parameters, cause the output of parameters, initiate waveform generation instructions to tester circuitry, manage the DAS data format and, perform verification and acknowledgements, to name just a few. A post-processing software module 810 performs processing of the data and signals received by the DAS during testing of the memory cell, such as the application of mathematical algorithms on the data. It is to be appreciated, however, that the post processing module 810 can also be used to process initial configuration data (e.g., calibration) before the test begins, or any data acquired from initial setup to final results of the test process after the testing has completed.
Referring now to
The memory cells contain at least two electrodes, as one or more electrodes may be disposed between the two electrodes that sandwich the controllably conductive media. The electrodes are made of conductive material, such as conductive metal, conductive metal alloys, conductive metal oxides, conductive polymer films, semiconductive materials, and the like.
Examples of electrodes include one or more of aluminum, chromium, copper, germanium, gold, magnesium, manganese, indium, iron, nickel, palladium, platinum, silver, titanium, zinc, and alloys thereof; indium-tin oxide (ITO); polysilicon; doped amorphous silicon; metal silicides; and the like. Alloy electrodes specifically include Hastelloy®, Kovar®, Invar, Monel®, Inconel®, brass, stainless steel, magnesium-silver alloy, and various other alloys.
The controllably conductive media, disposed between the two electrodes, can be rendered conductive, semiconductive, or nonconductive in a controllable manner using an external stimuli. Generally, in the absence of an external stimuli, the controllably conductive media is nonconductive or has a high impedance. Further, in some embodiments, multiple degrees of conductivity/resistivity may be established for the controllably conductive media in a controllable manner. For example, the multiple degrees of conductivity/resistivity for the controllably conductive media may include a nonconductive state, a highly conductive state, and a semiconductive state.
The controllably conductive media can be rendered conductive, non-conductive or any state therebetween (degree of conductivity) in a controllable manner by an external stimulus (external meaning originating from outside the controllably conductive media). For example, under an external electric field, radiation, and the like, a given nonconductive controllably conductive media is converted to a conductive controllably conductive media.
The controllably conductive media contains one or more low conductive layers and one or more passive layers. In one embodiment, the controllably conductive media contains at least one organic semiconductor layer that is adjacent a passive layer (without any intermediary layers between the organic semiconductor layer and passive layer). In another embodiment, the controllably conductive media contains at least one inorganic low conductive layer that is adjacent a passive layer (without any intermediary layers between the inorganic layer and passive layer). In yet another embodiment, the controllably conductive media contains a mixture of organic and inorganic materials as the low conductive layer that is adjacent a passive layer (without any intermediary layers between the low conductive layer and passive layer).
The memory devices described herein can be employed to form logic devices such as central processing units (CPUs); volatile memory devices such as DRAM devices, SRAM devices, and the like; input/output devices (I/O chips); and non-volatile memory devices such as EEPROMs, EPROMs, PROMs, and the like. The memory devices may be fabricated in planar orientation (two dimensional) or three dimensional orientation containing at least two planar arrays of the memory cells.
Referring to
The memory cells/devices are useful in any device requiring memory. For example, the memory devices are useful in computers, appliances, industrial equipment, hand-held devices, telecommunications equipment, medical equipment, research and development equipment, transportation vehicles, radar/satellite devices, and the like. Hand-held devices, and particularly hand-held electronic devices, achieve improvements in portability due to the small size and light weight of the new memory devices. Examples of hand-held devices include cell phones and other two way communication devices, personal data assistants, palm pilots, pagers, notebook computers, remote controls, recorders (video and audio), radios, small televisions and web viewers, cameras, and the like.
Referring now to
Generally, program modules include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods may be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which may be operatively coupled to one or more associated devices.
The illustrated aspects of the invention may also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
A computer typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media can include computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital video disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.
Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
With reference again to
The system bus 1108 can be any of several types of bus structure that may further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 1106 includes read only memory (ROM) 1110 and random access memory (RAM) 1112. A basic input/output system (BIOS) is stored in a non-volatile memory 1110 such as ROM, EPROM, EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 1102, such as during start-up. The RAM 1112 can also include a high-speed RAM such as static RAM for caching data.
The computer 1102 further includes an internal hard disk drive (HDD) 1114 (e.g., EIDE, SATA), which internal hard disk drive 1114 may also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 1116, (e.g., to read from or write to a removable diskette 1118) and an optical disk drive 1120, (e.g., reading a CD-ROM disk 1122 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 1114, magnetic disk drive 1116 and optical disk drive 1120 can be connected to the system bus 1108 by a hard disk drive interface 1124, a magnetic disk drive interface 1126 and an optical drive interface 1128, respectively. The interface 1124 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies.
The drives and their associated computer-readable media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 1102, the drives and media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable media above refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, may also be used in the exemplary operating environment, and further, that any such media may contain computer-executable instructions for performing the methods of the invention.
A number of program modules can be stored in the drives and RAM 1112, including an operating system 1130, one or more application programs 1132, other program modules 1134 and program data 1136. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 1112.
It is appreciated that the invention can be implemented with various commercially available operating systems or combinations of operating systems.
A user can enter commands and information into the computer 1102 through one or more wired/wireless input devices, e.g., a keyboard 1138 and a pointing device, such as a mouse 1140. Other input devices (not shown) may include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and other input devices are often connected to the processing unit 1104 through an input device interface 1142 that is coupled to the system bus 1108, but may be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.
A monitor 1144 or other type of display device is also connected to the system bus 1108 via an interface, such as a video adapter 1146. In addition to the monitor 1144, a computer typically includes other peripheral output devices (not shown), such as speakers, printers etc.
The computer 1102 may operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1148. The remote computer(s) 1148 may be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and typically includes many or all of the elements described relative to the computer 1102, although, for purposes of brevity, only a memory storage device 1150 is illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 1152 and/or larger networks, e.g., a wide area network (WAN) 1154. Such LAN and WAN networking environments are commonplace in offices, and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which may connect to a global communication network, e.g., the Internet.
When used in a LAN networking environment, the computer 1102 is connected to the local network 1152 through a wired and/or wireless communication network interface or adapter 1156. The adaptor 1156 may facilitate wired or wireless communication to the LAN 1152, which may also include a wireless access point disposed thereon for communicating with the wireless adaptor 1156. When used in a WAN networking environment, the computer 1102 can include a modem 1158, or is connected to a communications server on the LAN, or has other means for establishing communications over the WAN 1154, such as by way of the Internet. The modem 1158, which may be internal or external and a wired or wireless device, is connected to the system bus 1108 via the serial port interface 1142. In a networked environment, program modules depicted relative to the computer 1102, or portions thereof, may be stored in the remote memory/storage device 1150. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
The computer 1102 is operable to communicate with any wireless devices or entities operably disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. This includes at least Wi-Fi and Bluetooth™ wireless technologies. Thus, the communication may be a predefined structure as with conventional network or simply an ad hoc communication between at least two devices.
Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch at home, a bed in a hotel room or a conference room at work, without wires. Wi-Fi is a wireless technology like a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet). Wi-Fi networks operate in the unlicensed 2.4 and 5 GHz radio bands, with an 11 Mbps (802.11b) or 54 Mbps (802.11a) data rate or with products that contain both bands (dual band), so the networks can provide real-world performance similar to the basic 10BaseT wired Ethernet networks used in many offices.
Although the invention has been shown and described with respect to a certain preferred embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, circuits, etc.), the terms (including any reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiments of the invention. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several embodiments, such feature may be combined with one or more other features of the other embodiments as may be desired and advantageous for any given or particular application.