Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process which etches one material faster than another helping e.g. a pattern transfer process proceed. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits and processes, etch processes have been developed with a selectivity towards a variety of materials. However, there are few options for selectively etching silicon nitride faster than silicon.
Dry etch processes are often desirable for selectively removing material from semiconductor substrates. The desirability stems from the ability to gently remove material from miniature structures with minimal physical disturbance. Dry etch processes also allow the etch rate to be abruptly stopped by removing the gas phase reagents. Some dry-etch processes involve the exposure of a substrate to remote plasma by-products formed from one or more precursors. For example, remote plasma generation of nitrogen trifluoride in combination with ion suppression techniques enables silicon to be selectively removed from a patterned substrate when the plasma effluents are flowed into the substrate processing region. However, the silicon selectivity occasionally needs to be even higher for certain applications, for example, the removal of “dummy” gates of polysilicon before a working gate can be formed.
Methods are needed to increase silicon selectively relatively to silicon oxide, silicon nitride and other materials for dry etch processes.
Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon. The silicon selectivity also results from the presence of an ion suppressor positioned between the remote plasma and the substrate processing region. The ion suppressor reduces or substantially eliminates the number of ionically-charged species that reach the substrate. The methods may be used to selectively remove silicon far faster than silicon oxide, silicon nitride and a variety of metal-containing materials.
Embodiments of the invention include methods of etching a patterned substrate in a substrate processing region of a substrate processing chamber. The patterned substrate has exposed silicon. The method include flowing each of a fluorine-containing precursor and a hydrogen-containing precursor into a remote plasma region fluidly coupled to the substrate processing region while forming a remote plasma in the remote plasma region to produce plasma effluents. The atomic flow ratio of the precursors is greater than or about 25:1 H:F and forming the remote plasma in the remote plasma region to produce the plasma effluents comprises applying RF power between about 10 Watts and about 2000 Watts to the plasma region. The methods further include etching the exposed silicon by flowing the plasma effluents into the substrate processing region through through-holes in a showerhead. The temperature of the patterned substrate during the etching operation is greater than or about 0° C. and the pressure within the substrate processing region is above or about 0.05 Torr and below or about 10 Torr.
Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the disclosed embodiments. The features and advantages of the disclosed embodiments may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
A further understanding of the nature and advantages of the disclosed embodiments may be realized by reference to the remaining portions of the specification and the drawings.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Methods of etching exposed silicon on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a hydrogen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon while very slowly removing other exposed materials. The silicon selectivity results, in part, from a preponderance of hydrogen-containing precursor in the remote plasma which hydrogen terminates surfaces on the patterned heterogeneous structures. A much lower flow of the fluorine-containing precursor progressively substitutes fluorine for hydrogen on the hydrogen-terminated silicon thereby selectively removing silicon from exposed regions of silicon. The silicon selectivity also results from the presence of an ion suppressor positioned between the remote plasma and the substrate processing region. The ion suppressor reduces or substantially eliminates the number of ionically-charged species that reach the substrate. The methods may be used to selectively remove silicon far faster than silicon oxide, silicon nitride and a variety of metal-containing materials.
Siconi™ etch processes have used a hydrogen source such as ammonia (NH3) and a fluorine source such as nitrogen trifluoride (NF3) which together flow through a remote plasma system (RPS) and into a reaction region. The flow rates of ammonia and nitrogen trifluoride are typically chosen such that the atomic flow rate of hydrogen is roughly twice that of fluorine in order to efficiently utilize the constituents of the two process gases. The presence of hydrogen and fluorine allows the formation of solid byproducts of (NH4)2SiF6 at relatively low substrate temperatures. The solid byproducts are removed by raising the temperature of the substrate above the sublimation temperature. Siconi™ etch processes remove silicon oxide more rapidly than silicon. The inventors have discovered that the selectivity can be inverted by increasing the atomic flow ratio of hydrogen:fluorine. Without binding the coverage of the claims to hypothetical mechanisms which may or may not be entirely correct, the inventors hypothesize that the preponderance of hydrogen radicals maintains a stable hydrogen termination on a broad array of exposed materials. The exposure to hydrogen radicals also hydrogen terminates silicon surfaces, however, the lower density fluorine radicals break the Si—H bonds to form Si—F bonds until volatile SiFx species desorb from the surface and are evacuated from the substrate processing region. The open bonding sites left behind by the desorption are quickly hydrogen terminated and the process continues.
In order to better understand and appreciate the invention, reference is now made to
Hydrogen (H2) is flowed into a plasma region separate from the substrate processing region (operation 120). The separate plasma region may be referred to as a remote plasma region herein and may be within a distinct module from the processing chamber or a compartment within the processing chamber. Generally speaking, an hydrogen-containing precursor may be flowed into the plasma region and the oxygen-containing precursor may comprise at least one precursor selected from H2, NH3, hydrocarbons, or the like. A flow of nitrogen trifluoride is also introduced into the remote plasma region (operation 125) where it is simultaneously excited in a plasma along with the hydrogen. The flow rate of the nitrogen trifluoride is low relative to the flow rate of the hydrogen to effect a high atomic flow ratio H:F as will be quantified shortly. Other sources of fluorine may be used to augment or replace the nitrogen trifluoride. In general, a fluorine-containing precursor may be flowed into the remote plasma region and the fluorine-containing precursor comprises at least one precursor selected from the group consisting of atomic fluorine, diatomic fluorine, bromine trifluoride, chlorine trifluoride, nitrogen trifluoride, hydrogen fluoride, fluorinated hydrocarbons, sulfur hexafluoride and xenon difluoride.
