Pulsed nucleation deposition of tungsten layers

Information

  • Patent Grant
  • 7211144
  • Patent Number
    7,211,144
  • Date Filed
    Friday, July 12, 2002
    22 years ago
  • Date Issued
    Tuesday, May 1, 2007
    17 years ago
Abstract
A method of forming a tungsten nucleation layer using a sequential deposition process. The tungsten nucleation layer is formed by reacting pulses of a tungsten-containing precursor and a reducing gas in a process chamber to deposit tungsten on the substrate. Thereafter, reaction by-products generated from the tungsten deposition are removed from the process chamber. After the reaction by-products are removed from the process chamber, a flow of the reducing gas is provided to the process chamber to react with residual tungsten-containing precursor remaining therein. Such a deposition process forms tungsten nucleation layers having good step coverage. The sequential deposition process of reacting pulses of the tungsten-containing precursor and the reducing gas, removing reaction by-products, and than providing a flow of the reducing gas to the process chamber may be repeated until a desired thickness for the tungsten nucleation layer is formed.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to a method of forming tungsten layers and, more particularly forming tungsten layers using a pulsed nucleation deposition process.


2. Description of the Related Art


Integrated circuits have evolved into complex devices that can include millions of components (e.g., transistors, capacitors and resistors) on a single chip. The evolution of chip designs continually requires faster circuitry and greater circuit density. The demands for greater circuit density necessitate a reduction in the dimensions of the integrated circuit components as well as improved layer uniformity.


In particular, metal layers, such as those used for interconnect, contact, and plug fill applications, are subject to increasingly stringent requirements related to step coverage and layer uniformity. Tungsten layers, for example, are particularly difficult to deposit with uniform step coverage. Typically, tungsten layers are formed by chemical vapor deposition (CVD), using a two step process. A bulk tungsten layer is typically deposited by reacting tungsten hexafluoride (WF6) with hydrogen (H2) on a substrate. In order to reduce the time required to initiate the reaction between the tungsten hexafluoride (WF6) and the hydrogen (H2) (i.e., reduce the “incubation time”), a nucleation layer is typically deposited prior to depositing the bulk tungsten layer. Unfortunately, the nucleation layer, typically deposited by reacting tungsten hexafluoride (WF6) with silane (SiH4), has sub-optimal step coverage. As a result, voids may form in the tungsten nucleation layer during deposition, adversely impacting the electrical performance of devices fabricated therefrom.


Therefore, a need exists in the art for a method of depositing a tungsten nucleation layer with improved step coverage.


SUMMARY OF THE INVENTION

Embodiments of the present invention generally relate to a method of forming a tungsten nucleation layer using a sequential deposition process. The tungsten nucleation layer is formed by reacting pulses of a tungsten-containing precursor and a reducing gas in a process chamber to deposit tungsten on the substrate. Thereafter, reaction by-products generated from the tungsten deposition are removed from the process chamber. After the reaction by-products are removed from the process chamber, a flow of the reducing gas is provided to the process chamber to react with residual tungsten-containing precursor remaining therein. Such a deposition process forms tungsten nucleation layers having good step coverage. The sequential deposition process of reacting pulses of the tungsten-containing precursor and the reducing gas, removing reaction by-products, and than providing a flow of the reducing gas to the process chamber may be repeated until a desired thickness for the tungsten nucleation layer is formed.


The formation of the tungsten nucleation layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the tungsten nucleation layer is formed prior to tungsten plug formation. For such an embodiment, a preferred process sequence includes depositing a tungsten nucleation layer in apertures defined in a dielectric material layer formed on a substrate. The tungsten nucleation layer is formed using a sequential deposition process in which pulses of a tungsten-containing precursor and a reducing gas are reacted, reaction by-products removed, and than a flow of reducing gas is provided to a process chamber. The sequential deposition process may be repeated until a desired thickness for the tungsten nucleation layer is deposited. Thereafter, the tungsten plug is completed when a bulk tungsten layer is deposited on the tungsten nucleation layer to fill the apertures.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.


