RNAI CONSTRUCTS AND METHODS FOR INHIBITING FAM13A EXPRESSION

Abstract
The present application relates to compositions and methods for modulating expression of Family with Sequence Similarity 13 Member A (FAM13A) protein. In particular, the present application relates to nucleic acid-based therapeutics for reducing FAM13A gene expression via RNA interference and methods of using such nucleic acid-based therapeutics to reduce abdominal adiposity, reduce body weight, reduce fat mass, improve metabolic parameters including insulin resistance and non-alcoholic steatohepatitis (NASH), and reduce risk of myocardial infarction.
Description
TECHNICAL FIELD

The present application relates to compositions and methods for modulating expression of Family with Sequence Similarity 13 Member A (FAM13A) protein. In particular, the present application relates to nucleic acid-based therapeutics for reducing FAM13A gene expression via RNA interference and methods of using such nucleic acid-based therapeutics.


REFERENCE TO THE SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as an XML file entitled 10121-U502-SEC_ST26, created Jul. 14, 2023, which is 2.81 MB in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.


BACKGROUND

Obesity, or excess adiposity, is recognized as a disease and is established as a major risk factor for cardiovascular disease (CVD). The most common measure of adiposity, body-mass-index (BMI), results in increased odds risk of myocardial infarction (MI). However, this association is substantially reduced after adjustment for waist-to-hip ratio (WHR), a measurement that reflects a visceral body fat distribution pattern (also known as central or abdominal obesity). WHR has been shown to be more robustly related to MI risk with individuals in the highest quintile for WHR having a 2.52-fold increase in odds ratio (p<0.001), a finding that persists even after adjustment for BMI. Yusuf et al., Lancet 366:1640-1649 (2005); Cao et al., Medicine (Baltimore) 97, e11639 (2018); de Koning et al., Eur. Heart J., 28, 850-856 (2007). These data indicate that WHR is a better predictor of MI risk than BMI and that this metric overcomes some key limitations of BMI (e.g., high muscle mass).


FAM13A (also known as FAM13A1, KIAA0914, or ARHGAP48) is a cytosolic protein that has been shown to regulate AMP-activated protein kinase (AMPK) activity, and it has been linked to regulation of hepatic glucose, lipid metabolism, body fat distribution, and adipocyte function. Lin et al., iScience 23, 100928 (2020); Fathzadeh et al., Nature Communications 11, 1465 (2020). For example, human genetic evidence has linked FAM13A with HDL cholesterol, body mass index (BMI)-adjusted fasting insulin levels, and WHR adjusted for BMI. In vitro, FAM13A knockdown in human mesenchymal stem cells increases adipocyte differentiation and thermogenesis while overexpression causes apoptosis of pre-adipocytes and inhibits adipogenesis. Lundback et al., Diabetologia, 2018; Tang et al., Int. J. Obesity, 2019; Fathzadeh et al., Nat. Comm., 2020. Additionally, FAM13A KO mice are protected against diet-induced obesity (DIO), have improved hepatic insulin sensitivity, and increased hepatocyte oxygen consumption rate. Lin et al., iScience, 2020.


SUMMARY

The present application relates, in part, to the design and generation of RNAi constructs that target the FAM13A gene and reduce its expression. The sequence-specific inhibition of FAM13A gene expression is useful for reducing abdominal adiposity, reducing body weight, reducing fat mass, improving metabolic parameters including insulin resistance and non-alcoholic steatohepatitis (NASH), and reducing risk of myocardial infarction. Accordingly, in one embodiment, the present application provides an RNAi construct comprising a sense strand and an antisense strand, wherein the antisense strand comprises a region comprising a sequence that is substantially complementary to a FAM13A mRNA sequence. In some embodiments, the RNAi construct is targeted only to the liver. In some embodiments, the antisense strand comprises a sequence that is substantially complementary to the sequence of at least 15 contiguous nucleotides of a region of the human FAM13A mRNA sequence (SEQ ID NO: 1) with no more than 1, 2, or 3 mismatches. In some embodiments, the antisense strand comprises a region comprising a sequence that is substantially complementary to at least 15 contiguous nucleotides within particular regions of the FAM13A mRNA sequence set forth in SEQ ID NO: 1, such as within nucleotides 1300-1375 or 4900-5300 of SEQ ID NO: 1. In certain embodiments, the antisense strand comprises a region comprising at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2.


In some embodiments, the sense strand of the RNAi constructs described herein comprises a sequence that is sufficiently complementary to the sequence of the antisense strand to form a duplex region of about 15 to about 30 base pairs in length, about 17 to about 24 base pairs in length, or about 19 to about 21 base pairs in length. In some embodiments, the sense and antisense strands are each independently about 19 to about 30 nucleotides in length, or about 19 to about 23 nucleotides in length. In some embodiments, the RNAi constructs comprise one or two blunt ends. In other embodiments, the RNAi constructs comprise one or two nucleotide overhangs. Such nucleotide overhangs may comprise 1 to 6 unpaired nucleotides and can be located at the 3′ end of the sense strand, the 3′ end of the antisense strand, or the 3′ end of both the sense and antisense strand. In certain embodiments, the RNAi constructs comprise an overhang of two unpaired nucleotides at the 3′ end of the sense strand and the 3′ end of the antisense strand. In other embodiments, the RNAi constructs comprise an overhang of two unpaired nucleotides at the 3′ end of the antisense strand and a blunt end at the 3′ end of the sense strand/5′ end of the antisense strand.


The disclosed RNAi constructs may comprise one or more modified nucleotides, including nucleotides having modifications to the ribose ring, nucleobase, or phosphodiester backbone. In some embodiments, the RNAi constructs comprise one or more 2′-modified nucleotides. Such 2′-modified nucleotides can include 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-alkyl modified nucleotides, 2′-O-allyl modified nucleotides, bicyclic nucleic acids (BNA), deoxyribonucleotides, or combinations thereof. In one particular embodiment, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, or combinations thereof. In some embodiments, all of the nucleotides in the sense and antisense strand of the RNAi construct are modified nucleotides. Abasic nucleotides may be incorporated into the disclosed RNAi constructs, for example, as the terminal nucleotide at the 3′ end, the 5′ end, or both the 3′ end and the 5′ end of the sense strand. In such embodiments, the abasic nucleotide may be inverted, e.g., linked to the adjacent nucleotide through a 3′-3′ internucleotide linkage or a 5′-5′ internucleotide linkage.


In some embodiments, the RNAi constructs comprise at least one backbone modification, such as a modified internucleotide or internucleotide linkage. In certain embodiments, the RNAi constructs described herein comprise at least one phosphorothioate internucleotide linkage. In particular embodiments, the phosphorothioate internucleotide linkages may be positioned at the 3′ or 5′ ends of the sense and/or antisense strands. For instance, in some embodiments, the antisense strand comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends. In some such embodiments, the sense strand comprises one or two phosphorothioate internucleotide linkages between the terminal nucleotides at its 3′ end.


In some embodiments, the RNAi constructs of this application may target a particular region of the human FAM13A mRNA transcript set forth in SEQ ID NO: 1. In some embodiments, the sequence of the antisense strand may be fully complementary to the sequence of at least 15 contiguous nucleotides of the specific regions of the human FAM13A transcript (SEQ ID NO: 1). In some embodiments, the sequence of the antisense strand may be substantially complementary to the sequence of at least 15 contiguous nucleotides of the specific regions of the human FAM13A transcript (SEQ ID NO: 1) with no more than 1, 2, or 3 mismatches between the sequence of the antisense strand and the sequence of the specific regions of the human FAM13A transcript. In certain embodiments, the antisense strand and/or the sense strand of the RNAi constructs may comprise or consist of a sequence from the antisense and sense sequences listed in Table 1. In some embodiments, the sense and antisense strands, respectively, comprise or consist of SEQ ID NOs: 15 and 559, SEQ ID NOs: 24 and 568, SEQ ID NOs: 125 and 669, SEQ ID NOs: 127 and 671, SEQ ID NOs: 222 and 766, SEQ ID NOs: 406 and 950, SEQ ID NOs: 448 and 992, SEQ ID NOs: 498 and 1042, SEQ ID NOs: 502 and 1046, SEQ ID NOs: 503 and 1047, SEQ ID NOs: 504 and 1048, SEQ ID NOs: 513 and 1057, SEQ ID NOs: 526 and 1070, SEQ ID NOs: 527 and 1071, SEQ ID NOs: 533 and 1077, or SEQ ID NOs: 534 and 1078.


In some embodiments, the RNAi construct comprises particular sequences with particular modification patterns, which are referred to as duplexes herein. In certain embodiments, the antisense strand and/or the sense strand of the RNAi constructs, with particular modification patterns, may comprise or consist of antisense and sense sequences listed in Table 2 as particular duplexes. In some embodiments, the RNAi construct is a duplex called D-1557, D-1597, D-1612, D-1614, D-1623, D-1650, D-1667, D-1680, D-1682, D-1685, D-1686, D-1690, D-1697, D-1698, D-1699, D-1702, D-1704, D-1705, D-1709, D-1768, D-1846, D-1849, D-1853, D-1856, D-1858, D-1861, D-1862, D-1863, D-1864, D-1865, D-1866, D-1868, D-1869, D-1870, D-1871, D-1873, D-1875, D-1876, D-1877, D-1878, D-1879, D-1880, D-1881, D-1883, D-1884, D-1885, D-1886, D-1887, D-1888, D-1899, D-1896, D-1955, D-1970, D-1972, D-1975, D-1976, D-1977, D-1979, D-1980, D-1981, D-1982, D-1983, D-1984, D-1985, D-1987, D-1988, D-1989, D-1990, D-1991, D-1992, D-1993, D-1994, D-1995, D-1996, D-1997, D-1998, D-2000, D-2001, D-2002, D-2003, D-2004, D-2005, D-2012, D-2013, D-2014, D-2017, D-2021, D-2022, D-2023, D-2040, D-2044, D-2045, D-2047, D-2049, D-2051, D-2052, D-2053, D-2054, D-2058, D-2061, D-2075, D-2077, D-2079, D-2080, D-2081, D-2083, D-2090, D-2091, or D-2093. In some embodiments, the RNAi construct is a duplex observed to knock down FAM13A expression by greater than 80%.


The disclosed RNAi constructs may comprise a ligand to facilitate delivery or uptake of the RNAi constructs to specific tissues or cells, such as liver or adipose cells. In certain embodiments, the ligand targets delivery of the RNAi constructs to hepatocytes. In these and other embodiments, the ligand may comprise galactose, galactosamine, or N-acetyl-galactosamine (GalNAc). In certain embodiments, the ligand comprises a multivalent galactose or multivalent GalNAc moiety, such as a trivalent or tetravalent galactose or GalNAc moiety. The ligand may be covalently attached to the 5′ or 3′ end of the sense strand of the RNAi construct, optionally through a linker. In some embodiments, the RNAi constructs comprise a ligand and linker comprising a structure according to any one of Formulas I to IX described herein. In certain embodiments, the RNAi constructs comprise a ligand and linker comprising a structure according to Formula VII. In other embodiments, the RNAi constructs comprise a ligand and linker comprising a structure according to Formula IV. In some embodiments, the ligand comprises a long-chain fatty acid such as lauric acid (C12), myristic acid (C14), palmitic acid (C16), stearic acid (C18), eicosapentaenoic acid (C20), or docosanoic acid (C22). In some embodiments, the ligand is attached through a phosphodiester or phosphorothioate linkage.


The present application also provides pharmaceutical compositions comprising any of the RNAi constructs described herein and a pharmaceutically acceptable carrier, excipient, or diluent. Such pharmaceutical compositions are particularly useful for reducing expression of the FAM13A gene in the cells (e.g., liver or adipose cells) of a patient in need thereof. Patients who may be administered a disclosed pharmaceutical composition include patients diagnosed with or at risk of obesity, including patients displaying a high WHR and patients diagnosed with abdominal obesity. Patients who may be administered a disclosed pharmaceutical composition also can include patients diagnosed with or at risk of metabolic conditions such as fatty liver disease (e.g., NAFLD, NASH, alcoholic fatty liver disease, or alcoholic steatohepatitis), insulin resistance and type 2 diabetes (T2D), hypertriglyceridemia, or hypercholesterolemia. The present application also provides methods of treating patients in need of reduction of expression of the FAM13A gene expression in their cells, including patients diagnosed with or at risk of obesity, abdominal obesity, fatty liver disease (e.g., NAFLD, NASH, alcoholic fatty liver disease, or alcoholic steatohepatitis), insulin resistance and type 2 diabetes (T2D), hypertriglyceridemia, or hypercholesterolemia. These methods comprise administering an RNAi construct or pharmaceutical composition described herein. In some embodiments, the RNAi construct is administered with a ligand that targets the RNAi construct to the liver or hepatocytes.


The use of FAM13A-targeting RNAi constructs in any of the methods described herein or for preparation of medicaments for administration according to the methods described herein is specifically contemplated. For instance, the present application includes a FAM13A-targeting RNAi construct for use in treating, preventing, or reducing the risk of developing obesity, abdominal obesity, fatty liver disease (e.g., NAFLD, NASH, alcoholic fatty liver disease, or alcoholic steatohepatitis), insulin resistance and type 2 diabetes (T2D), hypertriglyceridemia, or hypercholesterolemia in a patient in need thereof.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows the results of a genomic analysis performed to examine the association of three common FAM13A variants for their association with adjusted for BMI (WHRadjBMI), triglyceride levels, HDL cholesterol levels, systolic blood pressure, and FAM13A expression in subcutaneous adipose tissue eQTL data.



FIGS. 2A and 2B show the results of an in vitro dose-response study of Fam13a siRNA's effects in Renca cells and primary adipocytes.



FIGS. 3A-3D show the results of an in vivo study of Fam13a siRNA's ability to knock down murine Fam13a mRNA expression levels in the liver and white adipose tissue of mice.



FIGS. 4A-4C show the results of an in vivo study of Fam13a siRNA's effects on body weight and fat mass of mice.



FIG. 5 is a table showing the effects of C16- and GalNAc-linked Fam13a siRNA in obese mice after 60 days of treatment. Fam13a siRNAs had significant effects on body weight, fat mass, cumulative food intake, liver weight, insulin levels, total cholesterol, LDL cholesterol, and ALT levels.



FIG. 6 is a diagram compiling the locations which of a range of human FAM13A siRNA triggers target on the human FAM13A mRNA transcript. The depicted triggers were all efficacious in reducing FAM13A mRNA levels and are divided in this diagram according to whether the maximum observed knockdown for that trigger fell within the range of 40-60% knockdown, 60-80% knockdown, or greater than 80% knockdown.



FIGS. 7A-7R are depictions of different modification patterns that may be applied to siRNA trigger sequences, with each figure showing a hybridized sense (top) and antisense (bottom) strand. In these figures, the solid circles correspond to 2′-O-methyl ribonucleotides, the open circles correspond to 2′-deoxy-2′-fluoro (“2′-fluoro”) ribonucleotides, and the hatched circles correspond to inverted abasic deoxynucleotides. Bold lines indicate where a phosphorothioate bond is used in place of the standard phosphodiester bond between nucleotides. Finally, arrows represent where a ligand (e.g., GalNAc or a fatty acid) may be attached to a polynucleotide.



FIGS. 8A-8D show the results of testing FAM13A siRNA in an AAV human FAM13A mouse model. FIGS. 8A and 8B show that a range of different members of the T-4999 and T-5043 trigger families, respectively, reduced expression of FAM13A mRNA in the liver. FIGS. 8C and 8D show that C22-conjugated members of the T-4999 and T-5043 trigger families, and to a lesser extent GalNAc-conjugated members of the T-4999 and T-5043 trigger families, were able to reduce expression of FAM13A mRNA in adipose tissue. In each of FIGS. 8A-8D, the “*” denotes those duplexes that were conjugated to C22, while those without an asterisk were conjugated to GalNAc.



FIGS. 9A-9C show the results of testing human-mouse cross reactive FAM13A siRNA duplexes, with knockdown noted in liver, inguinal white adipose tissue, and epididymal white adipose tissue.



FIGS. 10A and 10B show that treating diet-induced obese (DIO) mice with human-mouse cross reactive FAM13A siRNA duplexes prevented the increases in body weight and fat mass associated with the DIO model.



FIGS. 11A-11E show the results of treating cynomolgus monkeys with a single dose of human-cynomolgus monkey cross reactive FAM13A siRNA. FIGS. 11A and 11B show that knockdown was achieved in both liver and adipose tissue. FIGS. 11C-11E show that FAM13A siRNA treatment resulted in decreases in serum cholesterol, LDL, and HDL, respectively.





DETAILED DESCRIPTION

The present application is directed to compositions and methods for regulating the expression of the FAM13A gene in a cell or mammal. In some embodiments, compositions comprise RNAi constructs that target a mRNA transcribed from the FAM13A gene, particularly the human FAM13A gene, and reduce expression of the FAM13A protein in a cell or mammal. Such RNAi constructs are useful for treating, preventing, or reducing the risk of developing obesity, hepatosteatosis, insulin resistance and type 2 diabetes (T2D), hypertriglyceridemia, or hypercholesterolemia in a patient in need thereof.


RNAi Constructs

As used herein, the term “RNAi construct” refers to an agent comprising an RNA molecule that is capable of downregulating expression of a target gene (e.g., the FAM13A gene) via an RNA interference mechanism when introduced into a cell. RNA interference is the process by which a nucleic acid molecule induces the cleavage and degradation of a target RNA molecule (e.g., messenger RNA or mRNA molecule) in a sequence-specific manner, e.g., through an RNA-induced silencing complex (RISC) pathway. In some embodiments, the RNAi construct comprises a double-stranded RNA molecule comprising two antiparallel strands of contiguous nucleotides that are sufficiently complementary to each other to hybridize to form a duplex region. “Hybridize” or “hybridization” refers to the pairing of complementary polynucleotides, typically via hydrogen bonding (e.g., Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary bases in the two polynucleotides. The strand comprising a region comprising a sequence that is substantially complementary to a target sequence (e.g., target mRNA) is referred to as the “antisense strand” or “guide strand.” The “sense strand” or “passenger strand” refers to the strand that includes a region that is substantially complementary to a region of the antisense strand. In some embodiments, the sense strand may comprise a region that has a sequence that is substantially identical to the target sequence.


A double-stranded RNA molecule may include chemical modifications to ribonucleotides, including modifications to the ribose sugar, base, or backbone components of the ribonucleotides, such as those described herein or known in the art. Any such modifications, as used in a double-stranded RNA molecule (e.g., siRNA, shRNA, or the like), are encompassed by the term “double-stranded RNA” for the purposes of this disclosure. Details on potential modifications to the RNAi constructs described herein are provided in the Modification and Preparation of RNAi Constructs section below.


As used herein, a first sequence is “complementary” to a second sequence if a polynucleotide comprising the first sequence can hybridize to a polynucleotide comprising the second sequence to form a duplex region under certain conditions, such as physiological conditions. Other such conditions can include moderate or stringent hybridization conditions, which are known to those of skill in the art. A first sequence is fully complementary (100% complementary) to a second sequence if a polynucleotide comprising the first sequence base pairs with a polynucleotide comprising the second sequence over the entire length of one or both nucleotide sequences without any mismatches. A sequence is “substantially complementary” to a target sequence, or has “substantial identity to” a target sequence, if the sequence is at least about 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% complementary to a target sequence. Percent complementarity can be calculated by dividing the number of bases in a first sequence that are complementary to bases at corresponding positions in a second or target sequence by the total length of the first sequence. A sequence may also be said to be substantially complementary to another sequence if there are no more than 5, 4, 3, or 2 mismatches over a 30 base pair duplex region when the two sequences are hybridized. Generally, if any nucleotide overhangs, as defined herein, are present, the sequence of such overhangs is not considered in determining the degree of complementarity between two sequences. By way of example, a sense strand of 21 nucleotides in length and an antisense strand of 21 nucleotides in length that hybridize to form a 19 base pair duplex region with a 2-nucleotide overhang at the 3′ end of each strand would be fully complementary as the term is used herein.


In some embodiments, a region of the antisense strand comprises a sequence that is substantially or fully complementary to a region of the target RNA sequence (e.g., the FAM13A mRNA sequence). In such embodiments, the sense strand may comprise a sequence that is fully complementary to the sequence of the antisense strand. In other such embodiments, the sense strand may comprise a sequence that is substantially complementary to the sequence of the antisense strand, e.g., having 1, 2, 3, 4, or 5 mismatches in the duplex region formed by the sense and antisense strands. In certain embodiments, it is preferred that any mismatches occur within the terminal regions (e.g., within 6, 5, 4, 3, or 2 nucleotides of the 5′ and/or 3′ ends of the strands). In one embodiment, any mismatches in the duplex region formed from the sense and antisense strands occur within 6, 5, 4, 3, or 2 nucleotides of the 5′ end of the antisense strand.


In certain embodiments, the sense strand and antisense strand of the double-stranded RNA may be two separate molecules that hybridize to form a duplex region but are otherwise unconnected. Such double-stranded RNA molecules formed from two separate strands are referred to as “small interfering RNAs” or “short interfering RNAs” (siRNAs). Thus, in some embodiments, the RNAi constructs comprise an siRNA.


In other embodiments, the sense strand and the antisense strand that hybridize to form a duplex region may be part of a single RNA molecule, i.e., the sense and antisense strands are part of a self-complementary region of a single RNA molecule. In such cases, a single RNA molecule comprises a duplex region (also referred to as a stem region) and a loop region. The 3′ end of the sense strand is connected to the 5′ end of the antisense strand by a contiguous sequence of unpaired nucleotides, which will form the loop region. The loop region is typically of a sufficient length to allow the RNA molecule to fold back on itself such that the antisense strand can base pair with the sense strand to form the duplex or stem region. The loop region can comprise from about 3 to about 25, from about 5 to about 15, or from about 8 to about 12 unpaired nucleotides. Such RNA molecules with at least partially self-complementary regions are referred to as “short hairpin RNAs” (shRNAs). In certain embodiments, the RNAi constructs comprise a shRNA. The length of a single, at least partially self-complementary RNA molecule can be from about 40 nucleotides to about 100 nucleotides, from about 45 nucleotides to about 85 nucleotides, or from about 50 nucleotides to about 60 nucleotides and comprise a duplex region and loop region each having the lengths recited herein.


In some embodiments, the RNAi constructs comprise a sense strand and an antisense strand, wherein the antisense strand comprises a region having a sequence that is substantially or fully complementary to a FAM13A messenger RNA (mRNA) sequence. As used herein, a “FAM13A mRNA sequence” refers to any messenger RNA sequence, including allelic variants and splice variants, encoding a FAM13A protein, including FAM13A protein variants or isoforms from any species (e.g., non-human primate, human).


A FAM13A mRNA sequence also includes the transcript sequence expressed as its complementary DNA (cDNA) sequence. A cDNA sequence refers to the sequence of an mRNA transcript expressed as DNA bases (e.g., guanine, adenine, thymine, and cytosine) rather than RNA bases (e.g., guanine, adenine, uracil, and cytosine). Thus, the antisense strand of the RNAi constructs may comprise a region having a sequence that is substantially or fully complementary to a target FAM13A mRNA sequence or FAM13A cDNA sequence. A FAM13A mRNA or cDNA sequence can include, but is not limited to, any FAM13A mRNA or cDNA sequences in the Ensembl Genome or National Center for Biotechnology Information (NCBI) databases, including human sequences such as Ensembl transcript no. ENST00000264344.9 (SEQ ID NO: 1) and NCBI Reference sequence NM_022746.4. A FAM13A mRNA or cDNA sequence can also include cynomolgus monkey sequences, rhesus monkey sequences, chimpanzee sequences, rat sequences, and mouse sequences. In certain embodiments, the FAM13A mRNA sequence is the human transcript set forth below (SEQ ID NO: 1).










CCTTCCAGCCATGTGGGTTCAGCGGAAAGAGAAGCAAAACCACTCTTCCTAAAATGTTAGAA






GCTGCTCTTCGCTTACCTTGGGGCCTTTGCATTGGGAGCTGTTTTTCACATCAAAGAATATG





TGCTGAATGGAATTTTAGTATTTTGCTGTCGTTTTAATATTTTCGTCTGGTCTTCCTCAGTT





CTTCCAGACGCTTTCTGAGAGAATGGGGGCAGGAGCTCTAGCCATCTGTCAAAGTAAAGCAG





CGGTTCGGCTGAAAGAAGACATGAAAAAGATAGTGGCAGTGCCATTAAATGAACAGAAGGAT





TTTACCTATCAGAAGTTATTTGGAGTCAGTCTCCAAGAACTTGAACGGCAGGGGCTCACCGA





GAATGGCATTCCAGCAGTAGTGTGGAATATAGTGGAATATTTGACGCAGCATGGACTTACCC





AAGAAGGTCTTTTTAGGGTGAATGGTAACGTGAAGGTGGTGGAACAACTTCGACTGAAGTTC





GAGAGTGGAGTGCCCGTGGAGCTCGGGAAGGACGGTGATGTCTGCTCAGCAGCCAGTCTGTT





GAAGCTGTTTCTGAGGGAGCTGCCTGACAGTCTGATCACCTCAGCGTTGCAGCCTCGATTCA





TTCAACTCTTTCAGGATGGCAGAAATGATGTTCAGGAGAGTAGCTTAAGAGACTTAATAAAA





GAGCTGCCAGACACCCACTACTGCCTCCTCAAGTACCTTTGCCAGTTCTTGACAAAAGTAGC





CAAGCATCATGTGCAGAATCGCATGAATGTTCACAATCTCGCCACTGTATTTGGGCCAAATT





GCTTTCATGTGCCACCTGGGCTTGAAGGCATGAAGGAACAGGACCTGTGCAACAAGATAATG





GCTAAAATTCTAGAAAATTACAATACCCTGTTTGAAGTAGAGTATACAGAAAATGATCATCT





GAGATGTGAAAACCTGGCTAGGCTTATCATAGTAAAAGAGGTCTATTATAAGAACTCCCTGC





CCATCCTTTTAACAAGAGGCTTAGAAAGAGACATGCCAAAACCACCTCCAAAAACCAAGATC





CCAAAATCCAGGAGTGAGGGATCTATTCAGGCCCACAGAGTACTGCAACCAGAGCTATCTGA





TGGCATTCCTCAGCTCAGCTTGCGGCTAAGTTATAGAAAAGCCTGCTTGGAAGACATGAATT





CAGCAGAGGGTGCTATTAGTGCCAAGTTGGTACCCAGTTCACAGGAAGATGAAAGACCTCTG





TCACCTTTCTATTTGAGTGCTCATGTACCCCAAGTCAGCAATGTGTCTGCAACCGGAGAACT





CTTAGAAAGAACCATCCGATCAGCTGTAGAACAACATCTTTTTGATGTTAATAACTCTGGAG





GTCAAAGTTCAGAGGACTCAGAATCTGGAACACTATCAGCATCTTCTGCCACATCTGCCAGA





CAGCGCCGCCGCCAGTCCAAGGAGCAGGATGAAGTTCGACATGGGAGAGACAAGGGACTTAT





CAACAAAGAAAATACTCCTTCTGGGTTCAACCACCTTGATGATTGTATTTTGAATACTCAGG





AAGTCGAAAAGGTACACAAAAATACTTTTGGTTGTGCTGGAGAAAGGAGCAAGCCTAAACGT





CAGAAATCCAGTACTAAACTTTCTGAGCTTCATGACAATCAGGACGGTCTTGTGAATATGGA





AAGTCTCAATTCCACACGATCTCATGAGAGAACTGGACCTGATGATTTTGAATGGATGTCTG





ATGAAAGGAAAGGAAATGAAAAAGATGGTGGACACACTCAGCATTTTGAGAGCCCCACAATG





AAGATCCAGGAGCATCCCAGCCTATCTGACACCAAACAGCAGAGAAATCAAGATGCCGGTGA





CCAGGAGGAGAGCTTTGTCTCCGAAGTGCCCCAGTCGGACCTGACTGCATTGTGTGATGAAA





AGAACTGGGAAGAGCCTATCCCTGCTTTCTCCTCCTGGCAGCGGGAGAACAGTGACTCTGAT





GAAGCCCACCTCTCGCCGCAGGCTGGGCGCCTGATCCGTCAGCTGCTGGACGAAGACAGCGA





CCCCATGCTCTCTCCTCGGTTCTACGCTTATGGGCAGAGCAGGCAATACCTGGATGACACAG





AAGTGCCTCCTTCCCCACCAAACTCCCATTCTTTCATGAGGCGGCGAAGCTCCTCTCTGGGG





TCCTATGATGATGAGCAAGAGGACCTGACACCTGCCCAGCTCACACGAAGGATTCAGAGCCT





TAAAAAGAAGATCCGGAAGTTTGAAGATAGATTCGAAGAAGAGAAGAAGTACAGACCTTCCC





ACAGTGACAAAGCAGCCAATCCGGAGGTTCTGAAATGGACAAATGACCTTGCCAAATTCCGG





AGACAACTTAAAGAATCAAAACTAAAGATATCTGAAGAGGACCTAACTCCCAGGATGCGGCA





GCGAAGCAACACACTCCCCAAGAGTTTTGGTTCCCAACTTGAGAAAGAAGATGAGAAGAAGC





AAGAGCTGGTGGATAAAGCAATAAAGCCCAGTGTTGAAGCCACATTGGAATCTATTCAGAGG





AAGCTCCAGGAGAAGCGAGCGGAAAGCAGCCGCCCTGAGGACATTAAGGATATGACCAAAGA





CCAGATTGCTAATGAGAAAGTGGCTCTGCAGAAAGCTCTGTTATATTATGAAAGCATTCATG





GACGGCCGGTAACAAAGAACGAACGGCAGGTGATGAAGCCACTATACGACAGGTACCGGCTG





GTCAAACAGATCCTCTCCCGAGCTAACACCATACCCATCATTGGTTCCCCCTCCAGCAAGCG





GAGAAGCCCTTTGCTGCAGCCAATTATCGAGGGCGAAACTGCTTCCTTCTTCAAGGAGATAA





AGGAAGAAGAGGAGGGGTCAGAAGACGATAGCAATGTGAAGCCAGACTTCATGGTCACTCTG





AAAACCGATTTCAGTGCACGATGCTTTCTGGACCAATTCGAAGATGACGCTGATGGATTTAT





TTCCCCAATGGATGATAAAATACCATCAAAATGCAGCCAGGACACAGGGCTTTCAAATCTCC





ATGCTGCCTCAATACCTGAACTCCTGGAACACCTCCAGGAAATGAGAGAAGAAAAGAAAAGG





ATTCGAAAGAAACTTCGGGATTTTGAAGACAACTTTTTCAGACAGAATGGAAGAAATGTCCA





GAAGGAAGACCGCACTCCTATGGCTGAAGAATACAGTGAATATAAGCACATAAAGGCGAAAC





TGAGGCTCCTGGAGGTGCTCATCAGCAAGAGAGACACTGATTCCAAGTCCATGTGAGGGGCA





TGGCCAAGCACAGGGGGCTGGCAGCTGCGGTGAGAGTTTACTGTCCCCAGAGAAAGTGCAGC





TCTGGAAGGCAGCCTTGGGGCTGGCCCTGCAAAGCATGCAGCCCTTCTGCCTCTAGACCATT





TGGCATCGGCTCCTGTTTCCATTGCCTGCCTTAGAAACTGGCTGGAAGAAGACAATGTGACC





TGACTTAGGCATTTTGTAATTGGAAAGTCAAGACTGCAGTATGTGCACATGCGCACGCGCAT





GCACGCACACACACACACAGTAGTGGAGCTTTCCTAACACTAGCAGAGATTAATCACTACAT





TAGACAACACTCATCTACAGAGAATATACACTGTTCTTCCCTGGATAACTGAGAAACAAGAG





ACCATTCTCTGTCTAACTGTGATAAAAACAAGCTCAGGACTTTATTCTATAGAGCAAACTTG





CTGTGGAGGGCCATGCTCTCCTTGGACCCAGTTAACTGCAAACGTGCATTGGAGCCCTATTT





GCTGCCGCTGCCATTCTAGTGACCTTTCCACAGAGCTGCGCCTTCCTCACGTGTGTGAAAGG





TTTTCCCCTTCAGCCCTCAGGTAGATGGAAGCTGCATCTGCCCACGATGGCAGTGCAGTCAT





CATCTTCAGGATGTTTCTTCAGGACTTCCTCAGCTGACAAGGAATTTTGGTCCCTGCCTAGG





ACCGGGTCATCTGCAGAGGACAGAGAGATGGTAAGCAGCTGTATGAATGCTGATTTTAAAAC





CAGGTCATGGGAGAAGAGCCTGGAGATTCTTTCCTGAACACTGACTGCACTTACCAGTCTGA





TTTTATCGTCAAACACCAAGCCAGGCTAGCATGCTCATGGCAATCTGTTTGGGGCTGTTTTG





TTGTGGCACTAGCCAAACATAAAGGGGCTTAAGTCAGCCTGCATACAGAGGATCGGGGAGAG





AAGGGGCCTGTGTTCTCAGCCTCCTGAGTACTTACCAGAGTTTAATTTTTTTAAAAAAAATC





TGCACTAAAATCCCCAAACTGACAGGTAAATGTAGCCCTCAGAGCTCAGCCCAAGGCAGAAT





CTAAATCACACTATTTTCGAGATCATGTATAAAAAGAAAAAAAAGAAGTCATGCTGTGTGGC





CAATTATAATTTTTTTCAAAGACTTTGTCACAAAACTGTCTATATTAGACATTTTGGAGGGA





CCAGGAAATGTAAGACACCAAATCCTCCATCTCTTCAGTGTGCCTGATGTCACCTCATGATT





TGCTGTTACTTTTTTAACTCCTGCGCCAAGGACAGTGGGTTCTGTGTCCACCTTTGTGCTTT





GCGAGGCCGAGCCCAGGCATCTGCTCGCCTGCCACGGCTGACCAGAGAAGGTGCTTCAGGAG





CTCTGCCTTAGACGACGTGTTACAGTATGAACACACAGCAGAGGCACCCTCGTATGTTTTGA





AAGTTGCCTTCTGAAAGGGCACAGTTTTAAGGAAAAGAAAAAGAATGTAAAACTATACTGAC





CCGTTTTCAGTTTTAAAGGGTCGTGAGAAACTGGCTGGTCCAATGGGATTTACAGCAACATT





TTCCATTGCTGAAGTGAGGTAGCAGCTCTCTTCTGTCAGCTGAATGTTAAGGATGGGGAAAA





AGAATGCCTTTAAGTTTGCTCTTAATCGTATGGAAGCTTGAGCTATGTGTTGGAAGTGCCCT





GGTTTTAATCCATACACAAAGACGGTACATAATCCTACAGGTTTAAATGTACATAAAAATAT





AGTTTGGAATTCTTTGCTCTACTGTTTACATTGCAGATTGCTATAATTTCAAGGAGTGAGAT





TATAAATAAAATGATGCACTTTAGGATGTTTCCTATTTTTGAAATCTGAACATGAATCATTC





ACATGACCAAAAATTGTGTTTTTTTAAAAATACATGTCTAGTCTGTCCTTTAATAGCTCTCT





TAAATAAGCTATGATATTAATCAGATCATTACCAGTTAGCTTTTAAAGCACATTTGTTTAAG





ACTATGTTTTTGGAAAAATACGCTACAGAATTTTTTTTTAAGCTACAAATAAATGAGATGCT





ACTAATTGTTTTGGAATCTGTTGTTTCTGCCAAAGGTAAATTAACTAAAGATTTATTCAGGA





ATCCCCATTTGAATTTGTATGATTCAATAAAAGAAAACACCAAGTAAGTTATATAAAATAAA





TTGTGTATGAGATGTTGTGTTTTCCTTTGTAATTTCCACTAACTAACTAACTAACTTATATT





CTTCATGGAATGGAGCCCAGAAGAAATGAGAGGAAGCCCTTTTCACACTAGATCTTATTTGA





AGAAATGTTTGTTAGTCAGTCAGTCAGTGGTTTCTGGCTCTGCCGAGGGAGATGTGTTCCCC





AGCAACCATTTCTGCAGCCCAGAATCTCAAGGCACTAGAGGCGGTGTCTTAATTAATTGGCT





TCACAAAGACAAAATGCTCTGGACTGGGATTTTTCCTTTGCTGTGTTGGGAATATGTGTTTA





TTAATTAGCACATGCCAACAAAATAAATGTCAAGAGTTATTTCATAAGTGTAAGTAAACTTA





AGAATTAAAGAGTGCAGACTTATAATTTTC






A region of the antisense strand can be substantially complementary or fully complementary to at least 15 consecutive nucleotides of the FAM13A mRNA sequence. In certain embodiments, the region of the antisense strand comprises a sequence that is substantially complementary to the sequence of at least 15, at least 16, at least 17, at least 18, or at least 19 contiguous nucleotides of a region of the FAM13A mRNA sequence (e.g., a human FAM13A mRNA sequence (SEQ ID NO: 1)) with no more than 1, 2, or 3 mismatches. In related embodiments, the antisense strand comprises a region having a sequence that is substantially complementary to the sequence of at least 15, at least 16, at least 17, at least 18, or at least 19 contiguous nucleotides of a region of the FAM13A mRNA sequence with no more than 1 mismatch. In some embodiments, the target region of the FAM13A mRNA sequence to which the antisense strand comprises a region of complementarity can range from about 15 to about 30 consecutive nucleotides, from about 16 to about 28 consecutive nucleotides, from about 18 to about 26 consecutive nucleotides, from about 17 to about 24 consecutive nucleotides, from about 19 to about 30 consecutive nucleotides, from about 19 to about 25 consecutive nucleotides, from about 19 to about 23 consecutive nucleotides, or from about 19 to about 21 consecutive nucleotides. In certain embodiments, the region of the antisense strand comprising a sequence that is substantially or fully complementary to a FAM13A mRNA sequence may comprise at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2. In other embodiments, the sequence of the antisense strand comprises at least 16, at least 17, at least 18, or at least 19 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2.


In some embodiments, the region of the antisense strand comprising a sequence that is substantially or fully complementary to a FAM13A mRNA sequence may comprise at least 15 contiguous nucleotides from a region that is particularly susceptible to being targeted by a RNAi construct. Therefore, in some embodiments, the region of the antisense strand comprising a sequence that is substantially or fully complementary to a FAM13A mRNA sequence may comprise at least 15 contiguous nucleotides from within nucleotides 1300-1375, 1625-1700, 2075-2175, or 4900-5300 of the human FAM13A mRNA sequence set forth in SEQ ID NO: 1. In some embodiments, the region of the antisense strand comprising a sequence that is substantially or fully complementary to a FAM13A mRNA sequence may comprise at least 15 contiguous nucleotides from a sub-section of these regions. Therefore, in some embodiments, the sequence may comprise at least 15 contiguous nucleotides from nucleotides 1300-1350, 4900-5275, 4900-5250, 4900-5225, 4900-5200, 4900-5175, 4900-5150, 4900-5125, 4900-5100, 4900-5075, 4925-5300, 4925-5275, 4925-5250, 4925-5225, 4925-5200, 4925-5175, 4925-5150, 4925-5125, 4925-5100, 4925-5075, 4950-5300, 4950-5275, 4950-5250, 4950-5225, 4950-5200, 4950-5175, 4950-5150, 4950-5125, 4950-5100, 4950-5075, 4975-5300, 4975-5275, 4975-5250, 4975-5225, 4975-5200, 4975-5175, 4975-5150, 4975-5125, 4975-5100, 4975-5075, 5175-3000, 5100-5300, 5125-5300, 5150-5300, 5175-5300, 5200-5300, or 5225-5300.


The sense strand of the RNAi construct typically comprises a sequence that is sufficiently complementary to the sequence of the antisense strand such that the two strands hybridize under physiological conditions to form a duplex region. A “duplex region” refers to the region in two complementary or substantially complementary polynucleotides that form base pairs with one another, either by Watson-Crick base pairing or other hydrogen bonding interaction, to create a duplex between the two polynucleotides. The duplex region of the RNAi construct should be of sufficient length to allow the RNAi construct to enter the RNA interference pathway, e.g., by engaging the Dicer enzyme and/or the RISC complex. For instance, in some embodiments, the duplex region is about 15 to about 30 base pairs in length. Other lengths for the duplex region within this range are also suitable, such as about 15 to about 28 base pairs, about 15 to about 26 base pairs, about 15 to about 24 base pairs, about 15 to about 22 base pairs, about 17 to about 28 base pairs, about 17 to about 26 base pairs, about 17 to about 24 base pairs, about 17 to about 23 base pairs, about 17 to about 21 base pairs, about 19 to about 25 base pairs, about 19 to about 23 base pairs, or about 19 to about 21 base pairs. In certain embodiments, the duplex region is about 17 to about 24 base pairs in length. In other embodiments, the duplex region is about 19 to about 21 base pairs in length. In one embodiment, the duplex region is about 19 base pairs in length. In another embodiment, the duplex region is about 21 base pairs in length.


For embodiments in which the sense strand and antisense strand are two separate molecules (e.g., RNAi construct comprises an siRNA), the sense strand and antisense strand need not be the same length as the length of the duplex region. For instance, one or both strands may be longer than the duplex region and have one or more unpaired nucleotides or mismatches flanking the duplex region. Thus, in some embodiments, the RNAi construct comprises at least one nucleotide overhang. As used herein, a “nucleotide overhang” refers to the unpaired nucleotide or nucleotides that extend beyond the duplex region at the terminal ends of the strands. Nucleotide overhangs are typically created when the 3′ end of one strand extends beyond the 5′ end of the other strand or when the 5′ end of one strand extends beyond the 3′ end of the other strand. The length of a nucleotide overhang is generally between 1 and 6 nucleotides, 1 and 5 nucleotides, 1 and 4 nucleotides, 1 and 3 nucleotides, 2 and 6 nucleotides, 2 and 5 nucleotides, or 2 and 4 nucleotides. In some embodiments, the nucleotide overhang comprises 1, 2, 3, 4, 5, or 6 nucleotides. In some embodiments, the nucleotide overhang comprises 1 to 4 nucleotides. In certain embodiments, the nucleotide overhang comprises 2 nucleotides. In certain other embodiments, the nucleotide overhang comprises a single nucleotide.


The nucleotides in the overhang can be ribonucleotides or modified nucleotides as described herein. In some embodiments, the nucleotides in the overhang are 2′-modified nucleotides (e.g., 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides), deoxyribonucleotides, abasic nucleotides, inverted nucleotides (e.g., inverted abasic nucleotides, inverted deoxyribonucleotides), or combinations thereof. For instance, in one embodiment, the nucleotides in the overhang are deoxyribonucleotides, e.g., deoxythymidine. In another embodiment, the nucleotides in the overhang are 2′-O-methyl modified nucleotides, 2′-fluoro modified nucleotides, 2′-methoxyethyl modified nucleotides, or combinations thereof. In other embodiments, the overhang comprises a 5′-uridine-uridine-3′ (5′-UU-3′) dinucleotide. In such embodiments, the UU dinucleotide may comprise ribonucleotides or modified nucleotides, e.g., 2′-modified nucleotides. In other embodiments, the overhang comprises a 5′-deoxythymidine-deoxythymidine-3′ (5′-dTdT-3′) dinucleotide. When a nucleotide overhang is present in the antisense strand, the nucleotides in the overhang can be complementary to the target gene sequence, form a mismatch with the target gene sequence, or comprise some other sequence (e.g., polypyrimidine or polypurine sequence, such as UU, TT, AA, GG, etc.).


The nucleotide overhang can be at the 5′ end or 3′ end of one or both strands. For example, in one embodiment, the RNAi construct comprises a nucleotide overhang at the 5′ end and the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises a nucleotide overhang at the 5′ end and the 3′ end of the sense strand. In some embodiments, the RNAi construct comprises a nucleotide overhang at the 5′ end of the sense strand and the 5′ end of the antisense strand. In other embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the sense strand and the 3′ end of the antisense strand.


The RNAi constructs may comprise a single nucleotide overhang at one end of the double-stranded RNA molecule and a blunt end at the other. A “blunt end” means that the sense strand and antisense strand are fully base-paired at the end of the molecule and there are no unpaired nucleotides that extend beyond the duplex region. In some embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the sense strand and a blunt end at the 5′ end of the sense strand and 3′ end of the antisense strand. In other embodiments, the RNAi construct comprises a nucleotide overhang at the 3′ end of the antisense strand and a blunt end at the 5′ end of the antisense strand and the 3′ end of the sense strand. In certain embodiments, the RNAi construct comprises a blunt end at both ends of the double-stranded RNA molecule. In such embodiments, the sense strand and antisense strand have the same length and the duplex region is the same length as the sense and antisense strands (i.e., the molecule is double stranded over its entire length).


The sense strand and antisense strand in the RNAi constructs can each independently be about 15 to about 30 nucleotides in length, about 19 to about 30 nucleotides in length, about 18 to about 28 nucleotides in length, about 19 to about 27 nucleotides in length, about 19 to about 25 nucleotides in length, about 19 to about 23 nucleotides in length, about 19 to about 21 nucleotides in length, about 21 to about 25 nucleotides in length, or about 21 to about 23 nucleotides in length. In certain embodiments, the sense strand and antisense strand are each independently about 18, about 19, about 20, about 21, about 22, about 23, about 24, or about 25 nucleotides in length. In some embodiments, the sense strand and antisense strand have the same length but form a duplex region that is shorter than the strands such that the RNAi construct has two nucleotide overhangs. For instance, in one embodiment, the RNAi construct comprises (i) a sense strand and an antisense strand that are each 21 nucleotides in length, (ii) a duplex region that is 19 base pairs in length, and (iii) nucleotide overhangs of 2 unpaired nucleotides at both the 3′ end of the sense strand and the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises (i) a sense strand and an antisense strand that are each 23 nucleotides in length, (ii) a duplex region that is 21 base pairs in length, and (iii) nucleotide overhangs of 2 unpaired nucleotides at both the 3′ end of the sense strand and the 3′ end of the antisense strand. In other embodiments, the sense strand and antisense strand have the same length and form a duplex region over their entire length such that there are no nucleotide overhangs on either end of the double-stranded molecule. In one such embodiment, the RNAi construct is blunt ended (e.g., has two blunt ends) and comprises (i) a sense strand and an antisense strand, each of which is 21 nucleotides in length, and (ii) a duplex region that is 21 base pairs in length. In another such embodiment, the RNAi construct is blunt ended (e.g., has two blunt ends) and comprises (i) a sense strand and an antisense strand, each of which is 23 nucleotides in length, and (ii) a duplex region that is 23 base pairs in length. In still another such embodiment, the RNAi construct is blunt ended (e.g., has two blunt ends) and comprises (i) a sense strand and an antisense strand, each of which is 19 nucleotides in length, and (ii) a duplex region that is 19 base pairs in length.


In other embodiments, the sense strand or the antisense strand is longer than the other strand and the two strands form a duplex region having a length equal to that of the shorter strand such that the RNAi construct comprises at least one nucleotide overhang. For example, in one embodiment, the RNAi construct comprises (i) a sense strand that is 19 nucleotides in length, (ii) an antisense strand that is 21 nucleotides in length, (iii) a duplex region of 19 base pairs in length, and (iv) a nucleotide overhang of 2 unpaired nucleotides at the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises (i) a sense strand that is 21 nucleotides in length, (ii) an antisense strand that is 23 nucleotides in length, (iii) a duplex region of 21 base pairs in length, and (iv) a nucleotide overhang of 2 unpaired nucleotides at the 3′ end of the antisense strand.


The antisense strand of the RNAi constructs can comprise or consist of the sequence of any one of the antisense sequences listed in Table 1 or Table 2, the sequence of nucleotides 1-19 of any of these antisense sequences, or the sequence of nucleotides 2-19 of any of these antisense sequences. Thus, in some embodiments, the antisense strand comprises or consists of a sequence selected from SEQ ID NOs: 546-1089 or 1938-2785. In other embodiments, the antisense strand comprises or consists of a sequence of nucleotides 1-19 of any one of SEQ ID NOs: 546-1089 or 1938-2785. In still other embodiments, the antisense strand comprises or consists of a sequence of nucleotides 2-19 of any one of SEQ ID NOs: 546-1089 or 1938-2785.


In these and other embodiments, the sense strand of the RNAi constructs can comprise or consist of the sequence of any one of the sense sequences listed in Table 1 or Table 2, the sequence of nucleotides 1-19 of any of these sense sequences, or the sequence of nucleotides 2-19 of any of these sense sequences. Thus, in some embodiments, the sense strand comprises or consists of a sequence selected from SEQ ID NOs: 2-545 or 1090-1937. In other embodiments, the sense strand comprises or consists of a sequence of nucleotides 1-19 of any one of SEQ ID NOs: 2-545 or 1090-1937. In still other embodiments, the sense strand comprises or consists of a sequence of nucleotides 2-19 of any one of SEQ ID NOs: 2-545 or 1090-1937.


In certain embodiments, the RNAi constructs comprise (i) a sense strand comprising or consisting of a sequence selected from 2-545 or 1090-1937 and (ii) an antisense strand comprising or consisting of a sequence selected from SEQ ID NOs: 546-1089 or 1938-2785. In some embodiments, the RNAi construct can be any of the duplex compounds listed in Table 1 or Table 2 (including the unmodified nucleotide sequences and/or modified nucleotide sequences of the compounds). In certain embodiments, the RNAi construct is D-1539, D-1544, D-1545, D-1549, D-1557, D-1559, D-1573, D-1579, D-1586, D-1597, D-1607, D-1611, D-1612, D-1614, D-1623, D-1631, D-1636, D-1639, D-1640, D-1643, D-1644, D-1645, D-1646, D-1648, D-1652, D-1661, D-1667, D-1672, or D-1694.


Modification and Preparation of RNAi Constructs

The RNAi constructs disclosed herein may comprise one or more modified nucleotides. A “modified nucleotide” refers to a nucleotide that has one or more chemical modifications to the nucleoside, nucleobase, pentose ring, or phosphate group. As used herein, modified nucleotides do not encompass ribonucleotides containing adenosine monophosphate, guanosine monophosphate, uridine monophosphate, and cytidine monophosphate. However, the RNAi constructs may comprise combinations of modified nucleotides and ribonucleotides. Incorporation of modified nucleotides into one or both strands of double-stranded RNA molecules can improve the in vivo stability of the RNA molecules, e.g., by reducing the molecules' susceptibility to nucleases and other degradation processes. The potency of RNAi constructs for reducing expression of the target gene can also be enhanced by incorporation of modified nucleotides.


In certain embodiments, the modified nucleotides have a modification of the ribose sugar. These sugar modifications can include modifications at the 2′ and/or 5′ position of the pentose ring as well as bicyclic sugar modifications. A 2′-modified nucleotide refers to a nucleotide having a pentose ring with a substituent at the 2′ position other than OH. Such 2′-modifications include, but are not limited to, 2′-H (e.g., deoxyribonucleotides), 2′-O-alkyl (e.g., —O—C1-C10 or —O—C1-C10 substituted alkyl), 2′-O-allyl (—O—CH2CH═CH2), 2′-C-allyl, 2′-deoxy-2′-fluoro (also referred to as 2′-F or 2′-fluoro), 2′-O-methyl (—OCH3), 2′-O-methoxyethyl (—O—(CH2)2OCH3), 2′-OCF3, 2′-O(CH2)2SCH3, 2′-O-aminoalkyl, 2′-amino (e.g., —NH2), 2′-O-ethylamine, and 2′-azido. Modifications at the 5′ position of the pentose ring include, but are not limited to, 5′-methyl (R or S configuration); 5′-vinyl, and 5′-methoxy.


A “bicyclic sugar modification” refers to a modification of the pentose ring where a bridge connects two atoms of the ring to form a second ring resulting in a bicyclic sugar structure. In some embodiments the bicyclic sugar modification comprises a bridge between the 4′ and 2′ carbons of the pentose ring. Nucleotides comprising a sugar moiety with a bicyclic sugar modification are referred to herein as bicyclic nucleic acids or BNAs. Exemplary bicyclic sugar modifications include, but are not limited to, α-L-Methyleneoxy (4′-CH2—O-2′) bicyclic nucleic acid (BNA); β-D-Methyleneoxy (4′-CH2—O-2′) BNA (also referred to as a locked nucleic acid or LNA); Ethyleneoxy (4′-(CH2)2—O-2′) BNA; Aminooxy (4′-CH2—O—N(R)-2′, wherein R is H, C1-C12 alkyl, or a protecting group) BNA; Oxyamino (4′-CH2—N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group) BNA; Methyl(methyleneoxy) (4′-CH(CH3)—O-2′) BNA (also referred to as constrained ethyl or cEt); methylene-thio (4′-CH2—S-2′) BNA; methylene-amino (4′-CH2-N(R)-2′, wherein R is H, C1-C12 alkyl, or a protecting group) BNA; methyl carbocyclic (4′-CH2—CH(CH3)-2′) BNA; propylene carbocyclic (4′-(CH2)3-2′) BNA; and Methoxy(ethyleneoxy) (4′-CH(CH2OMe)-O-2′) BNA (also referred to as constrained MOE or cMOE). These and other sugar-modified nucleotides that can be incorporated into the RNAi constructs are described in U.S. Pat. No. 9,181,551, U.S. Patent Publication No. 2016/0122761, and Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, all of which are hereby incorporated by reference in their entireties.


In some embodiments, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-alkyl modified nucleotides, 2′-O-allyl modified nucleotides, bicyclic nucleic acids (BNAs), deoxyribonucleotides, or combinations thereof. In certain embodiments, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, or combinations thereof. In some embodiments, the RNAi constructs comprise one or more 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides or combinations thereof.


Both the sense and antisense strands of the RNAi constructs can comprise one or multiple modified nucleotides. For instance, in some embodiments, the sense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more modified nucleotides. In certain embodiments, all nucleotides in the sense strand are modified nucleotides. In some embodiments, the antisense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more modified nucleotides. In other embodiments, all nucleotides in the antisense strand are modified nucleotides. In certain other embodiments, all nucleotides in the sense strand and all nucleotides in the antisense strand are modified nucleotides. In these and other embodiments, the modified nucleotides can be 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, or combinations thereof.


In certain embodiments, the modified nucleotides incorporated into one or both strands of the RNAi constructs have a modification of the nucleobase (also referred to herein as “base”). A “modified nucleobase” or “modified base” refers to a base other than the naturally occurring purine bases adenine (A) and guanine (G) and pyrimidine bases thymine (T), cytosine (C), and uracil (U). Modified nucleobases can be synthetic or naturally occurring modifications and include, but are not limited to, universal bases, 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine (X), hypoxanthine (I), 2-aminoadenine, 6-methyladenine, 6-methylguanine, and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo, particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine.


In some embodiments, the modified base is a universal base. A “universal base” refers to a base analog that indiscriminately forms base pairs with all the natural bases in RNA and DNA without altering the double helical structure of the resulting duplex region. Universal bases are known to those of skill in the art and include, but are not limited to, inosine, C-phenyl, C-naphthyl and other aromatic derivatives, azole carboxamides, and nitroazole derivatives, such as 3-nitropyrrole, 4-nitroindole, 5-nitroindole, and 6-nitroindole.


Other suitable modified bases that can be incorporated into the RNAi constructs include those described in Herdewijn, Antisense Nucleic Acid Drug Dev., Vol. 10: 297-310, 2000 and Peacock et al., J. Org. Chem., Vol. 76: 7295-7300, 2011, both of which are hereby incorporated by reference in their entireties. The skilled person understands guanine, cytosine, adenine, thymine, and uracil may be replaced by other nucleobases, such as the modified nucleobases described above, without substantially altering the base pairing properties of a polynucleotide comprising a nucleotide bearing such replacement nucleobase.


In some embodiments, the sense and antisense strands of the RNAi constructs may comprise one or more abasic nucleotides. An “abasic nucleotide” or “abasic nucleoside” is a nucleotide or nucleoside that lacks a nucleobase at the 1′ position of the ribose sugar. In certain embodiments, the abasic nucleotides are incorporated into the terminal ends of the sense and/or antisense strands of the RNAi constructs. In one embodiment, the sense strand comprises an abasic nucleotide as the terminal nucleotide at its 3′ end, its 5′ end, or both its 3′ and 5′ ends. In another embodiment, the antisense strand comprises an abasic nucleotide as the terminal nucleotide at its 3′ end, its 5′ end, or both its 3′ and 5′ ends. In such embodiments in which the abasic nucleotide is a terminal nucleotide, it may be an inverted nucleotide—that is, linked to the adjacent nucleotide through a 3′-3′ internucleotide linkage (when on the 3′ end of a strand) or through a 5′-5′ internucleotide linkage (when on the 5′ end of a strand) rather than the natural 3′-5′ internucleotide linkage. Abasic nucleotides may also comprise a sugar modification, such as any of the sugar modifications described above. In certain embodiments, abasic nucleotides comprise a 2′-modification, such as a 2′-fluoro modification, 2′-O-methyl modification, or a 2′-H (deoxy) modification. In one embodiment, the abasic nucleotide comprises a 2′-O-methyl modification. In another embodiment, the abasic nucleotide comprises a 2′-H modification (i.e., a deoxy abasic nucleotide).


In certain embodiments, the RNAi constructs may comprise modified nucleotides incorporated into the sense and antisense strands according to a particular pattern, such as the patterns described in WIPO Publication No. WO 2020/123410, which is hereby incorporated by reference in its entirety. RNAi constructs having such chemical modification patterns have been shown to have improved gene silencing activity in vivo. In one embodiment, the RNAi construct comprises a sense strand and an antisense strand that comprise sequences that are sufficiently complementary to each other to form a duplex region of at least 15 base pairs, wherein:

    • nucleotides at positions 2, 7, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides;
    • nucleotides in the sense strand at positions paired with positions 8 to 11 and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides; and
    • neither the sense strand nor the antisense strand each have more than 7 total 2′-fluoro modified nucleotides.


In other embodiments, the RNAi construct comprises a sense strand and an antisense strand that comprise sequences that are sufficiently complementary to each other to form a duplex region of at least 19 base pairs, wherein:

    • nucleotides at positions 2, 7, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides, nucleotides at positions 4, 6, 10, and 12 (counting from the 5′ end) are optionally 2′-fluoro modified nucleotides, and all other nucleotides in the antisense strand are modified nucleotides other than 2′-fluoro modified nucleotides; and
    • nucleotides in the sense strand at positions paired with positions 8 to 11 and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides, nucleotides in the sense strand at positions paired with positions 3 and 5 in the antisense strand (counting from the 5′ end) are optionally 2′-fluoro modified nucleotides; and all other nucleotides in the sense strand are modified nucleotides other than 2′-fluoro modified nucleotides.


In such embodiments, the modified nucleotides other than 2′-fluoro modified nucleotides can be selected from 2′-O-methyl modified nucleotides, 2′-O-methoxyethyl modified nucleotides, 2′-O-alkyl modified nucleotides, 2′-O-allyl modified nucleotides, BNAs, and deoxyribonucleotides. In these and other embodiments, the terminal nucleotide at the 3′ end, the 5′ end, or both the 3′ end and the 5′ end of the sense strand can be an abasic nucleotide or a deoxyribonucleotide. In such embodiments, the abasic nucleotide or deoxyribonucleotide may be inverted—i.e., linked to the adjacent nucleotide through a 3′-3′ internucleotide linkage (when on the 3′ end of a strand) or through a 5′-5′ internucleotide linkage (when on the 5′ end of a strand) rather than the natural 3′-5′ internucleotide linkage.


In any of the above-described embodiments, nucleotides at positions 2, 7, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In other embodiments, nucleotides at positions 2, 4, 7, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In yet other embodiments, nucleotides at positions 2, 4, 6, 7, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In still other embodiments, nucleotides at positions 2, 4, 6, 7, 10, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In alternative embodiments, nucleotides at positions 2, 7, 10, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In certain other embodiments, nucleotides at positions 2, 4, 7, 10, 12, and 14 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides.


In any of the above-described embodiments, nucleotides in the sense strand at positions paired with positions 3, 8 to 11, and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In some embodiments, nucleotides in the sense strand at positions paired with positions 5, 8 to 11, and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides. In other embodiments, nucleotides in the sense strand at positions paired with positions 3, 5, 8 to 11, and 13 in the antisense strand (counting from the 5′ end) are 2′-fluoro modified nucleotides.


In some embodiments, the RNAi construct comprises a structure represented by Formula (A):









(A)


5′-(NA)x NL NL NL NL NL NL NF NL NF NF NF NF NL NL NM


NL NM NL NT(n)y-3′





3′-(NB)z NL NL NL NL NL NF NL NM NL NM NL NL NF NM NL


NM NL NF NL-5′






In Formula (A), the top strand listed in the 5′ to 3′ direction is the sense strand and the bottom strand listed in the 3′ to 5′ direction is the antisense strand; each NF represents a 2′-fluoro modified nucleotide; each NM independently represents a modified nucleotide selected from a 2′-fluoro modified nucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; each NL independently represents a modified nucleotide selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; and NT represents a modified nucleotide selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. X can be an integer from 0 to 4, provided that when x is 1, 2, 3, or 4, one or more of the NA nucleotides is a modified nucleotide independently selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NA nucleotides can be complementary to nucleotides in the antisense strand. Y can be an integer from 0 to 4, provided that when y is 1, 2, 3, or 4, one or more n nucleotides are modified or unmodified overhang nucleotides that do not base pair with nucleotides in the antisense strand. Z can be an integer from 0 to 4, provided that when z is 1, 2, 3, or 4, one or more of the NB nucleotides is a modified nucleotide independently selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NB nucleotides can be complementary to NA nucleotides when present in the sense strand or can be overhang nucleotides that do not base pair with nucleotides in the sense strand.


In some embodiments in which the RNAi construct comprises a structure represented by Formula (A), there is a nucleotide overhang at the 3′ end of the sense strand—i.e., y is 1, 2, 3, or 4. In one such embodiment, y is 2. In embodiments in which there is an overhang of 2 nucleotides at the 3′ end of the sense strand (i.e., y is 2), x is 0 and z is 2 or x is 1 and z is 2. In other embodiments in which the RNAi construct comprises a structure represented by Formula (A), the RNAi construct comprises a blunt end at the 3′ end of the sense strand and the 5′ end of the antisense strand (i.e., y is 0). In such embodiments where there is no nucleotide overhang at the 3′ end of the sense strand (i.e., y is 0): (i) x is 2 and z is 4, (ii) x is 3 and z is 4, (iii) x is 0 and z is 2, (iv) x is 1 and z is 2, or (v) x is 2 and z is 2. In any of the embodiments in which x is greater than 0, the NA nucleotide that is the terminal nucleotide at the 5′ end of the sense strand can be an inverted nucleotide, such as an inverted abasic nucleotide or an inverted deoxyribonucleotide.


In certain embodiments in which the RNAi construct comprises a structure represented by Formula (A), the NM at positions 4 and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In other embodiments, the NM at positions 4, 6, and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In yet other embodiments, the NM at positions 4, 6, 10, and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In alternative embodiments in which the RNAi construct comprises a structure represented by Formula (A), the NM at positions 10 and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In related embodiments, the NM at positions 4, 10, and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In other alternative embodiments in which the RNAi construct comprises a structure represented by Formula (A), the NM at positions 4, 6, and 10 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide, and the NM at position 12 in the antisense strand counting from the 5′ end is a 2′-fluoro modified nucleotide. In some embodiments in which the RNAi construct comprises a structure represented by Formula (A), each NM in the sense strand is a 2′-O-methyl modified nucleotide. In other embodiments, each NM in the sense strand is a 2′-fluoro modified nucleotide. In still other embodiments in which the RNAi construct comprises a structure represented by Formula (A), each NM in both the sense and antisense strands is a 2′-O-methyl modified nucleotide.


In any of the above-described embodiments in which the RNAi construct comprises a structure represented by Formula (A), each NL in both the sense and antisense strands can be a 2′-O-methyl modified nucleotide. In these embodiments and any of the embodiments described above, NT in Formula (A) can be an inverted abasic nucleotide, an inverted deoxyribonucleotide, or a 2′-O-methyl modified nucleotide.


In other embodiments, the RNAi construct comprises a structure represented by Formula (B):









(B)


5′-(NA)x NL NL NL NL NM NL NF NF NF NF NL NL NL NL NL


NL NL NL NT (n)y-3′





3′-(NB)z NL NL NL NM NL NF NL NM NL NL NN NN NN NN NL


NM NL NF NL-5′






In Formula (B), the top strand listed in the 5′ to 3′ direction is the sense strand and the bottom strand listed in the 3′ to 5′ direction is the antisense strand; each NF represents a 2′-fluoro modified nucleotide; each NM independently represents a modified nucleotide selected from a 2′-fluoro modified nucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; each NL independently represents a modified nucleotide selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide; and NT represents a modified nucleotide selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. X can be an integer from 0 to 4, provided that when x is 1, 2, 3, or 4, one or more of the NA nucleotides is a modified nucleotide independently selected from an abasic nucleotide, an inverted abasic nucleotide, an inverted deoxyribonucleotide, a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NA nucleotides can be complementary to nucleotides in the antisense strand. Y can be an integer from 0 to 4, provided that when y is 1, 2, 3, or 4, one or more n nucleotides are modified or unmodified overhang nucleotides that do not base pair with nucleotides in the antisense strand. Z can be an integer from 0 to 4, provided that when z is 1, 2, 3, or 4, one or more of the NB nucleotides is a modified nucleotide independently selected from a 2′-O-methyl modified nucleotide, a 2′-O-methoxyethyl modified nucleotide, a 2′-O-alkyl modified nucleotide, a 2′-O-allyl modified nucleotide, a BNA, and a deoxyribonucleotide. One or more of the NB nucleotides can be complementary to NA nucleotides when present in the sense strand or can be overhang nucleotides that do not base pair with nucleotides in the sense strand.


In some embodiments in which the RNAi construct comprises a structure represented by Formula (B), there is a nucleotide overhang at the 3′ end of the sense strand—i.e., y is 1, 2, 3, or 4. In one such embodiment, y is 2. In embodiments in which there is an overhang of 2 nucleotides at the 3′ end of the sense strand (i.e., y is 2), x is 0 and z is 2 or x is 1 and z is 2. In other embodiments in which the RNAi construct comprises a structure represented by Formula (B), the RNAi construct comprises a blunt end at the 3′ end of the sense strand and the 5′ end of the antisense strand (i.e., y is 0). In such embodiments where there is no nucleotide overhang at the 3′ end of the sense strand (i.e., y is 0): (i) x is 2 and z is 4, (ii) x is 3 and z is 4, (iii) x is 0 and z is 2, (iv) x is 1 and z is 2, or (v) x is 2 and z is 2. In any of the embodiments in which x is greater than 0, the NA nucleotide that is the terminal nucleotide at the 5′ end of the sense strand can be an inverted nucleotide, such as an inverted abasic nucleotide or an inverted deoxyribonucleotide.


In certain embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM at positions 4, 6, 8, 9, and 16 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide and the NM at positions 7 and 12 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide. In other embodiments, the NM at positions 4 and 6 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide and the NM at positions 7 to 9 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide. In still other embodiments, the NM at positions 4, 6, 8, 9, and 16 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide and the NM at positions 7 and 12 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In alternative embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM at positions 4, 6, 8, 9, and 12 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide and the NM at positions 7 and 16 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In certain other embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM at positions 7, 8, 9, and 12 in the antisense strand counting from the 5′ end are each a 2′-O-methyl modified nucleotide and the NM at positions 4, 6, and 16 in the antisense strand counting from the 5′ end are each a 2′-fluoro modified nucleotide. In these and other embodiments in which the RNAi construct comprises a structure represented by Formula (B), the NM in the sense strand is a 2′-fluoro modified nucleotide. In alternative embodiments, the NM in the sense strand is a 2′-O-methyl modified nucleotide.


In any of the above-described embodiments in which the RNAi construct comprises a structure represented by Formula (B), each NL in both the sense and antisense strands can be a 2′-O-methyl modified nucleotide. In these embodiments and any of the embodiments described above, NT in Formula (B) can be an inverted abasic nucleotide, an inverted deoxyribonucleotide, or a 2′-O-methyl modified nucleotide.


The RNAi constructs may also comprise one or more modified internucleotide linkages. As used herein, the term “modified internucleotide linkage” refers to an internucleotide linkage other than the natural 3′ to 5′ phosphodiester linkage. In some embodiments, the modified internucleotide linkage is a phosphorous-containing internucleotide linkage, such as a phosphotriester, aminoalkylphosphotriester, an alkylphosphonate (e.g., methylphosphonate, 3′-alkylene phosphonate), a phosphinate, a phosphoramidate (e.g., 3′-amino phosphoramidate and aminoalkylphosphoramidate), a phosphorothioate, a chiral phosphorothioate, a phosphorodithioate, a thionophosphoramidate, a thionoalkylphosphonate, a thionoalkylphosphotriester, and a boranophosphate. In one embodiment, a modified internucleotide linkage is a 2′ to 5′ phosphodiester linkage. In other embodiments, the modified internucleotide linkage is a non-phosphorous-containing internucleotide linkage and thus can be referred to as a modified internucleoside linkage. Such non-phosphorous-containing linkages include, but are not limited to, morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane linkages (—O—Si(H)2—O—); sulfide, sulfoxide and sulfone linkages; formacetyl and thioformacetyl linkages; alkene containing backbones; sulfamate backbones; methylenemethylimino (—CH2—N(CH3)—O—CH2—) and methylenehydrazino linkages; sulfonate and sulfonamide linkages; amide linkages; and others having mixed N, O, S and CH2 component parts. In one embodiment, the modified internucleoside linkage is a peptide-based linkage (e.g., aminoethylglycine) to create a peptide nucleic acid or PNA, such as those described in U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262. Other suitable modified internucleotide and internucleoside linkages that may be employed in the RNAi constructs are described in U.S. Pat. Nos. 6,693,187, 9,181,551, U.S. Patent Publication No. 2016/0122761, and Deleavey and Damha, Chemistry and Biology, Vol. 19: 937-954, 2012, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the RNAi constructs comprise one or more phosphorothioate internucleotide linkages. The phosphorothioate internucleotide linkages may be present in the sense strand, antisense strand, or both strands of the RNAi constructs. For instance, in some embodiments, the sense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. In other embodiments, the antisense strand comprises 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. In still other embodiments, both strands comprise 1, 2, 3, 4, 5, 6, 7, 8, or more phosphorothioate internucleotide linkages. The RNAi constructs can comprise one or more phosphorothioate internucleotide linkages at the 3′-end, the 5′-end, or both the 3′- and 5′-ends of the sense strand, the antisense strand, or both strands. For instance, in certain embodiments, the RNAi construct comprises about 1 to about 6 or more (e.g., about 1, 2, 3, 4, 5, 6 or more) consecutive phosphorothioate internucleotide linkages at the 3′-end of the sense strand, the antisense strand, or both strands. In other embodiments, the RNAi construct comprises about 1 to about 6 or more (e.g., about 1, 2, 3, 4, 5, 6 or more) consecutive phosphorothioate internucleotide linkages at the 5′-end of the sense strand, the antisense strand, or both strands. In some embodiments, the antisense strand comprises at least 1 but no more than 6 phosphorothioate internucleotide linkages and the sense strand comprises at least 1 but no more than 4 phosphorothioate internucleotide linkages. In other embodiments, the antisense strand comprises at least 1 but no more than 4 phosphorothioate internucleotide linkages and the sense strand comprises at least 1 but no more than 2 phosphorothioate internucleotide linkages.


In some embodiments, the RNAi construct comprises a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand. In other embodiments, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the sense strand. In one embodiment, the RNAi construct comprises a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand and a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the antisense strand. In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the antisense strand (i.e., a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at the 3′ end of the antisense strand). In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand. In yet another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages at the 5′ end of the sense strand. In still another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the sense strand. In another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the sense strand (i.e., a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at both the 5′ and 3′ ends of the antisense strand and a phosphorothioate internucleotide linkage at the first and second internucleotide linkages at both the 5′ and 3′ ends of the sense strand). In yet another embodiment, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand. In any of the embodiments in which one or both strands comprise one or more phosphorothioate internucleotide linkages, the remaining internucleotide linkages within the strands can be the natural 3′ to 5′ phosphodiester linkages. For instance, in some embodiments, each internucleotide linkage of the sense and antisense strands is selected from phosphodiester and phosphorothioate, wherein at least one internucleotide linkage is a phosphorothioate.


In embodiments in which the RNAi construct comprises a nucleotide overhang, two or more of the unpaired nucleotides in the overhang can be connected by a phosphorothioate internucleotide linkage. In certain embodiments, all the unpaired nucleotides in a nucleotide overhang at the 3′ end of the antisense strand and/or the sense strand are connected by phosphorothioate internucleotide linkages. In other embodiments, all the unpaired nucleotides in a nucleotide overhang at the 5′ end of the antisense strand and/or the sense strand are connected by phosphorothioate internucleotide linkages. In still other embodiments, all the unpaired nucleotides in any nucleotide overhang are connected by phosphorothioate internucleotide linkages.


Incorporation of a phosphorothioate internucleotide linkage introduces an additional chiral center at the phosphorous atom in the oligonucleotide and therefore creates a diastereomer pair (Rp and Sp) at each phosphorothioate internucleotide linkage. Diastereomers or diastereoisomers are different configurations of a compound that have the same molecular formula and sequence of bonded atoms but differ in the three-dimensional orientations of their atoms in space. Unlike enantiomers, diastereomers are not mirror-images of each other. Each chiral phosphate atom can be in the “R” configuration (Rp) or the “S” configuration (Sp). In certain embodiments, the RNAi constructs may comprise one or more phosphorothioate internucleotide linkages where the chiral phosphates are selected to be primarily in either the Rp or Sp configuration. For instance, in some embodiments in which the RNAi constructs have one or more phosphorothioate internucleotide linkages, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% of the chiral phosphates are in the Sp configuration. In other embodiments in which the RNAi constructs have one or more phosphorothioate internucleotide linkages, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95% of the chiral phosphates are in the Rp configuration. All the chiral phosphates in the RNAi construct can be either in the Sp configuration or the Rp configuration (i.e., the RNAi construct is stereopure). In some embodiments, all the chiral phosphates in the RNAi construct are in the Sp configuration. In some embodiments, all the chiral phosphates in the RNAi construct are in the Rp configuration.


In certain embodiments, the chiral phosphates in the RNAi construct may have different configurations at different positions in the sense strand or antisense strand. In one such embodiment in which the RNAi construct comprises one or two phosphorothioate internucleotide linkages at the 5′ end of the antisense strand, the chiral phosphates at the 5′ end of the antisense strand may be in the Rp configuration. In another such embodiment in which the RNAi construct comprises one or two phosphorothioate internucleotide linkages at the 3′ end of the antisense strand, the chiral phosphates at the 3′ end of the antisense strand may be in the Sp configuration. In certain embodiments, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at the 3′ end of the sense strand, wherein the chiral phosphates at the 5′ end of the antisense strand are in the Rp configuration, the chiral phosphates at the 3′ end of the antisense strand are in the Sp configuration, and the chiral phosphates at the 3′ end of the sense strand can be either in the Rp or Sp configuration. In certain other embodiments, the RNAi construct comprises two consecutive phosphorothioate internucleotide linkages between the terminal nucleotides at both the 3′ and 5′ ends of the antisense strand and a single phosphorothioate internucleotide linkage between the terminal nucleotides at the 3′ end of the sense strand, wherein the chiral phosphates at the 5′ end of the antisense strand are in the Rp configuration, the chiral phosphates at the 3′ end of the antisense strand are in the Sp configuration, and the chiral phosphate at the 3′ end of the sense strand can be either in the Rp or Sp configuration. Methods of controlling the stereochemistry of phosphorothioate linkages during oligonucleotide synthesis are known to those skilled in the art and can include methods described in Nawrot and Rebowska, Curr. Protoc. Nucleic Acid Chem. 2009, Chapter 4: doi:10.1002/0471142700.nc0434s362009; Jahns et al., Nat. Commun., Vol. 6: 6317, 2015; Knouse et al., Science, Vol. 361: 1234-1238, 2018; and Sakamuri et al., ChemBioChem, Vol. 21(9): 1304-1308, 2020.


