Radio frequency IC device and electronic apparatus

Information

  • Patent Grant
  • 8400307
  • Patent Number
    8,400,307
  • Date Filed
    Friday, December 3, 2010
    13 years ago
  • Date Issued
    Tuesday, March 19, 2013
    11 years ago
Abstract
A radio frequency IC device includes a radio frequency IC chip arranged to process a transmitted/received signal, a printed circuit board on which the radio frequency IC chip is mounted, an electrode arrange on the circuit board, and a loop electrode that is arranged on the circuit board so that the loop electrode is electrically connected to the radio frequency IC chip and is coupled to the electrode by electromagnetic coupling. The electrode is coupled to the radio frequency IC chip via the loop electrode so as to transmit or receive a high-frequency signal. A power supply circuit board including a resonance circuit and/or a matching circuit may be disposed between the radio frequency IC chip and the loop electrode.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to radio frequency IC devices, and, more particularly, to a radio frequency IC device including a radio frequency IC chip used in an RFID (Radio Frequency Identification) system and an electronic apparatus including the radio frequency IC device.


2. Description of the Related Art


Recently, an RFID system has been developed as a product management system in which a reader/writer arranged to generate an induction field communicates with an IC chip (hereinafter also referred to as an IC tag or a radio frequency IC chip) attached to a product or a case in a non-contact manner so as to obtain predetermined information stored in the IC chip.


Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 11-515094 discloses an RFID tag including an IC chip mounted on the main surface of a printed circuit board and an antenna provided in the printed circuit board. In this RFID tag, the antenna and the IC chip are electrically connected to each other. The miniaturization of the RFID tag is achieved by providing the antenna in the printed circuit board.


However, the number of manufacturing processes required to produce the RFID tag is increased in order to prepare the dedicated antenna, and a space is required for the dedicated antenna. This leads to increases in the manufacturing cost and size of the RFID tag. As illustrated in FIG. 2 in Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 11-515094, the number of manufacturing processes is increased especially if an antenna having a meander shape is formed, since internal electrodes included in a plurality of layers must be processed. Furthermore, in order to achieve the impedance matching between the IC chip and the antenna, a matching section is required. If the matching section is disposed between the antenna and the IC chip, the size of the antenna is increased. Furthermore, if the IC chip is modified, the shape of the antenna must be changed.


SUMMARY OF THE INVENTION

To overcome the problems described above, preferred embodiments of the present invention provide a small radio frequency IC device capable of easily achieving impedance matching without using a dedicated antenna and an electronic apparatus including the radio frequency IC device.


A radio frequency IC device according to a first preferred embodiment of the present invention includes a radio frequency IC chip arranged to process a transmitted/received signal, a circuit board on which the radio frequency IC chip is mounted, an electrode arranged on the circuit board, and a loop electrode that is arranged on the circuit board so that the loop electrode is coupled to the radio frequency IC chip and the electrode.


A radio frequency IC device according to a second preferred embodiment of the present invention includes an electromagnetic coupling module including a radio frequency IC chip arranged to process a transmitted/received signal and a power supply circuit board that includes an inductance element coupled to the radio frequency IC chip, a circuit board on which the electromagnetic coupling module is mounted, an electrode arranged on the circuit board, and a loop electrode that is arranged on the circuit board so that the loop electrode is coupled to the power supply circuit board and the electrode.


In the radio frequency IC device according to the first preferred embodiment, a radio frequency IC chip or a power supply circuit board is preferably coupled to an electrode arranged at a circuit board, for example, a ground electrode via a loop electrode. The electrode arranged on the circuit board functions as a radiation plate (an antenna) for the radio frequency IC chip. That is, the electrode receives a signal, and the radio frequency IC chip receives the signal from the electrode via the loop electrode and is operated by the received signal. A response signal output from the radio frequency IC chip is transmitted to the electrode via the loop electrode, and is then emitted from the electrode to the outside. Accordingly, a dedicated antenna is not required, and a space is not required for the dedicated antenna. The loop electrode can perform the impedance matching between the radio frequency IC chip and the electrode. Accordingly, a matching section is not necessarily required. Therefore, the efficiency of signal transmission between the radio frequency IC chip and the electrode is improved.


In a radio frequency IC device according to the second preferred embodiment, a power supply circuit board is disposed between a radio frequency IC, for example, a radio frequency IC chip and a loop electrode. This power supply circuit board includes a resonance circuit including an inductance element and/or a matching circuit. A frequency to be used is set by the resonance circuit and/or the matching circuit. If the radio frequency IC chip is changed in accordance with a frequency used by an RFID system, only a change in design of the resonance circuit and/or the matching circuit is required. It is not necessary to change the shape, size, and/or location of a radiation plate (electrode) or the state of coupling between the loop electrode and the electrode or the power supply circuit board. The resonance circuit and/or the matching circuit can also function to achieve the impedance matching between the radio frequency IC chip and the electrode. Accordingly, the efficiency of signal transmission between the radio frequency IC chip and the electrode is improved.


In the radio frequency IC device, the loop electrode is preferably coupled to the radio frequency IC chip or the power supply circuit board may preferably include a plurality of layers included in a multilayer circuit board.


The radio frequency IC chip stores various pieces of information about a product to which the radio frequency IC device is attached, and, furthermore, may be a re-writable radio frequency IC chip. That is, the radio frequency IC chip may have an information processing function in addition to an RFID system function.


According to preferred embodiments of the present invention, an existing electrode included in a circuit board can preferably be used as an antenna. Since a dedicated antenna is not required, a radio frequency IC device and an apparatus including the radio frequency IC device can be miniaturized. A resonance circuit and/or a matching circuit included in a loop electrode and/or a power supply circuit board may have an impedance matching function. Accordingly, a matching section is not necessarily required.


Other features, elements, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the present invention with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a plan view of a radio frequency IC device according to a first preferred embodiment of the present invention.



FIG. 1B is a cross-sectional view in a lengthwise direction of the radio frequency IC device according to the first preferred embodiment of the present invention.



FIG. 2 is a perspective view of a radio frequency IC chip.



FIG. 3A is a plan view of a radio frequency IC device according to a second preferred embodiment of the present invention.



FIG. 3B is a cross-sectional view in a lengthwise direction of the radio frequency IC device according to the second preferred embodiment of the present invention.



FIG. 4A is a plan view of a radio frequency IC device according to a third preferred embodiment of the present invention.



FIG. 4B is a cross-sectional view in a lengthwise direction of the radio frequency IC device according to the third preferred embodiment of the present invention.



FIG. 4C is a cross-sectional view in a widthwise direction of the radio frequency IC device according to the third preferred embodiment of the present invention.



FIG. 5A is a plan view of a radio frequency IC device according to a fourth preferred embodiment of the present invention.



FIG. 5B is a cross-sectional view in a lengthwise direction of the radio frequency IC device according to the fourth preferred embodiment of the present invention.



FIG. 6A is a plan view of a radio frequency IC device according to a fifth preferred embodiment of the present invention.



FIG. 6B is a cross-sectional view in a lengthwise direction of the radio frequency IC device according to the fifth preferred embodiment of the present invention.



FIG. 6C is a cross-sectional view in a widthwise direction of the radio frequency IC device according to the fifth preferred embodiment of the present invention.



FIG. 7A is a plan view of a radio frequency IC device according to a sixth preferred embodiment of the present invention.



FIG. 7B is a cross-sectional view in a lengthwise direction of the radio frequency IC device according to the sixth preferred embodiment of the present invention.



FIG. 8A is a plan view of a radio frequency IC device according to a seventh preferred embodiment of the present invention.



FIG. 8B is a cross-sectional view in a lengthwise direction of the radio frequency IC device according to the seventh preferred embodiment of the present invention.



FIG. 9 is an exploded plan view of a circuit board of a radio frequency IC device according to an eighth preferred embodiment of the present invention.



FIG. 10 is an exploded plan view of a circuit board of a radio frequency IC device according to a ninth preferred embodiment of the present invention.



FIG. 11 is a plan view of a circuit board of a radio frequency IC device according to a tenth preferred embodiment of the present invention.



FIG. 12 is a plan view illustrating a main portion of a circuit board of a radio frequency IC device according to an eleventh preferred embodiment of the present invention.



FIG. 13 is an exploded plan view of a circuit board of a radio frequency IC device according to a twelfth preferred embodiment of the present invention.



FIG. 14 is an exploded plan view of a circuit board of a radio frequency IC device according to a thirteenth preferred embodiment of the present invention.



FIG. 15 is an exploded perspective view of a power supply circuit board including a first exemplary resonance circuit.



FIG. 16 is a plan view of a power supply circuit board including a second exemplary resonance circuit.



FIG. 17 is a perspective view of a mobile telephone that is an electronic apparatus according to a preferred embodiment of the present invention.



FIG. 18 is a diagram describing a printed circuit board included in the mobile telephone.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A radio frequency IC device and an electronic apparatus according to preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings, the same numerals are used for similar components and portions so as to avoid repeated explanation.


First Preferred Embodiment


FIGS. 1A and 1B are diagrams illustrating a radio frequency IC device according to the first preferred embodiment of the present invention. This radio frequency IC device includes a radio frequency IC chip 5 arranged to process a transmitted/received signal of a predetermined frequency, a printed circuit board 20 on which the radio frequency IC chip 5 is mounted, and a ground electrode 21 and a loop electrode 22 which are arranged on the printed circuit board 20. Each of the ground electrode 21 and the loop electrode 22 is formed on the main surface of the printed circuit board 20 preferably by applying coating of conductive paste thereto or by etching metal foil on the printed circuit board 20.