The plasma effluents formed in the remote plasma region are then flowed into the substrate processing region (operation 130). The patterned substrate is selectively etched (operation 135) such that the exposed silicon is removed at a rate at least or about seventy times greater than the exposed silicon oxide. The invention involves maintenance of a high atomic flow ratio of hydrogen (H) to fluorine (F) in order achieve high etch selectivity of silicon. Some precursors may contain both fluorine and hydrogen, in which case the atomic flow rate of all contributions are included when calculating the atomic flow ratio described herein. The preponderance of hydrogen helps to hydrogen terminate exposed surfaces on the patterned substrate. Under the conditions described herein, hydrogen termination is metastable on only the silicon surfaces. Fluorine from the nitrogen trifluoride or other fluorine-containing precursor displaces the hydrogen on the silicon surface and creates volatile residue which leaves the surface and carries silicon away. Due to the strong bond energies present in the other exposed materials, the fluorine is unable to displace the hydrogen of the other hydrogen terminated surfaces (and/or is unable to create volatile residue to remove the other exposed material). In one embodiment, a gas flow ratio (H2:NF3) greater than or about 15:1, or in general terms, greater than or about an atomic flow ratio of between 10:1, was found to achieve etch selectivity (silicon:silicon oxide or silicon:silicon nitride) of greater than or about 70:1. The etch selectivity (silicon:silicon oxide or silicon:silicon nitride) may also be greater than or about 100:1, greater than or about 150:1, greater than or about 200:1, greater than or about 250:1 or greater than or about 300:1 in disclosed embodiments. Regions of exposed tungsten or titanium nitride may also be present on the patterned substrate and may be referred to as exposed metallic regions. The etch selectivity (silicon:exposed metallic region) may be greater than or about 100:1, greater than or about 150:1, greater than or about 200:1, greater than or about 250:1, greater than or about 500:1, greater than or about 1000:1, greater than or about 2000:1 or greater than or about 3000:1 in disclosed embodiments. The reactive chemical species are removed from the substrate processing region and then the substrate is removed from the processing region (operation 145).
The presence of the high flow of hydrogen-containing precursor, as described herein, ensures that silicon, silicon oxide and silicon nitride maintain a hydrogen-terminated surface during much of the processing. The fluorine-containing precursor and/or the hydrogen-containing precursor may further include one or more relatively inert gases such as He, N2, Ar, or the like. The inert gas can be used to improve plasma stability and/or to carry liquid precursors to the remote plasma region. Flow rates and ratios of the different gases may be used to control etch rates and etch selectivity. In an embodiment, the fluorine-containing gas includes NF3 at a flow rate of between about 1 sccm (standard cubic centimeters per minute) and 30 sccm, H2 at a flow rate of between about 500 sccm and 5,000 sccm, He at a flow rate of between about 0 sccm and 3000 sccm, and Ar at a flow rate of between about 0 sccm and 3000 sccm. One of ordinary skill in the art would recognize that other gases and/or flows may be used depending on a number of factors including processing chamber configuration, substrate size, geometry and layout of features being etched, and the like. The flow rate of the fluorine-containing gas may be less than or about 30 sccm, less than or about 20 sccm, less than or about 15 sccm or less than or about 10 sccm in disclosed embodiments. Lower flow rates of the fluorine-containing gas will generally increase the silicon selectivity. The flow rate of the hydrogen-containing gas may be greater than or about 300 sccm, greater than or about 500 sccm, greater than or about 1000 sccm or greater than or about 2000 sccm in disclosed embodiments. Increasing the flow rate of the hydrogen-containing gas generally increases silicon selectivity. The atomic flow ratio H:F should be kept high to reduce or eliminate solid residue formation on silicon oxide. The formation of solid residue consumes some silicon oxide which reduces the silicon selectivity of the etch process. The atomic flow ratio H:F is greater than or about twenty five (i.e. 25:1), greater than or about 30:1 or greater than or about 40:1 in embodiments of the invention.
The method also includes applying energy to the fluorine-containing precursor and the hydrogen-containing precursor while they are in the remote plasma region to generate the plasma effluents. As would be appreciated by one of ordinary skill in the art, the plasma may include a number of charged and neutral species including radicals and ions. The plasma may be generated using known techniques (e.g., RF, capacitively coupled, inductively coupled, and the like). In an embodiment, the plasma power is applied using a capacitively-coupled plasma unit at a source power of between about 10 W and 2000 W and a pressure of between about 0.2 Torr and 5 Torr. The capacitively-coupled plasma unit may be disposed remote from a gas reaction region of the processing chamber. For example, the capacitively-coupled plasma unit and the plasma generation region may be separated from the gas reaction region by an ion suppressor.