It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a schematic cross-sectional view of a processing chamber that may be used to practice embodiments described herein;



FIG. 2 illustrates a process sequence for tungsten nucleation layer formation using deposition techniques according to embodiments described herein; and



FIGS. 3A–3B depict cross-sectional views of a substrate at different stages of an integrated circuit fabrication sequence.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Embodiments described herein relate to a method for depositing a tungsten nucleation layer on a substrate. FIG. 1 depicts a schematic cross-sectional view of a chemical vapor deposition (CVD) process chamber 100 that may be used to practice embodiments of the invention described herein. The process chamber 100 may be part of a processing system (not shown) that includes multiple processing chambers connected to a central transfer chamber (not shown) and serviced by a robot (not shown).


The process chamber 100 includes walls 106, a bottom 108, and a lid 110 that define a process volume 112. The walls 106 and bottom 108 are typically fabricated from a unitary block of aluminum. The walls 106 may have conduits (not shown) therein through which a fluid may be passed to control the temperature of the walls 106. The process chamber 100 may also include a pumping ring 114 that couples the process volume 112 to an exhaust port 116 as well as other pumping components (not shown).


A heated support assembly 138 is centrally disposed within the process chamber 100. The support assembly 138 supports a substrate 300 during a deposition process. The support assembly 138 generally is fabricated from aluminum, ceramic or a combination of aluminum and ceramic and typically includes a vacuum port (not shown) and at least one or more heating elements 132.


The vacuum port may be used to apply a vacuum between the substrate 300 and the substrate support 138, so as to secure the substrate 300 to the substrate support 138 during the deposition process. The one or more heating elements 132, may be, for example, electrodes disposed in the substrate support 138, and coupled to a power source 130, to heat the substrate support 138 and substrate 300 positioned thereon to a predetermined temperature.


Generally, the support assembly 138 is coupled to a stem 142. The stem 142 provides a conduit for electrical leads, vacuum and gas supply lines between the support assembly 138 and other components of the process chamber 100. Additionally, the stem 142 couples the support assembly 138 to a lift system 144 that moves the support assembly 138 between an elevated position (as shown in FIG. 1) and a lowered position (not shown). Bellows 146 provide a vacuum seal between the chamber volume 112 and the atmosphere outside the chamber 102 while facilitating the movement of the support assembly 138.


The support assembly 138 additionally supports a circumscribing shadow ring 148. The shadow ring 148 is annular in form and typically comprises a ceramic material such as, for example, aluminum nitride. Generally, the shadow ring 148 prevents deposition at the edge of the substrate 300 and support assembly 138.


The lid 110 is supported by the walls 106 and may be removed to service the process chamber 100. The lid 110 is generally comprised of aluminum and may additionally have heat transfer fluid channels 124 formed therein. The heat transfer fluid channels 124 are coupled to a fluid source (not shown) that flows a heat transfer fluid through the lid 110. Fluid flowing through the channels 124 regulates the temperature of the lid 110.


A mixing block 134 is disposed in the lid 110. The mixing block 134 is coupled to gas sources 104. Generally, individual gas streams from the gas sources 104 are combined in the mixing block 134. These gases are mixed into a single homogeneous gas flow in the mixing block 134 and introduced into the process volume 112 after passing through a showerhead 118 that diffuses the gas flow outwardly towards the chamber walls 106.


The showerhead 118 is generally coupled to an interior side 120 of the lid 110. A perforated blocker plate 136 may optionally be disposed in the plenum 122 between the showerhead 118 and lid 110. Gases (i.e., process and other gases) that enter the chamber 102 through the mixing block 134 are first diffused by the blocker plate 136 as the gases fill the plenum 122 behind the showerhead 118. The gases then pass through the showerhead 118 and into the chamber 102. The blocker plate 136 and the showerhead 118 are configured to provide a uniform flow of gases to the process chamber 100. Uniform gas flow is desirable to promote uniform layer formation on the substrate 300.


The CVD process chamber 100 is controlled by a microprocessor controller 154. The microprocessor controller may be one of any form of general purpose computer processor (CPU) that can be used in an industrial setting for controlling various chambers and sub-processors. The computer processor may use any suitable memory, such as random access memory, read only memory, floppy disc drive, hard disk, or any other form of digital storage local or remote. Various support circuits may be coupled to the CPU for supporting the processor in a conventional manner. Software routines as required may be stored in the memory or executed by a second CPU that is remotely located.