The radio frequency IC chip 5 includes a clock circuit, a logic circuit, and a memory circuit, and stores necessary information. As illustrated in FIG. 2, input-output terminal electrodes 6 and mounting terminal electrodes 7 are provided on the undersurface of the radio frequency IC chip 5. One of the input-output terminal electrodes 6 is electrically connected to a connection electrode 22a disposed at one end of the loop electrode 22 via a metal bump 8, and the other one of the input-output terminal electrodes 6 is electrically connected to a connection electrode 22b disposed at the other end of the loop electrode 22 via the metal bump 8. A pair of connection electrodes 22c and 22d is disposed on the printed circuit board 20. One of the mounting terminal electrodes 7 of the radio frequency IC chip 5 is connected to the connection electrode 22c via the metal bump 8, and the other one of the mounting terminal electrodes 7 is connected to the connection electrode 22d via the metal bump 8.


The loop electrode 22 is arranged near the edge of the ground electrode 21 in the horizontal direction, whereby the loop electrode 22 and the ground electrode 21 are coupled to each other by electric field coupling. That is, by arranging the loop electrode 22 near the ground electrode on the same surface, a loop magnetic field H (denoted by a dotted line in FIG. 1A) is generated from the loop electrode 22 in the vertical direction. The generated loop magnetic field H enters the ground electrode 21 substantially at right angles, so that a loop electric field E (denoted by an alternate long and short dashed line in FIG. 1A) is excited. The loop electric field E induces another loop magnetic field H. Thus, the loop electric field E and the loop magnetic field H are generated on the entire surface of the ground electrode 21, so that a high-frequency signal is emitted. As described above, by arranging the ground electrode 21 and the loop electrode 22 close to each other on the same main surface while providing the electrical isolation between them, the electromagnetic field coupling therebetween is effectively achieved. Consequently, a radiation characteristic is improved.


The electromagnetic coupling between the loop electrode 22 and the ground electrode 21 enables a high-frequency signal received by the ground electrode 21 from a reader/writer to be transmitted to the radio frequency IC chip 5 via the loop electrode 22 so as to activate the radio frequency IC chip 5, and enables a response signal output from the radio frequency IC chip 5 to be transmitted to the ground electrode 21 via the loop electrode 22 and then be emitted from the ground electrode 21 toward the reader-writer.


The ground electrode 21 may preferably be defined by an existing component included in the printed circuit board 20 of an electronic apparatus containing the radio frequency IC device. Alternatively, a ground electrode used for another electronic component included in an electronic apparatus may be used as the ground electrode 21, for example. Accordingly, in this radio frequency IC device, a dedicated antenna is not required, and a space is not required for the antenna. Furthermore, since a large ground electrode 21 is used, a radiation characteristic is improved.


By controlling the length and width of the loop electrode 22 and the space between the loop electrode 22 and the ground electrode 21, the impedance matching between the radio frequency IC chip 5 and the ground electrode 21 can be achieved.


Second Preferred Embodiment


FIGS. 3A and 3B are diagrams illustrating a radio frequency IC device according to the second preferred embodiment of the present invention. This radio frequency IC device is substantially the same as a radio frequency IC device according to the first preferred embodiment. The ground electrode 21 and the loop electrode 22 are disposed on the bottom surface of the printed circuit board 20. Connection electrodes 24a to 24d are provided on the surface of the printed circuit board 20. The connection electrodes 24a and 24b are electrically connected through a via-hole conductor 23 to one end of the loop electrode 22 and the other end of the loop electrode 22, respectively. The connection electrodes 24a to 24d correspond to the connection electrodes 22a to 22d illustrated in FIGS. 1A and 1B. One of the input-output terminal electrodes 6 (see FIG. 2) is preferably electrically connected to the connection electrode 24a via the metal bump 8, for example, and the other one of the input-output terminal electrodes 6 is preferably electrically connected to the connection electrode 24b via the metal bump 8, for example. One of the mounting terminal electrodes 7 (see, FIG. 2) is preferably connected to the connection electrode 24c via the metal bump 8, for example, and the other one of the mounting terminal electrodes 7 is preferably connected to the connection electrode 24d via the metal bump 8, for example.


The ground electrode 21 and the loop electrode 22 are coupled in substantially the same manner as that described in the first preferred embodiment. The operational advantages of a radio frequency IC device according to the second preferred embodiment are substantially the same as those of a radio frequency IC device according to the first preferred embodiment. In this preferred embodiment, a large space for another electronic component can be obtained on the upper surface of the circuit board 20.


Third Preferred Embodiment


FIGS. 4A to 4C are diagrams illustrating a radio frequency IC device according to the third preferred embodiment of the present invention. In this radio frequency IC device, a loop electrode 25 includes connection electrodes 25a and 25b disposed on the surface of the printed circuit board 20, via-hole conductors 28, and an internal electrode 29. The loop electrode 25 is coupled to the ground electrode 21 disposed on the bottom surface of the printed circuit board 20 by electric field coupling. The connection electrodes 25a and 25b are preferably electrically connected via the metal bump 8 to the terminal electrodes 6 (see, FIG. 2). Connection electrodes 25c and 25d are electrically connected via the metal bump 8 to the terminal electrodes 7 (see, FIG. 2).


The loop electrode 25 is arranged near the ground electrode 21 in the vertical direction, and is coupled to the ground electrode 21 by electric field coupling. That is, a magnetic flux is generated from the loop electrode 25 near the surface on which the ground electrode 21 is arranged, and an electric field that intersects the magnetic field substantially at right angles is generated from the ground electrode 21. As a result, an electric field loop is excited on the ground electrode 21. The excited electric field loop generates a magnetic field loop. Thus, the electric field loop and the magnetic field loop are generated on substantially the entire surface of the ground electrode 21, such that a high-frequency signal is emitted. That is, by arranging the loop electrode 25 near the ground electrode 21 in the vertical direction while providing the electric isolation between the loop electrode 25 and the ground electrode 21, the flexibility in the placement of the loop electrode 25 can be increased.


The operation and operational advantages of a radio frequency IC device according to the third preferred embodiment are substantially the same as those of a radio frequency IC device according to the first preferred embodiment. In this preferred embodiment, since the loop electrode 25 is disposed in the printed circuit board 20, interference caused by the penetration of a magnetic field from the outside can be prevented. The ground electrode 21 may be formed in the printed circuit board 20. In this case, since a large space can be obtained on the main surface and the bottom surface of the printed circuit board 20, another line or another electronic component may be disposed thereon so as to increase the packing density.


Fourth Preferred Embodiment


FIGS. 5A and 5B are diagrams illustrating a radio frequency IC device according to the fourth preferred embodiment of the present invention. This radio frequency IC device includes a loop electrode 31 obtained by providing a cutout 21a at one side of the ground electrode 21 disposed on the surface of the printed circuit board 20. Connection electrodes 31a and 31b are electrically connected via the metal bump 8 to one of the input-output terminal electrodes 6 (see, FIG. 2) and the other one of the input-output terminal electrodes 6, respectively. Connection electrodes 31c and 31d provided on the surface of the printed circuit board 20 are electrically connected via the metal bump 8 to the mounting terminal electrodes 7 (see, FIG. 2) of the radio frequency IC chip 5.


In the fourth preferred embodiment, the loop electrode 31 is electrically coupled to the ground electrode 21. The radio frequency IC chip 5 is coupled to the ground electrode 21 via the loop electrode 31 arranged therebetween. The operation and operational advantages of a radio frequency IC device according to the fourth preferred embodiment are substantially the same as those of a radio frequency IC device according to the first preferred embodiment.


Fifth Preferred Embodiment


FIGS. 6A to 6C are diagrams illustrating a radio frequency IC device according to the fifth preferred embodiment of the present invention. Similar to a radio frequency IC device according to the fourth preferred embodiment, in this radio frequency IC device, the ground electrode 21 is electrically coupled to a loop electrode 32. More specifically, the loop electrode 32 includes connection electrodes 33a and 33b disposed on the surface of the printed circuit board 20 and via-hole conductors 34. The ground electrode 21 is disposed on the bottom surface of the printed circuit board 20. The upper end of one of the via-hole conductors 34 is electrically connected to the connection electrode 33a, and the upper end of the other one of the via-hole conductors 34 is electrically connected to the connection electrode 33b. The lower ends of the via-hole conductors 34 are electrically connected to the ground electrode 21. The connection electrodes 33a and 33b are electrically connected via the metal bump 8 to the terminal electrodes 6 (see, FIG. 2) of the radio frequency IC chip 5. Connection electrodes 33c and 33d are electrically connected via the metal bump 8 to the terminal electrodes 7 (see, FIG. 2) of the radio frequency IC chip 5.


In the fifth preferred embodiment, the loop electrode 32 is electrically coupled to the ground electrode 21. The radio frequency IC chip 5 and the ground electrode 21 are coupled to each other via the loop electrode 32 disposed therebetween. The operation and operational advantages of a radio frequency IC device according to the fifth preferred embodiment are substantially the same as those of a radio frequency IC device according to the first preferred embodiment.


