1) Field
Embodiments of the present invention pertain to the field of semiconductor processing and, in particular, to methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon.
2) Description of Related Art
In semiconductor wafer processing, integrated circuits are formed on a wafer (also referred to as a substrate) composed of silicon or other semiconductor material. In general, layers of various materials which are either semiconducting, conducting or insulating are utilized to form the integrated circuits. These materials are doped, deposited and etched using various well-known processes to form integrated circuits. Each wafer is processed to form a large number of individual regions containing integrated circuits known as dice.
Following the integrated circuit formation process, the wafer is “diced” to separate the individual die from one another for packaging or for use in an unpackaged form within larger circuits. The two main techniques that are used for wafer dicing are scribing and sawing. With scribing, a diamond tipped scribe is moved across the wafer surface along pre-formed scribe lines. These scribe lines extend along the spaces between the dice. These spaces are commonly referred to as “streets.” The diamond scribe forms shallow scratches in the wafer surface along the streets. Upon the application of pressure, such as with a roller, the wafer separates along the scribe lines. The breaks in the wafer follow the crystal lattice structure of the wafer substrate. Scribing can be used for wafers that are about 10 mils (thousandths of an inch) or less in thickness. For thicker wafers, sawing is presently the preferred method for dicing.
With sawing, a diamond tipped saw rotating at high revolutions per minute contacts the wafer surface and saws the wafer along the streets. The wafer is mounted on a supporting member such as an adhesive film stretched across a film frame and the saw is repeatedly applied to both the vertical and horizontal streets. One problem with either scribing or sawing is that chips and gouges can form along the severed edges of the dice. In addition, cracks can form and propagate from the edges of the dice into the substrate and render the integrated circuit inoperative. Chipping and cracking are particularly a problem with scribing because only one side of a square or rectangular die can be scribed in the <110> direction of the crystalline structure. Consequently, cleaving of the other side of the die results in a jagged separation line. Because of chipping and cracking, additional spacing is required between the dice on the wafer to prevent damage to the integrated circuits, e.g., the chips and cracks are maintained at a distance from the actual integrated circuits. As a result of the spacing requirements, not as many dice can be formed on a standard sized wafer and wafer real estate that could otherwise be used for circuitry is wasted. The use of a saw exacerbates the waste of real estate on a semiconductor wafer. The blade of the saw is approximate 15 microns thick. As such, to insure that cracking and other damage surrounding the cut made by the saw does not harm the integrated circuits, three to five hundred microns often must separate the circuitry of each of the dice. Furthermore, after cutting, each die requires substantial cleaning to remove particles and other contaminants that result from the sawing process.
Plasma dicing has also been used, but may have limitations as well. For example, one limitation hampering implementation of plasma dicing may be cost. A standard lithography operation for patterning resist may render implementation cost prohibitive. Another limitation possibly hampering implementation of plasma dicing is that plasma processing of commonly encountered metals (e.g., copper) in dicing along streets can create production issues or throughput limits.
Embodiments of the present invention include methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon.
In an embodiment, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The method also involves patterning the mask with a laser scribing process to provide gaps in the mask, the gaps exposing regions of the semiconductor wafer between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the gaps in the mask to singulate the integrated circuits. The method also involves, subsequent to plasma etching the semiconductor wafer, removing etch residue from sidewalls of the singulated integrated circuits.
In another embodiment, a system for dicing a semiconductor wafer having a plurality of integrated circuits includes a factory interface. A laser scribe apparatus is coupled with the factory interface and includes a laser. A first plasma etch chamber is coupled with the factory interface. The first plasma etch chamber is configured for performing a deep silicon plasma etch operation. A second plasma etch chamber is coupled with the factory interface. The second plasma etch chamber is configured for performing an etch residue removal operation.
In another embodiment, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves providing the semiconductor wafer having a mask disposed thereon, the mask including a layer covering and protecting the integrated circuits. The method also involves patterning the mask with a laser scribing process to provide gaps in the mask, the gaps exposing regions of the semiconductor wafer between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the gaps in the mask to singulate the integrated circuits. The method also involves, subsequent to plasma etching the semiconductor wafer, removing etch residue from sidewalls of the singulated integrated circuits.
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits thereon, are described. In the following description, numerous specific details are set forth, such as laser scribing, breakthrough etch, and plasma etching conditions and material regimes, in order to provide a thorough understanding of embodiments of the present invention. It will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known aspects, such as integrated circuit fabrication, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
A hybrid wafer or substrate dicing process involving an initial laser scribe and subsequent plasma etch, with a mask plasma treatment operation, may be implemented for die singulation. The laser scribe process may be used to cleanly remove a mask layer, organic and inorganic dielectric layers, and device layers. The laser etch process may then be terminated upon exposure of, or partial etch of, the wafer or substrate. The plasma etch portion of the dicing process may then be employed to etch through the bulk of the wafer or substrate, such as through bulk single crystalline silicon, to yield die or chip singulation or dicing. More particularly, one or more embodiments are directed to polymer and plasma gas residue removal from the sidewall of a singulated die, such as a singulated device coupon.
To provide context, in the packaging process flow of singulated dies, particularly in advanced three-dimensional (3D) packaging applications where multiple thin dies are stacked together, polymer based underfill materials are typically applied between the gaps of different layers including that of a printed circuit board (PCB) substrate (e.g., flip chip substrate) and die, or die and die to provide mechanical support, electrical isolation or passivation, and improved reliability of the stacked die/chips. Conventionally, underfill material is supplied as a liquid and is applied to the edges of the stacked structure (PCB to die, and/or die to die) where it wicks into the gaps via capillary wetting action.