An ion suppressor may be used to filter ions from the plasma effluents during transit from the remote plasma region to the substrate processing region in embodiments of the invention. The ion suppressor functions to reduce or eliminate ionically charged species traveling from the plasma generation region to the substrate. Uncharged neutral and radical species may pass through the openings in the ion suppressor to react at the substrate. It should be noted that complete elimination of ionically charged species in the reaction region surrounding the substrate is not always the desired goal. In many instances, ionic species are required to reach the substrate in order to perform the etch and/or deposition process. In these instances, the ion suppressor helps control the concentration of ionic species in the reaction region at a level that assists the process.
In accordance with some embodiments of the invention, an ion suppressor as described in the exemplary equipment section may be used to provide radical and/or neutral species for selectively etching substrates. In one embodiment, for example, an ion suppressor is used to provide fluorine and hydrogen containing plasma effluents to selectively etch silicon. Using the plasma effluents, an etch rate selectivity of silicon:silicon oxide (or silicon nitride) over seventy may be achieved. The ion suppressor may be used to provide a reactive gas having a higher concentration of radicals than ions. Because most of the charged particles of a plasma are filtered or removed by the ion suppressor, the substrate is not necessarily biased during the etch process. Such a process using radicals and other neutral species can reduce plasma damage compared to conventional plasma etch processes that include sputtering and bombardment. Embodiments of the present invention are also advantageous over conventional wet etch processes where surface tension of liquids can cause bending and peeling of small features.
Blanket wafers of silicon oxide, silicon and silicon nitride were used to quantify the etch rates for an exemplary process. A remote plasma was formed from nitrogen trifluoride, hydrogen (H2), helium and argon and the effluents etched blanket wafers of each of the three films in separate processes. The etch process removed silicon at about two hundred times the rate of silicon oxide and over two hundred times the rate of silicon nitride for etch rates of about 400 Å/min. In separate experiments, the etch process removed silicon at about five hundred times the rate of silicon oxide and over five hundred times the rate of silicon nitride for etch rates of about 200 Å/min. The etch rate of silicon oxide may be greater than or about 100 Å/min, greater than or about 200 Å/min or greater than or about 300 Å/min in disclosed embodiments. The selectivity, the non-local plasma, the controlled ionic concentration and the lack of solid byproducts, each make these etch processes well suited for delicately removing or trimming silicon structures removing little or no silicon oxide and little or no silicon nitride.
The temperature of the substrate is greater than 0° C. during the etch process. The substrate temperature may be greater than or about 20° C. and less than or about 300° C. At the high end of this substrate temperature range, the silicon etch rate drops. At the lower end of this substrate temperature range, silicon oxide and silicon nitride begin to etch and so the selectivity drops. In disclosed embodiments, the temperature of the substrate during the etches described herein may be greater than or about 30° C. while less than or about 200° C. or greater than or about 40° C. while less than or about 150° C. The substrate temperature may be below 100° C., below or about 80° C., below or about 65° C. or below or about 50° C. in disclosed embodiments.
The data further show an increase in silicon etch rate as a function of process pressure (for a given hydrogen:fluorine atomic ratio). However, for an atomic flow rate ratio of about 50:1 H:F increasing the pressure above 1 Torr begins to reduce the selectivity. This is suspected to result from a higher probability of combining two or more fluorine-containing effluents. The etch process then begins to remove silicon oxide, silicon nitride and other materials. The pressure within the substrate processing region may be below or about 10 Torr, below or about 5 Torr, below or about 3 Torr, below or about 2 Torr, below or about 1 Torr or below or about 750 mTorr in disclosed embodiments. In order to ensure adequate etch rate, the pressure may be above or about 0.05 Torr, above or about 0.1 Torr, above or about 0.2 Torr or above or about 0.4 Torr in embodiments of the invention. Any of the upper limits on pressure may be combined with lower limits to form additional embodiments. Plasma power applied to the remote plasma region can be a variety of frequencies or a combination of multiple frequencies. The RF power may be between about 10 Watts and about 2000 Watts, between about 200 Watts and about 1800 Watts or between about 750 Watts and about 1500 Watts in different embodiments. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 500 kHz, high RF frequencies between about 10 MHz and about 15 MHz or microwave frequencies greater than or about 1 GHz in different embodiments.
A pre-treatment may be used, in embodiments, to remove a thin oxide layer on the surfaces of the exposed silicon regions. The pre-treatment occurs before the operation of etching the exposed silicon. Thin oxide layers often form when exposing silicon to atmospheric conditions. The thin oxide layer can make the silicon regions behave more like silicon oxide regions, in part, because the selectivities of the processes reported herein are so high. The thin silicon oxide layer is often referred to as a “native” oxide and may be removed using a variety of processes known to those of skill in the art. For example, a Siconi™ etch may be used to remove the native oxide. In other words, a fluorine-containing precursor and a hydrogen-containing precursor may be combined in a remote plasma region and excited in a plasma. The atomic flow ratio H:F during the pre-treatment Siconi™ may be between about 0.5:1 and about 8:1 to ensure the production of solid by-products on the exposed silicon surfaces. The native oxide is consumed during the production of these solid by-products in embodiments of the invention. The temperature of the patterned substrate during the Siconi™ etch may be below the sublimation temperature of the solid by-products. The temperature of the patterned substrate may be raised above the sublimation temperature after formation of the solid by-products to remove the solid by-products. The sublimation completes the removal of the native oxide from the exposed silicon.
