This invention relates to the field of nanotechnology, and more particularly to a reactor and method for the production of nanostructures, such as nanowires and nanoparticles.
Nanostructures, such as nanowires and nanoparticles, can have unique applications and are beginning to be used in electronics, optoelectronics, electrochemical cells, nanoelectromechanical devices, catalysis, and several other fields. Unique properties of nanowires include high aspect ratio, low conductivity, high surface to volume ratio and enhanced material characteristics due to quantum confinement effects. Synthesis of bulk quantities of nanowires with controlled composition, crystallinity, and morphology is important to continued development and commercialization of nanowire technology. For many applications, nanowire quantities of several grams or more are needed. Similarly, bulk production of nanoparticles are needed.
Metal oxide nanowires have been synthesized in a variety of ways. Some of these methods include (i) direct plasma and thermal oxidation using hydrogen and oxygen-containing gas phase of low-melting metal melts supplied through the gas phase onto a substrate; (ii) chemical vapor transport of metal using hot-filaments onto substrates using chemical vapor deposition in low oxygen-containing atmospheres; (iii) exposure of metal foils to low-pressure, weakly ionized, fully dissociated, cold oxygen plasmas; (iv) chemical vapor deposition of metal oxides in the presence of catalysts, e.g., iron metal particles; (v) thermal evaporation synthesis of zinc oxide nanowires; and (vi) synthesis of zinc oxide nanowires using a radio-frequency (RF), high power plasma.
Many of the previously-described approaches involve nanowire synthesis on a substrate. Other approaches have used catalysts or high temperature evaporation of a precursor. It can be difficult, time consuming, and expensive to produce large quantities of nanowires using these methods.
Other approaches, such as synthesis of zinc oxide nanowires using an RF, high power plasma, have not proven the ability to produce nanowires in a consistent, efficient, and cost-effective manner. See Peng, et al., “Plasma Synthesis of Large Quantities of Zinc Oxide Nanorods,” J. Phys. Chem., 111, 194-200 (2000). Attempts to use RF, high power plasmas to produce nanowires suffer the drawbacks of requiring high power input, high gas flow rates, and careful control of reaction temperature gradients. See id. Alternatives to nanowire synthesis which overcome the limitations of the known processes are needed. Similarly, alternatives to nanoparticle synthesis which overcome the limitations of the known processes are needed.
The present invention includes a reactor and method for production of nanostructures, for example, metal oxide nanowires and nanoparticles.
The present invention includes a reactor for producing metal oxide nanostructures, such as nanowires and nanoparticles. In one embodiment, the reactor comprises a metal powder delivery system wherein the metal powder delivery system includes a funnel in communication with a dielectric tube; a plasma-forming gas inlet also in communication with the dielectric tube, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet also in communication with the dielectric tube, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into the dielectric tube and to the plasma-forming gas. In one embodiment, the reactor further includes a recycle system to recycle unreacted metal to a plasma formed in the dielectric tube.
The present invention also includes a method for producing metal oxide nanostructures, such as nanowires and nanoparticles. In some embodiments, the method comprises delivering a plasma-forming gas substantially longitudinally into a dielectric tube; delivering a sheath gas into the dielectric tube; forming a plasma from the plasma-forming gas by applying microwave energy to the plasma-forming gas; delivering a metal powder into the dielectric tube; and reacting the metal powder within the plasma at a certain microwave energy level to form metal oxide nanowires or metal oxide nanoparticles. In one embodiment, the method further includes delivering a bulk of the metal powder substantially into the center of the plasma.
The present invention produces bulk quantities of nanostructures, such as nanowires and nanoparticles quickly and at a fraction of the cost of known processes for making nanostructures. Practice of the present invention produces bulk quantities of highly pure metal oxide nanostructures using a high throughput plasma reactor. By using the reactors and methods described herein, nanostructures can be produced very quickly. In some embodiments, reacting metal powders into metal oxides nanostructures can take less than one second. For example, it can take only about one minute to produce about 10 grams of nanostructures. The reactor and methods described herein can be used to produce nanostructures in quantities of a kilogram, or more, per day.
The present invention can be used to produce highly pure nanostructure products. Since there is no need for any catalyst, substrate, or template to produce nanostructures, foreign material contamination of the nanostructure product can be avoided or minimized. In contrast, nanostructure products made using known synthesis methods often contain materials other than the nanostructure such as catalyst particles. Because the nanostructure products produced by the present invention are highly pure, expensive and time consuming purification processes can be minimized or even avoided completely.
