The present disclosure relates generally to electroplating substrates and more specifically to removing bubbles from plating cells used for electroplating substrates.
The background description provided here is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Electrochemical deposition (ECD), also called plating or electroplating, is used to deposit metals onto substrates. For example, ECD is used to deposit metals on interconnect structures in an IC package. Examples of the interconnect structures include bumps, pillars, through silicon vias (TSVs), and redistribution layers (RDLs). ECD is also used in multichip packaging and interconnection processes generally called wafer level packaging (WLP).
An electroplating apparatus comprises a chamber including an electrode arranged horizontally along a bottom portion of the chamber and an ionically resistive element with through holes arranged horizontally along a top portion of the chamber. The electroplating apparatus further comprises a membrane supported by a frame arranged between the electrode and the ionically resistive element. The electroplating apparatus further comprises one or more panels extending vertically and parallelly from the membrane to the ionically resistive element and extending linearly across the chamber, forming a plurality of regions between the membrane and the ionically resistive element. The electroplating apparatus further comprises a substrate holder arranged above the ionically resistive element to hold a first substrate with a treatable surface parallel to and facing the ionically resistive element. The electroplating apparatus further comprises a seal arranged between peripheries of the ionically resistive element and the substrate holder to prevent leakage of an electrolyte flowed laterally through a manifold between the treatable surface of the first substrate and a top surface of the ionically resistive element during electroplating, portions of the electrolyte descending from the manifold into the plurality of regions and ascending from the plurality of regions into the manifold via the through holes, forming air bubbles under the ionically resistive element and in a plurality of the through holes. The electroplating apparatus further comprises a controller configured to place, in the substrate holder, a second substrate with a protuberance extending along a chord of the second substrate, the protuberance contacting the top surface of the ionically resistive element above a first region of the plurality of regions and arranged across the top surface of the ionically resistive element along one of the panels forming the first region. The controller is further configured to flow the electrolyte through the manifold, the electrolyte descending from the manifold into the first region via the through holes on a first side of the protuberance and ascending from the first region into the manifold via the through holes on a second side of the protuberance, forcing the air bubbles out from a portion of the ionically resistive element associated with the first region.
In another feature, the protuberance is integrated into the second substrate.
In another feature, the protuberance is a gasket.
In other features, the controller is configured to keep the protuberance in contact with the top surface of the ionically resistive element above the first region for a first predetermined time. The controller is further configured to rotate the second substrate after the first predetermined time and position the protuberance in contact with the top surface of the ionically resistive element above a second region of the plurality of regions along one of the panels forming the second region. The controller is further configured to keep the protuberance in contact with the top surface of the ionically resistive element above the second region for a second predetermined time. The electrolyte descending from the manifold into the second region via the through holes on the first side of the protuberance and ascending from the second region into the manifold via the through holes on the second side of the protuberance forces the air bubbles out from a portion of the ionically resistive element associated with the second region.
In another feature, the protuberance is arranged at a center of the first region.
In another feature, the protuberance extends linearly along the chord of the second substrate.
In another feature, the protuberance extends nonlinearly along the chord of the second substrate.
In another feature, the protuberance includes one or more gaps along a length of the protuberance.
In other features, the second substrate includes a second protuberance along a second chord, the second protuberance contacting the top surface of the ionically resistive element above a second region of the plurality of regions and arranged across the top surface of the ionically resistive element along one of the panels forming the second region.
In other features, the electrolyte descending from the manifold into the second region via the through holes on a first side of the second protuberance and ascending from the second region into the manifold via the through holes on a second side of the second protuberance forces the air bubbles out from a portion of the ionically resistive element associated with the second region.
In another feature, the protuberance and the second protuberance are parallel to each other.
In another feature, the protuberance and the second protuberance are not parallel to each other.
In another feature, at least one of the protuberance and the second protuberance includes one or more gaps along respective lengths.
In another feature, the gaps of the protuberance and the second protuberance are aligned with each other.
In another feature, the gaps of the protuberance and the second protuberance are not aligned with each other.
In other features, the controller is configured to place, in the substrate holder, a third substrate with a second protuberance extending along a chord of the third substrate, the second protuberance contacting the top surface of the ionically resistive element above a second region of the plurality of regions and arranged across the top surface of the ionically resistive element along one of the panels forming the second region. The electrolyte descending from the manifold into the second region via the through holes on a first side of the second protuberance and ascending from the second region into the manifold via the through holes on a second side of the second protuberance forces the air bubbles out from a portion of the ionically resistive element associated with the second region.
In another feature, the protuberance and the second protuberance are integrated into the respective substrates.
In another feature, each of the protuberance and the second protuberance is a gasket.