Sixth Preferred Embodiment


FIGS. 7A and 7B are diagrams illustrating a radio frequency IC device according to the sixth preferred embodiment of the present invention. In this radio frequency IC device, an electromagnetic coupling module 1 is provided by mounting the radio frequency IC chip 5 on a power supply circuit board 10. The electromagnetic coupling module 1 is electrically connected to a loop electrode 35 provided on the printed circuit board 20. Similar to the loop electrode 22 described in the first preferred embodiment, the loop electrode 35 is arranged near the ground electrode 21 provided on the surface of the printed circuit board 20, whereby the loop electrode 35 and the ground electrode 21 are coupled to each other by magnetic field coupling.


One of the input-output terminal electrodes 6 of the radio frequency IC chip 5, which are illustrated in FIG. 2, and the other one of the input-output terminal electrodes 6 are electrically connected via the metal bump 8 to electrodes 12a and 12b (see, FIGS. 15 and 16) provided on the surface of the power supply circuit board 10. One of the mounting terminal electrodes 7 of the radio frequency IC chip 5 and the other one of the mounting terminal electrodes 7 are electrically connected via the metal bump 8 to electrodes 12c and 12d. A protection film 9 is disposed between the surface of the power supply circuit board 10 and the bottom surface of the radio frequency IC chip 5 so as to improve the bonding strength between the power supply circuit board 10 and the radio frequency IC chip 5.


The power supply circuit board 10 includes a resonance circuit (not illustrated in FIGS. 7A and 7B) including an inductance element. Outer electrodes 19a and 19b (see, FIGS. 15 and 16) are provided on the bottom surface of the power supply circuit board 10, and the connection electrodes 12a to 12d (see, FIGS. 15 and 16) are provided on the surface of the power supply circuit board 10. The outer electrodes 19a and 19b are electromagnetically coupled to the resonance circuit included in the power supply circuit board 10, and are electrically connected to connection electrodes 35a and 35b of the loop electrode 35, respectively, with an electroconductive adhesive (not illustrated), for example. Alternatively, such electrical connection may be established by soldering.


That is, the power supply circuit board 10 includes a resonance circuit having a predetermined resonance frequency so as to transmit a transmission signal of a predetermined frequency output from the radio frequency IC chip 5 to the ground electrode 21 via the outer electrodes 19a and 19b and the loop electrode 35, or select a received signal of a predetermined frequency from among signals received by the ground electrode 21 and supply the selected received signal to the radio frequency IC chip 5. Accordingly, in this radio frequency IC device, the radio frequency IC chip 5 is operated by a signal received by the ground electrode 21, and a response signal output from the radio frequency IC chip 5 is emitted from the ground electrode 21.


In the electromagnetic coupling module 1, the outer electrodes 19a and 19b provided on the bottom surface of the power supply circuit board 10 are coupled to the resonance circuit included in the power supply circuit board 10 by electromagnetic field coupling, and are electrically connected to the loop electrode 35 that is coupled to the ground electrode defining an antenna by electric field coupling. In this preferred embodiment, since a relatively large antenna element is not required as a separate component, the size of the electromagnetic coupling module 1 can be reduced. Furthermore, the size of the power supply circuit board 10 can be reduced. Accordingly, IC mounters that have been widely used can be used to mount the radio frequency IC chip 5 on the power supply circuit board 10. This reduces the cost of mounting. When a frequency band to be used is changed, only the design of the resonance circuit needs to be changed.


An inductance element alone may be used as an element provided in the power supply circuit board 10. The inductance element has a function of achieving the impedance matching between the radio frequency IC chip 5 and a radiation plate (the ground electrode 21).


Seventh Preferred Embodiment


FIGS. 8A and 8B are diagrams illustrating a radio frequency IC device according to the seventh preferred embodiment of the present invention. Similar to a radio frequency IC device according to the sixth preferred embodiment, in this radio frequency IC device, the electromagnetic coupling module 1 is formed by mounting the radio frequency IC chip 5 on the power supply circuit board 10. The electromagnetic coupling module 1 is electrically connected to a loop electrode 36 provided on the printed circuit board 20. Similar to the loop electrode 31 described in the fourth preferred embodiment, the loop electrode 36 is obtained by forming the cutout 21a at one side of the ground electrode 21. Connection electrodes 36a and 36b are electrically connected to the outer electrodes 19a and 19b provided on the bottom surface of the power supply circuit board 10, with a conductive adhesive (not illustrated), for example. In the seventh preferred embodiment, the structure and operation of the power supply circuit board 10 are substantially the same as those described in the sixth preferred embodiment, and the operation of the loop electrode 36 is substantially the same as that described in the fourth preferred embodiment.


Eighth Preferred Embodiment


FIG. 9 is an exploded view of a printed circuit board included in a radio frequency IC device according to the eighth preferred embodiment of the present invention. The printed circuit board 40 is a multilayer board in which a plurality of dielectric layers or magnetic layers are laminated. Loop electrodes 51A to 51D are provided on a first layer 41A defining the surface of the printed circuit board 40, a second layer 41B, a third layer 41C, and a fourth layer 41D defining the bottom surface of the printed circuit board 40.


Similar to the loop electrode described in the fourth preferred embodiment (see, FIGS. 5A and 5B), the loop electrodes 51A to 51D are obtained by providing cutouts 50a to 50d at ground electrodes 50A to 50D provided on the layers 41A to 41D. Connection electrodes 52a and 52b of the loop electrode 51A provided on the first layer 41A are respectively electrically connected to the input-output terminal electrodes 6 of the radio frequency IC chip 5, or are electromagnetically coupled to the power supply circuit board 10 (the electromagnetic coupling module 1). The ground electrodes 50A to 50D may be electrically connected to each other through via-hole conductors. An electrode functioning as an antenna may not necessarily be a ground electrode.


Referring to FIGS. 1A and 1B, the loop electrode 22 is preferably used so as to cause the ground electrode 21 to function as an antenna, and the loop electrode 22 has an impedance conversion function. More specifically, the loop electrode 22 has an impedance between the connection electrodes 22a and 22b which is determined by the shape of the loop. A current corresponding to a signal transmitted from the radio frequency IC chip 5 or the power supply circuit board 10 coupled to the connection electrodes 22a and 22b flows along the loop.


The impedance (Z) between the connection electrodes 22a and 22b is represented by the sum of a real part and an imaginary part (X). As the size of the loop electrode 22 is reduced, the length of a current path is reduced. As the length of the current path is reduced, the resistance generated at the loop electrode 22 and the impedance (X=ωL) of an inductance (L) generated by a current passing through the path are reduced. If a space for the loop electrode 22 is reduced in accordance with the miniaturization of an apparatus, such as a mobile telephone, for example, the impedance of the loop electrode 22 is significantly reduced. This produces a large impedance difference between the loop electrode 22 and a radio frequency IC chip or a power supply (resonance/matching) circuit. Consequently, sufficient electric power cannot be supplied from the radio frequency IC chip 5 or the power supply circuit to a radiation plate.


In order to solve this problem, a higher impedance (Z) must be set for the loop electrode 22, that is, the real part or the imaginary part (X) must be increased. The eighth to thirteenth preferred embodiments solve such a problem. Accordingly, in the eighth preferred embodiment, the ground electrode 50A functions as an antenna and provides the same operational advantages as those described in the first preferred embodiment. Furthermore, in the eighth preferred embodiment, the size of the loop electrode 51A, which is provided on the first layer 41A and coupled to the radio frequency IC chip 5 or the power supply circuit board 10, is greater than that of the other loop electrodes, that is, the loop electrodes 51B to 51D. Accordingly, the length of a current path passing through the loop electrode 51A at the time of communication is increased, the resistance is increased, and the real part is increased. As a result, a higher impedance (Z) is obtained.


Ninth Preferred Embodiment


FIG. 10 is an exploded view of the printed circuit board 40 included in a radio frequency IC device according to the ninth preferred embodiment of the present invention. A radio frequency IC device according to the ninth preferred embodiment is substantially the same as a radio frequency IC device according to the eighth preferred embodiment except that connection electrodes 54a and 54b provided on the first layer 41A and coupled to the radio frequency IC chip 5 or the power supply circuit board 10 are electrically connected to the loop electrode 51B provided on the second layer 41B through via-hole conductors 54c and the size of the loop electrode 51B is greater than that of the loop electrodes 51A, 51C, and 51D. Accordingly, the operational advantages of a radio frequency IC device according to the ninth preferred embodiment are substantially the same as those of a radio frequency IC device according to the eighth preferred embodiment.


Tenth Preferred Embodiment


FIG. 11 is a diagram illustrating the printed circuit board 20 included in a radio frequency IC device according to the tenth preferred embodiment of the present invention. A cutout 21b is provided at the ground electrode 21 disposed on the surface of the printed circuit board 20. In the cutout 21b, the loop electrode 31 is provided. On the inner side of the loop electrode 31, a meandering matching electrode 37 is disposed. Connection electrodes 37a and 37b that are the ends of the matching electrode 37 are coupled to the radio frequency IC chip 5 or the power supply circuit board 10.


Similar to the above-described preferred embodiments, in the tenth preferred embodiment, the ground electrode 21 functions as an antenna, and provides substantially the same operational advantages as those described in the first preferred embodiment. The meandering matching electrode 37 disposed on the inner side of the loop electrode 31 increases the length of a current path flowing through the loop electrode 31. The resistance and the real part are therefore increased. As a result, the impedance (Z) is increased. The exemplary shape of the matching electrode 37 illustrated in FIG. 11 may be changed in accordance with the shape or size of the cutout 21b.