In some embodiments of the RNAi constructs, the 5′ end of the sense strand, antisense strand, or both the antisense and sense strands comprises a phosphate moiety. As used herein, the term “phosphate moiety” refers to a terminal phosphate group that includes unmodified phosphates (—O—P═O)(OH)OH) as well as modified phosphates. Modified phosphates include phosphates in which one or more of the O and OH groups are replaced with H, O, S, N(R) or alkyl (e.g., C1 to C12) where R is H, an amino protecting group or unsubstituted or substituted alkyl (e.g., C1 to C12). Exemplary phosphate moieties include, but are not limited to, 5′-monophosphate; 5′-diphosphate; 5′-triphosphate; 5′-guanosine cap (7-methylated or non-methylated); 5′-adenosine cap or any other modified or unmodified nucleotide cap structure; 5′-monothiophosphate (phosphorothioate); 5′-monodithiophosphate (phosphorodithioate); 5′-alpha-thiotriphosphate; 5′-gamma-thiotriphosphate, 5′-phosphoramidates; 5′-vinylphosphates; 5′-alkylphosphonates (e.g., alkyl=methyl, ethyl, isopropyl, propyl, etc.); and 5′-alkyletherphosphonates (e.g., alkylether=methoxymethyl, ethoxymethyl, etc.).


The modified nucleotides that can be incorporated into the RNAi constructs may have more than one chemical modification described herein. For instance, the modified nucleotide may have a modification to the ribose sugar as well as a modification to the nucleobase. By way of example, a modified nucleotide may comprise a 2′ sugar modification (e.g., 2′-fluoro or 2′-O-methyl) and comprise a modified base (e.g., 5-methyl cytosine or pseudouracil). In other embodiments, the modified nucleotide may comprise a sugar modification in combination with a modification to the 5′ phosphate that would create a modified internucleotide or internucleotide linkage when the modified nucleotide was incorporated into a polynucleotide. For instance, in some embodiments, the modified nucleotide may comprise a sugar modification, such as a 2′-fluoro modification, a 2′-O-methyl modification, or a bicyclic sugar modification, as well as a 5′ phosphorothioate group. Accordingly, in some embodiments, one or both strands of the RNAi constructs comprise a combination of 2′ modified nucleotides or BNAs and phosphorothioate internucleotide linkages. In certain embodiments, both the sense and antisense strands of the RNAi constructs comprise a combination of 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, and phosphorothioate internucleotide linkages. Exemplary RNAi constructs comprising modified nucleotides and internucleotide linkages are shown in Table 2.


Exemplary modification patterns for RNAi constructs are shown in FIGS. 7A-7R. These patterns may be used in the context of the RNAi duplexes disclosed herein, or in the context of RNAi constructs in general. FIGS. 7A-7R each show a hybridized sense (top) and antisense (bottom) strand, in which each of the nucleotides is modified. The solid circles in FIGS. 7A-7R correspond to 2′-O-methyl ribonucleotides, while the open circles correspond to 2′-deoxy-2′-fluoro (“2′-fluoro”) ribonucleotides. The hatched circles correspond to inverted abasic deoxynucleotides. Bold lines indicate where a phosphorothioate bond is used in place of the standard phosphodiester bond between nucleotides. Finally, arrows represent where a ligand (e.g., GalNAc or a fatty acid such as C22) may be attached to the RNAi construct. As demonstrated in the Examples below, these modification patterns are effective across a range of different trigger sequences in the FAM13A sequence, indicating that they are generally applicable to RNAi constructs.


The RNAi constructs can readily be made using techniques known in the art, for example, using conventional nucleic acid solid phase synthesis. The polynucleotides of the RNAi constructs can be assembled on a suitable nucleic acid synthesizer utilizing standard nucleotide or nucleoside precursors (e.g., phosphoramidites). Automated nucleic acid synthesizers are sold commercially by several vendors, including DNA/RNA synthesizers from Applied Biosystems (Foster City, CA), MerMade synthesizers from BioAutomation (Irving, TX), and OligoPilot synthesizers from GE Healthcare Life Sciences (Pittsburgh, PA). An exemplary method for synthesizing the RNAi constructs is described in Example 3.


A 2′ silyl protecting group can be used in conjunction with acid labile dimethoxytrityl (DMT) at the 5′ position of ribonucleosides to synthesize oligonucleotides via phosphoramidite chemistry. Final deprotection conditions are known not to significantly degrade RNA products. All syntheses can be conducted in any automated or manual synthesizer on large, medium, or small scale. The syntheses may also be carried out in multiple well plates, columns, or glass slides.


The 2′-O-silyl group can be removed via exposure to fluoride ions, which can include any source of fluoride ion, e.g., those salts containing fluoride ion paired with inorganic counterions e.g., cesium fluoride and potassium fluoride or those salts containing fluoride ion paired with an organic counterion, e.g., a tetraalkylammonium fluoride. A crown ether catalyst can be utilized in combination with the inorganic fluoride in the deprotection reaction. Exemplary fluoride ion sources are tetrabutylammonium fluoride or aminohydrofluorides (e.g., combining aqueous HF with triethylamine in a dipolar aprotic solvent, e.g., dimethylformamide).


The choice of protecting groups for use on the phosphite triesters and phosphotriesters can alter the stability of the triesters towards fluoride. Methyl protection of the phosphotriester or phosphite triester can stabilize the linkage against fluoride ions and improve process yields.


Since ribonucleosides have a reactive 2′ hydroxyl substituent, it can be desirable to protect the reactive 2′ position in RNA with a protecting group that is orthogonal to a 5′-O-dimethoxytrityl protecting group, e.g., one stable to treatment with acid. Silyl protecting groups meet this criterion and can be readily removed in a final fluoride deprotection step that can result in minimal RNA degradation.


Tetrazole catalysts can be used in the standard phosphoramidite coupling reaction. Exemplary catalysts include, e.g., tetrazole, S-ethyl-tetrazole, benzylthiotetrazole, p-nitrophenyltetrazole.


As can be appreciated by the skilled artisan, further methods of synthesizing the RNAi constructs described herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Other synthetic chemistry transformations, protecting groups (e.g., for hydroxyl, amino, etc. present on the bases) and protecting group methodologies (protection and deprotection) useful in synthesizing the RNAi constructs described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof. Custom synthesis of RNAi constructs is also available from several commercial vendors, including Dharmacon, Inc. (Lafayette, CO), AxoLabs GmbH (Kulmbach, Germany), and Ambion, Inc. (Foster City, CA).


The RNAi constructs may comprise a ligand. As used herein, a “ligand” refers to any compound or molecule that is capable of interacting with another compound or molecule, directly or indirectly. The interaction of a ligand with another compound or molecule may elicit a biological response (e.g., initiate a signal transduction cascade, induce receptor-mediated endocytosis) or may just be a physical association. The ligand can modify one or more properties of the double-stranded RNA molecule to which is attached, such as the pharmacodynamic, pharmacokinetic, binding, absorption, cellular distribution, cellular uptake, charge and/or clearance properties of the RNA molecule.


The ligand may comprise a serum protein (e.g., human serum albumin, low-density lipoprotein, globulin), a cholesterol moiety, a vitamin (biotin, vitamin E, vitamin B12), a folate moiety, a steroid, a bile acid (e.g., cholic acid), a fatty acid (e.g., palmitic acid, myristic acid), a carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid), a glycoside, a phospholipid, or antibody or binding fragment thereof (e.g., antibody or binding fragment that targets the RNAi construct to a specific cell type, such as liver). Other examples of ligands include dyes, intercalating agents (e.g., acridines), cross-linkers (e.g., psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g., EDTA), lipophilic molecules, e.g., adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-Bis-O(hexadecyl)glycerol, geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, O3-(oleoyl)lithocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine), peptides (e.g., antennapedia peptide, Tat peptide, RGD peptides), alkylating agents, polymers, such as polyethylene glycol (PEG)(e.g., PEG-40K), polyamino acids, and polyamines (e.g., spermine, spermidine).


In certain embodiments, the ligands have endosomolytic properties. The endosomolytic ligands promote the lysis of the endosome and/or transport of the RNAi construct, or its components, from the endosome to the cytoplasm of the cell. The endosomolytic ligand may be a polycationic peptide or peptidomimetic, which shows pH-dependent membrane activity and fusogenicity. In one embodiment, the endosomolytic ligand assumes its active conformation at endosomal pH. The “active” conformation is that conformation in which the endosomolytic ligand promotes lysis of the endosome and/or transport of the RNAi construct, or its components, from the endosome to the cytoplasm of the cell. Exemplary endosomolytic ligands include the GALA peptide (Subbarao et al., Biochemistry, Vol. 26: 2964-2972, 1987), the EALA peptide (Vogel et al., J. Am. Chem. Soc., Vol. 118: 1581-1586, 1996), and their derivatives (Turk et al., Biochem. Biophys. Acta, Vol. 1559: 56-68, 2002). In one embodiment, the endosomolytic component may contain a chemical group (e.g., an amino acid) which will undergo a change in charge or protonation in response to a change in pH. The endosomolytic component may be linear or branched.


In some embodiments, the ligand comprises a lipid or other hydrophobic molecule. In one embodiment, the ligand comprises a cholesterol moiety or other steroid. Cholesterol-conjugated oligonucleotides have been reported to be more active than their unconjugated counterparts (Manoharan, Antisense Nucleic Acid Drug Development, Vol. 12: 103-228, 2002). Ligands comprising cholesterol moieties and other lipids for conjugation to nucleic acid molecules have also been described in U.S. Pat. Nos. 7,851,615; 7,745,608; and 7,833,992, all of which are hereby incorporated by reference in their entireties. In another embodiment, the ligand comprises a folate moiety. Polynucleotides conjugated to folate moieties can be taken up by cells via a receptor-mediated endocytosis pathway. Such folate-polynucleotide conjugates are described in U.S. Pat. No. 8,188,247, which is hereby incorporated by reference in its entirety.


In certain embodiments, it is desirable to specifically deliver the RNAi constructs to liver cells to reduce expression of FAM13A protein specifically in the liver. Accordingly, in certain embodiments, the ligand targets delivery of the RNAi construct specifically to liver cells (e.g., hepatocytes) using various approaches as described in more detail below. In certain embodiments, the RNAi constructs are targeted to liver cells with a ligand that binds to the surface-expressed asialoglycoprotein receptor (ASGR) or component thereof (e.g., ASGR1, ASGR2).


In some embodiments, RNAi constructs can be specifically targeted to the liver by employing ligands that bind to or interact with proteins expressed on the surface of liver cells. For example, in certain embodiments, the ligands may comprise antigen binding proteins (e.g., antibodies or binding fragments thereof (e.g., Fab, scFv)) that specifically bind to a receptor expressed on hepatocytes, such as the asialoglycoprotein receptor and the LDL receptor. In some embodiments, the ligand comprises an antibody or binding fragment thereof that specifically binds to ASGR1 and/or ASGR2. In another embodiment, the ligand comprises a Fab fragment of an antibody that specifically binds to ASGR1 and/or ASGR2. A “Fab fragment” is comprised of one immunoglobulin light chain (i.e., light chain variable region (VL) and constant region (CL)) and the CH1 region and variable region (VH) of one immunoglobulin heavy chain. In another embodiment, the ligand comprises a single-chain variable antibody fragment (scFv fragment) of an antibody that specifically binds to ASGR1 and/or ASGR2. An “scFv fragment” comprises the VH and VL regions of an antibody, wherein these regions are present in a single polypeptide chain, and optionally comprising a peptide linker between the VH and VL regions that enables the FAT to form the desired structure for antigen binding. Exemplary antibodies and binding fragments thereof that specifically bind to ASGR1 that can be used as ligands for targeting the RNAi constructs to the liver are described in WIPO Publication No. WO 2017/058944, which is hereby incorporated by reference in its entirety. Other antibodies or binding fragments thereof that specifically bind to ASGR1, LDL receptor, or other liver surface-expressed proteins suitable for use as ligands in the RNAi constructs are commercially available.


In certain embodiments, it is desirable to specifically deliver the RNAi constructs to adipose tissue or adipose cells to reduce expression of FAM13A protein specifically in adipose cells. Accordingly, in certain embodiments, the ligand targets delivery of the RNAi construct specifically to adipose cells (e.g., subcutaneous white adipose tissue (scWAT) or epididymal white adipose tissue (eWAT)) using various approaches as described in more detail below. In certain embodiments, the RNAi constructs are targeted to adipose tissue or cells by conjugation to long-chain fatty acids, which are saturated or unsaturated fatty acids containing between 12 and 24 carbon atoms. In some embodiments, the long-chain fatty acid is lauric acid (C12), myristic acid (C14), palmitic acid (C16), stearic acid (C18), eicosapentaenoic acid (C20), docosanoic acid (C22), or docosahexanoic acid (C24).


In certain embodiments, it is desirable to deliver the RNAi constructs systemically to reduce expression of FAM13A protein in multiple or all cell types. Accordingly, in certain embodiments, the ligand targets delivery of the RNAi construct using methods known in the art to facilitate cellular delivery of siRNA (see, e.g., U.S. Pat. No. 10,633,653; WO 2022/016043, each of which is incorporated by reference in their entirety). In some embodiments, the RNAi constructs are targeted to cells by conjugation to cholesterol, α-tocopherol, or fatty acids. In some embodiments, the RNAi constructs are targeted to cells by conjugation to omega fatty acids. In certain embodiments, the RNAi constructs are targeted to cells by conjugation to long-chain fatty acids such as lauric acid (C12), myristic acid (C14), palmitic acid (C16), stearic acid (C18), eicosapentaenoic acid (C20), docosanoic acid (C22), or docosahexanoic acid (C24).


In certain embodiments, the ligand comprises a carbohydrate. A “carbohydrate” refers to a compound made up of one or more monosaccharide units having at least 6 carbon atoms (which can be linear, branched, or cyclic) with an oxygen, nitrogen or sulfur atom bonded to each carbon atom. Carbohydrates include, but are not limited to, the sugars (e.g., monosaccharides, disaccharides, trisaccharides, tetrasaccharides, and oligosaccharides containing from about 4, 5, 6, 7, 8, or 9 monosaccharide units), and polysaccharides, such as starches, glycogen, cellulose, and polysaccharide gums. In some embodiments, the carbohydrate incorporated into the ligand is a monosaccharide selected from a pentose, hexose, or heptose and di- and tri-saccharides including such monosaccharide units. In other embodiments, the carbohydrate incorporated into the ligand is an amino sugar, such as galactosamine, glucosamine, N-acetylgalactosamine, and N-acetylglucosamine.


In some embodiments, the ligand comprises a hexose or hexosamine. The hexose may be selected from glucose, galactose, mannose, fucose, or fructose. The hexosamine may be selected from fructosamine, galactosamine, glucosamine, or mannosamine. In certain embodiments, the ligand comprises glucose, galactose, galactosamine, or glucosamine. In one embodiment, the ligand comprises glucose, glucosamine, or N-acetylglucosamine. In another embodiment, the ligand comprises galactose, galactosamine, or N-acetyl-galactosamine. In particular embodiments, the ligand comprises N-acetyl-galactosamine. Ligands comprising glucose, galactose, and N-acetyl-galactosamine (GalNAc) are particularly effective in targeting compounds to liver cells because such ligands bind to the ASGR expressed on the surface of hepatocytes. See, e.g., D'Souza and Devarajan, J. Control Release, Vol. 203: 126-139, 2015. Examples of GalNAc- or galactose-containing ligands that can be incorporated into the RNAi constructs are described in U.S. Pat. Nos. 7,491,805; 8,106,022; and 8,877,917; U.S. Patent Publication No. 20030130186; and WIPO Publication No. WO 2013166155, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the ligand comprises a multivalent carbohydrate moiety. As used herein, a “multivalent carbohydrate moiety” refers to a moiety comprising two or more carbohydrate units capable of independently binding or interacting with other molecules. For example, a multivalent carbohydrate moiety comprises two or more binding domains comprised of carbohydrates that can bind to two or more different molecules or two or more different sites on the same molecule. The valency of the carbohydrate moiety denotes the number of individual binding domains within the carbohydrate moiety. For instance, the terms “monovalent,” “bivalent,” “trivalent,” and “tetravalent” with reference to the carbohydrate moiety refer to carbohydrate moieties with one, two, three, and four binding domains, respectively. The multivalent carbohydrate moiety may comprise a multivalent lactose moiety, a multivalent galactose moiety, a multivalent glucose moiety, a multivalent N-acetyl-galactosamine moiety, a multivalent N-acetyl-glucosamine moiety, a multivalent mannose moiety, or a multivalent fucose moiety. In some embodiments, the ligand comprises a multivalent galactose moiety. In other embodiments, the ligand comprises a multivalent N-acetyl-galactosamine moiety. In these and other embodiments, the multivalent carbohydrate moiety can be bivalent, trivalent, or tetravalent. In such embodiments, the multivalent carbohydrate moiety can be bi-antennary or tri-antennary. In some embodiments, the multivalent N-acetyl-galactosamine moiety is trivalent or tetravalent. In some embodiments, the multivalent galactose moiety is trivalent or tetravalent. Exemplary trivalent and tetravalent GalNAc-containing ligands for incorporation into the RNAi constructs are described in detail below.


The ligand can be attached or conjugated to the RNA molecule of the RNAi construct directly or indirectly. For instance, in some embodiments, the ligand is covalently attached directly to the sense or antisense strand of the RNAi construct. In other embodiments, the ligand is covalently attached via a linker to the sense or antisense strand of the RNAi construct. The ligand can be attached to nucleobases, sugar moieties, or internucleotide linkages of polynucleotides (e.g., sense strand or antisense strand) of the RNAi constructs. Conjugation or attachment to purine nucleobases or derivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In certain embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a ligand. Conjugation or attachment to pyrimidine nucleobases or derivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be attached to a ligand. Conjugation or attachment to sugar moieties of nucleotides can occur at any carbon atom. Exemplary carbon atoms of a sugar moiety that can be attached to a ligand include the 2′, 3′, and 5′ carbon atoms. The 1′ position can also be attached to a ligand, such as in an abasic nucleotide. Internucleotide linkages can also support ligand attachments. For phosphorus-containing linkages (e.g., phosphodiester, phosphorothioate, phosphorodithioate, phosphoroamidate, and the like), the ligand can be attached directly to the phosphorus atom or to an O, N, or S atom bound to the phosphorus atom. For amine- or amide-containing internucleotide linkages (e.g., PNA), the ligand can be attached to the nitrogen atom of the amine or amide or to an adjacent carbon atom.


In some embodiments, the ligand may be attached to the 3′ or 5′ end of either the sense or antisense strand. In certain embodiments, the ligand is covalently attached to the 5′ end of the sense strand. In such embodiments, the ligand is attached to the 5′-terminal nucleotide of the sense strand. In these and other embodiments, the ligand is attached at the 5′-position of the 5′-terminal nucleotide of the sense strand. In embodiments in which an inverted abasic nucleotide is the 5′-terminal nucleotide of the sense strand and linked to the adjacent nucleotide via a 5′-5′ internucleotide linkage, the ligand can be attached at the 3′-position of the inverted abasic nucleotide. In other embodiments, the ligand is covalently attached to the 3′ end of the sense strand. For example, in some embodiments, the ligand is attached to the 3′-terminal nucleotide of the sense strand. In certain such embodiments, the ligand is attached at the 3′-position of the 3′-terminal nucleotide of the sense strand. In embodiments in which an inverted abasic nucleotide is the 3′-terminal nucleotide of the sense strand and linked to the adjacent nucleotide via a 3′-3′ internucleotide linkage, the ligand can be attached at the 5′-position of the inverted abasic nucleotide. In alternative embodiments, the ligand is attached near the 3′ end of the sense strand, but before one or more terminal nucleotides (i.e., before 1, 2, 3, or 4 terminal nucleotides). In some embodiments, the ligand is attached at the 2′-position of the sugar of the 3′-terminal nucleotide of the sense strand. In other embodiments, the ligand is attached at the 2′-position of the sugar of the 5′-terminal nucleotide of the sense strand.


In certain embodiments, the ligand is attached to the sense or antisense strand via a linker. A “linker” is an atom or group of atoms that covalently joins a ligand to a polynucleotide component of the RNAi construct. The linker may be from about 1 to about 30 atoms in length, from about 2 to about 28 atoms in length, from about 3 to about 26 atoms in length, from about 4 to about 24 atoms in length, from about 6 to about 20 atoms in length, from about 7 to about 20 atoms in length, from about 8 to about 20 atoms in length, from about 8 to about 18 atoms in length, from about 10 to about 18 atoms in length, and from about 12 to about 18 atoms in length. In some embodiments, the linker may comprise a bifunctional linking moiety, which generally comprises an alkyl moiety with two functional groups. One of the functional groups is selected to bind to the compound of interest (e.g., sense or antisense strand of the RNAi construct) and the other is selected to bind essentially any selected group, such as a ligand as described herein. In certain embodiments, the linker comprises a chain structure or an oligomer of repeating units, such as ethylene glycol or amino acid units. Examples of functional groups that are typically employed in a bifunctional linking moiety include, but are not limited to, electrophiles for reacting with nucleophilic groups and nucleophiles for reacting with electrophilic groups. In some embodiments, bifunctional linking moieties include amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), and the like.


Linkers that may be used to attach a ligand to the sense or antisense strand in the RNAi constructs include, but are not limited to, pyrrolidine, 8-amino-3,6-dioxaoctanoic acid, succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, 6-aminohexanoic acid, substituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl or substituted or unsubstituted C2-C10 alkynyl. Suitable substituent groups for such linkers include, but are not limited to, hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.


In certain embodiments, the linkers are cleavable. A cleavable linker is one which is sufficiently stable outside the cell, but which upon entry into a target cell is cleaved to release the two parts the linker is holding together. In some embodiments, the cleavable linker is cleaved at least 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, or more, or at least 100 times faster in the target cell or under a first reference condition (which can, e.g., be selected to mimic or represent intracellular conditions) than in the blood of a subject, or under a second reference condition (which can, e.g., be selected to mimic or represent conditions found in the blood or serum).


Cleavable linkers are susceptible to cleavage agents, e.g., pH, redox potential, or the presence of degradative molecules. Generally, cleavage agents are more prevalent or found at higher levels or activities inside cells than in serum or blood. Examples of such degradative agents include: redox agents which are selected for particular substrates or which have no substrate specificity, including, e.g., oxidative or reductive enzymes or reductive agents such as mercaptans, present in cells, that can degrade a redox cleavable linker by reduction; esterases; endosomes or agents that can create an acidic environment, e.g., those that result in a pH of five or lower; enzymes that can hydrolyze or degrade an acid cleavable linker by acting as a general acid, peptidases (which can be substrate specific), and phosphatases.


A cleavable linker may comprise a moiety that is susceptible to pH. The pH of human serum is 7.4, while the average intracellular pH is slightly lower, ranging from about 7.1-7.3. Endosomes have a more acidic pH, in the range of 5.5-6.0, and lysosomes have an even more acidic pH at around 5.0. Some linkers will have a cleavable group that is cleaved at a preferred pH, thereby releasing the RNA molecule from the ligand inside the cell, or into the desired compartment of the cell.


A linker can include a cleavable group that is cleavable by a particular enzyme. The type of cleavable group incorporated into a linker can depend on the cell to be targeted. For example, liver-targeting ligands can be linked to RNA molecules through a linker that includes an ester group. Liver cells are rich in esterases, and therefore the linker will be cleaved more efficiently in liver cells than in cell types that are not esterase rich. Other types of cells rich in esterases include cells of the lung, renal cortex, and testis. Linkers that contain peptide bonds can be used when targeting cells rich in peptidases, such as liver cells and synoviocytes.


In general, the suitability of a candidate cleavable linker can be evaluated by testing the ability of a degradative agent (or condition) to cleave the candidate linker. It will also be desirable to also test the candidate cleavable linker for the ability to resist cleavage in the blood or when in contact with other non-target tissue. Thus, one can determine the relative susceptibility to cleavage between a first and a second condition, where the first is selected to be indicative of cleavage in a target cell and the second is selected to be indicative of cleavage in other tissues or biological fluids, e.g., blood or serum. The evaluations can be carried out in cell free systems, in cells, in cell culture, in organ or tissue culture, or in whole animals. It may be useful to make initial evaluations in cell-free or culture conditions and to confirm by further evaluations in whole animals. In some embodiments, useful candidate linkers are cleaved at least 2, 4, 10, 20, 50, 70, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood or serum (or under in vitro conditions selected to mimic extracellular conditions).


In other embodiments, redox cleavable linkers are utilized. Redox cleavable linkers are cleaved upon reduction or oxidation. An example of a reductively cleavable group is a disulfide linking group (—S—S—). To determine if a candidate cleavable linker is a suitable “reductively cleavable linker,” or for example is suitable for use with a particular RNAi construct and particular ligand, one can use one or more methods described herein. For example, a candidate linker can be evaluated by incubation with dithiothreitol (DTT), or other reducing agent known in the art, which mimics the rate of cleavage that would be observed in a cell, e.g., a target cell. The candidate linkers can also be evaluated under conditions which are selected to mimic blood or serum conditions. In a specific embodiment, candidate linkers are cleaved by at most 10% in the blood. In other embodiments, useful candidate linkers are degraded at least 2, 4, 10, 20, 50, 70, or 100 times faster in the cell (or under in vitro conditions selected to mimic intracellular conditions) as compared to blood (or under in vitro conditions selected to mimic extracellular conditions).


In yet other embodiments, phosphate-based cleavable linkers, which are cleaved by agents that degrade or hydrolyze the phosphate group, are employed to covalently attach a ligand to the sense or antisense strand of the RNAi construct. An example of an agent that hydrolyzes phosphate groups in cells are enzymes, such as phosphatases in cells. Examples of phosphate-based cleavable groups are —O—P(O)(ORk)-O—, —O—P(S)(ORk)-O—, —O—P(S)(SRk)-O—, —S—P(O) (ORk)O—, —O—P(O)(ORk)-S—, —S—P(O)(ORk)-S—, —O—P(S)(ORk)-S—, —S—P(S)(ORk)O—, —O—P(O)(Rk)O—, —O—P(S)(Rk)-O—, —S—P(O)(Rk)-O—, —S—P(S)(Rk)O—, —S—P(O)(Rk)-S—, and —O—P(S)(Rk)-S—, where Rk can be hydrogen or C1-C10 alkyl. Specific embodiments include —O—P(O)(OH)O—, —O—P(S)(OH)O—, —O—P(S)(SH)—O—, —S—P(O)(OH)—O—, —O—P(O)(OH)—S—, —S—P(O)(OH)—S—, —O—P(S)(OH)—S—, —S—P(S)(OH)—O—, —O—P(O)(H)—O—, —O—P(S)(H)—O—, —S—P(O)(H)—O—, —S—P(S)(H)—O—, —S—P(O)(H)—S—, and —O—P(S)(H)—S—. Another specific embodiment is —O—P(O)(OH)—O—. These candidate linkers can be evaluated using methods analogous to those described above.


In other embodiments, the linkers may comprise acid cleavable groups, which are groups that are cleaved under acidic conditions. In some embodiments, acid cleavable groups are cleaved in an acidic environment with a pH of about 6.5 or lower (e.g., about 6.0, 5.5, 5.0, or lower), or by agents, such as enzymes that can act as a general acid. In a cell, specific low pH organelles, such as endosomes and lysosomes, can provide a cleaving environment for acid cleavable groups. Examples of acid cleavable linking groups include, but are not limited to, hydrazones, esters, and esters of amino acids. Acid cleavable groups can have the general formula —C═NN—, C(O)O, or —OC(O). A specific embodiment is when the carbon attached to the oxygen of the ester (the alkoxy group) is an aryl group, substituted alkyl group, or tertiary alkyl group such as dimethyl, pentyl or t-butyl. These candidates can be evaluated using methods analogous to those described above.


In other embodiments, the linkers may comprise ester-based cleavable groups, which are cleaved by enzymes, such as esterases and amidases in cells. Examples of ester-based cleavable groups include, but are not limited to, esters of alkylene, alkenylene and alkynylene groups. Ester cleavable groups have the general formula —C(O)O—, or —OC(O)—. These candidate linkers can be evaluated using methods analogous to those described above.


In further embodiments, the linkers may comprise peptide-based cleavable groups, which are cleaved by enzymes, such as peptidases and proteases in cells. Peptide-based cleavable groups are peptide bonds formed between amino acids to yield oligopeptides (e.g., dipeptides, tripeptides) and polypeptides. Peptide-based cleavable groups include the amide group (—C(O)NH—). The amide group can be formed between any alkylene, alkenylene or alkynylene. A peptide bond is a special type of amide bond formed between amino acids to yield peptides and proteins. The peptide-based cleavage group is generally limited to the peptide bond (i.e., the amide bond) formed between amino acids yielding peptides and proteins. Peptide-based cleavable linking groups have the general formula —NHCHRAC(O)NHCHRBC(O)—, where RA and RB are the side chains of the two adjacent amino acids. These candidates can be evaluated using methods analogous to those described above.


Other types of linkers suitable for attaching ligands to the sense or antisense strands in the RNAi constructs are known in the art and can include the linkers described in U.S. Pat. Nos. 7,723,509; 8,017,762; 8,828,956; 8,877,917; and 9,181,551, all of which are hereby incorporated by reference in their entireties.


In certain embodiments, the ligand covalently attached to the sense or antisense strand of the RNAi constructs comprises a GalNAc moiety, e.g., a multivalent GalNAc moiety. In some embodiments, the multivalent GalNAc moiety is a trivalent GalNAc moiety and is attached to the 3′ end of the sense strand. In other embodiments, the multivalent GalNAc moiety is a trivalent GalNAc moiety and is attached to the 5′ end of the sense strand. In yet other embodiments, the multivalent GalNAc moiety is a tetravalent GalNAc moiety and is attached to the 3′ end of the sense strand. In still other embodiments, the multivalent GalNAc moiety is a tetravalent GalNAc moiety and is attached to the 5′ end of the sense strand.


In certain embodiments, the RNAi constructs comprise a ligand having the following structure ([Structure 1]):




embedded image


In preferred embodiments, the ligand having this structure is covalently attached to the 5′ end of the sense strand (e.g., to the 5′ terminal nucleotide of the sense strand) via a linker, such as the linkers described herein. In one embodiment, the linker is an aminohexyl linker.


Exemplary trivalent and tetravalent GalNAc moieties and linkers that can be attached to the double-stranded RNA molecules in the RNAi constructs are provided in the structural formulas I-IX below. “Ac” in the formulas listed herein represents an acetyl group.


In one embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula I, wherein each n is independently 1 to 3, k is 1 to 3, m is 1 or 2, j is 1 or 2, and the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In another embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula II, wherein each n is independently 1 to 3, k is 1 to 3, m is 1 or 2, j is 1 or 2, and the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In yet another embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula III, wherein the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In still another embodiment, the RNAi construct comprises a ligand and linker having the following structure of Formula IV, wherein the ligand is attached to the 3′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In certain embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula V, wherein each n is independently 1 to 3, k is 1 to 3, and the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In other embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula VI, wherein each n is independently 1 to 3, k is 1 to 3, and the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In some embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula VII, wherein X═O or S and wherein the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the squiggly line):




embedded image


In some embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula VIII, wherein each n is independently 1 to 3 and the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


In certain embodiments, the RNAi construct comprises a ligand and linker having the following structure of Formula IX, wherein the ligand is attached to the 5′ end of the sense strand of the double-stranded RNA molecule (represented by the solid wavy line):




embedded image


A phosphorothioate bond can be substituted for the phosphodiester bond shown in any one of Formulas I-IX to covalently attach the ligand and linker to the nucleic acid strand.


Pharmaceutical Compositions

The present application also includes pharmaceutical compositions and formulations comprising the RNAi constructs described herein and pharmaceutically acceptable carriers, excipients, or diluents. Such compositions and formulations are useful for reducing expression of the FAM13A gene and FAM13A protein in a patient in need thereof. Where clinical applications are contemplated, pharmaceutical compositions and formulations will be prepared in a form appropriate for the intended application. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans or animals.


The phrases “pharmaceutically acceptable” or “pharmacologically acceptable” refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, “pharmaceutically acceptable carrier, excipient, or diluent” includes solvents, buffers, solutions, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like acceptable for use in formulating pharmaceuticals, such as pharmaceuticals suitable for administration to humans. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the disclosed RNAi constructs, its use in therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions, provided they do not inactivate the RNAi constructs of the compositions.


Compositions and methods for the formulation of pharmaceutical compositions depend on a number of criteria, including, but not limited to, route of administration, type and extent of disease or disorder to be treated, or dose to be administered. In some embodiments, the pharmaceutical compositions are formulated based on the intended route of delivery. For instance, in certain embodiments, the pharmaceutical compositions are formulated for parenteral delivery. Parenteral forms of delivery include intravenous, intraarterial, subcutaneous, intrathecal, intraperitoneal, or intramuscular injection or infusion. In one embodiment, the pharmaceutical composition is formulated for intravenous delivery. In such an embodiment, the pharmaceutical composition may include a lipid-based delivery vehicle. In another embodiment, the pharmaceutical composition is formulated for subcutaneous delivery. In such an embodiment, the pharmaceutical composition may include a targeting ligand (e.g., a GalNAc-containing, fatty acid-containing, or antibody-containing ligand as described herein).


In some embodiments, the pharmaceutical compositions comprise an effective amount of an RNAi construct described herein. An “effective amount” is an amount sufficient to produce a beneficial or desired clinical result. In some embodiments, an effective amount is an amount sufficient to reduce FAM13A gene expression in a particular tissue or cell-type (e.g., liver or hepatocytes or adipose tissue) of a patient. An effective amount of an RNAi construct may be from about 0.01 mg/kg body weight to about 100 mg/kg body weight, and may be administered daily, weekly, monthly, or at longer intervals. The precise determination of what would be considered an effective amount and frequency of administration may be based on several factors, including a patient's size, age, and general condition, type of disorder to be treated (e.g., fatty liver disease, liver fibrosis, or cardiovascular disease), RNAi construct employed, and route of administration.


Administration of the disclosed pharmaceutical compositions may be via any common route so long as the target tissue is available via that route. Such routes include, but are not limited to, parenteral (e.g., subcutaneous, intramuscular, intraperitoneal, or intravenous), oral, nasal, buccal, intradermal, transdermal, and sublingual routes, or by direct injection into tissue (e.g., liver or adipose) or delivery through the hepatic portal vein. In some embodiments, the pharmaceutical composition is administered parenterally. For instance, in certain embodiments, the pharmaceutical composition is administered intravenously. In other embodiments, the pharmaceutical composition is administered subcutaneously.


Colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems, including oil-in-water emulsions, micelles, mixed micelles, and liposomes, may be used as delivery vehicles for the RNAi constructs. Commercially available fat emulsions that are suitable for delivering the nucleic acids include Intralipid® (Baxter International Inc.), Liposyn® (Abbott Pharmaceuticals), Liposyn® II (Hospira), Liposyn® III (Hospira), Nutrilipid (B. Braun Medical Inc.), and other similar lipid emulsions. An exemplary colloidal system for use as a delivery vehicle in vivo is a liposome (i.e., an artificial membrane vesicle). The RNAi constructs may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, RNAi constructs may be complexed to lipids, in particular to cationic lipids. Suitable lipids and liposomes include neutral (e.g., dioleoylphosphatidyl ethanolamine (DOPE), dimyristoylphosphatidyl choline (DMPC), and dipalmitoyl phosphatidylcholine (DPPC)), distearolyphosphatidyl choline), negative (e.g., dimyristoylphosphatidyl glycerol (DMPG)), and cationic (e.g., dioleoyltetramethylaminopropyl (DOTAP) and dioleoylphosphatidyl ethanolamine (DOTMA)). The preparation and use of such colloidal dispersion systems are well known in the art. Exemplary formulations are also disclosed in U.S. Pat. Nos. 5,981,505; 6,217,900; 6,383,512; 5,783,565; 7,202,227; 6,379,965; 6,127,170; 5,837,533; 6,747,014; and WIPO Publication No. WO 03/093449.


In some embodiments, the RNAi constructs are fully encapsulated in a lipid formulation, e.g., to form a SNALP or other nucleic acid-lipid particle. As used herein, the term “SNALP” refers to a stable nucleic acid-lipid particle. SNALPs typically contain a cationic lipid, a non-cationic lipid, and a lipid that prevents aggregation of the particle (e.g., a PEG-lipid conjugate). SNALPs are exceptionally useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous injection and accumulate at distal sites (e.g., sites physically separated from the administration site). The nucleic acid-lipid particles typically have a mean diameter of about 50 nm to about 150 nm, about 60 nm to about 130 nm, about 70 nm to about 110 nm, or about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; and WIPO Publication No. WO 96/40964.


The pharmaceutical compositions suitable for injectable use include, for example, sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. Generally, these preparations are sterile and fluid to the extent that easy injectability exists. Preparations should be stable under the conditions of manufacture and storage and should be preserved against the contaminating action of microorganisms, such as bacteria and fungi. Appropriate solvents or dispersion media may contain, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by using a coating, such as lecithin, by maintaining the required particle size in the case of dispersion and by using surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.


Sterile injectable solutions may be prepared by incorporating the active compounds in an appropriate amount into a solvent along with any other ingredients (for example as enumerated above) as desired, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the desired other ingredients, e.g., as enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation include vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient(s) plus any additional desired ingredient from a previously sterile-filtered solution thereof.


The compositions of the present application generally may be formulated in a neutral or salt form. Pharmaceutically acceptable salts include, for example, acid addition salts (formed with free amino groups) derived from inorganic acids (e.g., hydrochloric or phosphoric acids), or from organic acids (e.g., acetic, oxalic, tartaric, mandelic, and the like). Salts formed with the free carboxyl groups can also be derived from inorganic bases (e.g., sodium, potassium, ammonium, calcium, or ferric hydroxides) or from organic bases (e.g., isopropylamine, trimethylamine, histidine, procaine and the like). Pharmaceutically acceptable salts are described in detail in Berge et al., J. Pharmaceutical Sciences, Vol. 66: 1-19, 1977.


For parenteral administration in an aqueous solution, for example, the solution generally is suitably buffered, and the liquid diluent first rendered isotonic for example with sufficient saline or glucose. Such aqueous solutions may be used, for example, for intravenous, intramuscular, subcutaneous, and intraperitoneal administration. Preferably, sterile aqueous media are employed as is known to those of skill in the art, particularly in light of the present disclosure. By way of illustration, a single dose may be dissolved in 1 mL of isotonic NaCl solution and either added to 1000 mL of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, “Remington's Pharmaceutical Sciences” 15th Edition, pages 1035-1038 and 1570-1580). For human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA standards. In certain embodiments, a pharmaceutical composition comprises or consists of a sterile saline solution and an RNAi construct described herein. In other embodiments, a pharmaceutical composition comprises or consists of an RNAi construct described herein and sterile water (e.g., water for injection, WFI). In still other embodiments, a pharmaceutical composition comprises or consists of an RNAi construct described herein and phosphate-buffered saline (PBS).


In some embodiments, the pharmaceutical compositions are packaged with or stored within a device for administration. Devices for injectable formulations include, but are not limited to, injection ports, pre-filled syringes, autoinjectors, injection pumps, on-body injectors, and injection pens. Devices for aerosolized or powder formulations include, but are not limited to, inhalers, insufflators, aspirators, and the like. Thus, some embodiments comprise administration devices comprising a disclosed pharmaceutical composition for treating or preventing one or more of the diseases or disorders described herein.


Uses for and Methods Using the Disclosed RNAi Constructs

The present application provides a method for reducing or inhibiting expression of the FAM13A gene, and thus the production of FAM13A protein, in a cell (e.g., liver cell or adipose cell) by contacting the cell with any one of the RNAi constructs described herein. The cell may be in vitro or in vivo. Any method capable of measuring FAM13A mRNA or FAM13A protein can be used to assess the efficacy of the RNAi constructs. The terms “FAM13A expression” and “expression of FAM13A,” as used herein, refer to the level of FAM13A gene transcription, amount of FAM13A mRNA present, level of FAM13A translation, and amount of FAM13A protein present. Therefore, FAM13A expression can be assessed by measuring the amount or level of FAM13A mRNA, FAM13A protein, or another biomarker linked to FAM13A expression, such as serum or plasma levels of triglycerides, cholesterol, or insulin. The phrase “reduction in FAM13A expression,” as used herein, refers to a decrease in one or more of the level of FAM13A gene transcription, amount of FAM13A mRNA present, level of FAM13A translation, and amount of FAM13A protein present.


The reduction of FAM13A expression in cells or animals treated with an RNAi construct can be determined relative to the FAM13A expression in cells or animals not treated with the RNAi construct or treated with a control RNAi construct. For instance, in some embodiments, reduction of FAM13A expression is assessed by (a) measuring the amount or level of FAM13A mRNA in cells (e.g., liver or adipose cells) treated with an RNAi construct, (b) measuring the amount or level of FAM13A mRNA in cells (e.g., liver or adipose cells) treated with a control RNAi construct (e.g., RNAi construct directed to an RNA molecule not expressed in cells or a RNAi construct having a nonsense or scrambled sequence) or no construct, and (c) comparing the measured FAM13A mRNA levels from treated cells in (a) to the measured FAM13A mRNA levels from control cells in (b). The FAM13A mRNA levels in the treated cells and controls cells can be normalized to RNA levels for a control gene (e.g., 18S ribosomal RNA or housekeeping gene) prior to comparison. FAM13A mRNA levels can be measured by a variety of methods, including Northern blot analysis, nuclease protection assays, fluorescence in situ hybridization (FISH), reverse-transcriptase (RT)-PCR, real-time RT-PCR, quantitative PCR, droplet digital PCR, and the like.


In other embodiments, reduction of FAM13A expression is assessed by (a) measuring the amount or level of FAM13A protein in cells (e.g., liver or adipose cells) treated with an RNAi construct, (b) measuring the amount or level of FAM13A protein in cells (e.g., liver or adipose cells) treated with a control RNAi construct (e.g., RNAi construct directed to an RNA molecule not expressed in cells or a RNAi construct having a nonsense or scrambled sequence) or no construct, and (c) comparing the measured FAM13A protein levels from treated cells in (a) to the measured FAM13A protein levels from control cells in (b). Methods of measuring FAM13A protein levels are known to those of skill in the art, and include Western Blots, immunoassays (e.g., ELISA), and flow cytometry.


In some embodiments, the methods to assess FAM13A expression levels are performed in vitro in cells that natively express FAM13A (e.g., liver or adipose cells) or cells that have been engineered to express FAM13A. In certain embodiments, the methods are performed in vitro in liver cells or adipose cells. Suitable liver cells include, but are not limited to, primary hepatocytes (e.g., human or non-human primate hepatocytes), HepAD38 cells, HuH-6 cells, HuH-7 cells, HuH-5-2 cells, BNLCL2 cells, Hep3B cells, or HepG2 cells. In one embodiment, the liver cells are HuH-7 cells. In another embodiment, the liver cells are human primary hepatocytes. In yet another embodiment, the liver cells are Hep3B cells. Suitable adipose cells include cells from subcutaneous white adipose tissue (scWAT), cells from epididymal white adipose tissue (eWAT), or 3T3-L1 cells.


In other embodiments, the methods to assess FAM13A expression levels are performed in vivo. The RNAi constructs and any control RNAi constructs can be administered to an animal and FAM13A mRNA or FAM13A protein levels assessed in liver or adipose tissue harvested from the animal following treatment. Alternatively or additionally, a biomarker or functional phenotype associated with FAM13A expression can be assessed in the treated animals. For instance, people with FAM13A variants with reduced FAM13A expression also have reduced serum triglycerides and increased HDL cholesterol, and people with FAM13A variants with increased FAM13A expression also have increased triglycerides and decreased HDL cholesterol (FIG. 1). Additionally, FAM13A expression is significantly correlated with fasting insulin levels. Fathzadeh et al., Nature Communications 11, 1465 (2020). Thus, in some embodiments the goal and result of FAM13A knockdown is to reduce serum or plasma levels of triglycerides, cholesterol, or insulin, and such reduction can be measured in animals treated with RNAi constructs to assess the functional efficacy of reducing FAM13A expression.


In certain embodiments, expression of FAM13A mRNA or protein is reduced in liver or adipose cells by at least 40%, at least 45%, or at least 50% by an RNAi construct. In some embodiments, expression of FAM13A mRNA or protein is reduced in liver or adipose cells by at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, or at least 85% by an RNAi construct. In other embodiments, the expression of FAM13A mRNA or protein is reduced in liver or adipose cells by about 90% or more, e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more by an RNAi construct. The percent reduction of FAM13A expression can be measured by any of the methods described herein as well as others known in the art.


The present application provides methods for reducing or inhibiting expression of the FAM13A gene, and thus the production of FAM13A protein, in a patient in need thereof as well as methods of treating or preventing conditions, diseases, or disorders associated with FAM13A expression or activity. A “condition, disease, or disorder associated with FAM13A expression” refers to conditions, diseases, or disorders in which FAM13A expression levels are altered or where elevated expression levels of FAM13A are associated with an increased risk of developing the condition, disease, or disorder. A condition, disease, or disorder associated with FAM13A expression can also include conditions, diseases, or disorders resulting from aberrant changes in lipoprotein metabolism, such as changes resulting in abnormal or elevated levels of cholesterol, lipids, triglycerides, etc., or impaired clearance of these molecules. In certain embodiments, the RNAi constructs are particularly useful for treating or preventing abdominal adiposity, fatty liver disease (e.g., NAFLD and NASH) and cardiovascular disease (e.g., coronary artery disease and myocardial infarction), as well as reducing liver fibrosis and serum cholesterol levels.


Conditions, diseases, and disorders associated with FAM13A expression that can be treated or prevented according to the methods include, but are not limited to, fatty liver disease, such as alcoholic fatty liver disease, abdominal adiposity, alcoholic steatohepatitis, NAFLD and NASH; chronic liver disease; cirrhosis; cardiovascular disease, such as myocardial infarction, heart failure, stroke (ischemic and hemorrhagic), atherosclerosis, coronary artery disease, peripheral vascular disease (e.g., peripheral artery disease), cerebrovascular disease, vulnerable plaque, and aortic valve stenosis; familial hypercholesterolemia; venous thrombosis; hypercholesterolemia; hyperlipidemia; and dyslipidemia (manifesting, e.g., as elevated total cholesterol, elevated low-density lipoprotein (LDL), elevated very low-density lipoprotein (VLDL), elevated triglycerides, and/or low levels of high-density lipoprotein (HDL)).


In certain embodiments, the present application provides a method for reducing the expression of FAM13A protein in a patient in need thereof comprising administering to the patient any of the RNAi constructs described herein. The term “patient,” as used herein, refers to a mammal, including humans, and can be used interchangeably with the term “subject.” Preferably, the expression level of FAM13A in hepatocytes in the patient is reduced following administration of the RNAi construct as compared to the FAM13A expression level in a patient not receiving the RNAi construct or as compared to the FAM13A expression level in the patient prior to administration of the RNAi construct. In some embodiments, following administration of an RNAi construct, expression of FAM13A is reduced in the patient by at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, or at least 90%, e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. The percent reduction of FAM13A expression can be measured by any of the methods described herein as well as others known in the art.


In some embodiments, a patient in need of reduction of FAM13A expression is a patient who is at risk of having a myocardial infarction. A patient who is at risk of having a myocardial infarction may be a patient who has a history of myocardial infarction (e.g., has had a previous myocardial infarction). A patient at risk of having a myocardial infarction may also be a patient who has a familial history of myocardial infarction or who has one or more risk factors of myocardial infarction. Such risk factors include, but are not limited to, hypertension, elevated levels of non-HDL cholesterol, elevated levels of triglycerides, diabetes, obesity, or history of autoimmune diseases (e.g., rheumatoid arthritis, lupus). In one embodiment, a patient who is at risk of having a myocardial infarction is a patient who has or is diagnosed with coronary artery disease. The risk of myocardial infarction in these and other patients can be reduced by administering to the patients any of the RNAi constructs described herein. Accordingly, a method for reducing the risk of myocardial infarction in a patient in need thereof comprises administering to the patient an RNAi construct described herein. In some embodiments, any of the RNAi constructs described herein may be used in the preparation of a medicament for reducing the risk of myocardial infarction in a patient in need thereof. Some embodiments comprise a FAM13A-targeting RNAi construct for use in a method for reducing the risk of myocardial infarction in a patient in need thereof.


In certain embodiments, a patient in need of reduction of FAM13A expression is a patient who is diagnosed with or at risk of cardiovascular disease. Thus, a method for treating or preventing cardiovascular disease in a patient in need thereof comprises administering any of the RNAi constructs. In some embodiments, any of the RNAi constructs described herein may be used in the preparation of a medicament for treating or preventing cardiovascular disease in a patient in need thereof. Some embodiments comprise a FAM13A-targeting RNAi construct may for use in a method for treating or preventing cardiovascular disease in a patient in need thereof. Cardiovascular disease includes, but is not limited to, myocardial infarction, heart failure, stroke (ischemic and hemorrhagic), atherosclerosis, coronary artery disease, peripheral vascular disease (e.g., peripheral artery disease), cerebrovascular disease, vulnerable plaque, and aortic valve stenosis. In some embodiments, the cardiovascular disease to be treated or prevented according to the disclosed methods is coronary artery disease. In other embodiments, the cardiovascular disease to be treated or prevented according to the disclosed methods is myocardial infarction. In yet other embodiments, the cardiovascular disease to be treated or prevented according to the disclosed methods is stroke. In still other embodiments, the cardiovascular disease to be treated or prevented according to the disclosed methods is peripheral artery disease. In certain embodiments, administration of the RNAi constructs described herein reduces the risk of non-fatal myocardial infarctions, fatal and non-fatal strokes, certain types of heart surgery (e.g., angioplasty, bypass), hospitalization for heart failure, chest pain in patients with heart disease, and/or cardiovascular events in patients with established heart disease (e.g., prior myocardial infarction, prior heart surgery, and/or chest pain with evidence of blocked arteries). In some embodiments, administration of the RNAi constructs described herein can be used to reduce the risk of recurrent cardiovascular events.


In some embodiments, a patient to be treated according to the disclosed methods is a patient who has a vulnerable plaque (also referred to as unstable plaque). Vulnerable plaques are a build-up of macrophages and lipids containing predominantly cholesterol that lie underneath the endothelial lining of the arterial wall. These vulnerable plaques can rupture resulting in the formation of a blood clot, which can potentially block blood flow through the artery and cause a myocardial infarction or stroke. Vulnerable plaques can be identified by methods known in the art, including, but not limited to, intravascular ultrasound and computed tomography (see Sahara et al., European Heart Journal, Vol. 25: 2026-2033, 2004; Budhoff, J. Am. Coll. Cardiol., Vol. 48: 319-321, 2006; Hausleiter et al., J. Am. Coll. Cardiol., Vol. 48: 312-318, 2006).


In other embodiments, a patient in need of reduction of FAM13A expression is a patient who has elevated blood levels of cholesterol (e.g., total cholesterol, non-HDL cholesterol, or LDL cholesterol). Accordingly, in some embodiments, a method for reducing blood levels (e.g., serum or plasma) of cholesterol in a patient in need thereof comprises administering to the patient any of the RNAi constructs described herein. In some embodiments, any of the RNAi constructs described herein may be used in the preparation of a medicament for reducing blood levels (e.g., serum or plasma) of cholesterol in a patient in need thereof. Some embodiments comprise a FAM13A-targeting RNAi construct for use in a method for reducing blood levels (e.g., serum or plasma) of cholesterol in a patient in need thereof. In certain embodiments, the cholesterol reduced according to the disclosed methods is LDL cholesterol. In other embodiments, the cholesterol reduced according to the disclosed methods is non-HDL cholesterol. Non-HDL cholesterol is a measure of all cholesterol-containing proatherogenic lipoproteins, including LDL cholesterol, very low-density lipoprotein, intermediate-density lipoprotein, lipoprotein(a), chylomicron, and chylomicron remnants. Non-HDL cholesterol has been reported to be a good predictor of cardiovascular risk (Rana et al., Curr. Atheroscler. Rep., Vol. 14:130-134, 2012). Non-HDL cholesterol levels can be calculated by subtracting HDL cholesterol levels from total cholesterol levels.


In some embodiments, a patient to be treated is a patient who has elevated levels of non-HDL cholesterol (e.g., elevated serum or plasma levels of non-HDL cholesterol). Ideally, levels of non-HDL cholesterol should be about 30 mg/dL above the target for LDL cholesterol levels for any given patient. In particular embodiments, a patient is administered an RNAi construct if the patient has a non-HDL cholesterol level of about 130 mg/dL or greater. In one embodiment, a patient is administered an RNAi construct if the patient has a non-HDL cholesterol level of about 160 mg/dL or greater. In another embodiment, a patient is administered an RNAi construct if the patient has a non-HDL cholesterol level of about 190 mg/dL or greater. In still another embodiment, a patient is administered an RNAi construct if the patient has a non-HDL cholesterol level of about 220 mg/dL or greater. In certain embodiments, a patient is administered an RNAi construct if the patient is at a high or very high risk of cardiovascular disease according to the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk (Goff et al., ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, Vol. 63:2935-2959, 2014) and has a non-HDL cholesterol level of about 100 mg/dL or greater.


In certain embodiments, a patient is administered an RNAi construct described herein if they are at a moderate risk or higher for cardiovascular disease according to the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk (referred to herein as the “2013 Guidelines”). In certain embodiments, an RNAi construct is administered to a patient if the patient's LDL cholesterol level is greater than about 160 mg/dL. In other embodiments, an RNAi construct is administered to a patient if the patient's LDL cholesterol level is greater than about 130 mg/dL and the patient has a moderate risk of cardiovascular disease according to the 2013 Guidelines. In still other embodiments, an RNAi construct is administered to a patient if the patient's LDL cholesterol level is greater than 100 mg/dL and the patient has a high or very high risk of cardiovascular disease according to the 2013 Guidelines.


In other embodiments, a patient in need of reduction of FAM13A expression is a patient who is diagnosed with or at risk of fatty liver disease. Thus, a method for treating, preventing, or reducing the risk of developing fatty liver disease in a patient in need thereof comprises administering to the patient any of the disclosed RNAi constructs. In some embodiments, any of the RNAi constructs described herein may be used in the preparation of a medicament for treating, preventing, or reducing the risk of developing fatty liver disease in a patient in need thereof. Other embodiments comprise a FAM13A-targeting RNAi construct for use in a method for treating, preventing, or reducing the risk of developing fatty liver disease in a patient in need thereof. Fatty liver disease is a condition in which fat accumulates in the liver. There are two primary types of fatty liver disease: a first type that is associated with heavy alcohol use (alcoholic steatohepatitis) and a second type that is not related to use of alcohol (nonalcoholic fatty liver disease (NAFLD)). NAFLD is typically characterized by the presence of fat accumulation in the liver but little or no inflammation or liver cell damage. NAFLD can progress to nonalcoholic steatohepatitis (NASH), which is characterized by liver inflammation and cell damage, both of which in turn can lead to liver fibrosis and eventually cirrhosis or hepatic cancer. In certain embodiments, the fatty liver disease to be treated, prevented, or reduce the risk of developing is NAFLD. In other embodiments, the fatty liver disease to be treated, prevented, or reduce the risk of developing is NASH. In still other embodiments, the fatty liver disease to be treated, prevented, or reduce the risk of developing is alcoholic steatohepatitis. In some embodiments, a patient in need of treatment or prevention for fatty liver disease or is at risk of developing fatty liver disease has been diagnosed with type 2 diabetes, a metabolic disorder, or is obese (e.g., body mass index of ≥30.0). In other embodiments, a patient in need of treatment or prevention for fatty liver disease or is at risk of developing fatty liver disease has elevated levels of non-HDL cholesterol or triglycerides. Depending on the patient and other risk factors that patient may have, elevated levels of non-HDL cholesterol may be about 130 mg/dL or greater, about 160 mg/dL or greater, about 190 mg/dL or greater, or about 220 mg/dL or greater. Elevated triglyceride levels may be about 150 mg/dL or greater, about 175 mg/dL or greater, about 200 mg/dL or greater, or about 250 mg/dL or greater.


In certain embodiments, a patient in need of reduction of FAM13A expression is a patient who is diagnosed with or at risk of developing hepatic fibrosis or cirrhosis. Accordingly, some embodiments comprise a method for treating, preventing, or reducing liver fibrosis in a patient in need thereof comprising administering to the patient any of the disclosed RNAi constructs. Some embodiments comprise use of any of the RNAi constructs described herein in the preparation of a medicament for treating, preventing, or reducing liver fibrosis in a patient in need thereof. Some embodiments comprise a FAM13A-targeting RNAi construct for use in a method for treating, preventing, or reducing liver fibrosis in a patient in need thereof. In some embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with NAFLD. In other embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with NASH. In yet other embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with alcoholic steatohepatitis. In still other embodiments, a patient at risk for developing hepatic fibrosis or cirrhosis is diagnosed with hepatitis. In certain embodiments, administration of a disclosed RNAi construct prevents or delays the development of cirrhosis in the patient.


In other embodiments, a patient in need of reduction of FAM13A expression is a patient who has been diagnosed with abdominal adiposity or a high waist to hip ratio (WHR). In some embodiments, the patient in need of reduction has a waist to hip ratio in excess of 0.95, in excess of 1.0, in excess of 10.5, or in excess of 1.1. Accordingly, in some embodiments, a method for reducing abdominal adiposity or WHR in a patient in need thereof comprises administering to the patient any of the RNAi constructs described herein. In some embodiments, any of the RNAi constructs described herein may be used in the preparation of a medicament for reducing abdominal adiposity or WHR in a patient in need thereof. Some embodiments comprise a FAM13A-targeting RNAi construct for use in a method for reducing abdominal adiposity or WHR in a patient in need thereof.


In some embodiments, patients in need of reduction of FAM13A expression are treated using RNAi constructs targeted specifically to the liver. In some embodiments, the RNAi construct is targeted by conjugation to a ligand comprising N-acetyl-galactosamine (GalNAc). Accordingly, in some embodiments, a method for reducing FAM13A levels in a patient in need thereof comprises administering to the patient any of the RNAi constructs described herein that has been conjugated to GalNAc.


Definitions of General Terms and Expressions

In order that the present disclosure can be more readily understood, certain terms are first defined. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure is related. As used in this application, except as otherwise expressly provided herein, each of the following terms shall have the meaning set forth below. Additional definitions are set forth throughout the application.


Units, prefixes, and symbols are denoted in their Système International de Unites (SI) accepted form.


As used in the present disclosure and claims, the singular forms “a,” “an,” and “the” include plural forms unless the context clearly dictates otherwise. Unless specifically stated or obvious from context, as used herein, the term “or” is understood to be inclusive. The term “and/or” as used in a phrase such as “A and/or B” herein is intended to include both “A and B,” “A or B,” “A,” and “B.” Likewise, the term “and/or” as used in a phrase such as “A, B, and/or C” is intended to encompass each of the following embodiments: A, B, and C; A, B, or C; A or C; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).


It is understood that wherever embodiments are described herein with the language “comprising,” otherwise analogous embodiments described in terms of “consisting of” and/or “consisting essentially of” are also provided. In this disclosure, “comprises,” “comprising,” “containing” and “having” and the like can have the meaning ascribed to them in U.S. patent law and can mean “includes,” “including,” and the like; “consisting essentially of” or “consists essentially” likewise has the meaning ascribed in U.S. patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.


The terms “about” or “comprising essentially of” refer to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, i.e., the limitations of the measurement system. For example, “about” or “comprising essentially of” can mean within 1 or more than 1 standard deviation per the practice in the art. Alternatively, “about” or “comprising essentially of” can mean a range of up to 20%. Furthermore, particularly with respect to biological systems or processes, the terms can mean up to an order of magnitude or up to 5-fold of a value. When particular values or compositions are provided in the application and claims, unless otherwise stated, the meaning of “about” or “comprising essentially of” should be assumed to be within an acceptable error range for that particular value or composition.


Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein.


The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting the scope of the appended claims.


EXAMPLES
Example 1: Genomic and Expression Analysis of FAM13A

Genomic analysis was performed to examine the association of three common FAM13A variants for their association with adjusted for BMI (WHRadjBMI), triglyceride levels, HDL cholesterol levels, systolic blood pressure, and FAM13A expression in subcutaneous adipose tissue eQTL data. The results of this analysis are presented in FIG. 1 and show that three FAM13A variants associate independently with WHR adjusted for BMI.


First, the signal A variant rs57400569-A is an intronic SNP that is disease protective and is associated with increased HDL cholesterol and decreased WHR, triglycerides, and systolic blood pressure. rs57400569-A is associated with decreased FAM13A expression in deCODE adipose tissue eQTL data. rs57400569-A, consistent with FAM13A expression being correlated with disease state. The analysis also confirmed a reported association with blood pressure, while discovering previously unreported association with WHR, triglycerides, and HDL. rs57400569-A was also the top cis-eQTL variant in adipose.


Next, the signal B variant rs7657817-T is a protein coding missense variant that is associated with decreased WHR and triglycerides and increased HDL cholesterol. rs7657817-T is also disease protective, and the analysis confirmed previously reported literature associations.


Finally, the signal C variant rs9991328-T is an intronic SNP that is disease promoting and is associated with decreased HDL cholesterol and increased WHR, triglycerides, and FAM13A expression in deCODE adipose tissue eQTL data. Notably, rs9991328 has a strong, reproducible Genome Wide Association Study (GWAS) association with WHR in multiple studies (5-10) with a highly significant association reported in UK Biobank data (p=1×10−51) (5). Additionally, the rs9991328 WHR raising allele was significantly associated with increased fasting insulin levels (a measure of insulin resistance; p=5.9×10−21). rs9991328-T is disease promoting, and the analysis confirmed previously reported literature associations.


The waist-hip ratio raising alleles associate with increased triglycerides, reduced HDL cholesterol, increased systolic blood pressure, and increased FAM13A expression in subcutaneous adipose tissue.


Example 2: siRNA-Mediated Knockdown of Murine Fam13a In Vivo

To test the hypothesis that reduced Fam13a expression is associated with reduced WHR & CVD risk factors, a series of mouse Fam13a siRNA experiments were performed. Fam13a siRNAs were conjugated to a palmitate lipid (C16) or GalNAc (attached as described in Example 3 below), and these molecules were tested for their ability to reduce Fam13a expression in cultured cells or in vivo (i.e., in adipose tissue or liver). These experiments were performed with commercially available mouse Fam13a siRNA triggers. The triggers are available from Ambion (s81721) or Dharmacon (J-041073-09), and were prepared as modified siRNA duplexes. The murine siRNA duplex sequences were:











D-0001 sense



(SEQ ID NO: 2786)



GAAAGAUUCCAGGACGAU







D-0001 antisense



(SEQ ID NO: 2787)



UAUCGUCCUGGAAUCUUUCUG







D-0002 sense



(SEQ ID NO: 2788)



GAAUCAAGAUGGUGAAGA







D-0002 antisense



(SEQ ID NO: 2789)



AUCUUCACCAUCUUGAUUCCUC







D-0003 sense



(SEQ ID NO: 2790)



AGGAAUCAAGAUGGUGAAGA







D-0003 antisense



(SEQ ID NO: 2791)



AUCUUCACCAUCUUGAUUCCUCU






These sequences were prepared as modified duplexes, as shown below. The nucleotide sequences of these modified duplexes apply the following notations: a, u, g, and c=corresponding 2′-O-methyl ribonucleotide; Af, Uf, Gf, and Cf=corresponding 2′-deoxy-2′-fluoro (“2′-fluoro”) ribonucleotide; and invAb=inverted abasic deoxynucleotide (i.e., abasic deoxynucleotide linked to adjacent nucleotide via a substituent at its 3′ position (a 3′-3′ linkage) when on the 3′ end of a strand or linked to adjacent nucleotide via a substituent at its 5′ position (a 5′-5′ internucleotide linkage) when on the 5′ end of a strand. Insertion of an “s” in the sequence indicates that the two adjacent nucleotides are connected by a phosphorothiodiester group (e.g., a phosphorothioate internucleotide linkage). Unless indicated otherwise, all other nucleotides are connected by 3′-5′ phosphodiester groups. The Fam13a siRNAs were conjugated to a palmitate lipid (C16) or GalNAc, using the methods provided in Example 3 below.











D-0004 sense



(SEQ ID NO: 2792)



gaaagaUfuCfCfAfGfgacgasus{invAb}







D-0004 antisense



(SEQ ID NO: 2793)



usAfsucguCfcuggAfaUfcuuucsusg







D-0005 sense



(SEQ ID NO: 2794)



gaaucaAfgAfUfGfGfugaagsas{invAb}







D-0005 antisense



(SEQ ID NO: 2795)



asUfscuucAfccauCfuUfgauucscsu







D-0006 sense



(SEQ ID NO: 2796)



{DCA-C6}saggaaucaAfgAfUfGfGfugaagas{invAb}







D-0006 antisense



(SEQ ID NO: 2797)



asUfscuucAfccauCfuUfgauuccuscsu






In Vitro Fam13a siRNA Treatment


Fam13a siRNA effects on Fam13a RNA expression levels were analyzed in murine kidney-derived (Renca cell line; ATCC CRL-2947) and adipose-derived (primary adipocytes) cultured cells. FIGS. 2A and 2B show the results of this in vitro dose-response study of Fam13a siRNA's effects in Renca cells and primary adipocytes.


For experiments in Renca cells, siRNAs were transfected into cells using Lipofectamine RNAiMAX transfection reagent (Thermo Fisher Scientific). Cells were plated in 96-well plates at 12,500 cells per well in 100 μL, base medium (RPMI-1640, 10% FBS, 1% Non-essential amino acids, 1% sodium pyruvate, 2% L-glutamine, and 1% penicillin-streptomycin) and incubated overnight. For transfection, 150 μL RNAiMAX was mixed with OptiMEM (final dilution 0.3 μL RNAiMAX per well), then 1 mM siRNA was diluted to 60 μM in OptiMEM/RNAiMAx and then further diluted to 6 nM starting concentration. siRNAs were serially diluted 1:10 from 6 nM, 0.6 nM, 0.06 nM, and 0.006 nM. To the 100 μL plating media, 20 μL OptiMEM/RNAiMAX+siRNA were added for final concentrations of 1 nM, 0.1 nM, 0.01 nM, 0.001 nM, and 0 nM of each siRNA. Cells were incubated for 72 hrs. at 37° C. and 5% CO2 then media was removed and lysed with 150 μL Buffer RLT (Qiagen). RNA was isolated using RNeasy 96 RNA isolation protocol following manufacturer's instructions (Qiagen). Real-time PCR was performed using TaqMan® RNA-to-Ct™ 1-Step Kit following manufacturer's instructions (ThermoFisher) with 4.25 μL RNA and TaqMan® gene expression assays (ThermoFisher) for Fam13a (Mm00467910) and Hprt (Mm03024075).


For experiments in primary mouse adipocytes, using the method originally described by Viswanadha and Londos (Viswanadha, S. & Londos, C. Optimized conditions for measuring lipolysis in murine primary adipocytes. J. Lipid Res. 47, 1859-1864 (2006)), the subcutaneous WAT was isolated and dissected from male DIO mice, weighed, and immediately submerged in Krebs-Ringer bicarbonate (KRB) buffer at pH 7.4 with 4% bovine serum albumin (BSA), 500 nM adenosine, and 5 mM glucose, and the stromal vascular fraction (SVF) and primary adipocytes were separated by collagenase digestion (1 mg/mL KRB) and incubated at 37° C. with shaking at 220 rpm for 1 h. After digestion, the mixture was filtered through a 250-μm gauze mesh into a 15-mL conical polypropylene tube and the infranatant containing the collagenase solution and the SVF was carefully removed using a long needle and syringe. The SVF was cultured as previously described by Hausman et al. (Hausman, D. B., Park, H. J. & Hausman, G. J. Isolation and culture of preadipocytes from rodent white adipose tissue. Methods Mol. Biol. 456, 201-219 (2008)) where the SVF containing solution was centrifuged at 200×g for 10 min to pellet the SVF cells, resuspended in 10 mL plating medium (DMEM/F12+10% FBS), then filtered through a sterile 20-μm mesh filter into a sterile 50-mL plastic centrifuge tube. SVF cells were plated in 24-well plate at 250,000 cells/well and incubated at 37° C. and 5% CO2 overnight then the plating medium and nonadherent cells where removed, replaced with DMEM/F12 media+5% FBS, and media was replaced every two days until cells reached confluency (5-6 days after plating). Differentiation was induced by the addition of differentiation media for 48 h (DMEM/F12+5% FBS+17 nM insulin, 0.1 μM dexamethasone, 250 μM 3-Isobutyl-1-methylxanthine (IBMX), and 60 μM indomethacin). After 48 h, the differentiation media was replaced by maintenance media (DMEM/F12+10% FBS+17 nM insulin) for a total of 10 days with the maintenance media replaced every 2-3 days. On day 10 of differentiation, C16 conjugated siRNAs were diluted to 10 μM in maintenance media then 10 μM siRNA was serially diluted 1:10 from 10 μM, 1 μM, 100 nM, 10 nM, 1 nM, 0.1 nM, and 0.01 nM. Maintenance media was removed from the cells and replaced with 1.5 mL siRNA containing media and cells were incubated for 72 hrs. at 37° C. and 5% CO2. After 72 hours, media was removed and cells were collected in 1 mL Qiazol (Qiagen) per well. RNA was isolated using RNeasy 96 universal tissue kit RNA isolation protocol following manufacturer's instructions (Qiagen). Real-time PCR was performed using TaqMan® RNA-to-Ct™ 1-Step Kit following manufacturer's instructions (ThermoFisher) with 4.25 μL RNA and TaqMan® gene expression assays (ThermoFisher) for Fam13a (Mm00467910) and Ppib (Mm00478295).


As shown in FIGS. 2A and 2B, each tested Fam13a siRNA construct reduced Fam13a expression in a dose-dependent manner. At the highest concentrations, 58%, 68%, or 81% reduction in Fam13a mRNA expression levels were observed in Renca cells. Similarly, at the highest concentrations, 49%, 75%, and 78% reduction in Fam13a mRNA levels were observed in primary adipocytes.


5-Day In Vivo Fam13a siRNA Treatment in Diet-Induced Obese Mice


Fam13a siRNA effects on Fam13a RNA expression levels were analyzed in the high fat diet (HFD) murine model of diet-induced obesity (DIO) and insulin resistance within 5 days. Mice were placed on a HFD for 12 weeks (18 weeks old; n=6/group). Mice were then subcutaneously administered a single injection containing a 30 mg/kg dose of C16 conjugated murine Fam13a siRNA, a control C16 siRNA targeting mHprt (C16-Hprt siRNA), or vehicle control. Five days post-injection, mice were sacrificed and necropsy was performed in which subcutaneous WAT, epididymal WAT, and liver tissue were obtained. Fam13a RNA expression levels were using RNeasy 96 universal tissue kit RNA isolation protocol following manufacturer's instructions (Qiagen). Real-time PCR was performed using TaqMan® RNA-to-Ct™ 1-Step Kit following manufacturer's instructions (ThermoFisher) with 4.25 IA RNA and TaqMan® gene expression assays (ThermoFisher) for Fam13a (Mm00467910) and Ppib (Mm00478295). As shown in FIGS. 3A-3D, the Fam13a siRNA constructs reduced Fam13a RNA expression in both the liver and adipose tissue.


30-Day In Vivo Fam13a siRNA Treatment in Diet-Induced Obese Mice


Fam13a siRNA's physiological effects were analyzed in the high fat diet (HFD) murine model of diet-induced obesity and insulin resistance after repeated siRNA injection over the course of 30 days. Mice were placed on a HFD for 12 weeks (19 weeks old; n=7 or 8 per group). Mice were then administered a 30 mg/kg dose of a C16 conjugated murine Fam13a siRNA (D-0002 or D-0003), a control C16 siRNA targeting mHprt (C16-Hprt siRNA), or vehicle control (SC) once every 10 days for a total of three doses (see FIG. 4A). Body weight was measured for each mouse at the start of treatment and every 10 days thereafter until the mice were sacrificed thirty days post-injection, when necropsy was performed. Fat mass was measured for each mouse 4 days prior to the first siRNA administration and after 28 days of treatment.



FIGS. 4B and 4C are plots showing the results of Fam13a siRNA on body weight and fat mass of mice. After 30 days of treatment, both tested Fam13a siRNAs significantly reduced body weight by 11% and fat mass by 20% compared to the controls. These data demonstrate that the C16-conjugated siRNA triggers significantly reduced Fam13a expression in vivo in adipose tissue when conjugated to C16.


Additionally, liver weight was reduced by −25%, liver triglyceride was reduced by −31%, plasma insulin was reduced by −40%, and plasma LDL was reduced by −17%. These liver-related effects indicate that the C16-conjugated siRNA triggers also were effective in liver tissue.


60-Day In Vivo Fam13a siRNA Treatment in Diet-Induced Obese Mice


An experiment was performed to compare the results using a GalNAc-conjugated Fam13a siRNA (which targets the siRNA specifically to the liver) head-to-head with the results using a C16-conjugated Fam13a siRNA (which targets the siRNA to both adipose tissue and liver). Obese mice were treated with the following molecules every 10 days for 60 days: (1) saline, (2) C16 conjugated non-targeting (NT) siRNA control (30 mg/kg), (3) C16-Fam13a siRNA (D-0002; 30 mg/kg), (4) C16-Fam13a siRNA (D-0002; 5 mg/kg), (5) GalNAc conjugated NT siRNA control (5 mg/kg), or (6) GalNAc-Fam13a siRNA (D-0002; 5 mg/kg).


After 60 days of treatment, both C16 and GalNAc siRNA treatments significantly reduced body weight, fat mass, liver weight, insulin, total cholesterol, LDL cholesterol, and ALT compared to their respective NT siRNA controls (FIG. 5). The mouse Fam13a×GalNAc siRNA dosed at 5 mg/kg every 10 days for 60 days in obese mice significantly reduced body weight by −15%, fat mass by −22%, liver weight by −49%, insulin by −66%, total cholesterol by −37%, LDL cholesterol by −37%, and ALT by −60%. Of therapeutic importance, GalNAc-Fam13a siRNA (5 mg/kg) treatment was sufficient to significantly reduce all metabolic endpoints to at least approximately the same extent as C16-Fam13a siRNA (30 mg/kg) treatment, which demonstrates that hepatic targeting is sufficient for efficacy of Fam13a siRNA in obese mice. Additionally, GalNAc-Fam13a siRNA significantly reduced total cholesterol to a greater extent than C16-Fam13a siRNA, suggesting that hepatic specific targeting may provide enhanced therapeutic benefit beyond broad targeting by a lipid conjugate and at a 6-fold lower dose.


Example 3: Selection, Design and Synthesis of Modified FAM13A siRNA Molecules

Candidate sequences for the design of therapeutic siRNA molecules targeting the human FAM13A gene were identified using a bioinformatics analysis of the human FAM13A transcript provided herein as SEQ ID NO: 1 (Ensembl transcript no. ENST00000264344.9). The bioinformatics analysis included performing informatic analysis of SEQ ID NO: 1, including tiling SEQ ID NO: 1 by triggers of 21 nucleotides in length. To minimize the risk of off target effects, all triggers that were complementary to human micro-RNA and with less than three base pair mismatches to any identified human gene were not prepared for functional testing. In addition, sequences were selected for their ability to cross-react with human and cynomolgus monkey FAM13A mRNA. Based on the results of the bioinformatics analysis, sequences were selected for initial synthesis and in vitro testing.


Table 1 below lists the unmodified sense and antisense sequences for duplex molecules prioritized from the bioinformatics analysis. The first nucleotide in the range of nucleotides targeted by siRNA molecules in each sequence family within the human FAM13A transcript (SEQ ID NO: 1) is also shown in Table 1.