For 3D packaging applications, where die thicknesses are typically less than 100 microns, and often less than 50 microns, the gap between PCB substrate to die or die to die is typically limited to the range of 10-30 microns. In accordance with embodiments described herein, it has been found that the above described capillary wetting is affected by the die sidewall cleanliness, among other factors. In particular, fluorine (F) contamination on a die sidewall in the form of residue remaining after a plasma dicing process based on one or more of SF6, CF4, or C4F8 can lead to a significantly reduced capillary wetting effect.
In accordance with embodiments described herein, for a hybrid laser scribing and plasma etching dicing process, a substrate for dicing is often a thinned silicon (Si) wafer mounted on a tape frame. The substrate may be coated with a water soluble, dry etch resist film, or other suitable masking layer. Laser scribing is used to remove the masking layer in the street regions between the dies, and then the dies are singulated by a plasma etch process. A final cleaning process is used to remove the bulk masking layer that covers the singulated dies. The hybrid dicing scheme provides significant improvement relative to conventional saw or blade dicing with respect to die strength, die pick yield (e.g., after singulation, individual dies must be picked or removed from the tape frame), and chipping of the singulated dies.
In the hybrid approach, laser and plasma etch processes (e.g., a Bosch Si etching process) are used to dice the finished die on a silicon wafer.
With reference again to
Due to the presence of such residues (e.g., layers 202 and/or 204) on the sidewalls 110 of a diced die 108, in an embodiment, underfill material applied during packaging may fill the gaps of the stacked die more slowly than a saw/blade singulated die. In some cases, even the use of additional underfill material (e.g., as relative to saw or blade dicing underfill quantities) does not impede the formation of deleterious air pockets or voids in the underfill layer. In accordance with one or more embodiments described herein, in order to prevent such issues with subsequent application of underfill materials, a plasma cleaning process is implemented to remove or reduce the concentration of fluorine (F)-based residues on the etched sidewalls 110 of the singulated die 108. In a specific embodiment, a plasma cleaning process to remove F-based residues from the die 108 sidewall 110 involves, either individually or in combination, (a) use of O2 plasma cleaning only, (b) use of Ar/O2 plasma cleaning only, (c) use of a reducing chemistry such as forming gas (H2/N2) plasma cleaning, (d) Ar/O2/SF6 plasma cleaning, (e) a combination of dry and wet cleaning processes, (f) a CF4/SF6 plasma cleaning process, or (g) a combination based on one or more of processes (a)-(f). In one embodiment, the plasma cleaning is performed as an in situ post treatment in the plasma etch chamber used for singulation. In another embodiment, the plasma cleaning is performed in a different etch chamber than the plasma etch chamber used for singulation. In an embodiment, although not to be bound by theory, it is understood that two layers of debris can form on the sidewall: the outer layer is a “bulky” layer of Teflon, while the inner layer interfaces with the Si substrate and includes Si—O—F—C type linkages (e.g., such as found in an F-doped SiO2) layer. In one such embodiment, removal of the outer layer reduces F-concentration from approximately 10% down to approximately 2%, with further reduction in F-concentration to below, e.g., 1%, requiring additional cleaning as described herein.
To provide broader context, conventional wafer dicing approaches include diamond saw cutting based on a purely mechanical separation, initial laser scribing and subsequent diamond saw dicing, or nanosecond or picosecond laser dicing. For thin wafer or substrate singulation, such as 50 microns thick bulk silicon singulation, the conventional approaches have yielded only poor process quality. Some of the challenges that may be faced when singulating die from thin wafers or substrates may include microcrack formation or delamination between different layers, chipping of inorganic dielectric layers, retention of strict kerf width control, or precise ablation depth control. Embodiments of the present invention include a hybrid laser scribing and plasma etching die singulation approach that may be useful for overcoming one or more of the above challenges.
In accordance with an embodiment of the present invention, a combination of laser scribing and plasma etching is used to dice a semiconductor wafer into individualized or singulated integrated circuits. In one embodiment, femtosecond-based laser scribing is used as an essentially, if not totally, non-thermal process. For example, the femtosecond-based laser scribing may be localized with no or negligible heat damage zone. In an embodiment, approaches herein are used to singulated integrated circuits having ultra-low k films. With convention dicing, saws may need to be slowed down to accommodate such low k films. Furthermore, semiconductor wafers are now often thinned prior to dicing. As such, in an embodiment, a combination of mask patterning and partial wafer scribing with a femtosecond-based laser, followed by a plasma etch process, is now practical. In one embodiment, direct writing with laser can eliminate need for a lithography patterning operation of a photo-resist layer and can be implemented with very little cost. In one embodiment, through-via type silicon etching is used to complete the dicing process in a plasma etching environment.
Thus, in an aspect of the present invention, a combination of laser scribing and plasma etching may be used to dice a semiconductor wafer into singulated integrated circuits.
Referring to
Referring to
Referring to operation 502 of Flowchart 500, and corresponding
In accordance with an embodiment of the present invention, forming the mask 602 involves forming a layer such as, but not limited to, a photo-resist layer or an I-line patterning layer. For example, a polymer layer such as a photo-resist layer may be composed of a material otherwise suitable for use in a lithographic process. In one embodiment, the photo-resist layer is composed of a positive photo-resist material such as, but not limited to, a 248 nanometer (nm) resist, a 193 nm resist, a 157 nm resist, an extreme ultra-violet (EUV) resist, or a phenolic resin matrix with a diazonaphthoquinone sensitizer. In another embodiment, the photo-resist layer is composed of a negative photo-resist material such as, but not limited to, poly-cis-isoprene and poly-vinyl-cinnamate.