In other features, the controller is configured to keep the second protuberance in contact with the top surface of the ionically resistive element above the second region for a first predetermined time. The controller is further configured to rotate the third substrate after the first predetermined time and position the second protuberance in contact with the top surface of the ionically resistive element above a third region of the plurality of regions along one of the panels forming the third region. The controller is further configured to keep the second protuberance in contact with the top surface of the ionically resistive element above the third region for a second predetermined time. The electrolyte descending from the manifold into the third region via the through holes on the first side of the second protuberance and ascending from the third region into the manifold via the through holes on the second side of the second protuberance forces the air bubbles out from a portion of the ionically resistive element associated with the third region.
In another feature, at least one of the protuberance and the second protuberance is arranged at a center of the respective region.
In another feature, at least one of the protuberance and the second protuberance extends linearly along the chord of the respective substrate.
In another feature, at least one of the protuberance and the second protuberance extends nonlinearly along the chord of the respective substrate.
In another feature, at least one of the protuberance and the second protuberance includes one or more gaps along respective lengths.
In another feature, the gaps of the protuberance and the second protuberance are aligned with each other.
In another feature, the gaps of the protuberance and the second protuberance are not aligned with each other.
In other features, the third substrate includes a third protuberance along a second chord of the third substrate, the third protuberance contacting the top surface of the ionically resistive element above a third region of the plurality of regions and arranged across the top surface of the ionically resistive element along one of the panels forming the third region.
In other features, the electrolyte descending from the manifold into the third region via the through holes on a first side of the third protuberance and ascending from the third region into the manifold via the through holes on a second side of the third protuberance forces the air bubbles out from a portion of the ionically resistive element associated with the third region.
In another feature, at least two of the protuberance, the second protuberance, and the third protuberance are parallel to each other.
In another feature, at least two of the protuberance, the second protuberance, and the third protuberance are not parallel to each other.
In another feature, at least one of the protuberance, the second protuberance, and the third protuberance includes one or more gaps along respective lengths.
In another feature, the gaps of at least two of the protuberance, the second protuberance, and the third protuberance are aligned with each other.
In another feature, the gaps of at least two of the protuberance, the second protuberance, and the third protuberance are not aligned with each other.
In other features, the seal pushes against the substrate holder due to the flow of the electrolyte in the manifold and allows the electrolyte in the manifold to force the air bubbles out from under and in the through holes of the ionically resistive element.
In another feature, the membrane focuses the flow of the electrolyte via the through holes.
In another feature, the ionically resistive element operates as a uniform current source in proximity of the first substrate.
In another feature, at least a plurality of the through holes has the same dimension and density and is perpendicular relative to a plane along which the first substrate lies.
In another feature, at least a plurality of the through holes has different dimensions and densities and is oblique relative to a plane along which the first substrate lies.
In still other features, a method for an electroplating apparatus comprises arranging an electrode horizontally along a bottom portion of a chamber, arranging an ionically resistive element with through holes horizontally along a top portion of the chamber, and arranging a membrane supported by a frame between the electrode and the ionically resistive element. The method further comprises arranging one or more panels extending vertically and parallelly from the membrane to the ionically resistive element and extending linearly across the chamber, forming a plurality of regions between the membrane and the ionically resistive element. The method further comprises arranging a substrate holder above the ionically resistive element to hold a first substrate with a treatable surface parallel to and facing the ionically resistive element. The method further comprises arranging a seal arranged between peripheries of the ionically resistive element and the substrate holder to prevent leakage of an electrolyte flowed laterally through a manifold between the treatable surface of the first substrate and a top surface of the ionically resistive element during electroplating, portions of the electrolyte descending from the manifold into the plurality of regions and ascending from the plurality of regions into the manifold via the through holes, forming air bubbles under the ionically resistive element and in a plurality of the through holes. The method further comprises placing, in the substrate holder, a second substrate with a protuberance extending along a chord of the second substrate, the protuberance contacting the top surface of the ionically resistive element above a first region of the plurality of regions and arranged across the top surface of the ionically resistive element along one of the panels forming the first region. The method further comprises flowing the electrolyte through the manifold, the electrolyte descending from the manifold into the first region via the through holes on a first side of the protuberance and ascending from the first region into the manifold via the through holes on a second side of the protuberance, forcing the air bubbles out from a portion of the ionically resistive element associated with the first region.
In another feature, the method further comprises integrating the protuberance into the second substrate.
In another feature, the method further comprises arranging a gasket on the second substrate to form the protuberance.
In other features, the method further comprises keeping the protuberance in contact with the top surface of the ionically resistive element above the first region for a first predetermined time. The method further comprises rotating the second substrate after the first predetermined time and position the protuberance in contact with the top surface of the ionically resistive element above a second region of the plurality of regions along one of the panels forming the second region. The method further comprises keeping the protuberance in contact with the top surface of the ionically resistive element above the second region for a second predetermined time. The method further comprises forcing the air bubbles out from a portion of the ionically resistive element associated with the second region, with the electrolyte descending from the manifold into the second region via the through holes on the first side of the protuberance and ascending from the second region into the manifold via the through holes on the second side of the protuberance.
In another feature, the method further comprises arranging the protuberance at a center of the first region.
