The present invention relates generally to semiconductor device manufacturing, and, more particularly, to an apparatus and method for reducing contamination in immersion lithography.
Lithography is one of the most important techniques utilized in semiconductor manufacturing, and is particularly used to define patterns, such as those employed in a wiring layer patterning process or a doped-region defining process for example. A lithography process generally includes an exposure step and a development step, wherein the exposure step utilizes a light source to irradiate a photoresist layer directly or through a photomask to induce chemical reactions in exposed portions. The development step is conducted to remove the exposed portion in positive resist (or the unexposed portion in negative resist) and form photoresist patterns, thus completing the transfer of photomask patterns or virtual patterns to the resist material.
Immersion lithography (IL) is rapidly emerging as the technique of choice for printing sub-100 nm photoresist structures while still using 193 nm exposure sources. By increasing the index of refraction of the medium between the last lens element of the exposure tool and the resist-coated substrate, the numerical aperture of the lithography system is increased and thus the printable minimum feature size for a given exposure wavelength can be reduced in accordance with the well-known Rayleigh equation. Accordingly, existing immersion lithography processes are conducted in a liquid phase environment, and thus a higher resolution is achieved since the refractive index of the immersion liquid (e.g., ultra pure water) is higher than that of air (about 1.47 versus 1.0). Therefore, the dimensions of the formed IC devices can be further scaled using an immersion lithography technique.
However, one drawback associated with immersion lithography stems from the physical contact between the immersion fluid and the resist material, which can potentially lead to partial image integrity failure and contamination embedded in or below the resist. More specifically, evaporation of the immersion fluid off the resist surface on the trailing edge of the shower head during exposure can lead to the concentration of trace contaminants, which can be transferred during the subsequent processing steps and finally affect device yield and performance in a severe manner. For example, traces of colloidal silica present in the immersion fluid can be concentrated in areas where immersion fluid evaporation is verified.
In addition, the trailing edge of the water pool contained by the showerhead can easily leave behind a residual immersion fluid layer, or eventually break down into droplets of variable size, under specific scanning conditions. For example, with typical wafer stage speeds in the order of 500-1000 mm/s, any discontinuity present on the scanned surface will affect the mechanical stability of the fluid pool and lead to the formation of fluid droplets. Similarly, a low contact angle between the immersion fluid and the scanned surface will increase the shape and size of the trailing fluid edge, thus increasing the chances of forming a residual fluid layer. Either the presence of a residual fluid layer or droplets can easily lead to the formation of defects. Extractable components from the topcoat or resist layers (e.g., oligomeric material, photoacid generator, photogenerated acid, base quencher) can be extracted by the immersion fluid and result in micromasking or watermark-like defects upon fluid drying.
Accordingly, it would be desirable to be able to reduce or eliminate altogether the contamination left behind by immersion lithography.
In one embodiment, a wafer chuck assembly includes a first chuck section configured to hold a semiconductor wafer on a support surface thereof; a second chuck section removably attached to the first chuck section; the first chuck section having a gap therein, the gap located adjacent an outer edge of the wafer, and the gap containing a volume of immersion lithography fluid therein; a fluid circulation path configured within the first chuck section so as to facilitate the radial outward movement of the immersion lithography fluid in the gap, thereby maintaining a meniscus of the immersion lithography fluid at a selected height with respect to a top surface of the semiconductor wafer; wherein the fluid circulation path further comprises an inlet path through which pressurized fluid is introduced, and in communication with the immersion lithography fluid in the gap, and a return path through which excess fluid immersion lithography fluid from the gap is removed therefrom; a first fluid column, defined by the gap; a second fluid column formed within the first chuck section, disposed radially outward with respect to the first fluid column; the second fluid column including the inlet path and the return path passing therethrough; and a passage configured within the second chuck section, the passage fluidly connecting the first and the second fluid columns; wherein the meniscus of the immersion lithography fluid is passively controlled through fluid level control within the second fluid column.
Referring to the exemplary drawings wherein like elements are numbered alike in the several Figures:
a) through 9(d) illustrate various possible cross-sectional shapes for sealing rings used in the chuck assembly embodiments; and
Disclosed herein is an apparatus and methodology for reducing contamination associated with immersion lithography. Generally speaking, wafer contamination is left behind near the wafer edge, and in a manner that such contamination is produced as a result of interaction of the immersion fluid with the topography between the wafer edge and the chuck. Recent simulations have shown that reducing topography on the surface covered by the tool showerhead helps to maintain the meniscus, and to avoid bubble formation. Thus, it is advantageous to artificially extend the wafer surface, so as to make the transition between the wafer and the chuck as flat as possible without sharp transitions.
As is outlined in greater detail hereinafter, the exemplary embodiments herein maintain fluid meniscus integrity in the topography gap of a wafer chuck by introducing an internal fluid circulation path within the chuck. The circulation path includes the gap itself, thus flowing immersion fluid through the gap (between the outer edge of the wafer and the chuck) radially outwards, and maintaining the water level at same height as the wafer surface. Moreover, the fluid level may be maintained at the same height as wafer surface with active or passive control of the fluid circulation path. It should be noted that any suitable fluid may be used for the fluid circulation path within the chuck, so long as it optically matches the immersion fluid of the lithography process and does not damage the surrounding surfaces of the wafer.