Eleventh Preferred Embodiment


FIG. 12 is a diagram illustrating the main portion of the printed circuit board 20 included in a radio frequency IC device according to the eleventh preferred embodiment of the present invention. A radio frequency IC device according to the eleventh preferred embodiment is substantially the same as a radio frequency IC device according to the tenth preferred embodiment except that the loop electrode 31 including the meandering matching electrode 37 on the inner side thereof is disposed in a cutout 21c of the ground electrode 21 and is coupled to the ground electrode 21 by electric field coupling in substantially the same manner as that described in the first preferred embodiment.


Similar to the tenth preferred embodiment, in this preferred embodiment, the connection electrodes 37a and 37b which are the ends of the matching electrode 37 are coupled to the radio frequency IC chip 5 or the power supply circuit board 10. The ground electrode 21 functions as an antenna, and provides the same operational advantages as those described in the first and tenth preferred embodiments.


Twelfth Preferred Embodiment


FIG. 13 is an exploded view of the printed circuit board 40 included in a radio frequency IC device according to the twelfth preferred embodiment of the present invention. Similar to a printed circuit board described in the eighth preferred embodiment (see, FIG. 9), the printed circuit board 40 is a multilayer board in which a plurality of dielectric layers or a plurality of magnetic layers are laminated. The loop electrodes 51A to 51D are provided on the first layer 41A defining the surface of the printed circuit board 40, the second layer 41B, the third layer 41C, and the fourth layer 41D defining the bottom surface of the printed circuit board 40, respectively.


The loop electrodes 51A to 51D are obtained by providing the cutouts 50a to 50d at the ground electrodes 50A to 50D provided on the layers 41A to 41D, respectively. Connection electrodes 55a and 55b provided on the first layer 41A are respectively electrically connected to the input-output terminal electrodes 6 of the radio frequency IC chip 5, or are electromagnetically coupled to the power supply circuit board 10 (the electromagnetic coupling module 1). The ground electrodes 50A to 50D may be electrically connected to each other through via-hole conductors. An electrode functioning as an antenna may not necessarily be a ground electrode.


Furthermore, matching electrodes 56a and 56b are disposed on the inner side of the loop electrode 51B, and matching electrodes 57a and 57b are disposed on the inner side of the loop electrode 51C. The connection electrode 55a is connected to one end of the matching electrode 57a through a via-hole conductor 58a, and the other end of the matching electrode 57a is connected to one end of the matching electrode 56a through a via-hole conductor 58b. The other end of the matching electrode 56a is connected to an end 50Aa of the ground electrode 50A through a via-hole conductor 58c. The connection electrode 55b is connected to one end of the matching electrode 57b through a via-hole conductor 58d, and the other end of the matching electrode 57b is connected to one end of a matching electrode 56b through a via-hole conductor 58e. The other end of the matching electrode 56b is connected to an end 50Ab of the ground electrode 50A through a via-hole conductor 58f.


Similar to the above-described preferred embodiments, in the twelfth preferred embodiment, the ground electrode 50A functions as an antenna, and provides the same operational advantages as those described in the first preferred embodiment. Furthermore, the length of a current path passing through the loop electrode 51A is increased by the matching electrodes 56a and 56b, which are disposed on the inner side of the loop electrode 51B, and the matching electrodes 57a and 57b, which are disposed on the inner side of the loop electrode 51C. The resistance and the real part are therefore increased. As a result, the impedance (Z) can be increased. In the twelfth preferred embodiment, since the matching electrodes 56a, 56b, 57a, and 57b are included in a laminated structure, the length of a current path can be increased even in a small apparatus and a relatively high impedance (Z) can be obtained.


Thirteenth Preferred Embodiment


FIG. 14 is an exploded view of the printed circuit board 40 included in a radio frequency IC device according to the thirteenth preferred embodiment of the present invention. Similar to the printed circuit board described in the eighth and twelfth preferred embodiments, the printed circuit board 40 is a multilayer board in which a plurality of dielectric layers or a plurality of magnetic layers are laminated. The loop electrodes 51A to 51D are provided on the first layer 41A defining the surface of the printed circuit board 40, the second layer 41B, the third layer 41C, and the fourth layer 41D defining the bottom surface of the printed circuit board 40, respectively.


The loop electrodes 51A to 51D are obtained by providing the cutouts 50a to 50d in the ground electrodes 50A to 50D provided on the layers 41A to 41D, respectively. A connection electrode 61 provided on the first layer 41A and the end 50Aa of the ground electrode 50A are electrically connected to the input-output terminal electrodes 6 of the radio frequency IC chip 5, or are electromagnetically coupled to the power supply circuit board 10 (the electromagnetic coupling module 1). The ground electrodes 50A to 50D may be electrically connected to each other through via-hole conductors. An electrode functioning as an antenna may not necessarily be a ground electrode.


Furthermore, matching electrodes 62 and 63 are disposed on the inner sides of the loop electrode 51B and 51c, respectively. The connection electrode 61 is connected to one end of the matching electrode 63 through a via-hole conductor 64a, and the other end of the matching electrode 63 is connected to one end of the matching electrode 62 through a via-hole conductor 64b. The other end of the matching electrode 62 is connected to the end 50Ab of the ground electrode 50A through a via-hole conductor 64c.


Similar to the above-described preferred embodiments, in the thirteenth preferred embodiment, the ground electrode 50A functions as an antenna, and provides the same operational advantages as those described in the first preferred embodiment. Furthermore, the length of a current path passing through the loop electrode 51A is increased by the matching electrodes 62 and 63 which are disposed on the inner sides of the loop electrodes 51B and 51C, respectively. The resistance and the real part are therefore increased. As a result, the impedance (Z) can be increased. Similar to the twelfth preferred embodiment, in the thirteenth preferred embodiment, since the matching electrodes 62 and 63 are included in a laminated structure, the length of a current path can be increased in a small apparatus and a relatively high impedance (Z) can be obtained.


First Example of Resonance Circuit


FIG. 15 is a diagram illustrating a first example of a resonance circuit included in the power supply circuit board 10. The power supply circuit board 10 is obtained by laminating, press-bonding, and firing ceramic sheets 11A to 11H made of a dielectric material. On the sheet 11A, the connection electrodes 12a and 12b, the electrodes 12c and 12d, and via-hole conductors 13a and 13b are provided. On the sheet 11B, a capacitor electrode 18a, conductor patterns 15a and 15b, and via-hole conductors 13c to 13e are provided. On the sheet 11C, a capacitor electrode 18b, the via-hole conductors 13d and 13e, and a via-hole conductor 13f are provided. On the sheet 11D, conductor patterns 16a and 16b, the via-hole conductors 13e and 13f, and via-hole conductors 14a, 14b, and 14d are provided. On the sheet 11E, the conductor patterns 16a and 16b, the via-hole conductors 13e, 13f, and 14a, and via-hole conductors 14c and 14e are provided. On the sheet 11F, a capacitor electrode 17, the conductor patterns 16a and 16b, the via-hole conductors 13e and 13f, and via-hole conductors 14f and 14g are provided. On the sheet 11G, the conductor patterns 16a and 16b and the via-hole conductors 13e, 13f, 14f, and 14g are provided. On the sheet 11H, the conductor patterns 16a and 16b and the via-hole conductor 13f are provided.


By laminating the sheets 11A to 11H, an inductance element L1, an inductance element L2, a capacitance element C1, and a capacitance element C2 are provided. The inductance element L1 includes the conductor patterns 16a that are helically connected by the via-hole conductors 14c, 14d, and 14g. The inductance element L2 includes the conductor patterns 16b that are helically connected by the via-hole conductors 14b, 14e, and 14f. The capacitance element C1 includes the capacitor electrodes 18a and 18b. The capacitance element C2 includes the capacitor electrodes 18b and 17.


One end of the inductance element L1 is connected to the capacitor electrode 18b through the via-hole conductor 13d, the conductor pattern 15a, and the via-hole conductor 13c. One end of the inductance element L2 is connected to the capacitor electrode 17 through the via-hole conductor 14a. The other ends of the inductance elements L1 and L2 are combined on the sheet 11H, and are then connected to the connection electrode 12a through the via-hole conductor 13e, the conductor pattern 15b, and the via-hole conductor 13a. The capacitor electrode 18a is electrically connected to the connection electrode 12b through the via-hole conductor 13b.


The connection electrodes 12a and 12b are respectively electrically connected via the metal bump 8 to the terminal electrodes 6 of the radio frequency IC chip 5. The electrodes 12c and 12d are respectively connected to the terminal electrodes 7 of the radio frequency IC chip 5.


On the bottom surface of the power supply circuit board 10, the outer electrodes 19a and 19b are provided by applying a coating of conductive paste thereto, for example. The outer electrode 19a is coupled to the inductance element L (L1 and L2) by magnetic field coupling. The outer electrode 19b is electrically connected to the capacitor electrode 18b through the via-hole conductor 13f. As described above, the outer electrodes 19a and 19b are electrically connected to the connection electrodes 35a and 35b of the loop electrode 35, or are electrically connected to the connection electrodes 36a and 36b of the loop electrode 36.