In another embodiment, forming the mask 602 involves forming a layer deposited in a plasma deposition process. For example, in one such embodiment, the mask 602 is composed of a plasma deposited Teflon or Teflon-like (polymeric CF2) layer. In a specific embodiment, the polymeric CF2 layer is deposited in a plasma deposition process involving the gas C4F8.
In another embodiment, forming the mask 602 involves forming a water-soluble mask layer. In an embodiment, the water-soluble mask layer is readily dissolvable in an aqueous media. For example, in one embodiment, the water-soluble mask layer is composed of a material that is soluble in one or more of an alkaline solution, an acidic solution, or in deionized water. In an embodiment, the water-soluble mask layer maintains its water solubility upon exposure to a heating process, such as heating approximately in the range of 50-160 degrees Celsius. For example, in one embodiment, the water-soluble mask layer is soluble in aqueous solutions following exposure to chamber conditions used in a laser and plasma etch singulation process. In one embodiment, the water-soluble mask layer is composed of a material such as, but not limited to, polyvinyl alcohol, polyacrylic acid, dextran, polymethacrylic acid, polyethylene imine, or polyethylene oxide. In a specific embodiment, the water-soluble mask layer has an etch rate in an aqueous solution approximately in the range of 1-15 microns per minute and, more particularly, approximately 1.3 microns per minute.
In another embodiment, forming the mask 602 involves forming a UV-curable mask layer. In an embodiment, the mask layer has a susceptibility to UV light that reduces an adhesiveness of the UV-curable layer by at least approximately 80%. In one such embodiment, the UV layer is composed of polyvinyl chloride or an acrylic-based material. In an embodiment, the UV-curable layer is composed of a material or stack of materials with an adhesive property that weakens upon exposure to UV light. In an embodiment, the UV-curable adhesive film is sensitive to approximately 365 nm UV light. In one such embodiment, this sensitivity enables use of LED light to perform a cure.
In an embodiment, semiconductor wafer or substrate 604 is composed of a material suitable to withstand a fabrication process and upon which semiconductor processing layers may suitably be disposed. For example, in one embodiment, semiconductor wafer or substrate 604 is composed of a group IV-based material such as, but not limited to, crystalline silicon, germanium or silicon/germanium. In a specific embodiment, providing semiconductor wafer 604 includes providing a monocrystalline silicon substrate. In a particular embodiment, the monocrystalline silicon substrate is doped with impurity atoms. In another embodiment, semiconductor wafer or substrate 604 is composed of a III-V material such as, e.g., a III-V material substrate used in the fabrication of light emitting diodes (LEDs).
In an embodiment, semiconductor wafer or substrate 604 has disposed thereon or therein, as a portion of the integrated circuits 606, an array of semiconductor devices. Examples of such semiconductor devices include, but are not limited to, memory devices or complimentary metal-oxide-semiconductor (CMOS) transistors fabricated in a silicon substrate and encased in a dielectric layer. A plurality of metal interconnects may be formed above the devices or transistors, and in surrounding dielectric layers, and may be used to electrically couple the devices or transistors to form the integrated circuits 606. Materials making up the streets 607 may be similar to or the same as those materials used to form the integrated circuits 606. For example, streets 607 may be composed of layers of dielectric materials, semiconductor materials, and metallization. In one embodiment, one or more of the streets 607 includes test devices similar to the actual devices of the integrated circuits 606.
In an embodiment, a mask plasma treatment may be performed for improving mask etch resistance. In one such embodiment, the plasma treatment process is performed prior to patterning the mask 602 with a laser scribing process such as described below in association with
In an embodiment, the mask 602 is formed by spin-coating a layer of photoresist or a water soluble mask layer on the integrated circuits. In that embodiment, exposing the mask 602 to the plasma treatment process involves removing residual deposition solvent remaining from forming the mask 602 via the spin-coating process. In another embodiment, the mask 602 is formed by plasma-depositing a Teflon or Teflon-like (CF2) mask material on the integrated circuits. In that embodiment, exposing the mask 602 to the plasma treatment process involves condensing the Teflon mask layer 602, e.g., by densifying the material.
In an embodiment, the mask plasma treatment involves exposing the mask 602 to a plasma based on argon (Ar) gas, nitrogen (N2) gas, or a combination of Ar and N2 gas. In one such embodiment, the plasma source power is approximately in the range of 2000 W to 4500 W, the bias power is approximately in the range of 1000 W to 2000 W, and gas pressure is approximately in the range of 100 mTorr to 250 mTorr. Process time is approximately in the range of 30 seconds to 90 seconds. In an embodiment, so long as the source/bias power is not high enough as to cause plasma etching removal of the mask due to over-strong bombardment, higher source and bias power is preferred since shorter process times may be used to achieve a mask “hardening” effect.
Referring to operation 504 of Flowchart 500, and corresponding
In other embodiments, instead of a laser scribing process, patterning of the mask may be achieved by, e.g., screen printing a patterned mask, photo-lithography, or by applying a pre-patterned dry laminate mask. In other embodiments, maskless processes are used, such as an approach employing a dry laminate underfill layer as a mask.