Referring initially to
Accordingly,
In addition to the outer channel 204, a fluid circulation path is also formed within the chuck 202. Particularly, an inlet path 210 allows a pressurized source of fluid to flow into the bottom of the gap 108, while a negative pressure return path 212 originates from a sidewall formed within the outer channel 204. In an exemplary embodiment, the fluid used and circulated through the fluid circulation path has the same optical characteristics as that used for the immersion lithography, so as to avoid any changes in optical characteristics from any mixing therebetween. Furthermore, in order to prevent optical fluid from entering beneath the surface of the wafer 104 where it contacts the chuck 202, a seal 214 (e.g., an O-ring) is positioned between the bottom of the wafer and the bottom of the gap 108. As will be discussed in further detail hereinafter, a variety of seal shapes and materials may be implemented.
Referring now to
One particular advantage associated with the embodiment of
In addition to active control, the fluid level within an immersion lithography chuck assembly can also be maintained through passive control means. For example,
The fluid circulation path, including inlet path 610 and return path 612, is directed through the second column 604, which further includes an overflow lip 608. Thus, fluid traveling in an outward direction will flow over the lip 608 and into the return path 612 of the second column 604. The passive control of the fluid level in the gap 108 is achieved through the control of the second column 604, since the gap 108 is fluidly connected to the second column 604 through passage 606 formed within the chuck 602. In addition, a Venturi tube 607 is formed at the bottom of the gap 108, connecting the gap 108 to the inlet path 610 and thus allowing for the circulation of fluid through the gap 108 as well. As is the case with the embodiments of
Accordingly, in operation of the passively controlled chuck assembly 600, fluid passes by the first column (i.e., gap 108) and through the Venturi tube 607, which sucks fluid from the gap 108. Thereby, the excess fluid left over from the passing of the meniscus 110 over the gap 108 is removed from the gap 108. Thereafter, the excess fluid joins the inlet path 610 where it then flows over the lip 608 and into a drain (i.e., return path 612), thus maintaining the level of the fluid at the top surface of the chuck 602. Because the two columns (gap 108, second column 604) are connected (e.g., through passage 606) in zones of equal pressure at equal height, the fluid in the gap 108 will be maintained at the same level as that present in the second column 604. It will be noted that the flow of fluid within the chuck 602 need not be continuous, and may instead be made to occur at selected locations along the circumference of the chuck 602.
Thus configured, the passively controlled chuck assembly 600 allows for very fast control of fluid levels adjacent to the wafer 104, by minimizing the topography that the meniscus 110 crosses in a stable manner. Since the Venturi tube 607 provides for circulation of immersion fluid through the chuck gap 108, contamination of the fluid is less likely to accumulate, which in turn results in a smaller probability of contaminant particles being deposited on the surface of the wafer 104. A second advantage of having a series of Venturi tubes 607 and connecting passages 606 at a specified intervals is that they provide for a method to prevent undue increase in fluid pressure in the gap 108 during chuck acceleration.
By way of further illustration,
Further, the first chuck section 702a is removably attached (e.g., by means of bolts 706) to a second chuck section 702b. The second chuck section 702b, once attached, also serves to define a barrier between the first column (gap 108) and the second column 604 for passive fluid level control. As can been seen, the second chuck section 702b also includes the interior passage 606 so as to bring the first and second columns in fluid communication with one another, and achieve the passive control of the gap fluid. O-rings 708 may also be used to seal the first and second chuck sections together, as also shown in
As stated earlier, and regardless of the particular chuck assembly embodiment utilized, it is desirable to prevent immersion fluid (e.g., water) from getting beneath the wafer, between the bottom of the wafer and the chuck surface. More specifically, since there is vacuum holding down the wafer, the immersion fluid will have a tendency to seep towards the lower pressure. As such, it is advantageous to block this path by (for example) placing a sealing ring at the outer edge of the wafer support. To this end, several types and shapes of such a sealing ring are available, and from various materials.
For example,
Finally,
While the invention has been described with reference to a preferred embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/307,230, filed Jan. 27, 2006, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6781670 | Krautshik | Aug 2004 | B2 |
6788477 | Lin | Sep 2004 | B2 |
7420194 | Ottens et al. | Sep 2008 | B2 |
7483119 | Owa et al. | Jan 2009 | B2 |
20040160582 | Lof et al. | Aug 2004 | A1 |
20050122505 | Miyajima | Jun 2005 | A1 |
20050123863 | Chang et al. | Jun 2005 | A1 |
20050168713 | Vogel et al. | Aug 2005 | A1 |
20050237501 | Furukawa et al. | Oct 2005 | A1 |
20050259236 | Straaijer | Nov 2005 | A1 |
20060087630 | Kemper et al. | Apr 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080284993 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11307230 | Jan 2006 | US |
Child | 12182278 | US |