In this resonance circuit, the inductance elements L1 and L2 are obtained by the substantially parallel arrangement of two conductor patterns, that is, the conductor patterns 16a and 16b. Since the line lengths of the conductor patterns 16a and 16b are different from each other, the resonance frequencies of the inductance elements L1 and L2 are different from one another. Accordingly, a wider frequency band of a radio frequency IC device can be obtained.


Each of the ceramic sheets 11A to 11H may preferably be a ceramic sheet made of a magnetic material, for example. In this case, the power supply circuit board 10 can be easily obtained by a multilayer board manufacturing process including a sheet lamination method and a thick film printing method, for example.


Each of the sheets 11A to 11H may preferably be a flexible sheet made of a dielectric material, such as polyimide or liquid crystal polymer, for example. In this case, the inductance elements L1 and L2 and the capacitance elements C1 and C2 may be included in a laminate obtained by forming an electrode and a conductor on each of the flexible sheets using a thick film formation method and laminating these sheets by thermocompression bonding.


In the power supply circuit board 10, the inductance elements L1 and L2 and the capacitance elements C1 and C2 are disposed at different locations in a perspective plan view. The inductance elements L1 and L2 are coupled to the outer electrode 19a by magnetic field coupling. The outer electrode 19b functions as one electrode of the capacitance element C1.


Accordingly, in the electromagnetic coupling module 1 in which the radio frequency IC chip 5 is mounted on the power supply circuit board 10, the ground electrode 21 receives high-frequency signals (for example, UHF signals) emitted from a reader/writer (not illustrated). The electromagnetic coupling module 1 causes a resonance circuit, which is coupled to the outer electrodes 19a and 19b by magnetic field coupling and electric field coupling, to resonate via the loop electrode 35 or 36 so as to supply only a received signal that falls within a predetermined frequency range to the radio frequency IC chip 5. On the other hand, predetermined energy is extracted from the received signal, and is then used to cause the resonance circuit to match the frequency of information stored in the radio frequency IC chip 5 to a predetermined frequency and then transmit the information to the ground electrode 21 via the outer electrodes 19a and 19b and the loop electrode 35 or 36. The ground electrode 21 transmits or transfers the information to the reader/writer.


In the power supply circuit board 10, a resonance frequency characteristic is determined by a resonance circuit including the inductance elements L1 and L2 and the capacitance elements C1 and C2. The resonance frequency of a signal emitted from the ground electrode 21 is determined based on the self-resonance frequency of the resonance circuit.


The resonance circuit also functions as a matching circuit to perform the impedance matching between the radio frequency IC chip 5 and the ground electrode 21. The power supply circuit board 10 may include a matching circuit separately from a resonance circuit including an inductance element and a capacitance element (in this sense, a resonance circuit is also referred to as a matching circuit). If a matching circuit function is added to a resonance circuit, the design of the resonance circuit becomes complicated. If a matching circuit is provided separately from a resonance circuit, they can be separately designed. The loop electrodes 35 and 36 may have an impedance matching function or a resonance circuit function. In this case, by designing a resonance circuit (matching circuit) included in the power supply circuit board 10 in view of the shape of a loop electrode and the size of a ground electrode functioning as a radiation plate, a radiation characteristic can be improved.


Second Example of Resonance Circuit


FIG. 16 is a diagram illustrating a second example of a resonance circuit included in a power supply circuit board 70. The power supply circuit board 70 is a flexible PET film on which a helical conductor pattern 72 functioning as an inductance element L and a capacitor electrode 73 functioning as a capacitance element C are provided. The electrodes 12a and 12b extending from the conductor pattern 72 and the capacitor electrode 73 are respectively electrically connected to the terminal electrodes 6 of the radio frequency IC chip 5. The electrodes 12c and 12d provided on the power supply circuit board 70 are respectively electrically connected to the terminal electrodes 7 of the radio frequency IC chip 5.


Similar to the above-described first example of a resonance circuit, a resonance circuit included in the power supply circuit board 70 includes the inductance element L and the capacitance element C, and is coupled to the electrode 35a or 36a facing the inductance element L by magnetic field coupling and the electrode 35b or 36b facing the capacitance element C by electric field coupling. In this second example, since the power supply circuit board 70 is made of a flexible film, the height of the electromagnetic coupling module 1 is reduced. In the inductance element L, a resonance frequency can be adjusted by changing an inductance value. Preferably, the inductance value can be changed by changing the line width or line space of the conductor pattern 72, for example.


Similar to the first example, in the second example, the inductance element L is obtained by helically arranging two conductor patterns, that is, the conductor patterns 72, and connecting them at a central portion of the helical structure. The conductor patterns 72 have different inductance values L1 and L2. Accordingly, similar to the first example, since the resonance frequencies of the conductor patterns 72 can be different from one another other, a wider usable frequency band of a radio frequency IC device can be obtained.


Electronic Apparatus

Next, a mobile telephone will be described as an example of an electronic apparatus according to a preferred embodiment of the present invention. A mobile telephone 80 illustrated in FIG. 17 is usable for a plurality of frequencies. Various signals such as a terrestrial digital signal, a GPS signal, a WiFi signal, a CDMA communication signal, and a GSM communication signal are input into the mobile telephone 80.


As illustrated in FIG. 18, in a casing 81, the printed circuit board 20 is disposed. On the printed circuit board 20, a radio communication circuit 90 and the electromagnetic coupling module 1 are disposed. The radio communication circuit 90 preferably includes an IC chip 91, a balun 92 included in the printed circuit board 20, a BPF 93, and a capacitor 94, for example. The power supply circuit board 10 on which the radio frequency IC chip 5 is mounted is disposed on a loop electrode (for example, the loop electrode 35 described in the sixth preferred embodiment or the loop electrode 36 described in the seventh preferred embodiment) coupled to the ground electrode 21 provided on the printed circuit board 20, whereby a radio frequency IC device is formed.


A radio frequency IC device according to the present invention and an electronic apparatus according to the present invention are not limited to the above-described preferred embodiments, and various changes can be made to the present invention without departing from the spirit and scope of the present invention.


For example, as an electrode for transmitting and receiving a high-frequency signal, not only a ground electrode but also various other electrodes disposed in or on a circuit board can be used. Furthermore, various types of resonance circuits can be used. A material for each of the outer electrode and the power supply circuit board which have been described in the above-described preferred embodiments is provided only as an example. Any suitable material having the required characteristics may be used. A power supply circuit board may also have a radio frequency IC chip function so as to define a radio frequency IC chip and a power supply circuit on a single substrate. In this case, the size and profile of a radio frequency IC device can be reduced.


In the first to fifth preferred embodiments, instead of a radio frequency IC chip, the electromagnetic coupling module 1 described in the sixth and seventh preferred embodiments may be used, for example.


In order to mount a radio frequency IC chip on a power supply circuit board, another method other than a method using a metal bump may be used. A dielectric may be disposed between the electrode of a radio frequency IC chip and the connection electrode of a power supply circuit board so as to provide the capacitive coupling between these electrodes, for example. Furthermore, the capacitive coupling between a radio frequency IC chip and a loop electrode or between a power supply circuit board and a loop electrode may be provided.


An apparatus including a radio frequency IC device is not limited to a radio frequency communication apparatus, such as a mobile telephone. Various apparatuses each provided with a circuit board including a ground electrode, for example, home electric appliances such as a television set and a refrigerator, may be used.


As described above, preferred embodiments of the present invention are useful for a radio frequency IC device including a radio frequency IC chip and an electronic apparatus including the radio frequency IC device, and, in particular, has an advantage of obtaining a reduction is size and easily achieving impedance matching without a dedicated antenna.