In an embodiment, patterning the mask 606 with the laser scribing process includes using a laser having a pulse width in the femtosecond range, i.e., a femtosecond-based laser scribing process is used. Specifically, a laser with a wavelength in the visible spectrum plus the ultra-violet (UV) and infra-red (IR) ranges (totaling a broadband optical spectrum) may be used to provide a femtosecond-based laser, i.e., a laser with a pulse width on the order of the femtosecond (10−15 seconds). In one embodiment, ablation is not, or is essentially not, wavelength dependent and is thus suitable for complex films such as films of the mask 602, the streets 607 and, possibly, a portion of the semiconductor wafer or substrate 604.
Laser parameters selection, such as pulse width, may be critical to developing a successful laser scribing and dicing process that minimizes chipping, microcracks and delamination in order to achieve clean laser scribe cuts. The cleaner the laser scribe cut, the smoother an etch process that may be performed for ultimate die singulation. In semiconductor device wafers, many functional layers of different material types (e.g., conductors, insulators, semiconductors) and thicknesses are typically disposed thereon. Such materials may include, but are not limited to, organic materials such as polymers, metals, or inorganic dielectrics such as silicon dioxide and silicon nitride.
A street between individual integrated circuits disposed on a wafer or substrate may include the similar or same layers as the integrated circuits themselves. For example,
Referring to
Under conventional laser irradiation (such as nanosecond-based or picosecond-based laser irradiation), the materials of street 800 behave quite differently in terms of optical absorption and ablation mechanisms. For example, dielectrics layers such as silicon dioxide, is essentially transparent to all commercially available laser wavelengths under normal conditions. By contrast, metals, organics (e.g., low K materials) and silicon can couple photons very easily, particularly in response to nanosecond-based or picosecond-based laser irradiation. For example,
Using equation 1000 and the plot 900 of absorption coefficients, in an embodiment, parameters for a femtosecond laser-based process may be selected to have an essentially common ablation effect on the inorganic and organic dielectrics, metals, and semiconductors even though the general energy absorption characteristics of such materials may differ widely under certain conditions. For example, the absorptivity of silicon dioxide is non-linear and may be brought more in-line with that of organic dielectrics, semiconductors and metals under the appropriate laser ablation parameters. In one such embodiment, a high intensity and short pulse width femtosecond-based laser process is used to ablate a stack of layers including a silicon dioxide layer and one or more of an organic dielectric, a semiconductor, or a metal. In a specific embodiment, pulses of approximately less than or equal to 400 femtoseconds are used in a femtosecond-based laser irradiation process to remove a mask, a street, and a portion of a silicon substrate.
By contrast, if non-optimal laser parameters are selected, in a stacked structures that involve two or more of an inorganic dielectric, an organic dielectric, a semiconductor, or a metal, a laser ablation process may cause delamination issues. For example, a laser penetrate through high bandgap energy dielectrics (such as silicon dioxide with an approximately of 9 eV bandgap) without measurable absorption. However, the laser energy may be absorbed in an underlying metal or silicon layer, causing significant vaporization of the metal or silicon layers. The vaporization may generate high pressures to lift-off the overlying silicon dioxide dielectric layer and potentially causing severe interlayer delamination and microcracking. In an embodiment, while picoseconds-based laser irradiation processes lead to microcracking and delaminating in complex stacks, femtosecond-based laser irradiation processes have been demonstrated to not lead to microcracking or delamination of the same material stacks.
In order to be able to directly ablate dielectric layers, ionization of the dielectric materials may need to occur such that they behave similar to a conductive material by strongly absorbing photons. The absorption may block a majority of the laser energy from penetrating through to underlying silicon or metal layers before ultimate ablation of the dielectric layer. In an embodiment, ionization of inorganic dielectrics is feasible when the laser intensity is sufficiently high to initiate photon-ionization and impact ionization in the inorganic dielectric materials.
In accordance with an embodiment of the present invention, suitable femtosecond-based laser processes are characterized by a high peak intensity (irradiance) that usually leads to nonlinear interactions in various materials. In one such embodiment, the femtosecond laser sources have a pulse width approximately in the range of 10 femtoseconds to 500 femtoseconds, although preferably in the range of 100 femtoseconds to 400 femtoseconds. In one embodiment, the femtosecond laser sources have a wavelength approximately in the range of 1570 nanometers to 200 nanometers, although preferably in the range of 540 nanometers to 250 nanometers. In one embodiment, the laser and corresponding optical system provide a focal spot at the work surface approximately in the range of 3 microns to 15 microns, though preferably approximately in the range of 5 microns to 10 microns.
The spacial beam profile at the work surface may be a single mode (Gaussian) or have a shaped top-hat profile. In an embodiment, the laser source has a pulse repetition rate approximately in the range of 200 kHz to 10 MHz, although preferably approximately in the range of 500 kHz to 5 MHz. In an embodiment, the laser source delivers pulse energy at the work surface approximately in the range of 0.5 uJ to 100 uJ, although preferably approximately in the range of 1 uJ to 5 uJ. In an embodiment, the laser scribing process runs along a work piece surface at a speed approximately in the range of 500 mm/sec to 5 m/sec, although preferably approximately in the range of 600 mm/sec to 2 m/sec.
The scribing process may be run in single pass only, or in multiple passes, but, in an embodiment, preferably 1-2 passes. In one embodiment, the scribing depth in the work piece is approximately in the range of 5 microns to 50 microns deep, preferably approximately in the range of 10 microns to 20 microns deep. The laser may be applied either in a train of single pulses at a given pulse repetition rate or a train of pulse bursts. In an embodiment, the kerf width of the laser beam generated is approximately in the range of 2 microns to 15 microns, although in silicon wafer scribing/dicing preferably approximately in the range of 6 microns to 10 microns, measured at the device/silicon interface.