In another feature, the method further comprises extending the protuberance linearly along the chord of the second substrate.
In another feature, the method further comprises extending the protuberance nonlinearly along the chord of the second substrate.
In another feature, the method further comprises arranging one or more gaps along a length of the protuberance.
In other features, the method further comprises arranging a second protuberance along a second chord of the second substrate. The method further comprises arranging the second protuberance to contact the top surface of the ionically resistive element above a second region of the plurality of regions and across the top surface of the ionically resistive element along one of the panels forming the second region.
In other features, the method further comprises forcing the air bubbles out from a portion of the ionically resistive element associated with the second region, with the electrolyte descending from the manifold into the second region via the through holes on a first side of the second protuberance and ascending from the second region into the manifold via the through holes on a second side of the second protuberance.
In another feature, the method further comprises arranging the protuberance and the second protuberance parallel to each other.
In another feature, the method further comprises arranging the protuberance and the second protuberance not parallel to each other.
In another feature, the method further comprises arranging one or more gaps in at least one of the protuberance and the second protuberance along respective lengths.
In another feature, the method further comprises aligning the gaps of the protuberance and the second protuberance with each other.
In another feature, the method further comprises not aligning the gaps of the protuberance and the second protuberance with each other.
In other features, the method further comprises placing, in the substrate holder, a third substrate with a second protuberance extending along a chord of the third substrate, the second protuberance contacting the top surface of the ionically resistive element above a second region of the plurality of regions and arranged across the top surface of the ionically resistive element along one of the panels forming the second region. The method further comprises forcing the air bubbles out from a portion of the ionically resistive element associated with the second region, with the electrolyte descending from the manifold into the second region via the through holes on a first side of the second protuberance and ascending from the second region into the manifold via the through holes on a second side of the second protuberance.
In another feature, the method further comprises integrating the protuberance and the second protuberance into the respective substrates.
In another feature, the method further comprises forming each of the protuberance and the second protuberance using a gasket.
In other features, the method further comprises keeping the second protuberance in contact with the top surface of the ionically resistive element above the second region for a first predetermined time. The method further comprises rotating the third substrate after the first predetermined time and position the second protuberance in contact with the top surface of the ionically resistive element above a third region of the plurality of regions along one of the panels forming the third region. The method further comprises keeping the second protuberance in contact with the top surface of the ionically resistive element above the third region for a second predetermined time. The method further comprises forcing the air bubbles out from a portion of the ionically resistive element associated with the third region, with the electrolyte descending from the manifold into the third region via the through holes on the first side of the second protuberance and ascending from the third region into the manifold via the through holes on the second side of the second protuberance.
In another feature, the method further comprises arranging at least one of the protuberance and the second protuberance at a center of the respective region.
In another feature, the method further comprises extending at least one of the protuberance and the second protuberance linearly along the chord of the respective substrate.
In another feature, the method further comprises extending at least one of the protuberance and the second protuberance nonlinearly along the chord of the respective substrate.
In another feature, the method further comprises forming one or more gaps in at least one of the protuberance and the second protuberance along respective lengths.
In another feature, the method further comprises aligning the gaps of the protuberance and the second protuberance with each other.
In another feature, the method further comprises not aligning the gaps of the protuberance and the second protuberance with each other.
In other features, the method further comprises forming a third protuberance along a second chord of the third substrate. The method further comprises arranging the third protuberance to contact the top surface of the ionically resistive element above a third region of the plurality of regions and across the top surface of the ionically resistive element along one of the panels forming the third region.
In other features, the method further comprises forcing the air bubbles out from a portion of the ionically resistive element associated with the third region, with the electrolyte descending from the manifold into the third region via the through holes on a first side of the third protuberance and ascending from the third region into the manifold via the through holes on a second side of the third protuberance.
In another feature, the method further comprises arranging at least two of the protuberance, the second protuberance, and the third protuberance parallel to each other.
In another feature, the method further comprises arranging at least two of the protuberance, the second protuberance, and the third protuberance not parallel to each other.
In another feature, the method further comprises forming one or more gaps in at least one of the protuberance, the second protuberance, and the third protuberance along respective lengths.
In another feature, the method further comprises aligning the gaps of at least two of the protuberance, the second protuberance, and the third protuberance with each other.
In another feature, the method further comprises not aligning the gaps of at least two of the protuberance, the second protuberance, and the third protuberance with each other.
In other features, the method further comprises arranging the seal to push against the substrate holder due to the flow of the electrolyte in the manifold, and to allow the electrolyte in the manifold to force the air bubbles out from under and in the through holes of the ionically resistive element.
In another feature, the method further comprises focusing the flow of the electrolyte via the through holes using the membrane.
In another feature, the method further comprises operating the ionically resistive element as a uniform current source in proximity of the first substrate.
In other features, the method further comprises providing at least a plurality of the through holes with the same dimension and density, and arranging at least a plurality of the through holes perpendicularly relative to a plane along which the first substrate lies.