The present invention can be used to produce nanostructures more cost effectively than known synthesis methods. For example, the present invention does not use high power or high temperatures which are associated with known processes for preparing nanostructures. Reactor designs described herein can be continuously operated for extended periods of time without significant heating of the reactor. Thus, the present invention can avoid the expenses associated with high power and high temperature operation. In addition, the present invention does not use catalysts, substrates, or templates and thus can achieve cost savings over known processes that require such materials. Further, the present invention can produce nanostructures without using expensive precursor materials such as, for example, precursor materials used in thermal evaporation processes. The present invention has demonstrated, in one embodiment, reaction efficiency of about 90% when 100 nm metal powder particles were used.
In some embodiments, the present invention uses lower gas volumes than known processes for making nanostructures in the gas phase. A lower gas volume can reduce waste disposal expenses and can also simplify separation procedures used to recover nanostructure products from process gases. Lower gas volumes can also reduce the amount of heat input that is necessary to provide appropriate conditions for making nanostructures.
The reactor of the present invention can be modular and can be easily adapted or modified to suit production needs. Further, because the reactor can be modular, the reactor can be easily serviced, for example, by swapping reactor components as needed.
In some embodiments, the plasma is formed at pressures at or near atmospheric pressure. Practice of the present invention at or near atmospheric pressure can produce nanostructures without the use of expensive vacuum components.
A description of example embodiments of the invention follows.
Nanostructures can be described in terms of their longest and shortest dimensions. For example, the aspect ratio of a nanostructure is the ratio of a nanostructure's longest dimension to the nanostructure's shortest dimension. Generally, a nanoparticle is a nanostructure having an aspect ratio of 1. In some embodiments, a nanoparticle is a nanostructure having a diameter of the nanoscale, that is, from 1 nanometer to hundreds of nanometers, but below 1 micron. Generally, a nanowire is a nanostructure that has an aspect ratio greater than 1, i.e., the nanoparticle's longest dimension is greater than the particle's shortest dimension. As used herein, the term “nanowire” refers to a nanostructure that has an aspect ratio greater than 1. In some embodiments, the nanowires of the present invention have an aspect ratio, e.g., an individual or an average aspect ratio, of at least 1.5 such as at least about 2. In other embodiments, the nanowires of the present invention have an aspect ratio e.g., an individual or an average aspect ratio, of at least about 10, at least about 50, or at least about 75, for example, the nanowires can have an aspect ratio of about 10 to about 150 or about 50 to about 125, such as about 100. In some instances, the nanowires can have a length of about 1 to about 20 microns such as, for example, about 10 microns and a diameter of about 20 to about 200 nanometers (nm) such as, for example, about 100 nanometers.
As the term is used herein, “nanowires” can include individually separate nanowires as well as intertwined or connected nanowires. For example, in one embodiment of the invention, nanowires are joined together or agglomerated to form a star-burst shaped mass. See, for example,
As the term is used herein, “nanoparticles” can include individually separate nanoparticles as well as connected nanoparticles. For example, in one embodiment of the invention, nanoparticles are joined together or agglomerated. See, for example,
Unless otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about”. Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently disclosed subject matter.
As used herein, the term “about,” when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed method.
The present invention includes a reactor for producing metal oxide nanostructures. In one embodiment, the reactor includes a metal powder delivery system wherein the metal powder delivery system includes a funnel in communication with a dielectric tube; a plasma-forming gas inlet also in communication with the dielectric tube, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet also in communication with the dielectric tube, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into the dielectric tube and to the plasma-forming gas.
As the term is used herein, “longitudinally” or “longitudinal” means “along the major (or long) axis” as opposed to latitudinal which means “along the width, transverse, or across.” For example, in one embodiment of the invention, plasma-forming gas is delivered substantially into and along the length of the dielectric tube.
Dielectric tube 14 can be made of any one of several dielectric materials known to those of ordinary skill in the art. For example, in one embodiment, dielectric tube 14 is a quartz tube or a tube of a related material. In other embodiments, dielectric tube is a ceramic or a related material. Dielectric tube 14 can have an inside diameter, for example, of about 1 millimeter (mm) to about 60 mm such as about 5 to about 10 mm, about 10 to about 65 mm, about 10 to about 50 mm, about 10 to about 40 mm, about 15 to about 25 mm, about 15 to about 35 mm, about 20 to about 25 mm, or about 20 to about 30 mm. Without being held to any particular theory, it is believed that the diameter of the dielectric tube is important so that the plasma (described in more detail infra) distributes uniformly within the tube. Preferably, the plasma should occupy a large portion of the tube's cross section without touching or melting the tube. It is thought that a dielectric tube that is substantially larger in diameter than the plasma formed within can result in substantial quantities of unreacted metal powder during operation of the reactor.