TABLE 1







siRNA Sequences Directed to FAM13A












Duplex
Target start in

SEQ ID

SEQ ID


No.
SEQ ID NO: 1
Sense Sequence (5′-3′)
NO:
Antisense Sequence (5′-3′)
NO:















D-1001
1282
CAUGUACCCCAAGUCAGCAAU
2
AUUGCUGACUUGGGGUACAUG
546





D-1002
1284
UGUACCCCAAGUCAGCAAUGU
3
ACAUUGCUGACUUGGGGUACA
547





D-1003
1285
GUACCCCAAGUCAGCAAUGUG
4
CACAUUGCUGACUUGGGGUAC
548





D-1004
1298
GCAAUGUGUCUGCAACCGGAG
5
CUCCGGUUGCAGACACAUUGC
549





D-1005
1299
CAAUGUGUCUGCAACCGGAGA
6
UCUCCGGUUGCAGACACAUUG
550





D-1006
1300
AAUGUGUCUGCAACCGGAGAA
7
UUCUCCGGUUGCAGACACAUU
551





D-1007
1302
UGUGUCUGCAACCGGAGAACU
8
AGUUCUCCGGUUGCAGACACA
552





D-1008
1303
GUGUCUGCAACCGGAGAACUC
9
GAGUUCUCCGGUUGCAGACAC
553





D-1009
1304
UGUCUGCAACCGGAGAACUCU
10
AGAGUUCUCCGGUUGCAGACA
554





D-1010
1305
GUCUGCAACCGGAGAACUCUU
11
AAGAGUUCUCCGGUUGCAGAC
555


D-1794










D-1011
1306
UCUGCAACCGGAGAACUCUUA
12
UAAGAGUUCUCCGGUUGCAGA
556


D-1795










D-1012
1307
CUGCAACCGGAGAACUCUUAG
13
CUAAGAGUUCUCCGGUUGCAG
557





D-1013
1308
UGCAACCGGAGAACUCUUAGA
14
UCUAAGAGUUCUCCGGUUGCA
558


D-1796










D-1014
1309
GCAACCGGAGAACUCUUAGAA
15
UUCUAAGAGUUCUCCGGUUGC
559


D-1545







D-1635







D-1639







D-1640







D-1646







D-1652







D-1657







D-1662







D-1667







D-1670







D-1676







D-1681







D-1686







D-1691







D-1847







D-1849







D-1859







D-2009







D-2018










D-1015
1311
AACCGGAGAACUCUUAGAAAG
16
CUUUCUAAGAGUUCUCCGGUU
560


D-1570










D-1016
1322
UCUUAGAAAGAACCAUCCGAU
17
AUCGGAUGGUUCUUUCUAAGA
561





D-1017
1323
CUUAGAAAGAACCAUCCGAUC
18
GAUCGGAUGGUUCUUUCUAAG
562





D-1018
1324
UUAGAAAGAACCAUCCGAUCA
19
UGAUCGGAUGGUUCUUUCUAA
563





D-1019
1326
AGAAAGAACCAUCCGAUCAGC
20
GCUGAUCGGAUGGUUCUUUCU
564


D-1817










D-1020
1328
AAAGAACCAUCCGAUCAGCUG
21
CAGCUGAUCGGAUGGUUCUUU
565


D-1599










D-1021
1329
AAGAACCAUCCGAUCAGCUGU
22
ACAGCUGAUCGGAUGGUUCUU
566





D-1022
1331
GAACCAUCCGAUCAGCUGUAG
23
CUACAGCUGAUCGGAUGGUUC
567


D-1818










D-1023
1333
ACCAUCCGAUCAGCUGUAGAA
24
UUCUACAGCUGAUCGGAUGGU
568


D-1597







D-1694







D-1700







D-1707







D-1714







D-1721







D-1728







D-1735







D-1853







D-1873







D-2006







D-2015










D-1024
1338
CCGAUCAGCUGUAGAACAACA
25
UGUUGUUCUACAGCUGAUCGG
569


D-1569










D-1025
1366
GAUGUUAAUAACUCUGGAGGU
26
ACCUCCAGAGUUAUUAACAUC
570


D-1543










D-1026
1371
UAAUAACUCUGGAGGUCAAAG
27
CUUUGACCUCCAGAGUUAUUA
571





D-1027
1373
AUAACUCUGGAGGUCAAAGUU
28
AACUUUGACCUCCAGAGUUAU
572





D-1028
1407
AUCUGGAACACUAUCAGCAUC
29
GAUGCUGAUAGUGUUCCAGAU
573


D-1819










D-1029
1472
AGGAUGAAGUUCGACAUGGGA
30
UCCCAUGUCGAACUUCAUCCU
574


D-1797










D-1030
1480
GUUCGACAUGGGAGAGACAAG
31
CUUGUCUCUCCCAUGUCGAAC
575





D-1031
1483
CGACAUGGGAGAGACAAGGGA
32
UCCCUUGUCUCUCCCAUGUCG
576





D-1032
1485
ACAUGGGAGAGACAAGGGACU
33
AGUCCCUUGUCUCUCCCAUGU
577





D-1033
1487
AUGGGAGAGACAAGGGACUUA
34
UAAGUCCCUUGUCUCUCCCAU
578





D-1034
1489
GGGAGAGACAAGGGACUUAUC
35
GAUAAGUCCCUUGUCUCUCCC
579


D-1542










D-1035
1490
GGAGAGACAAGGGACUUAUCA
36
UGAUAAGUCCCUUGUCUCUCC
580





D-1036
1491
GAGAGACAAGGGACUUAUCAA
37
UUGAUAAGUCCCUUGUCUCUC
581





D-1037
1495
GACAAGGGACUUAUCAACAAA
38
UUUGUUGAUAAGUCCCUUGUC
582


D-1553










D-1038
1496
ACAAGGGACUUAUCAACAAAG
39
CUUUGUUGAUAAGUCCCUUGU
583


D-1589










D-1039
1500
GGGACUUAUCAACAAAGAAAA
40
UUUUCUUUGUUGAUAAGUCCC
584


D-1798










D-1040
1514
AAGAAAAUACUCCUUCUGGGU
41
ACCCAGAAGGAGUAUUUUCUU
585


D-1820







D-1933







D-1939







D-1945







D-1951







D-1957







D-1963







D-1969










D-1041
1520
AUACUCCUUCUGGGUUCAACC
42
GGUUGAACCCAGAAGGAGUAU
586


D-1799










D-1042
1533
GUUCAACCACCUUGAUGAUUG
43
CAAUCAUCAAGGUGGUUGAAC
587


D-1576










D-1043
1534
UUCAACCACCUUGAUGAUUGU
44
ACAAUCAUCAAGGUGGUUGAA
588


D-1616










D-1044
1558
UUGAAUACUCAGGAAGUCGAA
45
UUCGACUUCCUGAGUAUUCAA
589


D-1575










D-1045
1564
ACUCAGGAAGUCGAAAAGGUA
46
UACCUUUUCGACUUCCUGAGU
590


D-1821










D-1046
1565
CUCAGGAAGUCGAAAAGGUAC
47
GUACCUUUUCGACUUCCUGAG
591





D-1047
1566
UCAGGAAGUCGAAAAGGUACA
48
UGUACCUUUUCGACUUCCUGA
592





D-1048
1568
AGGAAGUCGAAAAGGUACACA
49
UGUGUACCUUUUCGACUUCCU
593





D-1049
1574
UCGAAAAGGUACACAAAAAUA
50
UAUUUUUGUGUACCUUUUCGA
594





D-1050
1575
CGAAAAGGUACACAAAAAUAC
51
GUAUUUUUGUGUACCUUUUCG
595





D-1051
1610
GAGAAAGGAGCAAGCCUAAAC
52
GUUUAGGCUUGCUCCUUUCUC
596





D-1052
1611
AGAAAGGAGCAAGCCUAAACG
53
CGUUUAGGCUUGCUCCUUUCU
597


D-1822










D-1053
1612
GAAAGGAGCAAGCCUAAACGU
54
ACGUUUAGGCUUGCUCCUUUC
598





D-1054
1615
AGGAGCAAGCCUAAACGUCAG
55
CUGACGUUUAGGCUUGCUCCU
599


D-1823










D-1055
1616
GGAGCAAGCCUAAACGUCAGA
56
UCUGACGUUUAGGCUUGCUCC
600


D-1824










D-1056
1617
GAGCAAGCCUAAACGUCAGAA
57
UUCUGACGUUUAGGCUUGCUC
601





D-1057
1618
AGCAAGCCUAAACGUCAGAAA
58
UUUCUGACGUUUAGGCUUGCU
602


D-1825










D-1058
1619
GCAAGCCUAAACGUCAGAAAU
59
AUUUCUGACGUUUAGGCUUGC
603


D-1574










D-1059
1620
CAAGCCUAAACGUCAGAAAUC
60
GAUUUCUGACGUUUAGGCUUG
604


D-1800










D-1060
1621
AAGCCUAAACGUCAGAAAUCC
61
GGAUUUCUGACGUUUAGGCUU
605


D-1801










D-1061
1631
GUCAGAAAUCCAGUACUAAAC
62
GUUUAGUACUGGAUUUCUGAC
606


D-1610










D-1062
1632
UCAGAAAUCCAGUACUAAACU
63
AGUUUAGUACUGGAUUUCUGA
607


D-1554










D-1063
1652
UUUCUGAGCUUCAUGACAAUC
64
GAUUGUCAUGAAGCUCAGAAA
608





D-1064
1658
AGCUUCAUGACAAUCAGGACG
65
CGUCCUGAUUGUCAUGAAGCU
609





D-1065
1661
UUCAUGACAAUCAGGACGGUC
66
GACCGUCCUGAUUGUCAUGAA
610





D-1066
1662
UCAUGACAAUCAGGACGGUCU
67
AGACCGUCCUGAUUGUCAUGA
611





D-1067
1663
CAUGACAAUCAGGACGGUCUU
68
AAGACCGUCCUGAUUGUCAUG
612





D-1068
1664
AUGACAAUCAGGACGGUCUUG
69
CAAGACCGUCCUGAUUGUCAU
613





D-1069
1665
UGACAAUCAGGACGGUCUUGU
70
ACAAGACCGUCCUGAUUGUCA
614





D-1070
1666
GACAAUCAGGACGGUCUUGUG
71
CACAAGACCGUCCUGAUUGUC
615


D-1607










D-1071
1667
ACAAUCAGGACGGUCUUGUGA
72
UCACAAGACCGUCCUGAUUGU
616





D-1072
1669
AAUCAGGACGGUCUUGUGAAU
73
AUUCACAAGACCGUCCUGAUU
617





D-1073
1670
AUCAGGACGGUCUUGUGAAUA
74
UAUUCACAAGACCGUCCUGAU
618





D-1074
1671
UCAGGACGGUCUUGUGAAUAU
75
AUAUUCACAAGACCGUCCUGA
619


D-1609










D-1075
1678
GGUCUUGUGAAUAUGGAAAGU
76
ACUUUCCAUAUUCACAAGACC
620


D-1615







D-1695







D-1701







D-1708







D-1715







D-1722







D-1729







D-1736







D-1852







D-1867







D-2007







D-2016










D-1076
1693
GAAAGUCUCAAUUCCACACGA
77
UCGUGUGGAAUUGAGACUUUC
621


D-1826










D-1077
1694
AAAGUCUCAAUUCCACACGAU
78
AUCGUGUGGAAUUGAGACUUU
622





D-1078
1695
AAGUCUCAAUUCCACACGAUC
79
GAUCGUGUGGAAUUGAGACUU
623





D-1079
1696
AGUCUCAAUUCCACACGAUCU
80
AGAUCGUGUGGAAUUGAGACU
624





D-1080
1697
GUCUCAAUUCCACACGAUCUC
81
GAGAUCGUGUGGAAUUGAGAC
625


D-1827










D-1081
1698
UCUCAAUUCCACACGAUCUCA
82
UGAGAUCGUGUGGAAUUGAGA
626


D-1605










D-1082
1699
CUCAAUUCCACACGAUCUCAU
83
AUGAGAUCGUGUGGAAUUGAG
627





D-1083
1700
UCAAUUCCACACGAUCUCAUG
84
CAUGAGAUCGUGUGGAAUUGA
628


D-1828










D-1084
1701
CAAUUCCACACGAUCUCAUGA
85
UCAUGAGAUCGUGUGGAAUUG
629


D-1829










D-1085
1703
AUUCCACACGAUCUCAUGAGA
86
UCUCAUGAGAUCGUGUGGAAU
630


D-1830










D-1086
1704
UUCCACACGAUCUCAUGAGAG
87
CUCUCAUGAGAUCGUGUGGAA
631


D-1831










D-1087
1705
UCCACACGAUCUCAUGAGAGA
88
UCUCUCAUGAGAUCGUGUGGA
632


D-1606










D-1088
1709
CACGAUCUCAUGAGAGAACUG
89
CAGUUCUCUCAUGAGAUCGUG
633





D-1089
1714
UCUCAUGAGAGAACUGGACCU
90
AGGUCCAGUUCUCUCAUGAGA
634





D-1090
1716
UCAUGAGAGAACUGGACCUGA
91
UCAGGUCCAGUUCUCUCAUGA
635


D-1832










D-1091
1717
CAUGAGAGAACUGGACCUGAU
92
AUCAGGUCCAGUUCUCUCAUG
636


D-1833










D-1092
1742
UUGAAUGGAUGUCUGAUGAAA
93
UUUCAUCAGACAUCCAUUCAA
637





D-1093
1783
GGUGGACACACUCAGCAUUUU
94
AAAAUGCUGAGUGUGUCCACC
638


D-1802










D-1094
1801
UUUGAGAGCCCCACAAUGAAG
95
CUUCAUUGUGGGGCUCUCAAA
639


D-1587










D-1095
1832
AUCCCAGCCUAUCUGACACCA
96
UGGUGUCAGAUAGGCUGGGAU
640


D-1834










D-1096
1833
UCCCAGCCUAUCUGACACCAA
97
UUGGUGUCAGAUAGGCUGGGA
641


D-1835










D-1097
1834
CCCAGCCUAUCUGACACCAAA
98
UUUGGUGUCAGAUAGGCUGGG
642


D-1836










D-1098
1835
CCAGCCUAUCUGACACCAAAC
99
GUUUGGUGUCAGAUAGGCUGG
643





D-1099
1836
CAGCCUAUCUGACACCAAACA
100
UGUUUGGUGUCAGAUAGGCUG
644





D-1100
1856
AGCAGAGAAAUCAAGAUGCCG
101
CGGCAUCUUGAUUUCUCUGCU
645


D-1837










D-1101
1890
GAGCUUUGUCUCCGAAGUGCC
102
GGCACUUCGGAGACAAAGCUC
646


D-1803










D-1102
1896
UGUCUCCGAAGUGCCCCAGUC
103
GACUGGGGCACUUCGGAGACA
647


D-1563







D-1804










D-1103
1899
CUCCGAAGUGCCCCAGUCGGA
104
UCCGACUGGGGCACUUCGGAG
648





D-1104
1900
UCCGAAGUGCCCCAGUCGGAC
105
GUCCGACUGGGGCACUUCGGA
649


D-1838










D-1105
1943
AGAACUGGGAAGAGCCUAUCC
106
GGAUAGGCUCUUCCCAGUUCU
650





D-1106
1944
GAACUGGGAAGAGCCUAUCCC
107
GGGAUAGGCUCUUCCCAGUUC
651





D-1107
1952
AAGAGCCUAUCCCUGCUUUCU
108
AGAAAGCAGGGAUAGGCUCUU
652


D-1608










D-1108
2024
AGGCUGGGCGCCUGAUCCGUC
109
GACGGAUCAGGCGCCCAGCCU
653





D-1109
2025
GGCUGGGCGCCUGAUCCGUCA
110
UGACGGAUCAGGCGCCCAGCC
654





D-1110
2026
GCUGGGCGCCUGAUCCGUCAG
111
CUGACGGAUCAGGCGCCCAGC
655





D-1111
2027
CUGGGCGCCUGAUCCGUCAGC
112
GCUGACGGAUCAGGCGCCCAG
656





D-1112
2028
UGGGCGCCUGAUCCGUCAGCU
113
AGCUGACGGAUCAGGCGCCCA
657





D-1113
2050
CUGGACGAAGACAGCGACCCC
114
GGGGUCGCUGUCUUCGUCCAG
658





D-2094
2055
CGAAGACAGCGACCCCAUGCU
2807
AGCAUGGGGUCGCUGUCUUCG
2808





D-1114
2066
ACCCCAUGCUCUCUCCUCGGU
115
ACCGAGGAGAGAGCAUGGGGU
659


D-1568










D-1115
2070
CAUGCUCUCUCCUCGGUUCUA
116
UAGAACCGAGGAGAGAGCAUG
660


D-1567










D-1116
2071
AUGCUCUCUCCUCGGUUCUAC
117
GUAGAACCGAGGAGAGAGCAU
661


D-1805










D-1117
2073
GCUCUCUCCUCGGUUCUACGC
118
GCGUAGAACCGAGGAGAGAGC
662





D-1118
2074
CUCUCUCCUCGGUUCUACGCU
119
AGCGUAGAACCGAGGAGAGAG
663





D-1119
2075
UCUCUCCUCGGUUCUACGCUU
120
AAGCGUAGAACCGAGGAGAGA
664


D-1601










D-1120
2076
CUCUCCUCGGUUCUACGCUUA
121
UAAGCGUAGAACCGAGGAGAG
665





D-1121
2077
UCUCCUCGGUUCUACGCUUAU
122
AUAAGCGUAGAACCGAGGAGA
666





D-1122
2078
CUCCUCGGUUCUACGCUUAUG
123
CAUAAGCGUAGAACCGAGGAG
667


D-1550










D-1123
2079
UCCUCGGUUCUACGCUUAUGG
124
CCAUAAGCGUAGAACCGAGGA
668





D-1124
2080
CCUCGGUUCUACGCUUAUGGG
125
CCCAUAAGCGUAGAACCGAGG
669


D-1549







D-1643







D-1647







D-1651







D-1656







D-1661







D-1666







D-1671







D-1675







D-1680







D-1685







D-1690







D-1848







D-1860










D-1125
2081
CUCGGUUCUACGCUUAUGGGC
126
GCCCAUAAGCGUAGAACCGAG
670





D-1126
2144
CACCAAACUCCCAUUCUUUCA
127
UGAAAGAAUGGGAGUUUGGUG
671


D-1544







D-1636







D-1648







D-1653







D-1658







D-1663







D-1668







D-1672







D-1677







D-1682







D-1687







D-1692







D-1851







D-1858







D-2010







D-2019










D-1127
2146
CCAAACUCCCAUUCUUUCAUG
128
CAUGAAAGAAUGGGAGUUUGG
672


D-1565







D-1641










D-1128
2151
CUCCCAUUCUUUCAUGAGGCG
129
CGCCUCAUGAAAGAAUGGGAG
673


D-1539










D-1129
2155
CAUUCUUUCAUGAGGCGGCGA
130
UCGCCGCCUCAUGAAAGAAUG
674





D-1130
2156
AUUCUUUCAUGAGGCGGCGAA
131
UUCGCCGCCUCAUGAAAGAAU
675





D-1131
2157
UUCUUUCAUGAGGCGGCGAAG
132
CUUCGCCGCCUCAUGAAAGAA
676





D-1132
2158
UCUUUCAUGAGGCGGCGAAGC
133
GCUUCGCCGCCUCAUGAAAGA
677





D-1133
2159
CUUUCAUGAGGCGGCGAAGCU
134
AGCUUCGCCGCCUCAUGAAAG
678





D-1134
2160
UUUCAUGAGGCGGCGAAGCUC
135
GAGCUUCGCCGCCUCAUGAAA
679





D-1135
2182
UCUCUGGGGUCCUAUGAUGAU
136
AUCAUCAUAGGACCCCAGAGA
680





D-1136
2218
ACACCUGCCCAGCUCACACGA
137
UCGUGUGAGCUGGGCAGGUGU
681





D-1137
2219
CACCUGCCCAGCUCACACGAA
138
UUCGUGUGAGCUGGGCAGGUG
682





D-1138
2221
CCUGCCCAGCUCACACGAAGG
139
CCUUCGUGUGAGCUGGGCAGG
683





D-1139
2226
CCAGCUCACACGAAGGAUUCA
140
UGAAUCCUUCGUGUGAGCUGG
684





D-1140
2228
AGCUCACACGAAGGAUUCAGA
141
UCUGAAUCCUUCGUGUGAGCU
685


D-1806










D-1141
2263
AUCCGGAAGUUUGAAGAUAGA
142
UCUAUCUUCAAACUUCCGGAU
686


D-1573







D-1638







D-1644







D-1645







D-2024







D-2025







D-2026







D-2027







D-2028







D-2029







D-2030







D-2031







D-2032







D-2033







D-2034










D-1142
2266
CGGAAGUUUGAAGAUAGAUUC
143
GAAUCUAUCUUCAAACUUCCG
687


D-1547










D-1143
2270
AGUUUGAAGAUAGAUUCGAAG
144
CUUCGAAUCUAUCUUCAAACU
688


D-1602










D-1144
2271
GUUUGAAGAUAGAUUCGAAGA
145
UCUUCGAAUCUAUCUUCAAAC
689





D-1145
2275
GAAGAUAGAUUCGAAGAAGAG
146
CUCUUCUUCGAAUCUAUCUUC
690


D-1839










D-1146
2294
AGAAGAAGUACAGACCUUCCC
147
GGGAAGGUCUGUACUUCUUCU
691


D-1807










D-1147
2295
GAAGAAGUACAGACCUUCCCA
148
UGGGAAGGUCUGUACUUCUUC
692


D-1808










D-1148
2296
AAGAAGUACAGACCUUCCCAC
149
GUGGGAAGGUCUGUACUUCUU
693


D-1809










D-1149
2343
UCUGAAAUGGACAAAUGACCU
150
AGGUCAUUUGUCCAUUUCAGA
694


D-1810







D-1938







D-1944







D-1950







D-1956







D-1962







D-1968







D-1974







D-2035







D-2055







D-2056










D-1150
2344
CUGAAAUGGACAAAUGACCUU
151
AAGGUCAUUUGUCCAUUUCAG
695


D-1613










D-1151
2353
ACAAAUGACCUUGCCAAAUUC
152
GAAUUUGGCAAGGUCAUUUGU
696


D-1598










D-1152
2355
AAAUGACCUUGCCAAAUUCCG
153
CGGAAUUUGGCAAGGUCAUUU
697


D-1811










D-1153
2356
AAUGACCUUGCCAAAUUCCGG
154
CCGGAAUUUGGCAAGGUCAUU
698


D-1556










D-1154
2358
UGACCUUGCCAAAUUCCGGAG
155
CUCCGGAAUUUGGCAAGGUCA
699


D-1595










D-1155
2359
GACCUUGCCAAAUUCCGGAGA
156
UCUCCGGAAUUUGGCAAGGUC
700





D-1156
2360
ACCUUGCCAAAUUCCGGAGAC
157
GUCUCCGGAAUUUGGCAAGGU
701


D-1578










D-1157
2361
CCUUGCCAAAUUCCGGAGACA
158
UGUCUCCGGAAUUUGGCAAGG
702





D-1158
2373
CCGGAGACAACUUAAAGAAUC
159
GAUUCUUUAAGUUGUCUCCGG
703





D-1159
2374
CGGAGACAACUUAAAGAAUCA
160
UGAUUCUUUAAGUUGUCUCCG
704





D-1160
2402
AGAUAUCUGAAGAGGACCUAA
161
UUAGGUCCUCUUCAGAUAUCU
705





D-1161
2413
GAGGACCUAACUCCCAGGAUG
162
CAUCCUGGGAGUUAGGUCCUC
706





D-1162
2416
GACCUAACUCCCAGGAUGCGG
163
CCGCAUCCUGGGAGUUAGGUC
707





D-1163
2417
ACCUAACUCCCAGGAUGCGGC
164
GCCGCAUCCUGGGAGUUAGGU
708


D-1812







D-1935







D-1941







D-1947







D-1953







D-1959







D-1965







D-1971










D-1164
2432
UGCGGCAGCGAAGCAACACAC
165
GUGUGUUGCUUCGCUGCCGCA
709


D-1813










D-1165
2433
GCGGCAGCGAAGCAACACACU
166
AGUGUGUUGCUUCGCUGCCGC
710





D-1166
2437
CAGCGAAGCAACACACUCCCC
167
GGGGAGUGUGUUGCUUCGCUG
711


D-1840










D-1167
2439
GCGAAGCAACACACUCCCCAA
168
UUGGGGAGUGUGUUGCUUCGC
712


D-1841










D-1168
2444
GCAACACACUCCCCAAGAGUU
169
AACUCUUGGGGAGUGUGUUGC
713





D-1169
2457
CAAGAGUUUUGGUUCCCAACU
170
AGUUGGGAACCAAAACUCUUG
714





D-1170
2460
GAGUUUUGGUUCCCAACUUGA
171
UCAAGUUGGGAACCAAAACUC
715





D-1171
2462
GUUUUGGUUCCCAACUUGAGA
172
UCUCAAGUUGGGAACCAAAAC
716


D-1592










D-1172
2534
UUGAAGCCACAUUGGAAUCUA
173
UAGAUUCCAAUGUGGCUUCAA
717


D-1842










D-1173
2568
CCAGGAGAAGCGAGCGGAAAG
174
CUUUCCGCUCGCUUCUCCUGG
718





D-1174
2623
GACCAGAUUGCUAAUGAGAAA
175
UUUCUCAUUAGCAAUCUGGUC
719


D-1581










D-1175
2632
GCUAAUGAGAAAGUGGCUCUG
176
CAGAGCCACUUUCUCAUUAGC
720


D-1621










D-1176
2677
AGCAUUCAUGGACGGCCGGUA
177
UACCGGCCGUCCAUGAAUGCU
721





D-1177
2678
GCAUUCAUGGACGGCCGGUAA
178
UUACCGGCCGUCCAUGAAUGC
722





D-1178
2679
CAUUCAUGGACGGCCGGUAAC
179
GUUACCGGCCGUCCAUGAAUG
723





D-1179
2680
AUUCAUGGACGGCCGGUAACA
180
UGUUACCGGCCGUCCAUGAAU
724





D-1180
2681
UUCAUGGACGGCCGGUAACAA
181
UUGUUACCGGCCGUCCAUGAA
725





D-1181
2682
UCAUGGACGGCCGGUAACAAA
182
UUUGUUACCGGCCGUCCAUGA
726





D-2095
2683
CAUGGACGGCCGGUAACAAAG
2809
CUUUGUUACCGGCCGUCCAUG
2810





D-1182
2684
AUGGACGGCCGGUAACAAAGA
183
UCUUUGUUACCGGCCGUCCAU
727





D-1183
2685
UGGACGGCCGGUAACAAAGAA
184
UUCUUUGUUACCGGCCGUCCA
728





D-1184
2686
GGACGGCCGGUAACAAAGAAC
185
GUUCUUUGUUACCGGCCGUCC
729





D-1185
2688
ACGGCCGGUAACAAAGAACGA
186
UCGUUCUUUGUUACCGGCCGU
730


D-1814










D-1186
2689
CGGCCGGUAACAAAGAACGAA
187
UUCGUUCUUUGUUACCGGCCG
731





D-1187
2690
GGCCGGUAACAAAGAACGAAC
188
GUUCGUUCUUUGUUACCGGCC
732


D-1815










D-1188
2691
GCCGGUAACAAAGAACGAACG
189
CGUUCGUUCUUUGUUACCGGC
733





D-1189
2692
CCGGUAACAAAGAACGAACGG
190
CCGUUCGUUCUUUGUUACCGG
734





D-1190
2693
CGGUAACAAAGAACGAACGGC
191
GCCGUUCGUUCUUUGUUACCG
735


D-1843










D-1191
2694
GGUAACAAAGAACGAACGGCA
192
UGCCGUUCGUUCUUUGUUACC
736





D-1192
2700
AAAGAACGAACGGCAGGUGAU
193
AUCACCUGCCGUUCGUUCUUU
737





D-1193
2719
AUGAAGCCACUAUACGACAGG
194
CCUGUCGUAUAGUGGCUUCAU
738


D-1844










D-1194
2721
GAAGCCACUAUACGACAGGUA
195
UACCUGUCGUAUAGUGGCUUC
739





D-1195
2722
AAGCCACUAUACGACAGGUAC
196
GUACCUGUCGUAUAGUGGCUU
740





D-1196
2723
AGCCACUAUACGACAGGUACC
197
GGUACCUGUCGUAUAGUGGCU
741





D-1197
2724
GCCACUAUACGACAGGUACCG
198
CGGUACCUGUCGUAUAGUGGC
742





D-1198
2725
CCACUAUACGACAGGUACCGG
199
CCGGUACCUGUCGUAUAGUGG
743





D-1199
2726
CACUAUACGACAGGUACCGGC
200
GCCGGUACCUGUCGUAUAGUG
744


D-1845










D-1200
2727
ACUAUACGACAGGUACCGGCU
201
AGCCGGUACCUGUCGUAUAGU
745





D-1201
2753
AACAGAUCCUCUCCCGAGCUA
202
UAGCUCGGGAGAGGAUCUGUU
746





D-1202
2754
ACAGAUCCUCUCCCGAGCUAA
203
UUAGCUCGGGAGAGGAUCUGU
747





D-1203
2756
AGAUCCUCUCCCGAGCUAACA
204
UGUUAGCUCGGGAGAGGAUCU
748





D-1204
2759
UCCUCUCCCGAGCUAACACCA
205
UGGUGUUAGCUCGGGAGAGGA
749





D-1205
2760
CCUCUCCCGAGCUAACACCAU
206
AUGGUGUUAGCUCGGGAGAGG
750





D-1206
2761
CUCUCCCGAGCUAACACCAUA
207
UAUGGUGUUAGCUCGGGAGAG
751





D-1207
2764
UCCCGAGCUAACACCAUACCC
208
GGGUAUGGUGUUAGCUCGGGA
752





D-1208
2765
CCCGAGCUAACACCAUACCCA
209
UGGGUAUGGUGUUAGCUCGGG
753





D-1209
2886
GGGGUCAGAAGACGAUAGCAA
210
UUGCUAUCGUCUUCUGACCCC
754


D-1816










D-1210
2887
GGGUCAGAAGACGAUAGCAAU
211
AUUGCUAUCGUCUUCUGACCC
755


D-1561










D-1211
2889
GUCAGAAGACGAUAGCAAUGU
212
ACAUUGCUAUCGUCUUCUGAC
756


D-1620










D-1212
2890
UCAGAAGACGAUAGCAAUGUG
213
CACAUUGCUAUCGUCUUCUGA
757


D-1560










D-1213
2893
GAAGACGAUAGCAAUGUGAAG
214
CUUCACAUUGCUAUCGUCUUC
758


D-1559










D-1214
2895
AGACGAUAGCAAUGUGAAGCC
215
GGCUUCACAUUGCUAUCGUCU
759


D-1558










D-1215
2923
AUGGUCACUCUGAAAACCGAU
216
AUCGGUUUUCAGAGUGACCAU
760


D-1604










D-1216
2924
UGGUCACUCUGAAAACCGAUU
217
AAUCGGUUUUCAGAGUGACCA
761





D-1217
2925
GGUCACUCUGAAAACCGAUUU
218
AAAUCGGUUUUCAGAGUGACC
762





D-1218
2934
GAAAACCGAUUUCAGUGCACG
219
CGUGCACUGAAAUCGGUUUUC
763


D-1541










D-1219
2937
AACCGAUUUCAGUGCACGAUG
220
CAUCGUGCACUGAAAUCGGUU
764


D-1588










D-1220
2994
UAUUUCCCCAAUGGAUGAUAA
221
UUAUCAUCCAUUGGGGAAAUA
765


D-1619










D-1221
3000
CCCAAUGGAUGAUAAAAUACC
222
GGUAUUUUAUCAUCCAUUGGG
766


D-1557







D-1642







D-1650







D-1655







D-1660







D-1665







D-1674







D-1679







D-1684







D-1689







D-1850







D-1861










D-1222
3002
CAAUGGAUGAUAAAAUACCAU
223
AUGGUAUUUUAUCAUCCAUUG
767


D-1579










D-1223
3005
UGGAUGAUAAAAUACCAUCAA
224
UUGAUGGUAUUUUAUCAUCCA
768





D-1224
3014
AAAUACCAUCAAAAUGCAGCC
225
GGCUGCAUUUUGAUGGUAUUU
769


D-1555










D-1225
3043
GGGCUUUCAAAUCUCCAUGCU
226
AGCAUGGAGAUUUGAAAGCCC
770





D-1226
3044
GGCUUUCAAAUCUCCAUGCUG
227
CAGCAUGGAGAUUUGAAAGCC
771





D-1227
3052
AAUCUCCAUGCUGCCUCAAUA
228
UAUUGAGGCAGCAUGGAGAUU
772





D-1228
3053
AUCUCCAUGCUGCCUCAAUAC
229
GUAUUGAGGCAGCAUGGAGAU
773





D-1229
3054
UCUCCAUGCUGCCUCAAUACC
230
GGUAUUGAGGCAGCAUGGAGA
774





D-1230
3062
CUGCCUCAAUACCUGAACUCC
231
GGAGUUCAGGUAUUGAGGCAG
775





D-1231
3082
CUGGAACACCUCCAGGAAAUG
232
CAUUUCCUGGAGGUGUUCCAG
776





D-1232
3133
CUUCGGGAUUUUGAAGACAAC
233
GUUGUCUUCAAAAUCCCGAAG
777


D-1586







D-1637







D-1649







D-1654







D-1659







D-1664







D-1669







D-1673







D-1678







D-1683







D-1688







D-1693










D-1233
3180
CCAGAAGGAAGACCGCACUCC
234
GGAGUGCGGUCUUCCUUCUGG
778





D-1234
3183
GAAGGAAGACCGCACUCCUAU
235
AUAGGAGUGCGGUCUUCCUUC
779





D-1235
3184
AAGGAAGACCGCACUCCUAUG
236
CAUAGGAGUGCGGUCUUCCUU
780


D-1540










D-1236
3185
AGGAAGACCGCACUCCUAUGG
237
CCAUAGGAGUGCGGUCUUCCU
781





D-1237
3186
GGAAGACCGCACUCCUAUGGC
238
GCCAUAGGAGUGCGGUCUUCC
782





D-1238
3187
GAAGACCGCACUCCUAUGGCU
239
AGCCAUAGGAGUGCGGUCUUC
783


D-1552










D-1239
3189
AGACCGCACUCCUAUGGCUGA
240
UCAGCCAUAGGAGUGCGGUCU
784


D-1618










D-1240
3192
CCGCACUCCUAUGGCUGAAGA
241
UCUUCAGCCAUAGGAGUGCGG
785


D-1585










D-1241
3225
UAAGCACAUAAAGGCGAAACU
242
AGUUUCGCCUUUAUGUGCUUA
786





D-1242
3226
AAGCACAUAAAGGCGAAACUG
243
CAGUUUCGCCUUUAUGUGCUU
787





D-1243
3228
GCACAUAAAGGCGAAACUGAG
244
CUCAGUUUCGCCUUUAUGUGC
788





D-1244
3283
GAUUCCAAGUCCAUGUGAGGG
245
CCCUCACAUGGACUUGGAAUC
789


D-1584










D-1245
3284
AUUCCAAGUCCAUGUGAGGGG
246
CCCCUCACAUGGACUUGGAAU
790





D-1246
3287
CCAAGUCCAUGUGAGGGGCAU
247
AUGCCCCUCACAUGGACUUGG
791





D-1247
3288
CAAGUCCAUGUGAGGGGCAUG
248
CAUGCCCCUCACAUGGACUUG
792





D-1248
3291
GUCCAUGUGAGGGGCAUGGCC
249
GGCCAUGCCCCUCACAUGGAC
793





D-1249
3327
GCAGCUGCGGUGAGAGUUUAC
250
GUAAACUCUCACCGCAGCUGC
794





D-1250
3329
AGCUGCGGUGAGAGUUUACUG
251
CAGUAAACUCUCACCGCAGCU
795





D-1251
3352
CCCAGAGAAAGUGCAGCUCUG
252
CAGAGCUGCACUUUCUCUGGG
796





D-1252
3398
CAAAGCAUGCAGCCCUUCUGC
253
GCAGAAGGGCUGCAUGCUUUG
797





D-1253
3411
CCUUCUGCCUCUAGACCAUUU
254
AAAUGGUCUAGAGGCAGAAGG
798





D-1254
3414
UCUGCCUCUAGACCAUUUGGC
255
GCCAAAUGGUCUAGAGGCAGA
799





D-1255
3420
UCUAGACCAUUUGGCAUCGGC
256
GCCGAUGCCAAAUGGUCUAGA
800





D-1256
3421
CUAGACCAUUUGGCAUCGGCU
257
AGCCGAUGCCAAAUGGUCUAG
801





D-1257
3422
UAGACCAUUUGGCAUCGGCUC
258
GAGCCGAUGCCAAAUGGUCUA
802





D-1258
3423
AGACCAUUUGGCAUCGGCUCC
259
GGAGCCGAUGCCAAAUGGUCU
803





D-1259
3429
UUUGGCAUCGGCUCCUGUUUC
260
GAAACAGGAGCCGAUGCCAAA
804


D-1632










D-1260
3432
GGCAUCGGCUCCUGUUUCCAU
261
AUGGAAACAGGAGCCGAUGCC
805





D-1261
3436
UCGGCUCCUGUUUCCAUUGCC
262
GGCAAUGGAAACAGGAGCCGA
806





D-1262
3438
GGCUCCUGUUUCCAUUGCCUG
263
CAGGCAAUGGAAACAGGAGCC
807


D-1580










D-1263
3498
UAGGCAUUUUGUAAUUGGAAA
264
UUUCCAAUUACAAAAUGCCUA
808


D-1583










D-1264
3499
AGGCAUUUUGUAAUUGGAAAG
265
CUUUCCAAUUACAAAAUGCCU
809


D-1582










D-1265
3503
AUUUUGUAAUUGGAAAGUCAA
266
UUGACUUUCCAAUUACAAAAU
810





D-1266
3505
UUUGUAAUUGGAAAGUCAAGA
267
UCUUGACUUUCCAAUUACAAA
811





D-1267
3510
AAUUGGAAAGUCAAGACUGCA
268
UGCAGUCUUGACUUUCCAAUU
812





D-1268
3514
GGAAAGUCAAGACUGCAGUAU
269
AUACUGCAGUCUUGACUUUCC
813





D-1269
3519
GUCAAGACUGCAGUAUGUGCA
270
UGCACAUACUGCAGUCUUGAC
814





D-1270
3520
UCAAGACUGCAGUAUGUGCAC
271
GUGCACAUACUGCAGUCUUGA
815





D-2096
3536
UGCACAUGCGCACGCGCAUGC
2811
GCAUGCGCGUGCGCAUGUGCA
2812





D-2097
3537
GCACAUGCGCACGCGCAUGCA
2813
UGCAUGCGCGUGCGCAUGUGC
2814





D-2098
3538
CACAUGCGCACGCGCAUGCAC
2815
GUGCAUGCGCGUGCGCAUGUG
2816





D-2099
3539
ACAUGCGCACGCGCAUGCACG
2817
CGUGCAUGCGCGUGCGCAUGU
2818





D-1271
3565
ACACACACAGUAGUGGAGCUU
272
AAGCUCCACUACUGUGUGUGU
816





D-1272
3568
CACACAGUAGUGGAGCUUUCC
273
GGAAAGCUCCACUACUGUGUG
817





D-1273
3569
ACACAGUAGUGGAGCUUUCCU
274
AGGAAAGCUCCACUACUGUGU
818


D-1571










D-
3571
ACAGUAGUGGAGCUUUCCUAA
275
UUAGGAAAGCUCCACUACUGU
819


1273B










D-1274
3582
GCUUUCCUAACACUAGCAGAG
276
CUCUGCUAGUGUUAGGAAAGC
820





D-1275
3589
UAACACUAGCAGAGAUUAAUC
277
GAUUAAUCUCUGCUAGUGUUA
821





D-1276
3590
AACACUAGCAGAGAUUAAUCA
278
UGAUUAAUCUCUGCUAGUGUU
822





D-1277
3591
ACACUAGCAGAGAUUAAUCAC
279
GUGAUUAAUCUCUGCUAGUGU
823





D-1278
3594
CUAGCAGAGAUUAAUCACUAC
280
GUAGUGAUUAAUCUCUGCUAG
824





D-1279
3599
AGAGAUUAAUCACUACAUUAG
281
CUAAUGUAGUGAUUAAUCUCU
825





D-1280
3611
CUACAUUAGACAACACUCAUC
282
GAUGAGUGUUGUCUAAUGUAG
826





D-1281
3612
UACAUUAGACAACACUCAUCU
283
AGAUGAGUGUUGUCUAAUGUA
827





D-1282
3614
CAUUAGACAACACUCAUCUAC
284
GUAGAUGAGUGUUGUCUAAUG
828





D-1283
3659
GGAUAACUGAGAAACAAGAGA
285
UCUCUUGUUUCUCAGUUAUCC
829





D-1284
3676
GAGACCAUUCUCUGUCUAACU
286
AGUUAGACAGAGAAUGGUCUC
830





D-
3687
CUGUCUAACUGUGAUAAAAAC
287
GUUUUUAUCACAGUUAGACAG
831


1284B










D-1285
3712
UCAGGACUUUAUUCUAUAGAG
288
CUCUAUAGAAUAAAGUCCUGA
832





D-1286
3717
ACUUUAUUCUAUAGAGCAAAC
289
GUUUGCUCUAUAGAAUAAAGU
833


D-1617










D-1287
3720
UUAUUCUAUAGAGCAAACUUG
290
CAAGUUUGCUCUAUAGAAUAA
834


D-1626










D-1288
3721
UAUUCUAUAGAGCAAACUUGC
291
GCAAGUUUGCUCUAUAGAAUA
835





D-1289
3723
UUCUAUAGAGCAAACUUGCUG
292
CAGCAAGUUUGCUCUAUAGAA
836





D-1290
3741
CUGUGGAGGGCCAUGCUCUCC
293
GGAGAGCAUGGCCCUCCACAG
837





D-1291
3755
GCUCUCCUUGGACCCAGUUAA
294
UUAACUGGGUCCAAGGAGAGC
838





D-1292
3757
UCUCCUUGGACCCAGUUAACU
295
AGUUAACUGGGUCCAAGGAGA
839





D-1293
3758
CUCCUUGGACCCAGUUAACUG
296
CAGUUAACUGGGUCCAAGGAG
840





D-1294
3760
CCUUGGACCCAGUUAACUGCA
297
UGCAGUUAACUGGGUCCAAGG
841





D-1295
3761
CUUGGACCCAGUUAACUGCAA
298
UUGCAGUUAACUGGGUCCAAG
842





D-1296
3764
GGACCCAGUUAACUGCAAACG
299
CGUUUGCAGUUAACUGGGUCC
843





D-1297
3765
GACCCAGUUAACUGCAAACGU
300
ACGUUUGCAGUUAACUGGGUC
844





D-1298
3766
ACCCAGUUAACUGCAAACGUG
301
CACGUUUGCAGUUAACUGGGU
845





D-1299
3767
CCCAGUUAACUGCAAACGUGC
302
GCACGUUUGCAGUUAACUGGG
846





D-1300
3768
CCAGUUAACUGCAAACGUGCA
303
UGCACGUUUGCAGUUAACUGG
847





D-1301
3769
CAGUUAACUGCAAACGUGCAU
304
AUGCACGUUUGCAGUUAACUG
848





D-1302
3772
UUAACUGCAAACGUGCAUUGG
305
CCAAUGCACGUUUGCAGUUAA
849





D-1303
3776
CUGCAAACGUGCAUUGGAGCC
306
GGCUCCAAUGCACGUUUGCAG
850





D-1304
3777
UGCAAACGUGCAUUGGAGCCC
307
GGGCUCCAAUGCACGUUUGCA
851


D-1551










D-1305
3781
AACGUGCAUUGGAGCCCUAUU
308
AAUAGGGCUCCAAUGCACGUU
852





D-1306
3782
ACGUGCAUUGGAGCCCUAUUU
309
AAAUAGGGCUCCAAUGCACGU
853





D-1307
3784
GUGCAUUGGAGCCCUAUUUGC
310
GCAAAUAGGGCUCCAAUGCAC
854





D-1308
3785
UGCAUUGGAGCCCUAUUUGCU
311
AGCAAAUAGGGCUCCAAUGCA
855





D-1309
3790
UGGAGCCCUAUUUGCUGCCGC
312
GCGGCAGCAAAUAGGGCUCCA
856





D-1310
3791
GGAGCCCUAUUUGCUGCCGCU
313
AGCGGCAGCAAAUAGGGCUCC
857





D-1311
3792
GAGCCCUAUUUGCUGCCGCUG
314
CAGCGGCAGCAAAUAGGGCUC
858





D-1312
3793
AGCCCUAUUUGCUGCCGCUGC
315
GCAGCGGCAGCAAAUAGGGCU
859





D-1313
3807
CCGCUGCCAUUCUAGUGACCU
316
AGGUCACUAGAAUGGCAGCGG
860





D-1314
3811
UGCCAUUCUAGUGACCUUUCC
317
GGAAAGGUCACUAGAAUGGCA
861





D-1315
3812
GCCAUUCUAGUGACCUUUCCA
318
UGGAAAGGUCACUAGAAUGGC
862





D-1316
3818
CUAGUGACCUUUCCACAGAGC
319
GCUCUGUGGAAAGGUCACUAG
863





D-1317
3834
AGAGCUGCGCCUUCCUCACGU
320
ACGUGAGGAAGGCGCAGCUCU
864





D-1318
3840
GCGCCUUCCUCACGUGUGUGA
321
UCACACACGUGAGGAAGGCGC
865





D-1319
3847
CCUCACGUGUGUGAAAGGUUU
322
AAACCUUUCACACACGUGAGG
866





D-1320
3848
CUCACGUGUGUGAAAGGUUUU
323
AAAACCUUUCACACACGUGAG
867





D-1321
3873
UUCAGCCCUCAGGUAGAUGGA
324
UCCAUCUACCUGAGGGCUGAA
868





D-1322
3874
UCAGCCCUCAGGUAGAUGGAA
325
UUCCAUCUACCUGAGGGCUGA
869





D-1323
3876
AGCCCUCAGGUAGAUGGAAGC
326
GCUUCCAUCUACCUGAGGGCU
870





D-
3907
CACGAUGGCAGUGCAGUCAUC
327
GAUGACUGCACUGCCAUCGUG
871


1323B










D-1324
3932
UCAGGAUGUUUCUUCAGGACU
328
AGUCCUGAAGAAACAUCCUGA
872





D-1325
3952
UUCCUCAGCUGACAAGGAAUU
329
AAUUCCUUGUCAGCUGAGGAA
873





D-1326
3958
AGCUGACAAGGAAUUUUGGUC
330
GACCAAAAUUCCUUGUCAGCU
874





D-1327
3968
GAAUUUUGGUCCCUGCCUAGG
331
CCUAGGCAGGGACCAAAAUUC
875





D-1328
3969
AAUUUUGGUCCCUGCCUAGGA
332
UCCUAGGCAGGGACCAAAAUU
876





D-1328
3971
UUUUGGUCCCUGCCUAGGACC
333
GGUCCUAGGCAGGGACCAAAA
877





D-1329
3972
UUUGGUCCCUGCCUAGGACCG
334
CGGUCCUAGGCAGGGACCAAA
878





D-1330
3980
CUGCCUAGGACCGGGUCAUCU
335
AGAUGACCCGGUCCUAGGCAG
879





D-1331
4008
ACAGAGAGAUGGUAAGCAGCU
336
AGCUGCUUACCAUCUCUCUGU
880


D-1548










D-1332
4011
GAGAGAUGGUAAGCAGCUGUA
337
UACAGCUGCUUACCAUCUCUC
881





D-1333
4012
AGAGAUGGUAAGCAGCUGUAU
338
AUACAGCUGCUUACCAUCUCU
882





D-1334
4013
GAGAUGGUAAGCAGCUGUAUG
339
CAUACAGCUGCUUACCAUCUC
883





D-1335
4019
GUAAGCAGCUGUAUGAAUGCU
340
AGCAUUCAUACAGCUGCUUAC
884





D-1336
4022
AGCAGCUGUAUGAAUGCUGAU
341
AUCAGCAUUCAUACAGCUGCU
885





D-1337
4040
GAUUUUAAAACCAGGUCAUGG
342
CCAUGACCUGGUUUUAAAAUC
886





D-1338
4042
UUUUAAAACCAGGUCAUGGGA
343
UCCCAUGACCUGGUUUUAAAA
887





D-1339
4084
CUGAACACUGACUGCACUUAC
344
GUAAGUGCAGUCAGUGUUCAG
888





D-1340
4085
UGAACACUGACUGCACUUACC
345
GGUAAGUGCAGUCAGUGUUCA
889





D-1341
4098
CACUUACCAGUCUGAUUUUAU
346
AUAAAAUCAGACUGGUAAGUG
890





D-1342
4103
ACCAGUCUGAUUUUAUCGUCA
347
UGACGAUAAAAUCAGACUGGU
891





D-1343
4104
CCAGUCUGAUUUUAUCGUCAA
348
UUGACGAUAAAAUCAGACUGG
892





D-1344
4108
UCUGAUUUUAUCGUCAAACAC
349
GUGUUUGACGAUAAAAUCAGA
893





D-1345
4109
CUGAUUUUAUCGUCAAACACC
350
GGUGUUUGACGAUAAAAUCAG
894


D-1600










D-1346
4110
UGAUUUUAUCGUCAAACACCA
351
UGGUGUUUGACGAUAAAAUCA
895





D-1347
4111
GAUUUUAUCGUCAAACACCAA
352
UUGGUGUUUGACGAUAAAAUC
896





D-1348
4112
AUUUUAUCGUCAAACACCAAG
353
CUUGGUGUUUGACGAUAAAAU
897





D-1349
4115
UUAUCGUCAAACACCAAGCCA
354
UGGCUUGGUGUUUGACGAUAA
898





D-1350
4116
UAUCGUCAAACACCAAGCCAG
355
CUGGCUUGGUGUUUGACGAUA
899





D-1351
4142
CAUGCUCAUGGCAAUCUGUUU
356
AAACAGAUUGCCAUGAGCAUG
900





D-1352
4147
UCAUGGCAAUCUGUUUGGGGC
357
GCCCCAAACAGAUUGCCAUGA
901





D-1353
4169
GUUUUGUUGUGGCACUAGCCA
358
UGGCUAGUGCCACAACAAAAC
902





D-1354
4170
UUUUGUUGUGGCACUAGCCAA
359
UUGGCUAGUGCCACAACAAAA
903





D-1355
4171
UUUGUUGUGGCACUAGCCAAA
360
UUUGGCUAGUGCCACAACAAA
904





D-1356
4172
UUGUUGUGGCACUAGCCAAAC
361
GUUUGGCUAGUGCCACAACAA
905





D-1357
4174
GUUGUGGCACUAGCCAAACAU
362
AUGUUUGGCUAGUGCCACAAC
906





D-1358
4175
UUGUGGCACUAGCCAAACAUA
363
UAUGUUUGGCUAGUGCCACAA
907





D-1359
4176
UGUGGCACUAGCCAAACAUAA
364
UUAUGUUUGGCUAGUGCCACA
908





D-1360
4177
GUGGCACUAGCCAAACAUAAA
365
UUUAUGUUUGGCUAGUGCCAC
909





D-1361
4178
UGGCACUAGCCAAACAUAAAG
366
CUUUAUGUUUGGCUAGUGCCA
910





D-1362
4179
GGCACUAGCCAAACAUAAAGG
367
CCUUUAUGUUUGGCUAGUGCC
911





D-1363
4180
GCACUAGCCAAACAUAAAGGG
368
CCCUUUAUGUUUGGCUAGUGC
912





D-1364
4185
AGCCAAACAUAAAGGGGCUUA
369
UAAGCCCCUUUAUGUUUGGCU
913





D-1365
4186
GCCAAACAUAAAGGGGCUUAA
370
UUAAGCCCCUUUAUGUUUGGC
914





D-1366
4187
CCAAACAUAAAGGGGCUUAAG
371
CUUAAGCCCCUUUAUGUUUGG
915





D-1367
4188
CAAACAUAAAGGGGCUUAAGU
372
ACUUAAGCCCCUUUAUGUUUG
916





D-1368
4189
AAACAUAAAGGGGCUUAAGUC
373
GACUUAAGCCCCUUUAUGUUU
917





D-1369
4190
AACAUAAAGGGGCUUAAGUCA
374
UGACUUAAGCCCCUUUAUGUU
918





D-1370
4191
ACAUAAAGGGGCUUAAGUCAG
375
CUGACUUAAGCCCCUUUAUGU
919





D-1371
4193
AUAAAGGGGCUUAAGUCAGCC
376
GGCUGACUUAAGCCCCUUUAU
920





D-1372
4194
UAAAGGGGCUUAAGUCAGCCU
377
AGGCUGACUUAAGCCCCUUUA
921





D-1373
4197
AGGGGCUUAAGUCAGCCUGCA
378
UGCAGGCUGACUUAAGCCCCU
922





D-1374
4205
AAGUCAGCCUGCAUACAGAGG
379
CCUCUGUAUGCAGGCUGACUU
923





D-1375
4206
AGUCAGCCUGCAUACAGAGGA
380
UCCUCUGUAUGCAGGCUGACU
924





D-1376
4210
AGCCUGCAUACAGAGGAUCGG
381
CCGAUCCUCUGUAUGCAGGCU
925





D-1377
4211
GCCUGCAUACAGAGGAUCGGG
382
CCCGAUCCUCUGUAUGCAGGC
926





D-1378
4212
CCUGCAUACAGAGGAUCGGGG
383
CCCCGAUCCUCUGUAUGCAGG
927





D-1379
4219
ACAGAGGAUCGGGGAGAGAAG
384
CUUCUCUCCCCGAUCCUCUGU
928





D-1380
4262
GAGUACUUACCAGAGUUUAAU
385
AUUAAACUCUGGUAAGUACUC
929





D-2100
4297
UCUGCACUAAAAUCCCCAAAC
2819
GUUUGGGGAUUUUAGUGCAGA
2820





D-1381
4298
CUGCACUAAAAUCCCCAAACU
386
AGUUUGGGGAUUUUAGUGCAG
930





D-1382
4299
UGCACUAAAAUCCCCAAACUG
387
CAGUUUGGGGAUUUUAGUGCA
931





D-1383
4301
CACUAAAAUCCCCAAACUGAC
388
GUCAGUUUGGGGAUUUUAGUG
932





D-1384
4307
AAUCCCCAAACUGACAGGUAA
389
UUACCUGUCAGUUUGGGGAUU
933





D-1385
4312
CCAAACUGACAGGUAAAUGUA
390
UACAUUUACCUGUCAGUUUGG
934





D-1386
4313
CAAACUGACAGGUAAAUGUAG
391
CUACAUUUACCUGUCAGUUUG
935





D-1387
4314
AAACUGACAGGUAAAUGUAGC
392
GCUACAUUUACCUGUCAGUUU
936





D-1388
4316
ACUGACAGGUAAAUGUAGCCC
393
GGGCUACAUUUACCUGUCAGU
937





D-1389
4359
AUCUAAAUCACACUAUUUUCG
394
CGAAAAUAGUGUGAUUUAGAU
938





D-1390
4361
CUAAAUCACACUAUUUUCGAG
395
CUCGAAAAUAGUGUGAUUUAG
939





D-1391
4362
UAAAUCACACUAUUUUCGAGA
396
UCUCGAAAAUAGUGUGAUUUA
940





D-1392
4364
AAUCACACUAUUUUCGAGAUC
397
GAUCUCGAAAAUAGUGUGAUU
941





D-1393
4366
UCACACUAUUUUCGAGAUCAU
398
AUGAUCUCGAAAAUAGUGUGA
942





D-1394
4367
CACACUAUUUUCGAGAUCAUG
399
CAUGAUCUCGAAAAUAGUGUG
943





D-1395
4368
ACACUAUUUUCGAGAUCAUGU
400
ACAUGAUCUCGAAAAUAGUGU
944





D-1396
4370
ACUAUUUUCGAGAUCAUGUAU
401
AUACAUGAUCUCGAAAAUAGU
945





D-1397
4371
CUAUUUUCGAGAUCAUGUAUA
402
UAUACAUGAUCUCGAAAAUAG
946





D-1398
4373
AUUUUCGAGAUCAUGUAUAAA
403
UUUAUACAUGAUCUCGAAAAU
947





D-1399
4376
UUCGAGAUCAUGUAUAAAAAG
404
CUUUUUAUACAUGAUCUCGAA
948





D-1400
4399
AAAAAAGAAGUCAUGCUGUGU
405
ACACAGCAUGACUUCUUUUUU
949





D-1401
4412
UGCUGUGUGGCCAAUUAUAAU
406
AUUAUAAUUGGCCACACAGCA
950


D-1777







D-1937







D-1943







D-1949







D-1955







D-1961







D-1967







D-1973







D-2041







D-2045







D-2050







D-2057







D-2058







D-2059







D-2060







D-2061







D-2085







D-2091










D-1402
4476
UUGGAGGGACCAGGAAAUGUA
407
UACAUUUCCUGGUCCCUCCAA
951





D-1403
4484
ACCAGGAAAUGUAAGACACCA
408
UGGUGUCUUACAUUUCCUGGU
952


D-1742










D-1404
4485
CCAGGAAAUGUAAGACACCAA
409
UUGGUGUCUUACAUUUCCUGG
953


D-1743










D-1405
4522
GUGUGCCUGAUGUCACCUCAU
410
AUGAGGUGACAUCAGGCACAC
954





D-1406
4523
UGUGCCUGAUGUCACCUCAUG
411
CAUGAGGUGACAUCAGGCACA
955





D-1407
4524
GUGCCUGAUGUCACCUCAUGA
412
UCAUGAGGUGACAUCAGGCAC
956





D-1408
4526
GCCUGAUGUCACCUCAUGAUU
413
AAUCAUGAGGUGACAUCAGGC
957





D-1409
4556
UUUUUUAACUCCUGCGCCAAG
414
CUUGGCGCAGGAGUUAAAAAA
958





D-1410
4560
UUAACUCCUGCGCCAAGGACA
415
UGUCCUUGGCGCAGGAGUUAA
959





D-1411
4562
AACUCCUGCGCCAAGGACAGU
416
ACUGUCCUUGGCGCAGGAGUU
960





D-1412
4563
ACUCCUGCGCCAAGGACAGUG
417
CACUGUCCUUGGCGCAGGAGU
961





D-1413
4591
UGUCCACCUUUGUGCUUUGCG
418
CGCAAAGCACAAAGGUGGACA
962





D-1414
4593
UCCACCUUUGUGCUUUGCGAG
419
CUCGCAAAGCACAAAGGUGGA
963





D-1415
4595
CACCUUUGUGCUUUGCGAGGC
420
GCCUCGCAAAGCACAAAGGUG
964





D-1416
4597
CCUUUGUGCUUUGCGAGGCCG
421
CGGCCUCGCAAAGCACAAAGG
965





D-1417
4617
GAGCCCAGGCAUCUGCUCGCC
422
GGCGAGCAGAUGCCUGGGCUC
966





D-1418
4620
CCCAGGCAUCUGCUCGCCUGC
423
GCAGGCGAGCAGAUGCCUGGG
967





D-1419
4622
CAGGCAUCUGCUCGCCUGCCA
424
UGGCAGGCGAGCAGAUGCCUG
968





D-1420
4625
GCAUCUGCUCGCCUGCCACGG
425
CCGUGGCAGGCGAGCAGAUGC
969





D-1421
4638
UGCCACGGCUGACCAGAGAAG
426
CUUCUCUGGUCAGCCGUGGCA
970





D-1422
4668
GAGCUCUGCCUUAGACGACGU
427
ACGUCGUCUAAGGCAGAGCUC
971





D-1423
4669
AGCUCUGCCUUAGACGACGUG
428
CACGUCGUCUAAGGCAGAGCU
972





D-1424
4670
GCUCUGCCUUAGACGACGUGU
429
ACACGUCGUCUAAGGCAGAGC
973





D-1425
4671
CUCUGCCUUAGACGACGUGUU
430
AACACGUCGUCUAAGGCAGAG
974





D-1426
4672
UCUGCCUUAGACGACGUGUUA
431
UAACACGUCGUCUAAGGCAGA
975





D-1427
4673
CUGCCUUAGACGACGUGUUAC
432
GUAACACGUCGUCUAAGGCAG
976





D-1428
4675
GCCUUAGACGACGUGUUACAG
433
CUGUAACACGUCGUCUAAGGC
977





D-1429
4676
CCUUAGACGACGUGUUACAGU
434
ACUGUAACACGUCGUCUAAGG
978





D-1430
4677
CUUAGACGACGUGUUACAGUA
435
UACUGUAACACGUCGUCUAAG
979





D-1431
4679
UAGACGACGUGUUACAGUAUG
436
CAUACUGUAACACGUCGUCUA
980





D-1432
4682
ACGACGUGUUACAGUAUGAAC
437
GUUCAUACUGUAACACGUCGU
981





D-1433
4703
ACACAGCAGAGGCACCCUCGU
438
ACGAGGGUGCCUCUGCUGUGU
982





D-1434
4704
CACAGCAGAGGCACCCUCGUA
439
UACGAGGGUGCCUCUGCUGUG
983





D-1435
4705
ACAGCAGAGGCACCCUCGUAU
440
AUACGAGGGUGCCUCUGCUGU
984





D-1436
4706
CAGCAGAGGCACCCUCGUAUG
441
CAUACGAGGGUGCCUCUGCUG
985





D-1437
4707
AGCAGAGGCACCCUCGUAUGU
442
ACAUACGAGGGUGCCUCUGCU
986





D-1438
4708
GCAGAGGCACCCUCGUAUGUU
443
AACAUACGAGGGUGCCUCUGC
987





D-1439
4709
CAGAGGCACCCUCGUAUGUUU
444
AAACAUACGAGGGUGCCUCUG
988





D-1440
4710
AGAGGCACCCUCGUAUGUUUU
445
AAAACAUACGAGGGUGCCUCU
989





D-1441
4711
GAGGCACCCUCGUAUGUUUUG
446
CAAAACAUACGAGGGUGCCUC
990





D-1442
4713
GGCACCCUCGUAUGUUUUGAA
447
UUCAAAACAUACGAGGGUGCC
991





D-1443
4717
CCCUCGUAUGUUUUGAAAGUU
448
AACUUUCAAAACAUACGAGGG
992


D-1744







D-1896







D-1902







D-1908







D-1914







D-1920







D-1926







D-1932







D-2062







D-2063







D-2089










D-1444
4777
AUGUAAAACUAUACUGACCCG
449
CGGGUCAGUAUAGUUUUACAU
993


D-1778










D-1445
4778
UGUAAAACUAUACUGACCCGU
450
ACGGGUCAGUAUAGUUUUACA
994





D-1446
4779
GUAAAACUAUACUGACCCGUU
451
AACGGGUCAGUAUAGUUUUAC
995


D-1590










D-1447
4780
UAAAACUAUACUGACCCGUUU
452
AAACGGGUCAGUAUAGUUUUA
996


D-1779










D-1448
4784
ACUAUACUGACCCGUUUUCAG
453
CUGAAAACGGGUCAGUAUAGU
997





D-1449
4787
AUACUGACCCGUUUUCAGUUU
454
AAACUGAAAACGGGUCAGUAU
998





D-1450
4799
UUUCAGUUUUAAAGGGUCGUG
455
CACGACCCUUUAAAACUGAAA
999


D-1745










D-1451
4800
UUCAGUUUUAAAGGGUCGUGA
456
UCACGACCCUUUAAAACUGAA
1000





D-1452
4801
UCAGUUUUAAAGGGUCGUGAG
457
CUCACGACCCUUUAAAACUGA
1001


D-1746










D-1453
4802
CAGUUUUAAAGGGUCGUGAGA
458
UCUCACGACCCUUUAAAACUG
1002


D-1747










D-1454
4804
GUUUUAAAGGGUCGUGAGAAA
459
UUUCUCACGACCCUUUAAAAC
1003


D-1630










D-1454
4805
UUUUAAAGGGUCGUGAGAAAC
460
GUUUCUCACGACCCUUUAAAA
1004





D-1455
4806
UUUAAAGGGUCGUGAGAAACU
461
AGUUUCUCACGACCCUUUAAA
1005


D-1748










D-1456
4808
UAAAGGGUCGUGAGAAACUGG
462
CCAGUUUCUCACGACCCUUUA
1006





D-1457
4809
AAAGGGUCGUGAGAAACUGGC
463
GCCAGUUUCUCACGACCCUUU
1007





D-1458
4819
GAGAAACUGGCUGGUCCAAUG
464
CAUUGGACCAGCCAGUUUCUC
1008


D-1780










D-1459
4830
UGGUCCAAUGGGAUUUACAGC
465
GCUGUAAAUCCCAUUGGACCA
1009





D-1460
4834
CCAAUGGGAUUUACAGCAACA
466
UGUUGCUGUAAAUCCCAUUGG
1010


D-1781







D-1894







D-1900







D-1906







D-1912







D-1918







D-1924







D-1930







D-2064







D-2065







D-2066







D-2067







D-2068







D-2092










D-1461
4927
UUUAAGUUUGCUCUUAAUCGU
467
ACGAUUAAGAGCAAACUUAAA
1011


D-1596










D-1462
4928
UUAAGUUUGCUCUUAAUCGUA
468
UACGAUUAAGAGCAAACUUAA
1012


D-1594










D-1463
4931
AGUUUGCUCUUAAUCGUAUGG
469
CCAUACGAUUAAGAGCAAACU
1013


D-1782










D-1464
4932
GUUUGCUCUUAAUCGUAUGGA
470
UCCAUACGAUUAAGAGCAAAC
1014


D-1783







D-1895







D-1901







D-1907







D-1913







D-1919







D-1925







D-1931







D-2069







D-2070







D-2071







D-2072







D-2073







D-2074







D-2088










D-1465
4933
UUUGCUCUUAAUCGUAUGGAA
471
UUCCAUACGAUUAAGAGCAAA
1015


D-1784










D-1466
4935
UGCUCUUAAUCGUAUGGAAGC
472
GCUUCCAUACGAUUAAGAGCA
1016


D-1785










D-1467
4939
CUUAAUCGUAUGGAAGCUUGA
473
UCAAGCUUCCAUACGAUUAAG
1017


D-1786










D-1468
4940
UUAAUCGUAUGGAAGCUUGAG
474
CUCAAGCUUCCAUACGAUUAA
1018


D-1787










D-1469
4950
GGAAGCUUGAGCUAUGUGUUG
475
CAACACAUAGCUCAAGCUUCC
1019


D-1749










D-1470
4951
GAAGCUUGAGCUAUGUGUUGG
476
CCAACACAUAGCUCAAGCUUC
1020


D-1750










D-1471
4953
AGCUUGAGCUAUGUGUUGGAA
477
UUCCAACACAUAGCUCAAGCU
1021


D-1751










D-1472
4954
GCUUGAGCUAUGUGUUGGAAG
478
CUUCCAACACAUAGCUCAAGC
1022


D-1752










D-1473
4955
CUUGAGCUAUGUGUUGGAAGU
479
ACUUCCAACACAUAGCUCAAG
1023


D-1753










D-1474
4956
UUGAGCUAUGUGUUGGAAGUG
480
CACUUCCAACACAUAGCUCAA
1024


D-1593










D-1475
4957
UGAGCUAUGUGUUGGAAGUGC
481
GCACUUCCAACACAUAGCUCA
1025


D-1631







D-1696







D-1703







D-1710







D-1717







D-1724







D-1731







D-1738







D-1857







D-2011







D-2020










D-1476
4958
GAGCUAUGUGUUGGAAGUGCC
482
GGCACUUCCAACACAUAGCUC
1026


D-1754










D-1477
4965
GUGUUGGAAGUGCCCUGGUUU
483
AAACCAGGGCACUUCCAACAC
1027


D-1755










D-1478
4970
GGAAGUGCCCUGGUUUUAAUC
484
GAUUAAAACCAGGGCACUUCC
1028


D-1756










D-1479
4979
CUGGUUUUAAUCCAUACACAA
485
UUGUGUAUGGAUUAAAACCAG
1029





D-1480
4985
UUAAUCCAUACACAAAGACGG
486
CCGUCUUUGUGUAUGGAUUAA
1030





D-1481
4986
UAAUCCAUACACAAAGACGGU
487
ACCGUCUUUGUGUAUGGAUUA
1031





D-1482
4987
AAUCCAUACACAAAGACGGUA
488
UACCGUCUUUGUGUAUGGAUU
1032





D-1483
4988
AUCCAUACACAAAGACGGUAC
489
GUACCGUCUUUGUGUAUGGAU
1033





D-1484
4989
UCCAUACACAAAGACGGUACA
490
UGUACCGUCUUUGUGUAUGGA
1034


D-1788










D-1485
4991
CAUACACAAAGACGGUACAUA
491
UAUGUACCGUCUUUGUGUAUG
1035


D-1789










D-1486
4993
UACACAAAGACGGUACAUAAU
492
AUUAUGUACCGUCUUUGUGUA
1036


D-1634










D-1487
4994
ACACAAAGACGGUACAUAAUC
493
GAUUAUGUACCGUCUUUGUGU
1037





D-1488
4995
CACAAAGACGGUACAUAAUCC
494
GGAUUAUGUACCGUCUUUGUG
1038


D-1546







D-2036










D-1489
4996
ACAAAGACGGUACAUAAUCCU
495
AGGAUUAUGUACCGUCUUUGU
1039


D-1757







D-2037










D-1490
4997
CAAAGACGGUACAUAAUCCUA
496
UAGGAUUAUGUACCGUCUUUG
1040


D-1758







D-2038










D-1491
4998
AAAGACGGUACAUAAUCCUAC
497
GUAGGAUUAUGUACCGUCUUU
1041


D-1562







D-2039










D-1492
4999
AAGACGGUACAUAAUCCUACA
498
UGUAGGAUUAUGUACCGUCUU
1042


D-1614







D-1697







D-1702







D-1709







D-1716







D-1723







D-1730







D-1737







D-1856







D-1863







D-1865







D-1866







D-1869







D-1872







D-1877







D-1878







D-1879







D-1880







D-1881







D-1884







D-1887







D-1978







D-1987







D-1992







D-1997







D-2002







D-2008







D-2017







D-2049







D-2054







D-2090










D-1493
5005
GUACAUAAUCCUACAGGUUUA
499
UAAACCUGUAGGAUUAUGUAC
1043


D-1566










D-1494
5008
CAUAAUCCUACAGGUUUAAAU
500
AUUUAAACCUGUAGGAUUAUG
1044


D-1759










D-1495
5012
AUCCUACAGGUUUAAAUGUAC
501
GUACAUUUAAACCUGUAGGAU
1045


D-1633










D-1496
5042
UAGUUUGGAAUUCUUUGCUCU
502
AGAGCAAAGAAUUCCAAACUA
1046


D-1564







D-2040










D-1497
5043
AGUUUGGAAUUCUUUGCUCUA
503
UAGAGCAAAGAAUUCCAAACU
1047


D-1611







D-1698







D-1705







D-1712







D-1719







D-1726







D-1733







D-1740







D-1855







D-1864







D-1870







D-1875







D-1883







D-1886







D-1980







D-1984







D-1989







D-1994







D-1999







D-2004







D-2013







D-2022







D-2044







D-2048







D-2053










D-1498
5045
UUUGGAAUUCUUUGCUCUACU
504
AGUAGAGCAAAGAAUUCCAAA
1048


D-1612







D-1699







D-1704







D-1711







D-1718







D-1725







D-1732







D-1739







D-1854







D-1868







D-1871







D-1876







D-1882







D-1885







D-1888







D-1979







D-1983







D-1988







D-1993







D-1998







D-2003







D-2012







D-2021







D-2043







D-2047







D-2052










D-1499
5056
UUGCUCUACUGUUUACAUUGC
505
GCAAUGUAAACAGUAGAGCAA
1049


D-1760










D-1500
5060
UCUACUGUUUACAUUGCAGAU
506
AUCUGCAAUGUAAACAGUAGA
1050


D-1591







D-1624










D-1501
5062
UACUGUUUACAUUGCAGAUUG
507
CAAUCUGCAAUGUAAACAGUA
1051


D-1577










D-1502
5063
ACUGUUUACAUUGCAGAUUGC
508
GCAAUCUGCAAUGUAAACAGU
1052





D-1503
5067
UUUACAUUGCAGAUUGCUAUA
509
UAUAGCAAUCUGCAAUGUAAA
1053


D-1603










D-1504
5068
UUACAUUGCAGAUUGCUAUAA
510
UUAUAGCAAUCUGCAAUGUAA
1054


D-1629










D-1505
5069
UACAUUGCAGAUUGCUAUAAU
511
AUUAUAGCAAUCUGCAAUGUA
1055


D-1628










D-1506
5079
AUUGCUAUAAUUUCAAGGAGU
512
ACUCCUUGAAAUUAUAGCAAU
1056





D-1507
5080
UUGCUAUAAUUUCAAGGAGUG
513
CACUCCUUGAAAUUAUAGCAA
1057


D-1623







D-1846







D-1706







D-1713







D-1720







D-1727







D-1734







D-1741







D-1761







D-1846







D-1862







D-1874







D-1981







D-1985







D-1990







D-1995







D-2000







D-2005







D-2014







D-2023










D-1508
5114
AAUGAUGCACUUUAGGAUGUU
514
AACAUCCUAAAGUGCAUCAUU
1058


D-1762










D-1509
5115
AUGAUGCACUUUAGGAUGUUU
515
AAACAUCCUAAAGUGCAUCAU
1059


D-1627







D-1763










D-1510
5154
ACAUGAAUCAUUCACAUGACC
516
GGUCAUGUGAAUGAUUCAUGU
1060


D-1764










D-1511
5155
CAUGAAUCAUUCACAUGACCA
517
UGGUCAUGUGAAUGAUUCAUG
1061


D-1765










D-1512
5194
AAAUACAUGUCUAGUCUGUCC
518
GGACAGACUAGACAUGUAUUU
1062


D-1572










D-
5195
AAUACAUGUCUAGUCUGUCCU
519
AGGACAGACUAGACAUGUAUU
1063


1512B







D-1766










D-1513
5200
AUGUCUAGUCUGUCCUUUAAU
520
AUUAAAGGACAGACUAGACAU
1064


D-1767










D-1514
5201
UGUCUAGUCUGUCCUUUAAUA
521
UAUUAAAGGACAGACUAGACA
1065


D-1790










D-1515
5203
UCUAGUCUGUCCUUUAAUAGC
522
GCUAUUAAAGGACAGACUAGA
1066


D-1791










D-1516
5204
CUAGUCUGUCCUUUAAUAGCU
523
AGCUAUUAAAGGACAGACUAG
1067


D-1792







D-1892







D-1898







D-1904







D-1910







D-1916







D-1922







D-1928










D-1517
5205
UAGUCUGUCCUUUAAUAGCUC
524
GAGCUAUUAAAGGACAGACUA
1068





D-1518
5207
GUCUGUCCUUUAAUAGCUCUC
525
GAGAGCUAUUAAAGGACAGAC
1069


D-1793










D-1519
5247
AAUCAGAUCAUUACCAGUUAG
526
CUAACUGGUAAUGAUCUGAUU
1070


D-1768







D-1891







D-1897







D-1903







D-1909







D-1915







D-1921







D-1927







D-2075







D-2077










D-1520
5249
UCAGAUCAUUACCAGUUAGCU
527
AGCUAACUGGUAAUGAUCUGA
1071


D-1769







D-1934







D-1940







D-1946







D-1952







D-1958







D-1964







D-1970







D-2076







D-2078










D-1521
5250
CAGAUCAUUACCAGUUAGCUU
528
AAGCUAACUGGUAAUGAUCUG
1072





D-1522
5251
AGAUCAUUACCAGUUAGCUUU
529
AAAGCUAACUGGUAAUGAUCU
1073


D-1770










D-1523
5254
UCAUUACCAGUUAGCUUUUAA
530
UUAAAAGCUAACUGGUAAUGA
1074


D-1771










D-1524
5255
CAUUACCAGUUAGCUUUUAAA
531
UUUAAAAGCUAACUGGUAAUG
1075


D-1622










D-1525
5259
ACCAGUUAGCUUUUAAAGCAC
532
GUGCUUUAAAAGCUAACUGGU
1076


D-1772










D-1526
5274
AAGCACAUUUGUUUAAGACUA
533
UAGUCUUAAACAAAUGUGCUU
1077


D-1773







D-1936







D-1942







D-1948







D-1954







D-1960







D-1966







D-1972







D-2042







D-2046







D-2051







D-2079







D-2080







D-2081







D-2082







D-2083







D-2093







D-1527
5276
GCACAUUUGUUUAAGACUAUG
534
CAUAGUCUUAAACAAAUGUGC
1078


D-1774







D-1893







D-1899







D-1905







D-1911







D-1917







D-1923







D-1929







D-1975







D-1976







D-1977







D-1982







D-1986







D-1991







D-1996







D-2001







D-2084










D-1528
5292
CUAUGUUUUUGGAAAAAUACG
535
CGUAUUUUUCCAAAAACAUAG
1079





D-1529
5296
GUUUUUGGAAAAAUACGCUAC
536
GUAGCGUAUUUUUCCAAAAAC
1080





D-1530
5300
UUGGAAAAAUACGCUACAGAA
537
UUCUGUAGCGUAUUUUUCCAA
1081





D-1531
5338
AAUAAAUGAGAUGCUACUAAU
538
AUUAGUAGCAUCUCAUUUAUU
1082


D-1625










D-1532
5344
UGAGAUGCUACUAAUUGUUUU
539
AAAACAAUUAGUAGCAUCUCA
1083


D-1775










D-1533
5362
UUUGGAAUCUGUUGUUUCUGC
540
GCAGAAACAACAGAUUCCAAA
1084





D-1534
5377
UUCUGCCAAAGGUAAAUUAAC
541
GUUAAUUUACCUUUGGCAGAA
1085





D-1535
5378
UCUGCCAAAGGUAAAUUAACU
542
AGUUAAUUUACCUUUGGCAGA
1086





D-1536
5402
GAUUUAUUCAGGAAUCCCCAU
543
AUGGGGAUUCCUGAAUAAAUC
1087


D-1776










D-1537
5407
AUUCAGGAAUCCCCAUUUGAA
544
UUCAAAUGGGGAUUCCUGAAU
1088





D-1538
5412
GGAAUCCCCAUUUGAAUUUGU
545
ACAAAUUCAAAUGGGGAUUCC
1089









Table 2 below provides the sequences of exemplary sense and antisense strands with chemical modifications od duplexes used in experiments disclosed herein. In Table 2, the nucleotide sequences are listed according to the following notations: a, u, g, and c=corresponding 2′-O-methyl ribonucleotide; Af, Uf, Gf, and Cf=corresponding 2′-deoxy-2′-fluoro (“2′-fluoro”) ribonucleotide; and invAb=inverted abasic deoxynucleotide (i.e., abasic deoxynucleotide linked to adjacent nucleotide via a substituent at its 3′ position (a 3′-3′ linkage) when on the 3′ end of a strand or linked to adjacent nucleotide via a substituent at its 5′ position (a 5′-5′ internucleotide linkage) when on the 5′ end of a strand. Insertion of an “s” in the sequence indicates that the two adjacent nucleotides are connected by a phosphorothiodiester group (e.g., a phosphorothioate internucleotide linkage). Unless indicated otherwise, all other nucleotides are connected by 3′-5′ phosphodiester groups. [DCA-C6] represents a conjugated docosanoic acid (C22). [GalNAc3] represents the GalNAc moiety shown in Formula VII. The [DCA-C6] and [GalNAc] ligands are covalently attached to the 5′ terminal nucleotide at the 5′ end of the sense strand via a phosphodiester bond, or a phosphorothioate bond when an “s” follows the [GalNAc3] or [DCA-C6] notation. When an invAb nucleotide was the 5′ terminal nucleotide at the 5′ end of the sense strand, it was linked to the adjacent nucleotide via a 5′-5′ linkage and the GalNAc or C22 moiety was covalently attached to the 3′ carbon of the invAb nucleotide. Otherwise, the moiety was covalently attached to the 5′ carbon of the 5′ terminal nucleotide of the sense strand.