The software routines are executed after the substrate is positioned on the substrate support. The software routines, when executed, transform the general purpose computer into a specific process computer that controls the chamber operation so that a chamber process is performed. Alternatively, the software routines may be performed in hardware as an application specific integrated circuit or other type of hardware implementation, or a combination of software and hardware.


TUNGSTEN NUCLEATION LAYER FORMATION


FIG. 2 illustrates a process sequence 200 detailing the various steps used for the formation of a tungsten nucleation layer. These steps may be performed in a CVD process chamber similar to that described above with reference to FIG. 1. As shown in step 202, a substrate is provided to the CVD process chamber. The substrate may be, for example, a silicon substrate, which may or may not have one or more material layers disposed thereon. The one or more material layers, for example, may be an oxide layer having a sub-quarter micron aperture therein. Sub-quarter micron apertures typically have aspect ratios (e.g., the feature width divided by the feature length) greater than about 8:1.


The sub-quarter micron features may have a barrier layer formed therein. The barrier layer may be, for example, titanium nitride (TiN). The barrier layer generally serves to prevent diffusion of the tungsten into surrounding material layers and to enhance the adhesion of the tungsten layer.


In step 204, a tungsten nucleation layer is deposited on the substrate conformably in the sub-quarter micron features. The tungsten nucleation layer may be formed, for example, from a reaction of a tungsten-containing precursor such as, for example, tungsten hexafluoride (WF6) with a reducing gas such as for example, silane (SiH4), disilane (Si2H6), borane (BH3) and diborane (B2H6), among others. In one embodiment, tungsten hexafluoride (WF6) is reacted with silane (SiH4). Helium (He) and argon (Ar), or other inert gases, may also be provided along with the reactant gases either singly or in combination.


Typically, the reaction may be performed at a tungsten hexafluoride (WF6) flow rate of about 5 sccm (standard cubic centimeters per minute) to about 100 sccm and a silane (SiH4) flow rate of about 1 sccm to about 100 sccm. The tungsten-containing precursor and the reducing gas may be provided to the process chamber in a tungsten-containing precursor to reducing gas ratio of about 1:1 to about 5:1. It is believed that such ratios for the tungsten-containing precursor and the reducing provide good step coverage for the tungsten nucleation layer. A total pressure of about 0.5 torr to about 100 torr and a pedestal temperature of about 200° C. to about 600° C. may be used.


The tungsten-containing precursor and the reducing gas may be flowed or pulsed into the process chamber for a time period of about 0.1 seconds to about 10 seconds, and preferably for about 1 second to about 3 seconds. The time period of reactant gas flow should be generally long enough to provide a sufficiently high deposition rate for the tungsten nucleation layer.


Referring to step 206, after the flow or pulse of the reactant gases has ceased, the process chamber is purged/pumped to remove reaction by-products generated during nucleation layer deposition. The production of these reaction by-products at or near the surface of the tungsten nucleation layer are believed to form a rough tungsten surface and contribute to non-conformality and poor step coverage during tungsten nucleation layer deposition. Removal of the reaction by-products using a purge/pump step may provide nucleation layers with improved step coverage.


The purge gas may be one or more gases selected from the group of argon (Ar), nitrogen (N2), helium (He) neon (Ne) and xenon (Xe), among others. Typically, the process chamber is purged by providing thereto a purge gas at a flow rate of about 5 sccm to about 5000 sccm, for up to about 10 seconds.


Alternatively or in addition to introducing the purge gas, the process chamber may be depressurized in order to remove the residual reactant gases as well as any reaction by-products. The depressurization of the process chamber may result in the chamber pressure being reduced to a pressure in a range of about 0.01 torr to about 40 torr within a time period of about 0.5 seconds to about 20 seconds.


Depending upon the ratio of the tungsten-containing precursor to the reducing gas in the reactant gas mixture, as well as the removal time, excess tungsten-containing precursor may remain in the process chamber after the purge/pump step 206. Referring to step 208, after the purge/pump step is performed, a flow of the reducing gas may be provided to the process chamber. The flow of the reducing gas functions to react with excess tungsten-containing precursor that may be present near the surface of the nucleation layer, particularly in regions adjacent to the high aspect ration features after the purge/pump step 208.