In some instances, the diameter of the dielectric tube changes as a function of the tube's length. For example, the diameter of the dielectric tube can be smaller in the section of the tube in which a plasma is generated and larger downstream of the plasma. In one embodiment, the inside diameter of the dielectric tube is about 22 mm in the section of the tube in which a plasma is generated and is about 10 centimeters (cm) in diameter further downstream. It is thought that by increasing the diameter of the dielectric tube downstream of the plasma, wall deposition of particles can be reduced. In some instances, however, the diameter of the dielectric tube can be chosen to encourage deposition of particles on the walls of the dielectric tube. For example, relatively small dielectric tube diameters are believed to contribute to increased particle deposition on the walls of the dielectric tube during operation of the reactor.
Dielectric tube 14 can have a length, for example, of about 20 centimeters (cm) to about 200 cm. In one particular embodiment, dielectric tube 14 has a length of about 75 cm. Proper orientation of dielectric tube 14 can be determined depending on the particular process requirements. In one instance, dielectric tube 14 can be vertical. In other instances, dielectric tube 14 can be angled or horizontal.
Sheath gas inlets 16 and 18 are in communication with dielectric tube 14 and can be used to deliver a sheath gas to dielectric tube 14. In another embodiment, sheath gas inlets 16 and 18 can be configured to deliver either a sheath gas or a plasma-forming gas, or both a sheath gas and a plasma-forming gas, to dielectric tube 14. Sheath gas inlet 16 and sheath gas inlet 18 can be angled with respect to a longitudinal axis of the dielectric tube. In some instances, only one of sheath gas inlet 16 or sheath gas inlet 18 is angled with respect to a longitudinal axis of the dielectric tube. For example, one or both gas inlets can be angled at less than 90° such as at about 10° to about 80°, about 15° to about 75°, about 20° to about 70°, about 25° to about 65°, about 30° to about 60°, about 40° to about 50°, such as about 45°, about 42°, about 44°, about 46°, or about 48°, with respect to a longitudinal axis of the dielectric tube. In some embodiments, the angle of a gas inlet can produce a helical gas path in the dielectric tube when gas is delivered through the gas inlet. For example, the angle of a gas inlet can produce a helical sheath gas path in the dielectric tube when sheath gas is delivered through the gas inlet. A helical sheath gas path in the dielectric tube can help to contain the plasma and keep the dielectric tube cool during operation of the reactor.
Microwave energy generator 20 can include, for example, magnetron 22, circulator 24, power detector 26 (e.g., a forward and reflected power detector), tuner 28 (e.g., a three stub tuner), and load 30. Microwave energy generator 20 can be coupled to dielectric tube 14 via coupler 32. In one embodiment, coupler 32 is a tapered waveguide which surrounds dielectric tube 14. Microwave energy produced by microwave energy generator 20 is delivered to dielectric tube 14 via coupler 32. In some embodiments, microwave energy generator 20 produces microwave energy at 2.45 gigahertz (GHz).
Microwave energy produced by microwave energy generator 20 is delivered to the plasma-forming gas contained in dielectric tube 14 to produce plasma 34. With reference to
Referring again to
Reactor 10 can also include a nanostructure product collector such as product gathering cup 40. In some embodiments, the nanostructure product collector contains a baffle or other device to slow gas velocity and disentrain nanostructure product from the reaction product stream. In another embodiment, the nanostructure product collector is a powder collecting cup wherein the diameter of the powder collecting cup is less than the inner diameter of the dielectric tube so that gases can escape from the bottom of the powder collecting cup. In additional embodiments, a powder collecting cup is porous to the gases so that the gases can escape through the powder collecting cup. Excesses gases can be vented, for example, via exhaust line 42.
In one embodiment, reactor 10 includes inlet port 44 for introducing a precursor feed for downstream reaction. For example, inlet port 44 can be used to introduce a precursor feed for thin film formation.
In one embodiment, reactor 10 does not contain any additional heating elements or any additional heat insulating materials. For example, in some embodiments, dielectric tube 14 is not covered with heat insulation. In additional embodiments, reactor 10 does not contain any igniters to ignite the plasma. For example, reactor 10 does not contain any ignition device to ignite the plasma. In one particular embodiment, microwave energy produced by microwave energy generator 20 is delivered to dielectric tube 14 via coupler 32 and the microwave energy is capable of igniting the plasma. In another embodiment, a metal ignition rod with pointed ends (not illustrated) is used to ignite the plasma.