Laser parameters may be selected with benefits and advantages such as providing sufficiently high laser intensity to achieve ionization of inorganic dielectrics (e.g., silicon dioxide) and to minimize delamination and chipping caused by underlayer damage prior to direct ablation of inorganic dielectrics. Also, parameters may be selected to provide meaningful process throughput for industrial applications with precisely controlled ablation width (e.g., kerf width) and depth. As described above, a femtosecond-based laser is far more suitable to providing such advantages, as compared with picosecond-based and nanosecond-based laser ablation processes. However, even in the spectrum of femtosecond-based laser ablation, certain wavelengths may provide better performance than others. For example, in one embodiment, a femtosecond-based laser process having a wavelength closer to or in the UV range provides a cleaner ablation process than a femtosecond-based laser process having a wavelength closer to or in the IR range. In a specific such embodiment, a femtosecond-based laser process suitable for semiconductor wafer or substrate scribing is based on a laser having a wavelength of approximately less than or equal to 540 nanometers. In a particular such embodiment, pulses of approximately less than or equal to 400 femtoseconds of the laser having the wavelength of approximately less than or equal to 540 nanometers are used. However, in an alternative embodiment, dual laser wavelengths (e.g., a combination of an IR laser and a UV laser) are used.
Referring again to
In accordance with a first embodiment, the plasma-based cleaning process is reactive to exposed regions of the substrate 604 in that the exposed regions are partially etched during the cleaning process. In one such embodiment, Ar or another non-reactive gas (or the mix) is combined with SF6 for a highly-biased plasma treatment for cleaning of scribed openings. The plasma treatment using mixed gases Ar+SF6 under high-bias power is performed for bombarding mask-opened regions to achieve cleaning of the mask-opened regions. In the reactive breakthrough process, both physical bombardment from Ar and SF6 along with chemical etching due to SF6 and F-ions contribute to cleaning of mask-opened regions. The approach may be suitable for photoresist or plasma-deposited Teflon masks 602, where breakthrough treatment leads to fairly uniform mask thickness reduction and a gentle Si etch. Such a breakthrough etch process, however, may not be best suited for water soluble mask materials.
In accordance with a second embodiment, the plasma-based cleaning process is non-reactive to exposed regions of the substrate 604 in that the exposed regions are not or only negligible etched during the cleaning process. In one such embodiment, only non-reactive gas plasma cleaning is used. For example, Ar or another non-reactive gas (or the mix) is used to perform a highly-biased plasma treatment both for mask condensation and cleaning of scribed openings. The approach may be suitable for water-soluble masks or for thinner plasma-deposited Teflon 602. In an exemplary embodiment of the latter case, an SF6+Ar breakthrough cleaning process exhibits an etch rate of approximately 7.66 microns/minute for as-deposited plasma-based Teflon. By contrast, an Ar-only breakthrough cleaning process exhibits an etch rate of approximately 0.85 microns/minute. In another such embodiment, separate mask condensation and scribed trench cleaning operations are used, e.g., an Ar or non-reactive gas (or the mix) highly-biased plasma treatment for mask condensation is first performed, and the an Ar+SF6 plasma cleaning of a laser scribed trench is performed. This embodiment may be suitable for cases where Ar-cleaning is not sufficient for trench cleaning due to too thick of a mask material. Cleaning efficiency is improved for thinner masks, but mask etch rate is much lower, with almost no consumption in a subsequent deep silicon etch process. In yet another such embodiment, three-operation cleaning is performed: (a) Ar or non-reactive gas (or the mix) highly-biased plasma treatment for mask condensation, (b) Ar+SF6 highly-biased plasma cleaning of laser scribed trenches, and (c) Ar or non-reactive gas (or the mix) highly-biased plasma treatment for mask condensation.
Referring to operation 506 of Flowchart 500, and corresponding
In an embodiment, etching the semiconductor wafer 604 includes using a plasma etching process. In one embodiment, a through-silicon via type etch process is used. For example, in a specific embodiment, the etch rate of the material of semiconductor wafer 604 is greater than 25 microns per minute. An ultra-high-density plasma source may be used for the plasma etching portion of the die singulation process. An example of a process chamber suitable to perform such a plasma etch process is the Applied Centura® Silvia™ Etch system available from Applied Materials of Sunnyvale, Calif., USA. The Applied Centura® Silvia™ Etch system combines the capacitive and inductive RF coupling, which gives much more independent control of the ion density and ion energy than was possible with the capacitive coupling only, even with the improvements provided by magnetic enhancement. This combination enables effective decoupling of the ion density from ion energy, so as to achieve relatively high density plasmas without the high, potentially damaging, DC bias levels, even at very low pressures. This results in an exceptionally wide process window. However, any plasma etch chamber capable of etching silicon may be used. In an exemplary embodiment, a deep silicon etch is used to etch a single crystalline silicon substrate or wafer 604 at an etch rate greater than approximately 40% of conventional silicon etch rates while maintaining essentially precise profile control and virtually scallop-free sidewalls. In a specific embodiment, a through-silicon via type etch process is used. The etch process is based on a plasma generated from a reactive gas, which generally a fluorine-based gas such as SF6, C4F8, CHF3, XeF2, or any other reactant gas capable of etching silicon at a relatively fast etch rate. In an embodiment, the mask layer 608 is removed after the singulation process, as depicted in
In another embodiment, the plasma etching operation described in association with
Referring to operation 508 of Flowchart 500 and again to
Referring again to
In accordance with an embodiment of the present invention, the plasma cleaning operation is based on O2 and/or forming gas plasma treatments. Following plasma etching/singulation, the F content of the sidewall residues as determined by Auger Electron Spectroscopy (AES), a surface sensitive elemental composition analysis technique, is greater than approximately 10 atomic percent. Using the plasma cleaning approach, the F content of the sidewall residues is reduced to less than approximately 1%. In an embodiment, one or more of several variations of O2 based plasma post-treatments may be suitable, such as but not limited to: (a) sequentially changing from lower pressure to higher pressure (e.g., more physical ion bombardment and more chemical treatment, respectively) within the treatment recipe, (b) Ar addition to provide O2/Ar mixtures, (c) a multi-cycle recipe for lower and higher pressure sequencing, and/or (d) higher source and bias power. In another embodiment, a low pressure/high pressure O2 plasma treatment followed by a chemical wet cleaning operation is used to completely remove residual F to below detection limits.