The reducing gas may be provided to the process chamber as a pulse or flow for a time period within a range of about 0.1 seconds to about 10 seconds. In general, the time period should be long enough for the reducing gas to react with excess tungsten-containing precursor in the process chamber. Particularly for high aspect ratio features, it is believed that such flow of reducing gas may react with any excess tungsten-containing precursor in the vicinity of the feature improving the step coverage therefore and depositing tungsten in a void-free manner within such features.


Referring to step 210, after the flow or pulse of the reducing gas has ceased, the process chamber is purged/pumped to remove reaction by-product as well as residual gases remaining therein. The purge gas may be one or more gases selected from the group of argon (Ar), nitrogen (N2), helium (He) neon (Ne) and xenon (Xe), among others. Typically, the process chamber is purged by providing thereto a purge gas at a flow rate of about 5 sccm to about 5000 sccm, for up to about 10 seconds.


Alternatively or in addition to introducing the purge gas, the process chamber may be depressurized in order to remove the residual reactant gases as well as any reaction by-products. The depressurization of the process chamber may result in the chamber pressure being reduced to a pressure in a range of about 0.01 torr to about 40 torr within a time period of about 0.5 seconds to about 20 seconds.


Referring to step 212, after purge/pump step 210, a total thickness of the tungsten nucleation layer will be formed on the substrate. Depending on specific device requirements, steps 204 through 210 may be repeated until a desired thickness for the tungsten nucleation layer is achieved. Thereafter, when the desired thickness for the tungsten nucleation layer is achieved the process is stopped as indicated by step 214.


The determination of the thickness of the tungsten nucleation layer may be performed using conventional processes such as, for example, spectroscopic measurements. Alternatively, the thickness of the nucleation layer may be estimated by performing a calculation based upon the deposition rate as determined using, for example, various process variables such as flow rates, temperature and pressure.


While steps 206 through 210 are depicted as three distinct steps in FIG. 2, steps 206 through 210 may take place simultaneously. For example, a purge gas may be provided to the process chamber simultaneously with the reducing gas to improve overall process throughput.


Additionally, process variables, such the temperature, pressure, gas flow rates, flow/pulse times, and the like, may be adjusted throughout the nucleation layer deposition process in order to optimize layer deposition rate. For example, early in the deposition process, a low ratio for the tungsten-containing precursor and reducing gas (e.g., ratio of about 1:1) may be used in step 204 in order to, for example, minimize the adverse effects of fluorine on underlying material layers. In subsequent deposition cylces, the ratio for the tungsten-containing precursor and reducing gas may be increased (e.g., ratio of 3:1).


In an exemplary tungsten nucleation layer deposition process, a silicon substrate 300 having a feature 310 formed in a dielectric layer 301 was provided, as shown in FIG. 3A. The substrate 300 had a titanium nitride (TiN) barrier layer 304 conformably deposited on the feature 310. A tungsten nucleation layer 306 was formed on the titanium nitride (TiN) barrier layer within the feature 310, as shown in FIG. 3B. The tungsten nucleation layer was formed as described above with reference to FIG. 2.


Specifically, a gas mixture comprising tungsten hexafluoride (WF6) and silane (SiH4) was provided to the process chamber for a time period of about 1.5 seconds. The respective flow rates of the tungsten hexafluoride (WF6) and silane (SiH4) were about 30 sccm and about 10 sccm, respectively. An argon (Ar) carrier gas was provided to the chamber at a flow rate of about 1500 sccm along with tungsten hexafluoride (WF6). A nitrogen (N2) carrier gas was provided to the chamber at a flow rate of about 300 sccm along with the silane (SiH4).