TABLE 2







Modified FAM13A siRNA Sequences











Duplex

SEQ ID

SEQ ID


No.
Sense Sequence (5′-3′)
NO:
Antisense Sequence (5′-3′)
NO:





D-1001
csasuguaCfcCfCfAfAfgucagcaas
1090
asUfsugcuGfacuuggGfgUfacaugs
1938



{invAb}

usu






D-1002
usgsuaccCfcAfAfGfUfcagcaaugs
1091
asCfsauugCfugacuuGfgGfguacas
1939



{invAb}

usu






D-1003
gsusacccCfaAfGfUfCfagcaaugus
1092
asAfscauuGfcugacuUfgGfgguacs
1940



{invAb}

usu






D-1004
gscsaaugUfgUfCfUfGfcaaccggas
1093
asUfsccggUfugcagaCfaCfauugcs
1941



{invAb}

usu






D-1005
csasauguGfuCfUfGfCfaaccggags
1094
usCfsuccgGfuugcagAfcAfcauugs
1942



{invAb}

usu






D-1006
asasugugUfcUfGfCfAfaccggagas
1095
usUfscuccGfguugcaGfaCfacauus
1943



{invAb}

usu






D-1007
usgsugucUfgCfAfAfCfcggagaacs
1096
asGfsuucuCfcgguugCfaGfacacas
1944



{invAb}

usu






D-1008
gsusgucuGfcAfAfCfCfggagaacus
1097
asAfsguucUfccgguuGfcAfgacacs
1945



{invAb}

usu






D-1009
usgsucugCfaAfCfCfGfgagaacucs
1098
asGfsaguuCfuccgguUfgCfagacas
1946



{invAb}

usu






D-1010
gsuscugcAfaCfCfGfGfagaacucus
1099
asAfsgaguUfcuccggUfuGfcagacs
1947



{invAb}

usu






D-1011
uscsugcaAfcCfGfGfAfgaacucuus
1100
usAfsagagUfucuccgGfuUfgcagas
1948



{invAb}

usu






D-1012
csusgcaaCfcGfGfAfGfaacucuuas
1101
asUfsaagaGfuucuccGfgUfugcags
1949



{invAb}

usu






D-1013
usgscaacCfgGfAfGfAfacucuuags
1102
usCfsuaagAfguucucCfgGfuugcas
1950



{invAb}

usu






D-1014
gscsaaccGfgAfGfAfAfcucuuagas
1103
usUfscuaaGfaguucuCfcGfguugcs
1951



{invAb}

usu






D-1015
asasccggAfgAfAfCfUfcuuagaaas
1104
asUfsuucuAfagaguuCfuCfcgguus
1952



{invAb}

usu






D-1016
uscsuuagAfaAfGfAfAfccauccgas
1105
asUfscggaUfgguucuUfuCfuaagas
1953



{invAb}

usu






D-1017
csusuagaAfaGfAfAfCfcauccgaus
1106
asAfsucggAfugguucUfuUfcuaags
1954



{invAb}

usu






D-1018
ususagaaAfgAfAfCfCfauccgaucs
1107
usGfsaucgGfaugguuCfuUfucuaas
1955



{invAb}

usu






D-1019
asgsaaagAfaCfCfAfUfccgaucags
1108
asCfsugauCfggauggUfuCfuuucus
1956



{invAb}

usu






D-1020
asasagaaCfcAfUfCfCfgaucagcus
1109
asAfsgcugAfucggauGfgUfucuuus
1957



{invAb}

usu






D-1021
asasgaacCfaUfCfCfGfaucagcugs
1110
asCfsagcuGfaucggaUfgGfuucuus
1958



{invAb}

usu






D-1022
gsasaccaUfcCfGfAfUfcagcuguas
1111
asUfsacagCfugaucgGfaUfgguucs
1959



{invAb}

usu






D-1023
ascscaucCfgAfUfCfAfgcuguagas
1112
usUfscuacAfgcugauCfgGfauggus
1960



{invAb}

usu






D-1024
cscsgaucAfgCfUfGfUfagaacaacs
1113
usGfsuuguUfcuacagCfuGfaucggs
1961



{invAb}

usu






D-1025
gsasuguuAfaUfAfAfCfucuggaggs
1114
asCfscuccAfgaguuaUfuAfacaucs
1962



{invAb}

usu






D-1026
usasauaaCfuCfUfGfGfaggucaaas
1115
asUfsuugaCfcuccagAfgUfuauuas
1963



{invAb}

usu






D-1027
asusaacuCfuGfGfAfGfgucaaagus
1116
asAfscuuuGfaccuccAfgAfguuaus
1964



{invAb}

usu






D-1028
asuscuggAfaCfAfCfUfaucagcaus
1117
asAfsugcuGfauagugUfuCfcagaus
1965



{invAb}

usu






D-1029
asgsgaugAfaGfUfUfCfgacaugggs
1118
usCfsccauGfucgaacUfuCfauccus
1966



{invAb}

usu






D-1030
gsusucgaCfaUfGfGGfagagacaas
1119
asUfsugucUfcucccaUfgUfcgaacs
1967



{invAb}

usu






D-1031
csgsacauGfgGfAfGfAfgacaagggs
1120
usCfsccuuGfucucucCfcAfugucgs
1968



{invAb}

usu






D-1032
ascsauggGfaGfAfGfAfcaagggacs
1121
asGfsucccUfugucucUfcCfcaugus
1969



{invAb}

usu






D-1033
asusgggaGfaGfAfCfAfagggacuus
1122
usAfsagucCfcuugucUfcUfcccaus
1970



{invAb}

usu






D-1034
gsgsgagaGfaCfAfAfGfggacuuaus
1123
asAfsuaagUfcccuugUfcUfcucccs
1971



{invAb}

usu






D-1035
gsgsagagAfcAfAfGfGfgacuuaucs
1124
usGfsauaaGfucccuuGfuCfucuccs
1972



{invAb}

usu






D-1036
gsasgagaCfaAfGfGfGfacuuaucas
1125
usUfsgauaAfgucccuUfgUfcucucs
1973



{invAb}

usu






D-1037
gsascaagGfgAfCfUfUfaucaacaas
1126
usUfsuguuGfauaaguCfcCfuugucs
1974



{invAb}

usu






D-1038
ascsaaggGfaCfUfUfAfucaacaaas
1127
asUfsuuguUfgauaagUfcCfcuugus
1975



{invAb}

usu






D-1039
gsgsgacuUfaUfCfAfAfcaaagaaas
1128
usUfsuucuUfuguugaUfaAfgucccs
1976



{invAb}

usu






D-1040
asasgaaaAfuAfCfUfCfcuucugggs
1129
asCfsccagAfaggaguAfuUfuucuus
1977



{invAb}

usu






D-1041
asusacucCfuUfCfUfGfgguucaacs
1130
asGfsuugaAfcccagaAfgGfaguaus
1978



{invAb}

usu






D-1042
gsusucaaCfcAfCfCfUfugaugauus
1131
asAfsaucaUfcaagguGfgUfugaacs
1979



{invAb}

usu






D-1043
ususcaacCfaCfCfUfUfgaugauugs
1132
asCfsaaucAfucaaggUfgGfuugaas
1980



{invAb}

usu






D-1044
ususgaauAfcUfCfAfGfgaagucgas
1133
usUfscgacUfuccugaGfuAfuucaas
1981



{invAb}

usu






D-1045
ascsucagGfaAfGfUfCfgaaaaggus
1134
usAfsccuuUfucgacuUfcCfugagus
1982



{invAb}

usu






D-1046
csuscaggAfaGfUfCfGfaaaagguas
1135
asUfsaccuUfuucgacUfuCfcugags
1983



{invAb}

usu






D-1047
uscsaggaAfgUfCfGfAfaaagguacs
1136
usGfsuaccUfuuucgaCfuUfccugas
1984



{invAb}

usu






D-1048
asgsgaagUfcGfAfAfAfagguacacs
1137
usGfsuguaCfcuuuucGfaCfuuccus
1985



{invAb}

usu






D-1049
uscsgaaaAfgGfUfAfCfacaaaaaus
1138
usAfsuuuuUfguguacCfuUfuucgas
1986



{invAb}

usu






D-1050
csgsaaaaGfgUfAfCfAfcaaaaauas
1139
asUfsauuuUfuguguaCfcUfuuucgs
1987



{invAb}

usu






D-1051
gsasgaaaGfgAfGfCfAfagccuaaas
1140
asUfsuuagGfcuugcuCfcUfuucucs
1988



{invAb}

usu






D-1052
asgsaaagGfaGfCfAfAfgccuaaacs
1141
asGfsuuuaGfgcuugcUfcCfuuucus
1989



{invAb}

usu






D-1053
gsasaaggAfgCfAfAfGfccuaaacgs
1142
asCfsguuuAfggcuugCfuCfcuuucs
1990



{invAb}

usu






D-1054
asgsgagcAfaGfCfCfUfaaacgucas
1143
asUfsgacgUfuuaggcUfuGfcuccus
1991



{invAb}

usu






D-1055
gsgsagcaAfgCfCfUfAfaacgucags
1144
usCfsugacGfuuuaggCfuUfgcuccs
1992



{invAb}

usu






D-1056
gsasgcaaGfcCfUfAfAfacgucagas
1145
usUfscugaCfguuuagGfcUfugcucs
1993



{invAb}

usu






D-1057
asgscaagCfcUfAfAfAfcgucagaas
1146
usUfsucugAfcguuuaGfgCfuugcus
1994



{invAb}

usu






D-1058
gscsaagcCfuAfAfAfCfgucagaaas
1147
asUfsuucuGfacguuuAfgGfcuugcs
1995



{invAb}

usu






D-1059
csasagccUfaAfAfCfGfucagaaaus
1148
asAfsuuucUfgacguuUfaGfgcuugs
1996



{invAb}

usu






D-1060
asasgccuAfaAfCfGfUfcagaaaucs
1149
asGfsauuuCfugacguUfuAfggcuus
1997



{invAb}

usu






D-1061
gsuscagaAfaUfCfCfAfguacuaaas
1150
asUfsuuagUfacuggaUfuUfcugacs
1998



{invAb}

usu






D-1062
uscsagaaAfuCfCfAfGfuacuaaacs
1151
asGfsuuuaGfuacuggAfuUfucugas
1999



{invAb}

usu






D-1063
ususucugAfgCfUfUfCfaugacaaus
1152
asAfsuuguCfaugaagCfuCfagaaas
2000



{invAb}

usu






D-1064
asgscuucAfuGfAfCfAfaucaggacs
1153
asGfsuccuGfauugucAfuGfaagcus
2001



{invAb}

usu






D-1065
ususcaugAfcAfAfUfCfaggacggus
1154
asAfsccguCfcugauuGfuCfaugaas
2002



(invAb}

usu






D-1066
uscsaugaCfaAfUfCfAfggacggucs
1155
asGfsaccgUfccugauUfgUfcaugas
2003



{invAb}

usu






D-1067
csasugacAfaUfCfAfGfgacggucus
1156
asAfsgaccGfuccugaUfuGfucaugs
2004



{invAb}

usu






D-1068
asusgacaAfuCfAfGfGfacggucuus
1157
asAfsagacCfguccugAfuUfgucaus
2005



{invAb}

usu






D-1069
usgsacaaUfcAfGfGfAfcggucuugs
1158
asCfsaagaCfcguccuGfaUfugucas
2006



{invAb}

usu






D-1070
gsascaauCfaGfGfAfCfggucuugus
1159
asAfscaagAfccguccUfgAfuugucs
2007



{invAb}

usu






D-1071
ascsaaucAfgGfAfCfGfgucuugugs
1160
usCfsacaaGfaccgucCfuGfauugus
2008



{invAb}

usu






D-1072
asasucagGfaCfGfGfUfcuugugaas
1161
asUfsucacAfagaccgUfcCfugauus
2009



{invAb}

usu






D-1073
asuscaggAfcGfGfUfCfuugugaaus
1162
usAfsuucaCfaagaccGfuCfcugaus
2010



{invAb}

usu






D-1074
uscsaggaCfgGfUfCfUfugugaauas
1163
asUfsauucAfcaagacCfgUfccugas
2011



{invAb}

usu






D-1075
gsgsucuuGfuGfAfAfUfauggaaags
1164
asCfsuuucCfauauucAfcAfagaccs
2012



{invAb}

usu






D-1076
gsasaaguCfuCfAfAfUfuccacacgs
1165
usCfsguguGfgaauugAfgAfcuuucs
2013



{invAb}

usu






D-1077
asasagucUfcAfAfUfUfccacacgas
1166
asUfscgugUfggaauuGfaGfacuuus
2014



{invAb}

usu






D-1078
asasgucuCfaAfUfUfCfcacacgaus
1167
asAfsucguGfuggaauUfgAfgacuus
2015



{invAb}

usu






D-1079
asgsucucAfaUfUfCfCfacacgaucs
1168
asGfsaucgUfguggaaUfuGfagacus
2016



{invAb}

usu






D-1080
gsuscucaAfuUfCfCfAfcacgaucus
1169
asAfsgaucGfuguggaAfuUfgagacs
2017



{invAb}

usu






D-1081
uscsucaaUfuCfCfAfCfacgaucucs
1170
usGfsagauCfguguggAfaUfugagas
2018



{invAb}

usu






D-1082
csuscaauUfcCfAfCfAfcgaucucas
1171
asUfsgagaUfcgugugGfaAfuugags
2019



{invAb}

usu






D-1083
uscsaauuCfcAfCfAfCfgaucucaus
1172
asAfsugagAfucguguGfgAfauugas
2020



{invAb}

usu






D-1084
csasauucCfaCfAfCfGfaucucaugs
1173
usCfsaugaGfaucgugUfgGfaauugs
2021



{invAb}

usu






D-1085
asusuccaCfaCfGfAfUfcucaugags
1174
usCfsucauGfagaucgUfgUfggaaus
2022



{invAb}

usu






D-1086
ususccacAfcGfAfUfCfucaugagas
1175
asUfscucaUfgagaucGfuGfuggaas
2023



{invAb}

usu






D-1087
uscscacaCfgAfUfCfUfcaugagags
1176
usCfsucucAfugagauCfgUfguggas
2024



{invAb}

usu






D-1088
csascgauCfuCfAfUfGfagagaacus
1177
asAfsguucUfcucaugAfgAfucgugs
2025



{invAb}

usu






D-1089
uscsucauGfaGfAfGfAfacuggaccs
1178
asGfsguccAfguucucUfcAfugagas
2026



{invAb}

usu






D-1090
uscsaugaGfaGfAfAfCfuggaccugs
1179
usCfsagguCfcaguucUfcUfcaugas
2027



{invAb}

usu






D-1091
csasugagAfgAfAfCfUfggaccugas
1180
asUfscaggUfccaguuCfuCfucaugs
2028



{invAb}

usu






D-1092
ususgaauGfgAfUfGfUfcugaugaas
1181
usUfsucauCfagacauCfcAfuucaas
2029



{invAb}

usu






D-1093
gsgsuggaCfaCfAfCfUfcagcauuus
1182
asAfsaaugCfugagugUfgUfccaccs
2030



{invAb}

usu






D-1094
ususugagAfgCfCfCfCfacaaugaas
1183
asUfsucauUfguggggCfuCfucaaas
2031



{invAb}

usu






D-1095
asuscccaGfcCfUfAfUfcugacaccs
1184
usGfsguguCfagauagGfcUfgggaus
2032



{invAb}

usu






D-1096
uscsccagCfcUfAfUfCfugacaccas
1185
usUfsggugUfcagauaGfgCfugggas
2033



{invAb}

usu






D-1097
cscscagcCfuAfUfCfUfgacaccaas
1186
usUfsugguGfucagauAfgGfcugggs
2034



{invAb}

usu






D-1098
cscsagccUfaUfCfUfGfacaccaaas
1187
asUfsuuggUfgucagaUfaGfgcuggs
2035



{invAb}

usu






D-1099
csasgccuAfuCfUfGfAfcaccaaacs
1188
usGfsuuugGfugucagAfuAfggcugs
2036



{invAb}

usu






D-1100
asgscagaGfaAfAfUfCfaagaugccs
1189
asGfsgcauCfuugauuUfcUfcugcus
2037



{invAb}

usu






D-1101
gsasgcuuUfgUfCfUfCfcgaagugcs
1190
asGfscacuUfcggagaCfaAfagcucs
2038



{invAb}

usu






D-1102
usgsucucCfgAfAfGfUfgccccagus
1191
asAfscuggGfgcacuuCfgGfagacas
2039



{invAb}

usu






D-1103
csusccgaAfgUfGfCfCfccagucggs
1192
usCfscgacUfggggcaCfuUfcggags
2040



{invAb}

usu






D-1104
uscscgaaGfuGfCfCfCfcagucggas
1193
asUfsccgaCfuggggcAfcUfucggas
2041



{invAb}

usu






D-1105
asgsaacuGfgGfAfAfGfagccuaucs
1194
asGfsauagGfcucuucCfcAfguucus
2042



{invAb}

usu






D-1106
gsasacugGfgAfAfGfAfgccuauccs
1195
asGfsgauaGfgcucuuCfcCfaguucs
2043



{invAb}

usu






D-1107
asasgagcCfuAfUfCfCfcugcuuucs
1196
asGfsaaagCfagggauAfgGfcucuus
2044



{invAb}

usu






D-1108
asgsgcugGfgCfGfCfCfugauccgus
1197
asAfscggaUfcaggcgCfcCfagccus
2045



{invAb}

usu






D-1109
gsgscuggGfcGfCfCfUfgauccgucs
1198
usGfsacggAfucaggcGfcCfcagccs
2046



{invAb}

usu






D-1110
gscsugggCfgCfCfUfGfauccgucas
1199
asUfsgacgGfaucaggCfgCfccagcs
2047



{invAb}

usu






D-1111
csusgggcGfcCfUfGfAfuccgucags
1200
asCfsugacGfgaucagGfcGfcccags
2048



{invAb}

usu






D-1112
usgsggcgCfcUfGfAfUfccgucagcs
1201
asGfscugaCfggaucaGfgCfgcccas
2049



{invAb}

usu






D-1113
csusggacGfaAfGfAfCfagcgacccs
1202
asGfsggucGfcugucuUfcGfuccags
2050



{invAb}

usu






D-1114
ascscccaUfgCfUfCfUfcuccucggs
1203
asCfscgagGfagagagCfaUfggggus
2051



{invAb}

usu






D-1115
csasugcuCfuCfUfCfCfucgguucus
1204
usAfsgaacCfgaggagAfgAfgcaugs
2052



{invAb}

usu






D-1116
asusgcucUfcUfCfCfUfcgguucuas
1205
asUfsagaaCfcgaggaGfaGfagcaus
2053



{invAb}

usu






D-1117
gscsucucUfcCfUfCfGfguucuacgs
1206
asCfsguagAfaccgagGfaGfagagcs
2054



{invAb}

usu






0-1118
csuscucuCfcUfCfGfGfuucuacgcs
1207
asGfscguaGfaaccgaGfgAfgagags
2055



{invAb}

usu






D-1119
uscsucucCfuCfGfGfUfucuacgcus
1208
asAfsgcguAfgaaccgAfgGfagagas
2056



{invAb}

usu






D-1120
csuscuccUfcGfGfUfUfcuacgcuus
1209
usAfsagcgUfagaaccGfaGfgagags
2057



{invAb}

usu






D-1121
uscsuccuCfgGfUfUfCfuacgcuuas
1210
asUfsaagcGfuagaacCfgAfggagas
2058



{invAb}

usu






D-1122
csusccucGfgUfUfCfUfacgcuuaus
1211
asAfsuaagCfguagaaCfcGfaggags
2059



{invAb}

usu






D-1123
uscscucgGfuUfCfUfAfcgcuuaugs
1212
asCfsauaaGfcguagaAfcCfgaggas
2060



{invAb}

usu






D-1124
cscsucggUfuCfUfAfCfgcuuauggs
1213
asCfscauaAfgcguagAfaCfcgaggs
2061



{invAb}

usu






D-1125
csuscgguUfcUfAfCfGfcuuaugggs
1214
asCfsccauAfagcguaGfaAfccgags
2062



{invAb}

usu






D-1126
csasccaaAfcUfCfCfCfauucuuucs
1215
usGfsaaagAfaugggaGfuUfuggugs
2063



{invAb}

usu






D-1127
cscsaaacUfcCfCfAfUfucuuucaus
1216
asAfsugaaAfgaauggGfaGfuuuggs
2064



{invAb}

usu






D-1128
csuscccaUfuCfUfUfUfcaugaggcs
1217
asGfsccucAfugaaagAfaUfgggags
2065



{invAb}

usu






D-1129
csasuucuUfuCfAfUfGfaggcggcgs
1218
usCfsgccgCfcucaugAfaAfgaaugs
2066



{invAb}

usu






D-1130
asusucuuUfcAfUfGfAfggcggcgas
1219
usUfscgccGfccucauGfaAfagaaus
2067



{invAb}

usu






D-1131
ususcuuuCfaUfGfAfGfgcggcgaas
1220
asUfsucgcCfgccucaUfgAfaagaas
2068



{invAb}

usu






D-1132
uscsuuucAfuGfAfGfGfcggcgaags
1221
asCfsuucgCfcgccucAfuGfaaagas
2069



{invAb}

usu






D-1133
csusuucaUfgAfGfGfCfggcgaagcs
1222
asGfscuucGfccgccuCfaUfgaaags
2070



{invAb}

usu






D-1134
ususucauGfaGfGfCfGfgcgaagcus
1223
asAfsgcuuCfgccgccUfcAfugaaas
2071



{invAb}

usu






D-1135
uscsucugGfgGfUfCfCfuaugaugas
1224
asUfscaucAfuaggacCfcCfagagas
2072



{invAb}

usu






D-1136
ascsaccuGfcCfCfAfGfcucacacgs
1225
usCfsguguGfagcuggGfcAfggugus
2073



{invAb}

usu






D-1137
csasccugCfcCfAfGfCfucacacgas
1226
usUfscgugUfgagcugGfgCfaggugs
2074



{invAb}

usu






D-1138
cscsugccCfaGfCfUfCfacacgaags
1227
asCfsuucgUfgugagcUfgGfgcaggs
2075



{invAb}

usu






D-1139
cscsagcuCfaCfAfCfGfaaggauucs
1228
usGfsaaucCfuucgugUfgAfgcuggs
2076



{invAb}

usu






D-1140
asgscucaCfaCfGfAfAfggauucags
1229
usCfsugaaUfccuucgUfgUfgagcus
2077



{invAb}

usu






D-1141
asusccggAfaGfUfUfUfgaagauags
1230
usCfsuaucUfucaaacUfuCfcggaus
2078



{invAb}

usu






D-1142
csgsgaagUfuUfGfAfAfgauagauus
1231
asAfsaucuAfucuucaAfaCfuuccgs
2079



{invAb}

usu






D-1143
asgsuuugAfaGfAfUfAfgauucgaas
1232
asUfsucgaAfucuaucUfuCfaaacus
2080



{invAb}

usu






D-1144
gsusuugaAfgAfUfAfGfauucgaags
1233
usCfsuucgAfaucuauCfuUfcaaacs
2081



{invAb}

usu






D-1145
gsasagauAfgAfUfUfCfgaagaagas
1234
asUfscuucUfucgaauCfuAfucuucs
2082



(invAb}

usu






D-1146
asgsaagaAfgUfAfCfAfgaccuuccs
1235
asGfsgaagGfucuguaCfuUfcuucus
2083



{invAb}

usu






D-1147
gsasagaaGfuAfCfAfGfaccuucccs
1236
usGfsggaaGfgucuguAfcUfucuucs
2084



{invAb}

usu






D-1148
asasgaagUfaCfAfGfAfccuucccas
1237
asUfsgggaAfggucugUfaCfuucuus
2085



{invAb}

usu






D-1149
uscsugaaAfuGfGfAfCfaaaugaccs
1238
asGfsgucaUfuuguccAfuUfucagas
2086



{invAb}

usu






D-1150
csusgaaaUfgGfAfCfAfaaugaccus
1239
asAfsggucAfuuugucCfaUfuucags
2087



{invAb}

usu






D-1151
ascsaaauGfaCfCfUfUfgccaaauus
1240
asAfsauuuGfgcaaggUfcAfuuugus
2088



{invAb}

usu






D-1152
asasaugaCfcUfUfGfCfcaaauuccs
1241
asGfsgaauUfuggcaaGfgUfcauuus
2089



{invAb}

usu






D-1153
asasugacCfuUfGECECfaaauuccgs
1242
asCfsggaaUfuuggcaAfgGfucauus
2090



{invAb}

usu






D-1154
usgsaccuUfgCfCfAfAfauuccggas
1243
asUfsccggAfauuuggCfaAfggucas
2091



{invAb}

usu






D-1155
gsasccuuGfcCfAfAfAfuuccggags
1244
usCfsuccgGfaauuugGfcAfaggucs
2092



{invAb}

usu






D-1156
ascscuugCfcAfAfAfUfuccggagas
1245
asUfscuccGfgaauuuGfgCfaaggus
2093



{invAb}

usu






D-1157
cscsuugcCfaAfAfUfUfccggagacs
1246
usGfsucucCfggaauuUfgGfcaaggs
2094



{invAb}

usu






D-1158
cscsggagAfcAfAfCfUfuaaagaaus
1247
asAfsuucuUfuaaguuGfuCfuccggs
2095



{invAb}

usu






D-1159
csgsgagaCfaAfCfUfUfaaagaaucs
1248
usGfsauucUfuuaaguUfgUfcuccgs
2096



(invAb}

usu






D-1160
asgsauauCfuGfAfAfGfaggaccuas
1249
usUfsagguCfcucuucAfgAfuaucus
2097



{invAb}

usu






D-1161
gsasggacCfuAfAfCfUfcccaggaus
1250
asAfsuccuGfggaguuAfgGfuccucs
2098



{invAb}

usu






D-1162
gsasccuaAfcUfCfCfCfaggaugcgs
1251
asCfsgcauCfcugggaGfuUfaggucs
2099



{invAb}

usu






D-1163
ascscuaaCfuCfCfCfAfggaugcggs
1252
asCfscgcaUfccugggAfgUfuaggus
2100



{invAb}

usu






D-1164
usgscggcAfgCfGfAfAfgcaacacas
1253
asUfsguguUfgcuucgCfuGfccgcas
2101



{invAb}

usu






D-1165
gscsggcaGfcGfAfAfGfcaacacacs
1254
asGfsugugUfugcuucGfcUfgccgcs
2102



{invAb}

usu






D-1166
csasgcgaAfgCfAfAfCfacacucccs
1255
asGfsggagUfguguugCfuUfcgcugs
2103



{invAb}

usu






D-1167
gscsgaagCfaAfCfAfCfacuccccas
1256
usUfsggggAfguguguUfgCfuucgcs
2104



{invAb}

usu






D-1168
gscsaacaCfaCfUfCfCfccaagagus
1257
asAfscucuUfggggagUfgUfguugcs
2105



{invAb}

usu






D-1169
csasagagUfuUfUfGfGfuucccaacs
1258
asGfsuuggGfaaccaaAfaCfucuugs
2106



{invAb}

usu






D-1170
gsasguuuUfgGfUfUfCfccaacuugs
1259
usCfsaaguUfgggaacCfaAfaacucs
2107



{invAb}

usu






D-1171
gsusuuugGfuUfCfCfCfaacuugags
1260
usCfsucaaGfuugggaAfcCfaaaacs
2108



{invAb}

usu






D-1172
ususgaagCfcAfCfAfUfuggaaucus
1261
usAfsgauuCfcaauguGfgCfuucaas
2109



{invAb}

usu






D-1173
cscsaggaGfaAfGfCfGfagcggaaas
1262
asUfsuuccGfcucgcuUfcUfccuggs
2110



{invAb}

usu






D-1174
gsasccagAfuUfGfCfUfaaugagaas
1263
usUfsucucAfuuagcaAfuCfuggucs
2111



{invAb}

usu






D-1175
gscsuaauGfaGfAfAfAfguggcucus
1264
asAfsgagcCfacuuucUfcAfuuagcs
2112



{invAb}

usu






D-1176
asgscauuCfaUfGfGfAfcggccggus
1265
usAfsccggCfcguccaUfgAfaugcus
2113



{invAb]

usu






D-1177
gscsauucAfuGfGfAfCfggccgguas
1266
usUfsaccgGfccguccAfuGfaaugcs
2114



{invAb}

usu






D-1178
csasuucaUfgGfAfCfGfgccgguaas
1267
asUfsuaccGfgccgucCfaUfgaaugs
2115



{invAb}

usu






D-1179
asusucauGfgAfCfGfGfccgguaacs
1268
usGfsuuacCfggccguCfcAfugaaus
2116



{invAb}

usu






D-1180
ususcaugGfaCfGfGfCfcgguaacas
1269
usUfsguuaCfcggccgUfcCfaugaas
2117



{invAb}

usu






D-1181
uscsauggAfcGfGfCfCfgguaacaas
1270
usUfsuguuAfccggccGfuCfcaugas
2118



{invAb}

usu






D-1182
asusggacGfgCfCfGfGfuaacaaags
1271
usCfsuuugUfuaccggCfcGfuccaus
2119



{invAb}

usu






D-1183
usgsgacgGfcCfGfGfUfaacaaagas
1272
usUfscuuuGfuuaccgGfcCfguccas
2120



{invAb}

usu






D-1184
gsgsacggCfcGfGfUfAfacaaagaas
1273
asUfsucuuUfguuaccGfgCfcguccs
2121



{invAb]