In other features, the method further comprises providing at least a plurality of the through holes has different dimensions and densities, and arranging at least a plurality of the through holes obliquely relative to a plane along which the first substrate lies.
One or more features described above and below, including the features recited in the claims, although described and recited separately, can be combined.
Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
In the drawings, reference numbers may be reused to identify similar and/or identical elements.
Air bubbles can form in an electroplating cell during electroplating. The air bubbles can adversely affect the electroplating process. The present disclosure relates to various substrate designs that can be used in place of the substrates being electroplated to extinguish the air bubbles. One or more of these substrates, which can be called dummy substrates or flow focusing substrates, can be used to remove the air bubbles after electroplating a substrate and before electroplating a next substrate. These and other aspects of the present disclosure are explained below in detail.
The present disclosure is organized as follows. Initially, an electroplating cell used for electroplating substrates is described with references to
The anode 104 is separated from the substrate 102 by a membrane 105, which is supported by a membrane frame 106. The anode 104 and the membrane 105 are separated from the substrate 102 by an ionically resistive element 107. The ionically resistive element 107 is positioned above the membrane 105 and the membrane frame 106 near the top of the electroplating cell 101. The membrane 105 in the membrane frame 106 is positioned between the anode 104 and the ionically resistive element 107.
The ionically resistive element 107 includes openings in the form of through holes 112 (shown in
A front side insert 108 is positioned above the ionically resistive element 107 near the periphery (i.e., perimeter or rim) of the substrate 102 and the substrate holder 103. The front side insert 108 may be ring-shaped (see
A dynamic seal 109 is positioned between the front side insert 108 and the bottom of the substrate holder 103 to prevent the electrolyte from leaking during electroplating. The dynamic seal 109 is shown and described in greater detail with reference to
A cross flow manifold 110 is formed above the ionically resistive element 107 and below the substrate 102. The height of the cross flow manifold 110 is the distance between the substrate 102 and the plane of the ionically resistive element 107. For example, the height of the cross flow manifold 110 may be between about 1 mm-4 mm or between about 0.5 mm-15 mm. The cross flow manifold 110 is defined on its sides by the front side insert 108, which contains the cross flowing electrolyte within the cross flow manifold 110. A side inlet 113 to the cross flow manifold 110 is azimuthally opposite to a side outlet 114 to the cross flow manifold 110. The side inlet 113 and the side outlet 114 may be formed, at least partially, by the front side insert 108.
During electroplating, the ionically resistive element 107 approximates a uniform current source in the proximity of the substrate (cathode) 102. The ionically resistive element 107 can be called a high resistance virtual anode (HRVA) or a channeled ionically resistive element (CIRP). The ionically resistive element 107 is arranged in close proximity to the substrate 102. During electroplating, a nearly constant current is sourced from across an upper plane of the ionically resistive element 107.
The ionically resistive element 107 includes micro size through holes 112 (e.g., less than 0.04″). The through holes 112 are spatially and ionically isolated from each other. The through holes 112 generally do not form interconnecting channels within the body of the ionically resistive element 107 and are called non-communicating through holes 112. The through holes 112 generally extend perpendicular to the plated surface of the substrate 102. In some embodiments, the through holes 112 may extend at an angle relative to the plane of the substrate 102. The through holes 112 are generally parallel to one another. The through holes 112 may be arranged in a square array, in an offset spiral pattern, or in any other suitable pattern. The through holes 112 restructure the ionic current flow and the fluid flow and direct the path of both the ionic current and the fluid flow towards the plating surface of the substrate 102.
In one example, the ionically resistive element 107 is a disc made of a solid non-porous dielectric material that is ionically and electrically resistive. The material is also chemically stable in the presence of the electrolyte used. In some cases, the ionically resistive element 107 is made of a ceramic material. For example, the ceramic material may include aluminum oxide, stannic oxide, titanium oxide, or mixtures of metal oxides. In some cases, the ionically resistive element 107 is made of a plastic material. For example, the plastic material may include polyethylene, polypropylene, polyvinylidene difluoride (PVDF), polytetrafluoroethylene, polysulfone, polyvinyl chloride (PVC), or polycarbonate. The top and bottom surfaces of the ionically resistive element 107 may be flat or substantially flat. The ionically resistive element 107 may have between about 6,000-12,000 non-communicating through holes 112.
The ionically resistive element 107 is substantially coextensive with the substrate 102. For example, the ionically resistive element 107 has a diameter of about 300 mm when used with a 300 mm substrate. The ionically resistive element 107 resides in close proximity to the substrate 102, which is generally parallel to a top surface of the ionically resistive element 107. For example, the ionically resistive element 107 resides immediately below the substrate 102 in a substrate-facing-down electroplating apparatus. Preferably, the plating surface of the substrate 102 resides within about 10 mm, more preferably within about 5 mm of the top surface of the ionically resistive element 107.