The gas mixture was removed from the process chamber by providing a pulse of argon (Ar) for a duration of about 2 seconds. Thereafter, a flow of silane (SiH4) gas was provided to the chamber at a flow rate of about 20 sccm for about 1 second. A pulse of argon (Ar) was then provided for about 2 seconds in order purge the process chamber. This process sequence was repeated by providing the gas mixture, the argon purge, the flow of silane (SiH4), and the argon purge until a thickness of about 250 Å for the tungsten nucleation layer was achieved. The resulting tungsten nucleation layer had a step coverage, as determined by transmission electron microscopy (TEM) of about 100%.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method for depositing a tungsten nucleation layer on a substrate within a process chamber, comprising: (a) providing a flow of a gas mixture comprising a tungsten-containing precursor and a reducing gas into a process chamber to deposit a tungsten nucleation layer on a substrate;(b) removing reaction by-products generated during step (a) from the process chamber;(c) providing a flow of the reducing gas into the process chamber to react with residual tungsten-containing precursor in the process chamber and deposit tungsten on the substrate;(d) removing reaction by-products generated during step (c) from the process chamber; and(e) repeating steps (a)–(d).
  • 2. The method of claim 1 further comprising repeating step (e) until a tungsten nucleation layer thickness of up to about 500 Å is deposited.
  • 3. The method of claim 1 wherein the tungsten-containing precursor comprises tungsten hexafluoride.
  • 4. The method of claim 1 wherein the reducing gas in steps (a) and (c) is selected from the group consisting of silane, disilane, borane, diborane, derivatives thereof and combinations thereof.
  • 5. The method of claim 1 wherein the gas mixture of step (a) is provided for a time period of about 0.1 seconds to about 10 seconds.
  • 6. The method of claim 1 wherein the tungsten-containing precursor and the reducing gas are provided in a tungsten-containing precursor:reducing gas ratio of about 1:1 to about 5:1.
  • 7. The method of claim 1 wherein the reaction by-products in steps (b) and (d) are removed from the process chamber by providing a purge gas thereto and evacuating both the purge gas and the reaction by-products therefrom.
  • 8. The method of claim 7 wherein the purge gas comprises on or more gases selected from the group consisting of nitrogen, helium, argon and combinations thereof.
  • 9. The method of claim 7 wherein the purge gas is provided to the process chamber for up to about 10 seconds.
  • 10. The method of claim 1 wherein the reducing gas of step (c) is provided to the process chamber for up to about 10 seconds.
  • 11. The method of claim 1 wherein time periods for steps (b) and (c) overlap.
  • 12. A method for depositing a tungsten nucleation layer on a substrate within a process chamber, comprising: (a) providing a flow of a gas mixture comprising a tungsten-containing precursor and a reducing gas into a process chamber for about 0.1 seconds to about 10 seconds to deposit a tungsten nucleation layer on a substrate;(b) removing reaction by-products generated during step (a) by providing a purge gas into the process chamber and evacuating both the purge gas and the reaction by-products therefrom;(c) providing a flow of the reducing gas into the process chamber for up to about 10 seconds to react with residual tungsten-containing precursor in the process chamber and deposit tungsten on the substrate;(d) removing reaction by-products generated during step (c) by providing a purge gas into the process chamber and evacuating both the purge gas and the reaction by-products therefrom; and(e) repeating steps (a)–(d) until a tungsten nucleation layer thickness of up to about 500 Å is deposited.
  • 13. The method of claim 12 wherein the tungsten-containing precursor comprises tungsten hexafluoride.
  • 14. The method of claim 12 wherein the reducing gas in steps (a) and (c) is selected from the group consisting of silane, disilane, borane, diborane, derivatives thereof and combinations thereof.