In one aspect, the present invention also includes a reactor for forming nanostructures from a precursor such as, for example, a metal organic precursor or a carbon nanotube precursor. For example, a reactor for producing nanostructures from a precursor can comprise: a precursor delivery system, wherein the precursor delivery system includes a funnel in communication with a dielectric tube; a plasma-forming gas inlet also in communication with the dielectric tube, whereby a plasma-forming gas is delivered substantially longitudinally into the dielectric tube; a sheath gas inlet also in communication with the dielectric tube, whereby a sheath gas is delivered into the dielectric tube; and a microwave energy generator coupled to the dielectric tube, whereby microwave energy is delivered into the dielectric tube and to the plasma-forming gas. Suitable components and configuration for such a reactor are described supra with respect to the reactor for producing metal oxide nanostructures. In one embodiment, the precursor delivery system can be substantially the same as the metal powder delivery system described herein.
The present invention also includes a method for producing metal oxide nanostructures. In some embodiments, the method includes delivering a plasma-forming gas substantially longitudinally into a dielectric tube; delivering a sheath gas into the dielectric tube; forming a plasma from the plasma-forming gas by applying microwave energy to the plasma-forming gas; delivering a metal powder into the dielectric tube; and reacting the metal powder within the plasma to form metal oxide nanostructures.
The methods for producing metal oxide nanostructures described herein involve the production of nanostructures directly in the vapor phase without the need for any catalyst, substrate, or template. Nanostructures can be formed of metal oxides such as, for example, tin oxide, zinc oxide, tungsten oxide, titanium dioxide, iron oxide, gallium oxides, indium oxides, bismuth oxides, niobium pentoxide, aluminum oxides, vanadium pentoxide, cooper oxides, alloy oxides, and the like, and combinations thereof, by using the appropriate metal feed. The methods and reactor described herein can also be used to produce sulfide and nitride nanostructures using, for example, an appropriate gas-phase chemistry feed. In addition, carbon nanotubes (CNT) can be formed using the methods and reactor described herein, for example, using iron and hydrocarbon species in a vapor phase feed.
A method for producing metal oxide nanostructures can include delivering a plasma-forming gas into a dielectric tube. In one embodiment, a method for producing metal oxide nanostructures includes delivering a plasma-forming gas substantially longitudinally into a dielectric tube. Delivering the plasma-forming gas substantially longitudinally into a dielectric tube can help to keep the plasma centered in the dielectric tube. In some embodiments, the plasma-forming gas is delivered in a helical gas path into the dielectric tube. The plasma-forming gas can include, for example, argon gas. The plasma-forming gas can also include an oxidative gas such as oxygen. In some instances, the plasma-forming gas can include water vapor. In some embodiments, the plasma-forming gas can include hydrogen gas.
In some embodiments, the plasma-forming gas is delivered into the dielectric tube at a flow rate of less than about 10 slpm, for example, about 1 to about 5 slpm, about 2 to about 4 slpm, or about 2 slpm. In one embodiment, the diameter of the dielectric tube is about 22 mm in diameter, thus, in some embodiments, the plasma-forming gas is delivered into the dielectric tube to produce a plasma-forming gas velocity within the dielectric tube of less than about 26.3 meters/min (m/min), for example, about 2.6 to about 13.2 m/min, about 5.3 to about 10.5 m/min, or about 5.3 m/min at standard conditions. In some instances, the plasma-forming gas is delivered into the dielectric tube to produce a plasma-forming gas velocity within the dielectric tube of less than about 30 m/min, for example, about 2 to about 15 m/min, about 5 to about 10 m/min, or about 5 m/min at standard conditions. The plasma-forming gas can include an oxidative gas such as, for example, oxygen gas. In some embodiments, an oxidative gas is delivered into the dielectric tube at a flow rate of equal to or less than about 500 sccm, for example, about 10 to about 500 sccm, 20 to about 400 sccm, 30 to about 300 sccm, about 50 to about 200 sccm, about 75 to about 150 sccm, 50 to about 150 sccm, or about 100 sccm. In one embodiment, the diameter of the dielectric tube is about 22 mm in diameter, thus, in some embodiments, the oxidative gas is delivered into the dielectric tube to produce a oxidative gas velocity within the dielectric tube of less than about 1.3 m/min, for example, about 0.03 to about 1.3 m/min, about 0.1 to about 0.5 m/min, about 0.2 to about 0.4 m/min, or about 0.26 m/min at standard conditions. In some instances, the oxidative gas is delivered into the dielectric tube to produce an oxidative gas velocity within the dielectric tube of less than about 2 m/min, for example, about 0.01 to about 1.5 m/min, about 0.1 to about 0.5 m/min, or about 0.2 to about 0.4 m/min at standard conditions.