In another embodiment, the use of a reducing (e.g., H-containing) chemistry may be used for F removal. In one such embodiment, forming gas (e.g., less than or equal to approximately 5% H2 diluted in N2) is used as a reducing chemistry. Other embodiments include the use of He/H2 mixtures with similar H2 concentration, water vapor, or a higher concentration of H2 (including pure H2). In one embodiment, the F concentration is reduced to a value below 1% with a forming gas treatment only.
Accordingly, referring again to Flowchart 500 and
Referring to
In an embodiment, the bulk single-crystalline silicon substrate 1106 is thinned from the backside prior to being affixed to the die attach film 1108. The thinning may be performed by a backside grind process. In one embodiment, the bulk single-crystalline silicon substrate 1106 is thinned to a thickness approximately in the range of 50-100 microns. It is important to note that, in an embodiment, the thinning is performed prior to a laser ablation, plasma etch dicing and plasma cleaning process. In an embodiment, the mask layer 1102 has a thickness of approximately 20 microns and the device layer 1104 has a thickness approximately in the range of 2-3 microns. In an embodiment, the die attach film 1108 (or any suitable substitute capable of bonding a thinned or thin wafer or substrate to the backing tape 1110) has a thickness of approximately 20 microns.
Referring to
Referring to
Referring to
A single process tool may be configured to perform many or all of the operations in a hybrid laser ablation, plasma etch, and residue removal singulation process. For example,
Referring to
In an embodiment, the laser scribe apparatus 1210 houses a femtosecond-based laser. The femtosecond-based laser is suitable for performing a laser ablation portion of a hybrid laser and etch singulation process, such as the laser abalation processes described above. In one embodiment, a moveable stage is also included in laser scribe apparatus 1200, the moveable stage configured for moving a wafer or substrate (or a carrier thereof) relative to the femtosecond-based laser. In a specific embodiment, the femtosecond-based laser is also moveable. The overall footprint of the laser scribe apparatus 1210 may be, in one embodiment, approximately 2240 millimeters by approximately 1270 millimeters, as depicted in
In an embodiment, the one or more plasma etch chambers 1208 is configured for etching a wafer or substrate through the gaps in a patterned mask to singulate a plurality of integrated circuits. In one such embodiment, the one or more plasma etch chambers 1208 is configured to perform a deep silicon etch process. In a specific embodiment, the one or more plasma etch chambers 1208 is an Applied Centura® Silvia™ Etch system, available from Applied Materials of Sunnyvale, Calif., USA. The etch chamber may be specifically designed for a deep silicon etch used to create singulate integrated circuits housed on or in single crystalline silicon substrates or wafers. In an embodiment, a high-density plasma source is included in the plasma etch chamber 1208 to facilitate high silicon etch rates. In an embodiment, more than one etch chamber is included in the cluster tool 1206 portion of process tool 1200 to enable high manufacturing throughput of the singulation or dicing process. In another embodiment, however, a dedicated plasma etch chamber is configured for performing an etch residue removal operation.
The factory interface 1202 may be a suitable atmospheric port to interface between an outside manufacturing facility with laser scribe apparatus 1210 and cluster tool 1206. The factory interface 1202 may include robots with arms or blades for transferring wafers (or carriers thereof) from storage units (such as front opening unified pods) into either cluster tool 1206 or laser scribe apparatus 1210, or both.
Cluster tool 1206 may include other chambers suitable for performing functions in a method of singulation. For example, in one embodiment, in place of an additional etch chamber, a deposition chamber 1212 is included. The deposition chamber 1212 may be configured for mask deposition on or above a device layer of a wafer or substrate prior to laser scribing of the wafer or substrate. In another embodiment, in place of an additional etch chamber, a wet/dry station 1214 is included. The wet/dry station may be suitable for cleaning residues and fragments, or for removing a mask, subsequent to a laser scribe and plasma etch singulation process of a substrate or wafer. In an embodiment, a metrology station is also included as a component of process tool 1200.
Embodiments of the present invention may be provided as a computer program product, or software, that may include a machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to embodiments of the present invention. In one embodiment, the computer system is coupled with process tool 1200 described in association with
The exemplary computer system 1300 includes a processor 1302, a main memory 1304 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 1306 (e.g., flash memory, static random access memory (SRAM), etc.), and a secondary memory 1318 (e.g., a data storage device), which communicate with each other via a bus 1330.
Processor 1302 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processor 1302 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 1302 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. Processor 1302 is configured to execute the processing logic 1326 for performing the operations described herein.