  • 15. The method of claim 12 wherein the tungsten-containing precursor and the reducing gas are provided in a tungsten-containing precursor:reducing gas ratio of about 1:1 to about 5:1.
  • 16. The method of claim 12 wherein the purge gas of steps (b) and (d) comprises one or more gases selected from the group consisting of nitrogen, helium, argon and combinations thereof.
  • 17. The method of claim 12 wherein the purge gas of steps (b) and (d) is provided to the process chamber for up to about 10 seconds.
  • 18. The method of claim 12 wherein time periods for steps (b) and (C) overlap.
  • 19. A method for depositing a tungsten nucleation layer on a substrate within a process chamber, comprising: (a) providing a flow of a gas mixture comprising tungsten hexafluoride and silane into a process chamber for about 0.1 seconds to about 10 seconds to deposit a tungsten nucleation layer on a substrate;(b) removing reaction by-products generated during step (a) by providing a purge gas into the process chamber and evacuating both the purge gas and the reaction by-products therefrom;(c) providing a flow of silane into the process chamber for up to about 10 seconds to react with residual tungsten hexafluoride in the process chamber and deposit tungsten on the substrate;(d) removing reaction by-products generated during step (c) by providing a purge gas into the process chamber and evacuating both the purge gas and the reaction by-products therefrom; and(e) repeating steps (a)–(d) until a tungsten nucleation layer thickness of up to about 500 Å is deposited.
  • 20. The method of claim 19 wherein the tungsten hexafluoride and the silane are provided in a tungsten hexafluoride:silane ratio of about 1:1 to about 5:1.
  • 21. The method of claim 19 wherein the purge gas of steps (b) and (d) comprises one or more gases selected from the group consisting of nitrogen, helium, argon and combinations thereof.
  • 22. The method of claim 19 wherein the purge gas of steps (b) and (d) is provided to the process chamber for up to about 10 seconds.
  • 23. The method of claim 19 wherein time periods for steps (b) and (c) overlap.
  • 24. A method for depositing a tungsten nucleation layer on a substrate within a process chamber, comprising: exposing a substrate to a gas mixture containing a tungsten precursor and a reducing gas for depositing a tungsten nucleation layer for about 0.1 seconds to about 10 seconds within a process chamber during a deposition step;exposing the process chamber to a first purge step that includes providing a purge gas into the process chamber and evacuating the process chamber;exposing the substrate to diborane or silane during a soak step;exposing the process chamber to a second purge step that includes providing the purge gas into the process chamber and evacuating the process chamber; andrepeating the deposition step and the first purge step until the tungsten nucleation layer is formed with a predetermined thickness.
  • 25. A method for depositing a tungsten nucleation layer on a substrate within a process chamber, comprising: exposing a substrate to a gas mixture containing a tungsten precursor and a reducing gas for about 0.1 seconds to about 10 seconds within a process chamber during a deposition step;exposing the process chamber to a purge step that includes providing a purge gas into the process chamber and evacuating the process chamber;repeating the deposition step and the purge step until a tungsten nucleation layer is formed with a predetermined thickness; anddepositing a tungsten bulk layer on the tungsten nucleation layer during a second vapor deposition process.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of application Ser. No. 10/023,125, filed Dec. 17, 2001, entitled “Pulse Nucleation Enhanced Nucleation Technique For Improved Step Coverage and Better Gap Fill For WCVD Process,” which in turn claims priority from U.S. provisional application No. 60/305,307, filed Jul. 13, 2001, entitled “Pulse Nucleation Enhanced Nucleation Technique For Improved Step Coverage and Better Gap Fill For WCVD Process.” Each of these applications is incorporated herein by reference in its entirety.