usu






D-1185
ascsggccGfgUfAfAfCfaaagaacgs
1274
usCfsguucUfuuguuaCfcGfgccgus
2122



{invAb}

usu






D-1186
csgsgccgGfuAfAfCfAfaagaacgas
1275
usUfscguuCfuuuguuAfcCfggccgs
2123



{invAb}

usu






D-1187
gsgsccggUfaAfCfAfAfagaacgaas
1276
asUfsucguUfcuuuguUfaCfcggccs
2124



{invAb

usu






D-1188
gscscgguAfaCfAfAfAfgaacgaacs
1277
asGfsuucgUfucuuugUfuAfccggcs
2125



{invAb}

usu






D-1189
cscsgguaAfcAfAfAfGfaacgaacgs
1278
asCfsguucGfuucuuuGfuUfaccggs
2126



{invAb}

usu






D-1190
csgsguaaCfaAfAfGfAfacgaacggs
1279
asCfscguuCfguucuuUfgUfuaccgs
2127



{invAb}

usu






D-1191
gsgsuaacAfaAfGAfAfcgaacggcs
1280
usGfsccguUfcguucuUfuGfuuaccs
2128



{invAb}

usu






D-1192
asasagaaCfgAfAfCfGfgcaggugas
1281
asUfscaccUfgccguuCfgUfucuuus
2129



{invAb}

usu






D-1193
asusgaagCfcAfCfUfAfuacgacags
1282
asCfsugucGfuauaguGfgCfuucaus
2130



{invAb}

usu






D-1194
gsasagccAfcUfAfUfAfcgacaggus
1283
usAfsccugUfcguauaGfuGfgcuucs
2131



{invAb}

usu






D-1195
asasgccaCfuAfUfAfCfgacagguas
1284
asUfsaccuGfucguauAfgUfggcuus
2132



{invAb}

usu






D-1196
asgsccacUfaUfAfCfGfacagguacs
1285
asGfsuaccUfgucguaUfaGfuggcus
2133



{invAb}

usu






D-1197
gscscacuAfuAfCfGfAfcagguaccs
1286
asGfsguacCfugucguAfuAfguggcs
2134



{invAb}

usu






D-1198
cscsacuaUfaCfGfAfCfagguaccgs
1287
asCfsgguaCfcugucgUfaUfaguggs
2135



{invAb}

usu






D-1199
csascuauAfcGfAfCfAfgguaccggs
1288
asCfscgguAfccugucGfuAfuagugs
2136



{invAb}

usu






D-1200
ascsuauaCfgAfCfAfGfguaccggcs
1289
asGfsccggUfaccuguCfgUfauagus
2137



{invAb}

usu






D-1201
asascagaUfcCfUfCfUfcccgagcus
1290
usAfsgcucGfggagagGfaUfcuguus
2138



{invAb}

usu






D-1202
ascsagauCfcUfCfUfCfccgagcuas
1291
usUfsagcuCfgggagaGfgAfucugus
2139



{invAb}

usu






D-1203
asgsauccUfcUfCfCfCfgagcuaacs
1292
usGfsuuagCfucgggaGfaGfgaucus
2140



{invAb}

usu






D-1204
uscscucuCfcCfGfAfGfcuaacaccs
1293
usGfsguguUfagcucgGfgAfgaggas
2141



{invAb}

usu






D-1205
cscsucucCfcGfAfGfCfuaacaccas
1294
asUfsggugUfuagcucGfgGfagaggs
2142



{invAb}

usu






D-1206
csuscuccCfgAfGfCfUfaacaccaus
1295
usAfsugguGfuuagcuCfgGfgagags
2143



{invAb}

usu






D-1207
uscsccgaGfcUfAfAfCfaccauaccs
1296
asGfsguauGfguguuaGfcUfcgggas
2144



{invAb}

usu






D-1208
cscscgagCfuAfAfCfAfccauacccs
1297
usGfsgguaUfgguguuAfgCfucgggs
2145



{invAb}

usu






D-1209
gsgsggucAfgAfAfGfAfcgauagcas
1298
usUfsgcuaUfcgucuuCfuGfaccccs
2146



{invAb}

usu






D-1210
gsgsgucaGfaAfGfAfCfgauagcaas
1299
asUfsugcuAfucgucuUfcUfgacccs
2147



{invAb}

usu






D-1211
gsuscagaAfgAfCfGfAfuagcaaugs
1300
asCfsauugCfuaucguCfuUfcugacs
2148



{invAb}

usu






D-1212
uscsagaaGfaCfGfAfUfagcaaugus
1301
asAfscauuGfcuaucgUfcUfucugas
2149



{invAb}

usu






D-1213
gsasagacGfaUfAfGfCfaaugugaas
1302
asUfsucacAfuugcuaUfcGfucuucs
2150



{invAb}

usu






D-1214
asgsacgaUfaGfCfAfAfugugaagcs
1303
asGfscuucAfcauugcUfaUfcgucus
2151



{invAb}

usu






D-1215
asusggucAfcUfCfUfGfaaaaccgas
1304
asUfscgguUfuucagaGfuGfaccaus
2152



{invAb}

usu






D-1216
usgsgucaCfuCfUfGfAfaaaccgaus
1305
asAfsucggUfuuucagAfgUfgaccas
2153



{invAb}

usu






D-1217
gsgsucacUfcUfGfAfAfaaccgauus
1306
asAfsaucgGfuuuucaGfaGfugaccs
2154



{invAb}

usu






D-1218
gsasaaacCfgAfUfUfUfcagugcacs
1307
asGfsugcaCfugaaauCfgGfuuuucs
2155



{invAb}

usu






D-1219
asasccgaUfuUfCfAfGfugcacgaus
1308
asAfsucguGfcacugaAfaUfcgguus
2156



{invAb}

usu






D-1220
usasuuucCfcCfAfAfUfggaugauas
1309
usUfsaucaUfccauugGfgGfaaauas
2157



{invAb}

usu






D-1221
cscscaauGfgAfUfGfAfuaaaauacs
1310
asGfsuauuUfuaucauCfcAfuugggs
2158



{invAb}

usu






D-1222
csasauggAfuGfAfUfAfaaauaccas
1311
asUfsgguaUfuuuaucAfuCfcauugs
2159



{invAb}

usu






D-1223
usgsgaugAfuAfAfAfAfuaccaucas
1312
usUfsgaugGfuauuuuAfuCfauccas
2160



{invAb}

usu






D-1224
asasauacCfaUfCfAfAfaaugcagcs
1313
asGfscugcAfuuuugaUfgGfuauuus
2161



{invAb}

usu






D-1225
gsgsgcuuUfcAfAfAfUfcuccaugcs
1314
asGfscaugGfagauuuGfaAfagcccs
2162



{invAb}

usu






D-1226
gsgscuuuCfaAfAfUfCfuccaugcus
1315
asAfsgcauGfgagauuUfgAfaagccs
2163



{invAb}

usu






D-1227
asasucucCfaUfGfCfUfgccucaaus
1316
usAfsuugaGfgcagcaUfgGfagauus
2164



{invAb}

usu






D-1228
asuscuccAfuGfCfUfGfccucaauas
1317
asUfsauugAfggcagcAfuGfgagaus
2165



{invAb}

usu






D-1229
uscsuccaUfgCfUfGfCfcucaauacs
1318
asGfsuauuGfaggcagCfaUfggagas
2166



{invAb}

usu






D-1230
csusgccuCfaAfUfAfCfcugaacucs
1319
asGfsaguuCfagguauUfgAfggcags
2167



{invAb}

usu






D-1231
csusggaaCfaCfCfUfCfcaggaaaus
1320
asAfsuuucCfuggaggUfgUfuccags
2168



{invAb}

usu






D-1232
csusucggGfaUfUfUfUfgaagacaas
1321
asUfsugucUfucaaaaUfcCfcgaags
2169



{invAb}

usu






D-1233
cscsagaaGfgAfAfGfAfccgcacucs
1322
asGfsagugCfggucuuCfcUfucuggs
2170



{invAb}

usu






D-1234
gsasaggaAfgAfCfCfGfcacuccuas
1323
asUfsaggaGfugcgguCfuUfccuucs
2171



{invAb}

usu






D-1235
asasggaaGfaCfCfGfCfacuccuaus
1324
asAfsuaggAfgugcggUfcUfuccuus
2172



{invAb}

usu






D-1236
asgsgaagAfcCfGfCfAfcuccuaugs
1325
asCfsauagGfagugcgGfuCfuuccus
2173



{invAb}

usu






D-1237
gsgsaagaCfcGfCfAfCfuccuauggs
1326
asCfscauaGfgagugcGfgUfcuuccs
2174



{invAb}

usu






D-1238
gsasagacCfgCfAfCfUfccuauggcs
1327
asGfsccauAfggagugCfgGfucuucs
2175



{invAb}

usu






D-1239
asgsaccgCfaCfUfCfCfuauggcugs
1328
usCfsagccAfuaggagUfgCfggucus
2176



{invAb}

usu






D-1240
cscsgcacUfcCfUfAfUfggcugaags
1329
usCfsuucaGfccauagGfaGfugcggs
2177



{invAb}

usu






D-1241
usasagcaCfaUfAfAfAfggcgaaacs
1330
asGfsuuucGfccuuuaUfgUfgcuuas
2178



{invAb}

usu






D-1242
asasgcacAfuAfAfAfGfgcgaaacus
1331
asAfsguuuCfgccuuuAfuGfugcuus
2179



{invAb}

usu






D-1243
gscsacauAfaAfGfGfCfgaaacugas
1332
asUfscaguUfucgccuUfuAfugugcs
2180



{invAb}

usu






D-1244
gsasuuccAfaGfUfCfCfaugugaggs
1333
asCfscucaCfauggacUfuGfgaaucs
2181



{invAb}

usu






D-1245
asusuccaAfgUfCfCfAfugugagggs
1334
asCfsccucAfcauggaCfuUfggaaus
2182



{invAb}

usu






D-1246
cscsaaguCfcAfUfGfUfgaggggcas
1335
asUfsgcccCfucacauGfgAfcuuggs
2183



{invAb}

usu






D-1247
csasagucCfaUfGfUfGfaggggcaus
1336
asAfsugccCfcucacaUfgGfacuugs
2184



{invAb}

usu






D-1248
gsusccauGfuGfAfGfGfggcauggcs
1337
asGfsccauGfccccucAfcAfuggacs
2185



{invAb}

usu






D-1249
gscsagcuGfcGfGfUfGfagaguuuas
1338
asUfsaaacUfcucaccGfcAfgcugcs
2186



{invAb}

usu






D-1250
asgscugcGfgUfGfAfGfaguuuacus
1339
asAfsguaaAfcucucaCfcGfcagcus
2187



{invAb}

usu






D-1251
cscscagaGfaAfAfGfUfgcagcucus
1340
asAfsgagcUfgcacuuUfcUfcugggs
2188



{invAb}

usu






D-1252
csasaagcAfuGfCfAfGfcccuucugs
1341
asCfsagaaGfggcugcAfuGfcuuugs
2189



{invAb}

usu






D-1253
cscsuucuGfcCfUfCfUfagaccauus
1342
asAfsauggUfcuagagGfcAfgaaggs
2190



{invAb}

usu






D-1254
uscsugccUfcUfAfGfAfccauuuggs
1343
asCfscaaaUfggucuaGfaGfgcagas
2191



{invAb}

usu






D-1255
uscsuagaCfcAfUfUfUfggcaucggs
1344
asCfscgauGfccaaauGfgUfcuagas
2192



{invAb}

usu






D-1256
csusagacCfaUfUfUfGfgcaucggcs
1345
asGfsccgaUfgccaaaUfgGfucuags
2193



{invAb}

usu






D-1257
usasgaccAfuUfUfGfGfcaucggcus
1346
asAfsgccgAfugccaaAfuGfgucuas
2194



{invAb}

usu






D-1258
asgsaccaUfuUfGfGfCfaucggcucs
1347
asGfsagccGfaugccaAfaUfggucus
2195



{invAb}

usu






D-1259
ususuggcAfuCfGfGfCfuccuguuus
1348
asAfsaacaGfgagccgAfuGfccaaas
2196



{invAb}

usu






D-1260
gsgscaucGfgCfUfCfCfuguuuccas
1349
asUfsggaaAfcaggagCfcGfaugccs
2197



{invAb}

usu






D-1261
uscsggcuCfcUfGfUfUfuccauugcs
1350
asGfscaauGfgaaacaGfgAfgccgas
2198



{invAb}

usu






D-1262
gsgscuccUfgUfUfUfCfcauugccus
1351
asAfsggcaAfuggaaaCfaGfgagccs
2199



{invAb}

usu






D-1263
usasggcaUfuUfUfGfUfaauuggaas
1352
usUfsuccaAfuuacaaAfaUfgccuas
2200



{invAb}

usu






D-1264
asgsgcauUfuUfGfUfAfauuggaaas
1353
asUfsuuccAfauuacaAfaAfugccus
2201



{invAb}

usu






D-1265
asusuuugUfaAfUfUfGfgaaagucas
1354
usUfsgacuUfuccaauUfaCfaaaaus
2202



{invAb}

usu






D-1266
ususuguaAfuUfGfGfAfaagucaags
1355
usCfsuugaCfuuuccaAfuUfacaaas
2203



{invAb}

usu






D-1267
asasuuggAfaAfGfUfCfaagacugcs
1356
usGfscaguCfuugacuUfuCfcaauus
2204



{invAb}

usu






D-1268
gsgsaaagUfcAfAfGfAfcugcaguas
1357
asUfsacugCfagucuuGfaCfuuuccs
2205



{invAb}

usu






D-1269
gsuscaagAfcUfGfCfAfguaugugcs
1358
usGfscacaUfacugcaGfuCfuugacs
2206



{invAb}

usu






D-1270
uscsaagaCfuGfCfAfGfuaugugcas
1359
asUfsgcacAfuacugcAfgUfcuugas
2207



{invAb}

usu






D-1271
ascsacacAfcAfGfUfAfguggagcus
1360
asAfsgcucCfacuacuGfuGfugugus
2208



{invAb}

usu






D-1272
csascacaGfuAfGfUfGfgagcuuucs
1361
asGfsaaagCfuccacuAfcUfgugugs
2209



{invAb}

usu






D-1273
ascsacagUfaGfUfGfGfagcuuuccs
1362
asGfsgaaaGfcuccacUfaCfugugus
2210



{invAb}

usu






D-
ascsaguaGfuGfGfAfGfcuuuccuas
2821
usUfsaggaAfagcuccAfcUfacugus
2822


1273B
{invAb}

usu






D-1274
gscsuuucCfuAfAfCfAfcuagcagas
1363
asUfscugcUfaguguuAfgGfaaagcs
2211



{invAb}

usu






D-1275
usasacacUfaGfCfAfGfagauuaaus
1364
asAfsuuaaUfcucugcUfaGfuguuas
2212



{invAb}

usu






D-1276
asascacuAfgCfAfGfAfgauuaaucs
1365
usGfsauuaAfucucugCfuAfguguus
2213



{invAb}

usu






D-1277
ascsacuaGfcAfGfAfGfauuaaucas
1366
asUfsgauuAfaucucuGfcUfagugus
2214



{invAb}

usu






D-1278
csusagcaGfaGfAfUfUfaaucacuas
1367
asUfsagugAfuuaaucUfcUfgcuags
2215



{invAb}

usu






D-1279
asgsagauUfaAfUfCfAfcuacauuas
1368
asUfsaaugUfagugauUfaAfucucus
2216



{invAb}

usu






D-1280
csusacauUfaGfAfCfAfacacucaus
1369
asAfsugagUfguugucUfaAfuguags
2217



{invAb}

usu






D-1281
usascauuAfgAfCfAfAfcacucaucs
1370
asGfsaugaGfuguuguCfuAfauguas
2218



{invAb}

usu






D-1282
csasuuagAfcAfAfCfAfcucaucuas
1371
asUfsagauGfaguguuGfuCfuaaugs
2219



{invAb}

usu






D-1283
gsgsauaaCfuGfAfGfAfaacaagags
1372
usCfsucuuGfuuucucAfgUfuauccs
2220



{invAb}

usu






D-1284
gsasgaccAfuUfCfUfCfugucuaacs
1373
asGfsuuagAfcagagaAfuGfgucucs
2221



{invAb}

usu






D-
csusgucuAfaCfUfGfUfgauaaaaas
1374
asUfsuuuuAfucacagUfuAfgacags
2222


1284B
{invAb}

usu






D-1285
uscsaggaCfuUfUfAfUfucuauagas
1375
asUfscuauAfgaauaaAfgUfccugas
2223



{invAb}

usu






D-1286
ascsuuuaUfuCfUfAfUfagagcaaas
1376
asUfsuugcUfcuauagAfaUfaaagus
2224



{invAb}

usu






D-1287
ususauucUfaUfAfGfAfgcaaacuus
1377
asAfsaguuUfgcucuaUfaGfaauaas
2225



{invAb}

usu






D-1288
usasuucuAfuAfGfAfGfcaaacuugs
1378
asCfsaaguUfugcucuAfuAfgaauas
2226



{invAb}

usu






D-1289
ususcuauAfgAfGfCfAfaacuugcus
1379
asAfsgcaaGfuuugcuCfuAfuagaas
2227



{invAb}

usu






D-1290
csusguggAfgGfGfCfCfaugcucucs
1380
asGfsagagCfauggccCfuCfcacags
2228



{invAb}

usu






D-1291
gscsucucCfuUfGfGfAfcccaguuas
1381
usUfsaacuGfgguccaAfgGfagagcs
2229



{invAb}

usu






D-1292
uscsuccuUfgGfAfCfCfcaguuaacs
1382
asGfsuuaaCfugggucCfaAfggagas
2230



{invAb}

usu






D-1293
csusccuuGfgAfCfCfCfaguuaacus
1383
asAfsguuaAfcuggguCfcAfaggags
2231



{invAb}

usu






D-1294
cscsuuggAfcCfCfAfGfuuaacugcs
1384
usGfscaguUfaacuggGfuCfcaaggs
2232



{invAb}

usu






D-1295
csusuggaCfcCfAfGfUfuaacugcas
1385
usUfsgcagUfuaacugGfgUfccaags
2233



{invAb}

usu






D-1296
gsgsacccAfgUfUfAfAfcugcaaacs
1386
asGfsuuugCfaguuaaCfuGfgguccs
2234



{invAb}

usu






D-1297
gsascccaGfuUfAfAfCfugcaaacgs
1387
asCfsguuuGfcaguuaAfcUfgggucs
2235



{invAb}

usu






D-1298
ascsccagUfuAfAfCfUfgcaaacgus
1388
asAfscguuUfgcaguuAfaCfugggus
2236



{invAb}

usu






D-1299
cscscaguUfaAfCfUfGfcaaacgugs
1389
asCfsacguUfugcaguUfaAfcugggs
2237



{invAb}

usu






D-1300
cscsaguuAfaCfUfGfCfaaacgugcs
1390
usGfscacgUfuugcagUfuAfacuggs
2238



{invAb}

usu






D-1301
csasguuaAfcUfGfCfAfaacgugcas
1391
asUfsgcacGfuuugcaGfuUfaacugs
2239



{invAb}

usu






D-1302
ususaacuGfcAfAfAfCfgugcauugs
1392
asCfsaaugCfacguuuGfcAfguuaas
2240



{invAb}

usu






D-1303
csusgcaaAfcGfUfGfCfauuggagcs
1393
asGfscuccAfaugcacGfuUfugcags
2241



{invAb}

usu






D-1304
usgscaaaCfgUfGfCfAfuuggagccs
1394
asGfsgcucCfaaugcaCfgUfuugcas
2242



{invAb}

usu






D-1305
asascgugCfaUfUfGfGfagcccuaus
1395
asAfsuaggGfcuccaaUfgCfacguus
2243



{invAb}

usu






D-1306
ascsgugcAfuUfGfGfAfgcccuauus
1396
asAfsauagGfgcuccaAfuGfcacgus
2244



{invAb}

usu






D-1307
gsusgcauUfgGfAfGfCfccuauuugs
1397
asCfsaaauAfgggcucCfaAfugcacs
2245



{invAb}

usu






D-1308
usgscauuGfgAfGfCfCfcuauuugcs
1398
asGfscaaaUfagggcuCfcAfaugcas
2246



{invAb}

usu






D-1309
usgsgagcCfcUfAfUfUfugcugccgs
1399
asCfsggcaGfcaaauaGfgGfcuccas
2247



{invAb}

usu






D-1310
gsgsagccCfuAfUfUfUfgcugccgcs
1400
asGfscggcAfgcaaauAfgGfgcuccs
2248



{invAb}

usu






D-1311
gsasgcccUfaUfUfUfGfcugccgcus
1401
asAfsgcggCfagcaaaUfaGfggcucs
2249



{invAb}

usu






D-1312
asgscccuAfuUfUfGfCfugccgcugs
1402
asCfsagcgGfcagcaaAfuAfgggcus
2250



{invAb}

usu






D-1313
cscsgcugCfcAfUfUfCfuagugaccs
1403
asGfsgucaCfuagaauGfgCfagcggs
2251



{invAb}

usu






D-1314
usgsccauUfcUfAfGfUfgaccuuucs
1404
asGfsaaagGfucacuaGfaAfuggcas
2252



{invAb}

usu






D-1315
gscscauuCfuAfGfUfGfaccuuuccs
1405
usGfsgaaaGfgucacuAfgAfauggcs
2253



{invAb}

usu






D-1316
csusagugAfcCfUfUfUfccacagags
1406
asCfsucugUfggaaagGfuCfacuags
2254



{invAb}

usu






D-1317
asgsagcuGfcGfCfCfUfuccucacgs
1407
asCfsgugaGfgaaggcGfcAfgcucus
2255



{invAb}

usu






D-1318
gscsgccuUfcCfUfCfAfcgugugugs
1408
usCfsacacAfcgugagGfaAfggcgcs
2256



{invAb}

usu






D-1319
cscsucacGfuGfUfGfUfgaaagguus
1409
asAfsaccuUfucacacAfcGfugaggs
2257



{invAb}

usu






D-1320
csuscacgUfgUfGfUfGfaaagguuus
1410
asAfsaaccUfuucacaCfaCfgugags
2258



{invAb}

usu






D-1321
ususcagcCfcUfCfAfGfguagauggs
1411
usCfscaucUfaccugaGfgGfcugaas
2259



{invAb}

usu






D-1322
uscsagccCfuCfAfGfGfuagauggas
1412
usUfsccauCfuaccugAfgGfgcugas
2260



{invAb}

usu






D-1323
asgscccuCfaGfGfUfAfgauggaags
1413
asCfsuuccAfucuaccUfgAfgggcus
2261



{invAb}

usu






D-
csascgauGfgCfAfGfUfgcagucaus
2823
asAfsugacUfgcacugCfcAfucgugs
2824


1323B
{invAb}

usu






D-1324
uscsaggaUfgUfUfUfCfuucaggacs
1414
asGfsuccuGfaagaaaCfaUfccugas
2262



{invAb}

usu






D-1325
ususccucAfgCfUfGfAfcaaggaaus
1415
asAfsuuccUfugucagCfuGfaggaas
2263



{invAb}

usu






D-1326
asgscugaCfaAfGfGfAfauuuuggus
1416
asAfsccaaAfauuccuUfgUfcagcus
2264



{invAb}

usu






D-1327
gsasauuuUfgGfUfCfCfcugccuags
1417
asCfsuaggCfagggacCfaAfaauucs
2265



{invAb}

usu






D-1328
asasuuuuGfgUfCfCfCfugccuaggs
1418
usCfscuagGfcagggaCfcAfaaauus
2266



{invAb}

usu






D-
ususuuggUfcCfCfUfGfccuaggacs
2825
asGfsuccuAfggcaggGfaCfcaaaas
2826


1328B
{invAb}

usu






D-1329
ususugguCfcCfUfGfCfcuaggaccs
1419
asGfsguccUfaggcagGfgAfccaaas
2267



{invAb}

usu






D-1330
csusgccuAfgGfAfCfCfgggucaucs
1420
asGfsaugaCfccggucCfuAfggcags
2268



{invAb}

usu






D-1331
ascsagagAfgAfUfGfGfuaagcagcs
1421
asGfscugcUfuaccauCfuCfucugus
2269



{invAb}

usu






D-1332
gsasgagaUfgGfUfAfAfgcagcugus
1422
usAfscagcUfgcuuacCfaUfcucucs
2270



{invAb}

usu






D-1333
asgsagauGfgUfAfAfGfcagcuguas
1423
asUfsacagCfugcuuaCfcAfucucus
2271



{invAb}

usu






D-1334
gsasgaugGfuAfAfGfCfagcuguaus
1424
asAfsuacaGfcugcuuAfcCfaucucs
2272



{invAb}

usu






D-1335
gsusaagcAfgCfUfGfUfaugaaugcs
1425
asGfscauuCfauacagCfuGfcuuacs
2273



{invAb}

usu






D-1336
asgscagcUfgUfAfUfGfaaugcugas
1426
asUfscagcAfuucauaCfaGfcugcus
2274



{invAb}

usu






D-1337
gsasuuuuAfaAfAfCfCfaggucaugs
1427
asCfsaugaCfcugguuUfuAfaaaucs
2275



{invAb}

usu






D-1338
ususuuaaAfaCfCfAfGfgucaugggs
1428
usCfsccauGfaccuggUfuUfuaaaas
2276



{invAb}

usu






D-1339
csusgaacAfcUfGfAfCfugcacuuas
1429
asUfsaaguGfcagucaGfuGfuucags
2277



{invAb}

usu






D-1340
usgsaacaCfuGfAfCfUfgcacuuacs
1430
asGfsuaagUfgcagucAfgUfguucas
2278



{invAb}

usu






D-1341
csascuuaCfcAfGfUfCfugauuuuas
1431
asUfsaaaaUfcagacuGfgUfaagugs
2279



{invAb}

usu






D-1342
ascscaguCfuGfAfUfUfuuaucgucs
1432
usGfsacgaUfaaaaucAfgAfcuggus
2280



{invAb}

usu






D-1343
cscsagucUfgAfUfUfUfuaucgucas
1433
usUfsgacgAfuaaaauCfaGfacuggs
2281



{invAb}

usu






D-1344
uscsugauUfuUfAfUfCfgucaaacas
1434
asUfsguuuGfacgauaAfaAfucagas
2282



{invAb}

usu






D-1345
csusgauuUfuAfUfCfGfucaaacacs
1435
asGfsuguuUfgacgauAfaAfaucags
2283



{invAb}

usu






D-1346
usgsauuuUfaUfCfGfUfcaaacaccs
1436
usGfsguguUfugacgaUfaAfaaucas
2284



{invAb}

usu






D-1347
gsasuuuuAfuCfGfUfCfaaacaccas
1437
usUfsggugUfuugacgAfuAfaaaucs
2285



{invAb}

usu






D-1348
asusuuuaUfcGfUfCfAfaacaccaas
1438
asUfsugguGfuuugacGfaUfaaaaus
2286



{invAb}

usu






D-1349
ususaucgUfcAfAfAfCfaccaagccs
1439
usGfsgcuuGfguguuuGfaCfgauaas
2287



{invAb}

usu






D-1350
usasucguCfaAfAfCfAfccaagccas
1440
asUfsggcuUfgguguuUfgAfcgauas
2288



{invAb}

usu






D-1351
csasugcuCfaUfGfGfCfaaucuguus
1441
asAfsacagAfuugccaUfgAfgcaugs
2289



{invAb}

usu






D-1352
uscsauggCfaAfUfCfUfguuuggggs
1442
asCfscccaAfacagauUfgCfcaugas
2290



{invAb}

usu






D-1353
gsusuuugUfuGfUfGfGfcacuagccs
1443
usGfsgcuaGfugccacAfaCfaaaacs
2291



{invAb}

usu






D-1354
ususuuguUfgUfGfGfCfacuagccas
1444
usUfsggcuAfgugccaCfaAfcaaaas
2292



{invAb}

usu






D-1355
ususuguuGfuGfGfCfAfcuagccaas
1445
usUfsuggcUfagugccAfcAfacaaas
2293



{invAb}

usu






D-1356
ususguugUfgGfCfAfCfuagccaaas
1446
asUfsuuggCfuagugcCfaCfaacaas
2294



{invAb}

usu






D-1357
gsusugugGfcAfCfUfAfgccaaacas
1447
asUfsguuuGfgcuaguGfcCfacaacs
2295



{invAb}

usu






D-1358
ususguggCfaCfUfAfGfccaaacaus
1448
usAfsuguuUfggcuagUfgCfcacaas
2296



{invAb}

usu






D-1359
usgsuggcAfcUfAfGfCfcaaacauas
1449
usUfsauguUfuggcuaGfuGfccacas
2297



{invAb}

usu






D-1360
gsusggcaCfuAfGfCfCfaaacauaas
1450
usUfsuaugUfuuggcuAfgUfgccacs
2298



{invAb}

usu






D-1361
usgsgcacUfaGfCfCfAfaacauaaas
1451
asUfsuuauGfuuuggcUfaGfugccas
2299



{invAb}

usu






D-1362
gsgscacuAfgCfCfAfAfacauaaags
1452
asCfsuuuaUfguuuggCfuAfgugccs
2300



{invAb}

usu






D-1363
gscsacuaGfcCfAfAfAfcauaaaggs
1453
asCfscuuuAfuguuugGfcUfagugcs
2301



{invAb}

usu






D-1364
asgsccaaAfcAfUfAfAfaggggcuus
1454
usAfsagccCfcuuuauGfuUfuggcus
2302



{invAb}

usu






D-1365
gscscaaaCfaUfAfAfAfggggcuuas
1455
usUfsaagcCfccuuuaUfgUfuuggcs
2303



{invAb}

usu






D-1366
cscsaaacAfuAfAfAfGfgggcuuaas
1456
asUfsuaagCfcccuuuAfuGfuuuggs
2304



{invAb}

usu






D-1367
csasaacaUfaAfAfGfGfggcuuaags
1457
asCfsuuaaGfccccuuUfaUfguuugs
2305



{invAb}

usu






D-1368
asasacauAfaAfGfGfGfgcuuaagus
1458
asAfscuuaAfgccccuUfuAfuguuus
2306



{invAb}

usu






D-1369
asascauaAfaGfGfGfGfcuuaagucs
1459
usGfsacuuAfagccccUfuUfauguus
2307



{invAb}

usu






D-1370
ascsauaaAfgGfGfGfCfuuaagucas
1460
asUfsgacuUfaagcccCfuUfuaugus
2308



{invAb}

usu






D-1371
asusaaagGfgGfCfUfUfaagucagcs
1461
asGfscugaCfuuaagcCfcCfuuuaus
2309



{invAb}

usu






D-1372
usasaaggGfgCfUfUfAfagucagccs
1462
asGfsgcugAfcuuaagCfcCfcuuuas
2310



{invAb}

usu






D-1373
asgsgggcUfuAfAfGfUfcagccugcs
1463
usGfscaggCfugacuuAfaGfccccus
2311



{invAb}

usu






D-1374
asasgucaGfcCfUfGfCfauacagags
1464
asCfsucugUfaugcagGfcUfgacuus
2312



{invAb}

usu






D-1375
asgsucagCfcUfGfCfAfuacagaggs
1465
usCfscucuGfuaugcaGfgCfugacus
2313



{invAb}

usu






D-1376
asgsccugCfaUfAfCfAfgaggaucgs
1466
asCfsgaucCfucuguaUfgCfaggcus
2314



{invAb}

usu






D-1377
gscscugcAfuAfCfAfGfaggaucggs
1467
asCfscgauCfcucuguAfuGfcaggcs
2315



{invAb}

usu






D-1378
cscsugcaUfaCfAfGfAfggaucgggs
1468
asCfsccgaUfccucugUfaUfgcaggs
2316



{invAb}

usu






D-1379
ascsagagGfaUfCfGfGfggagagaas
1469
asUfsucucUfccccgaUfcCfucugus
2317



{invAb}

usu






D-1380
gsasguacUfuAfCfCfAfgaguuuaas
1470
asUfsuaaaCfucugguAfaGfuacucs
2318



{invAb}

usu






D-1381
csusgcacUfaAfAfAfUfccccaaacs
1471
asGfsuuugGfggauuuUfaGfugcags
2319



{invAb}

usu






D-1382
usgscacuAfaAfAfUfCfcccaaacus
1472
asAfsguuuGfgggauuUfuAfgugcas
2320



{invAb}

usu






D-1383
csascuaaAfaUfCfCfCfcaaacugas
1473
asUfscaguUfuggggaUfuUfuagugs
2321



{invAb}

usu






D-1384
asasucccCfaAfAfCfUfgacagguas
1474
usUfsaccuGfucaguuUfgGfggauus
2322



{invAb}

usu






D-1385
cscsaaacUfgAfCfAfGfguaaaugus
1475
usAfscauuUfaccuguCfaGfuuuggs
2323



{invAb}

usu






D-1386
csasaacuGfaCfAfGfGfuaaauguas
1476
asUfsacauUfuaccugUfcAfguuugs
2324



{invAb}

usu






D-1387
asasacugAfcAfGfGfUfaaauguags
1477
asCfsuacaUfuuaccuGfuCfaguuus
2325



{invAb}

usu






D-1388
ascsugacAfgGfUfAfAfauguagccs
1478
asGfsgcuaCfauuuacCfuGfucagus
2326



{invAb}

usu






D-1389
asuscuaaAfuCfAfCfAfcuauuuucs
1479
asGfsaaaaUfagugugAfuUfuagaus
2327



{invAb}

usu






D-1390
csusaaauCfaCfAfCfUfauuuucgas
1480
asUfscgaaAfauagugUfgAfuuuags
2328



{invAb}

usu






D-1391
usasaaucAfcAfCfUfAfuuuucgags
1481
usCfsucgaAfaauaguGfuGfauuuas
2329



{invAb}

usu






D-1392
asasucacAfcUfAfUfUfuucgagaus
1482
asAfsucucGfaaaauaGfuGfugauus
2330



{invAb}

usu






D-1393
uscsacacUfaUfUfUfUfcgagaucas
1483
asUfsgaucUfcgaaaaUfaGfugugas
2331



{invAb}

usu






D-1394
csascacuAfuUfUfUfCfgagaucaus
1484
asAfsugauCfucgaaaAfuAfgugugs
2332



{invAb}

usu






D-1395
ascsacuaUfuUfUfCfGfagaucaugs
1485
asCfsaugaUfcucgaaAfaUfagugus
2333



{invAb}

usu






D-1396
ascsuauuUfuCfGfAfGfaucauguas
1486
asUfsacauGfaucucgAfaAfauagus
2334



{invAb}

usu






D-1397
csusauuuUfcGfAfGfAfucauguaus
1487
usAfsuacaUfgaucucGfaAfaauags
2335



{invAb}

usu






D-1398
asusuuucGfaGfAfUfCfauguauaas
1488
usUfsuauaCfaugaucUfcGfaaaaus
2336



{invAb}

usu






D-1399
ususcgagAfuCfAfUfGfuauaaaaas
1489
asUfsuuuuAfuacaugAfuCfucgaas
2337



{invAb}

usu






D-1400
asasaaaaGfaAfGfUfCfaugcugugs
1490
asCfsacagCfaugacuUfcUfuuuuus
2338



{invAb}

usu






D-1401
usgscuguGfuGfGfCfCfaauuauaas
1491
asUfsuauaAfuuggccAfcAfcagcas
2339



{invAb}

usu






D-1402
ususggagGfgAfCfCfAfggaaaugus
1492
usAfscauuUfccugguCfcCfuccaas
2340



{invAb}

usu






D-1403
ascscaggAfaAfUfGfUfaagacaccs
1493
usGfsguguCfuuacauUfuCfcuggus
2341



{invAb}

usu






D-1404
cscsaggaAfaUfGfUfAfagacaccas
1494
usUfsggugUfcuuacaUfuUfccuggs
2342



{invAb}

usu






D-1405
gsusgugcCfuGfAfUfGfucaccucas
1495
asUfsgaggUfgacaucAfgGfcacacs
2343



{invAb}

usu






D-1406
usgsugccUfgAfUfGfUfcaccucaus
1496
asAfsugagGfugacauCfaGfgcacas
2344



{invAb}

usu






D-1407
gsusgccuGfaUfGfUfCfaccucaugs
1497
usCfsaugaGfgugacaUfcAfggcacs
2345



{invAb}

usu






D-1408
gscscugaUfgUfCfAfCfcucaugaus
1498
asAfsucauGfaggugaCfaUfcaggcs
2346



{invAb}

usu






D-1409
ususuuuuAfaCfUfCfCfugcgccaas
1499
asUfsuggcGfcaggagUfuAfaaaaas
2347



{invAb}

usu






D-1410
ususaacuCfcUfGfCfGfccaaggacs
1500
usGfsuccuUfggcgcaGfgAfguuaas
2348



{invAb}

usu






D-1411
asascuccUfgCfGfCfCfaaggacags
1501
asCfsugucCfuuggcgCfaGfgaguus
2349



{invAb}

usu






D-1412
ascsuccuGfcGfCfCfAfaggacagus
1502
asAfscuguCfcuuggcGfcAfggagus
2350



{invAb}

usu






D-1413
usgsuccaCfcUfUfUfGfugcuuugcs
1503
asGfscaaaGfcacaaaGfgUfggacas
2351



{invAb}

usu






D-1414
uscscaccUfuUfGfUfGfcuuugcgas
1504
asUfscgcaAfagcacaAfaGfguggas
2352



{invAb}

usu






D-1415
csasccuuUfgUfGfCfUfuugcgaggs
1505
asCfscucgCfaaagcaCfaAfaggugs
2353



{invAb}

usu






D-1416
cscsuuugUfgCfUfUfUfgcgaggccs
1506
asGfsgccuCfgcaaagCfaCfaaaggs
2354



{invAb}

usu






D-1416
cscsuuugUfgCfUfUfUfgcgaggccs
1507
asGfsgccuCfgcaaagCfaCfaaaggs
2355



{invAb}

usu






D-1417
gsasgcccAfgGfCfAfUfcugcucgcs
1508
asGfscgagCfagaugcCfuGfggcucs
2356



{invAb}

usu






D-1418
cscscaggCfaUfCfUfGfcucgccugs
1509
asCfsaggcGfagcagaUfgCfcugggs
2357



{invAb}

usu






D-1419
csasggcaUfcUfGfCfUfcgccugccs
1510
usGfsgcagGfcgagcaGfaUfgccugs
2358



{invAb}

usu






D-1420
gscsaucuGfcUfCfGfCfcugccacgs
1511
asCfsguggCfaggcgaGfcAfgaugcs
2359



{invAb}

usu






D-1421
usgsccacGfgCfUfGfAfccagagaas
1512
asUfsucucUfggucagCfcGfuggcas
2360



{invAb}

usu






D-1422
gsasgcucUfgCfCfUfUfagacgacgs
1513
asCfsgucgUfcuaaggCfaGfagcucs
2361



{invAb}

usu






D-1423
asgscucuGfcCfUfUfAfgacgacgus
1514
asAfscgucGfucuaagGfcAfgagcus
2362



{invAb}

usu






D-1424
gscsucugCfcUfUfAfGfacgacgugs
1515
asCfsacguCfgucuaaGfgCfagagcs
2363



{invAb}

usu






D-1425
csuscugcCfuUfAfGfAfcgacgugus
1516
asAfscacgUfcgucuaAfgGfcagags
2364



{invAb}

usu






D-1426
uscsugccUfuAfGfAfCfgacguguus
1517
usAfsacacGfucgucuAfaGfgcagas
2365



{invAb}

usu






D-1427
csusgccuUfaGfAfCfGfacguguuas
1518
asUfsaacaCfgucgucUfaAfggcags
2366



{invAb}

usu






D-1428
gscscuuaGfaCfGfAfCfguguuacas
1519
asUfsguaaCfacgucgUfcUfaaggcs
2367



{invAb}

usu






D-1429
cscsuuagAfcGfAfCfGfuguuacags
1520
asCfsuguaAfcacgucGfuCfuaaggs
2368



{invAb}

usu






D-1430
csusuagaCfgAfCfGfUfguuacagus
1521
usAfscuguAfacacguCfgUfcuaags
2369



{invAb}

usu






D-1431
usasgacgAfcGfUfGfUfuacaguaus
1522
asAfsuacuGfuaacacGfuCfgucuas
2370



{invAb}

usu






D-1432
ascsgacgUfgUfUfAfCfaguaugaas
1523
asUfsucauAfcuguaaCfaCfgucgus
2371



{invAb}

usu






D-1433
ascsacagCfaGfAfGfGfcacccucgs
1524
asCfsgaggGfugccucUfgCfugugus
2372



{invAb}

usu






D-1434
csascagcAfgAfGfGfCfacccucgus
1525
usAfscgagGfgugccuCfuGfcugugs
2373



{invAb}

usu






D-1435
ascsagcaGfaGfGfCfAfcccucguas
1526
asUfsacgaGfggugccUfcUfgcugus
2374



{invAb}

usu






D-1436
csasgcagAfgGfCfAfCfccucguaus
1527
asAfsuacgAfgggugcCfuCfugcugs
2375



{invAb}

usu






D-1437
asgscagaGfgCfAfCfCfcucguaugs
1528
asCfsauacGfagggugCfcUfcugcus
2376



{invAb}

usu






D-1438
gscsagagGfcAfCfCfCfucguaugus
1529
asAfscauaCfgaggguGfcCfucugcs
2377



{invAb}

usu






D-1439
csasgaggCfaCfCfCfUfcguauguus
1530
asAfsacauAfcgagggUfgCfcucugs
2378



{invAb}

usu






D-1440
asgsaggcAfcCfCfUfCfguauguuus
1531
asAfsaacaUfacgaggGfuGfccucus
2379



{invAb}

usu






D-1441
gsasggcaCfcCfUfCfGfuauguuuus
1532
asAfsaaacAfuacgagGfgUfgccucs
2380



{invAb}

usu






D-1442
gsgscaccCfuCfGfUfAfuguuuugas
1533
usUfscaaaAfcauacgAfgGfgugccs
2381



{invAb}

usu






D-1443
cscscucgUfaUfGfUfUfuugaaagus
1534
asAfscuuuCfaaaacaUfaCfgagggs
2382



{invAb}

usu






D-1444
asusguaaAfaCfUfAfUfacugacccs
1535
asGfsggucAfguauagUfuUfuacaus
2383



{invAb}

usu






D-1445
usgsuaaaAfcUfAfUfAfcugacccgs
1536
asCfsggguCfaguauaGfuUfuuacas
2384



{invAb}

usu






D-1446
gsusaaaaCfuAfUfAfCfugacccgus
1537
asAfscgggUfcaguauAfgUfuuuacs
2385



{invAb}

usu






D-1447
usasaaacUfaUfAfCfUfgacccguus
1538
asAfsacggGfucaguaUfaGfuuuuas
2386



{invAb}

usu






D-1448
ascsuauaCfuGfAfCfCfcguuuucas
1539
asUfsgaaaAfcgggucAfgUfauagus
2387



{invAb}

usu






D-1449
asusacugAfcCfCfGfUfuuucaguus
1540
asAfsacugAfaaacggGfuCfaguaus
2388



{invAb}

usu






D-1450
ususucagUfuUfUfAfAfagggucgus
1541
asAfscgacCfcuuuaaAfaCfugaaas
2389



{invAb}

usu






D-1451
ususcaguUfuUfAfAfAfgggucgugs
1542
usCfsacgaCfccuuuaAfaAfcugaas
2390



{invAb}

usu






D-1452
uscsaguuUfuAfAfAfGfggucgugas
1543
asUfscacgAfcccuuuAfaAfacugas
2391



{invAb}

usu






D-1453
csasguuuUfaAfAfGfGfgucgugags
1544
usCfsucacGfacccuuUfaAfaacugs
2392



{invAb}

usu






D-1454
gsusuuuaAfaGfGfGfUfcgugagaas
1545
usUfsucucAfcgacccUfuUfaaaacs
2393



{invAb}

usu






D-
ususuuaaAfgGfGfUfCfgugagaaas
2827
asUfsuucuCfacgaccCfuUfuaaaas
2828


1454B
{invAb}

usu






D-1455
ususuaaaGfgGfUfCfGfugagaaacs
1546
asGfsuuucUfcacgacCfcUfuuaaas
2394



{invAb}

usu






D-1456
usasaaggGfuCfGfUfGfagaaacugs
1547
asCfsaguuUfcucacgAfcCfcuuuas
2395



{invAb}

usu






D-1457
asasagggUfcGfUfGfAfgaaacuggs
1548
asCfscaguUfucucacGfaCfccuuus
2396



{invAb}

usu






D-1458
gsasgaaaCfuGfGfCfUfgguccaaus
1549
asAfsuuggAfccagccAfgUfuucucs
2397



{invAb}

usu






D-1459
usgsguccAfaUfGfGfGfauuuacags
1550
asCfsuguaAfaucccaUfuGfgaccas
2398



{invAb}

usu






D-1460
cscsaaugGfgAfUfUfUfacagcaacs
1551
usGfsuugcUfguaaauCfcCfauuggs
2399



{invAb}

usu






D-1461
ususuaagUfuUfGfCfUfcuuaaucgs
1552
asCfsgauuAfagagcaAfaCfuuaaas
2400



{invAb}

usu






D-1462
ususaaguUfuGfCfUfCfuuaaucgus
1553
usAfscgauUfaagagcAfaAfcuuaas
2401



{invAb}

usu






D-1463
asgsuuugCfuCfUfUfAfaucguaugs
1554
asCfsauacGfauuaagAfgCfaaacus
2402



{invAb}

usu






D-1464
gsusuugcUfcUfUfAfAfucguauggs
1555
usCfscauaCfgauuaaGfaGfcaaacs
2403



{invAb}

usu






D-1465
ususugcuCfuUfAfAfUfcguauggas
1556
usUfsccauAfcgauuaAfgAfgcaaas
2404



{invAb}

usu






D-1466
usgscucuUfaAfUfCfGfuauggaags
1557
asCfsuuccAfuacgauUfaAfgagcas
2405



{invAb}

usu






D-1467
csusuaauCfgUfAfUfGfgaagcuugs
1558
usCfsaagcUfuccauaCfgAfuuaags
2406



{invAb}

usu






D-1468
ususaaucGfuAfUfGfGfaagcuugas
1559
asUfscaagCfuuccauAfcGfauuaas
2407



{invAb}

usu






D-1469
gsgsaagcUfuGfAfGfCfuauguguus
1560
asAfsacacAfuagcucAfaGfcuuccs
2408



{invAb}

usu






D-1470
gsasagcuUfgAfGfCfUfauguguugs
1561
asCfsaacaCfauagcuCfaAfgcuucs
2409



{invAb}

usu






D-1471
asgscuugAfgCfUfAfUfguguuggas
1562
usUfsccaaCfacauagCfuCfaagcus
2410



{invAb}

usu






D-1472
gscsuugaGfcUfAfUfGfuguuggaas
1563
asUfsuccaAfcacauaGfcUfcaagcs
2411



{invAb}

usu






D-1473
csusugagCfuAfUfGfUfguuggaags
1564
asCfsuuccAfacacauAfgCfucaags
2412



{invAb}

usu






D-1474
ususgagcUfaUfGfUfGfuuggaagus
1565
asAfscuucCfaacacaUfaGfcucaas
2413



{invAb}

usu






D-1475
usgsagcuAfuGfUfGfUfuggaagugs
1566
asCfsacuuCfcaacacAfuAfgcucas
2414



{invAb}

usu






D-1476
gsasgcuaUfgUfGfUfUfggaagugcs
1567
asGfscacuUfccaacaCfaUfagcucs
2415



{invAb}

usu






D-1477
gsusguugGfaAfGfUfGfcccugguus
1568
asAfsaccaGfggcacuUfcCfaacacs
2416



{invAb}

usu






D-1478
gsgsaaguGfcCfCfUfGfguuuuaaus
1569
asAfsuuaaAfaccaggGfcAfcuuccs
2417



{invAb}

usu






D-1479
csusgguuUfuAfAfUfCfcauacacas
1570
usUfsguguAfuggauuAfaAfaccags
2418



{invAb}

usu






D-1480
ususaaucCfaUfAfCfAfcaaagacgs
1571
asCfsgucuUfuguguaUfgGfauuaas
2419



{invAb}

usu






D-1481
usasauccAfuAfCfAfCfaaagacggs
1572
asCfscgucUfuuguguAfuGfgauuas
2420



{invAb}

usu






D-1482
asasuccaUfaCfAfCfAfaagacggus
1573
usAfsccguCfuuugugUfaUfggauus
2421



{invAb}

usu






D-1483
asusccauAfcAfCfAfAfagacgguas
1574
asUfsaccgUfcuuuguGfuAfuggaus
2422



{invAb}

usu






D-1484
uscscauaCfaCfAfAfAfgacgguacs
1575
usGfsuaccGfucuuugUfgUfauggas
2423



{invAb}

usu






D-1485
csasuacaCfaAfAfGfAfcgguacaus
1576
usAfsuguaCfcgucuuUfgUfguaugs
2424



{invAb}

usu






D-1486
usascacaAfaGfAfCfGfguacauaas
1577
asUfsuaugUfaccgucUfuUfguguas
2425



{invAb}

usu






D-1487
ascsacaaAfgAfCfGfGfuacauaaus
1578
asAfsuuauGfuaccguCfuUfugugus
2426



{invAb}

usu






D-1488
csascaaaGfaCfGfGfUfacauaaucs
1579
asGfsauuaUfguaccgUfcUfuugugs
2427



{invAb}

usu






D-1489
ascsaaagAfcGfGfUfAfcauaauccs
1580
asGfsgauuAfuguaccGfuCfuuugus
2428



{invAb}

usu






D-1490
csasaagaCfgGfUfAfCfauaauccus
1581
usAfsggauUfauguacCfgUfcuuugs
2429



{invAb}

usu






D-1491
asasagacGfgUfAfCfAfuaauccuas
1582
asUfsaggaUfuauguaCfcGfucuuus
2430



{invAb}

usu






D-1492
asasgacgGfuAfCfAfUfaauccuacs
1583
usGfsuaggAfuuauguAfcCfgucuus
2431



{invAb}

usu






D-1493
gsusacauAfaUfCfCfUfacagguuus
1584
usAfsaaccUfguaggaUfuAfuguacs
2432



{invAb}

usu






D-1494
csasuaauCfcUfAfCfAfgguuuaaas
1585
asUfsuuaaAfccuguaGfgAfuuaugs
2433



{invAb}

usu






D-1495
asusccuaCfaGfGfUfUfuaaauguas
1586
asUfsacauUfuaaaccUfgUfaggaus
2434



{invAb}

usu






D-1496
usasguuuGfgAfAfUfUfcuuugcucs
1587
asGfsagcaAfagaauuCfcAfaacuas
2435



{invAb}

usu






D-1497
asgsuuugGfaAfUfUfCfuuugcucus
1588
usAfsgagcAfaagaauUfcCfaaacus
2436



{invAb}

usu






D-1498
ususuggaAfuUfCfUfUfugcucuacs
1589
asGfsuagaGfcaaagaAfuUfccaaas
2437



{invAb}

usu






D-1499
ususgcucUfaCfUfGfUfuuacauugs
1590
asCfsaaugUfaaacagUfaGfagcaas
2438



{invAb}

usu






D-1500
uscsuacuGfuUfUfAfCfauugcagas
1591
asUfscugcAfauguaaAfcAfguagas
2439



{invAb}

usu






D-1501
usascuguUfuAfCfAfUfugcagauus
1592
asAfsaucuGfcaauguAfaAfcaguas
2440



{invAb}

usu






D-1502
ascsuguuUfaCfAfUfUfgcagauugs
1593
asCfsaaucUfgcaaugUfaAfacagus
2441



{invAb}

usu






D-1503
ususuacaUfuGfCfAfGfauugcuaus
1594
usAfsuagcAfaucugcAfaUfguaaas
2442



{invAb}

usu






D-1504
ususacauUfgCfAfGfAfuugcuauas
1595
usUfsauagCfaaucugCfaAfuguaas
2443



( invAb}

usu






D-1505
usascauuGfcAfGfAfUfugcuauaas
1596
asUfsuauaGfcaaucuGfcAfauguas
2444



{invAb}

usu






D-1506
asusugcuAfuAfAfUfUfucaaggags
1597
asCfsuccuUfgaaauuAfuAfgcaaus
2445



{invAb}

usu






D-1507
ususgcuaUfaAfUfUfUfcaaggagus
1598
asAfscuccUfugaaauUfaUfagcaas
2446



{invAb}

usu






D-1508
asasugauGfcAfCfUfUfuaggaugus
1599
asAfscaucCfuaaaguGfcAfucauus
2447



{invAb}

usu






D-1509
asusgaugCfaCfUfUfUfaggauguus
1600
asAfsacauCfcuaaagUfgCfaucaus
2448



{invAb}

usu






D-1510
ascsaugaAfuCfAfUfUfcacaugacs
1601
asGfsucauGfugaaugAfuUfcaugus
2449



{invAb}

usu






D-1511
csasugaaUfcAfUfUfCfacaugaccs
1602
usGfsgucaUfgugaauGfaUfucaugs
2450



{invAb}

usu






D-1512
asasauacAfuGfUfCfUfagucugucs
1603
asGfsacagAfcuagacAfuGfuauuus
2451



{invAb}

usu






D-
asasuacaUfgUfCfUfAfgucuguccs
2829
asGfsgacaGfacuagaCfaUfguauus
2830


1512B
{invAb}

usu






D-1513
asusgucuAfgUfCfUfGfuccuuuaas
1604
asUfsuaaaGfgacagaCfuAfgacaus
2452



{invAb}

usu






D-1514
usgsucuaGfuCfUfGfUfccuuuaaus
1605
usAfsuuaaAfggacagAfcUfagacas
2453



{invAb}

usu






D-1515
uscsuaguCfuGfUfCfCfuuuaauags
1606
asCfsuauuAfaaggacAfgAfcuagas
2454



{invAb}

usu






D-1516
csusagucUfgUfCfCfUfuuaauagcs
1607
asGfscuauUfaaaggaCfaGfacuags
2455



{invAb}

usu






D-1517
usasgucuGfuCfCfUfUfuaauagcus
1608
asAfsgcuaUfuaaaggAfcAfgacuas
2456



{invAb}

usu






D-1518
gsuscuguCfcUfUfUfAfauagcucus
1609
asAfsgagcUfauuaaaGfgAfcagacs
2457



{invAb}

usu






D-1519
asasucagAfuCfAfUfUfaccaguuas
1610
asUfsaacuGfguaaugAfuCfugauus
2458



{invAb}

usu






D-1520
uscsagauCfaUfUfAfCfcaguuagcs
1611
asGfscuaaCfugguaaUfgAfucugas
2459



{invAb}

usu






D-1521
csasgaucAfuUfAfCfCfaguuagcus
1612
asAfsgcuaAfcugguaAfuGfaucugs
2460



{invAb}

usu






D-1522
asgsaucaUfuAfCfCfAfguuagcuus
1613
asAfsagcuAfacugguAfaUfgaucus
2461



{invAb}

usu






D-1523
uscsauuaCfcAfGfUfUfagcuuuuas
1614
usUfsaaaaGfcuaacuGfgUfaaugas
2462



{invAb}

usu






D-1524
csasuuacCfaGfUfUfAfgcuuuuaas
1615
usUfsuaaaAfgcuaacUfgGfuaaugs
2463



{invAb}

usu






D-1525
ascscaguUfaGfCfUfUfuuaaagcas
1616
asUfsgcuuUfaaaagcUfaAfcuggus
2464



{invAb}

usu






D-1526
asasgcacAfuUfUfGfUfuuaagacus
1617
usAfsgucuUfaaacaaAfuGfugcuus
2465



{invAb}

usu






D-1527
gscsacauUfuGfUfUfUfaagacuaus
1618
asAfsuaguCfuuaaacAfaAfugugcs
2466



{invAb}

usu






D-1528
csusauguUfuUfUfGEGfaaaaauacs
1619
asGfsuauuUfuuccaaAfaAfcauags
2467



{invAb}

usu






D-1529
gsusuuuuGfgAfAfAfAfauacgcuas
1620
asUfsagcgUfauuuuuCfcAfaaaacs
2468



{invAb}

usu






D-1530
ususggaaAfaAfUfAfCfgcuacagas
1621
usUfscuguAfgcguauUfuUfuccaas
2469



{invAb}

usu






D-1531
asasuaaaUfgAfGfAfUfgcuacuaas
1622
asUfsuaguAfgcaucuCfaUfuuauus
2470



{invAb

usu






D-1532
usgsagauGfcUfAfCfUfaauuguuus
1623
asAfsaacaAfuuaguaGfcAfucucas
2471



{invAb}

usu






D-1533
ususuggaAfuCfUfGfUfuguuucugs
1624
asCfsagaaAfcaacagAfuUfccaaas
2472



{invAb}

usu






D-1534
ususcugcCfaAfAfGfGfuaaauuaas
1625
asUfsuaauUfuaccuuUfgGfcagaas
2473



{invAb}

usu






D-1535
uscsugccAfaAfGfGfUfaaauuaacs
1626
asGfsuuaaUfuuaccuUfuGfgcagas
2474



{invAb}

usu






D-1536
gsasuuuaUfuCfAfGfGfaauccccas
1627
asUfsggggAfuuccugAfaUfaaaucs
2475



{invAb}

usu






D-1537
asusucagGfaAfUfCfCfccauuugas
1628
usUfscaaaUfggggauUfcCfugaaus
2476



{invAb}

usu






D-1538
gsgsaaucCfcCfAfUfUfugaauuugs
1629
asCfsaaauUfcaaaugGfgGfauuccs
2477



{invAb}

usu






D-1539
[GalNAc3]scucccaUfuCfUfUfUfc
1630
asGfsccucAfugaaagAfaUfgggags
2478



augaggcs{invAb}

usu






D-1540
[GalNAc3]saaggaaGfaCfCfGfCfa
1631
asAfsuaggAfgugcggUfcUfuccuus
2479



cuccuaus{invAb}

usu






D-1541
[GalNAc3]sgaaaacCfgAfUfUfUfc
1632
asGfsugcaCfugaaauCfgGfuuuucs
2480



agugcacs{invAb}

usu






D-1542
[GalNAc3]sgggagaGfaCfAfAfGfg
1633
asAfsuaagUfcccuugUfcUfcucccs
2481



gacuuaus{invAb}

usu






D-1543
[GalNAc3]sgauguuAfaUfAfAfCfu
1634
asCfscuccAfgaguuaUfuAfacaucs
2482



cuggaggs{invAb}

usu






D-1544
[GalNAc3]scaccaaAfcUfCfCfCfa
1635
usGfsaaagAfaugggaGfuUfuggugs
2483



uucuuucs{invAb}

usu






D-1545
[GalNAc3]sgcaaccGfgAfGfAfAfc
1636
usUfscuaaGfaguucuCfcGfguugcs
2484



ucuuagas{invAb}

usu






D-1546
[GalNAc3]scacaaaGfaCfGfGfUfa
1637
asGfsauuaUfguaccgUfcUfuugugs
2485



cauaaucs{invAb}

usu






D-1547
[GalNAc3]scggaagUfuUfGfAfAfg
1638
asAfsaucuAfucuucaAfaCfuuccgs
2486



auagauus{invAb}

usu






D-1548
[GalNAc3]sacagagAfgAfUfGfGfu
1639
asGfscugcUfuaccauCfuCfucugus
2487



aagcagcs{invAb}

usu






D-1549
[GalNAc3]sccucggUfuCfUfAfCfg
1640
asCfscauaAfgcguagAfaCfcgaggs
2488



cuuauggs{invAb}

usu






D-1550
[GalNAc3]scuccucGfgUfUfCfUfa
1641
asAfsuaagCfguagaaCfcGfaggags
2489



cgcuuaus{invAb}

usu






D-1551
[GalNAc3]sugcaaaCfgUfGfCfAfu
1642
asGfsgcucCfaaugcaCfgUfuugcas
2490



uggagccs{invAb}

usu






D-1552
[GalNAc3]sgaagacCfgCfAfCfUfc
1643
asGfsccauAfggagugCfgGfucuucs
2491



cuauggcs{invAb}

usu






D-1553
[GalNAc3]sgacaagGfgAfCfUfUfa
1644
usUfsuguuGfauaaguCfcCfuugucs
2492



ucaacaas{invAb}

usu






D-1554
[GalNAc3]sucagaaAfuCfCfAfGfu
1645
asGfsuuuaGfuacuggAfuUfucugas
2493



acuaaacs{invAb}

usu






D-1555
[GalNAc3]saaauacCfaUfCfAfAfa
1646
asGfscugcAfuuuugaUfgGfuauuus
2494



augcagcs{invAb}

usu






D-1556
[GalNAc3]saaugacCfuUfGfCfCfa
1647
asCfsggaaUfuuggcaAfgGfucauus
2495



aauuccgs{invAb}

usu






D-1557
[GalNAc3]scccaauGfgAfUfGfAfu
1648
asGfsuauuUfuaucauCfcAfuugggs
2496



aaaauacs{invAb}

usu






D-1558
[GalNAc3]sagacgaUfaGfCfAfAfu
1649
asGfscuucAfcauugcUfaUfcgucus
2497



gugaagcs{invAb}

usu






D-1559
[GalNAc3]sgaagacGfaUfAfGfCfa
1650
asUfsucacAfuugcuaUfcGfucuucs
2498



augugaas{invAb}

usu






D-1560
[GalNAc3]sucagaaGfaCfGfAfUfa
1651
asAfscauuGfcuaucgUfcUfucugas
2499



gcaaugus{invAb}

usu






D-1561
[GalNAc3]sgggucaGfaAfGfAfCfg
1652
asUfsugcuAfucgucuUfcUfgacccs
2500



auagcaas{invAb}

usu






D-1562
[GalNAc3]saaagacGfgUfAfCfAfu
1653
asUfsaggaUfuauguaCfcGfucuuus
2501



aauccuas{invAb}

usu






D-1563
[GalNAc3]sugucucCfgAfAfGfUfg
1654
asAfscuggGfgcacuuCfgGfagacas
2502



ccccagus{invAb}

usu






D-1564
[GalNAc3]suaguuuGfgAfAfUfUfc
1655
asGfsagcaAfagaauuCfcAfaacuas
2503



uuugcucs{invAb}

usu






D-1565
[GalNAc3]sccaaacUfcCfCfAfUfu
1656
asAfsugaaAfgaauggGfaGfuuuggs
2504



cuuucaus{invAb}

usu






D-1566
[GalNAc3]sguacauAfaUfCfCfUfa
1657
usAfsaaccUfguaggaUfuAfuguacs
2505



cagguuus{invAb}

usu






D-1567
[GalNAc3]scaugcuCfuCfUfCfCfu
1658
usAfsgaacCfgaggagAfgAfgcaugs
2506



cgguucus{invAb}

usu






D-1568
[GalNAc3]saccccaUfgCfUfCfUfc
1659
asCfscgagGfagagagCfaUfggggus
2507



uccucggs{invAb}

usu






D-1569
[GalNAc3]sccgaucAfgCfUfGfUfa
1660
usGfsuuguUfcuacagCfuGfaucggs
2508



gaacaacs{invAb}

usu






D-1570
[GalNAc3]saaccggAfgAfAfCfUfc
1661
asUfsuucuAfagaguuCfuCfcgguus
2509



uuagaaas{invAb}

usu






D-1571
[GalNAc3]sacacagUfaGfUfGfGfa
1662
asGfsgaaaGfcuccacUfaCfugugus
2510



gcuuuccs{invAb}

usu






D-1572
[GalNAc3]saaauacAfuGfUfCfUfa
1663
asGfsacagAfcuagacAfuGfuauuus
2511



gucugucs{invAb}

usu






D-1573
[GalNAc3]sauccggAfaGfUfUfUfg
1664
usCfsuaucUfucaaacUfuCfcggaus
2512



aagauags{invAb}

usu






D-1574
[GalNAc3]sgcaagcCfuAfAfAfCfg
1665
asUfsuucuGfacguuuAfgGfcuugcs
2513



ucagaaas{invAb}

usu






D-1575
[GalNAc3]suugaauAfcUfCfAfGfg
1666
usUfscgacUfuccugaGfuAfuucaas
2514



aagucgas{invAb}

usu






D-1576
[GalNAc3]sguucaaCfcAfCfCfUfu
1667
asAfsaucaUfcaagguGfgUfugaacs
2515



gaugauus{invAb}

usu






D-1577
[GalNAc3]suacuguUfuAfCfAfUfu
1668
asAfsaucuGfcaauguAfaAfcaguas
2516



gcagauus{invAb}

usu






D-1578
[GalNAc3]saccuugCfcAfAfAfUfu
1669
asUfscuccGfgaauuuGfgCfaaggus
2517



ccggagas{invAb}

usu






D-1579
[GalNAc3]scaauggAfuGfAfUfAfa
1670
asUfsgguaUfuuuaucAfuCfcauugs
2518



aauaccas{invAb}

usu






D-1580
[GalNAc3]sggcuccUfgUfUfUfCfc
1671
asAfsggcaAfuggaaaCfaGfgagccs
2519



auugccus{invAb}

usu






D-1581
[GalNAc3]sgaccagAfuUfGfCfUfa
1672
usUfsucucAfuuagcaAfuCfuggucs
2520



augagaas{invAb}

usu






D-1582
[GalNAc3]saggcauUfuUfGfUfAfa
1673
asUfsuuccAfauuacaAfaAfugccus
2521



uuggaaas{invAb}

usu






D-1583
[GalNAc3]suaggcaUfuUfUfGfUfa
1674
usUfsuccaAfuuacaaAfaUfgccuas
2522



auuggaas{invAb}

usu






D-1584
[GalNAc3]sgauuccAfaGfUfCfCfa
1675
asCfscucaCfauggacUfuGfgaaucs
2523



ugugaggs{invAb}

usu






D-1585
[GalNAc3]sccgcacUfcCfUfAfUfg
1676
usCfsuucaGfccauagGfaGfugcggs
2524



gcugaags{invAb}

usu






D-1586
[GalNAc3]scuucggGfaUfUfUfUfg
1677
asUfsugucUfucaaaaUfcCfcgaags
2525



aagacaas{invAb}

usu






D-1587
[GalNAc3]suuugagAfgCfCfCfCfa
1678
asUfsucauUfguggggCfuCfucaaas
2526



caaugaas{invAb}

usu






D-1588
[GalNAc3]saaccgaUfuUfCfAfGfu
1679
asAfsucguGfcacugaAfaUfcgguus
2527



gcacgaus{invAb}

usu






D-1589
[GalNAc3]sacaaggGfaCfUfUfAfu
1680
asUfsuuguUfgauaagUfcCfcuugus
2528



caacaaas{invAb}

usu






D-1590
[GalNAc3]sguaaaaCfuAfUfAfCfu
1681
asAfscgggUfcaguauAfgUfuuuacs
2529



gacccgus{invAb}

usu






D-1591
[GalNAc3]sucuacuGfuUfUfAfCfa
1682
asUfscugcAfauguaaAfcAfguagas
2530



uugcagas{invAb}

usu






D-1592
[GalNAc3]sguuuugGfuUfCfCfCfa
1683
usCfsucaaGfuugggaAfcCfaaaacs
2531



acuugags{invAb}

usu






D-1593
[GalNAc3]suugagcUfaUfGfUfGfu
1684
asAfscuucCfaacacaUfaGfcucaas
2532



uggaagus{invAb}

usu






D-1594
[GalNAc3]suuaaguUfuGfCfUfCfu
1685
usAfscgauUfaagagcAfaAfcuuaas
2533



uaaucgus{invAb}

usu






D-1595
[GalNAc3]sugaccuUfgCfCfAfAfa
1686
asUfsccggAfauuuggCfaAfggucas
2534



uuccggas{invAb}

usu






D-1596
[GalNAc3]suuuaagUfuUfGfCfUfc
1687
asCfsgauuAfagagcaAfaCfuuaaas
2535



uuaaucgs{invAb}

usu






D-1597
[GalNAc3]saccaucCfgAfUfCfAfg
1688
usUfscuacAfgcugauCfgGfauggus
2536



cuguagas{invAb}

usu






D-1598
[GalNAc3]sacaaauGfaCfCfUfUfg
1689
asAfsauuuGfgcaaggUfcAfuuugus
2537



ccaaauus{invAb}

usu






D-1599
[GalNAc3]saaagaaCfcAfUfCfCfg
1690
asAfsgcugAfucggauGfgUfucuuus
2538



aucagcus{invAb}

usu






D-1600
[GalNAc3]scugauuUfuAfUfCfGfu
1691
asGfsuguuUfgacgauAfaAfaucags
2539



caaacacs{invAb}

usu






D-1601
[GalNAc3]sucucucCfuCfGfGfUfu
1692
asAfsgcguAfgaaccgAfgGfagagas
2540



cuacgcus{invAb}

usu






D-1602
[GalNAc3]saguuugAfaGfAfUfAfg
1693
asUfsucgaAfucuaucUfuCfaaacus
2541



auucgaas{invAb}

usu






D-1603
[GalNAc3]suuuacaUfuGfCfAfGfa
1694
usAfsuagcAfaucugcAfaUfguaaas
2542



uugcuaus{invAb}

usu






D-1604
[GalNAc3]sauggucAfcUfCfUfGfa
1695
asUfscgguUfuucagaGfuGfaccaus
2543



aaaccgas{invAb}

usu






D-1605
[GalNAc3]sucucaaUfuCfCfAfCfa
1696
usGfsagauCfguguggAfaUfugagas
2544



cgaucucs{invAb}

usu






D-1606
[GalNAc3]succacaCfgAfUfCfUfc
1697
usCfsucucAfugagauCfgUfguggas
2545



augagags{invAb}

usu






D-1607
[GalNAc3]sgacaauCfaGfGfAfCfg
1698
asAfscaagAfccguccUfgAfuugucs
2546



gucuugus{invAb}

usu






D-1608
[GalNAc3]saagagcCfuAfUfCfCfc
1699
asGfsaaagCfagggauAfgGfcucuus
2547



ugcuuucs{invAb}

usu






D-1609
[GalNAc3]sucaggaCfgGfUfCfUfu
1700
asUfsauucAfcaagacCfgUfccugas
2548



gugaauas{invAb}

usu






D-1610
[GalNAc3]sgucagaAfaUfCfCfAfg
1701
asUfsuuagUfacuggaUfuUfcugacs
2549



uacuaaas{invAb}

usu






D-1611
[GalNAc3]saguuugGfaAfUfUfCfu
1702
usAfsgagcAfaagaauUfcCfaaacus
2550



uugcucus{invAb}

usu






D-1612
[GalNAc3]suuuggaAfuUfCfUfUfu
1703
asGfsuagaGfcaaagaAfuUfccaaas
2551



gcucuacs{invAb}

usu






D-1613
[GalNAc3]scugaaaUfgGfAfCfAfa
1704
asAfsggucAfuuugucCfaUfuucags
2552



augaccus{invAb}

usu






D-1614
[GalNAc3]saagacgGfuAfCfAfUfa
1705
usGfsuaggAfuuauguAfcCfgucuus
2553



auccuacs{invAb}

usu






D-1615
[GalNAc3]sggucuuGfuGfAfAfUfa
1706
asCfsuuucCfauauucAfcAfagaccs
2554



uggaaags{invAb}

usu






D-1616
[GalNAc3]suucaacCfaCfCfUfUfg
1707
asCfsaaucAfucaaggUfgGfuugaas
2555



augauugs{invAb}

usu






D-1617
[GalNAc3]sacuuuaUfuCfUfAfUfa
1708
asUfsuugcUfcuauagAfaUfaaagus
2556



gagcaaas{invAb}

usu






D-1618
[GalNAc3]sagaccgCfaCfUfCfCfu
1709
usCfsagccAfuaggagUfgCfggucus
2557



auggcugs{invAb}

usu






D-1619
[GalNAc3]suauuucCfcCfAfAfUfg
1710
usUfsaucaUfccauugGfgGfaaauas
2558



gaugauas{invAb}

usu






D-1620
[GalNAc3]sgucagaAfgAfCfGfAfu
1711
asCfsauugCfuaucguCfuUfcugacs
2559



agcaaugs{invAb}

usu






D-1621
[GalNAc3]sgcuaauGfaGfAfAfAfg
1712
asAfsgagcCfacuuucUfcAfuuagcs
2560



uggcucus{invAb}

usu






D-1622
[GalNAc3]scauuacCfaGfUfUfAfg
1713
usUfsuaaaAfgcuaacUfgGfuaaugs
2561



cuuuuaas{invAb}

usu






D-1623
[GalNAc3]suugcuaUfaAfUfUfUfc
1714
asAfscuccUfugaaauUfaUfagcaas
2562



aaggagus{invAb}

usu






D-1624
[GalNAc3]sucuacuGfuUfUfAfCfa
1715
asUfscugcAfauguaaAfcAfguagas
2563



uugcagas{invAb}

usu






D-1625
[GalNAc3]saauaaaUfgAfGfAfUfg
1716
asUfsuaguAfgcaucuCfaUfuuauus
2564



cuacuaas{invAb}

usu






D-1626
[GalNAc3]suuauucUfaUfAfGfAfg
1717
asAfsaguuUfgcucuaUfaGfaauaas
2565



caaacuus{invAb}

usu






D-1627
[GalNAc3]saugaugCfaCfUfUfUfa
1718
asAfsacauCfcuaaagUfgCfaucaus
2566



ggauguus{invAb}

usu






D-1628
[GalNAc3]suacauuGfcAfGfAfUfu
1719
asUfsuauaGfcaaucuGfcAfauguas
2567



gcuauaas{invAb}

usu






D-1629
[GalNAc3]suuacauUfgCfAfGfAfu
1720
usUfsauagCfaaucugCfaAfuguaas
2568



ugcuauas{invAb}

usu






D-1630
[GalNAc3]sguuuuaAfaGfGfGfUfc
1721
usUfsucucAfcgacccUfuUfaaaacs
2569



gugagaas{invAb}

usu






D-1631
[GalNAc3]sugagcuAfuGfUfGfUfu
1722
asCfsacuuCfcaacacAfuAfgcucas
2570



ggaagugs{invAb}

usu






D-1632
[GalNAc3]suuuggcAfuCfGfGfCfu
1723
asAfsaacaGfgagccgAfuGfccaaas
2571



ccuguuus{invAb}

usu






D-1633
[GalNAc3]sauccuaCfaGfGfUfUfu
1724
asUfsacauUfuaaaccUfgUfaggaus
2572



aaauguas{invAb}

usu






D-1634
[GalNAc3]suacacaAfaGfAfCfGfg
1725
asUfsuaugUfaccgucUfuUfguguas
2573



uacauaas{invAb}

usu






D-1635
[DCA-
1726
usUfscuaaGfaguucuCfcGfguugcs
2574



C6]gcaaccGfgAfGfAfAfcucuuaga

usu




s{invAb}








D-1636
[DCA-
1727
usGfsaaagAfaugggaGfuUfuggugs
2575



C6]caccaaAfcUfCfCfCfauucuuuc

usu




s{invAb}








D-1637
[DCA-
1728
asUfsugucUfucaaaaUfcCfcgaags
2576



C6]cuucggGfaUfUfUfUfgaagacaa

usu




s{invAb}








D-1638
[DCA-
1729
usCfsuaucUfucaaacUfuCfcggaus
2577



C6]auccggAfaGfUfUfUfgaagauag

usu




s{invAb}








D-1639
[DCA-
1730
usUfscuaaGfaguucuCfcGfguusus
2578



C6]aaccGfgAfGfAfAfcucuuagaas

u




us{invAb}








D-1640
[GalNAc3]saaccGfgAfGfAfAfcuc
1731
usUfscuaaGfaguucuCfcGfguusus
2579



uuagaasus{invAb}

u






D-1641
[DCA-
1732
asAfsugaaAfgaauggGfaGfuuuggs
2580



C6]ccaaacUfcCfCfAfUfucuuucau

usu




s{invAb}








D-1642
[DCA-
1733
asGfsuauuUfuaucauCfcAfuugggs
2581



C6]cccaauGfgAfUfGfAfuaaaauac

usu




s{invAb}








D-1643
[DCA-
1734
asCfscauaAfgcguagAfaCfcgaggs
2582



C6]ccucggUfuCfUfAfCfgcuuaugg

usu




s{invAb}








D-1644
[DCA-
1735
usCfsuaucUfucaaacUfuCfcggsus
2583



C6]ccggAfaGfUfUfUfgaagauagas

u




us{invAb}








D-1645
[GalNAc3]sccggAfaGfUfUfUfgaa
1736
usCfsuaucUfucaaacUfuCfcggsus
2584



gauagasus{invAb}

u






D-1646
[GalNAc3]saaccggAfgAfAfCfUfc
1737
usUfscuaaGfaguuCfuCfcGfguusu
2585



uuagaaus{invAb}

su






D-1647
[GalNAc3]sucggUfuCfUfAfCfgcu
1738
asCfscauaAfgcguagAfaCfcgasus
2586



uauggusus{invAb}

u






D-1648
[GalNAc3]sccaaAfcUfCfCfCfauu
1739
usGfsaaagAfaugggaGfuUfuggsus
2587



cuuucasus{invAb}

u






D-1649
[GalNAc3]sucggGfaUfUfUfUfgaa
1740
asUfsugucUfucaaaaUfcCfcgasus
2588



gacaausus{invAb}

u






D-1650
[GalNAc3]scaauGfgAfUfGfAfuaa
1741
asGfsuauuUfuaucauCfcAfuugsus
2589



aauacusus{invAb}

u






D-1651
[GalNAc3]sucggUfuCfUfAfCfgcu
1742
asCfscauaAfgcguAfgAfaCfcgasu
2590



uauggusus{invAb}

su






D-1652
[GalNAc3]saaccGfgAfGfAfAfcuc
1743
usUfscuaaGfaguuCfuCfcGfguusu
2591



uuagaasus{invAb}

su






D-1653
[GalNAc3]sccaaAfcUfCfCfCfauu
1744
usGfsaaagAfauggGfaGfuUfuggsu
2592



cuuucasus{invAb}

su






D-1654
[GalNAc3]sucggGfaUfUfUfUfgaa
1745
asUfsugucUfucaaAfaUfcCfcgasu
2593



gacaausus{invAb}

su






D-1655
[GalNAc3]scaauGfgAfUfGfAfuaa
1746
asGfsuauuUfuaucAfuCfcAfuugsu
2594



aauacusus{invAb}

su






D-1656
[GalNAc3]sccucggUfuCfUfAfCfg
1747
asCfscauAfAfgcguagAfaCfcgagg
2595



cuuauggs{invAb}

susu






D-1657
[GalNAc3]sgcaaccGfgAfGfAfAfc
1748
usUfscuaAfGfaguucuCfcGfguugc
2596



ucuuagas{invAb}

susu






D-1658
[GalNAc3]scaccaaAfcUfCfCfCfa
1749
usGfsaaaGfAfaugggaGfuUfuggug
2597



uucuuucs{invAb}

susu






D-1659
[GalNAc3]scuucggGfaUfUfUfUfg
1750
asUfsuguCfUfucaaaaUfcCfcgaag
2598



aagacaas{invAb}

susu






D-1660
[GalNAc3]scccaauGfgAfUfGfAfu
1751
asGfsuauUfUfuaucauCfcAfuuggg
2599



aaaauacs{invAb}

susu






D-1661
[GalNAc3]sccucggUfuCfUfAfCfg
1752
asCfscauaAfgcguAfgAfaCfcgagg
2600



cuuauggs{invAb}

susu






D-1662
[GalNAc3]sgcaaccGfgAfGfAfAfc
1753
usUfscuaaGfaguuCfuCfcGfguugc
2601



ucuuagas{invAb}

susu






D-1663
[GalNAc3]scaccaaAfcUfCfCfCfa
1754
usGfsaaagAfauggGfaGfuUfuggug
2602



uucuuucs{invAb}

susu






D-1664
[GalNAc3]scuucggGfaUfUfUfUfg
1755
asUfsugucUfucaaAfaUfcCfcgaag
2603



aagacaas{invAb}

susu






D-1665
[GalNAc3]scccaauGfgAfUfGfAfu
1756
asGfsuauuUfuaucAfuCfcAfuuggg
2604



aaaauacs{invAb}

susu






D-1666
[GalNAc3]sccucggUfuCfUfAfCfg
1757
asCfscauaagcguAfgAfaCfcgaggs
2605



cuuauggs{invAb}

usu






D-1667
[GalNAc3]sgcaaccGfgAfGfAfAfc
1758
usUfscuaagaguuCfuCfcGfguugcs
2606



ucuuagas{invAb}

usu






D-1668
[GalNAc3]scaccaaAfcUfCfCfCfa
1759
usGfsaaagaauggGfaGfuUfuggugs
2607



uucuuucs{invAb}

usu






D-1669
[GalNAc3]scuucggGfaUfUfUfUfg
1760
asUfsugucuucaaAfaUfcCfcgaags
2608



aagacaas{invAb}

usu






D-1670
[DCA-
1761
usUfscuaaGfaguuCfuCfcGfguusu
2609



C6]aaccggAfgAfAfCfUfcuuagaau

su




s{invAb}








D-1671
[DCA-
1762
asCfscauaAfgcguagAfaCfcgasus
2610



C6]ucggUfuCfUfAfCfgcuuauggus

u




us{invAb}








D-1672
[DCA-
1763
usGfsaaagAfaugggaGfuUfuggsus
2611



C6]ccaaAfcUfCfCfCfauucuuucas

u




us{invAb}








D-1673
[DCA-
1764
asUfsugucUfucaaaaUfcCfcgasus
2612



C6]ucggGfaUfUfUfUfgaagacaaus

u




us{invAb}








D-1674
[DCA-
1765
asGfsuauuUfuaucauCfcAfuugsus
2613



C6]caauGfgAfUfGfAfuaaaauacus

u




us{invAb}








D-1675
[DCA-
1766
asCfscauaAfgcguAfgAfaCfcgasu
2614



C6]ucggUfuCfUfAfCfgcuuauggus

su




us{invAb}








D-1676
[DCA-
1767
usUfscuaaGfaguuCfuCfcGfguusu
2615



C6]aaccGfgAfGfAfAfcucuuagaas

su




us{invAb}








D-1677
[DCA-
1768
usGfsaaagAfauggGfaGfuUfuggsu
2616



C6]ccaaAfcUfCfCfCfauucuuucas

su




us{invAb}








D-1678
[DCA-
1769
asUfsugucUfucaaAfaUfcCfcgasu
2617



C6]ucggGfaUfUfUfUfgaagacaaus

su




us{invAb}








D-1679
[DCA-
1770
asGfsuauuUfuaucAfuCfcAfuugsu
2618



C6]caauGfgAfUfGfAfuaaaauacus

su




us{invAb}








D-1680
[DCA-
1771
asCfscauAfAfgcguagAfaCfcgagg
2619



C6]ccucggUfuCfUfAfCfgcuuaugg

susu




s{invAb}








D-1681
[DCA-
1772
usUfscuaAfGfaguucuCfcGfguugc
2620



C6]gcaaccGfgAfGfAfAfcucuuaga

susu




s{invAb}








D-1682
[DCA-
1773
usGfsaaaGfAfaugggaGfuUfuggug
2621



C6]caccaaAfcUfCfCfCfauucuuuc

susu




s{invAb}








D-1683
[DCA-
1774
asUfsuguCfUfucaaaaUfcCfcgaag
2622



C6]cuucggGfaUfUfUfUfgaagacaa

susu




s{invAb}








D-1684
[DCA-
1775
asGfsuauUfUfuaucauCfcAfuuggg
2623



C6]cccaauGfgAfUfGfAfuaaaauac

susu




s{invAb}








D-1685
[DCA-
1776
asCfscauaAfgcguAfgAfaCfcgagg
2624



C6]ccucggUfuCfUfAfCfgcuuaugg

susu




s{invAb}








D-1686
[DCA-
1777
usUfscuaaGfaguuCfuCfcGfguugc
2625



C6]gcaaccGfgAfGfAfAfcucuuaga

susu




s{invAb}








D-1687
[DCA-
1778
usGfsaaagAfauggGfaGfuUfuggug
2626



C6]caccaaAfcUfCfCfCfauucuuuc

susu




s{invAb}








D-1688
[DCA-
1779
asUfsugucUfucaaAfaUfcCfcgaag
2627



C6]cuucggGfaUfUfUfUfgaagacaa

susu




s{invAb}








D-1689
[DCA-
1780
asGfsuauuUfuaucAfuCfcAfuuggg
2628



C6]cccaauGfgAfUfGfAfuaaaauac

susu




s{invAb}








D-1690
[DCA-
1781
asCfscauaagcguAfgAfaCfcgaggs
2629



C6]ccucggUfuCfUfAfCfgcuuaugg

usu




s{invAb}








D-1691
[DCA-
1782
usUfscuaagaguuCfuCfcGfguugcs
2630



C6]gcaaccGfgAfGfAfAfcucuuaga

usu




s{invAb}








D-1692
[DCA-
1783
usGfsaaagaauggGfaGfuUfuggugs
2631



C6]caccaaAfcUfCfCfCfauucuuuc

usu




s{invAb}








D-1693
[DCA-
1784
asUfsugucuucaaAfaUfcCfcgaags
2632



C6]cuucggGfaUfUfUfUfgaagacaa

usu




s{invAb}








D-1694
[DCA-
1785
usUfscuacAfgcugauCfgGfauggus
2633



C6]accaucCfgAfUfCfAfgcuguaga

usu




s{invAb}








D-1695
[DCA-
1786
asCfsuuucCfauauucAfcAfagaccs
2634



C6]ggucuuGfuGfAfAfUfauggaaag

usu




s{invAb}








D-1696
[DCA-
1787
asCfsacuuCfcaacacAfuAfgcucas
2635



C6]ugagcuAfuGfUfGfUfuggaagug

usu




s{invAb}








D-1697
[DCA-
1788
usGfsuaggAfuuauguAfcCfgucuus
2636



C6]aagacgGfuAfCfAfUfaauccuac

usu




s{invAb}








D-1698
[DCA-
1789
usAfsgagcAfaagaauUfcCfaaacus
2637



C6]aguuugGfaAfUfUfCfuuugcucu

usu




s{invAb}








D-1699
[DCA-
1790
asGfsuagaGfcaaagaAfuUfccaaas
2638



C6]uuuggaAfuUfCfUfUfugcucuac

usu




s{invAb}








D-1700
[GalNAc3]scauccgAfuCfAfGfCfu
1791
usUfscuacAfgcugAfuCfgGfaugsu
2639



guagaasus{invAb}

su






D-1701
[GalNAc3]sucuuguGfaAfUfAfUfg
1792
asCfsuuucCfauauUfcAfcAfagasu
2640



gaaagusus{invAb}

su






D-1702
[GalNAc3]sgacgguAfcAfUfAfAfu
1793
usGfsuaggAfuuauGfuAfcCfgucsu
2641



ccuacasus{invAb}

su






D-1703
[GalNAc3]sagcuauGfuGfUfUfGfg
1794
asCfsacuuCfcaacAfcAfuAfgcusu
2642



aagugusus{invAb}

su






D-1704
[GalNAc3]suggaauUfcUfUfUfGfc
1795
asGfsuagaGfcaaaGfaAfuUfccasu
2643



ucuacusus{invAb}

su






D-1705
[GalNAc3]suuuggaAfuUfCfUfUfu
1796
usAfsgagcAfaagaAfuUfcCfaaasu
2644



gcucuasus{invAb}

su






D-1706
[GalNAc3]sgcuauaAfuUfUfCfAfa
1797
asAfscuccUfugaaAfuUfaUfagcsu
2645



ggaguusus{invAb}

su






D-1707
[GalNAc3]scaucCfgAfUfCfAfgcu
1798
usUfscuacAfgcugauCfgGfaugsus
2646



guagaasus{invAb}

u






D-1708
[GalNAc3]sucuuGfuGfAfAfUfaug
1799
asCfsuuucCfauauucAfcAfagasus
2647



gaaagusus{invAb}

u






D-1709
[GalNAc3]sgacgGfuAfCfAfUfaau
1800
usGfsuaggAfuuauguAfcCfgucsus
2648



ccuacasus{invAb}

u






D-1710
[GalNAc3]sagcuAfuGfUfGfUfugg
1801
asCfsacuuCfcaacacAfuAfgcusus
2649



aagugusus{invAb}

u






D-1711
[GalNAc3]suggaAfuUfCfUfUfugc
1802
asGfsuagaGfcaaagaAfuUfccasus
2650



ucuacusus{invAb}

u






D-1712
[GalNAc3]suuugGfaAfUfUfCfuuu
1803
usAfsgagcAfaagaauUfcCfaaasus
2651



gcucuasus{invAb}

u






D-1713
[GalNAc3]sgcuaUfaAfUfUfUfcaa
1804
asAfscuccUfugaaauUfaUfagcsus
2652



ggaguusus{invAb}

u






D-1714
[GalNAc3]scaucCfgAfUfCfAfgcu
1805
usUfscuacAfgcugAfuCfgGfaugsu
2653



guagaasus{invAb}

su






D-1715
[GalNAc3]sucuuGfuGfAfAfUfaug
1806
asCfsuuucCfauauUfcAfcAfagasu
2654



gaaagusus{invAb}

su






D-1716
[GalNAc3]sgacgGfuAfCfAfUfaau
1807
usGfsuaggAfuuauGfuAfcCfgucsu
2655



ccuacasus{invAb}

su






D-1717
[GalNAc3]sagcuAfuGfUfGfUfugg
1808
asCfsacuuCfcaacAfcAfuAfgcusu
2656



aagugusus{invAb}

su






D-1718
[GalNAc3]suggaAfuUfCfUfUfugc
1809
asGfsuagaGfcaaaGfaAfuUfccasu
2657



ucuacusus{invAb}

su






D-1719
[GalNAc3]suuugGfaAfUfUfCfuuu
1810
usAfsgagcAfaagaAfuUfcCfaaasu
2658



gcucuasus{invAb}

su






D-1720
[GalNAc3]sgcuaUfaAfUfUfUfcaa
1811
asAfscuccUfugaaAfuUfaUfagcsu
2659



ggaguusus{invAb}

su






D-1721
[GalNAc3]saccaucCfgAfUfCfAfg
1812
usUfscuaCfAfgcugauCfgGfauggu
2660



cuguagas{invAb}

susu






D-1722
[GalNAc3]sggucuuGfuGfAfAfUfa
1813
asCfsuuuCfCfauauucAfcAfagacc
2661



uggaaags{invAb}

susu






D-1723
[GalNAc3]saagacgGfuAfCfAfUfa
1814
usGfsuagGfAfuuauguAfcCfgucuu
2662



auccuacs{invAb}

susu






D-1724
[GalNAc3]sugagcuAfuGfUfGfUfu
1815
asCfsacuUfCfcaacacAfuAfgcuca
2663



ggaagugs{invAb}

susu






D-1725
[GalNAc3]suuuggaAfuUfCfUfUfu
1816
asGfsuagAfGfcaaagaAfuUfccaaa
2664



gcucuacs{invAb}

susu






D-1726
[GalNAc3]saguuugGfaAfUfUfCfu
1817
usAfsgagCfAfaagaauUfcCfaaacu
2665



uugcucus{invAb}

susu






D-1727
[GalNAc3]suugcuaUfaAfUfUfUfc
1818
asAfscucCfUfugaaauUfaUfagcaa
2666



aaggagus{invAb}

susu






D-1728
[GalNAc3]saccaucCfgAfUfCfAfg
1819
usUfscuacAfgcugAfuCfgGfauggu
2667



cuguagas{invAb}

susu






D-1729
[GalNAc3]sggucuuGfuGfAfAfUfa
1820
asCfsuuucCfauauUfcAfcAfagacc
2668



uggaaags{invAb}

susu






D-1730
[GalNAc3]saagacgGfuAfCfAfUfa
1821
usGfsuaggAfuuauGfuAfcCfgucuu
2669



auccuacs{invAb}

susu






D-1731
[GalNAc3]sugagcuAfuGfUfGfUfu
1822
asCfsacuuCfcaacAfcAfuAfgcuca
2670



ggaagugs{invAb}

susu






D-1732
[GalNAc3]suuuggaAfuUfCfUfUfu
1823
asGfsuagaGfcaaaGfaAfuUfccaaa
2671



gcucuacs{invAb}

susu






D-1733
[GalNAc3]saguuugGfaAfUfUfCfu
1824
usAfsgagcAfaagaAfuUfcCfaaacu
2672



uugcucus{invAb}

susu






D-1734
[GalNAc3]suugcuaUfaAfUfUfUfc
1825
asAfscuccUfugaaAfuUfaUfagcaa
2673



aaggagus{invAb}

susu






D-1735
[GalNAc3]saccaucCfgAfUfCfAfg
1826
usUfscuacagcugAfuCfgGfauggus
2674



cuguagas{invAb}

usu






D-1736
[GalNAc3]sggucuuGfuGfAfAfUfa
1827
asCfsuuuccauauUfcAfcAfagaccs
2675



uggaaags{invAb}

usu






D-1737
[GalNAc3]saagacgGfuAfCfAfUfa
1828
usGfsuaggauuauGfuAfcCfgucuus
2676



auccuacs{invAb}

usu






D-1738
[GalNAc3]sugagcuAfuGfUfGfUfu
1829
asCfsacuuccaacAfcAfuAfgcucas
2677



ggaagugs{invAb}

usu






D-1739
[GalNAc3]suuuggaAfuUfCfUfUfu
1830
asGfsuagagcaaaGfaAfuUfccaaas
2678



gcucuacs{invAb}

usu






D-1740
[GalNAc3]saguuugGfaAfUfUfCfu
1831
usAfsgagcaaagaAfuUfcCfaaacus
2679



uugcucus{invAb}

usu






D-1741
[GalNAc3]suugcuaUfaAfUfUfUfc
1832
asAfscuccuugaaAfuUfaUfagcaas
2680



aaggagus{invAb}

usu






D-1742
[GalNAc3]saccaggAfaAfUfGfUfa
1833
usGfsguguCfuuacauUfuCfcuggus
2681



agacaccs{invAb}

usu






D-1743
[GalNAc3]sccaggaAfaUfGfUfAfa
1834
usUfsggugUfcuuacaUfuUfccuggs
2682



gacaccas{invAb}

usu






D-1744
[GalNAc3]scccucgUfaUfGfUfUfu
1835
asAfscuuuCfaaaacaUfaCfgagggs
2683



ugaaagus{invAb}

usu






D-1745
[GalNAc3]suuucagUfuUfUfAfAfa
1836
asAfscgacCfcuuuaaAfaCfugaaas
2684



gggucgus{invAb}

usu






D-1746
[GalNAc3]sucaguuUfuAfAfAfGfg
1837
asUfscacgAfcccuuuAfaAfacugas
2685



gucgugas{invAb}

usu






D-1747
[GalNAc3]scaguuuUfaAfAfGfGfg
1838
usCfsucacGfacccuuUfaAfaacugs
2686



ucgugags{invAb}

usu






D-1748
[GalNAc3]suuuaaaGfgGfUfCfGfu
1839
asGfsuuucUfcacgacCfcUfuuaaas
2687



gagaaacs{invAb}

usu






D-1749
[GalNAc3]sggaagcUfuGfAfGfCfu
1840
asAfsacacAfuagcucAfaGfcuuccs
2688



auguguus{invAb}

usu






D-1750
[GalNAc3]sgaagcuUfgAfGfCfUfa
1841
asCfsaacaCfauagcuCfaAfgcuucs
2689



uguguugs{invAb}

usu






D-1751
[GalNAc3]sagcuugAfgCfUfAfUfg
1842
usUfsccaaCfacauagCfuCfaagcus
2690



uguuggas{invAb}

usu






D-1752
[GalNAc3]sgcuugaGfcUfAfUfGfu
1843
asUfsuccaAfcacauaGfcUfcaagcs
2691



guuggaas{invAb}

usu






D-1753
[GalNAc3]scuugagCfuAfUfGfUfg
1844
asCfsuuccAfacacauAfgCfucaags
2692



uuggaags{invAb}

usu






D-1754
[GalNAc3]sgagcuaUfgUfGfUfUfg
1845
asGfscacuUfccaacaCfaUfagcucs
2693



gaagugcs{invAb}

usu






D-1755
[GalNAc3]sguguugGfaAfGfUfGfc
1846
asAfsaccaGfggcacuUfcCfaacacs
2694



ccugguus{invAb}

usu






D-1756
[GalNAc3]sggaaguGfcCfCfUfGfg
1847
asAfsuuaaAfaccaggGfcAfcuuccs
2695



uuuuaaus{invAb}

usu






D-1757
[GalNAc3]sacaaagAfcGfGfUfAfc
1848
asGfsgauuAfuguaccGfuCfuuugus
2696



auaauccs{invAb}

usu






D-1758
[GalNAc3]scaaagaCfgGfUfAfCfa
1849
usAfsggauUfauguacCfgUfcuuugs
2697



uaauccus{invAb}

usu






D-1759
[GalNAc3]scauaauCfcUfAfCfAfg
1850
asUfsuuaaAfccuguaGfgAfuuaugs
2698



guuuaaas{invAb}

usu






D-1760
[GalNAc3]suugcucUfaCfUfGfUfu
1851
asCfsaaugUfaaacagUfaGfagcaas
2699



uacauugs{invAb}

usu






D-1761
[GalNAc3]suugcuaUfaAfUfUfUfc
1852
asAfscuccUfugaaauUfaUfagcaas
2700



aaggagus{invAb}

usu






D-1762
[GalNAc3]saaugauGfcAfCfUfUfu
1853
asAfscaucCfuaaaguGfcAfucauus
2701



aggaugus{invAb}

usu






D-1763
[GalNAc3]saugaugCfaCfUfUfUfa
1854
asAfsacauCfcuaaagUfgCfaucaus
2702



ggauguus{invAb}

usu






D-1764
[GalNAc3]sacaugaAfuCfAfUfUfc
1855
asGfsucauGfugaaugAfuUfcaugus
2703



acaugacs{invAb}

usu






D-1765
[GalNAc3]scaugaaUfcAfUfUfCfa
1856
usGfsgucaUfgugaauGfaUfucaugs
2704



caugaccs{invAb}

usu






D-1766
[GalNAc3]saauacaUfgUfCfUfAfg
1857
asGfsgacaGfacuagaCfaUfguauus
2705



ucuguccs{invAb}

usu






D-1767
[GalNAc3]saugucuAfgUfCfUfGfu
1858
asUfsuaaaGfgacagaCfuAfgacaus
2706



ccuuuaas{invAb}

usu






D-1768
[GalNAc3]saaucagAfuCfAfUfUfa
1859
asUfsaacuGfguaaugAfuCfugauus
2707



ccaguuas{invAb}

usu






D-1769
[GalNAc3]sucagauCfaUfUfAfCfc
1860
asGfscuaaCfugguaaUfgAfucugas
2708



aguuagcs{invAb}

usu






D-1770
[GalNAc3]sagaucaUfuAfCfCfAfg
1861
asAfsagcuAfacugguAfaUfgaucus
2709



uuagcuus{invAb}

usu






D-1771
[GalNAc3]sucauuaCfcAfGfUfUfa
1862
usUfsaaaaGfcuaacuGfgUfaaugas
2710



gcuuuuas{invAb}

usu






D-1772
[GalNAc3]saccaguUfaGfCfUfUfu
1863
asUfsgcuuUfaaaagcUfaAfcuggus
2711



uaaagcas{invAb}

usu






D-1773
[GalNAc3]saagcacAfuUfUfGfUfu
1864
usAfsgucuUfaaacaaAfuGfugcuus
2712



uaagacus{invAb}

usu






D-1774
[GalNAc3]sgcacauUfuGfUfUfUfa
1865
asAfsuaguCfuuaaacAfaAfugugcs
2713



agacuaus{invAb}

usu






D-1775
[GalNAc3]sugagauGfcUfAfCfUfa
1866
asAfsaacaAfuuaguaGfcAfucucas
2714



auuguuus{invAb}

usu






D-1776
[GalNAc3]sgauuuaUfuCfAfGfGfa
1867
asUfsggggAfuuccugAfaUfaaaucs
2715



auccccas{invAb}

usu






D-1777
[GalNAc3]sugcuguGfuGfGfCfCfa
1868
asUfsuauaAfuuggccAfcAfcagcas
2716



auuauaas{invAb}

usu






D-1778
[GalNAc3]sauguaaAfaCfUfAfUfa
1869
asGfsggucAfguauagUfuUfuacaus
2717



cugacccs{invAb}

usu






D-1779
[GalNAc3]suaaaacUfaUfAfCfUfg
1870
asAfsacggGfucaguaUfaGfuuuuas
2718



acccguus{invAb}

usu






D-1780
[GalNAc3]sgagaaaCfuGfGfCfUfg
1871
asAfsuuggAfccagccAfgUfuucucs
2719



guccaaus{invAb}

usu






D-1781
[GalNAc3]sccaaugGfgAfUfUfUfa
1872
usGfsuugcUfguaaauCfcCfauuggs
2720



cagcaacs{invAb}

usu






D-1782
[GalNAc3]saguuugCfuCfUfUfAfa
1873
asCfsauacGfauuaagAfgCfaaacus
2721



ucguaugs{invAb}

usu






D-1783
[GalNAc3]sguuugcUfcUfUfAfAfu
1874
usCfscauaCfgauuaaGfaGfcaaacs
2722



cguauggs{invAb}

usu






D-1784
[GalNAc3]suuugcuCfuUfAfAfUfc
1875
usUfsccauAfcgauuaAfgAfgcaaas
2723



guauggas{invAb}

usu






D-1785
[GalNAc3]sugcucuUfaAfUfCfGfu
1876
asCfsuuccAfuacgauUfaAfgagcas
2724



auggaags{invAb}

usu






D-1786
[GalNAc3]scuuaauCfgUfAfUfGfg
1877
usCfsaagcUfuccauaCfgAfuuaags
2725



aagcuugs{invAb}

usu






D-1787
[GalNAc3]suuaaucGfuAfUfGfGfa
1878
asUfscaagCfuuccauAfcGfauuaas
2726



agcuugas{invAb}

usu






D-1788
[GalNAc3]succauaCfaCfAfAfAfg
1879
usGfsuaccGfucuuugUfgUfauggas
2727



acgguacs{invAb}

usu






D-1789
[GalNAc3]scauacaCfaAfAfGfAfc
1880
usAfsuguaCfcgucuuUfgUfguaugs
2728



gguacaus{invAb}

usu






D-1790
[GalNAc3]sugucuaGfuCfUfGfUfc
1881
usAfsuuaaAfggacagAfcUfagacas
2729



cuuuaaus{invAb}

usu






D-1791
[GalNAc3]sucuaguCfuGfUfCfCfu
1882
asCfsuauuAfaaggacAfgAfcuagas
2730



uuaauags{invAb}

usu






D-1792
[GalNAc3]scuagucUfgUfCfCfUfu
1883
asGfscuauUfaaaggaCfaGfacuags
2731



uaauagcs{invAb}

usu






D-1793
[GalNAc3]sgucuguCfcUfUfUfAfa
1884
asAfsgagcUfauuaaaGfgAfcagacs
2732



uagcucus{invAb}

usu






D-1794
[GalNAc3]sgucugcAfaCfCfGfGfa
1885
asAfsgaguUfcuccggUfuGfcagacs
2733



gaacucus{invAb}

usu






D-1795
[GalNAc3]sucugcaAfcCfGfGfAfg
1886
usAfsagagUfucuccgGfuUfgcagas
2734



aacucuus{invAb}

usu






D-1796
[GalNAc3]sugcaacCfgGfAfGfAfa
1887
usCfsuaagAfguucucCfgGfuugcas
2735



cucuuags{invAb}

usu






D-1797
[GalNAc3]saggaugAfaGfUfUfCfg
1888
usCfsccauGfucgaacUfuCfauccus
2736



acaugggs{invAb}

usu






D-1798