While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims
  • 1. A radio frequency IC device comprising: a radio frequency IC chip arranged to process a transmitted signal and a received signal; anda printed circuit board including a ground electrode; whereinthe ground electrode includes a cutout portion which is cut from an edge of the ground electrode and connection electrodes arranged to mount the radio frequency IC thereon, the cutout portion defines a loop electrode in the ground electrode, the connection electrodes are provided on opposed sides of the cutout portion, and the loop electrode provides an impedance matching function; andthe radio frequency IC chip is mounted on the connection electrodes and arranged so as to extend across the cutout portion.
  • 2. The radio frequency IC device according to claim 1, wherein the printed circuit board is a multilayer board including a plurality of dielectric layers and a plurality of magnetic layers that are laminated to one another.
  • 3. The radio frequency IC device according to claim 2, wherein the loop electrode is provided on a main surface of the printed circuit board and is provided on at least one of the plurality of dielectric layers or on at least one of the plurality of magnetic layers.
  • 4. The radio frequency IC device according to claim 1, wherein the printed circuit board includes a plurality of layers, and a plurality of the loop electrodes are respectively provided on the plurality of layers of the circuit board, and the loop electrode provided on at least one of the plurality of layers has a different loop size than the loop electrodes provided on the remaining layers of the plurality of layers.
  • 5. The radio frequency IC device according to claim 4, wherein end portions of the loop electrode that has a different loop size are coupled to the radio frequency IC chip.
  • 6. An electronic apparatus comprising the radio frequency IC device according to claim 1.
  • 7. A radio frequency IC device comprising: an electromagnetic coupling module including a radio frequency IC arranged to process a transmitted signal and a received signal and a power supply circuit board including an inductance element coupled to the radio frequency IC;a printed circuit board including a ground electrode; whereinthe ground electrode includes a cutout portion which is cut from the edge of the ground electrode and connection electrodes arranged to mount the radio frequency IC thereon, the cutout portion defines a loop electrode in the ground electrode, the connection electrodes are provided on opposed sides of the cutout portion, and the loop electrode provides an impedance matching function; andthe electromagnetic coupling module is mounted on the connection electrodes and arranged so as to extend across the cutout portion.
  • 8. The radio frequency IC device according to claim 7, wherein a resonance circuit is provided in the power supply circuit board.
  • 9. The radio frequency IC device according to claim 7, wherein a matching circuit is provided in the power supply circuit board.
  • 10. The radio frequency IC device according to claim 7, wherein the printed circuit board is a multilayer board including a plurality of dielectric layers and a plurality of magnetic layers that are laminated to one another.
  • 11. The radio frequency IC device according to claim 10, wherein the loop electrode is provided on a main surface of the printed circuit board and is provided on at least one of the plurality of dielectric layers or on at least one of the plurality of magnetic layers.
  • 12. The radio frequency IC device according to claim 7, wherein the printed circuit board includes a plurality of layers, and a plurality of the loop electrodes are respectively provided on the plurality of layers of the circuit board, and the loop electrode provided on at least one of the plurality of layers has a different loop size than the loop electrodes provided on the remaining layers of the plurality of layers.
  • 13. The radio frequency IC device according to claim 12, wherein end portions of the loop electrode that has a different loop size are coupled to one of the radio frequency IC chip and the electromagnetic coupling module.
  • 14. The radio frequency IC device according to claim 7, wherein the power supply circuit board includes a multilayer board.
  • 15. The radio frequency IC device according to claim 7, wherein the power supply circuit board includes a flexible board.
  • 16. An electronic apparatus comprising the radio frequency IC device according to claim 7.
Priority Claims (1)
Number Date Country Kind
2007-186392 Jul 2007 JP national
US Referenced Citations (126)
Number Name Date Kind
3364564 Kurtz et al. Jan 1968 A
4794397 Ohe et al. Dec 1988 A
5232765 Yano et al. Aug 1993 A
5253969 Richert Oct 1993 A
5337063 Takahira Aug 1994 A
5374937 Tsunekawa et al. Dec 1994 A
5399060 Richert Mar 1995 A
5483249 Kennedy Jan 1996 A
5491483 D'Hont Feb 1996 A
5528222 Moskowitz et al. Jun 1996 A
5614915 Webb Mar 1997 A
5710458 Iwasaki Jan 1998 A
5757074 Matloubian et al. May 1998 A
5854480 Noto Dec 1998 A
5903239 Takahashi et al. May 1999 A
5936150 Kobrin et al. Aug 1999 A
5955723 Reiner Sep 1999 A
5995006 Walsh Nov 1999 A
6104311 Lastinger Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6172608 Cole Jan 2001 B1
6181287 Beigel Jan 2001 B1
6190942 Wilm et al. Feb 2001 B1
6249258 Bloch et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271803 Watanabe et al. Aug 2001 B1
6335686 Goff et al. Jan 2002 B1
6362784 Kane et al. Mar 2002 B1
6367143 Sugimura Apr 2002 B1
6378774 Emori et al. Apr 2002 B1
6406990 Kawai Jun 2002 B1
6448874 Shiino et al. Sep 2002 B1
6462716 Kushihi Oct 2002 B1
6542050 Arai et al. Apr 2003 B1
6600459 Yokoshima et al. Jul 2003 B2
6634564 Kuramochi Oct 2003 B2
6664645 Kawai Dec 2003 B2
6763254 Nishikawa Jul 2004 B2
6812707 Yonezawa et al. Nov 2004 B2
6828881 Mizutani et al. Dec 2004 B2
6837438 Takasugi et al. Jan 2005 B1
6861731 Buijsman et al. Mar 2005 B2
6885354 Takei Apr 2005 B2
6927738 Senba et al. Aug 2005 B2
6963729 Uozumi Nov 2005 B2
7088249 Senba et al. Aug 2006 B2
7088307 Imaizumi Aug 2006 B2
7112952 Arai et al. Sep 2006 B2
7119693 Devilbiss Oct 2006 B1
7129834 Naruse et al. Oct 2006 B2
7248221 Kai et al. Jul 2007 B2
7250910 Yoshikawa et al. Jul 2007 B2
7276929 Arai et al. Oct 2007 B2
7317396 Ujino Jan 2008 B2
7405664 Sakama et al. Jul 2008 B2
20020011967 Goff et al. Jan 2002 A1
20020015002 Yasukawa et al. Feb 2002 A1
20020044092 Kushihi Apr 2002 A1
20020067316 Yokoshima et al. Jun 2002 A1
20020093457 Hamada et al. Jul 2002 A1
20030006901 Kim et al. Jan 2003 A1
20030020661 Sato Jan 2003 A1
20030045324 Nagumo et al. Mar 2003 A1
20030052826 Kralovec et al. Mar 2003 A1
20030169153 Muller Sep 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040026519 Usami et al. Feb 2004 A1
20040056823 Zuk et al. Mar 2004 A1
20040066617 Hirabayashi et al. Apr 2004 A1
20040217915 Imaizumi Nov 2004 A1
20040219956 Iwai et al. Nov 2004 A1
20040227673 Iwai et al. Nov 2004 A1
20040252064 Yuanzhu Dec 2004 A1
20050092836 Kudo May 2005 A1
20050099337 Takei et al. May 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050134460 Usami Jun 2005 A1
20050134506 Egbert Jun 2005 A1
20050138798 Sakama et al. Jun 2005 A1
20050140512 Sakama et al. Jun 2005 A1
20050232412 Ichihara et al. Oct 2005 A1
20050236623 Takechi et al. Oct 2005 A1
20050275539 Sakama et al. Dec 2005 A1
20060001138 Sakama et al. Jan 2006 A1
20060028378 Gaucher et al. Feb 2006 A1
20060044192 Egbert Mar 2006 A1
20060044769 Forster et al. Mar 2006 A1
20060050491 Hayashi et al. Mar 2006 A1
20060054710 Forster et al. Mar 2006 A1
20060055601 Kameda et al. Mar 2006 A1
20060071084 Detig et al. Apr 2006 A1
20060109185 Iwai et al. May 2006 A1
20060145872 Tanaka et al. Jul 2006 A1
20060158380 Son et al. Jul 2006 A1
20060170606 Yamagajo et al. Aug 2006 A1
20060208899 Suzuki et al. Sep 2006 A1
20060214801 Murofushi et al. Sep 2006 A1
20060220871 Baba et al. Oct 2006 A1
20060244676 Uesaka Nov 2006 A1
20060266435 Yang et al. Nov 2006 A1
20060267138 Kobayashi Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070018893 Kai et al. Jan 2007 A1
20070040028 Kawamata Feb 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070057854 Oodachi et al. Mar 2007 A1
20070069037 Kawai Mar 2007 A1
20070126586 Ohtaka Jun 2007 A1
20070132591 Khatri Jun 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070200782 Hayama et al. Aug 2007 A1
20070229279 Yamazaki et al. Oct 2007 A1