US Referenced Citations (210)
Number Name Date Kind
3785862 Grill Jan 1974 A
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4486487 Skarp Dec 1984 A
4617087 Iyer et al. Oct 1986 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859307 Nishizawa et al. Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5028565 Chang et al. Jul 1991 A
5037775 Reisman Aug 1991 A
5082798 Arimoto Jan 1992 A
5085885 Foley et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5130269 Kitahara et al. Jul 1992 A
5166092 Mochizuki et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5186718 Tepman et al. Feb 1993 A
5205077 Wittstock Apr 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 Nishizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5306666 Izumi Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5348911 Jurgensen et al. Sep 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5438952 Otsuka Aug 1995 A
5439876 Graf et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443033 Nishizawa et al. Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5527733 Nishizawa et al. Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5580380 Liu et al. Dec 1996 A
5601651 Watabe Feb 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5644128 Wollnik et al. Jul 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5834372 Lee Nov 1998 A
5835677 Li et al. Nov 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5856219 Naito et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5866213 Foster et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5904565 Nguyen et al. May 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5942040 Kim et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
5994775 Zhao et al. Nov 1999 A
6001669 Gaines et al. Dec 1999 A
6015590 Suntola et al. Jan 2000 A
6025627 Forbes et al. Feb 2000 A
6036773 Wang et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6051286 Zhao et al. Apr 2000 A
6062798 Muka May 2000 A
6071808 Merchant et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6099904 Mak et al. Aug 2000 A
6110556 Bang et al. Aug 2000 A
6113699 Hansen Sep 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140237 Chan et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6156382 Rajagopalan et al. Dec 2000 A
6158446 Mohindra et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6316098 Yitzchaik et al. Nov 2001 B1
6333260 Kwon et al. Dec 2001 B1
6355561 Sandhu et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B2
6368954 Lopatin et al. Apr 2002 B1
6369430 Adetutu et al. Apr 2002 B1
6391785 Satta et al. May 2002 B1
6420189 Lopatin Jul 2002 B1
6423619 Grant et al. Jul 2002 B1
6447933 Wang et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B2
6451695 Sneh Sep 2002 B2
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6482733 Raaijmakers et al. Nov 2002 B2
6482740 Soininen et al. Nov 2002 B2
6551929 Kori et al. Apr 2003 B1
6635965 Lee et al. Oct 2003 B1
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010029094 Mee-Young et al. Oct 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jeon et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010054769 Raaijmakers et al. Dec 2001 A1
20020004293 Soininen et al. Jan 2002 A1
20020019121 Pyo Feb 2002 A1
20020031618 Sherman Mar 2002 A1
20020037630 Agarwal et al. Mar 2002 A1
20020048880 Lee Apr 2002 A1
20020055235 Agarwal et al. May 2002 A1
20020061612 Sandhu et al. May 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020086507 Park et al. Jul 2002 A1
20020090829 Sandhu et al. Jul 2002 A1
20020105088 Yang et al. Aug 2002 A1
20020106846 Seutter et al. Aug 2002 A1
20020109168 Kim et al. Aug 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020121697 Marsh Sep 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
Foreign Referenced Citations (201)
Number Date Country
196 27 017 Jan 1997 DE
198 20 147 Jul 1999 DE
0 344 352 Dec 1989 EP
0 429 270 May 1991 EP
0 442 490 Aug 1991 EP
0 704 551 Mar 1996 EP
0 799 641 Oct 1997 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2 355 727 May 2001 GB