Alternatively, the native oxide can be removed by a hydrogen plasma formed in the substrate processing region. The local pre-treatment plasma is created by applying a local plasma power above or about 200 Watts and below or about 3000 Watts or above or about 300 Watts and below or about 2000 Watts in embodiments. Regardless of the method used, the native oxide (if present) is removed before the operation of etching the exposed silicon. Techniques for removing the native oxide may be carried out in the same substrate processing region used to selectively etch the silicon, or each of these processes may be performed in separate chambers. However, the patterned substrate should not be exposed to moisture or an atmospheric environment during the transfer between separate chambers. It should also be noted that the terms “exposed silicon region” and “exposed silicon” will be used herein regardless of whether a native oxide is present.
A post-treatment may be used, in embodiments, to avoid forming residue after the substrate has been etched and exposed to atmospheric conditions. Residual fluorine on the surface of the patterned substrate is hypothesized to react with moisture from the atmosphere to form small amounts of hydrofluoric acid (HF). This may cause residues of silicon, titanium or other compounds to form on the surface. The post-treatment occurs after the operation of etching the exposed silicon. One treatment which is thought to remove the residual fluorine includes flowing at least one of N2, Ar, He, NO2, N2O, H2, NH3, O2 or CH4 into the substrate processing region while forming a local plasma by applying a local plasma power above or about 100 Watts and below or about 2000 Watts or 3000 Watts. At least one of N2, Ar, He, NO2, N2O, H2, NH3, O2 or CH4 may alternatively flow through a remote plasma region with plasma power (between 100 Watts and 2000 Watts or 3000 Watts) applied. The plasma effluents may then be flowed into the substrate processing region to remove residual fluorine from the exposed silicon regions of the patterned substrate. One additional post-treatment involves simply heating the substrate to between 200° C. and about 600° C. or between about 300° C. and about 600° C. to desorb the residual fluorine in embodiments of the invention. Any of these post-treatments may be used alone or in combination with any or all of the others to remove residual fluorine from the exposed silicon regions.
Additional process parameters are disclosed in the course of describing an exemplary processing chamber and system.
Exemplary Processing System
Processing chambers that may implement embodiments of the present invention may be included within processing platforms such as the CENTURA® and PRODUCER® systems, available from Applied Materials, Inc. of Santa Clara, Calif. Examples of substrate processing chambers that can be used with exemplary methods of the invention may include those shown and described in co-assigned U.S. Provisional Patent App. No. 60/803,499 to Lubomirsky et al, filed May 30, 2006, and titled “PROCESS CHAMBER FOR DIELECTRIC GAPFILL,” the entire contents of which is herein incorporated by reference for all purposes. Additional exemplary systems may include those shown and described in U.S. Pat. Nos. 6,387,207 and 6,830,624, which are also incorporated herein by reference for all purposes.
Showerhead 253 is positioned between chamber plasma region 220 and substrate processing region 270 and allows plasma effluents (excited derivatives of precursors or other gases) created within remote plasma system 210 and/or chamber plasma region 220 to pass through a plurality of through-holes 256 that traverse the thickness of the plate. The showerhead 253 also has one or more hollow volumes 251 which can be filled with a precursor in the form of a vapor or gas (such as a silicon-containing precursor) and pass through small holes 255 into substrate processing region 270 but not directly into chamber plasma region 220. Showerhead 253 is thicker than the length of the smallest diameter 250 of the through-holes 256 in this disclosed embodiment. In order to maintain a significant concentration of excited species penetrating from chamber plasma region 220 to substrate processing region 270, the length 226 of the smallest diameter 250 of the through-holes may be restricted by forming larger diameter portions of through-holes 256 part way through the showerhead 253. The length of the smallest diameter 250 of the through-holes 256 may be the same order of magnitude as the smallest diameter of the through-holes 256 or less in disclosed embodiments.
Showerhead 253 may be configured to serve the purpose of an ion suppressor as shown in
In the embodiment shown, showerhead 253 may distribute (via through-holes 256) process gases which contain oxygen, fluorine and/or nitrogen and/or plasma effluents of such process gases upon excitation by a plasma in chamber plasma region 220. In embodiments, the process gas introduced into the remote plasma system 210 and/or chamber plasma region 220 may contain fluorine (e.g. F2, NF3 or XeF2). The process gas may also include a carrier gas such as helium, argon, nitrogen (N2), etc. Plasma effluents may include ionized or neutral derivatives of the process gas and may also be referred to herein as radical-fluorine referring to the atomic constituent of the process gas introduced.
Through-holes 256 are configured to suppress the migration of ionically-charged species out of the chamber plasma region 220 while allowing uncharged neutral or radical species to pass through showerhead 253 into substrate processing region 270. These uncharged species may include highly reactive species that are transported with less-reactive carrier gas by through-holes 256. As noted above, the migration of ionic species by through-holes 256 may be reduced, and in some instances completely suppressed. Controlling the amount of ionic species passing through showerhead 253 provides increased control over the gas mixture brought into contact with the underlying wafer substrate, which in turn increases control of the deposition and/or etch characteristics of the gas mixture. For example, adjustments in the ion concentration of the gas mixture can significantly alter its etch selectivity (e.g., silicon nitride:silicon etch ratios).