[GalNAc3]sgggacuUfaUfCfAfAfc
1889
usUfsuucuUfuguugaUfaAfgucccs
2737



aaagaaas{invAb}

usu






D-1799
[GalNAc3]sauacucCfuUfCfUfGfg
1890
asGfsuugaAfcccagaAfgGfaguaus
2738



guucaacs{invAb}

usu






D-1800
[GalNAc3]scaagccUfaAfAfCfGfu
1891
asAfsuuucUfgacguuUfaGfgcuugs
2739



cagaaaus{invAb}

usu






D-1801
[GalNAc3]saagccuAfaAfCfGfUfc
1892
asGfsauuuCfugacguUfuAfggcuus
2740



agaaaucs{invAb}

usu






D-1802
[GalNAc3]sgguggaCfaCfAfCfUfc
1893
asAfsaaugCfugagugUfgUfccaccs
2741



agcauuus{invAb}

usu






D-1803
[GalNAc3]sgagcuuUfgUfCfUfCfc
1894
asGfscacuUfcggagaCfaAfagcucs
2742



gaagugcs{invAb}

usu






D-1804
[GalNAc3]sugucucCfgAfAfGfUfg
1895
asAfscuggGfgcacuuCfgGfagacas
2743



ccccagus{invAb}

usu






D-1805
[GalNAc3]saugcucUfcUfCfCfUfc
1896
asUfsagaaCfcgaggaGfaGfagcaus
2744



gguucuas{invAb}

usu






D-1806
[GalNAc3]sagcucaCfaCfGfAfAfg
1897
usCfsugaaUfccuucgUfgUfgagcus
2745



gauucags{invAb}

usu






D-1807
[GalNAc3]sagaagaAfgUfAfCfAfg
1898
asGfsgaagGfucuguaCfuUfcuucus
2746



accuuccs{invAb}

usu






D-1808
[GalNAc3]sgaagaaGfuAfCfAfGfa
1899
usGfsggaaGfgucuguAfcUfucuucs
2747



ccuucccs{invAb}

usu






D-1809
[GalNAc3]saagaagUfaCfAfGfAfc
1900
asUfsgggaAfggucugUfaCfuucuus
2748



cuucccas{invAb}

usu






D-1810
[GalNAc3]sucugaaAfuGfGfAfCfa
1901
asGfsgucaUfuuguccAfuUfucagas
2749



aaugaccs{invAb}

usu






D-1811
[GalNAc3]saaaugaCfcUfUfGfCfc
1902
asGfsgaauUfuggcaaGfgUfcauuus
2750



aaauuccs{invAb}

usu






D-1812
[GalNAc3]saccuaaCfuCfCfCfAfg
1903
asCfscgcaUfccugggAfgUfuaggus
2751



gaugcggs{invAb}

usu






D-1813
[GalNAc3]sugcggcAfgCfGfAfAfg
1904
asUfsguguUfgcuucgCfuGfccgcas
2752



caacacas{invAb}

usu






D-1814
[GalNAc3]sacggccGfgUfAfAfCfa
1905
usCfsguucUfuuguuaCfcGfgccgus
2753



aagaacgs{invAb}

usu






D-1815
[GalNAc3]sggccggUfaAfCfAfAfa
1906
asUfsucguUfcuuuguUfaCfcggccs
2754



gaacgaas{invAb}

usu






D-1816
[GalNAc3]sggggucAfgAfAfGfAfc
1907
usUfsgcuaUfcgucuuCfuGfaccccs
2755



gauagcas{invAb}

usu






D-1817
[GalNAc3]sagaaagAfaCfCfAfUfc
1908
asCfsugauCfggauggUfuCfuuucus
2756



cgaucags{invAb}

usu






D-1818
[GalNAc3]sgaaccaUfcCfGfAfUfc
1909
asUfsacagCfugaucgGfaUfgguucs
2757



agcuguas{invAb}

usu






D-1819
[GalNAc3]saucuggAfaCfAfCfUfa
1910
asAfsugcuGfauagugUfuCfcagaus
2758



ucagcaus{invAb}

usu






D-1820
[GalNAc3]saagaaaAfuAfCfUfCfc
1911
asCfsccagAfaggaguAfuUfuucuus
2759



uucugggs{invAb}

usu






D-1821
[GalNAc3]sacucagGfaAfGfUfCfg
1912
usAfsccuuUfucgacuUfcCfugagus
2760



aaaaggus{invAb}

usu






D-1822
[GalNAc3]sagaaagGfaGfCfAfAfg
1913
asGfsuuuaGfgcuugcUfcCfuuucus
2761



ccuaaacs{invAb}

usu






D-1823
[GalNAc3]saggagcAfaGfCfCfUfa
1914
asUfsgacgUfuuaggcUfuGfcuccus
2762



aacgucas{invAb}

usu






D-1824
[GalNAc3]sggagcaAfgCfCfUfAfa
1915
usCfsugacGfuuuaggCfuUfgcuccs
2763



acgucags{invAb}

usu






D-1825
[GalNAc3]sagcaagCfcUfAfAfAfc
1916
usUfsucugAfcguuuaGfgCfuugcus
2764



gucagaas{invAb}

usu






D-1826
[GalNAc3]sgaaaguCfuCfAfAfUfu
1917
usCfsguguGfgaauugAfgAfcuuucs
2765



ccacacgs{invAb}

usu






D-1827
[GalNAc3]sgucucaAfuUfCfCfAfc
1918
asAfsgaucGfuguggaAfuUfgagacs
2766



acgaucus{invAb}

usu






D-1828
[GalNAc3]sucaauuCfcAfCfAfCfg
1919
asAfsugagAfucguguGfgAfauugas
2767



aucucaus{invAb}

usu






D-1829
[GalNAc3]scaauucCfaCfAfCfGfa
1920
usCfsaugaGfaucgugUfgGfaauugs
2768



ucucaugs{invAb}

usu






D-1830
[GalNAc3]sauuccaCfaCfGfAfUfc
1921
usCfsucauGfagaucgUfgUfggaaus
2769



ucaugags{invAb}

usu






D-1831
[GalNAc3]suuccacAfcGfAfUfCfu
1922
asUfscucaUfgagaucGfuGfuggaas
2770



caugagas{invAb}

usu






D-1832
[GalNAc3]sucaugaGfaGfAfAfCfu
1923
usCfsagguCfcaguucUfcUfcaugas
2771



ggaccugs{invAb}

usu






D-1833
[GalNAc3]scaugagAfgAfAfCfUfg
1924
asUfscaggUfccaguuCfuCfucaugs
2772



gaccugas{invAb}

usu






D-1834
[GalNAc3]saucccaGfcCfUfAfUfc
1925
usGfsguguCfagauagGfcUfgggaus
2773



ugacaccs{invAb}

usu






D-1835
[GalNAc3]succcagCfcUfAfUfCfu
1926
usUfsggugUfcagauaGfgCfugggas
2774



gacaccas{invAb}

usu






D-1836
[GalNAc3]scccagcCfuAfUfCfUfg
1927
usUfsugguGfucagauAfgGfcugggs
2775



acaccaas{invAb}

usu






D-1837
[GalNAc3]sagcagaGfaAfAfUfCfa
1928
asGfsgcauCfuugauuUfcUfcugcus
2776



agaugccs{invAb}

usu






D-1838
[GalNAc3]succgaaGfuGfCfCfCfc
1929
asUfsccgaCfuggggcAfcUfucggas
2777



agucggas{invAb}

usu






D-1839
[GalNAc3]sgaagauAfgAfUfUfCfg
1930
asUfscuucUfucgaauCfuAfucuucs
2778



aagaagas{invAb}

usu






D-1840
[GalNAc3]scagcgaAfgCfAfAfCfa
1931
asGfsggagUfguguugCfuUfcgcugs
2779



cacucccs{invAb}

usu






D-1841
[GalNAc3]sgcgaagCfaAfCfAfCfa
1932
usUfsggggAfguguguUfgCfuucgcs
2780



cuccccas{invAb}

usu






D-1842
[GalNAc3]suugaagCfcAfCfAfUfu
1933
usAfsgauuCfcaauguGfgCfuucaas
2781



ggaaucus{invAb}

usu






D-1843
[GalNAc3]scgguaaCfaAfAfGfAfa
1934
asCfscguuCfguucuuUfgUfuaccgs
2782



cgaacggs{invAb}

usu






D-1844
[GalNAc3]saugaagCfcAfCfUfAfu
1935
asCfsugucGfuauaguGfgCfuucaus
2783



acgacags{invAb}

usu






D-1845
[GalNAc3]scacuauAfcGfAfCfAfg
1936
asCfscgguAfccugucGfuAfuagugs
2784



guaccggs{invAb}

usu






D-1846
[DCA-
1937
asAfscuccUfugaaauUfaUfagcaas
2785



C6]uugcuaUfaAfUfUfUfcaaggagu

usu




s{invAb}








D-1847
{DCA-
2831
usUfscuaaGfaguuCfuCfcGfguugc
3085



sC6}gcaaccGfgAfGfAfAfcucuuag

susu




as{invAb}








D-1848
{DCA-
2832
asCfscauaAfgcguAfgAfaCfcgagg
3086



sC6}ccucggUfuCfUfAfCfgcuuaug

susu




gs{invAb}








D-1849
{DCA-
2833
usUfscuaagaguuCfuCfcGfguugcs
3087



sC6}gcaaccGfgAfGfAfAfcucuuag

usu




as{invAb}








D-1850
{DCA-
2834
asGfsuauuUfuaucauCfcAfuugsus
3088



sC6}caauGfgAfUfGfAfuaaaauacu

u




sus{invAb}








D-1851
{DCA-
2835
usGfsaaagAfaugggaGfuUfuggsus
3089



sC6}ccaaAfcUfCfCfCfauucuuuca

u




sus{invAb}








D-1852
{DCA-
2836
asCfsuuucCfauauucAfcAfagaccs
3090



sC6}ggucuuGfuGfAfAfUfauggaaa

usu




gs{invAb}








D-1853
{DCA-
2837
usUfscuacAfgcugauCfgGfauggus
3091



sC6}accaucCfgAfUfCfAfgcuguag

usu




as{invAb}








D-1854
{DCA-
2838
asGfsuagaGfcaaagaAfuUfccaaas
3092



sC6}uuuggaAfuUfCfUfUfugcucua

usu




cs{invAb}








D-1855
{DCA-
2839
usAfsgagcAfaagaauUfcCfaaacus
3093



sC6}aguuugGfaAfUfUfCfuuugcuc

usu




us{invAb}








D-1856
{DCA-
2840
usGfsuaggAfuuauguAfcCfgucuus
3094



sC6}aagacgGfuAfCfAfUfaauccua

usu




cs{invAb}








D-1857
{DCA-
2841
asCfsacuuCfcaacacAfuAfgcucas
3095



sC6}ugagcuAfuGfUfGfUfuggaagu

usu




gs{invAb}








D-1858
{DCA-
2842
usGfsaaagAfaugggaGfuUfuggugs
3096



sC6}caccaaAfcUfCfCfCfauucuuu

usu




cs{invAb}








D-1859
{DCA-
2843
usUfscuaaGfaguucuCfcGfguugcs
3097



sC6}gcaaccGfgAfGfAfAfcucuuag

usu




as{invAb}








D-1860
{DCA-
2844
asCfscauaAfgcguagAfaCfcgaggs
3098



sC6}ccucggUfuCfUfAfCfgcuuaug

usu




gs{invAb}








D-1861
{DCA-
2845
asGfsuauuUfuaucauCfcAfuugggs
3099



sC6}cccaauGfgAfUfGfAfuaaaaua

usu




cs{invAb}








D-1862
{DCA-
2846
asAfscuccUfugaaauUfaUfagcaas
3100



sC6}uugcuaUfaAfUfUfUfcaaggag

usu




us{invAb}








D-1863
{DCA-
2847
usGfsuagGfAfuuauguAfcCfgucuu
3101



C6}aagacgGfuAfCfAfUfaauccuac

susu




s{invAb}








D-1864
{DCA-
2848
usAfsgagcAfaagaAfuUfcCfaaacu
3102



C6}aguuugGfaAfUfUfCfuuugcucu

susu




s{invAb}








D-1865
{DCA-
2849
usGfsuaggAfuuauGfuAfcCfgucuu
3103



C6}aagacgGfuAfCfAfUfaauccuac

susu




s{invAb}








D-1866
{DCA-
2850
usGfsuaggauuauGfuAfcCfgucuus
3104



C6}aagacgGfuAfCfAfUfaauccuac

usu




s{invAb}








D-1867
{DCA-
2851
asCfsuuuccauauUfcAfcAfagaccs
3105



C6}ggucuuGfuGfAfAfUfauggaaag

usu




s{invAb}








D-1868
{DCA-
2852
asGfsuagaGfcaaagaAfuUfccasus
3106



C6}uggaAfuUfCfUfUfugcucuacus

u




us{invAb}








D-1869
{DCA-
2853
usGfsuaggAfuuauguAfcCfgucsus
3107



C6}gacgGfuAfCfAfUfaauccuacas

u




us{invAb}








D-1870
{DCA-
2854
usAfsgagcAfaagaAfuUfcCfaaasu
3108



C6}uuugGfaAfUfUfCfuuugcucuas

su




us{invAb}








D-1871
{DCA-
2855
asGfsuagaGfcaaaGfaAfuUfccasu
3109



C6}uggaAfuUfCfUfUfugcucuacus

su




us{invAb}








D-1872
{DCA-
2856
usGfsuaggAfuuauGfuAfcCfgucsu
3110



C6}gacgGfuAfCfAfUfaauccuacas

su




us{invAb}








D-1873
{DCA-
2857
usUfscuacAfgcugAfuCfgGfaugsu
3111



C6}caucCfgAfUfCfAfgcuguagaas

su




us{invAb}








D-1874
{DCA-
2858
asAfscuccUfugaaAfuUfaUfagcsu
3112



C6}gcuauaAfuUfUfCfAfaggaguus

su




us{invAb}








D-1875
{DCA-
2859
usAfsgagcAfaagaAfuUfcCfaaasu
3113



C6}uuuggaAfuUfCfUfUfugcucuas

su




us{invAb}








D-1876
{DCA-
2860
asGfsuagaGfcaaaGfaAfuUfccasu
3114



C6}uggaauUfcUfUfUfGfcucuacus

su




us{invAb}








D-1877
{DCA-
2861
usGfsuaggAfuuauGfuAfcCfgucsu
3115



C6}gacgguAfcAfUfAfAfuccuacas

su




us{invAb}








D-1878
{DCA-
2862
usGfsuaggAfuuauGfuAfcCfgucsu
3116



C6}gsacgGfuAfCfAfUfaauccuaca

su




sus{invAb}








D-1879
[GalNAc3]sgsacgGfuAfCfAfUfaa
2863
usGfsuaggAfuuauGfuAfcCfgucsu
3117



uccuacasus{invAb}

su






D-1880
{DCA-
2864
usGfsuaggAfuuauGfuAfcCfgucsu
3118



sC6}gacgGfuAfCfAfUfaauccuaca

su




sus{invAb}








D-1881
{DCA-
2865
usGfsuaggauuauGfuAfcCfgucuus
3119



sC6}aagacgGfuAfCfAfUfaauccua

usu




cs{invAb}








D-1882
{DCA-
2866
asGfsuagaGfcaaaGfaAfuUfccasu
3120



sC6}uggaAfuUfCfUfUfugcucuacu

su




sus{invAb}








D-1883
{DCA-
2867
usAfsgagcAfaagaAfuUfcCfaaasu
3121



sC6}uuugGfaAfUfUfCfuuugcucua

su




sus{invAb}








D-1884
{DCA-
2868
usGfsuaggAfuuauGfuAfcCfgucsu
3122



sC6}gacgguAfcAfUfAfAfuccuaca

su




sus{invAb}








D-1885
{DCA-
2869
asGfsuagaGfcaaaGfaAfuUfccasu
3123



sC6}uggaauUfcUfUfUfGfcucuacu

su




sus{invAb}








D-1886
{DCA-
2870
usAfsgagcAfaagaAfuUfcCfaaasu
3124



sC6}uuuggaAfuUfCfUfUfugcucua

su




sus{invAb}








D-1887
{DCA-
2871
usGfsuaggAfuuauguAfcCfgucsus
3125



sC6}gacgGfuAfCfAfUfaauccuaca

u




sus{invAb}








D-1888
{DCA-
2872
asGfsuagaGfcaaagaAfuUfccasus
3126



sC6}uggaAfuUfCfUfUfugcucuacu

u




sus{invAb}








D-1889

2873

3127





D-1890

2874

3128





D-1891
[GalNAc3]saaucagAfuCfAfUfUfa
2875
asUfsaacUfGfguaaugAfuCfugauu
3129



ccaguuas{invAb}

susu






D-1892
[GalNAc3]scuagucUfgUfCfCfUfu
2876
asGfscuaUfUfaaaggaCfaGfacuag
3130



uaauagcs{invAb}

susu






D-1893
[GalNAc3]sgcacauUfuGfUfUfUfa
2877
asAfsuagUfCfuuaaacAfaAfugugc
3131



agacuaus{invAb}

susu






D-1894
[GalNAc3]sccaaugGfgAfUfUfUfa
2878
usGfsuugCfUfguaaauCfcCfauugg
3132



cagcaacs{invAb}

susu






D-1895
[GalNAc3]sguuugcUfcUfUfAfAfu
2879
usCfscauAfCfgauuaaGfaGfcaaac
3133



cguauggs{invAb}

susu






D-1896
[GalNAc3]scccucgUfaUfGfUfUfu
2880
asAfscuuUfCfaaaacaUfaCfgaggg
3134



ugaaagus{invAb}

susu






D-1897
[GalNAc3]saaucagAfuCfAfUfUfa
2881
asUfsaacuGfguaaUfgAfuCfugauu
3135



ccaguuas{invAb}

susu






D-1898
[GalNAc3]scuagucUfgUfCfCfUfu
2882
asGfscuauUfaaagGfaCfaGfacuag
3136



uaauagcs{invAb}

susu






D-1899
[GalNAc3]sgcacauUfuGfUfUfUfa
2883
asAfsuaguCfuuaaAfcAfaAfugugc
3137



agacuaus{invAb}

susu






D-1900
[GalNAc3]sccaaugGfgAfUfUfUfa
2884
usGfsuugcUfguaaAfuCfcCfauugg
3138



cagcaacs{invAb}

susu






D-1901
[GalNAc3]sguuugcUfcUfUfAfAfu
2885
usCfscauaCfgauuAfaGfaGfcaaac
3139



cguauggs{invAb}

susu






D-1902
[GalNAc3]scccucgUfaUfGfUfUfu
2886
asAfscuuuCfaaaaCfaUfaCfgaggg
3140



ugaaagus{invAb}

susu






D-1903
[GalNAc3]saaucagAfuCfAfUfUfa
2887
asUfsaacugguaaUfgAfuCfugauus
3141



ccaguuas{invAb}

usu






D-1904
[GalNAc3]scuagucUfgUfCfCfUfu
2888
asGfscuauuaaagGfaCfaGfacuags
3142



uaauagcs{invAb}

usu






D-1905
[GalNAc3]sgcacauUfuGfUfUfUfa
2889
asAfsuagucuuaaAfcAfaAfugugcs
3143



agacuaus{invAb}

usu






D-1906
[GalNAc3]sccaaugGfgAfUfUfUfa
2890
usGfsuugcuguaaAfuCfcCfauuggs
3144



cagcaacs{invAb}

usu






D-1907
[GalNAc3]sguuugcUfcUfUfAfAfu
2891
usCfscauacgauuAfaGfaGfcaaacs
3145



cguauggs{invAb}

usu






D-1908
[GalNAc3]scccucgUfaUfGfUfUfu
2892
asAfscuuucaaaaCfaUfaCfgagggs
3146



ugaaagus{invAb}

usu






D-1909
[GalNAc3]sucagAfuCfAfUfUfacc
2893
asUfsaacuGfguaaugAfuCfugasus
3147



aguuausus{invAb}

u






D-1910
[GalNAc3]sagucUfgUfCfCfUfuua
2894
asGfscuauUfaaaggaCfaGfacusus
3148



auagcusus{invAb}

u






D-1911
[GalNAc3]sacauUfuGfUfUfUfaag
2895
asAfsuaguCfuuaaacAfaAfugusus
3149



acuauusus{invAb}

u






D-1912
[GalNAc3]saaugGfgAfUfUfUfaca
2896
usGfsuugcUfguaaauCfcCfauusus
3150



gcaacasus{invAb}

u






D-1913
[GalNAc3]suugcUfcUfUfAfAfucg
2897
usCfscauaCfgauuaaGfaGfcaasus
3151



uauggasus{invAb}

u






D-1914
[GalNAc3]scucgUfaUfGfUfUfuug
2898
asAfscuuuCfaaaacaUfaCfgagsus
3152



aaaguusus{invAb}

u






D-1915
[GalNAc3]sucagAfuCfAfUfUfacc
2899
asUfsaacuGfguaaUfgAfuCfugasu
3153



aguuausus{invAb}

su






D-1916
[GalNAc3]sagucUfgUfCfCfUfuua
2900
asGfscuauUfaaagGfaCfaGfacusu
3154



auagcusus{invAb}

su






D-1917
[GalNAc3]sacauUfuGfUfUfUfaag
2901
asAfsuaguCfuuaaAfcAfaAfugusu
3155



acuauusus{invAb}

su






D-1918
[GalNAc3]saaugGfgAfUfUfUfaca
2902
usGfsuugcUfguaaAfuCfcCfauusu
3156



gcaacasus{invAb}

su






D-1919
[GalNAc3]suugcUfcUfUfAfAfucg
2903
usCfscauaCfgauuAfaGfaGfcaasu
3157



uauggasus{invAb}

su






D-1920
[GalNAc3]scucgUfaUfGfUfUfuug
2904
asAfscuuuCfaaaaCfaUfaCfgagsu
3158



aaaguusus{invAb}

su






D-1921
[GalNAc3]sucagauCfaUfUfAfCfc
2905
asUfsaacuGfguaaUfgAfuCfugasu
3159



aguuausus{invAb}

su






D-1922
[GalNAc3]sagucugUfcCfUfUfUfa
2906
asGfscuauUfaaagGfaCfaGfacusu
3160



auagcusus{invAb}

su






D-1923
[GalNAc3]sacauuuGfuUfUfAfAfg
2907
asAfsuaguCfuuaaAfcAfaAfugusu
3161



acuauusus{invAb}

su






D-1924
[GalNAc3]saaugggAfuUfUfAfCfa
2908
usGfsuugcUfguaaAfuCfcCfauusu
3162



gcaacasus{invAb}

su






D-1925
[GalNAc3]suugcucUfuAfAfUfCfg
2909
usCfscauaCfgauuAfaGfaGfcaasu
3163



uauggasus{invAb}

su






D-1926
[GalNAc3]scucguaUfgUfUfUfUfg
2910
asAfscuuuCfaaaaCfaUfaCfgagsu
3164



aaaguusus{invAb}

su






D-1927
[GalNAc3]sasasucagAfuCfAfUfU
2911
asUfsaacuGfgUfaaugAfuCfugauu
3165



faccaguusas{invAb}

susu






D-1928
[GalNAc3]scsusagucUfgUfCfCfU
2912
asGfscuauUfaAfaggaCfaGfacuag
3166



fuuaauagscs{invAb}

susu






D-1929
[GalNAc3]sgscsacauUfuGfUfUfU
2913
asAfsuaguCfuUfaaacAfaAfugugc
3167



faagacuasus{invAb}

susu






D-1930
[GalNAc3]scscsaaugGfgAfUfUfU
2914
usGfsuugcUfgUfaaauCfcCfauugg
3168



facagcaascs{invAb}

susu






D-1931
[GalNAc3]sgsusuugcUfcUfUfAfA
2915
usCfscauaCfgAfuuaaGfaGfcaaac
3169



fucguaugsgs{invAb}

susu






D-1932
[GalNAc3]scscscucgUfaUfGfUfU
2916
asAfscuuuCfaAfaacaUfaCfgaggg
3170



fuugaaagsus{invAb}

susu






D-1933
[GalNAc3]saagaaaAfuAfCfUfCfc
2917
asCfsccaGfAfaggaguAfuUfuucuu
3171



uucugggs{invAb}

susu






D-1934
[GalNAc3]sucagauCfaUfUfAfCfc
2918
asGfscuaAfCfugguaaUfgAfucuga
3172



aguuagcs{invAb}

susu






D-1935
[GalNAc3]saccuaaCfuCfCfCfAfg
2919
asCfscgcAfUfccugggAfgUfuaggu
3173



gaugcggs{invAb}

susu






D-1936
[GalNAc3]saagcacAfuUfUfGfUfu
2920
usAfsgucUfUfaaacaaAfuGfugcuu
3174



uaagacus{invAb}

susu






D-1937
[GalNAc3]sugcuguGfuGfGfCfCfa
2921
asUfsuauAfAfuuggccAfcAfcagca
3175



auuauaas{invAb}

susu






D-1938
[GalNAc3]sucugaaAfuGfGfAfCfa
2922
asGfsgucAfUfuuguccAfuUfucaga
3176



aaugaccs{invAb}

susu






D-1939
[GalNAc3]saagaaaAfuAfCfUfCfc
2923
asCfsccagAfaggaGfuAfuUfuucuu
3177



uucugggs{invAb}

susu






D-1940
[GalNAc3]sucagauCfaUfUfAfCfc
2924
asGfscuaaCfugguAfaUfgAfucuga
3178



aguuagcs{invAb}

susu






D-1941
[GalNAc3]saccuaaCfuCfCfCfAfg
2925
asCfscgcaUfccugGfgAfgUfuaggu
3179



gaugcggs{invAb}

susu






D-1942
[GalNAc3]saagcacAfuUfUfGfUfu
2926
usAfsgucuUfaaacAfaAfuGfugcuu
3180



uaagacus{invAb}

susu






D-1943
[GalNAc3]sugcuguGfuGfGfCfCfa
2927
asUfsuauaAfuuggCfcAfcAfcagca
3181



auuauaas{invAb}

susu






D-1944
[GalNAc3]sucugaaAfuGfGfAfCfa
2928
asGfsgucaUfuuguCfcAfuUfucaga
3182



aaugaccs{invAb}

susu






D-1945
[GalNAc3]saagaaaAfuAfCfUfCfc
2929
asCfsccagaaggaGfuAfuUfuucuus
3183



uucugggs{invAb}

usu






D-1946
[GalNAc3]sucagauCfaUfUfAfCfc
2930
asGfscuaacugguAfaUfgAfucugas
3184



aguuagcs{invAb}

usu






D-1947
[GalNAc3]saccuaaCfuCfCfCfAfg
2931
asCfscgcauccugGfgAfgUfuaggus
3185



gaugcggs{invAb}

usu






D-1948
[GalNAc3]saagcacAfuUfUfGfUfu
2932
usAfsgucuuaaacAfaAfuGfugcuus
3186



uaagacus{invAb}

usu






D-1949
[GalNAc3]sugcuguGfuGfGfCfCfa
2933
asUfsuauaauuggCfcAfcAfcagcas
3187



auuauaas{invAb}

usu






D-1950
[GalNAc3]sucugaaAfuGfGfAfCfa
2934
asGfsgucauuuguCfcAfuUfucagas
3188



aaugaccs{invAb}

usu






D-1951
[GalNAc3]sgaaaAfuAfCfUfCfcuu
2935
asCfsccagAfaggaguAfuUfuucsus
3189



cugggusus{invAb}

u






D-1952
[GalNAc3]sagauCfaUfUfAfCfcag
2936
asGfscuaaCfugguaaUfgAfucusus
3190



uuagcusus{invAb}

u






D-1953
[GalNAc3]scuaaCfuCfCfCfAfgga
2937
asCfscgcaUfccugggAfgUfuagsus
3191



ugcggusus{invAb}

u






D-1954
[GalNAc3]sgcacAfuUfUfGfUfuua
2938
usAfsgucuUfaaacaaAfuGfugcsus
3192



agacuasus{invAb}

u






D-1955
[GalNAc3]scuguGfuGfGfCfCfaau
2939
asUfsuauaAfuuggccAfcAfcagsus
3193



uauaausus{invAb}

u






D-1956
[GalNAc3]sugaaAfuGfGfAfCfaaa
2940
asGfsgucaUfuuguccAfuUfucasus
3194



ugaccusus{invAb}

u






D-1957
[GalNAc3]sgaaaAfuAfCfUfCfcuu
2941
asCfsccagAfaggaGfuAfuUfuucsu
3195



cugggusus{invAb}

su






D-1958
[GalNAc3]sagauCfaUfUfAfCfcag
2942
asGfscuaaCfugguAfaUfgAfucusu
3196



uuagcusus{invAb}

su






D-1959
[GalNAc3]scuaaCfuCfCfCfAfgga
2943
asCfscgcaUfccugGfgAfgUfuagsu
3197



ugcggusus{invAb}

su






D-1960
[GalNAc3]sgcacAfuUfUfGfUfuua
2944
usAfsgucuUfaaacAfaAfuGfugcsu
3198



agacuasus{invAb}

su






D-1961
[GalNAc3]scuguGfuGfGfCfCfaau
2945
asUfsuauaAfuuggCfcAfcAfcagsu
3199



uauaausus{invAb}

su






D-1962
[GalNAc3]sugaaAfuGfGfAfCfaaa
2946
asGfsgucaUfuuguCfcAfuUfucasu
3200



ugaccusus{invAb}

su






D-1963
[GalNAc3]sgaaaauAfcUfCfCfUfu
2947
asCfsccagAfaggaGfuAfuUfuucsu
3201



cugggusus{invAb}

su






D-1964
[GalNAc3]sagaucaUfuAfCfCfAfg
2948
asGfscuaaCfugguAfaUfgAfucusu
3202



uuagcusus{invAb}

su






D-1965
[GalNAc3]scuaacuCfcCfAfGfGfa
2949
asCfscgcaUfccugGfgAfgUfuagsu
3203



ugcggusus{invAb}

su






D-1966
[GalNAc3]sgcacauUfuGfUfUfUfa
2950
usAfsgucuUfaaacAfaAfuGfugcsu
3204



agacuasus{invAb}

su






D-1967
[GalNAc3]scuguguGfgCfCfAfAfu
2951
asUfsuauaAfuuggCfcAfcAfcagsu
3205



uauaausus{invAb}

su






D-1968
[GalNAc3]sugaaauGfgAfCfAfAfa
2952
asGfsgucaUfuuguCfcAfuUfucasu
3206



ugaccusus{invAb}

su






D-1969
[GalNAc3]sasasgaaaAfuAfCfUfC
2953
asCfsccagAfaGfgaguAfuUfuucuu
3207



fcuucuggsgs{invAb}

susu






D-1970
[GalNAc3]suscsagauCfaUfUfAfC
2954
asGfscuaaCfuGfguaaUfgAfucuga
3208



fcaguuagscs{invAb}

susu






D-1971
[GalNAc3]sascscuaaCfuCfCfCfA
2955
asCfscgcaUfcCfugggAfgUfuaggu
3209



fggaugcgsgs{invAb}

susu






D-1972
[GalNAc3]sasasgcacAfuUfUfGfU
2956
usAfsgucuUfaAfacaaAfuGfugcuu
3210



fuuaagacsus{invAb}

susu






D-1973
[GalNAc3]susgscuguGfuGfGfCfC
2957
asUfsuauaAfuUfggccAfcAfcagca
3211



faauuauasas{invAb}

susu






D-1974
[GalNAc3]suscsugaaAfuGfGfAfC
2958
asGfsgucaUfuUfguccAfuUfucaga
3212



faaaugacscs{invAb}

susu






D-1975
{DCA-
2959
asAfsuaguCfuuaaacAfaAfugugcs
3213



C6}gcacauUfuGfUfUfUfaagacuau

usu




s{invAb}








D-1976
{DCA-
2960
asAfsuaguCfuuaaacAfaAfugugcs
3214



sC6}gcacauUfuGfUfUfUfaagacua

usu




us{invAb}








D-1977
[GalNAc3]sgscacauUfuGfUfUfUf
2961
asAfsuaguCfuuaaacAfaAfugugcs
3215



aagacuaus{invAb}

usu






D-1978
[GalNAc3]sasagacgGfuAfCfAfUf
2962
usGfsuaggAfuuauguAfcCfgucuus
3216



aauccuacs{invAb}

usu






D-1979
[GalNAc3]susuuggaAfuUfCfUfUf
2963
asGfsuagaGfcaaagaAfuUfccaaas
3217



ugcucuacs{invAb}

usu






D-1980
[GalNAc3]sasguuugGfaAfUfUfCf
2964
usAfsgagcAfaagaauUfcCfaaacus
3218



uuugcucus{invAb}

usu






D-1981
[GalNAc3]susugcuaUfaAfUfUfUf
2965
asAfscuccUfugaaauUfaUfagcaas
3219



caaggagus{invAb}

usu






D-1982
[GalNAc3]sascauUfuGfUfUfUfaa
2966
asAfsuaguCfuuaaAfcAfaAfugusu
3220



gacuauusus{invAb}

su






D-1983
[GalNAc3]susggaAfuUfCfUfUfug
2967
asGfsuagaGfcaaaGfaAfuUfccasu
3221



cucuacusus{invAb}

su






D-1984
[GalNAc3]susuugGfaAfUfUfCfuu
2968
usAfsgagcAfaagaAfuUfcCfaaasu
3222



ugcucuasus{invAb}

su






D-1985
[GalNAc3]sgscuaUfaAfUfUfUfca
2969
asAfscuccUfugaaAfuUfaUfagcsu
3223



aggaguusus{invAb}

su






D-1986
[GalNAc3]sascauuuGfuUfUfAfAf
2970
asAfsuaguCfuuaaAfcAfaAfugusu
3224



gacuauusus{invAb}

su






D-1987
[GalNAc3]sgsacgguAfcAfUfAfAf
2971
usGfsuaggAfuuauGfuAfcCfgucsu
3225



uccuacasus{invAb}

su






D-1988
[GalNAc3]susggaauUfcUfUfUfGf
2972
asGfsuagaGfcaaaGfaAfuUfccasu
3226



cucuacusus{invAb}

su






D-1989
[GalNAc3]susuuggaAfuUfCfUfUf
2973
usAfsgagcAfaagaAfuUfcCfaaasu
3227



ugcucuasus{invAb}

su






D-1990
[GalNAc3]sgscuauaAfuUfUfCfAf
2974
asAfscuccUfugaaAfuUfaUfagcsu
3228



aggaguusus{invAb}

su






D-1991
[GalNAc3]sascauUfuGfUfUfUfaa
2975
asAfsuaguCfuuaaacAfaAfugusus
3229



gacuauusus{invAb}

u






D-1992
[GalNAc3]sgsacgGfuAfCfAfUfaa
2976
usGfsuaggAfuuauguAfcCfgucsus
3230



uccuacasus{invAb}

u






D-1993
[GalNAc3]susggaAfuUfCfUfUfug
2977
asGfsuagaGfcaaagaAfuUfccasus
3231



cucuacusus{invAb}

u






D-1994
[GalNAc3]susuugGfaAfUfUfCfuu
2978
usAfsgagcAfaagaauUfcCfaaasus
3232



ugcucuasus{invAb}

u






D-1995
[GalNAc3]sgscuaUfaAfUfUfUfca
2979
asAfscuccUfugaaauUfaUfagcsus
3233



aggaguusus{invAb}

u






D-1996
[GalNAc3]sascauuuGfuUfUfAfAf
2980
asAfsuaguCfuuAfaAfcAfaaugusu
3234



gacuauusus{invAb}

su






D-1997
[GalNAc3]sgsacgguAfcAfUfAfAf
2981
usGfsuaggAfuuAfuGfuAfccgucsu
3235



uccuacasus{invAb}

su






D-1998
[GalNAc3]susggaauUfcUfUfUfGf
2982
asGfsuagaGfcaAfaGfaAfuuccasu
3236



cucuacusus{invAb}

su






D-1999
[GalNAc3]susuuggaAfuUfCfUfUf
2983
usAfsgagcAfaaGfaAfuUfccaaasu
3237



ugcucuasus{invAb}

su






D-2000
[GalNAc3]sgscuauaAfuUfUfCfAf
2984
asAfscuccUfugAfaAfuUfauagcsu
3238



aggaguusus{invAb}

su






D-2001
{DCA-
2985
asAfsuaguCfuuaaAfcAfaAfugusu
3239



sC6}ascauUfuGfUfUfUfaagacuau

su




usus{invAb}








D-2002
{DCA-
2986
usGfsuaggAfuuauGfuAfcCfgucsu
3240



sC6}gsacgGfuAfCfAfUfaauccuac

su




asus{invAb}








D-2003
{DCA-
2987
asGfsuagaGfcaaaGfaAfuUfccasu
3241



sC6}usggaAfuUfCfUfUfugcucuac

su




usus{invAb}








D-2004
{DCA-
2988
usAfsgagcAfaagaAfuUfcCfaaasu
3242



sC6}usuugGfaAfUfUfCfuuugcucu

su




asus{invAb}








D-2005
{DCA-
2989
asAfscuccUfugaaAfuUfaUfagcsu
3243



sC6}gscuaUfaAfUfUfUfcaaggagu

su




usus{invAb}








D-2006
[GalNAc3]sascscaucCfgAfUfCfA
2990
usUfscuacAfgCfugauCfgGfauggu
3244



fgcuguagsas{invAb}

susu






D-2007
[GalNAc3]sgsgsucuuGfuGfAfAfU
2991
asCfsuuucCfaUfauucAfcAfagacc
3245



fauggaaasgs{invAb}

susu






D-2008
[GalNAc3]sasasgacgGfuAfCfAfU
2992
usGfsuaggAfuUfauguAfcCfgucuu
3246



faauccuascs{invAb}

susu






D-2009
[GalNAc3]sgscsaaccGfgAfGfAfA
2993
usUfscuaaGfaGfuucuCfcGfguugc
3247



fcucuuagsas{invAb}

susu






D-2010
[GalNAc3]scsasccaaAfcUfCfCfC
2994
usGfsaaagAfaUfgggaGfuUfuggug
3248



fauucuuuscs{invAb}

susu






D-2011
[GalNAc3]susgsagcuAfuGfUfGfU
2995
asCfsacuuCfcAfacacAfuAfgcuca
3249



fuggaagusgs{invAb}

susu






D-2012
[GalNAc3]sususuggaAfuUfCfUfU
2996
asGfsuagaGfcAfaagaAfuUfccaaa
3250



fugcucuascs{invAb}

susu






D-2013
[GalNAc3]sasgsuuugGfaAfUfUfC
2997
usAfsgagcAfaAfgaauUfcCfaaacu
3251



fuuugcucsus{invAb}

susu






D-2014
[GalNAc3]sususgcuaUfaAfUfUfU
2998
asAfscuccUfuGfaaauUfaUfagcaa
3252



fcaaggagsus{invAb}

susu






D-2015
[GalNAc3]sasccauccgAfuCfAfGf
2999
usUfscuacAfgcugAfuCfggauggus
3253



Cfuguagas{invAb}

usu






D-2016
[GalNAc3]sgsgucuuguGfaAfUfAf
3000
asCfsuuucCfauauUfcAfcaagaccs
3254



Ufggaaags{invAb}

usu






D-2017
[GalNAc3]sasagacgguAfcAfUfAf
3001
usGfsuaggAfuuauGfuAfccgucuus
3255



Afuccuacs{invAb}

usu






D-2018
[GalNAc3]sgscaaccggAfgAfAfCf
3002
usUfscuaaGfaguuCfuCfcgguugcs
3256



Ufcuuagas{invAb}

usu






D-2019
[GalNAc3]scsaccaaacUfcCfCfAf
3003
usGfsaaagAfauggGfaGfuuuggugs
3257



Ufucuuucs{invAb}

usu






D-2020
[GalNAc3]susgagcuauGfuGfUfUf
3004
asCfsacuuCfcaacAfcAfuagcucas
3258



Gfgaagugs{invAb}

usu






D-2021
[GalNAc3]susuuggaauUfcUfUfUf
3005
asGfsuagaGfcaaaGfaAfuuccaaas
3259



Gfcucuacs{invAb}

usu






D-2022
[GalNAc3]sasguuuggaAfuUfCfUf
3006
usAfsgagcAfaagaAfuUfccaaacus
3260



Ufugcucus{invAb}

usu






D-2023
[GalNAc3]susugcuauaAfuUfUfCf
3007
asAfscuccUfugaaAfuUfauagcaas
3261



Afaggagus{invAb}

usu






D-2024
[GalNAc3]sauccggAfaGfUfUfUfg
3008
usCfsuaucuucaaAfcUfuCfcggaus
3262



aagauags{invAb}

usu






D-2025
[GalNAc3]sccggAfaGfUfUfUfgaa
3009
usCfsuaucUfucaaacUfuCfcggsus
3263



gauagasus{invAb}

u






D-2026
[GalNAc3]sccggAfaGfUfUfUfgaa
3010
usCfsuaucUfucaaAfcUfuCfcggsu
3264



gauagasus{invAb}

su






D-2027
[GalNAc3]sccggaaGfuUfUfGfAfa
3011
usCfsuaucUfucaaAfcUfuCfcggsu
3265



gauagasus{invAb}

su






D-2028
[GalNAc3]scscggAfaGfUfUfUfga
3012
usCfsuaucUfucaaAfcUfuCfcggsu
3266



agauagasus{invAb}

su






D-2029
[GalNAc3]sasusccggAfaGfUfUfU
3013
usCfsuaucUfuCfaaacUfuCfcggau
3267



fgaagauasgs{invAb}

susu






D-2030
[GalNAc3]sasuccggAfaGfUfUfUf
3014
usCfsuaucUfucaaacUfuCfcggaus
3268



gaagauags{invAb}

usu






D-2031
[GalNAc3]scscggaaGfuUfUfGfAf
3015
usCfsuaucUfucaaAfcUfuCfcggsu
3269



agauagasus{invAb}

su






D-2032
[GalNAc3]scscggAfaGfUfUfUfga
3016
usCfsuaucUfucaaacUfuCfcggsus
3270



agauagasus{invAb}

u






D-2033
[GalNAc3]scscggaaGfuUfUfGfAf
3017
usCfsuaucUfucAfaAfcUfuccggsu
3271



agauagasus{invAb}

su






D-2034
[GalNAc3]sasuccggaaGfuUfUfGf
3018
usCfsuaucUfucaaAfcUfuccggaus
3272



Afagauags{invAb}

usu






D-2035
{DCA-
3019
asGfsgucaUfuUfguccAfuUfucaga
3273



sC6}uscsugaaAfuGfGfAfCfaaaug

susu




acscs{invAb}








D-2036
[GalNAc3]scsacaaagaCfgGfUfAf
3020
asGfsauuaUfguacCfgUfcuuugugs
3274



Cfauaaucs{invAb}

usu






D-2037
[GalNAc3]sascaaagacGfgUfAfCf
3021
asGfsgauuAfuguaCfcGfucuuugus
3275



Afuaauccs{invAb}

usu






D-2038
[GalNAc3]scsaaagacgGfuAfCfAf
3022
usAfsggauUfauguAfcCfgucuuugs
3276



Ufaauccus{invAb}

usu






D-2039
[GalNAc3]sasaagacggUfaCfAfUf
3023
asUfsaggaUfuaugUfaCfcgucuuus
3277



Afauccuas{invAb}

usu






D-2040
[GalNAc3]susaguuuggAfaUfUfCf
3024
asGfsagcaAfagaaUfuCfcaaacuas
3278



Ufuugcucs{invAb}

usu






D-2041
[GalNAc3]scsuguguGfgCfCfAfAf
3025
asUfsuauaAfuuGfgccAfcAfcagsu
3279



uuauaausus{invAb}

su






D-2042
[GalNAc3]sgscacauUfuGfUfUfUf
3026
usAfsgucuUfaaAfcaaAfuGfugcsu
3280



aagacuasus{invAb}

su






D-2043
[GalNAc3]susggaauUfcUfUfUfGf
3027
asGfsuagaGfcaAfagaAfuUfccasu
3281



cucuacusus{invAb}

su






D-2044
[GalNAc3]susuuggaAfuUfCfUfUf
3028
usAfsgagcAfaaGfaauUfcCfaaasu
3282



ugcucuasus{invAb}

su






D-2045
[GalNAc3]scsuguguGfgCfCfAfAf
3029
asUfsuauaAfuuggccAfcAfcagsus
3283



uuauaausus{invAb}

u






D-2046
[GalNAc3]sgscacauUfuGfUfUfUf
3030
usAfsgucuUfaaacaaAfuGfugcsus
3284



aagacuasus{invAb}

u






D-2047
[GalNAc3]susggaauUfcUfUfUfGf
3031
asGfsuagaGfcaaagaAfuUfccasus
3285



cucuacusus{invAb}

u






D-2048
[GalNAc3]susuuggaAfuUfCfUfUf
3032
usAfsgagcAfaagaauUfcCfaaasus
3286



ugcucuasus{invAb}

u






D-2049
[GalNAc3]sgsacgguAfcAfUfAfAf
3033
usGfsuaggAfuuauguAfcCfgucsus
3287



uccuacasus{invAb}

u






D-2050
[GalNAc3]scsuguGfuGfGfCfCfaa
3034
asUfsuauaAfuUfggccAfcAfcagsu
3288



uuauaausus{invAb}

su






D-2051
[GalNAc3]sgscacAfuUfUfGfUfuu
3035
usAfsgucuUfaAfacaaAfuGfugcsu
3289



aagacuasus{invAb}

su






D-2052
[GalNAc3]susggaAfuUfCfUfUfug
3036
asGfsuagaGfcAfaagaAfuUfccasu
3290



cucuacusus{invAb}

su






D-2053
[GalNAc3]susuugGfaAfUfUfCfuu
3037
usAfsgagcAfaAfgaauUfcCfaaasu
3291



ugcucuasus{invAb}

su






D-2054
[GalNAc3]sgsacgGfuAfCfAfUfaa
3038
usGfsuaggAfuUfauguAfcCfgucsu
3292



uccuacasus{invAb}

su






D-2055
[GalNAc3]suscugaaauGfgAfCfAf
3039
asGfsgucaUfuuguCfcAfuuucagas
3293



Afaugaccs{invAb}

usu






D-2056
[GalNAc3]susgaaAfuGfGfAfCfaa
3040
asGfsgucaUfuuguCfcAfuUfucasu
3294



augaccusus{invAb}

su






D-2057
[GalNAc3]susgcuguguGfgCfCfAf
3041
asUfsuauaAfuuggCfcAfcacagcas
3295



Afuuauaas{invAb}

usu






D-2058
[GalNAc3]scsuguGfuGfGfCfCfaa
3042
asUfsuauaAfuuggCfcAfcAfcagsu
3296



uuauaausus{invAb}

su






D-2059
[GalNAc3]susgcuguGfuGfGfCfCf
3043
asUfsuauaAfuuggccAfcAfcagcas
3297



aauuauaas{invAb}

usu






D-2060
[GalNAc3]scsuguguGfgCfCfAfAf
3044
asUfsuauaAfuuggCfcAfcAfcagsu
3298



uuauaausus{invAb}

su






D-2061
[GalNAc3]scsuguguGfgCfCfAfAf
3045
asUfsuauaAfuuGfgCfcAfcacagsu
3299



uuauaausus{invAb}

su






D-2062
[GalNAc3]scsccucguaUfgUfUfUf
3046
asAfscuuuCfaaaaCfaUfacgagggs
3300



Ufgaaagus{invAb}

usu






D-2063
[GalNAc3]scsucgUfaUfGfUfUfuu
3047
asAfscuuuCfaaaaCfaUfaCfgagsu
3301



gaaaguusus{invAb}

su






D-2064
[GalNAc3]scscaaugggAfuUfUfAf
3048
usGfsuugcUfguaaAfuCfccauuggs
3302



Cfagcaacs{invAb}

usu






D-2065
[GalNAc3]sasaugGfgAfUfUfUfac
3049
usGfsuugcUfguaaAfuCfcCfauusu
3303



agcaacasus{invAb}

su






D-2066
[GalNAc3]scscaaugGfgAfUfUfUf
3050
usGfsuugcUfguaaauCfcCfauuggs
3304



acagcaacs{invAb}

usu






D-2067
[GalNAc3]sasaugggAfuUfUfAfCf
3051
usGfsuugcUfguaaAfuCfcCfauusu
3305



agcaacasus{invAb}

su






D-2068
[GalNAc3]sasaugggAfuUfUfAfCf
3052
usGfsuugcUfguAfaAfuCfccauusu
3306



agcaacasus{invAb}

su






D-2069
[GalNAc3]sgsuuugcucUfuAfAfUf
3053
usCfscauaCfgauuAfaGfagcaaacs
3307



Cfguauggs{invAb}

usu






D-2070
[GalNAc3]susugcUfcUfUfAfAfuc
305
usCfscauaCfgauuAfaGfaGfcaasu
3308



guauggasus{invAb}

su






D-2071
[GalNAc3]sgsuuugcUfcUfUfAfAf
3055
usCfscauaCfgauuaaGfaGfcaaacs
3309



ucguauggs{invAb}

usu






D-2072
[GalNAc3]susugcucUfuAfAfUfCf
3056
usCfscauaCfgauuAfaGfaGfcaasu
3310



guauggasus{invAb}

su






D-2073
[GalNAc3]susugcUfcUfUfAfAfuc
3057
usCfscauaCfgauuaaGfaGfcaasus
3311



guauggasus{invAb}

u






D-2074
[GalNAc3]susugcucUfuAfAfUfCf
3058
usCfscauaCfgaUfuAfaGfagcaasu
3312



guauggasus{invAb}

su






D-2075
[GalNAc3]sasaucagauCfaUfUfAf
3059
asUfsaacuGfguaaUfgAfucugauus
3313



Cfcaguuas{invAb}

usu






D-2076
[GalNAc3]suscagaucaUfuAfCfCf
3060
asGfscuaaCfugguAfaUfgaucugas
3314



Afguuagcs{invAb}

usu






D-2077
[GalNAc3]suscagAfuCfAfUfUfac
3061
asUfsaacuGfguaaUfgAfuCfugasu
3315



caguuausus{invAb}

su






D-2078
[GalNAc3]sasgauCfaUfUfAfCfca
3062
asGfscuaaCfugguAfaUfgAfucusu
3316



guuagcusus{invAb}

su






D-2079
[GalNAc3]sgscacAfuUfUfGfUfuu
3063
usAfsgucuUfaaacAfaAfuGfugcsu
3317



aagacuasus{invAb}

su






D-2080
[GalNAc3]sasagcacAfuUfUfGfUf
3064
usAfsgucuUfaaacaaAfuGfugcuus
3318



uuaagacus{invAb}

usu






D-2081
[GalNAc3]sgscacauUfuGfUfUfUf
3065
usAfsgucuUfaaacAfaAfuGfugcsu
3319



aagacuasus{invAb}

su






D-2082
[GalNAc3]sgscacAfuUfUfGfUfuu
3066
usAfsgucuUfaaacaaAfuGfugcsus
3320



aagacuasus{invAb}

u






D-2083
[GalNAc3]sgscacauUfuGfUfUfUf
3067
usAfsgucuUfaaAfcAfaAfugugcsu
3321



aagacuasus{invAb}

su






D-2084
[GalNAc3]sgscacauuuGfuUfUfAf
3068
asAfsuaguCfuuaaAfcAfaaugugcs
3322



Afgacuaus{invAb}

usu






D-2085
{DCA-
3069
asUfsuauaAfuuggccAfcAfcagsus
3323



sC6}cuguGfuGfGfCfCfaauuauaau

u




sus{invAb}








D-2086
[GalNAc3]sgaaucaAfgAfUfGfGfu
3070
asUfscuucAfccauCfuUfgauucscs
3324



gaagsas{invAb}

u






D-2087
{DCA-
3071
asUfscuucAfccauCfuUfgauucscs
3325



sC6}gaaucaAfgAfUfGfGfugaagsa

u




s{invAb}








D-2088
{DCA-
3072
usCfscauaCfgauuaaGfaGfcaaacs
3326



sC6}guuugcUfcUfUfAfAfucguaug

usu




gs{invAb}








D-2089
{DCA-
3073
asAfscuuUfCfaaaacaUfaCfgaggg
3327



sC6}cccucgUfaUfGfUfUfuugaaag

susu




us{invAb}








D-2090
[GalNAc3]sgsacgguAfcAfUfAfAf
3074
usGfsuaggAfuuAfuguAfcCfgucsu
3328



uccuacasus{invAb}

su






D-2091
[GalNAc3]scsuguGfuGfGfCfCfaa
3075
asUfsuauaAfuuggccAfcAfcagsus
3329



uuauaausus{invAb}

u






D-2092
[GalNAc3]sasaugGfgAfUfUfUfac
3076
usGfsuugcUfguaaauCfcCfauusus
3330



agcaacasus{invAb}

u






D-2093
[GalNAc3]sasagcacauUfuGfUfUf
3077
usAfsgucuUfaaacAfaAfugugcuus
3331



Ufaagacus{invAb}

usu






D-2094
csgsaagaCfaGfCfGfAfccccaugcs
3078
asGfscaugGfggucgcUfgUfcuucgs
3332



{invAb}

usu






D-2095
csasuggaCfgGfCfCfGfguaacaaas
3079
asUfsuuguUfaccggcCfgUfccaugs
3333



{invAb}

usu






D-2096
usgscacaUfgCfGfCfAfcgcgcaugs
3080
asCfsaugcGfcgugcgCfaUfgugcas
3334



{invAb}

usu






D-2097
gscsacauGfcGfCfAfCfgcgcaugcs
3081
usGfscaugCfgcgugcGfcAfugugcs
3335



{invAb}

usu






D-2098
csascaugCfgCfAfCfGfcgcaugcas
3082
asUfsgcauGfcgcgugCfgCfaugugs
3336



{invAb}

usu






D-2099
ascsaugcGfcAfCfGfCfgcaugcacs
3083
asGfsugcaUfgcgcguGfcGfcaugus
3337



{invAb}

usu






D-2100
uscsugcaCfuAfAfAfAfuccccaaas
3084
asUfsuuggGfgauuuuAfgUfgcagas
3338



{invAb}

usu









The methods below were applied to synthesize and purify the RNAi constructs identified in Table 1 and Table 2.


Synthesis

RNAi constructs were synthesized using solid phase phosphoramidite chemistry. Synthesis was performed on a MerMade synthesizer (Bioautomation). Various chemical modifications, including 2′-fluoro modified nucleotides, 2′-O-methyl modified nucleotides, inverted abasic nucleotides, and phosphorothioate internucleotide linkages, were incorporated into the molecules. The RNAi constructs were generally formatted to be duplexes of 19-21 base pairs when annealed with either no overhangs (double bluntmer) or one or two overhangs of 2 nucleotides at the 3′ end of the antisense strand and/or the sense strand. For in vivo studies, the sense strands of the RNAi constructs were conjugated to either a trivalent N-acetyl-galactosamine (GalNAc) moiety or a hydrophobic moiety (e.g., palmitic acid or docosanoic acid) as described further below.


The materials used in the synthesis of RNAi constructs included:

    • Acetonitrile (DNA Synthesis Grade, AX0152-2505, EMD)
    • Capping Reagent A (80:10:10 (v/v/v) tetrahydrofuran/lutidine/acetic anhydride, BIO221/4000, EMD)
    • Capping Reagent B (16% 1-methylimidazole/tetrahydrofuran, BIO345/4000, EMD)
    • Activator Solution (0.25 M 5-(ethylthio)-1H-tetrazole (ETT) in acetonitrile, BIO152/0960, EMD)
    • Detritylation Reagent (3% dichloroacetic acid in dichloromethane, BIO830/4000, EMD)
    • Oxidation Reagent (0.02 M iodine in 70:20:10 (v/v/v) tetrahydrofuran/pyridine/water, BIO420/4000, EMD)
    • Diethylamine solution (20% DEA in acetonitrile, NC0017-0505, EMD)
    • Thiolation Reagent (0.05 M 5-N-[(dimethylamino)methylene]amino-3H-1,2,4-dithiazole-3-thione (BIOSULII/160K) in pyridine)
    • 5′-Aminohexyl linker phosphoramidite and 2′-methoxy and 2′-fluoro phosphoramidites of adenosine, guanosine, and cytosine (Thermo Fisher Scientific), 0.10 M in acetonitrile over Molecular Trap Packs (0.5 g per 30 mL, Bioautomation)
    • 2′-methoxy-uridine phosphoramidite (Thermo Fisher Scientific), 0.10 M in 90:10 (v/v) acetonitrile/DMF over Molecular Trap Packs (0.5 g per 30 mL, Bioautomation)
    • 2′-deoxy-reverse absaic phosphoramidite (ChemGenes), 0.10 M in acetonitrile over Molecular Trap Packs (0.5 g per 30 mL, Bioautomation)
    • CPG Support (Hi-Load Universal Support, 500A (BH5-3500-G1), 79.6 μmol/g, 0.126 g (10 μmol)) or 1 μmol Universal Synthesis Column, 500A, Pipette Style Body (MM5-3500-1, Bioautomation)
    • Ammonium hydroxide (concentrated, J. T. Baker)


Reagent solutions, phosphoramidite solutions, and solvents were attached to the MerMade instrument. The columns containing solid support (BioAutomation, Universal Support, 500 Å) were affixed to the instrument and washed with acetonitrile. The synthesis was started using the Poseidon software. The phosphoramidite and reagent solution lines were purged. The synthesis was accomplished by repetition of the deprotection/coupling/capping/oxidation/capping synthesis cycle. To the solid support was added detritylation reagent to remove the 5′-dimethoxytrityl (DMT) protecting group. The solid support was washed with acetonitrile. To the support was added phosphoramidite (4 eq.) and activator solution (20 eq.) to couple the incoming nucleotide to the free 5′-hydroxyl group. The coupling reaction (6 min) was repeated twice. The support was washed with acetonitrile and then added capping reagents A and B to terminate any unreacted oligonucleotide chains. The support was washed with acetonitrile. To the support was added oxidation or thiolation reagent to convert the phosphite triester to the phosphate triester or phosphorothioate. The oxidation reaction was increased from 3 to 5 min. To the support was added capping reagents A and B to dehydrate the support and terminate any unreacted oligonucleotide chains. The solid support was washed with acetonitrile. After the final reaction cycle, the resin was first treated with diethylamine solution to remove the 2-cyanoethyl protecting groups from the phosphate backbone. The support was washed with acetonitrile and the DMT group removed from antisense strands. The 5′ termini of sense strands were left 5′-monomethoxytrityl (MMT) protected.


Analysis of Crude Synthesized RNAi Constructs

Crude samples were prepared for ion-pairing (IP)-LCMS by making 20-fold dilutions into water (1004 final volume). Samples were analyzed by ion-pairing (IP)-LCMS on an Agilent 1290 analytical HPLC. Samples were eluted from a Waters Xbridge BEH OST C18 column (1.7 um, 2.1×50 mm) using a linear gradient of acetonitrile in 15.7 mM DIEA/50 mM HFIP over 3.5 min with a flowrate of 400 μL/min.


Conjugation

To facilitate on-resin acylation or conjugation to GalNAc, the MMT group was removed by addition of deprotection solution consisting of trifluoroacetic acid with triisopropylsilane (2% each, v/v) in dichloromethane (DCM). The mixture was gently stirred and let stand for approximately 2-5 min. The mixture was initially gravity filtered until the solution no longer drained then filtered under vacuum. The process repeated 5-10 times until the filtrate was no longer colored. The resin was washed with DCM, neutralized with 5% DIEA in DCM (2×2 min), and washed again with DCM.


When conjugation to docosanoic acid (C22) was desired, docosanoic acid (10 molar equivalents relative to the resin) was dissolved in DCM (70 mM, 34.1 mg, 100 μmol, TCI) and TATU (500 mM DMSO) (32.2 mg, 100 μmol, ChemPep) was added (10 eq) followed by DIEA (500 mM DCM) (25.24 mg, 200 μmol, Aldrich) (20 eq). The solution was mixed and let stand to pre-activate for 5-10 min. The activated ester was added to the oligo-resin and the reaction vessels sealed. The reaction vessels were placed on a vortex mixer at 700 RPM for 14h at room temperature. The solution was drained, and the resin washed with DMF and DCM.


When conjugation to a palmitoyl group was desired, palmitic acid (10 molar equivalents relative to the resin) was dissolved in DCM (300 mM, 25.64 mg, 100 μmol, Aldrich) was transferred to a polypropylene tube (10 molar equivalents relative to the resin) and TATU (500 mM DMSO) (32.2 mg, 100 μmol, ChemPep) was added (10 eq) followed by DIEA (500 mM DCM) (25.24 mg, 200 μmol, Aldrich) (20 eq). The solution was mixed and let stand to pre-activate for 5-10 min. The activated ester was added to the oligo-resin and the reaction vessels sealed. The reaction vessels were placed on a vortex mixer at 700 RPM for 14h at room temperature. The solution was drained, and the resin washed with DMF and DCM.


When conjugation to GalNAc was desired, a solution of GalNAc3-Lys2-Ahx (67 mg, 40 μmol) in DMF (0.5 mL) was prepared in a separate vial. GalNAc3-Lys2-Ahx, which has the structure shown as Formula VII below, was prepared with 1,1,3,3-tetramethyluronium tetrafluoroborate (TATU, 12.83 mg, 40 μmol) and diisopropylethylamine (DIEA, 13.9 μL, 80 μmol). The activated coupling solution was added to the resin, and the column was capped and incubated at room temperature overnight. The resin was washed with DMF, DCM, and dried under vacuum.




embedded image


In Formula VII, X═O or S. The squiggly line represents the point of attachment to the 5′ terminal nucleotide of the sense strand of the RNAi construct. The GalNAc moiety was attached to the 5′ carbon of the 5′ terminal nucleotide of the sense strand except where an inverted abasic (invAb) deoxynucleotide was the 5′ terminal nucleotide and linked to the adjacent nucleotide via a 5′-5′ internucleotide linkage, in which case the GalNAc moiety was attached to the 3′ carbon of the inverted abasic deoxynucleotide.


Cleavage from Resin


The columns were placed in a cleavage chuck and to the columns was added 1.2 mL of a solution containing 20% ethanol in concentrated ammonium hydroxide (1:4 v/v). The solvent was allowed to gravity drain through the solid support and filtrates collected into a 24 well plate. The cleavage process was repeated 3 times and the filtrates combined. The plate was sealed in a deprotection chuck and placed in an incubator at 55° C. and let mix at 200 RPM for 20 h. The chuck/plate were let cool to room temperature and samples were taken for LCMS. The plate was placed in a Genevac HT4X and the samples concentrated for 2 hr leaving approximately 2 mL of concentrate


RP-HPLC Purification of Lipid-Conjugated Oligos

The crude oligo was purified by RP-HPLC using a Phenomenex Oligo-RP C18 column (Sum, 10×250 mm) with a flowrate of 6 mL/min. The mobile phase consisted of 0.02M ammonium bicarbonate with 5% acetonitrile (Buffer-A) & 75% acetonitrile (Buffer-B). The fractions were pooled for desalt as described below.


Anion Exchange Purification of Oligos

The antisense and GalNAc-conjugated sense strands were purified by anion exchange (AEX) chromatography. Oligos were eluted from a two Tosoh TSK Gel SuperQ-5PW columns in series (21×150 mm, 13 um) with a flowrate of 8 mL/min. using a linear gradient of 1 M sodium bromide in 20 mM sodium phosphate, 15% acetonitrile, pH 8.5. Samples were desalted and UV quantified as described below.


Desalt

The pooled fractions were desalted by size exclusion chromatography on a GE Akta Pure using a GE Hi-Prep 26/10 column and 19.9% EtOH mobile phase. Desalted samples were analyzed by IP-LCMS, quantified by UV (Nanodrop), and lyophilized in a Genevac S3-HT12.


Final QC

Samples were analyzed by ion-pairing (IP)-LCMS on an Agilent 1290 analytical HPLC. Samples were eluted from a Waters Xbridge BEH OST C18 column (1.7 um, 2.1×50 mm) using a linear gradient of acetonitrile in 15.7 mM DIEA/50 mM HFIP over 6.5 min. with a flowrate of 400 μL/min.


Annealing

Single strands were reconstituted in PBS at 2 mM and quantified by UV. Single strands were diluted to 1 mM in PBS and equal volumes combined to anneal the corresponding duplex. The duplex was annealed at 90° C. for 5 min and allowed to cool to room temp. Duplex formation was monitored by analytical AEX and single strands titrated as necessary.


Example 4: In Vitro Evaluation of FAM13A siRNA Molecules in a Cell-Based Assay

A panel of fully chemically modified siRNAs from Example 3 were prepared and tested for potency and selectivity of FAM13A mRNA knockdown in vitro. Each siRNA duplex consisted of two strands, the sense or ‘passenger’ strand and the antisense or ‘guide’ strand.


RNA FISH (fluorescence in situ hybridization) assay was carried out to measure FAM13A mRNA knockdown by test siRNAs. HUH-7 cells (Sekisui Xenotech JCRB0403) were cultured in Eagle's Minimum Essential Medium (EMEM) (ATCC® 30-2003™) supplemented with 10% fetal bovine serum (FBS, Sigma) and 1% penicillin-streptomycin (P-S, Corning). siRNAs were transfected into cells by reverse transfection using Lipofectamine RNAiMAX transfection reagent (Thermo Fisher Scientific). 1 μL of test siRNAs (in 10 data points for dose with 1:3 dilution starting at 500 nM final concentration) or phosphate-buffered saline (PBS) vehicle and 4 μL of plain EMEM without supplements were added to PDL-coated CellCarrier-384 Ultra assay plates (PerkinElmer) by a Bravo automated liquid handling platform (Agilent). 5 μL of Lipofectamine RNAiMAX (Thermo Fisher Scientific), pre-diluted in plain EMEM without supplements (0.06 μL of RNAiMAX in 5 μL EMEM), was then dispensed into the assay plates by a Multidrop Combi reagent dispenser (Thermo Fisher Scientific). After 20-minute incubation of the siRNA/RNAiMAX mixture at room temperature (RT), 30 μL of HepG2 cells (2000 cells per well) in EMEM supplemented with 10% FBS and 1% P-S were added to the transfection complex using a Multidrop Combi reagent dispenser. The assay plates were incubated at RT for 20 mins prior to being placed in an incubator. Cells were incubated for 72 hrs. at 37° C. and 5% CO2.


The RNA FISH assay was performed 72 hours after siRNA transfection, using the manufacturer's assay reagents and protocol (QuantiGene® ViewRNA HC Screening Assay from Thermo Fisher Scientific) on an in-house assembled automated FISH assay platform. In brief, cells were fixed in 4% formaldehyde (Thermo Fisher Scientific) for 15 mins at RT, permeabilized with detergent for 3 mins at RT and then treated with protease solution for 10 mins at RT. Target-specific probes (ThermoFisher VA6-3175340-VC) or vehicle (target probe diluent without target probes as negative control) were incubated for 3 hours, whereas preamplifiers, amplifiers, and label probes were incubated for 1 hour each. All hybridization steps were carried out at 40° C. in a Cytomat 2 C-LIN automated incubator (Thermo Fisher Scientific).


After hybridization reactions, cells were stained for 30 mins with Hoechst and CellMask Blue (Thermo Fisher Scientific) and then imaged on an Opera Phenix high-content screening system (PerkinElmer). The images were analyzed using a Columbus image data storage and analysis system (PerkinElmer) to obtain the mean spot count per cell. The mean spot count per cell was normalized using the high (PBS with target probes) and low (PBS without target probes) control wells. The high and low controls have normalized values of 100 and 0, respectively. The normalized values against the test siRNA concentrations were fitted to a 4-parameter sigmoidal model using Genedata Screener data analysis software (Genedata, Basel, Switzerland) to obtain IC50 values and maximum activity.


To verify and compare results, some of the siRNA duplexes were analyzed more than once using the above assay.


The results of the assays are shown in Table 3. FAM13A knockdown provides a percentage of knockdown compared to control samples. Where an siRNA duplex was tested more than once, each test is shown as a separate row in Table 3 as different “runs” of the assay. Negative values indicate a decrease in FAM13A mRNA levels. Undefined means the Genedata Screener software could not fit a curve.









TABLE 3







In vitro inhibition of human FAM13A mRNA in Hep3B cells










Duplex No.
Run No.
IC50 (nM)
Max FAM13A knockdown (%)













1001

5.74
−49.1


1002

5.95
−46.1


1003

>500
−40.0


1004

3.49
−38.7


1005
Run 1
Undefined
−33.0


1005
Run 2
6.51
−43.9


1005
Run 3
1.97
−50.6


1006

>500
−1.6


1007

2.4
−53.3


1008

1.36
−52.7


1009

>500
−15.3


1010

16.5
−65.7


1011

5.85
−65.5


1012

13
−51.9


1013
Run 1
5.44
−67.8


1013
Run 2
4.93
−63.9


1014

4.4
−72.9


1015

3.99
−74.7


1016

2.33
−67.0


1017

3.34
−75.8


1018

6.84
−31.9


1019

2.59
−78.9


1020

5.91
−81.0


1021

4.43
−52.3


1022

5.48
−70.1


1023

4.08
−80.3


1024

2.47
−77.4


1025

6.26
−81.4


1026

Undefined
−38.7


1027

>500
−2.1


1028

3.77
−81.2


1029

3.51
−70.5


1030

16
−50.6


1031

2.67
−43.7


1032

>500
−25.7


1033

Undefined
−37.0


1034

3.92
−74.3


1035
Run 1
1.95
−41.4


1035
Run 2
9.61
−31.8


1036

Undefined
−39.3


1037

1.23
−77.7


1038
Run 1
4.72
−80.8


1038
Run 2
6.55
−76.5


1038
Run 3
4.56
−71.9


1039

14.1
−69.2


1040

2.55
−82.9


1041

3.91
−71.3


1042

8.71
−72.6


1043

2.46
−78.6


1044

4.49
−77.6


1045

1.47
−79.6


1046

5.89
−65.6


1047

6.16
−73.2


1048

4.7
−69.8


1049

6.59
−76.0


1050

5.19
−86.4


1051

6.74
−68.7


1052

3.77
−69.5


1053

18.9
−62.2


1054

5.86
−72.6


1055

Undefined
−60.1


1056

5.25
−55.4


1057

4.01
−76.3


1058

4.31
−74.9


1059

10.5
−71.2


1060

4.44
−65.1


1061

11.2
−82.2


1062

5.75
−95.0


1063

16.5
−68.1


1064

11.3
−56.1


1065

7.73
−55.6


1066

>500
−18.5


1067

4.9
−68.4


1068

Undefined
−36.8


1069

20.2
−72.1


1070

3.7
−84.3


1071

2.78
−52.0


1072

2.72
−75.8


1073

>500
−9.7


1074

4.12
−76.3


1075

1.62
−81.9


1076

5.71
−78.7


1077

2.92
−60.1


1078

3.14
−71.9


1079

4.53
−49.4


1080

8.67
−79.1


1081

3.97
−82.1


1082

2.73
−75.3


1083

2.48
−72.7


1084

2.45
−60.5


1085

2.93
−63.7


1086

11.8
−81.7


1087

8.19
−77.0


1088

Undefined
−28.5


1089

>500
4.8


1090

3.22
−75.1


1091

3.5
−82.7


1092

2.81
−70.1


1093

7.01
−66.3


1094
Run 1
27.7
−70.5


1094
Run 2
28
−80.9


1094
Run 3
6.51
−72.5


1095

14.2
−76.8


1096

2.98
−81.7


1097

3.39
−79.6


1098

6.78
−56.7


1099

>500
−10.8


1100

2.42
−74.3


1101

3.49
−64.2


1102
Run 1
19.9
−54.2


1102
Run 2
18.8
−73.3


1102
Run 3
26.2
−70.0


1103

8.52
−59.5


1104

5.59
−79.1


1105

6.73
−38.8


1106

3.44
−44.4


1107

6.25
−88.4


1108

17.6
−42.5


1109

2.7
−44.7


1110

>500
−23.1


1111

>500
28.7


1112

4.27
−49.4


1113

4.03
−54.1


1114

5.59
−79.4


1115

15.8
−76.0


1116

6.72
−70.9


1117

52.3
−48.3


1118
Run 1
7.89
−58.9


1118
Run 2
1.42
−46.1


1119

5.51
−78.9


1120

4.28
−39.5


1121

>500
0.0


1122

3.2
−74.3


1123

>18.5
−24.6


1124

2.95
−80.7


1125

8.53
−37.6


1126

1.86
−85.5


1127

3.94
−82.0


1128

2.92
−83.9


1129

>500
−20.2


1130

>500
7.8


1131

>500
−22.7


1132

>500
−0.8


1133

1.36
−38.9


1134

28.9
−55.7


1135

Undefined
−57.6


1136

>500
−18.4


1137

>167
−19.0


1138

9.39
−51.8


1139

>500
−21.7


1140

2.61
−70.0


1141

1.48
−75.0


1142

3.9
−93.1


1143

3.55
−85.1


1144

6.44
−54.5


1145

3.35
−89.3


1146

27.9
−65.8


1147

1.83
−64.6


1148

4.16
−63.8


1149

3.07
−61.7


1150

3.65
−79.0


1151

12.3
−80.2


1152

7.56
−69.6


1153

6.31
−87.0


1154

4.23
−80.4


1155

24.9
−50.3


1156

6.43
−72.3


1157

>500
3.9


1158

4.07
−76.2


1159

2.42
−78.5


1160

3.8
−31.4


1161

46.6
−43.0


1162

Undefined
−39.5


1163

6.17
−70.2


1164

20.5
−65.9


1165

19
−56.7


1166
Run 1
3.29
−72.1


1166
Run 2
3.27
−75.1


1167

3.88
−79.2


1168

18.2
−58.5


1169

>500
−15.2


1170

8.32
−58.4


1171

1.71
−84.5


1172

5.3
−90.7


1173

Undefined
−31.5


1174

3.51
−73.5


1175

12.8
−85.8


1176

>500
8.5


1177

>500
6.5


1178

>500
11.2


1179
Run 1
>500
11.6


1179
Run 2
Undefined
−34.1


1180

Undefined
−52.7


1181

10.2
−46.4


1182

26.2
−42.9


1183

5.71
−50.8


1184

>500
21.2


1185

5.34
−65.0


1186

6.12
−47.3


1187

12.1
−64.8


1188

4.44
−45.4


1189

6.12
−42.4


1190

3.52
−74.4


1191

3.77
−67.5


1192

>500
7.5


1193

16.6
−73.9


1194

33.4
−40.3


1195

9.77
−42.8


1196

>500
−3.6


1197

9.38
−39.0


1198

9.41
−55.6


1199

6.51
−64.1


1200

>500
−37.7


1201

>500
−19.0


1202

>167
−24.0


1203

11.6
−58.5


1204

0.593
−44.6


1205

6.19
−41.3


1206

3.99
−65.8


1207

7.26
−49.6


1208

3.91
−50.1


1209

2.55
−65.0


1210

3.24
−84.2


1211

7.45
−77.8


1212

2.09
−82.1


1213

5.31
−83.7


1214

3.75
−84.4


1215

7.38
−84.0


1216

2.48
−74.3


1217

3.61
−56.6


1218

1.22
−79.7


1219
Run 1
5.07
−93.2


1219
Run 2
1.84
−88.2


1219
Run 3
11.1
−87.5


1220

3.89
−88.0


1221

1.97
−89.0


1222

12.9
−80.1


1223

57.4
−31.0


1224

2.42
−94.2


1225

3.62
−85.0


1226

3.12
−87.7


1227

1.62
−71.5


1228

>500
−29.3


1229

>500
−10.4


1230

5.23
−37.0


1231

>500
8.4


1232

1.35
−78.4


1233

Undefined
−29.0


1234

4.38
−42.8


1235

3.42
−80.9


1236

7.33
−59.6


1237

8.96
−51.5


1238

2.27
−82.2


1239

2.74
−83.0


1240

2.33
−77.5


1241

2.77
−76.6


1242

6.71
−63.5


1243

2.29
−86.4


1244

46.8
−72.2


1245

18
−57.2


1246

>500
20.7


1247

>500
−0.9


1248

>500
−20.0


1249

2.99
−57.3


1250

4.38
−72.3


1251

4.87
−53.2


1252

2.3
−44.6


1253

3.27
−66.6


1254

Undefined
−53.4


1255

3.68
−51.2


1256

3.2
−57.2


1257

21.6
−57.7


1258

>500
−15.1


1259

9.5
−76.0


1260

2.47
−67.7


1261

2.41
−63.4


1262

12.3
−78.3


1263

11.7
−83.0


1264

2.02
−77.8


1265

6.7
−62.0


1266

3.99
−70.0


1267

5.48
−69.7


1268

4.6
−55.0


1269

Undefined
−31.8


1270

5.58
−64.8


1271

6.02
−59.9


1272

2.32
−57.8


1273
Run 1
5.34
−78.2


1273
Run 2
4.11
−72.8


1274

1.88
−62.2


1275

2.35
−72.0


1276

1.57
−72.1


1277

3.79
−79.0


1278

1.81
−73.0


1279

1.81
−71.1


1280

1.44
−64.8


1281

1.95
−67.7


1282

4.44
−71.4


1283

2.71
−77.3


1284
Run 1
3.55
−67.3


1284
Run 2
3.28
−72.0


1285

8.75
−66.3


1286

4.65
−78.9


1287

10.3
−76.5


1288

4.76
−74.0


1289

5.13
−68.5


1290

>500
−22.5


1291

15.6
−52.2


1292

2.3
−37.6


1293

5.38
−63.6


1294

>500
−25.6


1295

6.02
−60.4


1296

5.31
−83.4


1297

1.62
−73.4


1298

Undefined
−30.6


1299

2.32
−63.6


1300

1.19
−54.6


1301

1.78
−64.7


1302

4.79
−55.9


1303

1.83
−57.3


1304

9.89
−75.5


1305

4.19
−69.5


1306

3.65
−74.3


1307

12.6
−55.7


1308

12.6
−61.5


1309

2.83
−50.6


1310

4.94
−55.4


1311

1.74
−50.9


1312

4.25
−58.2


1313

5.44
−71.6


1314

2.28
−78.4


1315

3.42
−73.2


1316

8.48
−43.1


1317

Undefined
−39.4


1318

9.04
−51.5


1319

4.55
−58.6


1320

5.69
−63.2


1321

Undefined
−37.6


1322

4.82
−56.4


1323
Run 1
Undefined
−49.9


1323
Run 2
>500
−8.8


1324

9.43
−50.7


1325

16.3
−51.9


1326

15.8
−42.6


1327

7.09
−54.5


1328
Run 1
22.5
−63.9


1328
Run 2
34.1
−47.5


1329

>500
27.5


1330

4.47
−39.0


1331

11.6
−83.7


1332

5.14
−56.8


1333

3.43
−44.6


1334

2.79
−65.6


1335
Run 1
5.17
−55.2


1335
Run 2
5.78
−58.2


1336
Run 1
5.63
−54.8


1336
Run 2
Undefined
−50.7


1337

13.9
−68.8


1338

13
−61.6


1339

12.7
−66.6


1340

2.85
−68.3


1341
Run 1
3.41
−68.1


1341
Run 2
1.97
−64.3


1342
Run 1
0.113
−76.1


1342
Run 2
3.75
−81.6


1343

3.08
−78.4


1344

14.1
−87.2


1345

2.92
−84.4


1346

9.04
−84.3


1347

6.71
−75.3


1348

11.4
−75.0


1349

8.35
−57.0


1350
Run 1
9.86
−79.2


1350
Run 2
6.72
−74.6


1351

6.46
−72.8


1352
Run 1
Undefined
−31.0


1352
Run 2
23.5
−36.5


1353

8.35
−57.1


1354

Undefined
−32.8


1355

>500
−1.4


1356

>500
−19.1


1357

Undefined
−53.8


1358

10.9
−63.6


1359

7.91
−57.3


1360

10.5
−63.8


1361

3.53
−37.2


1362

>500
−3.7


1363

>500
−19.6


1364
Run 1
Undefined
−36.2


1364
Run 2
40.9
−40.0


1365

26.2
−50.3


1366
Run 1
4.25
−50.8


1366
Run 2
1.76
−52.4


1367

>500
23.8


1368

Undefined
−39.2


1369

>500
−32.2


1370

16.3
−49.5


1371

Undefined
−51.8


1372

43.5
−73.6


1373

4.18
−60.3


1374

11.9
−62.0


1375

9.86
−61.2


1376

7.68
−61.3


1377

4.8
−50.1


1378
Run 1
2.32
−61.0


1378
Run 2
1.91
−65.2


1379

7.06
−59.1


1380

14.4
−64.5


1381
Run 1
Undefined
−31.4


1381
Run 2
>500
−3.3


1382

6.69
−36.3


1383

>500
−14.2


1384

24.7
−72.1


1385

7.57
−65.4


1386

5.78
−80.7


1387

13
−60.6


1388

18.1
−71.0


1389

6.48
−72.6


1390

1.79
−68.7


1391

3.7
−77.4


1392

7.54
−74.5


1393

2.25
−66.4


1394

4.24
−69.7


1395

2.06
−64.5


1396
Run 1
1.01
−69.3


1396
Run 2
0.597
−71.2


1397

2.63
−70.2


1398

5.5
−74.8


1399

1.93
−70.0


1400

3.14
−74.4


1401

9.12
−70.5


1402

Undefined
−43.8


1403

8.46
−70.3


1404

9.15
−75.0


1405

14.5
−63.9


1406

4.89
−60.6


1407

5.41
−52.0


1408
Run 1
2.46
−42.3


1408
Run 2
1.75
−67.0


1409

19.5
−64.5


1410

>500
−28.7


1411

>500
−14.2


1412

>500
−3.4


1413

4.59
−58.6


1414

Undefined
−43.9


1415

Undefined
−54.5


1416
Run 1
>500
22.8


1416
Run 2
>500
13.1


1417

>500
0.5


1418

>500
43.6


1419

77.3
−64.7


1420
Run 1
>500
9.3


1420
Run 2
>500
−4.3


1421
Run 1
7.54
−47.1


1421
Run 2
26.3
−43.0


1422

4.9
−53.3


1423

2.06
−54.0


1424

Undefined
−49.9


1425

3.79
−55.6


1426

Undefined
−45.5


1427

0.569
−46.2


1428

7.11
−72.7


1429

0.653
−63.3


1430

1.07
−66.8


1431

4.47
−70.9


1432

7.62
−63.1


1433

15.8
−66.5


1434

4.22
−64.0


1435

5.61
−57.6


1436

Undefined
−45.5


1437

Undefined
−39.1


1438

32.2
−69.4


1439

4.03
−48.3


1440

Undefined
−40.6


1441
Run 1
13.7
−45.1


1441
Run 2
Undefined
−61.3


1442

1.48
−57.2


1443

4.08
−70.3


1444

6.59
−68.0


1445

5.2
−44.5


1446
Run 1
16.2
−77.6


1446
Run 2
18
−82.3


1447

3.61
−64.6


1448

8.4
−44.0


1449

>500
−21.8


1450

28.4
−67.6


1451

8.59
−57.0


1452

7.12
−62.2


1453

3.53
−62.4


1454
Run 1
16.5
−76.5


1454
Run 2
6.29
−51.7


1455

3.26
−61.8


1456

2.62
−58.2


1457

9.92
−55.2


1458

6.52
−80.4


1459
Run 1
1.57
−64.4


1459
Run 2
4.65
−63.4


1460

3.82
−61.8


1461

4.83
−80.9


1462

3.11
−82.0


1463

3.2
−78.5


1464

3.85
−72.9


1465

2.94
−79.1


1466

2.73
−70.7


1467

2.78
−67.1


1468

3.24
−64.2


1469

8.53
−71.2


1470

7.92
−73.5


1471

4.63
−67.0


1472

7.7
−66.0


1473

5.15
−67.9


1474

7.04
−76.4


1475

3.17
−74.5


1476

1.86
−72.8


1477

6.87
−62.9


1478

19.1
−61.4


1479

3.31
−79.0


1480

5.12
−74.9


1481

2.39
−74.5


1482

7.5
−69.0


1483

3.6
−70.0


1484

1.97
−72.2


1485

5.47
−79.8


1486

6.5
−73.7


1487

5.19
−59.7


1488

1.78
−81.0


1489

1.99
−61.5


1490

0.976
−60.4


1491

2.58
−73.5


1492

0.878
−81.6


1493

3.86
−81.7


1494

2.53
−64.3


1495

3.27
−75.3


1496

1.24
−90.2


1497

1.26
−81.8


1498

1.44
−86.2


1499

1.14
−69.0


1500
Run 1
1.85
−75.9


1500
Run 2
1.07
−71.1


1500
Run 3
1.73
−80.0


1501

1.31
−81.6


1502

1.91
−71.2


1503

4.05
−77.5


1504

3.64
−75.5


1505

1.22
−76.0


1506

0.925
−57.1


1507
Run 1
2.22
−74.5


1507
Run 2
2.84
−72.6


1507
Run 3
3.58
−64.9


1508

3.57
−73.6


1509
Run 1
2.55
−76.4


1509
Run 2
3.9
−72.5


1510
Run 1
0.449
−73.0


1510
Run 2
0.715
−65.6


1511

3.23
−74.2


1512
Run 1
2.08
−77.9


1512
Run 2
2.54
−62.8


1513

4.14
−68.2


1514
Run 1
5.72
−67.8


1514
Run 2
5.64
−77.0


1515

2.7
−75.4


1516

2.5
−66.4


1517

2.83
−66.8


1518
Run 1
1.91
−66.6


1518
Run 2
5.63
−70.0


1518
Run 3
3.13
−76.4


1519

3.52
−63.2


1520

1.05
−70.7


1521

1.41
−56.4


1522

2.37
−68.2


1523

0.935
−68.4


1524
Run 1
4.41
−75.7


1524
Run 2
0.914
−70.3


1525

3.18
−62.3


1526

4.5
−66.1


1527

1.93
−73.6


1528

1.35
−79.4


1529

1.8
−72.2


1530
Run 1
0.598
−58.8


1530
Run 2
1.12
−69.6


1531

1.59
−76.4


1532

2.1
−67.7


1533

2.56
−41.1


1534

5.96
−57.4


1535
Run 1
1.75
−61.3


1535
Run 2
0.449
−58.7


1536

14.7
−66.5


1537

0.47
−44.4


1538

2.27
−45.6









Example 5: In Vivo Efficacy of siRNA Molecules in an AAV Human FAM13A Mouse Model

To assess the efficacy of the FAM13A siRNA molecules, the top performing FAM13A siRNA molecules from the in vitro activity assays described in Example 4 were evaluated for in vivo efficacy and durability in a C57BL/6 mouse model. Broadly, the FAM13A siRNA molecules were administered to mice expressing a portion of the human FAM13A gene. For these experiments, the sense strand in each tested siRNA molecule was conjugated to the trivalent GalNAc moiety shown in Formula VII or to docosanoic acid (C22), using the methods described in Example 3. In some experiments, FAM13A siRNA molecules were evaluated for in vivo efficacy and durability with altered chemical modification patterns.


The mouse model used was an AAV human FAM13A mouse model. In advance of siRNA injection, 10-12-week-old C57BL/6 mice (The Jackson Laboratory) were fed standard chow (Harlan, 2020× Teklad global soy protein-free extruded rodent diet). Female C57Bl6 mice 10-14 weeks old were intravenously (i.v.) injected with an adeno-associated virus (AAV) engineered to coexpress both eGFP and a portion of the human FAM13A gene transcript. The construct used was: AAV-hFAM13A-1 (encoding nucleotides 1200-2900 of SEQ ID NO: 1; “AAV1”), AAV-hFAM13A-2 (encoding nucleotides 2800-4500 of SEQ ID NO: 1; “AAV2”), AAV-hFAM13A-3 (encoding nucleotides 4400-6100 of SEQ ID NO: 1; “AAV3”), AAV-hFAM13A-9span (encoding selected portions of SEQ ID NO: 1 that contain SEQ ID NOs: 15, 24, 125, 127, 222, 233, 481, 498, 503, 504, and 513, connected by linkers; “AAV-9span”), or AAV-FAM13A-22span (encoding selected portions of SEQ ID NO: 1 that contain SEQ ID NOs: 15, 24, 41, 125, 127, 150, 164, 222, 233, 406, 448, 466, 470, 481, 498, 503, 504, 513, 523, 526, 527, 533, and 534, connected by linkers; “AAV-22span”).


Each mouse was injected with a single AAV at a dose of 1×1012 genome copies (GC) per animal. Two weeks following AAV injection, mice received a single subcutaneous (s.c.) injection of buffer (PBS) or the FAM13A siRNA molecule at a dose of 0.5 mg/kg, 1 mg/kg, 3 mg/kg, 5 mg/kg, 15 mg/kg, or 20 mg/kg body weight in PBS (n=3 or 4 mice per group, as indicated below).


Liver and subcutaneous white adipose tissue (ScWAT) were collected 2 or 4 weeks following siRNA administration and analyzed. RNA from harvested animal tissues was processed for qPCR analysis. RNA was isolated from 50-100 mg tissue using RNeasy 96 universal tissue kit RNA isolation protocol following manufacturer's instructions (Qiagen) or using a KingFisher Apex system and the MagMAX mirVana Total RNA Isolation Kit according to the manufacturer's instructions (ThermoFisher). Real-time PCR was performed using TaqMan® RNA-to-Ct™ 1-Step Kit following manufacturer's instructions (ThermoFisher) with 50 ng RNA per reaction and the following primer probe sets: (1) eGFP1 Forward primer: CTATGTGCAGGAGAGAACCATC (Sense; SEQ ID NO: 2798); Reverse primer: GCCCTTCAGCTCGATTCTATT (Antisense; SEQ ID NO: 2799); Probe: 5′-6FAM-TACAAGACCCGCGCTGAAGTCAAG TAMRA-3′ (Sense; SEQ ID NO: 2800); (2) eGFP2 Forward primer: TCATCTGCACCACTGGAAAG (Sense; SEQ ID NO: 2801); Reverse primer: CTGCTTCATATGGTCTGGGTATC (Antisense; SEQ ID NO: 2802); Probe: 5′-6FAM CCAACACTGGTCACTACCCTCACC TAMRA-3′ (Sense; SEQ ID NO: 2803); (3) BGH Forward primer: 5′-GCCAGCCATCTGTTGT-3′ (SEQ ID NO: 2804); Reverse primer: 5′-GGAGTGGCACCTTCCA-3′ (SEQ ID NO: 2805); Probe: 5′-6FAM-TCCCCCGTGCCTTCCTTGACC TAMRA-3′ (Sense; SEQ ID NO: 2806); and (4) mPpib TaqMan® gene expression assay (Mm00478295 Thermo Fisher). Knockdown of mRNA levels were quantified using primer sets targeting either the eGFP sequence in the 5′ end of the construct (i.e., eGFP primer set #1 or eGFP primer set #2) or the bovine growth hormone polyadenylation signal present in the viral mRNA (BGHpA primer set) at the 3′ end of construct. The knockdown efficiency of the siRNA triggers was determined using semi-quantitative real-time polymerase chain reactions on a QuantStudio 7 Flex real time thermocycler. Gene expression was calculated using the ΔΔCt approach while utilizing cyclophilin (PPIB) as the reference gene. A percentage change in human FAM13A mRNA in liver or ScWAT for each animal was calculated relative to the level of human FAM13A mRNA in the liver or ScWAT of control animals. The control animals used to calculate the percentage change expressed the same human FAM13A mRNA but received the buffer only injection in place of an siRNA injection.