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-065712 Apr 1985 JP
61-035847 Feb 1986 JP
61-210623 Sep 1986 JP
6 203 3768 Feb 1987 JP
62-069508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64-009895 Jan 1989 JP
64-009896 Jan 1989 JP
64-009897 Jan 1989 JP
64-037832 Feb 1989 JP
64-082615 Mar 1989 JP
64-082617 Mar 1989 JP
64-082671 Mar 1989 JP
64-082676 Mar 1989 JP
01-103982 Apr 1989 JP
01-103996 Apr 1989 JP
64-090524 Apr 1989 JP
01-117017 May 1989 JP
01-143221 Jun 1989 JP
01-143233 Jun 1989 JP
01-154511 Jun 1989 JP
01-236657 Sep 1989 JP
01-245512 Sep 1989 JP
01-264218 Oct 1989 JP
01-270593 Oct 1989 JP
01-272108 Oct 1989 JP
01-290221 Nov 1989 JP
01-290222 Nov 1989 JP
01-296673 Nov 1989 JP
01-303770 Dec 1989 JP
01-305894 Dec 1989 JP
01-313927 Dec 1989 JP
02-012814 Jan 1990 JP
02-014513 Jan 1990 JP
02-017634 Jan 1990 JP
02-063115 Mar 1990 JP
02-074029 Mar 1990 JP
02-074587 Mar 1990 JP
02-106822 Apr 1990 JP
02-129913 May 1990 JP
02-162717 Jun 1990 JP
02-172895 Jul 1990 JP
02-196092 Aug 1990 JP
02-203517 Aug 1990 JP
02-230690 Sep 1990 JP
02-230722 Sep 1990 JP
02-246161 Oct 1990 JP
02-264491 Oct 1990 JP
02-283084 Nov 1990 JP
02-304916 Dec 1990 JP
03-019211 Jan 1991 JP
03-022569 Jan 1991 JP
03-023294 Jan 1991 JP
03-023299 Jan 1991 JP
03-044967 Feb 1991 JP
03-048421 Mar 1991 JP
03-070124 Mar 1991 JP
03-185716 Aug 1991 JP
03-208885 Sep 1991 JP
03-234025 Oct 1991 JP
03-286522 Dec 1991 JP
03-286531 Dec 1991 JP
0 406 4223 Feb 1992 JP
04-031391 Feb 1992 JP
04-031396 Feb 1992 JP
04-031396 Feb 1992 JP
04-100292 Apr 1992 JP
04-111418 Apr 1992 JP
04-132214 May 1992 JP
04-132681 May 1992 JP
04151822 May 1992 JP
04-162418 Jun 1992 JP
04-175299 Jun 1992 JP
04-186824 Jul 1992 JP
04-212411 Aug 1992 JP
04-260696 Sep 1992 JP
04-273120 Sep 1992 JP
04-285167 Oct 1992 JP
04-291916 Oct 1992 JP
04-325500 Nov 1992 JP
04-328874 Nov 1992 JP
05-029228 Feb 1993 JP
05-047665 Feb 1993 JP
05-047666 Feb 1993 JP
05-047668 Feb 1993 JP
05-074717 Mar 1993 JP
05-074724 Mar 1993 JP
05-102189 Apr 1993 JP
05-160152 Jun 1993 JP
05-175143 Jul 1993 JP
05-175145 Jul 1993 JP
05-182906 Jul 1993 JP
05-186295 Jul 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-235047 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
05-283336 Oct 1993 JP
05-291152 Nov 1993 JP
05-304334 Nov 1993 JP
05-343327 Dec 1993 JP
05-343685 Dec 1993 JP
06-045606 Feb 1994 JP
06-132236 May 1994 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-222388 Aug 1994 JP
06-224138 Aug 1994 JP
06-230421 Aug 1994 JP
06-252057 Sep 1994 JP
06-291048 Oct 1994 JP
07-070752 Mar 1995 JP
07-086269 Mar 1995 JP
08-181076 Jul 1996 JP
08-245291 Sep 1996 JP
08-264530 Oct 1996 JP
09-260786 Oct 1997 JP
09-293681 Nov 1997 JP
10-188840 Jul 1998 JP
10-190128 Jul 1998 JP
10-308283 Nov 1998 JP
1 033 5264 Dec 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-087029 Mar 2000 JP
2000-319772 Mar 2000 JP
2000-138094 May 2000 JP
2000-218445 Aug 2000 JP
2000-319772 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
2001-020075 Jan 2001 JP
2001-62244 Mar 2001 JP
2001-152339 Jun 2001 JP
2001-172767 Jun 2001 JP
2001-189312 Jul 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
2001-240972 Sep 2001 JP
2001-254181 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-303251 Oct 2001 JP
2001-328900 Nov 2001 JP
9002216 Mar 1990 WO
9110510 Jul 1991 WO
9302111 Feb 1993 WO
9617107 Jun 1996 WO
9618756 Jun 1996 WO
9806889 Feb 1998 WO
9851838 Nov 1998 WO
9901595 Jan 1999 WO
9913504 Mar 1999 WO
9929924 Jun 1999 WO
9941423 Aug 1999 WO
0011721 Mar 2000 WO
0015865 Mar 2000 WO
0015881 Mar 2000 WO
0016377 Mar 2000 WO
0054320 Sep 2000 WO
0063957 Oct 2000 WO
0079019 Dec 2000 WO
0079576 Dec 2000 WO
0115220 Mar 2001 WO
0115220 Mar 2001 WO
0127346 Apr 2001 WO
0127347 Apr 2001 WO
0129280 Apr 2001 WO
0129891 Apr 2001 WO
0129893 Apr 2001 WO
0136702 May 2001 WO
0140541 Jun 2001 WO
0166832 Sep 2001 WO
WO0246489 Jun 2002 WO
Related Publications (1)
Number Date Country
20030127043 A1 Jul 2003 US
Provisional Applications (1)
Number Date Country
60305307 Jul 2001 US
Continuation in Parts (1)
Number Date Country
Parent 10023125 Dec 2001 US
Child 10194629 US