In embodiments, the number of through-holes 256 may be between about 60 and about 2000. Through-holes 256 may have a variety of shapes but are most easily made round. The smallest diameter 250 of through-holes 256 may be between about 0.5 mm and about 20 mm or between about 1 mm and about 6 mm in disclosed embodiments. There is also latitude in choosing the cross-sectional shape of through-holes, which may be made conical, cylindrical or combinations of the two shapes. The number of small holes 255 used to introduce unexcited precursors into substrate processing region 270 may be between about 100 and about 5000 or between about 500 and about 2000 in different embodiments. The diameter of the small holes 255 may be between about 0.1 mm and about 2 mm.
Through-holes 256 may be configured to control the passage of the plasma-activated gas (i.e., the ionic, radical, and/or neutral species) through showerhead 253. For example, the aspect ratio of the holes (i.e., the hole diameter to length) and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through showerhead 253 is reduced. Through-holes 256 in showerhead 253 may include a tapered portion that faces chamber plasma region 220, and a cylindrical portion that faces substrate processing region 270. The cylindrical portion may be proportioned and dimensioned to control the flow of ionic species passing into substrate processing region 270. An adjustable electrical bias may also be applied to showerhead 253 as an additional means to control the flow of ionic species through showerhead 253.
Alternatively, through-holes 256 may have a smaller inner diameter (ID) toward the top surface of showerhead 253 and a larger ID toward the bottom surface. In addition, the bottom edge of through-holes 256 may be chamfered to help evenly distribute the plasma effluents in substrate processing region 270 as the plasma effluents exit the showerhead and thereby promote even distribution of the plasma effluents and precursor gases. The smaller ID may be placed at a variety of locations along through-holes 256 and still allow showerhead 253 to reduce the ion density within substrate processing region 270. The reduction in ion density results from an increase in the number of collisions with walls prior to entry into substrate processing region 270. Each collision increases the probability that an ion is neutralized by the acquisition or loss of an electron from the wall. Generally speaking, the smaller ID of through-holes 256 may be between about 0.2 mm and about 20 mm. In other embodiments, the smaller ID may be between about 1 mm and 6 mm or between about 0.2 mm and about 5 mm. Further, aspect ratios of the through-holes 256 (i.e., the smaller ID to hole length) may be approximately 1 to 20. The smaller ID of the through-holes may be the minimum ID found along the length of the through-holes. The cross sectional shape of through-holes 256 may be generally cylindrical, conical, or any combination thereof.
An exemplary patterned substrate may be supported by a pedestal (not shown) within substrate processing region 270 when fluorine-containing plasma effluents and hydrogen-containing plasma effluents arrive through through-holes 256 in showerhead 253. Though substrate processing region 270 may be equipped to support a plasma for other processes such as curing, no plasma is present during the etching of patterned substrate, in embodiments of the invention.
A plasma may be ignited either in chamber plasma region 220 above showerhead 253 or substrate processing region 270 below showerhead 253. A plasma is present in chamber plasma region 220 to produce the radical-fluorine from an inflow of the fluorine-containing precursor. An AC voltage typically in the radio frequency (RF) range is applied between the conductive top portion (lid 221) of the processing chamber and showerhead 253 to ignite a plasma in chamber plasma region 220 during deposition. An RF power supply generates a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency.
The top plasma may be left at low or no power when the bottom plasma in the substrate processing region 270 is turned on to either cure a film or clean the interior surfaces bordering substrate processing region 270. A plasma in substrate processing region 270 is ignited by applying an AC voltage between showerhead 253 and the pedestal or bottom of the chamber. A cleaning gas may be introduced into substrate processing region 270 while the plasma is present.
The pedestal may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration allows the substrate temperature to be cooled or heated to maintain relatively low temperatures (from room temperature through about 120° C.). The heat exchange fluid may comprise ethylene glycol and water. The wafer support platter of the pedestal (preferably aluminum, ceramic, or a combination thereof) may also be resistively heated in order to achieve relatively high temperatures (from about 120° C. through about 1100° C.) using an embedded single-loop embedded heater element configured to make two full turns in the form of parallel concentric circles. An outer portion of the heater element may run adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius. The wiring to the heater element passes through the stem of the pedestal.
The chamber plasma region or a region in a remote plasma system may be referred to as a remote plasma region. In embodiments, the radical precursors (e.g. radical-fluorine and radical-hydrogen) are formed in the remote plasma region and travel into the substrate processing region where the combination preferentially etches silicon. Plasma power may essentially be applied only to the remote plasma region, in embodiments, to ensure that the radical-fluorine and the radical-hydrogen (which together may be referred to as plasma effluents) are not further excited in the substrate processing region.
In embodiments employing a chamber plasma region, the excited plasma effluents are generated in a section of the substrate processing region partitioned from a deposition region. The deposition region, also known herein as the substrate processing region, is where the plasma effluents mix and react to etch the patterned substrate (e.g., a semiconductor wafer). The excited plasma effluents may also be accompanied by inert gases (in the exemplary case, argon). The substrate processing region may be described herein as “plasma-free” during the etch of the patterned substrate. “Plasma-free” does not necessarily mean the region is devoid of plasma. A relatively low concentration of ionized species and free electrons created within the plasma region do travel through pores (apertures) in the partition (showerhead/ion suppressor) due to the shapes and sizes of through-holes 256. In some embodiments, there is essentially no concentration of ionized species and free electrons within the substrate processing region. The borders of the plasma in the chamber plasma region are hard to define and may encroach upon the substrate processing region through the apertures in the showerhead. In the case of an inductively-coupled plasma, a small amount of ionization may be effected within the substrate processing region directly. Furthermore, a low intensity plasma may be created in the substrate processing region without eliminating desirable features of the forming film. All causes for a plasma having much lower intensity ion density than the chamber plasma region (or a remote plasma region, for that matter) during the creation of the excited plasma effluents do not deviate from the scope of “plasma-free” as used herein.