Suitable dielectric tubes for use in the method are described supra. In one particular embodiment, the dielectric tube is made of quartz.
A method for producing metal oxide nanostructures can further include delivering a sheath gas into the dielectric tube. Use of a sheath gas can allow the operation of a plasma inside the dielectric tube for extended periods of time. The sheath gas can include, for example, air or nitrogen. In one particular embodiment, the sheath gas is air. The sheath gas can be delivered into the dielectric tube to form a helical sheath gas path. A helical sheath gas path in the dielectric tube can help to contain the plasma and keep the dielectric tube cool during operation of the reactor. Examples of suitable apparatus for producing a helical sheath gas path are described supra.
In some embodiments, the sheath gas is delivered into the dielectric tube at a flow rate of less than about 10 slpm, for example, about 1 to about 8 slpm, about 3 to about 6 slpm, about 4 to about 5 slpm, or about 5 slpm. In one embodiment, the diameter of the dielectric tube is about 22 mm in diameter, thus, in some embodiments, the sheath gas is delivered into the dielectric tube to produce a sheath gas velocity within the dielectric tube of less than about 26.3 m/min, for example, about 2.6 to about 21 m/min, about 7.9 to about 15.8 m/min, about 10.5 to about 13.2 m/min, or about 13.2 m/min at standard conditions. In some instances, the sheath gas is delivered into the dielectric tube to produce a sheath gas velocity within the dielectric tube of less than about 30 m/min, for example, about 1 to about 25 m/min, about 5 to about 20 m/min, or about 10 to about 15 m/min at standard conditions.
In addition, a plasma-forming gas can be delivered to the dielectric tube concurrently with a sheath gas. For example, a plasma-forming gas and a sheath gas can be mixed and delivered into the dielectric tube to form a helical sheath gas path via, for example, angled sheath gas inlets. Alternatively, a plasma-forming gas and a sheath gas can be delivered into the dielectric tube separately to form concurrent helical sheath gas paths via, for example, separate angled gas inlets. Examples of suitable apparatus for producing a helical sheath gas path are described supra.
A method for producing metal oxide nanostructures can further include forming a plasma from the plasma-forming gas by applying microwave energy to the plasma-forming gas. In one particular embodiment, the microwave energy is 2.45 GHz. In some embodiments, the power of microwave energy applied to the plasma-forming gas is less than about 15 kilowatts (kW), less than about 10 kW, or less than 8 kW. For example, the power of microwave energy applied to the plasma-forming gas can be about 300 watts (W) to about 8 kW such as about 500 W to about 2 kW, or about 1 kW to about 1.5 kW. When microwave energy is applied to the plasma-forming gas, a plasma, e.g., a plasma jet, can form in the dielectric tube. In one particular embodiment, microwave energy is delivered to the dielectric tube via a coupler and the microwave energy is used to ignite the plasma. In another embodiment, a metal ignition rod with pointed ends is used to ignite the plasma.
Without being held to any particular theory, it is believed that the metal oxide nanowires are formed under molten conditions and not vaporization conditions, while nanoparticles are formed when the feed metal is vaporized. Under molten conditions, the metal particles are reacted with the plasma at temperatures close to the metal's melting point. The molten metal forms metal oxide nanowires when oxygen reacts with the molten metal. By increasing the microwave power to increase the temperature in the reactor, vaporization conditions favorable to forming metal oxide nanoparticles occur. In other words, at higher temperatures, the metal particles are vaporized into very small nuclei (of a few nanometers) and during their fall in the quartz tube, where the temperature decreases, they begin to condense, form solid metal oxide nanoparticles, and also agglomerate.
Thus, a higher microwave power is needed to form nanoparticles compared to nanowire formation for the same feed metal. For example, to form titanium metal (titania) nanoparticles, the microwave power is required to be greater than about 1000 W, while a microwave power of less than about 1000, and more specifically, about 700 W, is required to form titanium oxide nanowires in the above described reactors. As another example, to form aluminum oxide (alumina) nanoparticles, the microwave power is required to be equal to or greater than about 1300 W, while a microwave power of less than about 1300 W, and more specifically, about 800 W, is required to form aluminum oxide nanowires in the above described reactors.