20070252700 Ishihara et al. Nov 2007 A1
20070252703 Kato et al. Nov 2007 A1
20070285335 Bungo et al. Dec 2007 A1
20070290928 Chang et al. Dec 2007 A1
20080024156 Arai et al. Jan 2008 A1
20080087990 Kato et al. Apr 2008 A1
20080169905 Slatter Jul 2008 A1
20080272885 Atherton Nov 2008 A1
20090002130 Kato Jan 2009 A1
20090009007 Kato et al. Jan 2009 A1
20090065594 Kato et al. Mar 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090160719 Kato et al. Jun 2009 A1
20090262041 Ikemoto et al. Oct 2009 A1
Foreign Referenced Citations (311)
Number Date Country
10 2006 057 369 Jun 2008 DE
0 694 874 Jan 1996 EP
0 977 145 Feb 2000 EP
1 010 543 Jun 2000 EP
1 160 915 Dec 2001 EP
1 170 795 Jan 2002 EP
1 227 540 Jul 2002 EP
1 280 232 Jan 2003 EP
1 280 350 Jan 2003 EP
1 343 223 Sep 2003 EP
1 357 511 Oct 2003 EP
1 548 872 Jun 2005 EP
1 703 589 Sep 2006 EP
1 841 005 Oct 2007 EP
2 009 738 Dec 2008 EP
2 148 449 Jan 2010 EP
2 305 075 Mar 1997 GB
50-143451 Nov 1975 JP
62-127140 Aug 1987 JP
02-164105 Jun 1990 JP
03-262313 Nov 1991 JP
04-150011 May 1992 JP
04-167500 Jun 1992 JP
05-327331 Dec 1993 JP
6-53733 Feb 1994 JP
06-077729 Mar 1994 JP
06-177635 Jun 1994 JP
6-260949 Sep 1994 JP
07-183836 Jul 1995 JP
08-056113 Feb 1996 JP
8-87580 Apr 1996 JP
08-088586 Apr 1996 JP
11-149537 Jun 1996 JP
08-176421 Jul 1996 JP
08-180160 Jul 1996 JP
08-279027 Oct 1996 JP
08-307126 Nov 1996 JP
08-330372 Dec 1996 JP
09-014150 Jan 1997 JP
09-035025 Feb 1997 JP
9-93029 Apr 1997 JP
09-245381 Sep 1997 JP
09-252217 Sep 1997 JP
09-270623 Oct 1997 JP
9-512367 Dec 1997 JP
10-69533 Mar 1998 JP
10-069533 Mar 1998 JP
10-505466 May 1998 JP
10-171954 Jun 1998 JP
10-193849 Jul 1998 JP
10-193851 Jul 1998 JP
10-293828 Nov 1998 JP
11-039441 Feb 1999 JP
11-075329 Mar 1999 JP
11-085937 Mar 1999 JP
11-102424 Apr 1999 JP
11-103209 Apr 1999 JP
11-149536 Jun 1999 JP
11-149538 Jun 1999 JP
11-219420 Aug 1999 JP
11-220319 Aug 1999 JP
11-328352 Nov 1999 JP
11-346114 Dec 1999 JP
11-515094 Dec 1999 JP
2000-21128 Jan 2000 JP
2000-021639 Jan 2000 JP
2000-022421 Jan 2000 JP
2005-229474 Jan 2000 JP
2000-059260 Feb 2000 JP
2000-085283 Mar 2000 JP
2000-090207 Mar 2000 JP
2000-132643 May 2000 JP
2000-137778 May 2000 JP
2000-137779 May 2000 JP
2000-137785 May 2000 JP
2000-148948 May 2000 JP
2000-172812 Jun 2000 JP
2000-209013 Jul 2000 JP
2000-222540 Aug 2000 JP
2000-510271 Aug 2000 JP
2000-243797 Sep 2000 JP
2000-251049 Sep 2000 JP
2000-261230 Sep 2000 JP
2000-276569 Oct 2000 JP
2000-286634 Oct 2000 JP
2000-286760 Oct 2000 JP
2000-311226 Nov 2000 JP
2000-321984 Nov 2000 JP
3075400 Nov 2000 JP
2000-349680 Dec 2000 JP
2001-10264 Jan 2001 JP
2001-028036 Jan 2001 JP
2007-18067 Jan 2001 JP
2001-043340 Feb 2001 JP
2001-66990 Mar 2001 JP
2001-505682 Apr 2001 JP
2001-168628 Jun 2001 JP
2001-188890 Jul 2001 JP
2001-240046 Sep 2001 JP
2001-256457 Sep 2001 JP
2001-257292 Sep 2001 JP
2001-514777 Sep 2001 JP
2001-319380 Nov 2001 JP
2001-331976 Nov 2001 JP
2001-332923 Nov 2001 JP
2001-339226 Dec 2001 JP
2001-344574 Dec 2001 JP
2001-351084 Dec 2001 JP
2001-352176 Dec 2001 JP
2002-024776 Jan 2002 JP
2002-026513 Jan 2002 JP
2002-042076 Feb 2002 JP
2002-063557 Feb 2002 JP
2002-505645 Feb 2002 JP
2002-76750 Mar 2002 JP
2002-076750 Mar 2002 JP
2002-150245 May 2002 JP
2002-157564 May 2002 JP
2002-158529 May 2002 JP
2002-175508 Jun 2002 JP
2002-183690 Jun 2002 JP
2002-185358 Jun 2002 JP
2002-204117 Jul 2002 JP
2002-522849 Jul 2002 JP
2002-230128 Aug 2002 JP
2002-232221 Aug 2002 JP
2002-252117 Sep 2002 JP
2002-259934 Sep 2002 JP
2002-280821 Sep 2002 JP
2002-298109 Oct 2002 JP
2002-308437 Oct 2002 JP
2002-319008 Oct 2002 JP
2002-319009 Oct 2002 JP
2002-319812 Oct 2002 JP
2002-362613 Dec 2002 JP
2002-373029 Dec 2002 JP
2002-373323 Dec 2002 JP
2002-374139 Dec 2002 JP
2003-006599 Jan 2003 JP
2003-016412 Jan 2003 JP
2003-026177 Jan 2003 JP
2003-030612 Jan 2003 JP
2003-44789 Feb 2003 JP
2003-046318 Feb 2003 JP
2003-58840 Feb 2003 JP
2003-067711 Mar 2003 JP
2003-069335 Mar 2003 JP
2003-076947 Mar 2003 JP
2003-76963 Mar 2003 JP
2003-78333 Mar 2003 JP
2003-078336 Mar 2003 JP
2003-085501 Mar 2003 JP
2003-085520 Mar 2003 JP
2003-87008 Mar 2003 JP
2003-87044 Mar 2003 JP
2003-099720 Apr 2003 JP
2003-099721 Apr 2003 JP
2003-110344 Apr 2003 JP
2003-132330 May 2003 JP
2003-134007 May 2003 JP
2003-155062 May 2003 JP
2003-158414 May 2003 JP
2003-168760 Jun 2003 JP
2003-179565 Jun 2003 JP
2003-187207 Jul 2003 JP
2003-187211 Jul 2003 JP
2003-188338 Jul 2003 JP
2003-188620 Jul 2003 JP
2003-198230 Jul 2003 JP
2003-209421 Jul 2003 JP
2003-216919 Jul 2003 JP
2003-218624 Jul 2003 JP
2003-233780 Aug 2003 JP
2003-242471 Aug 2003 JP
2003-243918 Aug 2003 JP
2003-249813 Sep 2003 JP
2003-529163 Sep 2003 JP
2003-288560 Oct 2003 JP
2003-309418 Oct 2003 JP
2003-317060 Nov 2003 JP
2003-331246 Nov 2003 JP
2003-332820 Nov 2003 JP
2004-040597 Feb 2004 JP
2004-505481 Feb 2004 JP
2004-082775 Mar 2004 JP
2004-88218 Mar 2004 JP
2004-93693 Mar 2004 JP
2004-096566 Mar 2004 JP
2004-127230 Apr 2004 JP
2004-519916 Jul 2004 JP
2004-234595 Aug 2004 JP
2004-253858 Sep 2004 JP
2004-527864 Sep 2004 JP
2004-280390 Oct 2004 JP
2004-287767 Oct 2004 JP
2004-297249 Oct 2004 JP
2004-297681 Oct 2004 JP
2004-319848 Nov 2004 JP
2004-326380 Nov 2004 JP
2004-334268 Nov 2004 JP
2004-336250 Nov 2004 JP
2004-343000 Dec 2004 JP
2004-362190 Dec 2004 JP
2004-362341 Dec 2004 JP
2004-362602 Dec 2004 JP
2005-5866 Jan 2005 JP
2005-18156 Jan 2005 JP
2005-124061 May 2005 JP
2005-128592 May 2005 JP
2005-129019 May 2005 JP
2005-136528 May 2005 JP
2005-137032 May 2005 JP
3653099 May 2005 JP
2005-165839 Jun 2005 JP
2005-167327 Jun 2005 JP
2005-167813 Jun 2005 JP
2005-190417 Jul 2005 JP
2005-191705 Jul 2005 JP
2005-210676 Aug 2005 JP
2005-210680 Aug 2005 JP
2005-217822 Aug 2005 JP
2005-236339 Sep 2005 JP
2005-244778 Sep 2005 JP
2005-275870 Oct 2005 JP
2005-284352 Oct 2005 JP
2005-293537 Oct 2005 JP
2005-295135 Oct 2005 JP
2005-311205 Nov 2005 JP
2005-321305 Nov 2005 JP
2005-322119 Nov 2005 JP
2005-335755 Dec 2005 JP
2005-345802 Dec 2005 JP
2005-346820 Dec 2005 JP
2005-352858 Dec 2005 JP
2006-025390 Jan 2006 JP
2006-031766 Feb 2006 JP
2006-033298 Feb 2006 JP
2006-39902 Feb 2006 JP
2006-42059 Feb 2006 JP
2006-42097 Feb 2006 JP
2006-67479 Mar 2006 JP
2006-72706 Mar 2006 JP
2006-80367 Mar 2006 JP
2006-92630 Apr 2006 JP
2006-102953 Apr 2006 JP
2006-107296 Apr 2006 JP
2006-513594 Apr 2006 JP
2006-148518 Jun 2006 JP
2006-151402 Jun 2006 JP
2006-174151 Jun 2006 JP
2006-195795 Jul 2006 JP
2006-203187 Aug 2006 JP
2006-203852 Aug 2006 JP
2006-217000 Aug 2006 JP
2006-232292 Sep 2006 JP
2006-237674 Sep 2006 JP
2006-270212 Oct 2006 JP
2006-270766 Oct 2006 JP
2006-285911 Oct 2006 JP
2006-295879 Oct 2006 JP
2006-302219 Nov 2006 JP
2006-309401 Nov 2006 JP
2006-311239 Nov 2006 JP
2006-323481 Nov 2006 JP
2007-007888 Jan 2007 JP
2007-13120 Jan 2007 JP
2007-043535 Feb 2007 JP
2007-048126 Feb 2007 JP
2007-65822 Mar 2007 JP
2007-79687 Mar 2007 JP
2007-81712 Mar 2007 JP
2007-096768 Apr 2007 JP
2007-102348 Apr 2007 JP
2007-122542 May 2007 JP
2007-124443 May 2007 JP
2007-150642 Jun 2007 JP
2007-150868 Jun 2007 JP
2007-156632 Jun 2007 JP
2007-159083 Jun 2007 JP
2007-159129 Jun 2007 JP
2007-228325 Sep 2007 JP
2007-266999 Oct 2007 JP
2007-312350 Nov 2007 JP
2008-72243 Mar 2008 JP
4069958 Apr 2008 JP
2008-160874 Jul 2008 JP
11-175678 Jan 2009 JP
2009-25870 Feb 2009 JP
2009-27291 Feb 2009 JP
9100176 Mar 1992 NL
9100347 Mar 1992 NL
9967754 Dec 1999 WO
0010122 Feb 2000 WO
02061675 Aug 2002 WO
02097723 Dec 2002 WO
03079305 Sep 2003 WO
2004036772 Apr 2004 WO
2004070879 Aug 2004 WO
2004072892 Aug 2004 WO
2005073937 Aug 2005 WO
2005115849 Dec 2005 WO
2006045682 May 2006 WO
2007083574 Jul 2007 WO
2007083575 Jul 2007 WO
2007119310 Oct 2007 WO
2007125683 Nov 2007 WO
2007138857 Dec 2007 WO
2008007606 Jan 2008 WO
2008140037 Nov 2008 WO
2009011376 Jan 2009 WO
2009081719 Jul 2009 WO
Non-Patent Literature Citations (94)
Entry
Official Communication issued in International Application No. PCT/JP2007/066007, mailed on Nov. 27, 2007.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/359,690, filed Jan. 26, 2009.
Dokai et al.: “Test System for Radio Frequency IC Devices and Method of Manufacturing Radio Frequency IC Devices Using The Same”; U.S. Appl. No. 12/388,826, filed Feb. 19, 2009.
Official Communication issued in International Application No. PCT/JP2008/061955, mailed on Sep. 30, 2008.
Official Communication issued in International Application No. PCT/JP2007/066721, mailed on Nov. 27, 2007.
Official Communication issued in International Application No. PCT/JP2007/070460, mailed on Dec. 11, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/390,556, filed Feb. 23, 2009.