Combined flow rates of fluorine-containing precursor and hydrogen-containing precursor into the chamber may account for 0.05% to about 20% by volume of the overall gas mixture; the remainder being carrier gases. The fluorine-containing precursor and the hydrogen-containing precursor are flowed into the remote plasma region but the plasma effluents have the same volumetric flow ratio, in embodiments. In the case of the fluorine-containing precursor, a purge or carrier gas may be first initiated into the remote plasma region before those of the fluorine-containing gas to stabilize the pressure within the remote plasma region.
Plasma power applied to the remote plasma region can be a variety of frequencies or a combination of multiple frequencies. In the exemplary processing system the plasma is provided by RF power delivered between lid 221 and showerhead 253. The RF power may be between about 10 Watts and about 15,000 Watts, between about 10 Watts and about 5000 Watts, between about 10 Watts and about 2000 Watts, between about 200 Watts and about 1800 Watts or between about 750 Watts and about 1500 Watts in different embodiments. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz or microwave frequencies greater than or about 1 GHz in different embodiments. Substrate processing region 270 can be maintained at a variety of pressures during the flow of carrier gases and plasma effluents into substrate processing region 270.
In one or more embodiments, the substrate processing chamber 200 can be integrated into a variety of multi-processing platforms, including the Producer™ GT, Centura™ AP and Endura™ platforms available from Applied Materials, Inc. located in Santa Clara, Calif. Such a processing platform is capable of performing several processing operations without breaking vacuum. Processing chambers that may implement embodiments of the present invention may include dielectric etch chambers or a variety of chemical vapor deposition chambers, among other types of chambers.
Embodiments of the deposition systems may be incorporated into larger fabrication systems for producing integrated circuit chips.
The wafer processing chambers 308a-f may include one or more system components for depositing, annealing, curing and/or etching a flowable dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber (e.g., 308c-d and 308e-f) may be used to deposit dielectric material on the substrate, and the third pair of processing chambers (e.g., 308a-b) may be used to etch the deposited dielectric. In another configuration, all three pairs of chambers (e.g., 308a-f) may be configured to etch a dielectric film on the substrate. Any one or more of the processes described may be carried out on chamber(s) separated from the fabrication system shown in different embodiments.
The substrate processing system is controlled by a system controller. In an exemplary embodiment, the system controller includes a hard disk drive, a floppy disk drive and a processor. The processor contains a single-board computer (SBC), analog and digital input/output boards, interface boards and stepper motor controller boards. Various parts of CVD system conform to the Versa Modular European (VME) standard which defines board, card cage, and connector dimensions and types. The VME standard also defines the bus structure as having a 16-bit data bus and a 24-bit address bus.
System controller 357 is used to control motors, valves, flow controllers, power supplies and other functions required to carry out process recipes described herein. A gas handling system 355 may also be controlled by system controller 357 to introduce gases to one or all of the wafer processing chambers 308a-f. System controller 357 may rely on feedback from optical sensors to determine and adjust the position of movable mechanical assemblies in gas handling system 355 and/or in wafer processing chambers 308a-f. Mechanical assemblies may include the robot, throttle valves and susceptors which are moved by motors under the control of system controller 357.
In an exemplary embodiment, system controller 357 includes a hard disk drive (memory), USB ports, a floppy disk drive and a processor. System controller 357 includes analog and digital input/output boards, interface boards and stepper motor controller boards. Various parts of multi-chamber processing system 300 which contains substrate processing chamber 200 are controlled by system controller 357. The system controller executes system control software in the form of a computer program stored on computer-readable medium such as a hard disk, a floppy disk or a flash memory thumb drive. Other types of memory can also be used. The computer program includes sets of instructions that dictate the timing, mixture of gases, chamber pressure, chamber temperature, RF power levels, susceptor position, and other parameters of a particular process.
A process for etching, depositing or otherwise processing a film on a substrate or a process for cleaning chamber can be implemented using a computer program product that is executed by the controller. The computer program code can be written in any conventional computer readable programming language: for example, 68000 assembly language, C, C++, Pascal, Fortran or others. Suitable program code is entered into a single file, or multiple files, using a conventional text editor, and stored or embodied in a computer usable medium, such as a memory system of the computer. If the entered code text is in a high level language, the code is compiled, and the resultant compiler code is then linked with an object code of precompiled Microsoft Windows® library routines. To execute the linked, compiled object code the system user invokes the object code, causing the computer system to load the code in memory. The CPU then reads and executes the code to perform the tasks identified in the program.