The computer system 1300 may further include a network interface device 1308. The computer system 1300 also may include a video display unit 1310 (e.g., a liquid crystal display (LCD), a light emitting diode display (LED), or a cathode ray tube (CRT)), an alphanumeric input device 1312 (e.g., a keyboard), a cursor control device 1314 (e.g., a mouse), and a signal generation device 1316 (e.g., a speaker).
The secondary memory 1318 may include a machine-accessible storage medium (or more specifically a computer-readable storage medium) 1332 on which is stored one or more sets of instructions (e.g., software 1322) embodying any one or more of the methodologies or functions described herein. The software 1322 may also reside, completely or at least partially, within the main memory 1304 and/or within the processor 1302 during execution thereof by the computer system 1300, the main memory 1304 and the processor 1302 also constituting machine-readable storage media. The software 1322 may further be transmitted or received over a network 1320 via the network interface device 1308.
While the machine-accessible storage medium 1332 is shown in an exemplary embodiment to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present invention. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
In accordance with an embodiment of the present invention, a machine-accessible storage medium has instructions stored thereon which cause a data processing system to perform a method of dicing a semiconductor wafer having a plurality of integrated circuits. The method involves forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The method also involves patterning the mask with a laser scribing process to provide gaps in the mask, the gaps exposing regions of the semiconductor wafer between the integrated circuits. The method also involves plasma etching the semiconductor wafer through the gaps in the mask to singulate the integrated circuits. The method also involves, subsequent to plasma etching the semiconductor wafer, removing etch residue from sidewalls of the singulated integrated circuits.
Thus, methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, have been disclosed.
This application claims the benefit of U.S. Provisional Application No. 61/975,599, filed on Apr. 4, 2014, the entire contents of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4049944 | Garvin et al. | Sep 1977 | A |
4339528 | Goldman | Jul 1982 | A |
4684437 | Donelon et al. | Aug 1987 | A |
5089426 | Yamazaki et al. | Feb 1992 | A |
5336638 | Suzuki et al. | Aug 1994 | A |
5589955 | Amako et al. | Dec 1996 | A |
5593606 | Owen et al. | Jan 1997 | A |
5691794 | Hoshi et al. | Nov 1997 | A |
6051503 | Bhardwaj et al. | Apr 2000 | A |
6057180 | Sun et al. | May 2000 | A |
6174271 | Kosmowski | Jan 2001 | B1 |
6300593 | Powell | Oct 2001 | B1 |
6306731 | Igarashi et al. | Oct 2001 | B1 |
6407363 | Dunsky et al. | Jun 2002 | B2 |
6426275 | Arisa | Jul 2002 | B1 |
6465158 | Sekiya | Oct 2002 | B1 |
6528864 | Arai | Mar 2003 | B1 |
6574250 | Sun et al. | Jun 2003 | B2 |
6582983 | Runyon et al. | Jun 2003 | B1 |
6593542 | Baird et al. | Jul 2003 | B2 |
6642127 | Kumar et al. | Nov 2003 | B2 |
6676878 | O'Brien et al. | Jan 2004 | B2 |
6696669 | Hembree et al. | Feb 2004 | B2 |
6706998 | Cutler | Mar 2004 | B2 |
6759275 | Lee et al. | Jul 2004 | B1 |
6803247 | Sekiya | Oct 2004 | B2 |
6850544 | Friesem et al. | Feb 2005 | B2 |
6887804 | Sun et al. | May 2005 | B2 |
6998571 | Sekiya et al. | Feb 2006 | B2 |
7128806 | Nguyen et al. | Oct 2006 | B2 |
7129150 | Kawai | Oct 2006 | B2 |
7179723 | Genda et al. | Feb 2007 | B2 |
7265033 | Shigematsu et al. | Sep 2007 | B2 |
7303977 | Voronov et al. | Dec 2007 | B2 |
7361990 | Lu et al. | Apr 2008 | B2 |
7364986 | Nagai et al. | Apr 2008 | B2 |
7435607 | Nagai | Oct 2008 | B2 |
7459377 | Ueda et al. | Dec 2008 | B2 |
7468309 | Shigematsu et al. | Dec 2008 | B2 |
7473866 | Morishige et al. | Jan 2009 | B2 |
7507638 | Mancini et al. | Mar 2009 | B2 |
7507639 | Nakamura | Mar 2009 | B2 |
7629228 | Haji et al. | Dec 2009 | B2 |
7678670 | Arita et al. | Mar 2010 | B2 |
7687740 | Bruland et al. | Mar 2010 | B2 |
7754584 | Kumakawa | Jul 2010 | B2 |
7767551 | Arita et al. | Aug 2010 | B2 |