Kato et al.: “Inductively Coupled Module and Item With Inductively Coupled Module”; U.S. Appl. No. 12/398,497, filed Mar. 5, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/050945, mailed on May 1, 2008.
Kato et al.: “Article Having Electromagnetic Coupling Module Attached Thereto”; U.S. Appl. No. 12/401,767, filed Mar. 11, 2009.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 12/326,117, filed Dec. 2, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/061442, mailed on Jul. 22, 2008.
Kato et al.: “Container With Electromagnetic Coupling Module”; U.S. Appl. No. 12/426,369, filed Apr. 20, 2009.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/429,346, filed Apr. 24, 2009.
English translation of NL9100176, published on Mar. 2, 1992.
English translation of NL9100347, published on Mar. 2, 1992.
Kato et al.: “Antenna”; U.S. Appl. No. 11/928,502, filed Oct. 30, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/211,117, filed Sep. 16, 2008.
Kato et al.: “Antenna”; U.S. Appl. No. 11/688,290, filed Mar. 20, 2007.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 11/740,509, filed Apr. 26, 2007.
Kato et al.: “Product Including Power Supply Circuit Board”; U.S. Appl. No. 12/234,949, filed Sep. 22, 2008.
Kato et al.: “Data Coupler”; U.S. Appl. No. 12/252,475, filed Oct. 16, 2008.
Kato et al.; “Information Terminal Device”; U.S. Appl. No. 12/267,666, filed Nov. 10, 2008.
Kato et al.: “Wireless IC Device and Wireless IC Device Composite Component”; U.S. Appl. No. 12/276,444, filed Nov. 24, 2008.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 12/326,916, filed Dec. 3, 2008.
Dokai et al.: “System for Inspecting Electromagnetic Coupling Modules and Radio IC Devices and Method for Manufacturing Electromagnetic Coupling Modules and Radio IC Devices Using the System”; U.S. Appl. No. 12/274,400, filed Nov. 20, 2008.
Kato: “Wireless IC Device”; U.S. Appl. No. 11/964,185, filed Dec. 26, 2007.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 12/336,629, filed Dec. 17, 2008.
Kato et al.: “Wireless IC Devices and Component for Wireless IC Device”; U.S. Appl. No. 12/339,198, filed Dec. 19, 2008.
Ikemoto et al.: “Wireless IC Device”; U.S. Appl. No. 11/851,651, filed Sep. 7, 2007.
Kataya et al.: “Wireless IC Device and Electronic Device”; U.S. Appl. No. 11/851,661, filed Sep. 7, 2007.
Dokai et al.: “Antenna and Radio IC Device”; U.S. Appl. No. 12/350,307, filed Jan. 8, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/056934, mailed on Jun. 30, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/903,242, filed Oct. 13, 2010.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/940,103, filed Nov. 5, 2010.
Kato et al.: “Wireless IC Device System and Method of Determining Authenticity of Wireless IC Device”; U.S. Appl. No. 12/940,105, filed Nov. 5, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059669, mailed on Aug. 25, 2009.
Kato et al.: “Component of Wireless IC Device and Wireless IC Device”; U.S. Appl. No. 12/944,099, filed Nov. 11, 2010.
Kataya et al.: “Radio Frequency IC Device and Electronic Apparatus”; U.S. Appl. No. 12/235,753, filed Sep. 23, 2008.
Official communication issued in counterpart European Application No. 08 77 7758, dated on Jun. 30, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103741, mailed on May 26, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103742, mailed on May 26, 2009.
Official communication issued in International Application No. PCT/JP2008/050358, mailed on Mar. 25, 2008.
Official communication issued in International Application No. PCT/JP2008/050356, mailed on Mar. 25, 2008.
Osamura et al.: “Packaging Material With Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,663, filed Aug. 6, 2009.
Osamura et al.: “Packaging Material With Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,669, filed Aug. 6, 2009.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device,” U.S. Appl. No. 12/543,553, filed Aug. 19, 2009.
Shioya et al.: “Wireless IC Device,” U.S. Appl. No. 12/551,037, filed Aug. 31, 2009.
Ikemoto: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/579,672, filed Oct. 15, 2009.
Official communication issued in International Application No. PCT/JP2008/058614, mailed on Jun. 10, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/071502, mailed Feb. 24, 2009.
Kato et al.: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/432,854, filed Apr. 30, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/058168, mailed Aug. 12, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/062886, mailed Oct. 21, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/469,896, filed May 21, 2009.
Ikemoto et al.: “Wireless IC Device,” U.S. Appl. No. 12/496,709, filed Jul. 2, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/062947, mailed Aug. 19, 2008.
Official communication issued in counterpart Application No. PCT/JP2008/056026, mailed Jul. 1, 2008.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus,” U.S. Appl. No. 12/503,188, filed Jul. 15, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/055567, mailed May 20, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/051853, mailed Apr. 22, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/057239, mailed Jul. 22, 2008.
Kimura et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,338, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,340, filed Jul. 28, 2009.
Kato: “Wireless IC Device,” U.S. Appl. No. 12/510,344, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,347, filed Jul. 28, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/063025, mailed on Aug. 12, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/603,608, filed Oct. 22, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/688,072, filed Jan. 15, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053693, mailed on Jun. 9, 2009.
Kato.: “Composite Antenna,” U.S. Appl. No. 12/845,846, filed Jul. 29, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053690, mailed on Jun. 2, 2009.
Kato et al.: “Radio Frequency IC Device and Radio Communication System,” U.S. Appl. No. 12/859,340, filed Aug. 19, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/055758, mailed on Jun. 23, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/859,880, filed Aug. 20, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/057482, mailed on Jul. 21, 2009.
Kataya et al.: “Wireless IC Device, Electronic Apparatus, and Method for Adjusting Resonant Frequency of Wireless IC Device,” U.S. Appl. No. 12/861,945, filed Aug. 24, 2010.
Kato: “Wireless IC Device and Electromagnetic Coupling Module,” U.S. Appl. No. 12/890,895, filed Sep. 27, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059410, mailed on Aug. 4, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/902,174, filed Oct. 12, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059259, mailed on Aug. 11, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-506742, mailed on Apr. 6, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/056698, mailed on Jul. 7, 2009.
Official communication issued in Japanese Application No. 2007-531524, mailed on Sep. 11, 2007.
Official communication issued in Japanese Application No. 2007-531525, mailed on Sep. 25, 2007.
Official communication issued in Japanese Application No. 2007-531524, mailed on Dec. 12, 2007.
Official communication issued in European Application No. 07706650.4, mailed on Nov. 24, 2008.
Mukku-Sha, “Musen IC Tagu Katsuyo-no Subete” “(All About Wireless IC Tags”), RFID, pp. 112-126.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 11/624,382, filed Jan. 18, 2007.
Dokai et al.: “Wireless IC Device, and Component for Wireless IC Device”; U.S. Appl. No. 11/930,818, filed Oct. 31, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/042,399, filed Mar. 5, 2008.
Official communication issued in related U.S. Appl. No. 12/042,399; mailed on Aug. 25, 2008.
Official Communication issued in corresponding Chinese Patent Application No. 200880000137, mailed on Mar. 29, 2012.
Official Communication issued in corresponding Japanese Patent Application No. 2008-104960, mailed on Mar. 13, 2012.
Related Publications (1)
Number Date Country
20110074584 A1 Mar 2011 US
Continuations (3)
Number Date Country
Parent 12235753 Sep 2008 US
Child 12959454 US
Parent PCT/JP2008/052129 Feb 2008 US
Child 11851661 US
Parent PCT/JP2008/055962 Mar 2008 US
Child PCT/JP2008/052129 US
Continuation in Parts (1)
Number Date Country
Parent 11851661 Sep 2007 US
Child 12235753 US