Results of the studies in the AAV-FAM13A mouse model with different FAM13A siRNA molecules are shown in Tables 4-17 below. Data are expressed as average percent change from control at week 4 or 6 of each study (i.e., 2 or 4 weeks after siRNA injection as indicated) for each treatment group (n=3 or 4 animals/group as indicated). The trigger family refers to the first nucleotide in the range of nucleotides of SEQ ID NO: 1 that is targeted by a given siRNA molecule. If a FAM13A siRNA molecule has the same trigger family designation as another FAM13A siRNA molecule but differs in duplex number, then the two molecules have the same core sequence (i.e., the siRNA molecules target the same region of the FAM13A transcript) but differ in chemical modification pattern as detailed in Table 2. A chart of a subset of this data is also shown in FIGS. 8A-8D.









TABLE 4







siRNA Efficacy in Liver 4 Weeks Following siRNA Injection













SIRNA
Trigger
Dose

AAV

Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
No.
Carrier
eGFP-1
eGFP-2
BGHpA


















D-1545
1309
1
3
AAV1
GalNAc
−42.71 ± 5.394
−42.27 ± 6.616
−43.14 ± 7.444


D-1570
1311
1
4
AAV1
GalNAc
 −19.4 ± 22.73
−20.06 ± 23.37
−11.63 ± 22.15


D-1569
1338
1
4
AAV1
GalNAc
−11.79 ± 13.66
 −9.43 ± 15.27
−2.923 ± 19.6 


D-1543
1366
1
4
AAV1
GalNAc
 6.133 ± 27.89
−6.135 ± 26.59
−0.283 ± 29.62


D-1542
1489
1
4
AAV1
GalNAc
 35.76 ± 43.79
−9.96 ± 10.4
−3.553 ± 24.72


D-1553
1495
1
4
AAV1
GalNAc
 23.78 ± 27.21
−19.31 ± 9.899
−22.28 ± 11.59


D-1576
1533
1
4
AAV1
GalNAc
 24.96 ± 21.55
 23.82 ± 31.71
−10.03 ± 7.092


D-1575
1558
1
4
AAV1
GalNAc
 33.74 ± 49.25
 13.87 ± 59.23
−6.078 ± 39.15


D-1574
1619
1
4
AAV1
GalNAc
 40.25 ± 54.93
−34.08 ± 31.01
−36.47 ± 25.89


D-1554
1632
1
4
AAV1
GalNAc
−6.793 ± 44.9 
−31.49 ± 35.05
−35.24 ± 28.19


D-1563
1896
1
4
AAV1
GalNAc
29.29 ± 45.3
 −8.05 ± 32.28
−13.19 ± 25.73


D-1568
2066
1
4
AAV1
GalNAc
 21.07 ± 48.89
−13.38 ± 36.29
−18.64 ± 22.78


D-1567
2070
1
4
AAV1
GalNAc
−23.67 ± 22.87
−21.89 ± 19.75
−29.35 ± 12.26


D-1550
2078
1
4
AAV1
GalNAc
−25.78 ± 25.17
−15.87 ± 29.37
−19.85 ± 24.99


D-1549
2080
1
4
AAV1
GalNAc
−44.66 ± 24.88
−37.31 ± 28.36
−33.42 ± 23.16


D-1544
2144
1
4
AAV1
GalNAc
−28.04 ± 10.28
−23.07 ± 13.65
−36.02 ± 7.789


D-1565
2146
1
4
AAV1
GalNAc
−1.398 ± 16.51
 3.045 ± 16.82
−17.82 ± 16.44


D-1539
2151
1
3
AAV1
GalNAc
−32.85 ± 3.319
−27.82 ± 3.752
−35.23 ± 5.315


D-1573
2263
1
4
AAV1
GalNAc
 −39.7 ± 15.67
 −37.2 ± 17.08
−60.35 ± 10.09


D-1547
2266
1
4
AAV1
GalNAc
 26.08 ± 32.18
 5.21 ± 30.99
−37.34 ± 10.9 


D-1556
2356
1
4
AAV1
GalNAc
 62.47 ± 17.62
 38.02 ± 19.36
−6.388 ± 11.61


D-1578
2360
1
4
AAV1
GalNAc
 13.18 ± 30.52
−6.565 ± 26.66
−36.01 ± 14.96


D-1581
2623
1
4
AAV1
GalNAc
 −1.75 ± 5.865
−22.66 ± 7.519
−57.66 ± 5.097


D-1561
2887
1
4
AAV1
GalNAc
16.06 ± 19.7
−2.823 ± 18.4 
−40.04 ± 5.249


D-1561
2887
1
3
AAV2
GalNAc
−23.87 ± 27.24
−20.19 ± 29.58
−36.03 ± 9.772


D-1620
2889
1
3
AAV1
GalNAc
 40.81 ± 24.72
 15.21 ± 24.44
−39.23 ± 10.53


D-1620
2889
1
3
AAV2
GalNAc
 52.21 ± 70.23
 47.44 ± 78.78
−39.71 ± 28.42


D-1560
2890
1
3
AAV2
GalNAc
−17.63 ± 29.61
−12.89 ± 40.28
 −19.9 ± 24.63


D-1559
2893
1
3
AAV2
GalNAc
 −27.2 ± 15.47
−25.82 ± 14.26
−38.13 ± 14.9 


D-1558
2895
1
4
AAV2
GalNAc
−4.058 ± 33.95
−1.795 ± 34.36
−18.15 ± 26.74


D-1604
2923
1
4
AAV2
GalNAc
−18.23 ± 34.59
−14.74 ± 36.79
 −27.4 ± 32.69


D-1541
2934
1
4
AAV2
GalNAc
−24.22 ± 24.87
−17.93 ± 26.09
−32.21 ± 24.58


D-1588
2937
1
4
AAV2
GalNAc
−6.588 ± 17.49
−2.385 ± 20.55
−20.34 ± 14.32


D-1619
2994
1
4
AAV2
GalNAc
−4.965 ± 29.63
−0.955 ± 31.88
 −16.1 ± 23.98


D-1557
3000
1
4
AAV2
GalNAc
−38.01 ± 36.01
−38.72 ± 32.87
−45.02 ± 26.58


D-1579
3002
1
4
AAV2
GalNAc
−29.78 ± 13.38
−23.06 ± 12.39
−29.02 ± 11.54


D-1555
3014
1
4
AAV2
GalNAc
 −33.3 ± 38.16
−33.52 ± 35.11
−27.61 ± 45.38


D-1586
3133
1
3
AAV2
GalNAc
−14.15 ± 24.03
−14.48 ± 32.6 
−32.73 ± 22.7 


D-1540
3184
1
4
AAV2
GalNAc
 49.01 ± 85.72
 47.35 ± 84.39
−15.39 ± 48  


D-1552
3187
1
4
AAV2
GalNAc
−23.01 ± 40.18
−23.16 ± 41.09
−57.91 ± 23.56


D-1618
3189
1
4
AAV2
GalNAc
 −15.8 ± 32.14
−11.32 ± 38.42
−55.8 ± 15.9


D-1585
3192
1
4
AAV2
GalNAc
−23.44 ± 22.34
−25.44 ± 24.5 
−32.71 ± 15.77


D-1584
3283
1
4
AAV2
GalNAc
 51.7 ± 81.84
 48.43 ± 75.58
−28.35 ± 32.39


D-1580
3438
1
3
AAV2
GalNAc
 37.73 ± 23.51
 37.64 ± 14.87
 −41.3 ± 12.94


D-1583
3498
1
4
AAV2
GalNAc
 61.43 ± 51.09
 70.94 ± 52.52
−40.57 ± 15.94


D-1582
3499
1
4
AAV2
GalNAc
 3.543 ± 40.05
 5.378 ± 33.08
−50.74 ± 20.44


D-1571
3569
1
4
AAV2
GalNAc
 87.02 ± 48.83
 105.1 ± 53.36
−23.29 ± 23.41


D-1551
3777
1
4
AAV2
GalNAc
 32.18 ± 41.17
 38.02 ± 52.05
−37.14 ± 25.23


D-1548
4008
1
4
AAV2
GalNAc
 55.32 ± 23.06
 52.73 ± 30.99
  −42 ± 8.405


D-1600
4109
1
4
AAV2
GalNAc
 −0.87 ± 54.04
 4.31 ± 64.12
−53.28 ± 23.72
















TABLE 5







siRNA Dose-Response in Liver 2 Weeks Following siRNA Injection













SIRNA
Trigger
Dose

AAV

Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
No.
Carrier
eGFP-1
eGFP-2
BGHpA


















D-1545
1309
0.5
4
AAV1
GalNAc
 32.32 ± 41.77
 27.47 ± 45.03
 60.59 ± 56.66


D-1545
1309
1
3
AAV1
GalNAc
−43.11 ± 49.6 
−43.36 ± 48.77
−21.68 ± 72.64


D-1545
1309
3
3
AAV1
GalNAc
−38.58 ± 8.37 
−38.32 ± 8.48 
 −4.04 ± 17.42


D-1635
1309
5
4
AAV1
C22
 −33.1 ± 36.41
 −38.7 ± 34.27
−36.57 ± 31.56


D-1635
1309
15
4
AAV1
C22
 −9.79 ± 18.62
−11.38 ± 16.78
 −6.75 ± 28.58


D-1639
1309
5
4
AAV1
C22
 40.4 ± 22.62
 31.4 ± 25.97
 19.65 ± 19.04


D-1639
1309
15
4
AAV1
C22
 −3.26 ± 22.12
 −8.76 ± 21.44
 −8.45 ± 16.66


D-1640
1309
0.5
4
AAV1
GalNAc
 −28.7 ± 46.06
−32.11 ± 44.06
 −2.33 ± 58.61


D-1640
1309
1
4
AAV1
GalNAc
−46.12 ± 29.63
−47.19 ± 29.99
−19.78 ± 50.46


D-1640
1309
3
3
AAV1
GalNAc
−45.55 ± 4.81 
−46.32 ± 6.37 
−19.31 ± 10.39


D-1549
2080
0.5
3
AAV1
GalNAc
 −8.73 ± 17.94
 −11.9 ± 18.81
−10.33 ± 22.34


D-1549
2080
1
3
AAV1
GalNAc
−60.51 ± 24.19
−53.49 ± 11.13
−52.03 ± 14.74


D-1549
2080
3
3
AAV1
GalNAc
−47.02 ± 17.61
−47.06 ± 20.21
−47.44 ± 14.68


D-1643
2080
5
3
AAV1
C22
 9.49 ± 25.88
 −0.76 ± 26.26
−11.85 ± 13.08


D-1643
2080
15
3
AAV1
C22
   6.1 ± 41.35
 2.91 ± 39.69
 −6.65 ± 37.28


D-1544
2144
0.5
4
AAV1
GalNAc
−34.12 ± 38.75
−39.14 ± 36.58
−10.02 ± 46.03


D-1544
2144
1
4
AAV1
GalNAc
 −5.52 ± 24.49
 −3.87 ± 28.72
 23.6 ± 37.54


D-1544
2144
3
3
AAV1
GalNAc
−52.79 ± 51.1 
−54.53 ± 49.23
−28.81 ± 78.9 


D-1636
2144
5
4
AAV1
C22
−15.47 ± 42.39
−23.31 ± 36.14
−16.14 ± 34.22


D-1636
2144
15
4
AAV1
C22
−43.75 ± 19.47
−44.85 ± 17.58
−39.17 ± 18.75


D-1539
2151
1
4
AAV1
GalNAc
 13.36 ± 33.44
 4.59 ± 30.4
 −0.61 ± 23.31


D-1539
2151
3
4
AAV1
GalNAc
−15.59 ± 26.47
−16.46 ± 26.89
−15.8 ± 20.8


D-1573
2263
0.5
3
AAV1
GalNAc
 −2.52 ± 64.76
 −5.55 ± 66.02
 3.78 ± 43.72


D-1573
2263
1
3
AAV1
GalNAc
−36.45 ± 14.44
−36.88 ± 13.96
−35.55 ± 7.81 


D-1573
2263
3
4
AAV1
GalNAc
−16.91 ± 14.29
−16.85 ± 11.81
−19.48 ± 14.82


D-1638
2263
5
3
AAV1
C22
 6.18 ± 39.91
 1.64 ± 38.82
 0.64 ± 24.22


D-1638
2263
15
4
AAV1
C22
−14.48 ± 14.06
−15.34 ± 16.81
−32.49 ± 23.85


D-1644
2263
5
3
AAV1
C22
 −4.49 ± 28.46
 −8.13 ± 28.85
−9.74 ± 20.2


D-1644
2263
15
3
AAV1
C22
−40.62 ± 32.29
−41.72 ± 34.15
−45.04 ± 28.65


D-1645
2263
0.5
3
AAV1
GalNAc
 17.05 ± 15.72
 13.25 ± 12.64
 5.3 ± 8.75


D-1645
2263
1
3
AAV1
GalNAc
 11.58 ± 11.59
  12 ± 9.78
19.45 ± 15.6


D-1645
2263
3
4
AAV1
GalNAc
−30.31 ± 8.48 
−31.96 ± 5.84 
−34.08 ± 16.03


D-1557
3000
1
3
AAV2
GalNAc
 3.82 ± 37.62
 −4.13 ± 31.55
   5.9 ± 34.59


D-1557
3000
3
3
AAV2
GalNAc
   9.8 ± 49.78
 6.24 ± 48.34
 27.57 ± 48.71


D-1642
3000
15
3
AAV2
C22
−60.07 ± 23.8 
 −58.2 ± 24.84
−52.11 ± 26.5 


D-1586
3133
1
4
AAV2
GalNAc
 −9.95 ± 20.45
 −7.39 ± 16.97
 −6.25 ± 21.94


D-1586
3133
3
3
AAV2
GalNAc
−46.14 ± 14.71
−42.98 ± 17.58
−39.14 ± 15.32


D-1637
3133
15
3
AAV2
C22
 −17.3 ± 10.47
−17.27 ± 10.65
−16.31 ± 9.96 
















TABLE 6







siRNA Efficacy in Liver 4 Weeks Following siRNA Injection













SIRNA
Trigger
Dose

AAV

Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
No.
Carrier
eGFP-1
eGFP-2
BGHpA


















D-1599
1328
1
4
AAV1
GalNAc
−45.95 ± 34.12
−51.22 ± 29.38
−43.47 ± 38.85


D-1597
1333
1
4
AAV1
GalNAc
−62.57 ± 20.24
−64.15 ± 18.92
 −62.8 ± 14.32


D-1589
1496
1
4
AAV1
GalNAc
 14.3 ± 63.6
 10.78 ± 62.99
 −4.3 ± 34.03


D-1616
1534
1
4
AAV1
GalNAc
−11.65 ± 14.21
−16.95 ± 16.59
−11.05 ± 10.43


D-1610
1631
1
4
AAV1
GalNAc
−48.26 ± 55.95
 −52.2 ± 51.51
−53.22 ± 49.44


D-1607
1666
1
4
AAV1
GalNAc
−49.8 ± 32.9
−51.01 ± 30.93
−54.32 ± 27.54


D-1609
1671
1
4
AAV1
GalNAc
−4.39 ± 32.6
−17.13 ± 26.03
−19.54 ± 26.39


D-1615
1678
1
4
AAV1
GalNAc
−41.13 ± 53.81
−49.28 ± 45.76
−45.21 ± 48.78


D-1605
1698
1
4
AAV1
GalNAc
−33.95 ± 19.59
−36.11 ± 16.39
−36.42 ± 16.43


D-1606
1705
1
4
AAV1
GalNAc
−17.39 ± 28.54
−19.93 ± 31.05
−25.46 ± 25.93


D-1587
1801
1
4
AAV1
GalNAc
 45.99 ± 35.41
 32.63 ± 29.48
 14.33 ± 25.53


D-1608
1952
1
4
AAV1
GalNAc
 21.23 ± 45.64
 18.69 ± 46.27
 12.11 ± 38.75


D-1601
2075
1
4
AAV1
GalNAc
 3.48 ± 52.45
11.81 ± 55.2
−28.69 ± 27.8 


D-1602
2270
1
4
AAV1
GalNAc
−31.34 ± 30.1 
−29.49 ± 32.27
−29.03 ± 29.76


D-1613
2344
1
4
AAV1
GalNAc
−16.52 ± 26.48
 −5.98 ± 37.64
−16.72 ± 16.64


D-1598
2353
1
3
AAV1
GalNAc
 −6.46 ± 79.75
 2.57 ± 87.09
−11.44 ± 74.95


D-1595
2358
1
3
AAV1
GalNAc
 −17.2 ± 28.13
 −8.88 ± 30.22
 −8.88 ± 30.22


D-1592
2462
1
4
AAV1
GalNAc
−19.82 ± 24.34
−16.13 ± 26.34
98.03 ± 8.2 


D-1621
2632
1
4
AAV1
GalNAc
−13.73 ± 45.73
 −9.86 ± 49.02
 64.93 ± 59.16


D-1620
2889
1
4
AAV2
GalNAc
−37.46 ± 43.63
−40.78 ± 35.94
−45.42 ± 32.5 


D-1604
2923
1
4
AAV2
GalNAc
 39.14 ± 72.97
 25.32 ± 61.13
 15.5 ± 48.93


D-1588
2937
1
3
AAV2
GalNAc
 6.07 ± 22.94
 5.99 ± 30.89
 −5.12 ± 13.34


D-1619
2994
1
4
AAV2
GalNAc
 39.67 ± 48.64
 44.18 ± 65.89
 18.49 ± 38.81


D-1618
3189
1
4
AAV2
GalNAc
 10.19 ± 27.42
 3.71 ± 24.64
 0.48 ± 24.64


D-1632
3429
1
4
AAV2
GalNAc
 45.62 ± 34.77
 41.55 ± 34.47
 23.62 ± 31.38


D-1617
3717
1
4
AAV2
GalNAc
 38.84 ± 47.24
 37.53 ± 45.21
    19 ± 42.75


D-1626
3720
1
4
AAV2
GalNAc
 −6.37 ± 40.83
−11.26 ± 36.19
−17.84 ± 31.67


D-1600
4109
1
4
AAV2
GalNAc
 27.89 ± 36.42
 22.01 ± 32.66
 12.46 ± 28.14


D-1590
4779
1
3
AAV3
GalNAc
−33.73 ± 13  
−38.93 ± 12.77
    6 ± 19.5


D-1630
4804
1
4
AAV3
GalNAc
−14.77 ± 6.49 
−12.14 ± 2.53 
−30.29 ± 35.81


D-1596
4927
1
4
AAV3
GalNAc
−42.19 ± 18.45
−41.27 ± 17.05
−42.41 ± 18.48


D-1594
4928
1
4
AAV3
GalNAc
 −2.76 ± 27.16
 −1.57 ± 31.74
−39.67 ± 30.85


D-1593
4956
1
4
AAV3
GalNAc
 8.35 ± 10.98
14.89 ± 12.4
 36.47 ± 110.18


D-1631
4957
1
4
AAV3
GalNAc
−57.28 ± 10.53
−54.33 ± 14.16
−61.59 ± 11.91


D-1634
4993
1
4
AAV3
GalNAc
−34.13 ± 23.86
−29.69 ± 22.95
−42.05 ± 16.41


D-1614
4999
1
4
AAV3
GalNAc
 −72.8 ± 18.55
−70.72 ± 19.27
−75.89 ± 15.31


D-1633
5012
1
4
AAV3
GalNAc
−44.29 ± 14.87
−41.01 ± 14.68
−47.43 ± 12.41


D-1611
5043
1
4
AAV3
GalNAc
 −67.5 ± 14.12
−64.75 ± 15.77
−70.05 ± 12.45


D-1612
5045
1
4
AAV3
GalNAc
−57.91 ± 11.94
−56.76 ± 12.24
−72.15 ± 19.53


D-1591
5060
1
4
AAV3
GalNAc
−37.88 ± 21.07
−36.57 ± 20.16
−43.71 ± 19.3 


D-1603
5067
1
4
AAV3
GalNAc
−27.08 ± 12.11
−21.28 ± 12.91
−29.76 ± 9.66 


D-1629
5068
1
4
AAV3
GalNAc
−25.94 ± 28.07
−22.16 ± 29.33
 −27.4 ± 24.84


D-1628
5069
1
4
AAV3
GalNAc
−36.64 ± 25.96
−33.81 ± 25.97
−37.94 ± 22.7 


D-1623
5080
1
4
AAV3
GalNAc
−34.14 ± 2.45 
−29.15 ± 4.19 
−40.61 ± 6.41 


D-1627
5115
1
4
AAV3
GalNAc
 −9.14 ± 24.05
 −4.67 ± 24.43
−12.81 ± 27.17


D-1622
5255
1
4
AAV3
GalNAc
−36.04 ± 17.88
−33.61 ± 19.59
−34.26 ± 15.69


D-1625
5338
1
4
AAV3
GalNAc
−26.25 ± 35.36
−24.19 ± 36.13
 −29.8 ± 29.64
















TABLE 7







siRNA Efficacy in Liver and Adipose Tissue 4 Weeks Following siRNA Injection*











siRNA
Trigger
Dose

Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
Carrier
Tissue
eGFP-1
eGFP-2
BGHpA


















D-1597
1333
3
4
GalNAc
Liver
 −56.3 ± 21.55
−55.72 ± 21.86
 −51.8 ± 24.69


D-1545
1309
3
3
GalNAc
Liver
−38.49 ± 7.6 
−38.32 ± 10.46
 −35.9 ± 12.63


D-1640
1309
3
4
GalNAc
Liver
−27.46 ± 16.52
−30.18 ± 15.06
−26.35 ± 9.34 


D-1646
1309
3
4
GalNAc
Liver
−33.27 ± 15.52
−35.26 ± 16.91
 −36.1 ± 11.18


D-1652
1309
3
4
GalNAc
Liver
−37.03 ± 10.19
−37.27 ± 11.97
−40.53 ± 10.69


D-1657
1309
3
4
GalNAc
Liver
−42.36 ± 27.93
−44.67 ± 25.92
−47.49 ± 20.08


D-1662
1309
3
4
GalNAc
Liver
−49.31 ± 3.2 
−49.12 ± 3.99 
−36.17 ± 6.86 


D-1667
1309
3
4
GalNAc
Liver
64.41 ± 14.9
−64.39 ± 13.81
−53.08 ± 18.99


D-1549
2080
3
3
GalNAc
Liver
−42.27 ± 1.69 
−37.74 ± 6.96 
−36.56 ± 12.45


D-1647
2080
3
4
GalNAc
Liver
 −9.81 ± 14.47
−14.38 ± 34.58
  −15 ± 35.29


D-1651
2080
3
4
GalNAc
Liver
−14.14 ± 38.82
−15.22 ± 33.33
 −7.23 ± 42.67


D-1656
2080
3
4
GalNAc
Liver
−26.48 ± 28.43
 45.17 ± 17.46
−46.61 ± 18.99


D-1661
2080
3
4
GalNAc
Liver
−57.19 ± 35.09
−57.87 ± 34.18
−46.61 ± 38.09


D-1666
2080
3
4
GalNAc
Liver
−10.47 ± 28.04
−23.11 ± 34.64
−21.77 ± 37.38


D-1544
2144
3
4
GalNAc
Liver
 −43.5 ± 14.87
−40.65 ± 14.86
−27.59 ± 20.88


D-1648
2144
3
4
GalNAc
Liver
−53.99 ± 29.24
 −53.2 ± 28.75
−46.51 ± 30.91


D-1653
2144
3
4
GalNAc
Liver
−36.13 ± 14.87
−34.76 ± 16.33
−25.79 ± 18.55


D-1658
2144
3
4
GalNAc
Liver
−39.78 ± 25.74
 −34.7 ± 27.83
−32.37 ± 17.93


D-1663
2144
3
4
GalNAc
Liver
−27.73 ± 16.32
−24.24 ± 16.47
−23.95 ± 12.37


D-1668
2144
3
4
GalNAc
Liver
−29.31 ± 14.33
−30.61 ± 11.87
 −19.7 ± 18.95


D-1635
1309
20
4
C22
Liver
−31.24 ± 27.79
−31.05 ± 29.03
−23.73 ± 19.73


D-1639
1309
20
4
C22
Liver
−43.19 ± 40.95
−36.31 ± 47.36
−40.72 ± 42.52


D-1670
1309
20
4
C22
Liver
−18.18 ± 16.92
 −8.04 ± 17.92
−16.58 ± 9.32 


D-1676
1309
20
4
C22
Liver
−22.36 ± 34.59
 −17.1 ± 39.02
−11.76 ± 38.63


D-1681
1309
20
3
C22
Liver
47.73 ± 7.7 
−52.39 ± 10.5 
−55.07 ± 10.11


D-1686
1309
20
3
C22
Liver
−46.26 ± 7.27 
−46.39 ± 8.07 
−44.22 ± 16.43


D-1691
1309
20
4
C22
Liver
−32.27 ± 13.41
−24.45 ± 15.05
−28.15 ± 14.13


D-1635
1309
20
4
C22
Adipose
 7.94 ± 65.35
 9.18 ± 74.04
 −9.4 ± 78.81


D-1639
1309
20
4
C22
Adipose
 −61.2 ± 32.62
 −61.1 ± 33.16
−61.15 ± 36.91


D-1670
1309
20
4
C22
Adipose
−56.88 ± 23.59
−51.24 ± 33.29
−59.98 ± 24.89


D-1676
1309
20
4
C22
Adipose
   63.2 ± 100.25
 42.97 ± 75.56
 24.61 ± 57.61


D-1681
1309
20
3
C22
Adipose
 29.33 ± 103.09
19.17 ± 93.9
 −9.62 ± 76.91


D-1686
1309
20
3
C22
Adipose
−79.73 ± 13.34
 −80.1 ± 13.72
 −80.3 ± 11.86


D-1691
1309
20
4
C22
Adipose
−18.98 ± 17.2 
−20.98 ± 11.52
−26.98 ± 11.76





*Table 7 contains data only from mice infected with the AAV1 viral construct













TABLE 8







siRNA Efficacy in Liver and Adipose Tissue 4 Weeks Following siRNA Injection














SIRNA
Trigger
Dose

AAV


Avg. % Change in mRNA ± STD
















Duplex
Family
(mg/kg)
N
No.
Carrier
Tissue
eGFP-1
eGFP-2
BGHpA



















D-1597
1333
1
4
AAV1
GalNAc
Liver
−37.5 ± 14.1
−30.9 ± 13.3
−47.3 ± 6.1


D-1615
1678
1
4
AAV1
GalNAc
Liver
−37.9 ± 18
−34.7 ± 19.1
−38.8 ± 17.8


D-1631
4957
1
4
AAV3
GalNAc
Liver
−32.1 ± 10.7
−26.1 ± 17.3
−38.3 ± 15.5


D-1614
4999
1
4
AAV3
GalNAc
Liver
−53.2 ± 12.8
−49.7 ± 17
−56.2 ± 9


D-1611
5043
1
4
AAV3
GalNAc
Liver
−34.3 ± 33.8
−33.3 ± 32
−44.5 ± 21.2


D-1612
5045
1
4
AAV3
GalNAc
Liver
−31.1 ± 27.1
−30.1 ± 27.3
−34.5 ± 18.5


D-1597
1333
3
4
AAV1
GalNAc
Liver
−72.3 ± 10.6
−69.5 ± 12.8
−72.2 ± 7.4


D-1615
1678
3
4
AAV1
GalNAc
Liver
−65.5 ± 6.1
−63.2 ± 7
−63.9 ± 4.7


D-1631
4957
3
4
AAV3
GalNAc
Liver
  −68 ± 6.9
−65.3 ± 7.7
−65.5 ± 7.2


D-1614
4999
3
4
AAV3
GalNAc
Liver
−67.3 ± 2.4
−64.9 ± 2.6
−65.2 ± 0.6


D-1611
5043
3
4
AAV3
GalNAc
Liver
−66.8 ± 17.1
−65.2 ± 17.7
−66.4 ± 14.9


D-1612
5045
3
4
AAV3
GalNAc
Liver
  −83 ± 13
−82.2 ± 14
−82.6 ± 14.2


D-1694
1333
20
4
AAV1
C22
Liver
−73.3 ± 9.4
−71.3 ± 10.4
−72.2 ± 3.7


D-1695
1678
20
4
AAV1
C22
Liver
−51.9 ± 33.7
  −51 ± 33.5
−56.8 ± 29.8


D-1696
4957
20
4
AAV3
C22
Liver
−34.7 ± 29.7
−34.3 ± 31.1
−43.6 ± 21.4


D-1697
4999
20
4
AAV3
C22
Liver
 −3.3 ± 53.7
  1.1 ± 55.4
−18.9 ± 43.9


D-1698
5043
20
4
AAV3
C22
Liver
−32.6 ± 15.1
  −31 ± 15.9
−43.7 ± 10.3


D-1699
5045
20
4
AAV3
C22
Liver
−18.6 ± 16.2
−18.7 ± 13.7
−28.2 ± 11.7


D-1694
1333
20
4
AAV1
C22
Adipose
−66.4 ± 8
−67.6 ± 9.6
−75.2 ± 7


D-1695
1678
20
4
AAV1
C22
Adipose
  −19 ± 55.4
−17.5 ± 59.3
−43.7 ± 43


D-1696
4957
20
4
AAV3
C22
Adipose
−75.6 ± 34.8
−75.3 ± 34.7
−78.1 ± 27.5


D-1697
4999
20
4
AAV3
C22
Adipose
−79.7 ± 5.8
−78.5 ± 6.4
−73.2 ± 9.1


D-1698
5043
20
4
AAV3
C22
Adipose
  −69 ± 21.9
−67.5 ± 25.3
−68.4 ± 19.7


D-1699
5045
20
4
AAV3
C22
Adipose
−72.2 ± 15.9
−69.1 ± 19.5
−54.4 ± 17.1
















TABLE 9







siRNA Efficacy in Liver and Adipose Tissue 4 Weeks Following siRNA Injection














SIRNA
Trigger
Dose

AAV


Avg. % Change in mRNA ± STD
















Duplex
Family
(mg/kg)
N
No.
Carrier
Tissue
eGFP-1
eGFP-2
BGHpA



















D-1557
3000
3
4
AAV2
GalNAc
Liver
−52.1 ± 15.3
−51.3 ± 15.8
−46.9 ± 19.4


D-1650
3000
3
4
AAV2
GalNAc
Liver
−54.1 ± 10
−53.1 ± 10.5
−52.4 ± 15.2


D-1655
3000
3
4
AAV2
GalNAc
Liver
−44.6 ± 9.6
−42.8 ± 10
−42.3 ± 7.1


D-1660
3000
3
4
AAV2
GalNAc
Liver
−39.3 ± 8.9
−42.9 ± 3.7
−43.4 ± 8.3


D-1665
3000
3
4
AAV2
GalNAc
Liver
−20.5 ± 22
−19.6 ± 21.1
−22.1 ± 17.8


D-1586
3133
3
4
AAV2
GalNAc
Liver
−38.6−9.4
−36.8 ± 8.5
  −40 ± 2.3


D-1649
3133
3
4
AAV2
GalNAc
Liver
−43.4 ± 5.6
−37.6 ± 6.5
−42.5 ± 12.4


D-1654
3133
3
4
AAV2
GalNAc
Liver
−27.4 ± 46.7
  −22 ± 49.3
−20.8 ± 46.1


D-1659
3133
3
4
AAV2
GalNAc
Liver
−41.5 ± 2.9
−36.8 ± 5.7
−42.1 ± 6.3


D-1664
3133
3
4
AAV2
GalNAc
Liver
−43.7 ± 14.8
−41.6 ± 15.9
−45.5 ± 12.1


D-1669
3133
3
4
AAV2
GalNAc
Liver
−45.7 ± 27.1
−40.7 ± 29.6
−46.4 ± 28.6


D-1623
5080
3
4
AAV3
GalNAc
Liver
−27.1 ± 25.9
−22.4 ± 30.4
−27.1 ± 24.9


D-1643
2080
20
4
AAV1
C22
Liver
−14.9 ± 19.5
−14.6 ± 21.1
−11.6 ± 17.1


D-1671
2080
20
4
AAV1
C22
Liver
−20.1 ± 23.6
−20.5 ± 23.4
  −17 ± 25.9


D-1675
2080
20
4
AAV1
C22
Liver
−32.6 ± 11.2
−31.9 ± 14
−19.5 ± 15.8


D-1680
2080
20
4
AAVI
C22
Liver
−52.1 ± 13.6
  −50 ± 12.9
−42.1 ± 11.9


D-1685
2080
20
4
AAV1
C22
Liver
  −54 ± 25.8
−53.5 ± 26.2
−46.7 ± 29


D-1690
2080
20
4
AAVI
C22
Liver
  −40 ± 10.9
−36.2 ± 8.7
−33.9 ± 13.3


D-1636
2144
20
4
AAV1
C22
Liver
−48.8 ± 30
−44.2 ± 33.6
−40.9 ± 33.7


D-1672
2144
20
4
AAV1
C22
Liver
  −11 ± 16.5
 −7.5 ± 16.9
  −20 ± 6.3


D-1677
2144
20
4
AAV1
C22
Liver
−23.6 ± 9.1
−20.2 ± 7.2
−17.5 ± 9.3


D-1682
2144
20
4
AAV1
C22
Liver
−14.4 ± 9.8
  −13 ± 9.2
−29.9 ± 5.7


D-1687
2144
20
4
AAV1
C22
Liver
−59.5 ± 33.4
  −61 ± 32.4
−74.3 ± 18.5


D-1692
2144
20
4
AAVI
C22
Liver
−60.5 ± 21.6
−60.1 ± 23.3
  −73 ± 6.7


D-1846
5080
20
4
AAV3
C22
Liver
−76.6 ± 36
−79.6 ± 29.9
−83.5 ± 27.2


D-1643
2080
20
4
AAVI
C22
Adipose
−53.4 ± 23.5
−55.1 ± 23.9
−65.8 ± 16.6


D-1671
2080
20
4
AAV1
C22
Adipose
−74.9 ± 7.5
−79.2 ± 5
−76.1 ± 10.3


D-1675
2080
20
4
AAV1
C22
Adipose
−64.9 ± 14.4
−67.8 ± 14.9
  −71 ± 13.7


D-1680
2080
20
4
AAVI
C22
Adipose
−69.6 ± 26.1
−66.3 ± 29
−83.1 ± 11.1


D-1685
2080
20
4
AAV1
C22
Adipose
−70.2 ± 32
−67.3 ± 35.7
−80.4 ± 20


D-1690
2080
20
4
AAV1
C22
Adipose
−81.5 ± 11.6
−82.6 ± 10.5
−82.1 ± 16.7


D-1636
2144
20
4
AAV1
C22
Adipose
−65.7 ± 40.7
  −60 ± 47.4
−78.5 ± 26.6


D-1672
2144
20
4
AAV1
C22
Adipose
−63.3 ± 21.1
−65.6 ± 19.9
−59.1 ± 27.6


D-1677
2144
20
4
AAV1
C22
Adipose
−44.2 ± 19.2
−35.8 ± 26
−56.6 ± 18.2


D-1682
2144
20
4
AAV1
C22
Adipose
−85.5 ± 7.7
−81.1 ± 8.9
−78.3 ± 14


D-1687
2144
20
4
AAV1
C22
Adipose
−52.1 ± 15.3
−51.3 ± 15.8
−46.9 ± 19.4


D-1692
2144
20
4
AAV1
C22
Adipose
−54.1 ± 10
−53.1 ± 10.5
−52.4 ± 15.2


D-1846
5080
20
4
AAV3
C22
Adipose
−44.6 ± 9.6
−42.8 ± 10
−42.3 ± 7.1
















TABLE 10







siRNA Efficacy in Liver 4 Weeks Following siRNA Injection













SIRNA
Trigger
Dose

AAV

Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
No.
Carrier
eGFP-1
eGFP-2
BGHpA





D-1597
1333
3
4
1
GalNAc
−57.5 ± 17.2
−54.9 ± 17.5
−55.1 ± 15.5


D-1721
1333
3
4
1
GalNAc
−35.5 ± 4
−31.5 ± 8.3
  −34 ± 3.1


D-1728
1333
3
4
1
GalNAc
−32.5 ± 18.5
−28.1 ± 18.5
−36.8 ± 13.8


D-1735
1333
3
4
1
GalNAc
−36.3 ± 11.7
  −35 ± 7.2
−36.3 ± 8.6


D-1707
1333
3
4
1
GalNAc
−37.8 ± 10.4
−39.3 ± 9.7
−34.5 ± 4.1


D-1714
1333
3
4
1
GalNAc
−50.6 ± 18.8
−49.1 ± 19.4
−45.8 ± 18


D-1700
1333
3
4
1
GalNAc
−44.5 ± 15.2
−40.9 ± 17.9
−45.8 ± 18.5


D-1615
1678
3
4
1
GalNAc
−53.7 ± 19.8
  −52 ± 20.9
−47.8 ± 14.9


D-1722
1678
3
4
1
GalNAc
−45.8 ± 22
−40.4 ± 24.7
−46.9 ± 14.7


D-1729
1678
3
4
1
GalNAc
−31.8 ± 15.6
−27.5 ± 16.4
−43.2 ± 4.9


D-1736
1678
3
4
1
GalNAc
−51.7 ± 8.2
−50.6 ± 7.3
−43.2 ± 5.4


D-1708
1678
3
4
1
GalNAc
−36.1 ± 9.7
−32.3 ± 11.1
−35.2 ± 9.7


D-1715
1678
3
4
1
GalNAc
−28.1 ± 28.8
−22.6 ± 30.8
−32.9 ± 21


D-1701
1678
3
4
1
GalNAc
−27.8 ± 20.9
−25.6 ± 18.1
  −17 ± 18.8


D-1631
4957
3
4
3
GalNAc
−55.3 ± 18.1
−56.1 ± 19.4
−52.7 ± 18.3


D-1724
4957
3
4
3
GalNAc
−62.3 ± 8.1
−62.5 ± 7
−59.1 ± 7.3


D-1731
4957
3
4
3
GalNAc
  −64 ± 11.9
−59.9 ± 14.4
−58.9 ± 15.6


D-1738
4957
3
4
3
GalNAc
−42.1 ± 9.4
−40.2 ± 11.3
−46.7 ± 9


D-1710
4957
3
4
3
GalNAc
−57.9 ± 6.3
−57.3 ± 6.3
−49.7 ± 4.3


D-1717
4957
3
4
3
GalNAc
−61.4 ± 24.8
−58.5 ± 28.6
−59.3 ± 23.8


D-1703
4957
3
4
3
GalNAc
−61.2 ± 10
−62.1 ± 9
−54.3 ± 12.5


D-1614
4999
3
4
3
GalNAc
  −71 ± 21.5
−70.7 ± 21.7
−73.5 ± 16.8


D-1723
4999
3
4
3
GalNAc
−70.8 ± 3.4
  −70 ± 2.2
−60.8 ± 1.5


D-1730
4999
3
4
3
GalNAc
−72.4 ± 15
−72.5 ± 16.2
−67.2 ± 11.7


D-1737
4999
3
4
3
GalNAc
−71.5 ± 3.9
−74.5 ± 5
−65.1 ± 1.5


D-1709
4999
3
4
3
GalNAc
  −73 ± 5
−71.6 ± 5.3
−67.5 ± 6.2


D-1716
4999
3
4
3
GalNAc
  −76 ± 4
−75.5 ± 4.2
−69.4 ± 4.1


D-1702
4999
3
4
3
GalNAc
−72.7 ± 4.9
−72.1 ± 4.7
−67.9 ± 2.1


D-1611
5043
3
4
3
GalNAc
−71.6 ± 11.4
−69.4 ± 12
−65.2 ± 10.6


D-1726
5043
3
4
3
GalNAc
−59.8 ± 17.1
−57.3 ± 18.3
−58.8 ± 13.7


D-1733
5043
3
4
3
GalNAc
−70.8 ± 8.1
−68.3 ± 9.2
−64.3 ± 8.7


D-1740
5043
3
4
3
GalNAc
−61.6 ± 10.8
−57.9 ± 12.3
−56.6 ± 6.9


D-1712
5043
3
4
3
GalNAc
−67.8 ± 9
−64.7 ± 10.4
−69.6 ± 6.3


D-1719
5043
3
4
3
GalNAc
−69.4 ± 6.2
−68.9 ± 5.6
−68.1 ± 3.3


D-1705
5043
3
4
3
GalNAc
−81.4 ± 4.9
−77.9 ± 8.8
−79.7 ± 8.6


D-1612
5045
3
3
3
GalNAc
−67.5 ± 15.5
−69.6 ± 14.1
−75.3 ± 7.4


D-1725
5045
3
4
3
GalNAc
−64.8 ± 5.2
−66.7 ± 5.4
−67.1 ± 3.8


D-1732
5045
3
4
3
GalNAc
  −66 ± 9.9
−64.2 ± 10.6
−69.5 ± 5.7


D-1739
5045
3
4
3
GalNAc
−66.8 ± 12.9
−65.5 ± 14.7
−67.6 ± 11


D-1711
5045
3
4
3
GalNAc
−75.7 ± 6.7
−75.8 ± 5.1
−71.5 ± 5.1


D-1718
5045
3
4
3
GalNAc
−76.6 ± 4.1
−75.7 ± 4.4
−75.6 ± 2.8


D-1704
5045
3
4
3
GalNAc
−80.1 ± 12.2
−80.1 ± 12.1
−79.9 ± 12.4


D-1623
5080
3
4
3
GalNAc
−72.9 ± 7.6
−72.6 ± 7.1
−75.9 ± 7.1


D-1727
5080
3
4
3
GalNAc
  −59 ± 3.6
−53.4 ± 12.7
−49.3 ± 20.9


D-1734
5080
3
4
3
GalNAc
−59.6 ± 7.4
−60.3 ± 7
−61.2 ± 6.2


D-1741
5080
3
4
3
GalNAc
−59.9 ± 4.8
−59.4 ± 4.1
  −61 ± 5.8


D-1713
5080
3
4
3
GalNAc
−67.9 ± 11.1
−67.5 ± 8.7
  −69 ± 4.9


D-1720
5080
3
4
3
GalNAc
−55.3 ± 6.4
  −57 ± 6.5
−60.7 ± 5.6


D-1706
5080
3
4
3
GalNAc
−66.2 ± 9
−67.7 ± 7.8
−69.1 ± 6.7
















TABLE 11







siRNA Efficacy in Liver and Adipose Tissue 4 Weeks Following siRNA Injection














SIRNA
Trigger
Dose

AAV


Avg. % Change in mRNA ± STD
















Duplex
Family
(mg/kg)
N
No.
Carrier
Tissue
eGFP-1
eGFP-2
BGHpA



















D-1714
1333
3
4
1
GalNAc
Liver
−50.6 ± 13.9
−49.2 ± 14.5
−46.6 ± 17.4


D-1615
1678
3
4
1
GalNAc
Liver
−52.5 ± 11.4
−53.1 ± 10.4
−57.9 ± 6.1


D-1736
1678
3
4
1
GalNAc
Liver
−44.9 ± 8.9
−43.1 ± 9.7
  −50 ± 7.7


D-1648
2144
3
4
1
GalNAc
Liver
−39.4 ± 13
−37.3 ± 13.2
−38.5 ± 10.9


D-1557
3000
3
4
2
GalNAc
Liver
−45.8 ± 11
−44.6 ± 12.7
−46.8 ± 13.2


D-1650
3000
3
4
2
GalNAc
Liver
−32.2 ± 30.3
−27.5 ± 32.7
−35.5 ± 20.2


D-1664
3133
3
4
2
GalNAc
Liver
−38.4 ± 23.9
−31.8 ± 26.2
−46.1 ± 11.7


D-1614
4999
3
4
3
GalNAc
Liver
−66.3 ± 13
−59.8 ± 14.3
−58.7 ± 13.9


D-1723
4999
3
4
3
GalNAc
Liver
−65.3 ± 16.8
−58.7 ± 19
−58.5 ± 14.9


D-1737
4999
3
4
3
GalNAc
Liver
−57.2 ± 22.1
−51.3 ± 21
−47.9 ± 15.1


D-1730
4999
3
4
3
GalNAc
Liver
  −61 ± 24.9
−56.6 ± 25.7
−48.8 ± 24


D-1709
4999
3
4
3
GalNAc
Liver
  −73 ± 6.3
−67.4 ± 8
−68.1 ± 16.8


D-1716
4999
3
4
3
GalNAc
Liver
−64.8 ± 14.9
−57.1 ± 19.5
−56.6 ± 10.9


D-1702
4999
3
3
3
GalNAc
Liver
−55.6 ± 13.3
−45.7 ± 15.6
−50.4 ± 7.6


D-1879
4999
3
4
3
GalNAc
Liver
−70.1 ± 10.9
−62.6 ± 13.7
−55.6 ± 15.7


D-1611
5043
3
4
3
GalNAc
Liver
−77.2 ± 9.6
−78.2 ± 9.1
−69.5 ± 13.8


D-1733
5043
3
4
3
GalNAc
Liver
−75.3 ± 9.1
−75.7 ± 9.3
−69.2 ± 10.8


D-1719
5043
3
4
3
GalNAc
Liver
−70.9 ± 14
−71.2 ± 12.7
−70.9 ± 9.4


D-1705
5043
3
4
3
GalNAc
Liver
−75.7 ± 10.3
−76.7 ± 9.8
−74.4 ± 7.9


D-1612
5045
3
3
3
GalNAc
Liver
−72.1 ± 6
−71.2 ± 5.3
−65.2 ± 7.2


D-1711
5045
3
4
3
GalNAc
Liver
  −73 ± 3.8
−72.4 ± 3.4
−70.4 ± 4.4


D-1718
5045
3
4
3
GalNAc
Liver
−75.4 ± 14.3
−75.4 ± 14.5
−70.1 ± 16.3


D-1704
5045
3
4
3
GalNAc
Liver
−76.4 ± 5.3
−73.9 ± 6.2
−71.6 ± 5.6


D-1876
5045
20
4
3
C22
Liver
  −31 ± 19.2
  −34 ± 17.4
  −38 ± 14.6


D-1623
5080
3
3
3
GalNAc
Liver
−71.4 ± 3.3
−65.6 ± 4.9
−65.9 ± 2.3


D-1706
5080
3
4
3
GalNAc
Liver
 64.9 ± 12.7
−63.6 ± 16.6
 64.9 ± 8.5


D-1873
1333
20
4
1
C22
Liver
−37.5 ± 21.5
  −33 ± 24.6
−53.8 ± 12.3


D-1695
1678
20
4
1
C22
Liver
  −22 ± 15.4
−22.4 ± 13.1
−31.6 ± 12.9


D-1867
1678
20
3
1
C22
Liver
−48.2 ± 10.4
−49.7 ± 6.3
−51.4 ± 5.3


D-1672
2144
20
4
1
C22
Liver
  −48 ± 17.3
−47.1 ± 17.8
−49.6 ± 15.8


D-1642
3000
20
4
2
C22
Liver
  −38 ± 15.5
−35.7 ± 16.1
−36.2 ± 9.4


D-1674
3000
20
3
2
C22
Liver
−44.8 ± 11.5
−45.9 ± 9
 45.3 ± 15.1


D-1688
3133
20
4
2
C22
Liver
  −41 ± 28.5
−32.2 ± 32.9
−47.4 ± 21.9


D-1697
4999
20
4
3
C22
Liver
−22.4 ± 23
  −14 ± 27.2
−15.4 ± 25.6


D-1865
4999
20
4
3
C22
Liver
−16.8 ± 47.2
 −4.9 ± 53.2
−14.1 ± 33.6


D-1863
4999
20
4
3
C22
Liver
 −0.6 ± 33.2
 16.7 ± 46.2
 1.2 ± 32.6


D-1866
4999
20
4
3
C22
Liver
−11.7 ± 61.1
 −2.2 ± 65.8
 −7.8 ± 45.2


D-1869
4999
20
4
3
C22
Liver
  −78 ± 7.7
−73.1 ± 9.9
−66.4 ± 9.2


D-1872
4999
20
4
3
C22
Liver
 65.6 ± 11.2
−56.5 ± 14.2
−54.4 ± 12.2


D-1877
4999
20
4
3
C22
Liver
−68.4 ± 7.9
−60.1 ± 12.1
  −58 ± 11.8


D-1878
4999
20
3
3
C22
Liver
−58.2 ± 9.1
−49.9 ± 8.6
−52.2 ± 7.5


D-1698
5043
20
4
3
C22
Liver
−72.2 ± 15
−72.8 ± 15.1
−70.5 ± 18.3


D-1864
5043
20
4
3
C22
Liver
−35.4 ± 11.3
−39.2 ± 8.5
−41.2 ± 12.7


D-1870
5043
20
4
3
C22
Liver
−30.4 ± 11.4
−25.1 ± 9.3
−32.1 ± 8.7


D-1875
5043
20
4
3
C22
Liver
−61.5 ± 19.5
−61.1 ± 20.5
−60.9 ± 18.2


D-1699
5045
20
4
3
C22
Liver
−40.1 ± 10.8
−42.4 ± 10.7
−38.2 ± 9.6


D-1868
5045
20
4
3
C22
Liver
−52.7 ± 11.7
−45.4 ± 11.3
−48.7 ± 8.4


D-1871
5045
20
4
3
C22
Liver
−65.4 ± 5.2
−65.3 ± 4
−66.8 ± 5.2


D-1846
5080
20
4
3
C22
Liver
−25.8 ± 17.6
−12.7 ± 20.8
−22.9 ± 17.3


D-1874
5080
20
4
3
C22
Liver
 41.6 ± 10.4
−36.9 ± 11.9
−40.6 ± 7.5


D-1873
1333
20
4
1
C22
Adipose
 37.4 ± 68
 31.4 ± 63.8
 6.3 ± 35.5


D-1695
1678
20
4
1
C22
Adipose
−19.2 ± 12.7
  −28 ± 12.9
−25.3 ± 7.2


D-1867
1678
20
3
1
C22
Adipose
−67.3 ± 35.7
−69.4 ± 35.3
−71.5 ± 24.1


D-1672
2144
20
4
1
C22
Adipose
  −43 ± 26.1
−43.1 ± 31.7
−32.6 ± 37.7


D-1642
3000
20
4
2
C22
Adipose
−37.2 ± 40.5
−30.3 ± 45.9
−15.8 ± 61.1


D-1674
3000
20
3
2
C22
Adipose
−70.7 ± 19.9
−68.6 ± 21.7
−71.4 ± 19.9


D-1688
3133
20
4
2
C22
Adipose
−39.6 ± 18.4
−39.7 ± 21.7
−28.9 ± 44.3


D-1697
4999
20
4
3
C22
Adipose
−85.9 ± 7.3
−89.5 ± 5.6
−81.5 ± 8.1


D-1865
4999
20
4
3
C22
Adipose
−78.6 ± 25.5
−78.2 ± 29.5
−81.7 ± 21


D-1863
4999
20
4
3
C22
Adipose
−84.6 ± 8.1
−87.1 ± 6.9
−72.9 ± 15.4


D-1866
4999
20
4
3
C22
Adipose
−88.5 ± 10.9
−91.6 ± 6.7
−86.6 ± 13.3


D-1869
4999
20
4
3
C22
Adipose
  −90 ± 8.2
−92.4 ± 6.7
−85.3 ± 10.6


D-1872
4999
20
4
3
C22
Adipose
−66.2 ± 15.1
−75.9 ± 9.4
−72.9 ± 11.9


D-1877
4999
20
4
3
C22
Adipose
−73.7 ± 6.7
−79.6 ± 5
−62.8 ± 14.3


D-1878
4999
20
3
3
C22
Adipose
−85.2 ± 12
−88.8 ± 9.3
−84.7 ± 10.5


D-1698
5043
20
4
3
C22
Adipose
  −93 ± 9
−91.5 ± 11.3
−91.4 ± 10.7


D-1864
5043
20
4
3
C22
Adipose
−87.6 ± 7.4
−86.7 ± 7.2
−84.6 ± 9.5


D-1870
5043
20
4
3
C22
Adipose
−81.6 ± 15.5
  −81 ± 16.7
−80.5 ± 14


D-1875
5043
20
4
3
C22
Adipose
−85.6 ± 9.1
−86.9 ± 8.2
−81.3 ± 12.9


D-1699
5045
20
4
3
C22
Adipose
−78.8 ± 9.5
−78.7 ± 10.6
−79.8 ± 7.7


D-1868
5045
20
4
3
C22
Adipose
  −82 ± 9
−79.4 ± 11.7
−79.6 ± 9.2


D-1871
5045
20
4
3
C22
Adipose
  −90 ± 15.1
−91.9 ± 12
−90.9 ± 12.9


D-1876
5045
20
4
3
C22
Adipose
  −76 ± 24.4
−76.9 ± 22.6
−75.2 ± 25.4


D-1846
5080
20
4
3
C22
Adipose
−82.9 ± 8.8
−87.2 ± 7.7
−75.9 ± 14.9


D-1874
5080
20
4
3
C22
Adipose
−71.2 ± 9.7
−72.8 ± 8.8
−74.2 ± 5.7
















TABLE 12







siRNA Efficacy in Liver and Adipose Tissue 4 Weeks Following siRNA Injection














SIRNA
Trigger
Dose

AAV


Avg. % Change in mRNA ± STD
















Duplex
Family
(mg/kg)
N
No.
Carrier
Tissue
eGFP-1
eGFP-2
BGHpA



















D-1686
1309
20
4
1
C22
Liver
−39.9 ± 38.8
−39.9 ± 40.6
  −51 ± 29.2


D-1691
1309
20
4
1
C22
Liver
−40.1 ± 18.4
  −40 ± 16.9
−49.8 ± 10.6


D-1635
1309
20
4
1
C22
Liver
−38.4 ± 30.6
−38.8 ± 29.3
−45.9 ± 19.5


D-1694
1333
20
4
1
C22
Liver
  −25 ± 20.4
  −26 ± 21.8
−43.4 ± 13.7


D-1695
1678
20
4
1
C22
Liver
−11.9 ± 10.8
  −14 ± 11.7
−19.5 ± 17.5


D-1643
2080
20
4
1
C22
Liver
−44.2 ± 17.3
−44.1 ± 17.4
−46.2 ± 11.4


D-1672
2144
20
4
1
C22
Liver
−58.5 ± 9.6
−55.6 ± 9.9
  −52 ± 10.2


D-1636
2144
20
4
1
C22
Liver
−65.3 ± 31.3
−66.3 ± 30.2
−63.4 ± 32.9


D-1847
1309
20
4
1
C22
Liver
  −43 ± 14.5
−39.9 ± 17.1
−49.9 ± 12.1


D-1849
1309
20
4
1
C22
Liver
−23.5 ± 13.9
−19.6 ± 14.1
−14.8 ± 11.6


D-1859
1309
20
4
1
C22
Liver
−33.1 ± 15.6
−33.3 ± 13.8
−36.9 ± 15.7


D-1853
1333
20
4
1
C22
Liver
−42.2 ± 22.9
  −41 ± 19.8
−44.1 ± 20.7


D-1852
1678
20
4
1
C22
Liver
−51.2 ± 21.2
−44.9 ± 23.4
  −38 ± 21.7


D-1860
2080
20
4
1
C22
Liver
−14.1 ± 23.1
−11.5 ± 21.8
 −5.5 ± 34.2


D-1851
2144
20
4
1
C22
Liver
−61.6 ± 15.8
−55.8 ± 17.8
−52.5 ± 16.3


D-1858
2144
20
4
1
C22
Liver
−47.6 ± 10.8
−44.7 ± 10.2
−46.2 ± 1.9


D-1666
4999
20
4
3
C22
Liver
  −35 ± 11.7
−35.7 ± 11.2
−38.6 ± 11.7


D-1872
4999
20
4
3
C22
Liver
−78.4 ± 5.1
−76.2 ± 6.1
−71.3 ± 4.3


D-1877
4999
20
4
3
C22
Liver
−84.6 ± 1.7
−82.1 ± 1.9
−79.9 ± 2.4


D-1697
4999
20
4
3
C22
Liver
−40.9 ± 9.3
−37.5 ± 10.5
−38.9 ± 8.3


D-1846
5080
20
4
3
C22
Liver
−43.3 ± 6.8
 43.8 ± 6.3
  −40 ± 4.5


D-1881
4999
20
4
3
C22
Liver
−80.2 ± 2.7
−77.3 ± 3.3
  −71 ± 2.8


D-1887
4999
20
4
3
C22
Liver
−83.2 ± 3.3
−80.2 ± 3.8
−75.6 ± 4.5


D-1880
4999
20
4
3
C22
Liver
−83.6 ± 2.7
−82.1 ± 2.8
−81.5 ± 2.9


D-1884
4999
20
4
3
C22
Liver
  −88 ± 2.9
−85.5 ± 3.2
  −86 ± 2.3


D-1856
4999
20
4
3
C22
Liver
−82.3 ± 4.5
−79.7 ± 5
−74.3 ± 5.8


D-1862
5080
20
4
3
C22
Liver
−72.3 ± 3.5
−69.3 ± 4.1
  −65 ± 3.8


D-1869
4999
20
4
3
C22
Liver
−78.8 ± 2.7
−73.6 ± 2.9
−68.7 ± 1


D-1869
4999
10
4
3
C22
Liver
  −72 ± 3.1
−69.4 ± 2.9
−67.1 ± 3.3


D-1869
4999
5
4
3
C22
Liver
−63.3 ± 6.4
−60.9 ± 6.8
−57.3 ± 7


D-1709
4999
3
4
3
GalNAc
Liver
−81.1 ± 4
−77.1 ± 4.7
−75.4 ± 5.2


D-1709
4999
1
4
3
GalNAc
Liver
−42.9 ± 7
  −39 ± 7.6
−43.8 ± 7.5


D-1709
4999
0.5
4
3
GalNAc
Liver
−60.9 ± 6
−58.1 ± 5.9
−57.8 ± 5.8


D-1774
5276
3
4
3
GalNAc
Liver
−66.1 ± 4.5
−59.6 ± 5.6
−57.6 ± 4.7


D-1975
5276
20
4
3
C22
Liver
−73.5 ± 3.6
−70.7 ± 3.5
−65.4 ± 3.3


D-1976
5276
20
3
3
C22
Liver
−80.2 ± 0.4
−76.7 ± 0.3
−69.3 ± 0.7


D-1870
5043
20
4
3
C22
Liver
  −49 ± 11.5
−47.6 ± 11.6
−49.4 ± 11


D-1698
5043
20
4
3
C22
Liver
−10.2 ± 15.9
−13.2 ± 16
−27.4 ± 9.6


D-1875
5043
20
4
3
C22
Liver
−41.9 ± 9
−40.1 ± 10.4
−44.8 ± 6.9


D-1868
5045
20
4
3
C22
Liver
  −33 ± 10.8
−32.2 ± 11.1
−35.7 ± 9.5


D-1871
5045
20
4
3
C22
Liver
  −26 ± 7.2
−27.4 ± 7.4
−27.7 ± 6.2


D-1876
5045
20
4
3
C22
Liver
  −32 ± 3.2
−25.4 ± 2.7
−29.9 ± 3.8


D-1699
5045
20
4
3
C22
Liver
−22.6 ± 16.4
−20.2 ± 16.8
−21.4 ± 15.4


D-1883
5043
20
4
3
C22
Liver
−64.8 ± 6.2
−63.2 ± 6.4
−64.8 ± 6


D-1886
5043
20
4
3
C22
Liver
−73.5 ± 5.6
−70.4 ± 6.6
−70.9 ± 6.2


D-1855
5045
20
4
3
C22
Liver
  −61 ± 5.4
−57.8 ± 6.1
−53.2 ± 2.9


D-1888
5045
20
4
3
C22
Liver
−68.3 ± 3.5
−65.1 ± 2.8
−67.2 ± 2.4


D-1882
5045
20
4
3
C22
Liver
−69.1 ± 3.3
−64.7 ± 5
−63.7 ± 4.1


D-1885
5045
20
4
3
C22
Liver
  −66 ± 1.9
−62.4 ± 2.1
  −59 ± 2


D-1611
5043
3
4
3
GalNAc
Liver
−70.5 ± 6.1
−71.5 ± 6.1
−70.3 ± 5.7


D-1611
5043
1
4
3
GalNAc
Liver
−17.9 ± 13.6
−21.3 ± 15.3
−28.7 ± 8.1


D-1611
5043
0.5
4
3
GalNAc
Liver
 5.7 ± 5.4
 −3.3 ± 4.3
 −5.7 ± 6.5


D-1718
5045
3
4
3
GalNAc
Liver
−63.1 ± 1.5
−56.3 ± 1.9
−62.1 ± 1.1


D-1718
5045
1
4
3
GalNAc
Liver
−37.8 ± 21.9
−30.9 ± 26.4
−33.7 ± 19.9


D-1718
5045
0.5
4
3
GalNAc
Liver
  −21 ± 13.3
−16.5 ± 16.5
−21.2 ± 16.9


D-1866
4999
20
4
3
C22
Adipose
−94.3 ± 1.3
−93.9 ± 1.3
−90.9 ± 1.4


D-1873
4999
20
4
3
C22
Adipose
−94.3 ± 1.7
−93.7 ± 1.8
−89.8 ± 3.3


D-1877
4999
20
4
3
C22
Adipose
  −95 ± 1.7
−94.7 ± 1.8
−94.9 ± 1.7


D-1697
4999
20
4
3
C22
Adipose
−96.9 ± 1.2
−96.6 ± 1.4
−96.1 ± 1.5


D-1846
5080
20
4
3
C22
Adipose
−92.2 ± 2.4
−90.8 ± 3
−90.9 ± 2.6


D-1881
4999
20
4
3
C22
Adipose
−97.3 ± 0.7
−97.2 ± 0.7
−96.6 ± 0.9


D-1887
4999
20
4
3
C22
Adipose
−93.9 ± 4
−93.2 ± 4.7
−95.8 ± 2.3


D-1880
4999
20
4
3
C22
Adipose
−96.1 ± 1.8
−95.6 ± 2
−96.3 ± 1.4


D-1884
4999
20
4
3
C22
Adipose
−98.6 ± 0.5
−98.5 ± 0.6
−98.4 ± 0.5


D-1856
4999
20
4
3
C22
Adipose
−98.3 ± 0.6
−98.1 ± 0.7
−97.5 ± 0.9


D-1862
5080
20
4
3
C22
Adipose
−96.1 ± 1.2
−95.7 ± 1.5
−95.4 ± 1.2


D-1869
4999
20
4
3
C22
Adipose
−93.9 ± 1.6
−92.5 ± 2.2
−92.8 ± 0.5


D-1869
4999
10
4
3
C22
Adipose
−95.5 ± 1.3
−94.8 ± 1.6
−95.6 ± 1.3


D-1869
4999
5
4
3
C22
Adipose
−87.7 ± 4.9
−86.2 ± 5.1
−88.6 ± 4.1


D-1975
5276
20
4
3
C22
Adipose
−95.9 ± 1.4
−95.2 ± 1.4
−95.9 ± 1.3


D-1976
5276
20
3
3
C22
Adipose
−94.1 ± 2.4
−93.1 ± 2.6
−92.2 ± 2.7


D-1870
5043
20
4
3
C22
Adipose
−84.4 ± 6.6
−85.6 ± 6.3
−83.9 ± 6.8


D-1698
5043
20
4
3
C22
Adipose
−70.8 ± 5.6
−71.8 ± 5.3
−63.4 ± 7.9


D-1875
5043
20
4
3
C22
Adipose
−87.5 ± 4
−88.9 ± 3.5
−83.6 ± 6.1


D-1868
5045
20
4
3
C22
Adipose
−72.1 ± 13.2
−73.5 ± 13.3
−68.2 ± 10.6


D-1871
5045
20
4
3
C22
Adipose
−61.6 ± 12.1
  −64 ± 11.3
−62.7 ± 6.2


D-1876
5045
20
4
3
C22
Adipose
−82.3 ± 5.1
−82.5 ± 5.1
−71.8 ± 6.4


D-1699
5045
20
4
3
C22
Adipose
−81.5 ± 4.5
−82.6 ± 4.6
−65.5 ± 10.1


D-1883
5043
20
4
3
C22
Adipose
  −90 ± 5.9
−90.7 ± 5.7
−85.9 ± 8.2


D-1886
5043
20
4
3
C22
Adipose
−84.9 ± 7.6
  −84 ± 7.9
−81.7 ± 9.8


D-1855
5045
20
4
3
C22
Adipose
−76.9 ± 8.7
−77.7 ± 8.4
−68.8 ± 5.7


D-1888
5045
20
4
3
C22
Adipose
−82.1 ± 3
−83.1 ± 3
−70.2 ± 5


D-1882
5045
20
4
3
C22
Adipose
−74.7 ± 6.7
−74.7 ± 6.7
−59.7 ± 9.4


D-1885
5045
20
4
3
C22
Adipose
−86.1 ± 1.6
−86.8 ± 1.6
−78.6 ± 3
















TABLE 13







siRNA Efficacy in Liver 4 Weeks Following siRNA Injection













SIRNA
Trigger
Dose



Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
AAV No.
Carrier
eGFP-1
eGFP-2
BGHpA





D-1933
1514
3
4
1
GalNAc
 3.7 ± 14.8
 12.5 ± 17
 2.9 ± 18.1


D-1939
1514
3
4
1
GalNAc
 18.7 ± 10.1
 23.6 ± 11.5
 21.7 ± 15.2


D-1945
1514
3
4
1
GalNAc
−33.5 ± 16.6
−26.5 ± 18.2
−25.2 ± 9.8


D-1951
1514
3
4
1
GalNAc
 7.5 ± 65.3
 15.5 ± 67.9
 4.3 ± 46.6


D-1957
1514
3
4
1
GalNAc
 12.1 ± 38.9
 17.4 ± 37.8
 5.6 ± 35.6


D-1963
1514
3
4
1
GalNAc
 −7.4 ± 45.8
 4.7 ± 55.1
−11.4 ± 41.8


D-1969
1514
3
4
1
GalNAc
−12.6 ± 14.6
 −6.2 ± 11.6
 −7.7 ± 12


D-1820
1514
3
4
1
GalNAc
−24.8 ± 19
−14.5 ± 27.1
−17.8 ± 21.1


D-1938
2343
3
4
1
GalNAc
−37.7 ± 14.9
−32.9 ± 17.1
−13.3 ± 22.1


D-1944
2343
3
4
1
GalNAc
  −35 ± 3.2
  −26 ± 7.1
  −21 ± 16.2


D-1950
2343
3
4
1
GalNAc
−18.4 ± 11
 −9.8 ± 10.8
 −9.8 ± 7.6


D-1956
2343
3
4
1
GalNAc
−48.5 ± 43
−42.3 ± 51.4
−40.4 ± 49.1


D-1962
2343
3
4
1
GalNAc
−10.4 ± 19.6
 2.8 ± 27.4
−10.1 ± 19.3


D-1968
2343
3
4
1
GalNAc
−44.2 ± 16.5
−36.9 ± 20
  −27 ± 21.7


D-1974
2343
3
4
1
GalNAc
−52.5 ± 5.8
−46.5 ± 4.2
−33.5 ± 6.4


D-1810
2343
3
4
1
GalNAc
−42.8 ± 41.3
−38.5 ± 44.2
  −30 ± 47.6


D-1935
2417
3
4
1
GalNAc
−20.7 ± 16.2
−13.1 ± 23.6
−34.4 ± 16.2


D-1941
2417
3
4
1
GalNAc
−27.7 ± 27.6
−24.9 ± 29.4
−28.4 ± 29.4


D-1947
2417
3
4
1
GalNAc
  −24 ± 41.1
−18.9 ± 46.2
−28.4 ± 32.2


D-1953
2417
3
4
1
GalNAc
−48.3 ± 21.8
−40.7 ± 25.3
−54.8 ± 16.5


D-1959
2417
3
4
1
GalNAc
−31.3 ± 10.2
−27.3 ± 8.9
−42.4 ± 9.6


D-1965
2417
3
4
1
GalNAc
−30.7 ± 13.8
−25.7 ± 13.8
−33.8 ± 12


D-1971
2417
3
4
1
GalNAc
  −25 ± 22
−10.9 ± 28.5
−25.4 ± 33


D-1812
2417
3
4
1
GalNAc
−29.2 ± 17.7
  −27 ± 17.8
  −39 ± 14


D-1937
4412
3
3
3
GalNAc
  −74 ± 6.9
−70.8 ± 6.4
−66.4 ± 6.8


D-1943
4412
3
4
3
GalNAc
  −68 ± 12.7
−64.2 ± 15
−66.3 ± 11


D-1949
4412
3
4
3
GalNAc
−54.8 ± 7.8
−52.2 ± 6.7
−55.5 ± 5.7


D-1955
4412
3
4
3
GalNAc
−84.5 ± 1.6
−82.6 ± 2.2
−76.7 ± 3.5


D-1961
4412
3
4
3
GalNAc
  −78 ± 12
−75.7 ± 13.3
  −73 ± 13.1


D-1967
4412
3
4
3
GalNAc
−72.2 ± 24
  −70 ± 25.1
−64.3 ± 22.4


D-1973
4412
3
4
3
GalNAc
−62.5 ± 7.3
−56.8 ± 7.3
−58.2 ± 3


D-1777
4412
3
4
3
GalNAc
  −74 ± 17.9
−72.8 ± 20
  −72 ± 20.7


D-1934
5249
3
4
3
GalNAc
−10.6 ± 25.9
 −4.4 ± 25.7
−21.6 ± 24.3


D-1940
5249
3
4
3
GalNAc
−41.4 ± 11.5
−39.9 ± 9.3
−46.1 ± 10.9


D-1946
5249
3
4
3
GalNAc
−45.9 ± 12.7
−43.7 ± 13.7
  −50 ± 7.2


D-1952
5249
3
4
3
GalNAc
−72.6 ± 10.9
−72.3 ± 11.8
−74.3 ± 12.6


D-1958
5249
3
4
3
GalNAc
−45.9 ± 26.4
−44.7 ± 27.7
−56.1 ± 17.1


D-1964
5249
3
4
3
GalNAc
−56.3 ± 19.1
−56.1 ± 17.1
−60.4 ± 12.1


D-1970
5249
3
4
3
GalNAc
−79.4 ± 15
−79.3 ± 14.9
−80.1 ± 14


D-1769
5249
3
4
3
GalNAc
−67.2 ± 3.2
−64.9 ± 4.7
−72.2 ± 3.8


D-1936
5274
3
4
3
GalNAc
−61.7 ± 13
−60.9 ± 13.1
−67.3 ± 10.4


D-1942
5274
3
4
3
GalNAc
−51.7 ± 36.3
−50.8 ± 37.5
−63.6 ± 19.5


D-1948
5274
3
4
3
GalNAc
−70.5 ± 8.4
−67.8 ± 11
−71.7 ± 6.5


D-1954
5274
3
4
3
GalNAc
−71.9 ± 8.4
−70.6 ± 9.6
  −74 ± 6.1


D-1960
5274
3
4
3
GalNAc
−69.7 ± 15.5
−67.5 ± 16.3
−77.9 ± 5.6


D-1966
5274
3
4
3
GalNAc
−76.8 ± 12.6
−74.1 ± 14
−76.2 ± 11.3


D-1972
5274
3
4
3
GalNAc
−79.7 ± 8.6
−77.4 ± 10
  −77 ± 10.5


D-1773
5274
3
4
3
GalNAc
−69.5 ± 13.7
−66.8 ± 14.1
−73.9 ± 11.7


D-1709
4999
3
4
3
GalNAc
−86.7 ± 8.9
−85.2 ± 9.8
  −84 ± 10.7


D-1705
5043
3
4
3
GalNAc
−78.5 ± 2.3
−77.1 ± 2.2
−75.3 ± 2.7


D-1597
1333
3
4
9-span
GalNAc
−81.3 ± 6.9
−81.6 ± 7.7
−81.6 ± 6.7


D-1709
4999
3
4
9-span
GalNAc
−93.4 ± 2.5
−93.7 ± 2
−94.5 ± 1.9


D-1705
5043
3
4
9-span
GalNAc
−94.4 ± 0.4
−94.2 ± 0.5
−94.7 ± 0.4
















TABLE 14







siRNA Efficacy in Liver and Adipose Tissue 4 Weeks Following siRNA Injection














SIRNA
Trigger
Dose

AAV


Avg. % Change in mRNA ± STD
















Duplex
Family
(mg/kg)
N
No.
Tissue
Carrier
eGFP-1
eGFP-2
BGHpA



















D-1709
4999
3
4
22-span
Liver
GalNAc
−80.8 ± 12
−81.6 ± 9.7
 −85.7 ± 8.9


D-1887
4999
20
4
22-span
Liver
C22
−85.6 ± 2.1
−85.9 ± 2.7
 −88.9 ± 1.7


D-1702
4999
3
4
22-span
Liver
GalNAc
−83.6 ± 8.3
−84.3 ± 7.4
 −88.3 ± 5.2


D-1884
4999
20
4
22-span
Liver
C22
−79.5 ± 2.9
−80.2 ± 3.4
 −85.1 ± 2.2


D-1978
4999
3
4
22-span
Liver
GalNAc
−85.9 ± 3.8
−86.4 ± 3.4
 −89.8 ± 3


D-1879
4999
3
4
22-span
Liver
GalNAc
−81.3 ± 3
−82.6 ± 2.1
 −87.1 ± 0.7


D-2002
4999
20
4
22-span
Liver
C22
−88.5 ± 5.5
−88.5 ± 5.4
 −92.1 ± 3.2


D-1987
4999
3
4
22-span
Liver
GalNAc
−85.9 ± 5.6
−86.4 ± 5.2
 −91.6 ± 2.2


D-1992
4999
3
4
22-span
Liver
GalNAc
−82.7 ± 11.3
  −84 ± 9.9
 −88.1 ± 5.8


D-1997
4999
3
4
22-span
Liver
GalNAc
−84.7 ± 7.1
−84.8 ± 6.2
 −88.1 ± 6.2


D-1705
5043
3
4
22-span
Liver
GalNAc
−82.3 ± 8.1
−82.4 ± 8.1
 −84.2 ± 7


D-1886
5043
20
4
22-span
Liver
C22
−86.2 ± 11.9
−87.3 ± 10.7
 −87.9 ± 8.7


D-1980
5043
3
4
22-span
Liver
GalNAc
−76.9 ± 20.9
−77.6 ± 19
 −80.4 ± 15.2


D-1984
5043
3
4
22-span
Liver
GalNAc
−77.3 ± 8
−78.5 ± 7.6
 −82.3 ± 6.2


D-2004
5043
20
3
22-span
Liver
C22
−65.8 ± 11.7
−69.4 ± 10
 −73.7 ± 7.7


D-1989
5043
3
4
22-span
Liver
GalNAc
−82.8 ± 9.6
−83.4 ± 8
 −84.3 ± 7.3


D-1994
5043
3
4
22-span
Liver
GalNAc
−79.1 ± 3.3
−79.5 ± 2.2
   −83 ± 2.2


D-1999
5043
3
4
22-span
Liver
GalNAc
−66.2 ± 27.4
−67.7 ± 25.4
 −69.6 ± 23.7


D-1704
5045
3
4
22-span
Liver
GalNAc
  −83 ± 10.2
−83.9 ± 10.1
 −88.6 ± 5.4


D-1885
5045
20
4
22-span
Liver
C22
−89.1 ± 5.5
−90.3 ± 4.9
 −90.1 ± 7


D-1979
5045
3
4
22-span
Liver
GalNAc
−92.3 ± 3.3
  −93 ± 3
 −93.7 ± 2.4


D-1983
5045
3
4
22-span
Liver
GalNAc
−71.8 ± 8.3
−74.6 ± 7.4
 −83.6 ± 4.8


D-2003
5045
20
4
22-span
Liver
C22
−86.7 ± 6.2
−88.5 ± 5.2
 −90.2 ± 4.8


D-1988
5045
3
4
22-span
Liver
GalNAc
−84.4 ± 16.7
  −85 ± 15.7
 −89.6 ± 9.9


D-1993
5045
3
4
22-span
Liver
GalNAc
  −85 ± 7.4
−86.1 ± 6.7
 −89.9 ± 4


D-1998
5045
3
4
22-span
Liver
GalNAc
−95.3 ± 1.8
−95.6 ± 1.4
   −96 ± 1.5


D-1623
5080
3
4
22-span
Liver
GalNAc
−77.5 ± 13.5
−78.8 ± 14.7
 −82.5 ± 10.1


D-1862
5080
20
4
22-span
Liver
C22
  −79 ± 16
−81.1 ± 14.7
   −83 ± 11.3


D-1981
5080
3
4
22-span
Liver
GalNAc
−82.2 ± 14.2
−83.2 ± 13.7
 −86.4 ± 10.4


D-1985
5080
3
4
22-span
Liver
GalNAc
−90.3 ± 5.4
−91.3 ± 4.7
 −91.5 ± 4.2


D-2005
5080
20
4
22-span
Liver
C22
−88.9 ± 8
−89.4 ± 7.3
 −90.3 ± 5.3


D-1990
5080
3
4
22-span
Liver
GalNAc
−81.7 ± 8.7
−84.1 ± 7.3
 −86.1 ± 5.4


D-1995
5080
3
4
22-span
Liver
GalNAc
−80.9 ± 8.8
  −84 ± 7.1
 −82.8 ± 7.6


D-2000
5080
3
4
22-span
Liver
GalNAc
−78.3 ± 6.4
−81.5 ± 6.2
 −81.9 ± 4.5


D-1955
4412
3
4
22-span
Liver
GalNAc
−74.8 ± 8.4
−76.7 ± 7.7
 −78.3 ± 9.3


D-1970
5249
3
4
22-span
Liver
GalNAc
−66.9 ± 24
−71.3 ± 21.6
 −74.5 ± 14.7


D-1972
5274
3
4
22-span
Liver
GalNAc
  −77 ± 10.9
−78.1 ± 9.6
 −80.5 ± 9.2


D-1774
5276
3
3
22-span
Liver
GalNAc
−73.8 ± 10
−74.7 ± 9.7
 −77.9 ± 10.6


D-1976
5276
20
4
22-span
Liver
C22
−83.6 ± 6.4
−83.9 ± 6.9
 −87.9 ± 5.6


D-1977
5276
3
4
22-span
Liver
GalNAc
−89.5 ± 1.5
−89.2 ± 1.4
 −90.7 ± 1.1


D-1982
5276
3
4
22-span
Liver
GalNAc
−75.7 ± 6.9
−74.6 ± 7.8
 −80.5 ± 5.3


D-2001
5276
20
4
22-span
Liver
C22
−83.7 ± 4.4
−83.5 ± 4.9
 −86.7 ± 3


D-1986
5276
3
4
22-span
Liver
GalNAc
−69.6 ± 9.2
−71.4 ± 7.8
 −77.6 ± 7.3


D-1991
5276
3
4
22-span
Liver
GalNAc
−83.7 ± 5.2
  −83 ± 5.4
 −86.6 ± 4.1


D-1996
5276
3
4
22-span
Liver
GalNAc
−83.3 ± 11.2
−84.3 ± 11.2
 −85.9 ± 8.9


D-2017
1333
3
4
22-span
Liver
GalNAc
−93.1 ± 2
−92.7 ± 2
 −94.7 ± 1.8


D-1597
1333
3
4
22-span
Liver
GalNAc
  −87 ± 4.2
−87.6 ± 3.7
 −89.1 ± 3.5


D-1853
1333
20
4
22-span
Liver
C22
−87.2 ± 3.1
−86.5 ± 3.1
 −89.4 ± 2.6


D-1667
1309
3
4
22-span
Liver
GalNAc
−84.2 ± 10.2
−84.3 ± 9.6
 −86.5 ± 10.6


D-1849
1309
20
4
22-span
Liver
C22
−91.1 ± 8.5
  −91 ± 7.9
 −92.3 ± 6.2


D-1636
2144
3
4
22-span
Liver
GalNAc
−78.2 ± 5.2
−77.8 ± 5.3
 −77.7 ± 4.4


D-1858
2144
20
4
22-span
Liver
C22
−85.5 ± 6.7
−85.4 ± 6.1
 −90.7 ± 2.5


D-1650
3000
3
4
22-span
Liver
GalNAc
−87.5 ± 6
  −87 ± 5.9
 −89.6 ± 4.4


D-2035
3000
20
4
22-span
Liver
C22
−50.4 ± 29.9
−48.7 ± 30.8
 −46.6 ± 30.8


D-1557
3000
3
4
22-span
Liver
GalNAc
−85.3 ± 14.9
−85.2 ± 14.5
 −88.3 ± 10.7


D-1861
3000
20
4
22-span
Liver
C22
−92.8 ± 3.2
−92.2 ± 3.4
 −94.3 ± 2.2


D-1709
4999
3
4
22-span
Adipose
GalNAc
 54.7 ± 86.1
 53.3 ± 88.7
  59.4 ± 77


D-1887
4999
20
4
22-span
Adipose
C22
−85.4 ± 10.7
−85.3 ± 10
 −88.2 ± 7.5


D-1702
4999
3
4
22-span
Adipose
GalNAc
−38.1 ± 72.9
  −45 ± 62.5
 −34.8 ± 83


D-1884
4999
20
4
22-span
Adipose
C22
−90.2 ± 1.9
−90.2 ± 1.6
 −92.3 ± 1.9


D-1978
4999
3
4
22-span
Adipose
GalNAc
 11.8 ± 77.3
 6.2 ± 70.4
  7.8 ± 84.9


D-1879
4999
3
4
22-span
Adipose
GalNAc
−14.4 ± 28.1
  −19 ± 28
  −6.3 ± 26.8


D-2002
4999
20
4
22-span
Adipose
C22
−92.9 ± 5.2
−93.1 ± 5.4
 −95.3 ± 3


D-1987
4999
3
4
22-span
Adipose
GalNAc
 73.5 ± 135.8
  79 ± 140.5
  68.6 ± 125.8


D-1992
4999
3
4
22-span
Adipose
GalNAc
−21.1 ± 86.3
−17.9 ± 86.4
 −20.7 ± 86


D-1997
4999
3
4
22-span
Adipose
GalNAc
 −5.5 ± 40.6
 −7.8 ± 43.4
  −7.4 ± 46.8


D-1705
5043
3
4
22-span
Adipose
GalNAc
 6.6 ± 93.3
 2.5 ± 81
  −2.2 ± 89.2


D-1886
5043
20
4
22-span
Adipose
C22
−91.4 ± 5.8
−90.7 ± 6
−90.82 ± 7.3


D-1980
5043
3
4
22-span
Adipose
GalNAc
 −1.1 ± 45.8
−12.7 ± 40.1
  1.1 ± 48


D-1984
5043
3
4
22-span
Adipose
GalNAc
−30.8 ± 60.8
−28.8 ± 60.2
 −34.7 ± 51.4


D-2004
5043
20
3
22-span
Adipose
C22
−90.9 ± 7.3
  −91 ± 6
 −92.8 ± 5.6


D-1989
5043
3
4
22-span
Adipose
GalNAc
−29.2 ± 64
  −36 ± 54.6
 −18.9 ± 74.2


D-1994
5043
3
4
22-span
Adipose
GalNAc
160.7 ± 277.8
170.5 ± 276.8
 144.6 ± 227.8


