The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Usually, a group of ESD protection circuits (for example, ESD protection circuits 340) is disposed between each common bonding pad (for example, a common bonding pad 350) and the internal circuit 320. The ESD protection circuit 340 includes diodes D31, D32, and a resistance R31. The diode D31 is electrically connected between the power rail VDD and the common bonding pad 350 in reverse-biased configuration, and the diode D32 is also electrically connected between the power rail VSS and the common bonding pad 350 in reverse-biased configuration. The resistance R11 is electrically connected between the internal circuit 320 and the common bonding pad 350.
When the common bonding pad 350 produces a positive pulse current resulting from the electrostatic discharge, the resistor R31 can prevent most of the positive pulse current from flowing into the internal circuit 320, and at the same time, the diode D31 can guide most of the positive pulse current to the power rail VDD. Similarly, when the common bonding pad 350 produces a negative pulse current resulting from the electrostatic discharge, the resistor R31 can prevent most of the negative pulse current from flowing into the internal circuit 320, and at the same time, the diode D32 can guide most of the negative pulse current to the power rail VSS.
According to the embodiment, the RF bonding pad 310 is directly connected with the internal circuit 320. The ESD protection unit 330, disposed under the RF bonding pad 310, is directly connected with the RF bonding pad 310. Those skilled in the art can implement the ESD protection unit 330 by any means. According to the embodiment, the ESD protection unit 330 includes an inductor L31. The inductor L31 is electrically connected between the RF bonding pad 310 and the power rail VSS.
As the impulse period of the electrostatic discharge is far longer than the RF signal, for the RF signal in the normal operation, the inductor L31 provides very high resistance. That is, in normal operation, the inductor L31 is served as an open circuit, so that the weak RF signal can be transmitted directly between the RF bonding pad 310 and the internal circuit 320. When an electrostatic discharge occurs in the RF bonding pad 310, the impulse current resulting from the electrostatic discharge may be guided to the power rail VSS by the inductor L31. At this time, if the power bonding pad 370 is connected to the ground, the electrostatic current may flow out of the RF circuit 300 through the power bonding pad 370. When an electrostatic discharge occurs in the RF bonding pad 310, if the common bonding pad 350 is connected to the ground, the electrostatic current may flow out of the RF integrated circuit 300 from the common bonding pad 350 through the inductor L31, the power rail VSS, and the diode D32. Moreover, when an electrostatic discharge occurs in the RF bonding pad 310, if the power bonding pad 360 is connected to the ground, the electrostatic current may flow out of the RF integrated circuit 300 from the power bonding pad 360 through the inductor L31, the power rail VSS, the diode D32, the diode D31, and the power rail VDD.
In the abovementioned embodiment, the inductor L31 can be implemented between the RF bonding pad 310 and the substrate 410 by any means. For example, the inductor L31 can be disposed between the RF bonding pad 310 and the substrate 410 in stack or in spiral arrangement.
In summary, according to the present invention, the ESD protection unit is disposed under the RF bonding pad, so that the chip area can be saved substantially, and further reduce the fabrication cost. In addition, as the ESD protection unit includes an inductor electrically connected between the RF bonding pad and the power rail, the internal circuit for receiving/emitting RF signal can be protected from damage due to the electrostatic discharge, and at the same time, the normal RF signal transmission is not impacted.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.