7767554 | Arita et al. | Aug 2010 | B2 |
7776720 | Boyle et al. | Aug 2010 | B2 |
7804043 | Deshi | Sep 2010 | B2 |
7838323 | Utsumi et al. | Nov 2010 | B2 |
7859084 | Utsumi et al. | Dec 2010 | B2 |
7875898 | Maeda | Jan 2011 | B2 |
7906410 | Arita et al. | Mar 2011 | B2 |
7923351 | Arita | Apr 2011 | B2 |
7926410 | Bair | Apr 2011 | B2 |
7927973 | Haji et al. | Apr 2011 | B2 |
8263902 | Hack et al. | Sep 2012 | B2 |
8507363 | Lei et al. | Aug 2013 | B2 |
8551308 | Bhullar et al. | Oct 2013 | B2 |
8557682 | Holden et al. | Oct 2013 | B2 |
8557683 | Lei et al. | Oct 2013 | B2 |
8598016 | Yalamanchili et al. | Dec 2013 | B2 |
8642448 | Lei et al. | Feb 2014 | B2 |
8652940 | Lei et al. | Feb 2014 | B2 |
8703581 | Lei et al. | Apr 2014 | B2 |
8759197 | Holden | Jun 2014 | B2 |
8845854 | Lei et al. | Sep 2014 | B2 |
8846498 | Lei et al. | Sep 2014 | B2 |
8853056 | Lei et al. | Oct 2014 | B2 |
8859397 | Lei et al. | Oct 2014 | B2 |
8912078 | Lei et al. | Dec 2014 | B1 |
20020154672 | Friesem et al. | Oct 2002 | A1 |
20030162313 | Kim et al. | Aug 2003 | A1 |
20040080045 | Kimura et al. | Apr 2004 | A1 |
20040137700 | Sekiya | Jul 2004 | A1 |
20040157457 | Xu et al. | Aug 2004 | A1 |
20040212047 | Joshi et al. | Oct 2004 | A1 |
20060043535 | Hiatt | Mar 2006 | A1 |
20060086898 | Cheng et al. | Apr 2006 | A1 |
20060088984 | Li et al. | Apr 2006 | A1 |
20060099810 | Voronov et al. | May 2006 | A1 |
20060146910 | Koochesfahani et al. | Jul 2006 | A1 |
20060205182 | Soejima | Sep 2006 | A1 |
20090255911 | Krishnaswami et al. | Oct 2009 | A1 |
20090311868 | Hayashi et al. | Dec 2009 | A1 |
20100013036 | Carey | Jan 2010 | A1 |
20100216313 | Iwai et al. | Aug 2010 | A1 |
20100248451 | Pirogovsky et al. | Sep 2010 | A1 |
20110014777 | Haji et al. | Jan 2011 | A1 |
20110111576 | Hack et al. | May 2011 | A1 |
20110132884 | Manens et al. | Jun 2011 | A1 |
20110312157 | Lei et al. | Dec 2011 | A1 |
20120322232 | Holden | Dec 2012 | A1 |
20120322233 | Lei et al. | Dec 2012 | A1 |
20120322234 | Yalamanchili et al. | Dec 2012 | A1 |
20120322235 | Lei et al. | Dec 2012 | A1 |
20120322236 | Lei et al. | Dec 2012 | A1 |
20120322237 | Lei et al. | Dec 2012 | A1 |
20120322238 | Lei et al. | Dec 2012 | A1 |
20120322239 | Singh et al. | Dec 2012 | A1 |
20120322240 | Holden et al. | Dec 2012 | A1 |
20120322241 | Holden et al. | Dec 2012 | A1 |
20120322242 | Lei et al. | Dec 2012 | A1 |
20130017668 | Lei et al. | Jan 2013 | A1 |
20130045554 | Yamazaki | Feb 2013 | A1 |
20130065378 | Johnson et al. | Mar 2013 | A1 |
20130230972 | Johnson et al. | Sep 2013 | A1 |
20130267076 | Lei et al. | Oct 2013 | A1 |
20130280890 | Lei et al. | Oct 2013 | A1 |
20130299088 | Lei et al. | Nov 2013 | A1 |
20140004685 | Chowdhury et al. | Jan 2014 | A1 |
20140011337 | Holden et al. | Jan 2014 | A1 |
20140011338 | Lei et al. | Jan 2014 | A1 |
20140015109 | Lei et al. | Jan 2014 | A1 |
20140017879 | Chowdhury et al. | Jan 2014 | A1 |
20140017880 | Lei et al. | Jan 2014 | A1 |
20140017881 | Eaton et al. | Jan 2014 | A1 |
20140017882 | Lei et al. | Jan 2014 | A1 |
20140027420 | Feldman-Peabody et al. | Jan 2014 | A1 |
20140057414 | Iyer et al. | Feb 2014 | A1 |
20140065797 | Yalamanchili et al. | Mar 2014 | A1 |
20140106542 | Chowdhury et al. | Apr 2014 | A1 |
20140120697 | Lei et al. | May 2014 | A1 |
20140120698 | Lei et al. | May 2014 | A1 |
20140174659 | Lei et al. | Jun 2014 | A1 |
20140179084 | Lei et al. | Jun 2014 | A1 |
20140213041 | Lei et al. | Jul 2014 | A1 |
20140213042 | Lei et al. | Jul 2014 | A1 |
20140246153 | Holden | Sep 2014 | A1 |
20140273401 | Lei et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
62104692 | May 1987 | JP |
9216085 | Aug 1997 | JP |
10321908 | Dec 1998 | JP |
2001127011 | May 2001 | JP |
2001144126 | May 2001 | JP |
2003179005 | Jun 2003 | JP |
2004031526 | Jan 2004 | JP |
2004055684 | Feb 2004 | JP |
WO-03036712 | May 2003 | WO |
WO-03071591 | May 2003 | WO |
Entry |
---|
Linder, V. et al., “Water-Soluble Sacrificial Layers for Surface Micromachining”, www.small-journal.com, 2005, 1, No. 7, 7 pgs. |
Singh, Saravjeet et al., “Apparatus and Methods for Dry Etch With Edge, Side and Back Protection”, U.S. Appl. No. 61/491,693, filed May 31, 2011 24 pgs. |
Number | Date | Country | |
---|---|---|---|
61975599 | Apr 2014 | US |