The invention relates to a scanning probe microscope with a probe oscillated by a piezoelectric actuator.
Examples of scanning probe microscopes are described in WO 2008/071013 and WO 2008/006229. They have a probe forming a tip to be moved along a sample. The probe is continuously oscillated by means of an oscillating voltage applied over a piezoelectric actuator.
A typical design for driving the piezoelectric actuator Q in a conventional device is shown in
Hence, it is a general object of the invention to provide a scanning probe microscope that makes controlling the amplitude of the actuator oscillation easy.
This object is achieved by the scanning probe microscope of claim 1. Accordingly, an inverting amplifier is provided and the actuator is driven by a current flowing through a feedback branch between the amplifier output and the inverting amplifier input. In addition, a current source feeds an oscillating current to the inverting amplifier input.
In such a circuit, the amplifier strives to keep the current through the feedback branch equal to the current from the current source. Since the amplitude of the current through the actuator is, for an oscillating current, directly proportional to the mechanical amplitude of the motion of the actuator (when neglecting the current through the stray capacitance parallel to the piezoelectric element), the mechanical amplitude can thus be directly controlled by the current source. As long as the current from the current source has constant amplitude, the mechanical amplitude of the actuator is conas well. No further means for controlling the mechanical amplitude is required.
The invention will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings, wherein:
The device of
Noninverting amplifier input 6 is connected to a constant reference potential, such as ground. Feedback branch 3 is located between amplifier output 7 and said inverting amplifier input 5.
A current source 10 is formed by an oscillator 8 generating an oscillating voltage and a high impedance resistor 9 of e.g. 10 MΩ, i.e. the impedance of resistor 9 is much smaller than the input impedance of amplifier 4 but larger then the impedance of the piezo element at the resonance.
The amplitude of the voltage from oscillator 8 is constant or at least known. Therefore, the current from current source 10 also has constant or at least known amplitude.
Amplifier 4 strives to control the voltage over feedback loop 3 in such a manner that the current through feedback loop 3 is exactly equal to the current from current source 10.
The charge on actuator 1 is proportional to its mechanical deflection or deformation. Therefore, for a periodic oscillation of actuator 1, the mechanical amplitude of the motion of actuator 1 is proportional to the amplitude of the current flowing through actuator 1. Hence, in the circuit of
Therefore, in the circuit of
Feedback loop 3 can comprise further components in addition to actuator 1. In the embodiment of
Advantageously, impedance 12 is chosen such that it draws only a comparatively small current when actuator 3 is oscillating in resonance, i.e. the current through actuator 3 should be much larger than the current through impedance 12. Therefore, if the impedance value Z of impedance 12 is written as
Z=R+1/(j·ω·C)
with R being the resistance of impedance Z, 1/(j·ω·C) being its capacitive reactance and ω being the resonance frequency, the resistance and/or reactance should be much smaller than the resistance and/or reactance of actuator 1.
For typical actuators, this is fulfilled if the resistance R is at least 1 MΩ because a typical resistance of actuator 1 at resonance is 10-100 kΩ. On the other hand, the resistance should not be too large in order to properly define a DC operating point of amplifier 4, e.g. resistance R should be smaller than 1 GΩ. Hence, advantageously, resistance R should be between 1 MO and 1 GΩ. An advantageous value of resistance R has been found to be approximately 10 MΩ.
On the other hand, the capacitive reactance 1/(j·ω·C) should not be larger than 1/(j·ω·100 pF). But it should not be too large, e.g. smaller than 1/(j·ω·1 pF) because otherwise the amplifier output tends to become unstable. An advantageous value of the reactance has been found to be 1/(j·ω·5 pF).
The design of the feedback loop can be more complex such as shown in the embodiment of
Advantageously, the second impedance 14, i.e. the impedance in series to actuator 1, should have a resistance much smaller than the resistance of actuator 1 at resonance, i.e. it should typically be smaller than 1 kΩ.
To operate the device of
The advantage of the design of
It must be noted that the design of
In the embodiments above, current source 10 consisted of a voltage source and resistor 9 in series. Other types of current sources, as known to the skilled person, can be used as well.
While there are shown and described presently preferred embodiments of the invention, it is to be distinctly understood that the invention is not limited thereto but may be otherwise variously embodied and practiced within the scope of the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2008/000538 | 12/17/2008 | WO | 00 | 8/18/2011 |