The gas pressure in the dielectric tube can range, for example, from a few torr to one atmosphere or more. In a specific embodiment, the gas pressure in the dielectric tube ranges from a few torr to about one atmosphere. The length of the plasma can be varied by changing the gas flow rates or by changing the microwave power. In some embodiments, the length of the plasma in the dielectric tube is about 1 to about 30 cm in length. The length of the plasma in the dielectric tube can be varied to alter the production of nanostructures in the plasma. The flame of the plasma can be stabilized by using a stub tuner and by adjusting the gas flow rates. Typically, the gases are introduced to the dielectric tube, the plasma is stabilized and the reflected power is minimized. In one aspect, the present method includes controlling the plasma uniformity inside the dielectric tube by adjusting the microwave power or the gas flow rates. By adjusting the plasma uniformity or length, it is believed that the morphology of the nanostructures and the efficiency of conversion can be adjusted. Generally, longer and more uniform plasmas are preferred.
In some embodiments, the temperatures of the gases in the reactor do not need to be carefully controlled. For example, in one embodiment, no heat insulation is used to cover the dielectric tube or to control the temperature of gases in the dielectric tube. Generally, the reaction of metal powder to metal oxide nanostructures occurs within the plasma and is complete, or substantially complete, upon exiting the plasma so that careful control of the gas temperature outside of the plasma can be unnecessary.
Examples of suitable apparatus for applying microwave energy to a plasma-forming gas are described supra.
In some instances, the plasma-forming gas can include hydrogen gas. In one embodiment, hydrogen gas is mixed with another plasma-forming gas such as argon and then fed to the dielectric tube. In another embodiment, hydrogen gas is concurrently fed to the dielectric tube along with another plasma-forming gas, such as argon. Without being held to any particular theory, it is believed that the introduction of hydrogen gas can reduce the microwave power needed to produce nanowires as compared to the same process which does not use hydrogen gas. It is also believed that hydrogen gas plasma can etch nanoparticles or form nanowires and thereby improve the production efficiency or quality of nanostructures.
In one embodiment, instead of, or in addition to, supplying sheath gas and a plasma-forming gas such as argon to the dielectric tube, water vapor can serve as the plasma-forming gas. For example, steam can be generated and introduced to the dielectric tube, for example, in a helical gas flow pattern. Water splitting into species such as H, O, OH, H2, and O2 and also remaining or forming H2O can be used to produce high density plasma. In some embodiments, such a plasma can form thinner and higher quality nanostructures due to better etching properties of H2 and OH.
A method for producing metal oxide nanostructures further includes delivering a metal powder (or metal-containing precursor) into the dielectric tube and reacting the metal powder within the plasma to form metal oxide nanostructures. Appropriate metal powders (or metal-containing precursors) can be selected based upon the desired composition of the nanostructures. Examples of metal powders suitable for use in this invention include tin, zinc, tungsten, titanium, iron, gallium, indium, bismuth, niobium, aluminum, vanadium, copper, alloys, and the like, and combinations thereof. In some embodiments, the powder consists of a particle having a particle diameter of less than about 20 microns such as less than about 15 microns, less than about 10 microns, less than about 5 microns, or less than about 1 micron. Generally, relatively small powders result in greater one pass efficiency in the production of nanowires.
In one embodiment, metal powder (or metal-containing precursor) is delivered into the dielectric tube via gravity feed and is conveyed into the plasma by gravity. Alternatively, the metal powder (or metal-containing precursor) can be delivered into the dielectric tube via pressure, e.g., by pressurized gas, or via a mechanical dispensing system. In one embodiment, the metal powder (or metal-containing precursor) is entrained within the plasma-forming gas.
In one embodiment, a bulk of the metal powder (or metal-containing precursor) is delivered substantially into the center of the plasma. For example, the metal powder can be delivered to the dielectric tube via a funnel such as a conical funnel. By using a funnel to deliver the metal powder, the metal powder can be directed into the center of the plasma. In one embodiment, the metal powder is delivered into the dielectric tube via a cooled metal powder delivery system.
Examples of suitable apparatus for delivering a metal powder (or metal-containing precursor) into a dielectric tube are also described supra. For example, an apparatus such as that shown in
In one embodiment, wherein a portion of the metal powder delivered to the dielectric tube does not react to form metal oxide nanostructures, the method of the present invention further includes separating nanostructures from a stream of nanostructures and unreacted metal powder. Examples of suitable apparatus for separating nanostructures from a stream of nanostructures and unreacted metal powder are described supra.
In one embodiment of the invention, wherein a portion of the metal powder delivered to the dielectric tube does not react to form metal oxide nanostructures, the method of the present invention further includes recycling unreacted metal powder into the plasma. In some embodiments, fresh metal powder feed can be added to the recycled metal powder before feeding the combined stream into the plasma. By recycling unreacted metal powder back to the plasma, efficiency of the process can be enhanced, waste materials can be reduced, continuous production of nanostructures can be achieved, and purity of the nanostructure product can be increased.