The ionic and flow resistance of the ionically resistive element 107 depends on factors including the thickness of the ionically resistive element 107, the overall porosity (fraction of area available for flow through the plate), and the size/diameter of the through holes 112. Plates of lower porosities have higher impinging flow velocities and ionic resistances. Plates with through holes 112 having a relatively smaller diameter (and therefore a larger density) have a more uniform distribution of current on the substrate 102. Plates with through holes 112 having a smaller diameter also have a relatively higher total pressure drop (high viscous flow resistance).
In some embodiments, the through holes 112 have a diameter less than about 0.2 times the gap or the distance between the ionically resistive element 107 and the substrate 102. The through holes 112 are generally circular in cross section but need not be. Further, the through holes 112 may have the same diameter although this need not be the case. The size, shape, and the density of the through holes 112 may vary across the ionically resistive element 107 depending on application.
Accordingly, the electrolyte that is intended to shear over the substrate 102 in the cross flow manifold 110 may bypass the cross flow manifold 110 by flowing through the second manifold 111. This undesired electrolyte flow is shown in
The baffles 130 extend vertically and parallelly from the membrane 105 to the ionically resistive element 107. The baffles 130 also extend linearly across the space between the membrane 105 and the ionically resistive element 107 (i.e., across the second manifold 111). Accordingly, the baffles 130 are arranged perpendicular to the direction of flow of the electrolyte within the cross flow manifold 110. The baffles 130 divide the second manifold 111 into a plurality of regions (compartments) 139 between the membrane 105 and the ionically resistive element 107. The baffles may also be called walls or partitions.
The back side insert 135 is installed below the ionically resistive element 107 and above the membrane frame 106. The back side insert 135 is installed proximate to the back side (e.g., underside/lower side) of the ionically resistive element 107. The back side insert 135 may be clamped between the membrane frame 106 and the ionically resistive element 107.
During electroplating, the baffles 130 prevent the electrolyte from flowing across the electroplating cell (e.g., left-to-right in the example shown) within the second manifold 111. As a result, a greater proportion of the electrolyte delivered to the side inlet 113 is maintained within the cross flow manifold 110 rather than descending through the ionically resistive element 107 into the second manifold 111, which would occur without the baffles 130.
In some implementations, only a single baffle may be used. The single baffle may be located near the side inlet 113, near the center of the substrate 102, or near the side outlet 114. In some implementations, two, three, four, five, six, or more baffles may be used.
The baffles 130 may be spaced from each other evenly or unevenly in any suitable manner. For example, the distance between adjacent baffles 130 may be between about 10 mm-30 mm, or between about 5 mm-150 mm. For example, the thickness of each baffle 130 may be between about 0.5 mm-1.5 mm, or between about 0.25 mm-3 mm.
The baffles 130 may have different dimensions so that each baffle 130 matches the shape of the second manifold 111 at the position where each baffle 130 is located. In some implementations, the baffles 130 may extend all the way to the edges of the ionically resistive element 107, all the way to the edges of the membrane frame 106, and all the way across the electroplating cell 101. The baffles 130 provide a relatively high resistance to the flow of the electrolyte since there is no space for the electrolyte to squeeze around the baffles 130.
Currently, these air bubbles are manually removed using a hand pump. The process of manually removing the air bubbles using the hand pump takes time, which increases the downtime of the tool used for electroplating substrates. Instead, the present disclosure automates the process of removing air bubbles by using specially designed substrate as described below.
The substrate 700 with the protuberance 702 may also be called a dummy substrate because unlike other substrates that are electroplated, the substrate 700 is not electroplated. Instead, the substrate 700 is used to focus the flow of the electrolyte as shown in
The material used for the substrate 700 may be the same as or different than actual substrates that are electroplated. Regardless of the material used, some properties of the substrate 700 (e.g., optical properties such as reflectivity, etc.) may be similar to the actual substrates that are electroplated. Accordingly, a tool (explained with reference to
Each substrate 700 is used for a predetermined time (e.g., 30 seconds) to remove the air bubbles associated with one of the regions 139 as explained above with reference to
For example, the protuberance 702 on the substrate 700-1 aligns with the second region 139 (region #2 shown in
In some cases, the substrate may be rotated again back to the original region, and the procedure to remove the air bubbles may be repeated for the original region. In some cases, the substrate may be rotated multiple times back and forth over the two regions being de-bubbled, and the procedure to remove the air bubbles may be repeated for the two regions. In some cases, the predetermined time for which the procedure is performed may be varied after each rotation. Over time, the tool may learn and fine tune the amounts of these predetermined times for each electroplating recipe.
The protuberance 702 can be constructed on the substrate in various ways. For example, in one implementation, the protuberance 702 may be built into (i.e., integrated with) the substrate 700. That is, the substrate 700 may be manufactured with the protuberance 702 as an integral part of the substrate 700. Instead, in some implementations, the protuberance 702 may be a gasket installed or affixed on the substrate 700. The dimensions (width and height) of the protuberance 702 may depend on factors including the dimension of the through holes 112, the width of the regions 139 (i.e., spacing between the baffles 130), etc.