D-1999
5043
3
4
22-span
Adipose
GalNAc
 43.8 ± 119.1
 49.5 ± 123.3
  50.5 ± 127.9


D-1704
5045
3
4
22-span
Adipose
GalNAc
−45.7 ± 33.2
−45.7 ± 35.2
   −46 ± 29.9


D-1885
5045
20
4
22-span
Adipose
C22
  −97 ± 2.2
  −97 ± 1.9
 −96.7 ± 3


D-1979
5045
3
4
22-span
Adipose
GalNAc
−60.8 ± 31.4
−58.4 ± 37
 −65.6 ± 25.6


D-1983
5045
3
4
22-span
Adipose
GalNAc
−31.4 ± 68.4
−24.2 ± 78.3
 −34.1 ± 65.3


D-2003
5045
20
4
22-span
Adipose
C22
−92.5 ± 5.1
−92.8 ± 4.5
 −94.6 ± 3.6


D-1988
5045
3
4
22-span
Adipose
GalNAc
  125 ± 249.1
108.8 ± 235.9
 162.6 ± 294.1


D-1993
5045
3
4
22-span
Adipose
GalNAc
  −27 ± 97
−31.1 ± 85.3
 −24.5 ± 101.3


D-1998
5045
3
4
22-span
Adipose
GalNAc
 17.7 ± 133.4
 6.3 ± 116.3
  14.3 ± 134.1


D-1623
5080
3
4
22-span
Adipose
GalNAc
−25.3 ± 71.6
−29.6 ± 65.9
 −23.2 ± 76.9


D-1862
5080
20
4
22-span
Adipose
C22
−92.1 ± 4.3
−91.8 ± 4.8
 −94.6 ± 3.7


D-1981
5080
3
4
22-span
Adipose
GalNAc
 −1.8 ± 67.6
 −8.1 ± 63.5
  0.5 ± 72.2


D-1985
5080
3
4
22-span
Adipose
GalNAc
−21.9 ± 83
−25.4 ± 79
 −24.5 ± 86.3


D-2005
5080
20
4
22-span
Adipose
C22
−85.9 ± 9.7
−86.8 ± 8.5
 −92.3 ± 5.5


D-1990
5080
3
4
22-span
Adipose
GalNAc
 −4.1 ± 104
 −5.1 ± 100.6
   −2 ± 107.4


D-1995
5080
3
4
22-span
Adipose
GalNAc
−23.7 ± 41.3
−29.9 ± 39.2
 −28.1 ± 41.4


D-2000
5080
3
4
22-span
Adipose
GalNAc
−71.9 ± 15.2
−73.3 ± 14.4
 −69.7 ± 18.6


D-1955
4412
3
4
22-span
Adipose
GalNAc
−36.7 ± 62.3
−36.3 ± 61.6
 −34.6 ± 68.6


D-1970
5249
3
4
22-span
Adipose
GalNAc
−51.1 ± 48.8
−48.6 ± 52.8
 −54.4 ± 47.3


D-1972
5274
3
4
22-span
Adipose
GalNAc
  −37 ± 22.6
−28.7 ± 27.9
 −37.3 ± 21


D-1774
5276
3
3
22-span
Adipose
GalNAc
  171 ± 226.8
165.7 ± 214.9
 168.2 ± 242.3


D-1976
5276
20
4
22-span
Adipose
C22
−82.7 ± 15.8
−82.9 ± 15
 −87.8 ± 11.5


D-1977
5276
3
4
22-span
Adipose
GalNAc
−21.3 ± 82.3
−14.2 ± 87.6
 −23.4 ± 78.2


D-1982
5276
3
4
22-span
Adipose
GalNAc
164.9 ± 233.4
167.4 ± 228.3
 157.3 ± 227.8


D-2001
5276
20
4
22-span
Adipose
C22
−92.3 ± 2.3
−91.7 ± 2.6
 −95.2 ± 1.4


D-1986
5276
3
4
22-span
Adipose
GalNAc
 80.1 ± 94
 67.7 ± 71.1
  77.4 ± 85.6


D-1991
5276
3
4
22-span
Adipose
GalNAc
−47.7 ± 10.6
−47.9 ± 11.6
 −47.2 ± 11.1


D-1996
5276
3
4
22-span
Adipose
GalNAc
251.3 ± 448.9
228.4 ± 404.2
 294.1 ± 491.1


D-2017
1333
3
4
22-span
Adipose
GalNAc
 51.1 ± 20.6
−49.3 ± 23
 −48.6 ± 24.1


D-1597
1333
3
4
22-span
Adipose
GalNAc
 58.2 ± 158.7
 46.4 ± 139.6
  44.4 ± 138.8


D-1853
1333
20
4
22-span
Adipose
C22
−50.4 ± 2.9
−51.3 ± 2
 −65.9 ± 7.5


D-1667
1309
3
4
22-span
Adipose
GalNAc
154.6 ± 218.9
143.5 ± 199.5
   163 ± 206.2


D-1849
1309
20
4
22-span
Adipose
C22
−71.6 ± 27.5
  −70 ± 30
 −79.5 ± 23.8


D-1636
2144
3
4
22-span
Adipose
GalNAc
−69.5 ± 25.7
−69.3 ± 23.4
 −77.5 ± 19.5


D-1858
2144
20
4
22-span
Adipose
C22
−66.2 ± 18.2
−63.6 ± 22.3
 −81.7 ± 10.5


D-1650
3000
3
4
22-span
Adipose
GalNAc
  121 ± 235.1
104.5 ± 202.1
 179.8 ± 319.6


D-2035
3000
20
4
22-span
Adipose
C22
  −65 ± 28.1
−62.1 ± 29.7
 −66.4 ± 31.9


D-1557
3000
3
4
22-span
Adipose
GalNAc
 67.1 ± 166.8
 93.7 ± 184
  74.4 ± 166.2


D-1861
3000
20
4
22-span
Adipose
C22
  −96 ± 5.4
−95.3 ± 6.4
   −97 ± 3.6
















TABLE 15







siRNA Efficacy in Liver 4 Weeks Following siRNA Injection













SIRNA
Trigger
Dose



Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
AAV No.
Carrier
eGFP-1
eGFP-2
BGHpA





D-1614
4999
1
4
3
GalNAc
−40.7 ± 17.9
−39.6 ± 15.7
−41.1 ± 19.3


D-1611
5043
1
4
3
GalNAc
−31.7 ± 28
−32.7 ± 26
−48.1 ± 20.5


D-1742
4484
1
4
3
GalNAc
 −3.9 ± 22.4
 −0.9 ± 17.6
−23.5 ± 16.7


D-1743
4485
1
4
3
GalNAc
−35.7 ± 39.2
−33.8 ± 43.6
−45.2 ± 26.3


D-1744
4717
1
4
3
GalNAc
−44.9 ± 30.1
−49.8 ± 23.9
−45.9 ± 12.8


D-1745
4799
1
4
3
GalNAc
  −15 ± 25.8
−21.9 ± 24
 −4.6 ± 31


D-1746
4801
1
4
3
GalNAc
−29.3 ± 49.2
−32.5 ± 46.5
−31.7 ± 38.3


D-1747
4802
1
4
3
GalNAc
 14.7 ± 53.5
  16 ± 55.1
 14.9 ± 46


D-1748
4806
1
4
3
GalNAc
 33.3 ± 51.8
 21.9 ± 46.2
−11.2 ± 21.5


D-1749
4950
1
4
3
GalNAc
−26.3 ± 7.9
−22.5 ± 7.1
−32.4 ± 10.3


D-1750
4951
1
4
3
GalNAc
−15.7 ± 33.3
 −9.4 ± 36.4
−33.6 ± 22.4


D-1751
4953
1
4
3
GalNAc
 7.4 ± 34.9
 12.5 ± 35.5
−15.3 ± 33.1


D-1752
4954
1
4
3
GalNAc
 −5.1 ± 35.9
 −2.1 ± 35.1
−25.5 ± 23.3


D-1753
4955
1
4
3
GalNAc
 6.2 ± 38.7
 13.5 ± 38.1
 14.8 ± 55.2


D-1754
4958
1
4
3
GalNAc
  −21 ± 18.5
−19.8 ± 13.2
−35.3 ± 4.6


D-1755
4965
1
4
3
GalNAc
 12.9 ± 31.8
 7.1 ± 27.4
 7.3 ± 24.2


D-1756
4970
1
4
3
GalNAc
 23.6 ± 25.4
 25.9 ± 26
 17.3 ± 23.6


D-1757
4996
1
4
3
GalNAc
−15.5 ± 17.8
−10.8 ± 22
−27.5 ± 9.6


D-1758
4997
1
4
3
GalNAc
 6.9 ± 13.4
 8.3 ± 13.3
−24.1 ± 13.7


D-1759
5008
1
4
3
GalNAc
 70.4 ± 77
 79.3 ± 88.9
 14.4 ± 36.1


D-1760
5056
1
4
3
GalNAc
 −5.1 ± 19.6
  −2 ± 18.9
−42.6 ± 7


D-1761
5080
1
4
3
GalNAc
 9.2 ± 33.4
 15.1 ± 33
−37.6 ± 4.3


D-1762
5114
1
4
3
GalNAc
−27.6 ± 26.5
−21.7 ± 27
−47.8 ± 13.6


D-1763
5115
1
4
3
GalNAc
 24.8 ± 64.5
 25.4 ± 60.1
 −2.1 ± 28.1


D-1764
5154
1
4
3
GalNAc
 8.7 ± 50.5
 15.7 ± 57.8
 −4.1 ± 32.8


D-1765
5155
1
4
3
GalNAc
 28.9 ± 64.5
 40.4 ± 72.9
 3.6 ± 35.5


D-1766
5195
1
4
3
GalNAc
 28.3 ± 40.2
 28.8 ± 32.9
 52.2 ± 56.6


D-1767
5200
1
4
3
GalNAc
 77.3 ± 52.2
 82.7 ± 68.3
 46.4 ± 48.2


D-1614
4999
1
4
3
GalNAc
−83.8 ± 2.8
−82.2 ± 2.6
−73.4 ± 3.8


D-1611
5043
1
4
3
GalNAc
−50.5 ± 5.6
  −50 ± 9
  −50 ± 3.7


D-1768
5247
1
4
3
GalNAc
−55.7 ± 3.3
−53.3 ± 4.1
−49.9 ± 4.3


D-1769
5249
1
4
3
GalNAc
−56.7 ± 10
−53.6 ± 9.5
−52.2 ± 2.4


D-1770
5251
1
4
3
GalNAc
−33.4 ± 10
−31.6 ± 10.2
−38.9 ± 8.5


D-1771
5254
1
4
3
GalNAc
−32.5 ± 16.7
−28.3 ± 20.6
−30.7 ± 8.4


D-1772
5259
1
4
3
GalNAc
−42.9 ± 22.8
−39.9 ± 23.9
−44.1 ± 18.5


D-1773
5274
1
4
3
GalNAc
−52.4 ± 16.3
−46.6 ± 21.8
−62.1 ± 8.1


D-1774
5276
1
4
3
GalNAc
−51.9 ± 23.5
−50.2 ± 23.8
  −44 ± 37.8


D-1775
5344
1
4
3
GalNAc
 1.8 ± 46.5
 8.3 ± 63.6
 8.3 ± 38.4


D-1776
5402
1
4
3
GalNAc
−33.2 ± 37
−21.4 ± 44.9
−26.9 ± 44.4


D-1777
4412
1
4
3
GalNAc
−51.3 ± 10.8
−46.8 ± 9.3
  −51 ± 7.5


D-1778
4777
1
4
3
GalNAc
−28.5 ± 43.7
−17.5 ± 55.4
−33.7 ± 35.1


D-1779
4780
1
4
3
GalNAc
  −19 ± 26.9
 −4.3 ± 26.2
  −16 ± 21.4


D-1780
4819
1
4
3
GalNAc
−18.8 ± 39.4
 −4.3 ± 46.1
 −1.9 ± 45.2


D-1781
4834
1
4
3
GalNAc
−63.4 ± 8.6
−58.4 ± 12.7
  −60 ± 12.2


D-1782
4931
1
4
3
GalNAc
 41.3 ± 12.2
−34.9 ± 12.7
−23.6 ± 10.1


D-1783
4932
1
4
3
GalNAc
−59.1 ± 10.8
−57.2 ± 11.4
−52.7 ± 8.6


D-1784
4933
1
4
3
GalNAc
−33.6 ± 7.4
−31.2 ± 9.6
−17.7 ± 9.5


D-1785
4935
1
4
3
GalNAc
  −27 ± 31.3
−14.9 ± 37.2
−22.9 ± 27.1


D-1786
4939
1
4
3
GalNAc
−34.6 ± 17.4
−34.6 ± 17.1
−32.2 ± 23.8


D-1787
4940
1
4
3
GalNAc
 0.6 ± 31.7
  −12 ± 20.3
 −5.1 ± 13.9


D-1788
4989
1
4
3
GalNAc
−42.4 ± 25.6
−38.8 ± 23.8
−30.5 ± 18.8


D-1789
4991
1
4
3
GalNAc
−37.1 ± 8.7
−30.7 ± 8.1
−17.2 ± 6.8


D-1790
5201
1
4
3
GalNAc
−22.6 ± 50.6
−17.1 ± 54.8
−11.9 ± 52.9


D-1791
5203
1
4
3
GalNAc
  −19 ± 34.6
−17.9 ± 35.4
 −2.2 ± 51.2


D-1792
5204
1
4
3
GalNAc
−55.4 ± 6.5
−49.7 ± 6.7
  −31 ± 12.8


D-1793
5207
1
4
3
GalNAc
  −46 ± 13.6
−42.6 ± 18.7
−26.8 ± 22.9


D-1597
1333
1
4
1
GalNAc
 −7.1 ± 14.9
 −3.7 ± 15.6
−10.5 ± 13.8


D-1544
2144
1
4
1
GalNAc
−26.1 ± 20.1
−22.6 ± 14
−32.8 ± 16.4


D-1794
1305
1
4
1
GalNAc
 −9.6 ± 21.6
 −2.6 ± 18.8
−19.9 ± 17.5


D-1795
1306
1
4
1
GalNAc
 2.7 ± 27.1
 7.9 ± 32.2
 4.2 ± 26.5


D-1796
1308
1
4
1
GalNAc
 −8.8 ± 26.4
 −5.8 ± 23.5
−20.8 ± 18.6


D-1797
1472
1
4
1
GalNAc
 0.6 ± 49.8
 0.3 ± 54.3
−20.3 ± 38.7


D-1798
1500
1
4
1
GalNAc
 −4.6 ± 8.9
 −3.9 ± 9.5
−19.3 ± 18


D-1809
2296
1
4
1
GalNAc
 12.4 ± 65.3
  15 ± 64.7
 21.4 ± 78.9


D-1810
2343
1
4
1
GalNAc
  −30 ± 20.2
−28.8 ± 20.4
−38.3 ± 13.1


D-1811
2355
1
4
1
GalNAc
−20.1 ± 39.6
−20.6 ± 32.7
−18.9 ± 30.3


D-1812
2417
1
4
1
GalNAc
−42.3 ± 12.1
−38.8 ± 12.2
−45.6 ± 4.9


D-1813
2432
1
4
1
GalNAc
−28.6 ± 22.1
−22.1 ± 27.3
−36.7 ± 14.5


D-1814
2688
1
4
1
GalNAc
 21.5 ± 13
 23.6 ± 14.6
 −6.8 ± 10.2


D-1815
2690
1
4
1
GalNAc
−21.3 ± 19.1
−18.3 ± 17.1
−34.5 ± 9.8


D-1816
2886
1
4
1
GalNAc
−23.6 ± 42.2
−18.2 ± 45.8
−49.4 ± 24.2


D-1817
1326
1
4
1
GalNAc
−14.2 ± 21
−13.1 ± 16
−36.1 ± 9.9


D-1818
1331
1
4
1
GalNAc
 11.5 ± 72
 12.7 ± 62.6
−21.3 ± 35.1


D-1819
1407
1
4
1
GalNAc
−20.5 ± 12.3
−17.4 ± 20.2
−35.4 ± 5.6


D-1597
1333
1
4
1
GalNAc
−29.9 ± 43.6
−36.7 ± 36
−40.4 ± 31.5


D-1544
2144
1
4
1
GalNAc
 16.9 ± 24.5
 10.7 ± 23.7
 1.5 ± 30


D-1820
1514
1
4
1
GalNAc
  −26 ± 41.7
−23.6 ± 41.8
−26.4 ± 37.4


D-1821
1564
1
4
1
GalNAc
 16.7 ± 67
 12.9 ± 68.8
105.3 ± 51.2


D-1822
1611
1
4
1
GalNAc
 58.7 ± 72
 57.7 ± 80
 45.4 ± 67.1


D-1823
1615
1
4
1
GalNAc
 27.2 ± 21.2
 38.5 ± 23.9
 24.7 ± 30.4


D-1824
1616
1
4
1
GalNAc
−17.8 ± 56.8
−13.7 ± 59.5
−12.9 ± 59.4


D-1825
1618
1
4
1
GalNAc
−20.6 ± 35.1
−21.3 ± 35
−31.1 ± 22


D-1826
1693
1
4
1
GalNAc
−28.1 ± 32.7
−13.8 ± 32.7
−34.2 ± 30.4


D-1827
1697
1
4
1
GalNAc
 0.8 ± 18.9
 −1.8 ± 19.2
 4.9 ± 41.3


D-1828
1700
1
4
1
GalNAc
 32.6 ± 24.6
  33 ± 14
 15.6 ± 19.4


D-1829
1701
1
4
1
GalNAc
 17.8 ± 50.2
 11.2 ± 46.5
 2.7 ± 40.7


D-1830
1703
1
4
1
GalNAc
 51.5 ± 39
 44.7 ± 43.9
 32.3 ± 35.8


D-1831
1704
1
4
1
GalNAc
 9.4 ± 36.6
 9.7 ± 36.7
 −5.9 ± 23.2


D-1832
1716
1
4
1
GalNAc
 21.8 ± 29.4
 29.7 ± 25.6
 25.8 ± 28.6


D-1833
1717
1
4
1
GalNAc
 24.7 ± 45.7
 33.3 ± 42.4
 27.2 ± 34.9


D-1834
1832
1
4
1
GalNAc
 91.8 ± 94.3
125.8 ± 122.3
 80.5 ± 91.5


D-1835
1833
1
4
1
GalNAc
 72.7 ± 75.1
 98.8 ± 91.9
 72.8 ± 71.2


D-1836
1834
1
4
1
GalNAc
   4 ± 25.5
 3.4 ± 27.5
 7.3 ± 26.1


D-1837
1856
1
4
1
GalNAc
 −8.2 ± 8.8
−10.2 ± 9.3
−16.2 ± 15.9


D-1838
1900
1
4
1
GalNAc
 35.2 ± 35.2
 42.4 ± 32.3
 13.6 ± 28.3


D-1839
2275
1
4
1
GalNAc
 54.8 ± 62.1
 57.1 ± 67.4
 9.3 ± 30.7


D-1840
2437
1
4
1
GalNAc
  80 ± 18.3
 79.2 ± 26.8
 79.4 ± 22.8


D-1841
2439
1
4
1
GalNAc
 49.2 ± 23.8
 43.4 ± 12.9
 42.3 ± 19.9


D-1842
2534
1
4
1
GalNAc
 24.1 ± 22.7
 12.5 ± 17.4
 16.7 ± 10.3


D-1843
2693
1
4
1
GalNAc
 87.7 ± 40.7
 83.7 ± 39.7
 62.3 ± 32.7


D-1844
2719
1
4
1
GalNAc
 24.4 ± 44.4
 26.8 ± 38.5
 19.9 ± 22.8


D-1845
2726
1
4
1
GalNAc
 26.8 ± 46.2
 29.3 ± 49.8
 25.5 ± 43.9
















TABLE 16







siRNA Efficacy in Liver 4 Weeks Following siRNA Injection













SIRNA
Trigger
Dose



Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
AAV No.
Carrier
eGFP-1
eGFP-2
BGHpA





D-1744
4717
3
4
3
GalNAc
−62.6 ± 19.9
−61.8 ± 21.1
  −63 ± 14


D-1896
4717
3
4
3
GalNAc
−81.8 ± 6.7
−81.3 ± 7.2
−75.2 ± 9.1


D-1902
4717
3
4
3
GalNAc
−59.6 ± 14.4
−59.4 ± 15.3
−62.5 ± 8.5


D-1908
4717
3
4
3
GalNAc
−67.3 ± 9.2
−65.2 ± 11.5
−60.4 ± 15


D-1781
4834
3
4
3
GalNAc
−64.9 ± 8.5
  −65 ± 6.9
−60.9 ± 3.9


D-1894
4834
3
4
3
GalNAc
−66.9 ± 10.7
−65.6 ± 10.5
  −61 ± 8


D-1900
4834
3
4
3
GalNAc
−54.2 ± 25.6
−56.4 ± 26
  −57 ± 13.9


D-1906
4834
3
4
3
GalNAc
−64.2 ± 10.8
−62.9 ± 11
−64.9 ± 7.8


D-1783
4932
3
4
3
GalNAc
−79.1 ± 8.3
−79.3 ± 7.9
−74.5 ± 4.7


D-1895
4932
3
4
3
GalNAc
−75.3 ± 17.4
−74.1 ± 17.5
−64.9 ± 13.2


D-1901
4932
3
4
3
GalNAc
−50.8 ± 7.8
−47.6 ± 9.7
−57.1 ± 6.7


D-1907
4932
3
4
3
GalNAc
−74.6 ± 11.3
−73.9 ± 12.4
−70.6 ± 15


D-1614
4999
3
4
3
GalNAc
−72.2 ± 10.1
−71.9 ± 10.2
−63.3 ± 10.6


D-1611
5043
3
4
3
GalNAc
−66.7 ± 24.4
−67.8 ± 22.8
−70.6 ± 17.9


D-1792
5204
3
4
3
GalNAc
−55.6 ± 9.1
−52.9 ± 7.6
−62.9 ± 6.5


D-1892
5204
3
4
3
GalNAc
−54.2 ± 12.8
−53.1 ± 14.4
−56.1 ± 11.1


D-1898
5204
3
4
3
GalNAc
−69.1 ± 3.8
−68.5 ± 3.2
−66.8 ± 2.3


D-1904
5204
3
4
3
GalNAc
−39.5 ± 13
−39.3 ± 14.2
−49.1 ± 11


D-1768
5247
3
4
3
GalNAc
−67.2 ± 7.6
−69.4 ± 7
−69.4 ± 8.7


D-1891
5247
3
4
3
GalNAc
−37.2 ± 16
−39.3 ± 15.8
−57.1 ± 11.9


D-1897
5247
3
4
3
GalNAc
−61.7 ± 9.1
−60.4 ± 9.6
−67.2 ± 6.4


D-1903
5247
3
4
3
GalNAc
−39.3 ± 28.3
−38.4 ± 30.2
−56.1 ± 16.5


D-1774
5276
3
4
3
GalNAc
  −70 ± 20.2
−70.5 ± 18.8
−68.2 ± 21.8


D-1893
5276
3
4
3
GalNAc
−59.4 ± 11.7
−56.8 ± 12.6
−61.5 ± 7.3


D-1899
5276
3
4
3
GalNAc
−73.8 ± 6.3
−72.9 ± 7.9
−72.4 ± 5.3


D-1905
5276
3
4
3
GalNAc
−59.7 ± 8.2
−59.1 ± 8.2
−61.8 ± 3.6


D-1914
4717
3
4
3
GalNAc
−55.9 ± 5.1
  −51 ± 6
−64.9 ± 12.9


D-1920
4717
3
4
3
GalNAc
−61.8 ± 10.6
−58.2 ± 13
−59.2 ± 7.6


D-1926
4717
3
4
3
GalNAc
−40.6 ± 25
−39.3 ± 19.9
−52.3 ± 11.1


D-1932
4717
3
4
3
GalNAc
−69.5 ± 8.3
−68.7 ± 6.7
−67.6 ± 7.4


D-1912
4834
3
4
3
GalNAc
−25.9 ± 30.2
 −7.6 ± 46.6
−43.6 ± 20.4


D-1918
4834
3
4
3
GalNAc
−71.9 ± 40.5
−71.3 ± 41
−69.3 ± 41.3


D-1924
4834
3
4
3
GalNAc
−27.1 ± 27
−29.6 ± 21.3
−36.2 ± 18.8


D-1930
4834
3
4
3
GalNAc
−62.5 ± 17.3
−64.9 ± 17.4
−64.3 ± 15.7


D-1913
4932
3
4
3
GalNAc
−55.9 ± 12.3
−47.5 ± 11.4
−53.1 ± 12.5


D-1919
4932
3
4
3
GalNAc
  −38 ± 37.3
−34.7 ± 44.3
−55.1 ± 22.1


D-1925
4932
3
4
3
GalNAc
−56.9 ± 9.8
−51.5 ± 11.8
−58.3 ± 8.8


D-1931
4932
3
4
3
GalNAc
−62.1 ± 14.1
−63.2 ± 10.2
−58.1 ± 14.8


D-1614
4999
3
4
3
GalNAc
−76.1 ± 7
−78.2 ± 5.6
−73.3 ± 9.8


D-1611
5043
3
4
3
GalNAc
−46.6 ± 8
−47.3 ± 7.3
−52.1 ± 11.5


D-1910
5204
3
4
3
GalNAc
−30.7 ± 40.6
−33.5 ± 39.2
−41.1 ± 35.3


D-1916
5204
3
4
3
GalNAc
−59.5 ± 8.3
−59.6 ± 10.9
−59.3 ± 4.4


D-1922
5204
3
4
3
GalNAc
−16.2 ± 25.6
  −20 ± 22.8
−24.5 ± 22.7


D-1928
5204
3
4
3
GalNAc
−61.8 ± 6.1
−58.5 ± 8
−56.4 ± 15.8


D-1909
5247
3
4
3
GalNAc
  −59 ± 20.7
−60.6 ± 16.4
−65.7 ± 12.5


D-1915
5247
3
4
3
GalNAc
−52.8 ± 20.8
−37.6 ± 29.6
  −66 ± 11.9


D-1921
5247
3
4
3
GalNAc
−54.4 ± 13.4
−48.2 ± 19.7
  −66 ± 12.1


D-1927
5247
3
4
3
GalNAc
−47.4 ± 21.1
−35.6 ± 31.6
−57.9 ± 17.4


D-1911
5276
3
4
3
GalNAc
−49.6 ± 22.2
−47.1 ± 24.8
−60.6 ± 18.2


D-1917
5276
3
4
3
GalNAc
−79.6 ± 17.6
−77.6 ± 19.8
−76.4 ± 17.7


D-1923
5276
3
4
3
GalNAc
−63.8 ± 17.3
−61.4 ± 19.7
−59.5 ± 21.4


D-1929
5276
3
4
3
GalNAc
  −69 ± 10.5
−68.8 ± 10
  −59 ± 11.2
















TABLE 17







siRNA Efficacy in Liver 4 Weeks Following siRNA Injection













SIRNA
Trigger
Dose

AAV

Avg. % Change in mRNA ± STD















Duplex
Family
(mg/kg)
N
No.
Carrier
eGFP-1
eGFP-2
BGHpA





D-1709
4999
3
4
22span
GalNAc
−83.2 ± 8.6
−82.9 ± 9.3
−83.7 ± 7.5


D-2008
4999
3
4
22span
GalNAc
−62.7 ± 8.7
−65.6 ± 11.3
−76.2 ± 7.4


D-2017
4999
3
4
22span
GalNAc
−66.4 ± 15.5
−66.4 ± 16.1
−72.6 ± 11.5


D-2049
4999
3
4
22span
GalNAc
−78.6 ± 11.1
−79.7 ± 10.1
−85.5 ± 5.7


D-2054
4999
3
4
22span
GalNAc
−82.6 ± 6.2
−82.4 ± 5.9
−87.3 ± 3.8


D-1704
5045
3
4
22span
GalNAc
−81.1 ± 8.4
−81.8 ± 6.9
−83.3 ± 6


D-2012
5045
3
4
22span
GalNAc
−91.6 ± 1.1
−91.3 ± 0.8
−90.4 ± 1.2


D-2021
5045
3
4
22span
GalNAc
−84.5 ± 6.7
−85.3 ± 5.2
−84.8 ± 6.3


D-2043
5045
3
4
22span
GalNAc
  −74 ± 12.9
−74.7 ± 11.1
−79.2 ± 8.6


D-2047
5045
3
4
22span
GalNAc
−80.1 ± 13.4
  −81 ± 11.1
−81.6 ± 11.4


D-2052
5045
3
4
22span
GalNAc
−84.2 ± 5.9
−84.1 ± 6.5
−83.3 ± 4.9


D-1623
5080
3
4
22span
GalNAc
−59.6 ± 11.3
−62.9 ± 11.1
−62.9 ± 11


D-2014
5080
3
4
22span
GalNAc
−89.1 ± 10.6
−88.8 ± 9.1
−88.5 ± 9.8


D-2023
5080
3
4
22span
GalNAc
−89.1 ± 6.5
−88.2 ± 6.2
−87.6 ± 5.3


D-2036
4995
3
4
22span
GalNAc
−59.3 ± 40.7
−60.4 ± 39.2
  −66 ± 29.9


D-2037
4996
3
4
22span
GalNAc
−42.8 ± 23.2
−48.5 ± 16.9
−42.5 ± 20.2


D-2038
4997
3
4
22span
GalNAc
 76.6 ± 62.9
105.4 ± 74.5
 88.1 ± 60.4


D-2039
4998
3
4
22span
GalNAc
−43.5 ± 27.1
−43.6 ± 30.2
−56.6 ± 19


D-2040
5042
3
4
22span
GalNAc
−83.5 ± 10.5
−83.8 ± 9.5
−84.3 ± 7.2


D-1705
5043
3
4
22span
GalNAc
−86.5 ± 5.5
−86.9 ± 5.4
−90.5 ± 4.1


D-2013
5043
3
4
22span
GalNAc
−77.8 ± 15.6
−78.8 ± 15.2
−85.1 ± 10.8


D-2022
5043
3
4
22span
GalNAc
−79.2 ± 5.7
−80.3 ± 5
−87.6 ± 3.7


D-2044
5043
3
4
22span
GalNAc
−72.4 ± 32.6
−70.3 ± 37.2
  −82 ± 21.7


D-2048
5043
3
4
22span
GalNAc
−64.1 ± 18.9
−66.2 ± 18.5
−76.3 ± 10.2


D-2053
5043
3
4
22span
GalNAc
−83.7 ± 5
−84.9 ± 4.9
−89.8 ± 3.2


D-2042
5274
3
4
22span
GalNAc
−58.7 ± 23.5
−62.9 ± 21.2
−74.4 ± 14.3


D-2046
5274
3
4
22span
GalNAc
−51.9 ± 37.4
−55.9 ± 32.1
−70.4 ± 18.9


D-2051
5274
3
4
22span
GalNAc
−71.2 ± 14.4
−72.6 ± 13
−82.1 ± 8.2


D-2079
5274
3
4
22span
GalNAc
−83.4 ± 6.6
−84.7 ± 5.8
−89.1 ± 5.1


D-2080
5274
3
4
22span
GalNAc
−84.7 ± 4.6
−85.2 ± 4.4
−90.1 ± 2.6


D-2081
5274
3
4
22span
GalNAc
−83.1 ± 11
−83.7 ± 10.8
−88.5 ± 8.3


D-2082
5274
3
4
22span
GalNAc
−60.4 ± 18.6
−61.8 ± 18
  −75 ± 9.5


D-2083
5274
3
4
22span
GalNAc
−72.3 ± 21.8
−73.2 ± 20.8
−82.2 ± 11.4


D-2059
4412
3
4
22span
GalNAc
−53.8 ± 19
−52.8 ± 26
−68.3 ± 10.9


D-2058
4412
3
4
22span
GalNAc
−76.9 ± 18.2
−76.6 ± 20.2
−83.9 ± 11.5


D-2060
4412
3
4
22span
GalNAc
−62.4 ± 17.8
−60.8 ± 18.1
−74.6 ± 11.4


D-1774
5276
3
4
22span
GalNAc
−59.9 ± 14.9
−59.8 ± 15.9
  −74 ± 6.8


D-2084
5276
3
4
22span
GalNAc
−46.3 ± 25.2
−47.5 ± 23.2
−65.6 ± 13.1


D-1955
4412
3
4
22span
GalNAc
−88.2 ± 5.2
−87.8 ± 5.5
−88.1 ± 4.7


D-2091
4412
3
4
22span
GalNAc
−89.2 ± 2.4
−89.4 ± 2.9
−90.6 ± 1


D-2061
4412
3
4
22span
GalNAc
−93.3 ± 3
−93.5 ± 2.9
−93.6 ± 3.1


D-2041
4412
3
4
22span
GalNAc
−60.5 ± 18.9
−60.7 ± 18.9
  −69 ± 13.4


D-2045
4412
3
4
22span
GalNAc
  −80 ± 12
−80.2 ± 10
−82.6 ± 10.5


D-2050
4412
3
4
22span
GalNAc
−56.1 ± 55.5
−58.3 ± 50.9
−62.3 ± 44.7


D-2057
4412
3
4
22span
GalNAc
−76.7 ± 14.4
−78.8 ± 11.8
−76.9 ± 12.4


D-1970
5249
3
4
22span
GalNAc
−82.4 ± 13
−83.5 ± 11.9
−82.9 ± 13


D-2076
5249
3
4
22span
GalNAc
−60.6 ± 11.6
  −65 ± 9.7
−66.8 ± 10.1


D-2078
5249
3
4
22span
GalNAc
−72.6 ± 17.4
  −74 ± 16.1
−70.8 ± 20.2


D-1768
5247
3
4
22span
GalNAc
−83.6 ± 10.3
−83.8 ± 10
−83.3 ± 9.6


D-2075
5247
3
4
22span
GalNAc
−88.6 ± 10
−89.2 ± 9.1
−87.8 ± 11


D-2077
5247
3
4
22span
GalNAc
  −93 ± 2.2
−92.7 ± 2.6
−94.5 ± 1


D-1597
1333
3
4
22span
GalNAc
−83.4 ± 9.3
−83.3 ± 9.2
−86.8 ± 7.4


D-2006
1333
3
4
22span
GalNAc
−79.3 ± 9.7
−79.2 ± 9.6
−79.7 ± 9.9


D-2015
1333
3
4
22span
GalNAc
−65.3 ± 12.8
  −66 ± 12.1
  −72 ± 8.2


D-2090
4999
3
4
22span
GalNAc
−94.5 ± 1.8
  −94 ± 2.1
−94.6 ± 1.6


D-2093
5274
3
4
22span
GalNAc
−81.6 ± 13
−79.6 ± 15.1
−86.9 ± 7.1


D-1899
5276
3
4
22span
GalNAc
−78.5 ± 10.1
−78.2 ± 9.9
−83.4 ± 5.9









Testing of FAM13A-directed siRNA molecules within the AAV human FAM13A mouse model showed that a variety of different regions within FAM13A mRNA can be targeted to effectively reduce FAM13A expression. As shown in FIG. 6, the effective siRNA triggers targeted regions throughout the FAM13A mRNA transcript (SEQ ID NO: 1). In the above tables, the region targeted by the siRNA is specified by the trigger family, which refers to the first nucleotide in the range of nucleotides of SEQ ID NO: 1 that is targeted by a given siRNA molecule.


Trigger families that achieved a maximum knockdown of between 40-60% relative to vehicle control (for at least one probe set with at least one duplex) were T-1328, T-1631, T-1666, T-2343, T-2417, T-2623, T-2886, T-2887, T-2889, T-3133, T-3187, T-3189, T-3498, T-3499, T-4008, T-4109, T-4485, T-4927, T-4989, T-4993, T-4996, T-4998, T-5060, and T-5114.


Trigger families that achieved a maximum knockdown of between 60-80% relative to vehicle control (for at least one probe set with at least one duplex) were T-1678, T-2263, T-4834, T-4932, T-4957, T-4995, and T-5204. Exemplary duplexes within these families that proved effective in reducing FAM13A expression by 60-80% included D-1615, D-1695, and D-1867 from trigger family T-1678; D-1573 from trigger family T-2263; D-1781, D-1894, D-1906, D-1918, and D-1930 from trigger family T-4834; D-1783, D-1895, D-1907, and D-1931 from trigger family T-4932; D-1631, D-1696, D-1703, D-1717, D-1724, and D-1731 from trigger family T-4957; D-2036 from T-4995; and D-1792, D-1898, and D-1928 from trigger family T-5204.


Trigger families that achieved greater than 80% knockdown relative to vehicle control (for at least one probe set with at least one duplex) were T-1309, T-1333, T-2080, T-2144, T-3000, T-4412, T-4717, T-4999, T-5042, T-5043, T-5045, T-5080, T-5247, T-5249, T-5274, and T-5276. Exemplary duplexes within these families that proved effective in reducing FAM13A expression by greater than 80% included D-1667, D-1686, and D-1849 from trigger family T-1309; D-1597, D-1853, and D-2017 from trigger family T-1333; D-1680, D-1685, and D-1690 from trigger family T-2080; D-1682 and D-1858 from trigger family T-2144; D-1557, D-1650, and D-1861 from trigger family T-3000; D-1955 from trigger family T-4412; D-1896 from trigger family T-4717; D-1614, D-1697, D-1702, D-1709, D-1856, D-1863, D-1865, D-1866, D-1869, D-1873, D-1877, D-1878, D-1879, D-1880, D-1881, D-1884, D-1887, D-1987, D-1992, D-1997, and D-2002 from trigger family T-4999; D-2040 from trigger family T-5042; D-1698, D-1705, D-1864, D-1870, D-1875, D-1883, D-1886, D-1980, D-1984, D-1989, D-1994, and D-2004 from trigger family T-5043; D-1699, D-1612, D-1704, D-1868, D-1871, D-1876, D-1885, D-1888, D-1979, D-1983, D-1988, D-1993, D-1998, and D-2003 from trigger family T-5045; D-1623, D-1846, D-1862, D-1981, D-1985, D-1990, D-1995, D-2000, and D-2005 from trigger family T-5080; D-1768, D-2075, and D-2077 from trigger family T-5247; D-1970 from trigger family T-5249; D-1972 from trigger family T-5274; and D-1975, D-1991, D-1976, D-1977, D-1982, D-1996, and D-2001 from trigger family T-5276.


In testing a range of different modification patterns for some trigger families, it was found that some triggers consistently facilitated high levels of knockdown of FAM13A knockdown. For example, 31 different modification patterns were tested in the above AAV-based experiments using the T-4999 trigger family sequence (D-1614, D-1697, D-1702, D-1709, D-1716, D-1723, D-1730, D-1737, D-1856, D-1863, D-1865, D-1866, D-1869, D-1872, D-1877, D-1878, D-1879, D-1880, D-1881, D-1884, D-1887, D-1978, D-1987, D-1992, D-1997, D-2002, D-2008, D-2017, D-2049, D-2054, and D-2090; see Table 2 for sense and antisense sequences, and modification patterns used, in these duplexes). Each of these duplexes utilized a different modification pattern in the context of the same sense and antisense sequences (SEQ ID NOs: 498 and 1042). Of these duplexes, 25 modification patterns were observed to facilitate greater than 80% knockdown of FAM13A mRNA in at least one assay, and the remaining 6 were observed to facilitate between 60% and 80% knockdown in at least one assay. These data indicate that the T-4999 trigger family is a particularly effective and reliable trigger for reducing FAM13A expression.


Another effective and reliable trigger family is the T-5043 trigger family. For this family, 25 different modification patterns were tested in the above AAV-based experiments (D-1611, D-1698, D-1705, D-1712, D-1719, D-1726, D-1733, D-1740, D-1855, D-1864, D-1870, D-1875, D-1883, D-1886, D-1980, D-1984, D-1989, D-1994, D-1999, D-2004, D-2013, D-2022, D-2044, D-2048, and D-2053; see Table 2 for sense and antisense sequences, and modification patterns used, in these duplexes). Each of these duplexes utilized a different modification pattern in the context of the same sense and antisense sequences (SEQ ID NOs: 503 and 1047). Of these duplexes, 16 modification patterns were observed to facilitate greater than 80% knockdown of FAM13A mRNA in at least one assay, 8 were observed to facilitate between 60% and 80% knockdown in at least one assay, and 1 was observed to facilitate between 40% and 60% knockdown of FAM13A mRNA in at least one assay.


A third particularly effective trigger family is the T-5045 trigger family (whose target sequence largely overlaps with the T-5043 trigger family). For this family, 25 different modification patterns were tested in the above AAV-based experiments (D-1612, D-1699, D-1704, D-1711, D-1718, D-1725, D-1732, D-1739, D-1868, D-1871, D-1876, D-1882, D-1885, D-1888, D-1979, D-1983, D-1988, D-1993, D-1998, D-2003, D-2012, D-2021, D-2043, D-2047, and D-2052; see Table 2 for sense and antisense sequences, and modification patterns used, in these duplexes). Each of these duplexes utilized a different modification pattern in the context of the same sense and antisense sequences (SEQ ID NOs: 504 and 1048). Of these duplexes, 18 modification patterns were observed to facilitate greater than 80% knockdown of FAM13A mRNA in at least one assay, and 7 were observed to facilitate between 60% and 80% knockdown in at least one assay.


Other trigger families that were able to show effective knockdown with multiple modification patterns included the T-1309, T-1333, T-2144, T-3000, T-5080, and T-5226 trigger families.


From a broad perspective, testing a wide range of triggers across the FAM13A transcript revealed that which regions of the transcript were susceptible to RNAi-mediated knockdown. FIG. 6 is a diagram compiling the locations of where different effective trigger families target the FAM13A mRNA transcript (as provided in SEQ ID NO: 1), along with categorizing the maximal degree to which those trigger families were able to knock down FAM13A expression in the above AAV-based assays. The triggers were divided according to whether the maximum observed knockdown for that trigger fell within the range of 40-60% knockdown, 60-80% knockdown, or greater than 80% knockdown.


As shown in FIG. 6, one region of the human FAM13A mRNA transcript that is particularly susceptive to RNAi-based knockdown is the portion between nucleotides 4900 and 5300 of the FAM13A mRNA transcript. Within this small region, 24 distinct trigger families were identified that facilitated knockdown of FAM13A, most of which were validated with multiple different duplexes having different modification patterns. These families included 12 trigger families that facilitated greater than 80% knockdown, 5 families that facilitated between 60% and 80% knockdown, and 7 families that facilitated between 40% and 60% knockdown. This unexpected concentration of successful targets indicates that targeting between nucleotides 4900 and 5300 is a particularly useful strategy for knocking down FAM13A expression.


Other regions that also were susceptible at multiple target locations included nucleotides 1300-1375, nucleotides 1625-1700, and nucleotides 2075-2175. Therefore, these data also indicate that targeting any of these regions is a useful strategy for knocking down FAM13A expression.


These AAV-based experiments also tested the effectiveness of conjugating different ligands to siRNA duplexes in facilitating knockdown in different tissues. FIGS. 8A-8D and Table 14 show the results of testing FAM13A siRNA from the T-4999 and T-5043 families, when the duplexes had been conjugated to either GalNAc (Formula VII) or the fatty acid C22. In these figures, the “*” denotes those duplexes that were conjugated to C22, while those without an asterisk were conjugated to GalNAc. Knockdown data was gathered both the liver and adipose tissue, after systemic administration. GalNAc-conjugated duplexes were administered at 3 mg/kg, while C22 conjugated triggers were administered at 20 mg/kg. All of the tested T-4999 and T-5043 duplexes were able to reduce expression of FAM13A in the liver. In the adipose tissue, the GalNAc-conjugated triggers were less effective in reducing FAM13A expression, with some having no detectable effect. In contrast, the C22-conjugated triggers consistently facilitated reduction of FAM13A expression in adipose tissue to a similar degree as they facilitated in the liver. Examination of these data in combination with studies of weight, fat mass, and metabolic characterization (see Examples 2, 6, and 7) indicates that GalNAc targeting is surprisingly able to achieve similar results to C22 targeting, despite having less effect on FAM13A expression in biologically significant adipose tissue.


The above data also allows for comparison of linkages used to attach C22 to siRNA duplexes. The two tested linkages are through a phosphodiester bond (PO) and through a phosphorothioate bond (PS). Unexpectedly, linking C22 with PS led to significantly better knockdown than linking with PO. This was observed through comparison of pairs of duplexes, which only differ in their conjugation method. For example, one T-4999 trigger family pair showed an increase of 43% in knockdown when switching from PO to PS linkage (compare D-1697 (PO; 37% KD) and D-1856 (PS; 80% KD)). Another T-4999 trigger family pair showed a more modest increase of 6% in knockdown when switching from PO to PS linkage (compare D-1869 (PO; 74% KD) and D-1887 (PS; 80% KD)). A T-5080 trigger family pair showed an increase of 25% in knockdown when switching from PO to PS linkage (compare D-1846 (PO; 44% KD) and D-1862 (PS; 69% KD)). A T-5043 trigger family pair showed an increase of 45% in knockdown when switching from PO to PS linkage (compare D-1698 (PO; 13% KD) and D-1855 (PS; 58% KD)). Another T-5043 trigger family pair showed an increase of 30% in knockdown when switching from PO to PS linkage (compare D-1875 (PO; 40% KD) and D-1886 (PS; 70% KD)). And a T-5045 trigger family pair showed an increase of 38% in knockdown when switching from PO to PS linkage (compare D-1871 (PO; 27% KD) and (D-1882 (PS; 65% KD)). These and other data in Tables 4-17 above show that linking C22 to a siRNA duplex with PS unexpectedly and consistently led to significantly better knockdown than linking to that same siRNA duplex with PO.


Example 6: In Vivo Knockdown of Endogenous Murine Fam13a in Obesity Model

To determine which human siRNA duplexes (see Examples 4 and 5) would be suitable for testing with endogenous murine Fam13a knockdown experiments, effective trigger families (see Examples 4 and 5 above) were reviewed for cross-reactivity with murine Fam13a mRNA. This review found that the T-4999 trigger family aligned with the murine Fam13a sequence for all except one base of its sequence. Hypothesizing that this might be sufficient to still show knockdown activity, experiments were undertaken to assess the efficacy of T-4999 FAM13A siRNA molecules on endogenous murine Fam13a mRNA in the diet-induced obesity (DIO) model in C57BL/6 mice.


Three duplexes from the T-4999 trigger family were chosen for this assay: D-1709 (GalNAc conjugated via PS), D-1869 (C22 conjugated via PO), and D-1887 (C22 conjugated via PS). Duplexes D-2086 (GalNAc conjugated via PS) and D-2087 (C22 conjugated via PS), which target human FAM13A but were not predicted to bind mouse FAM13A, were used as negative controls. D-2086 (GalNAc conjugated via PS) and D-2087 (C22 conjugated via PS), two duplexes that fully match the murine Fam13a mRNA sequence, were also tested.


Male C57BL6 mice were fed a diet containing high fat content (Research Diets D12492, 60% kcal derived from fat) beginning at 5 weeks of age. When the mice reached 19 weeks of age (14 weeks on the high-fat diet), the mice received a subcutaneous injection of buffer (PBS) or the FAM13A siRNA molecule at a dose of 3 mg/kg body mass or 20 mg/kg body mass in PBS (n=8 mice per group). Body mass was measured continuously throughout the study. Body composition was measured by NMR (EchoMRI 3n1 Body Composition Analyzer) at baseline (2 days prior to injection) and on day 25 post-injection. Liver and subcutaneous white adipose tissue (ScWAT) were collected 4 weeks following siRNA administration and analyzed.


RNA from harvested animal tissues was processed for qPCR analysis. RNA was isolated from 50-100 mg tissue using RNeasy 96 universal tissue kit RNA isolation protocol following manufacturer's instructions (Qiagen). Real-time PCR was performed using TaqMan® RNA-to-Ct™ 1-Step Kit following manufacturer's instructions (ThermoFisher) with 50 ng RNA per reaction and a primer probe set complementary to the murine Fam13a mRNA. A percentage change in murine Fam13a mRNA in liver or ScWAT for each animal was calculated relative to the level of murine Fam13a mRNA in the liver or ScWAT of animals administered PBS buffer control.


Results of these studies are shown in FIGS. 9A-9C and FIGS. 10A-10B. These figures show the level of knockdown achieved in each mouse's liver, inguinal WAT, and epididymal WAT. Each of the non-targeting control siRNA duplexes displayed expression levels the same as buffer-only control mice (in all three tissues).


In the liver, all the Fam13a-directed duplexes effectively reduced expression of murine Fam13a (FIG. 9A). The GalNAc-linked duplexes, D-2086 and D-1709, reduced Fam13a expression in the liver equivalently (by 62% and 63%, respectively). This showed that the T-4999 duplex (D-1709) was effective despite having one mismatch with the target sequence. Each of the C22-linked duplexes also facilitated Fam13a knockdown in the liver, with D-2087 resulting in 76% knockdown, D-1869 resulting in 55% knockdown, and D-1887 resulting in 69% knockdown.


In inguinal WAT, the C22-linked duplexes were more effective than the GalNAc-linked duplexes in reducing murine Fam13a expression. The GalNAc-linked duplexes, D-2086 and D-1709, reduced expression in the liver by 8% and 19%, respectively. In contrast, the C22-linked duplexes resulted in Fam13a knockdown at similar levels to that achieved in the liver: D-2087 resulted in 66% knockdown, D-1869 resulted in 60% knockdown, and D-1887 resulted in 62% knockdown.


In epididymal WAT, less knockdown was observed than in the other two tissue types. Neither of the GalNAc-linked duplexes resulted in significant knockdown of murine Fam13a. In contrast, the C22-linked duplexes resulted in some Fam13a knockdown: D-2087 resulted in 22% knockdown, D-1869 resulted in 26% knockdown, and D-1887 resulted in 26% knockdown.



FIG. 10A shows the effects of siRNA treatment on the body weight of the DIO mice. Untreated and control treated mice had a 5-8% increase in body weight over the course of the experiment. Treatment with any of the Fam13a duplexes decreased or prevented that weight gain. The GalNAc-linked duplexes, D-2086 and D-1709, limited the weight gain to 2% and 4%, respectively. The C22-linked duplexes also limited the weight gain, with D-2087 actually resulting in a 1% weight loss for the mice, D-1869 limiting the gain to 2%, and D-1887 limiting the gain to 3%.



FIG. 10B shows the effects of siRNA treatment on the fat mass of the DIO mice. Untreated and control treated mice had an 8-9% increase in fat mass over the course of the experiment. Treatment with any of the Fam13a duplexes decreased or prevented that weight gain. The GalNAc-linked duplexes, D-2086 and D-1709, limited the weight gain to 6% and 4%, respectively. The C22-linked duplexes also limited the weight gain, with D-2087 actually resulting in a 2% weight loss for the mice, D-1869 limiting the gain to 3%, and D-1887 limiting the gain to 3%.


These data provide further support for FAM13A siRNA (and the T-4999 trigger family specifically) being used for a variety of purposes, such as reducing abdominal adiposity, reducing body weight, reducing fat mass, improving metabolic parameters including insulin resistance and non-alcoholic steatohepatitis (NASH), and reducing risk of myocardial infarction.


Example 7: FAM13A siRNA in Nonhuman Primates

To assess the efficacy of the FAM13A siRNA molecules in a nonhuman primate model, top performing FAM13A siRNA molecules from the in vitro and in vivo activity assays described in Examples 4 and 5 were evaluated for in vivo efficacy using cynomolgus monkeys. In particular, triggers from the T-4999 and T-5043 families were selected. Because the selected triggers target a sequence present in both human and cynomolgus FAM13A mRNA, it was expected that they would also be effective in knocking down endogenous cynomolgus FAM13A.


For these experiments, the sense strand in each tested siRNA molecule was conjugated to the trivalent GalNAc moiety shown in Formula VII or to docosanoic acid (C22), using the methods described in Example 3. Accordingly, the experiment used the T-4999 duplexes T-1709 (GalNAc conjugated via PS) and D-1887 (C22 conjugated via PS), and the T-5043 duplexes D-1705 (GalNAc conjugated via PS) and D-1886 (C22 conjugated via PS).


The study design is provided in Table 18 below. Briefly, there were N=3 animals per treatment group (naïve and non-naïve, female, lean cynomolgus monkeys, Cambodian origin, 3 years old). A single subcutaneous dose was administered in the mid-scapular region to each animal. Liver tissue biopsies were collected pre-dose on day −14 or day −11, and post-dose on days 14, 30, and 45 (relative to dosing on day 0). Adipose tissue biopsies were collected pre-dose on day −14 or day −11 (omental fat), and post-dose on days 14 (falciform fat), 30 (omental fat), and 45 (omental and falciform fat). Blood for clinical chemistry analysis was collected via femoral vein on days −14 (prior to biopsy), −7, 7, 14 (prior to biopsy), 20, 25, 30 (prior to biopsy), 35, and 45 (prior to necropsy). Animals were fasted on days −14, 14, and 30 due to the tissue biopsy collection procedures.









TABLE 18







NHP Study Design




















Dose
Dose




SIRNA
Trigger

Dose
Level
Conc.


Group
Animals
Duplex
Family
Carrier
Route
(mg/kg)
(mg/mL)

















1
3
D-1709
4999
GalNAc
SC
3
0.6


2
3
D-1887
4999
C22
SC
20
4


3
3
D-1705
5043
GalNAc
SC
3
0.6


4
3
D-1886
5043
C22
SC
20
4









For analysis of FAM13A knockdown level in liver and adipose tissue, the total RNA was isolated from 10 to 20 mg tissue for each tissue sample from each time point. A cDNA sample was then prepared from each total RNA sample and diluted 1:10 for ddPCR analysis. A cynomolgus FAM13A primer/probe set and a cynomolgus PPIB primer/probe set was used in the analysis. The percent mRNA knockdown was calculated relative to the pre-dose FAM13A expression level for each individual animal and then averaged across timepoints.


The data on knockdown of FAM13A mRNA levels in the liver is shown in FIG. 11A. The most effective duplex in the liver was D-1709, the GalNAc-conjugated siRNA from the T-4999 trigger family. In the liver, the single dose of D-1709 reduced FAM13A mRNA levels by an average of 81% by day 14, and the knockdown was maintained at day 30 (77%) and day 45 (80%) without any subsequent treatment. The duplex D-1887, which is identical to D-1709 aside from being C22-conjugated, was almost as effective as D-1709 (albeit at a higher dose). The single dose of D-1887 reduced FAM13A mRNA levels by an average of 68% by day 14, and the knockdown was increased on day 30 (71%) and day 45 (75%) without any subsequent treatment.



FIG. 11A also shows the liver knockdown achieved by two duplexes from the T-5043 trigger family. The single dose of D-1705 (GalNAc) reduced FAM13A mRNA levels by an average of 58% by day 14, and the knockdown was maintained at day 30 (52%) and day 45 (48%) without any subsequent treatment. However, the knockdown was much higher in two of the animals, as one of the three treated animals was a possible outlier that exhibited minimal knockdown. The other duplex in the T-5043 family, D-1886 (C22), reduced FAM13A mRNA levels by an average of 45% by day 14, but the knockdown levels decreased by day 30 (35%) and day 45 (8.4%).



FIG. 11B shows the data on knockdown of FAM13A mRNA in the adipose tissue. The most effective duplexes in the adipose tissue were D-1887 (T-4999; C22) and D-1886 (T-5043; C22). The single dose of D-1887 reduced FAM13A mRNA levels by an average of 83% by day 14, and the knockdown was maintained on day 30 (80%) and day 45 (75%) without any subsequent treatment. Similarly, the single dose of D-1886 reduced FAM13A mRNA levels by an average of 79% by day 14, and the knockdown was maintained on day 30 (64%) and day 45 (83%) without any subsequent treatment. The two GalNAc conjugated duplexes demonstrated a lag time in silencing activity but were also effective in knocking down FAM13A. The single dose of D-1709 reduced FAM13A mRNA levels by an average of 11% by day 14, and the knockdown increased at day 30 (45%) and day 45 (56%) without any subsequent treatment. The single dose of D-1705 had minimal effects on FAM13A mRNA levels at day 14 (decreased 19%) and day 30 (increased 15%), but an average knockdown of 55% was observed on day 45.



FIGS. 11C-11E show results of the clinical chemistry analysis performed on blood serum samples from the treated animals. For all of the tested duplexes, there was a consistent approximately 20% or greater decrease in serum cholesterol (FIG. 11C), serum LDL (FIG. 11D), and serum HDL (FIG. 11E) between 20 and 30 days after siRNA treatment. These decreases are consistent with the effects of FAM13A-targeted siRNA on the blood chemistry of mice (see Example 2 and FIG. 5). Accordingly, these data provide further support for FAM13A siRNA (and the T-4999 and T-5043 trigger families specifically) being used for a variety of purposes, such as reducing abdominal adiposity, reducing body weight, reducing fat mass, improving metabolic parameters including insulin resistance and non-alcoholic steatohepatitis (NASH), and reducing risk of myocardial infarction.


Further evidence for the efficacy of FAM13A siRNA in treatment of such conditions will be gathered through the use of obese cynomolgus monkeys. These animals will be monitored after the administration of the T-4999 duplexes T-1709 (GalNAc conjugated via PS) and D-1887 (C22 conjugated via PS), and the T-5043 duplexes D-1705 (GalNAc conjugated via PS) and D-1886 (C22 conjugated via PS). The weight, fat mass, blood chemistry, and other metabolic parameters will be monitored and correlated with the knockdown of FAM13A expression in both the liver and adipose tissue.

Claims
  • 1. An RNAi construct comprising a sense strand and an antisense strand, wherein the sense strand comprises a sequence that is sufficiently complementary to the sequence of the antisense strand to form a duplex region, and wherein the antisense strand comprises:(a) a region that has substantial identity to at least 15 contiguous nucleotides within nucleotides 1300-1375 or 4900-5300 of the FAM13A mRNA sequence set forth in SEQ ID NO: 1, such that there are no more than 2 mismatches between the antisense strand's region of substantial identity and the contiguous nucleotides; or(b) a region that has substantial identity to at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2, such that there are no more than 2 mismatches between the antisense strand's region of substantial identity and the contiguous nucleotides.
  • 2-5. (canceled)
  • 6. The RNAi construct of claim 1, wherein the sense strand and antisense strand form a duplex region of about 15 to about 30 base pairs in length.
  • 7. (canceled)
  • 8. The RNAi construct of claim 6, wherein the duplex region is about 19 to about 21 base pairs in length.
  • 9. (canceled)
  • 10. The RNAi construct of claim 6, wherein the sense strand and the antisense strand are each independently about 19 to about 23 nucleotides in length.
  • 11. (canceled)
  • 12. The RNAi construct of claim 1, wherein the RNAi construct comprises one or two nucleotide overhangs of 1 to 4 unpaired nucleotides.
  • 13-14. (canceled)
  • 15. The RNAi construct of claim 1, wherein the RNAi construct comprises one or more modified nucleotides.
  • 16-17. (canceled)
  • 18. The RNAi construct of claim 15, wherein all the nucleotides in the sense and antisense strands are modified nucleotides.
  • 19. The RNAi construct of claim 18, wherein the modified nucleotides are 2′-O-methyl modified nucleotides, 2′-fluoro modified nucleotides, or a combination thereof.
  • 20. The RNAi construct of claim 1, wherein the sense strand comprises an abasic nucleotide as the terminal nucleotide at its 3′ end, its 5′ end, or both its 3′ and 5′ ends.
  • 21. (canceled)
  • 22. The RNAi construct of claim 1, wherein the sense strand, the antisense strand, or both the sense and antisense strands comprise one or more phosphorothioate internucleotide linkages.
  • 23-25. (canceled)
  • 26. The RNAi construct of claim 1, wherein the antisense strand comprises or consists of a sequence selected from the antisense sequences listed in Table 1 or Table 2.
  • 27. The RNAi construct of claim 1, wherein the sense strand comprises a sequence selected from the sense sequences listed in Table 1 or Table 2.
  • 28. The RNAi construct of claim 1, wherein the sense and antisense strands, respectively, comprise SEQ ID NOs: 15 and 559, SEQ ID NOs: 24 and 568, SEQ ID NOs: 125 and 669, SEQ ID NOs: 127 and 671, SEQ ID NOs: 222 and 766, SEQ ID NOs: 406 and 950, SEQ ID NOs: 448 and 992, SEQ ID NOs: 498 and 1042, SEQ ID NOs: 502 and 1046, SEQ ID NOs: 503 and 1047, SEQ ID NOs: 504 and 1048, SEQ ID NOs: 513 and 1057, SEQ ID NOs: 526 and 1070, SEQ ID NOs: 527 and 1071, SEQ ID NOs: 533 and 1077, or SEQ ID NOs: 534 and 1078.
  • 29. (canceled)
  • 30. The RNAi construct of claim 28, wherein the sense and antisense strands, respectively, comprise SEQ ID NOs: 498 and 1042.
  • 31. The RNAi construct of claim 1, wherein the RNAi construct is D-1557, D-1597, D-1612, D-1614, D-1623, D-1650, D-1667, D-1680, D-1682, D-1685, D-1686, D-1690, D-1697, D-1698, D-1699, D-1702, D-1704, D-1705, D-1709, D-1768, D-1846, D-1849, D-1853, D-1856, D-1858, D-1861, D-1862, D-1863, D-1864, D-1865, D-1866, D-1868, D-1869, D-1870, D-1871, D-1873, D-1875, D-1876, D-1877, D-1878, D-1879, D-1880, D-1881, D-1883, D-1884, D-1885, D-1886, D-1887, D-1888, D-1899, D-1896, D-1955, D-1970, D-1972, D-1975, D-1976, D-1977, D-1979, D-1980, D-1981, D-1982, D-1983, D-1984, D-1985, D-1987, D-1988, D-1989, D-1990, D-1991, D-1992, D-1993, D-1994, D-1995, D-1996, D-1997, D-1998, D-2000, D-2001, D-2002, D-2003, D-2004, D-2005, D-2012, D-2013, D-2014, D-2017, D-2021, D-2022, D-2023, D-2040, D-2044, D-2045, D-2047, D-2049, D-2051, D-2052, D-2053, D-2054, D-2058, D-2061, D-2075, D-2077, D-2079, D-2080, D-2081, D-2083, D-2090, D-2091, or D-2093.
  • 32. (canceled)
  • 33. The RNAi construct of claim 1, wherein the sense and antisense strands, respectively, comprise SEQ ID NOs: 1800 and 2648 (D-1709) or SEQ ID NOs: 2861 and 3115 (D-1887).
  • 34. The RNAi construct of claim 1, wherein the RNAi construct further comprises a ligand.
  • 35-36. (canceled)
  • 37. The RNAi construct of claim 34, wherein the ligand comprises a multivalent galactose moiety or multivalent N-acetyl-galactosamine moiety.
  • 38. The RNAi construct of claim 37, wherein the multivalent galactose moiety or multivalent N-acetyl-galactosamine moiety is trivalent or tetravalent.
  • 39. The RNAi construct of claim 34, wherein the ligand is a long-chain fatty acid.
  • 40. (canceled)
  • 41. The RNAi construct of claim 39, wherein the long-chain fatty acid is docosanoic acid (C22).
  • 42-43. (canceled)
  • 44. The RNAi construct of claim 34, wherein the ligand is attached through a phosphodiester or phosphorothioate linkage.
  • 45. A pharmaceutical composition comprising the RNAi construct of claim 1 and a pharmaceutically acceptable carrier or excipient.
  • 46. A method for reducing the expression of FAM13A protein in a patient in need thereof comprising administering to the patient the RNAi construct of claim 1.
  • 47-48. (canceled)
  • 49. The method of claim 46, wherein the patient is diagnosed with or at risk for obesity, abdominal obesity, NASH, hepatosteatosis, insulin resistance, type 2 diabetes, hypertriglyceridemia, or hypercholesterolemia.
  • 50. A method for reducing the body weight or fat mass of a patient comprising administering to the patient the RNAi construct of claim 1.
  • 51. (canceled)
  • 52. The method of claim 50, wherein the waist to hip ratio is greater than 1.0.
  • 53. The method of claim 50, wherein the patient has been diagnosed with abdominal obesity.
  • 54. The method of claim 46, wherein the RNAi construct or pharmaceutical composition is administered to the patient via a parenteral route of administration.
  • 55-57. (canceled)
  • 58. A method of reducing body weight or fat mass by administering an RNAi construct comprising a sense strand, an antisense strand, and a ligand that targets delivery to hepatocytes, wherein the antisense sense strand has a sequence that is complementary to a FAM13 mRNA sequence.
  • 59. (canceled)
  • 60. The method of claim 58, wherein the antisense strand comprises a region comprising a sequence that is substantially complementary to at least 15 contiguous nucleotides within nucleotides 1300-1375 or 4900-5300 of the FAM13A mRNA sequence set forth in SEQ ID NO: 1.
  • 61. The method of claim 58, wherein the antisense strand comprises a region comprising a sequence that is substantially complementary to a FAM13A mRNA sequence, and wherein said region comprises at least 15 contiguous nucleotides from an antisense sequence listed in Table 1 or Table 2.
  • 62-84. (canceled)
  • 85. The method of claim 58, wherein the antisense strand or sense strand comprises a sequence selected from the antisense sequences listed in Table 1 or Table 2.
  • 86. (canceled)
  • 87. The method of claim 58, wherein the sense and antisense strands, respectively, comprise SEQ ID NOs: 15 and 559, SEQ ID NOs: 24 and 568, SEQ ID NOs: 125 and 669, SEQ ID NOs: 127 and 671, SEQ ID NOs: 222 and 766, SEQ ID NOs: 406 and 950, SEQ ID NOs: 448 and 992, SEQ ID NOs: 498 and 1042, SEQ ID NOs: 502 and 1046, SEQ ID NOs: 503 and 1047, SEQ ID NOs: 504 and 1048, SEQ ID NOs: 513 and 1057, SEQ ID NOs: 526 and 1070, SEQ ID NOs: 527 and 1071, SEQ ID NOs: 533 and 1077, or SEQ ID NOs: 534 and 1078.
  • 88. (canceled)
  • 89. The method of claim 87, wherein the sense and antisense strands, respectively, comprise SEQ ID NOs: 498 and 1042.
  • 90. The method of any claim 58, wherein the RNAi construct is D-1557, D-1597, D-1612, D-1614, D-1623, D-1650, D-1667, D-1680, D-1682, D-1685, D-1686, D-1690, D-1697, D-1698, D-1699, D-1702, D-1704, D-1705, D-1709, D-1768, D-1846, D-1849, D-1853, D-1856, D-1858, D-1861, D-1862, D-1863, D-1864, D-1865, D-1866, D-1868, D-1869, D-1870, D-1871, D-1873, D-1875, D-1876, D-1877, D-1878, D-1879, D-1880, D-1881, D-1883, D-1884, D-1885, D-1886, D-1887, D-1888, D-1899, D-1896, D-1955, D-1970, D-1972, D-1975, D-1976, D-1977, D-1979, D-1980, D-1981, D-1982, D-1983, D-1984, D-1985, D-1987, D-1988, D-1989, D-1990, D-1991, D-1992, D-1993, D-1994, D-1995, D-1996, D-1997, D-1998, D-2000, D-2001, D-2002, D-2003, D-2004, D-2005, D-2012, D-2013, D-2014, D-2017, D-2021, D-2022, D-2023, D-2040, D-2044, D-2045, D-2047, D-2049, D-2051, D-2052, D-2053, D-2054, D-2058, D-2061, D-2075, D-2077, D-2079, D-2080, D-2081, D-2083, D-2090, D-2091, or D-2093.
  • 91. (canceled)
  • 92. The method of claim 58, wherein the sense and antisense strands, respectively, comprise SEQ ID NOs: 1800 and 2648 (D-1709) or SEQ ID NOs: 2861 and 3115 (D-1887).
  • 93-97. (canceled)
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/391,860, filed Jul. 25, 2022, which is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
63391860 Jul 2022 US