Examples of suitable apparatus for recycling unreacted metal powder into the plasma are described supra.
In one embodiment, a precursor feed can be added to the reaction product stream downstream of the plasma for further reaction. For example, a precursor feed can be added downstream of the plasma to promote thin film formation.
In one particular embodiment, production of metal oxide nanostructures is conducted at less than about 1000 W of plasma power in an atmosphere of about 5 slpm, about 2 slpm argon, and about 100 sccm oxygen. Metal powder or granules are allowed to fall under gravity through a plasma jet in a quartz tube, the metal granules are melted to form metal oxide nanowires, and the metal oxide nanowires are collected from the bottom of the dielectric tube.
In another particular embodiment, production of metal oxide nanoparticles is conducted at equal to or greater than about 1000 W of plasma power in an atmosphere of about 5 slpm, about 2 slpm argon, and about 100 sccm oxygen. Metal powder or granules are allowed to fall under gravity through a plasma jet in a quartz tube, the metal granules are vaporized within the plasma to form metal oxide nanoparticles, and the metal oxide nanoparticles are collected from the bottom of the dielectric tube.
In one embodiment, a method for producing nanostructures further includes delivering a precursor, e.g., a metal organic precursor such as a carbon nanotube precursor, into the dielectric tube and reacting the precursor within the plasma to form nanostructures. In each instance of the present disclosure, a metal-containing precursor such as a metal-containing organic precursor such as a carbon nanotube precursor, can be substituted for the metal powder in a reactor and method to form nanostructures from the precursor. For example, in some aspects, the present invention includes a method for producing nanostructures comprising: delivering a plasma-forming gas substantially longitudinally into a dielectric tube; delivering a sheath gas into the dielectric tube; forming a plasma from the plasma-forming gas by applying microwave energy to the plasma-forming gas; delivering a precursor into the dielectric tube; and reacting the precursor within the plasma to form nanostructures. The precursor can include a metal organic precursor such as a carbon nanotube precursor, e.g., an iron and hydrocarbon species in a vapor phase feed.
In one aspect, the method for producing nanostructures further includes depositing nanostructures in a thin film or in an array onto a suitable substrate, for example, using downstream plasma oxidation of metal film coated substrates or metal substrates.
The methods and apparatus described herein can be used in both batch and continuous processes for the production of nanostructures. In one embodiment, nanostructures are deposited on the sides of a dielectric tube and, after operation of the reactor for a period of time, the nanostructures are recovered from the sides of the dielectric tube. In other embodiments, nanostructures are continuously collected from the reactor during its operation.
The methods for producing nanowires described herein can be performed individually, in parallel with other nanostructure production processes, or in series with other nanostructure production processes. For example, in one embodiment, the products from one nanostructure production process can be fed to another nanostructure production process to form a continuous production route.
The reactor and methods of the present invention can be used to produce highly pure nanostructure products. In some embodiments, the nanostructure products do not contain any foreign material contamination such as, for example, catalyst, substrate, or template materials. In particular embodiments, the nanostructure products contain less than about 5%, less than about 1%, less than about 0.5%, less than about 0.1%, less than about 0.01%, or less than about 0.001% by weight foreign material contamination. For example, the nanostructure products can contain at least about 99%, at least about 99.9%, at least about 99.99%, or at least about 99.999% metal oxide by weight. In some preferred embodiments, highly pure nanostructure products are produced without additional purification or separation of the nanostructure products exiting the reactor.
The metal oxide nanowires of Examples 1 to 4 and 6 were produced using the reactor illustrated in
Tin granules (separately, less than about 10 microns (tin powder, spherical, <10 microns, 99%, Catalog No. 520373 from Sigma Aldrich) and then greater than about 100 nm (tin powder, APS approx. 0.1 micron, Catalog No. 43461 from Alfa Aesar)) were allowed to fall under gravity through the plasma jet in the quartz tube and nanowires were collected from the bottom of the tube. The obtained nanowires were tin oxide and had diameters ranging from about 50 to about 500 nanometers and lengths of about 1 to about 10 microns.
The products obtained using the two different tin metal diameter precursors (about 10 micron and about 100 nm) under the same operating conditions were imaged using SEM. The about 100 nm metal produced more uniform nanowires and about 90% conversion efficiency. The about 10 micron metal had less conversion efficiency (20-30%) and produced less uniform nanowires. Thus, smaller metal powders appeared to produce better results than larger metal powders.