While only one protuberance 702 per substrate is shown in
Fewer substrates and substrate rotations may be used if more than one protuberance 702 per substrate is used. In one example, a single substrate may be used, where the number of protuberances on the substrate matches the number of regions 139 to be de-bubbled. In this example, no rotation is needed.
In some implementations, when multiple substrates 700 are used, one or more substrates 700 may include the protuberance 702 as a straight line while one or more substrates 700 may include the protuberance 702 that is not a straight line. Further, one or more substrates 700 may include a single protuberance 702 while one or more substrates 700 may include more than one protuberance 702 per substrate.
In some cases, the gaps may align on alternating substrates 700, and/or the gaps may be staggered on alternating substrates 700. Further, when multiple substrates are used, one or more substrates 700 may have the gaps in the protuberances 702 while one or more substrates 700 may not have the gaps in the protuberances 702. Furthermore, the teachings regarding the gaps can be combined with the various designs of the substrates 700 and protuberances 702 previously described (e.g., nonlinear protuberances, multiple protuberances per substrate, etc.). For example, as shown in
In some implementations, the protuberance 702 may be oblique or slanted as shown in
The electrodeposition apparatus 1000 includes a central electrodeposition chamber 1024. The central electrodeposition chamber 1024 is a chamber that holds the chemical solution used as the electroplating solution in the electroplating modules 1002, 1004, and 1006. The electrodeposition apparatus 1000 also includes a dosing system 1026 that may store and deliver additives for the electroplating solution. A chemical dilution module 1022 may store and mix chemicals to be used as an etchant. A filtration and pumping system 1028 may filter the electroplating solution for the central electrodeposition chamber 1024 and pump the filtered electroplating solution to the electroplating modules 1002, 1004, and 1006. A system controller 1030 provides various interfaces and controls to operate the electrodeposition apparatus 1000. The system controller 1030 controls the operations of the electroplating apparatus 1000 as described below.
Signals for monitoring the processes performed by the various modules of the electrodeposition apparatus 1000 may be provided by analog and/or digital inputs of the system controller 1030 from various sensors (not shown) installed throughout the electrodeposition apparatus 1000. The signals for controlling the processes may be output on analog and digital outputs of the system controller 1030. Non-limiting examples of the sensors include mass flow sensors, pressure sensors (e.g., manometers), temperature sensors (e.g., thermocouples), optical position sensors, etc.
A hand-off tool 1040 may select a substrate (e.g., substrate 102 or 700) from a substrate cassette such as a cassette 1042 or a cassette 1044. The cassettes 1042 or 1044 may be front opening unified pods (FOUPs). A FOUP is an enclosure designed to hold substrates securely in a controlled environment and to allow the substrates to be removed for processing or measurement by tools equipped with appropriate loading ports and robotic handling systems. The hand-off tool 1040 may hold a substrate using a vacuum attachment or some other attaching mechanism.
The hand-off tool 1040 may interface with a wafer handling station 1032, the cassettes 1042 or 1044, transfer stations 1050 and 1060, and/or an aligner 1048. From the transfer stations 1050 and 1060, a hand-off tool 1046 may gain access to a substrate (e.g., substrate 102 or 700). The transfer stations 1050 and 1060 may be a slot or a position from and to which the hand-off tools 1040 and 1046 may pass substrates without going through the aligner 1048. In some embodiments, to ensure that a substrate is properly aligned on the hand-off tool 1046 for precision delivery to an electroplating module, the hand-off tool 1046 may align the substrate with an aligner 1048. The hand-off tool 1046 may also deliver a substrate to one of the electroplating modules 1002, 1004, or 1006, or to one of the other modules 1012, 1014, and 1016 configured for various process operations.
An example of a process operation may be as follows: (1) electrodeposit copper or another material onto a substrate (e.g., substrate 102) in the electroplating module 1004; (2) rinse and dry the substrate in SRD in the module 1012; and (3) perform edge bevel removal in the module 1014.
In addition, the electrodeposition apparatus 1000 may include the transfer station 1060 for storing the substrates 700 used for de-bubbling. After a substrate (e.g., substrate 102) is electroplated in one of the electroplating modules 1002, 1004, or 1006, before electroplating a next substrate, the hand-off tools 1040, 1046 may pick a substrate (e.g., substrate 700) from the transfer station 1060, position the substrate in the electroplating module, and perform de-bubbling as described above.
At 1202, one or more vertical panels (e.g., baffles 130) are arranged between an ionically resistive element (107) and a membrane (105) in the electroplating cell to form a plurality of regions (139). At 1204, control places a flow focusing substrate (e.g., 700) with a protuberance (e.g., 702) arranged along a chord of the substrate over a first region. At 1206, control flows an electrolyte for a period of time to de-bubble the first region. At 1208, control rotates the first substrate by 180 degrees to place the protuberance over a second region. At 1210, control flows the electrolyte for a period of time to de-bubble the second region. At 1212, control repeats the process by placing additional flow focusing substrates with protuberances arranged in different positions over different regions until all regions are de-bubbled.