The interface between a user and the controller may be via a touch-sensitive monitor and may also include a mouse and keyboard. In one embodiment two monitors are used, one mounted in the clean room wall for the operators and the other behind the wall for the service technicians. The two monitors may simultaneously display the same information, in which case only one is configured to accept input at a time. To select a particular screen or function, the operator touches a designated area on the display screen with a finger or the mouse. The touched area changes its highlighted color, or a new menu or screen is displayed, confirming the operator's selection.
As used herein “substrate” may be a support substrate with or without layers formed thereon. The patterned substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits. Exposed “silicon” of the patterned substrate is predominantly Si but may include minority concentrations of other elemental constituents such as nitrogen, oxygen, hydrogen, carbon and the like. Exposed “silicon nitride” of the patterned substrate is predominantly Si3N4 but may include minority concentrations of other elemental constituents such as oxygen, hydrogen, carbon and the like. Exposed “silicon oxide” of the patterned substrate is predominantly SiO2 but may include minority concentrations of other elemental constituents such as nitrogen, hydrogen, carbon and the like. In some embodiments, silicon oxide films etched using the methods disclosed herein consist essentially of silicon and oxygen. The term “precursor” is used to refer to any process gas which takes part in a reaction to either remove material from or deposit material onto a surface. “Plasma effluents” describe gas exiting from the chamber plasma region and entering the substrate processing region. Plasma effluents are in an “excited state” wherein at least some of the gas molecules are in vibrationally-excited, dissociated and/or ionized states. A “radical precursor” is used to describe plasma effluents (a gas in an excited state which is exiting a plasma) which participate in a reaction to either remove material from or deposit material on a surface. “Radical-fluorine” (or “radical-oxygen”) are radical precursors which contain fluorine (or oxygen) but may contain other elemental constituents. The phrase “inert gas” refers to any gas which does not form chemical bonds when etching or being incorporated into a film. Exemplary inert gases include noble gases but may include other gases so long as no chemical bonds are formed when (typically) trace amounts are trapped in a film.
The terms “gap” and “trench” are used throughout with no implication that the etched geometry has a large horizontal aspect ratio. Viewed from above the surface, trenches may appear circular, oval, polygonal, rectangular, or a variety of other shapes. A trench may be in the shape of a moat around an island of material. The term “via” is used to refer to a low aspect ratio trench (as viewed from above) which may or may not be filled with metal to form a vertical electrical connection. As used herein, a conformal etch process refers to a generally uniform removal of material on a surface in the same shape as the surface, i.e., the surface of the etched layer and the pre-etch surface are generally parallel. A person having ordinary skill in the art will recognize that the etched interface likely cannot be 100% conformal and thus the term “generally” allows for acceptable tolerances.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the disclosed embodiments. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the dielectric material” includes reference to one or more dielectric materials and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
This application is a continuation of and claims benefit to U.S. patent application Ser. No. 13/439,079, now U.S. Pat. No. 8,808,563, filed on Apr. 4, 2012, which claims the benefit of U.S. Prov. Pat. App. No. 61/544,747 filed Oct. 7, 2011, and titled “SELECTIVE ETCH OF SILICON BY WAY OF METASTABLE HYDROGEN TERMINATION,” both of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2369620 | Sullivan et al. | Feb 1945 | A |
3451840 | Hough | Jun 1969 | A |
3937857 | Brummett et al. | Feb 1976 | A |
3969077 | Hill | Jul 1976 | A |
4006047 | Brummett et al. | Feb 1977 | A |
4209357 | Gorin et al. | Jun 1980 | A |
4214946 | Forget et al. | Jul 1980 | A |
4232060 | Mallory, Jr. | Nov 1980 | A |
4234628 | DuRose | Nov 1980 | A |
4265943 | Goldstein et al. | May 1981 | A |
4361441 | Tylko | Nov 1982 | A |
4364803 | Nidola et al. | Dec 1982 | A |
4368223 | Kobayashi et al. | Jan 1983 | A |
4374698 | Sanders et al. | Feb 1983 | A |
4397812 | Mallory, Jr. | Aug 1983 | A |
4468413 | Bachmann | Aug 1984 | A |
4565601 | Kakehi et al. | Jan 1986 | A |
4579618 | Celestino et al. | Apr 1986 | A |
4585920 | Hoog et al. | Apr 1986 | A |