Zinc metal powder or granules (<50 nm particle size, 99+%, Catalog No. 578002 from Sigma Aldrich) (observed to be greater than 100 nm under SEM) were allowed to fall under gravity through the plasma jet in the quartz tube and nanowires were collected from the bottom of the tube. The obtained nanowires were zinc oxide and had diameters ranging from about 100 to about 500 nm and lengths of about 1 to about 10 microns.
Titanium metal powder or granules (greater than about 10 microns) (titanium powder, spherical, 150 mesh, 99.9%, Catalog No. 41545 from Alfa Aesar) were allowed to fall under gravity through the plasma jet in the quartz tube and nanowires were collected from the bottom of the tube. The obtained nanowires were made of titania and had diameters from about 100 to about 500 nm and lengths of about 1 to about 10 microns. The microwave power for form titania nanowires was at less than about 1000 W, and more specifically, about 700 W.
Copper-zinc alloy powder or granules (about 100 nm) (Catalog No. 593583 from Sigma Aldrich) were allowed to fall under gravity through the plasma jet in the quartz tube and the reaction product was collected from the bottom of the dielectric tube. The obtained product took the form of copper-zinc oxide nanowires/nanobelts and had diameters from about 100 to about 800 nm and lengths of about 10 to about 50 microns.
Using the reactor illustrated in
Very high quality (with diameters less than about 100 nm, uniform size distribution, and a low percentage of other nanostructures) tin oxide nanowires were produced and collected in a nanowire product collector as shown in
Using the reactor illustrated in
Very high quality (with diameters less than about 100 nm, uniform size distribution, and a low percentage of other nanostructures) tin oxide nanowires were produced and collected in a nanowire product collector as shown in
Aluminum metal powder or granules (about 3-4.5 microns in size) (Aluminum powder, spherical, 97.5%, Catalog No. 41000 from Alfa Aesar) were allowed to fall under gravity through the plasma jet in the quartz tube and nanowires were collected from the bottom of the tube. The obtained nanowires were made of alumina and had diameters from about 100 to about 500 nm and lengths of about 1 to about 10 microns.
Aluminum metal powder or granules (about 3 to about 10 microns) (Aluminum metal powder, spherical, 97.5%, Catalog No. 41000 from Alfa Aesar) were allowed to fall under gravity through the plasma jet in the quartz tube and nanoparticles were collected from the bottom of the tube. In this case, the microwave power required to form nanoparticles is greater than that required to form nanowires. For example, to form alumina nanoparticles, the microwave power must be equal to or greater than about 1300 W with about 10 slpm air, about 2 slpm Argon, about 100 sccm of H2 and about 500 sccm of O2. At lower microwave powers, such as less than about 1300 W, and more specifically, about 800 W, alumina nanowires were formed. The obtained nanoparticles were made of alumina and had diameters from about 50 to about 100 nm. Without being held to any particular theory, it is believed that nanoparticle formation occurs only under the vaporization conditions of the higher microwave power and not in molten conditions.
Titanium metal powder or granules (greater than about 10 microns, about 20 to about 100 microns) (titanium powder, spherical, 150 mesh, 99.9%, Catalog No. 41545 from Alfa Aesar) were allowed to fall under gravity through the plasma jet in the quartz tube and nanoparticles were collected from the bottom of the tube. In this case, the microwave power required to form titania nanoparticles is about 1000 W with about 10 slpm air, about 2 slpm Argon, about 100 sccm of H2 and about 500 sccm of O2. At lower microwave powers, such as less than about 1000 W, and more specifically, about 700 W, titanina nanowires were formed. The obtained nanoparticles were made of titania and had diameters from about 50 to about 100 nm.
One of ordinary skill in the art will recognize that additional configurations are possible without departing from the teachings of the invention or the scope of the claims which follow. This detailed description, and particularly the specific details of the exemplary embodiments disclosed, is given primarily for completeness and no unnecessary limitations are to be imputed therefrom, for modifications will become obvious to those skilled in the art upon reading this disclosure and may be made without departing from the spirit or scope of the claimed invention.
This application claims priority to U.S. Provisional Patent Application No. 60/978,673, filed Oct. 9, 2007, which is hereby incorporated by reference.
The invention was supported, in whole or in part, by a grant, No. W9113M-04-C-0024, from Nanowire Technology for Missile Defense of the U.S. Army Space Missile Defense Command; a grant, No. DE-FG36-05G085013A, from the U.S. Department of Energy/Kentucky Rural Energy Consortium; and a grant, No. DE-FG02-05ER64071, from the U.S. Department of Energy which supports the Institute for Advanced Materials and Renewable Energy at the University of Louisville. The Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60978673 | Oct 2007 | US |