In sum, removing the air bubbles from under the ionically resistive element 107 and from within the through holes 112 of the ionically resistive element 107 currently requires manual maintenance, where an operator pumps or aspirates the ionically resistive element 107. This manual method is not robust since the manual method relies on an operator manually inspecting the ionically resistive element 107 and the many thousand through holes 112 for bubbles. Instead, automated preventative maintenance is desirable to minimize chemical exposure of maintenance personnel.
The present disclosure provides apparatuses and methods described above to remove the air bubbles that are both robust (repeatable) and automated (personnel not exposed to chemistry). The apparatus involves one or more flow focusing substrates 700 that direct the majority of the electrolyte cross flow (10-50 I/min) through a Flow Focusing Membrane (FFM) compartment (one of the regions 139). Each of the flow focusing substrates 700 comprises an elastomer or plastic seal that is responsible for sealing against the top surface of the ionically resistive element 107. Each of the flow focusing substrates 700 effectively diverts the flow of electrolyte through the ionically resistive element 107 (upstream of the seal). Since the FFM compartment (region 139) is confined, the electrolyte flows back up through the ionically resistive element 107 (downstream of the seal), which expels any trapped bubbles.
The de-bubbling method according to the present disclosure involves (1) loading the flow focusing substrate(s) 700 into the plating holder (substrate holder 103), (2) moving the substrate holder 103 with the substrate 700 to the plating position (e.g., for 30 s), (3) lifting the substrate 700 from the plating position, rotating the substrate 700 by 180 degrees, and then moving the substrate 700 back to the plating position (e.g., for 30 s), (4) repeating steps 2-3 for 1-5 times, and (5) rinsing and drying the substrate 700.
One embodiment includes using five (5) flow focusing substrates 700 (as shown in
One embodiment includes using a gasket attached to the substrate 700. Another embodiment includes using plastic protuberances which are in close proximity (˜0.1 mm) to a plane parallel to the top of the ionically resistive element 107.
One embodiment includes loading the substrates 700 from a wafer FOUP (elements 1042, 1044 shown in
One embodiment includes using a wafer as the flow focusing substrate 700 while other embodiments include using a plastic substrate and/or a coated metal substrate as the flow focusing substrate 700.
Currently, the flow of electrolyte through the ionically resistive element 107 and the second manifold 111 is insufficient for bubble removal. Therefore, any bubbles in the second manifold 111 or the through holes 112 become trapped and require an operator to de-bubble the plating cell using a manual pump. If these bubbles are not removed, a non-uniform electrodeposition may occur, which can severely impact yield.
One of the issues with manual de-bubbling is that the manual de-bubbling requires an operator to visually inspect and remove the bubbles. The ionically resistive element 107 is difficult to inspect, particularly when small bubbles trapped in the through holes 112. Therefore, the efficacy of the manual de-bubbling procedure varies significantly between operators. Often a substrate needs to be processed and measured as a test (to confirm that bubbles are expelled) before the plating cell can be deemed ready for production use. Such tests waste time and resources.
Another issue with manual de-bubbling is that the manual de-bubbling requires the operator to perform manual maintenance on the plating cell. The operator needs to follow safety procedures, which include wearing appropriate Personal Protective Equipment (PPE). It is desirable to eliminate exposing operators to chemicals. The apparatuses and methods of the present disclosure automate the de-bubbling and maintenance procedures, which eliminates exposing operators to the chemicals.
Presently, the Flow Focusing Membrane (FFM) 105 results in local electrolyte flow penetration of approximately 1 to 10 l/m through the ionically resistive element 107 during the plating operations. This helps irrigate the membrane and flush each FFM compartment (region 139). While the 1 to 10 l/m total flow penetration is sufficient for membrane irrigation purposes (i.e., prevention of CuSO4 precipitation above the membrane), this amount of flow is insufficient to remove any air bubbles trapped in the FFM compartment (region 139) and/or in the through holes 112 of the ionically resistive element 107.
The present disclosure uses a substrate or a fixture (substrate 700) that includes an elastomer and/or a protruding plastic piece (protuberance 702) that sufficiently seals against the top of the ionically resistive element 107 and directs majority of the crossflow electrolyte (10-50 l/m) through the FFM compartment (region 139). This creates a relatively high, localized flow through each FFM compartment (region 139), which helps expel any trapped air bubbles.
One embodiment includes performing de-bubbling using five (5) flow focusing substrates 700. Each substrate 700 includes a gasket 702 affixed at specific locations (see
The results of the above automated de-bubbling procedure according to the present disclosure at least match the manual de-bubbling result (see
The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure. Further, although each of the embodiments is described above as having certain features, any one or more of those features described with respect to any embodiment of the disclosure can be implemented in and/or combined with features of any of the other embodiments, even if that combination is not explicitly described. In other words, the described embodiments are not mutually exclusive, and permutations of one or more embodiments with one another remain within the scope of this disclosure.
Spatial and functional relationships between elements (for example, between modules, circuit elements, semiconductor layers, etc.) are described using various terms, including “connected,” “engaged,” “coupled,” “adjacent,” “next to,” “on top of,” “above,” “below,” and “disposed.” Unless explicitly described as being “direct,” when a relationship between first and second elements is described in the above disclosure, that relationship can be a direct relationship where no other intervening elements are present between the first and second elements, but can also be an indirect relationship where one or more intervening elements are present (either spatially or functionally) between the first and second elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.”
In some implementations, a controller is part of a system, which may be part of the above-described examples. Such systems can comprise semiconductor processing equipment, including a processing tool or tools, chamber or chambers, a platform or platforms for processing, and/or specific processing components (a wafer pedestal, a gas flow system, etc.). These systems may be integrated with electronics for controlling their operation before, during, and after processing of a semiconductor wafer or substrate. The electronics may be referred to as the “controller,” which may control various components or subparts of the system or systems. The controller, depending on the processing requirements and/or the type of system, may be programmed to control any of the processes disclosed herein, including the delivery of processing gases, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings, wafer transfers into and out of a tool and other transfer tools and/or load locks connected to or interfaced with a specific system.
Broadly speaking, the controller may be defined as electronics having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operation, enable cleaning operations, enable endpoint measurements, and the like. The integrated circuits may include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or one or more microprocessors, or microcontrollers that execute program instructions (e.g., software). Program instructions may be instructions communicated to the controller in the form of various individual settings (or program files), defining operational parameters for carrying out a particular process on or for a semiconductor wafer or to a system. The operational parameters may, in some embodiments, be part of a recipe defined by process engineers to accomplish one or more processing steps during the fabrication of one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or dies of a wafer.
The controller, in some implementations, may be a part of or coupled to a computer that is integrated with the system, coupled to the system, otherwise networked to the system, or a combination thereof. For example, the controller may be in the “cloud” or all or a part of a fab host computer system, which can allow for remote access of the wafer processing. The computer may enable remote access to the system to monitor current progress of fabrication operations, examine a history of past fabrication operations, examine trends or performance metrics from a plurality of fabrication operations, to change parameters of current processing, to set processing steps to follow a current processing, or to start a new process. In some examples, a remote computer (e.g. a server) can provide process recipes to a system over a network, which may include a local network or the Internet. The remote computer may include a user interface that enables entry or programming of parameters and/or settings, which are then communicated to the system from the remote computer. In some examples, the controller receives instructions in the form of data, which specify parameters for each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed and the type of tool that the controller is configured to interface with or control. Thus as described above, the controller may be distributed, such as by comprising one or more discrete controllers that are networked together and working towards a common purpose, such as the processes and controls described herein. An example of a distributed controller for such purposes would be one or more integrated circuits on a chamber in communication with one or more integrated circuits located remotely (such as at the platform level or as part of a remote computer) that combine to control a process on the chamber.
Without limitation, example systems may include a plasma etch chamber or module, a deposition chamber or module, a spin-rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel edge etch chamber or module, a physical vapor deposition (PVD) chamber or module, a chemical vapor deposition (CVD) chamber or module, an atomic layer deposition (ALD) chamber or module, an atomic layer etch (ALE) chamber or module, an ion implantation chamber or module, a track chamber or module, and any other semiconductor processing systems that may be associated or used in the fabrication and/or manufacturing of semiconductor wafers.
As noted above, depending on the process step or steps to be performed by the tool, the controller might communicate with one or more of other tool circuits or modules, other tool components, cluster tools, other tool interfaces, adjacent tools, neighboring tools, tools located throughout a factory, a main computer, another controller, or tools used in material transport that bring containers of wafers to and from tool locations and/or load ports in a semiconductor manufacturing factory.
The present disclosure is a continuation of U.S. patent application Ser. No. 16/870,411 (now U.S. Pat. No. 11,214,887), filed on May 8, 2020 which is a continuation of U.S. patent application Ser. No. 15/968,192 (now U.S. Pat. No. 10,655,240), filed on May 1, 2018. The entire disclosures of the applications referenced above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6964792 | Mayer et al. | Nov 2005 | B1 |
7045040 | Basol | May 2006 | B2 |
9624592 | Abraham et al. | Apr 2017 | B2 |
9834852 | Mayer et al. | Dec 2017 | B2 |
20110226613 | Rash et al. | Sep 2011 | A1 |
20130313123 | Abraham et al. | Nov 2013 | A1 |
20160215408 | Kagajwala et al. | Jul 2016 | A1 |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2019/029568 dated Aug. 6, 2019. |
U.S. Appl. No. 62/548,116, filed Aug. 21, 2017. |
Number | Date | Country | |
---|---|---|---|
20220119977 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16870411 | May 2020 | US |
Child | 17561146 | US | |
Parent | 15968192 | May 2018 | US |
Child | 16870411 | US |