4625678 | Shloya et al. | Dec 1986 | A |
4632857 | Mallory, Jr. | Dec 1986 | A |
4656052 | Satou et al. | Apr 1987 | A |
4690746 | McInerney et al. | Sep 1987 | A |
4715937 | Moslehi et al. | Dec 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4753898 | Parrillo et al. | Jun 1988 | A |
4786360 | Cote et al. | Nov 1988 | A |
4793897 | Dunfield et al. | Dec 1988 | A |
4807016 | Douglas | Feb 1989 | A |
4810520 | Wu | Mar 1989 | A |
4816638 | Ukai et al. | Mar 1989 | A |
4820377 | Davis et al. | Apr 1989 | A |
4828649 | Davis | May 1989 | A |
4838990 | Jucha et al. | Jun 1989 | A |
4851370 | Doklan et al. | Jul 1989 | A |
4857140 | Loewenstein | Aug 1989 | A |
4865685 | Palmour | Sep 1989 | A |
4868071 | Walsh et al. | Sep 1989 | A |
4872947 | Wang et al. | Oct 1989 | A |
4878994 | Jucha et al. | Nov 1989 | A |
4886570 | Davis et al. | Dec 1989 | A |
4892753 | Wang et al. | Jan 1990 | A |
4894352 | Lane et al. | Jan 1990 | A |
4904341 | Blaugher et al. | Feb 1990 | A |
4904621 | Lowenstein et al. | Feb 1990 | A |
4913929 | Moslehi et al. | Apr 1990 | A |
4946903 | Gardella et al. | Aug 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960488 | Law et al. | Oct 1990 | A |
4980018 | Mu et al. | Dec 1990 | A |
4981551 | Palmour | Jan 1991 | A |
4985372 | Narita et al. | Jan 1991 | A |
4991542 | Kohmura et al. | Feb 1991 | A |
4992136 | Tachi et al. | Feb 1991 | A |
4994404 | Sheng et al. | Feb 1991 | A |
5000113 | Wang et al. | Mar 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5028565 | Chang | Jul 1991 | A |
5030319 | Nishino et al. | Jul 1991 | A |
5061838 | Lane et al. | Oct 1991 | A |
5083030 | Stavov | Jan 1992 | A |
5089441 | Moslehi | Feb 1992 | A |
5089442 | Olmer | Feb 1992 | A |
5147692 | Bengston | Sep 1992 | A |
5156881 | Okano et al. | Oct 1992 | A |
5180435 | Markunas et al. | Jan 1993 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5188706 | Hori et al. | Feb 1993 | A |
5198034 | deBoer et al. | Mar 1993 | A |
5203911 | Sricharoenchalkit et al. | Apr 1993 | A |
5215787 | Homma | Jun 1993 | A |
5228501 | Tepman et al. | Jul 1993 | A |
5231690 | Soma et al. | Jul 1993 | A |
5235139 | Bengston et al. | Aug 1993 | A |
5238499 | van de Ven et al. | Aug 1993 | A |
5240497 | Shacham et al. | Aug 1993 | A |
5248371 | Maher et al. | Sep 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5266157 | Kadomura | Nov 1993 | A |
5270125 | America et al. | Dec 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5275977 | Otsubo et al. | Jan 1994 | A |
5279669 | Lee | Jan 1994 | A |
5279865 | Chebi et al. | Jan 1994 | A |
5288518 | Homma | Feb 1994 | A |
5290382 | Zarowin et al. | Mar 1994 | A |
5300463 | Cathey et al. | Apr 1994 | A |
5302233 | Kim et al. | Apr 1994 | A |
5306530 | Strongin et al. | Apr 1994 | A |
5314724 | Tsukune et al. | May 1994 | A |
5319247 | Matsuura | Jun 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5328558 | Kawamura et al. | Jul 1994 | A |
5328810 | Lowrey et al. | Jul 1994 | A |
5334552 | Homma | Aug 1994 | A |
5345999 | Hosokawa | Sep 1994 | A |
5352636 | Beinglass | Oct 1994 | A |
5356478 | Chen et al. | Oct 1994 | A |
5362526 | Wang et al. | Nov 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5380560 | Kaja et al. | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5384284 | Doan et al. | Jan 1995 | A |
5385763 | Okano et al. | Jan 1995 | A |
5399237 | Keswick et al. | Mar 1995 | A |
5399529 | Homma | Mar 1995 | A |
5403434 | Moslehi | Apr 1995 | A |
5413670 | Langan et al. | May 1995 | A |
5413967 | Matsuda et al. | May 1995 | A |
5415890 | Kloiber et al. | May 1995 | A |
5416048 | Blalock et al. | May 1995 | A |
5420075 | Homma et al. | May 1995 | A |
5429995 | Nishiyama et al. | Jul 1995 | A |
5439553 | Grant et al. | Aug 1995 | A |
5451259 | Krogh | Sep 1995 | A |
5468342 | Nulty et al. | Nov 1995 | A |
5474589 | Ohga et al. | Dec 1995 | A |
5478403 | Shinigawa et al. | Dec 1995 | A |
5478462 | Walsh | Dec 1995 | A |
5483920 | Pryor | Jan 1996 | A |
5500249 | Telford et al. | Mar 1996 | A |
5505816 | Barnes et al. | Apr 1996 | A |
5510216 | Calabrese et al. | Apr 1996 | A |
5516367 | Lei et al. | May 1996 | A |
5518962 | Murao | May 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5534070 | Okamura et al. | Jul 1996 | A |
5536360 | Nguyen et al. | Jul 1996 | A |
5549780 | Koinuma et al. | Aug 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5560779 | Knowles et al. | Oct 1996 | A |
5563105 | Dobuzinsky et al. | Oct 1996 | A |
5567243 | Foster et al. | Oct 1996 | A |
5571576 | Qian et al. | Nov 1996 | A |
5578130 | Hayashi et al. | Nov 1996 | A |
5578161 | Auda | Nov 1996 | A |
5580421 | Hiatt et al. | Dec 1996 | A |
5591269 | Arami et al. | Jan 1997 | A |
5599740 | Jang et al. | Feb 1997 | A |
5616518 | Foo et al. | Apr 1997 | A |
5624582 | Cain | Apr 1997 | A |
5626922 | Miyanaga et al. | May 1997 | A |
5628829 | Foster et al. | May 1997 | A |
5635086 | Warren, Jr. | Jun 1997 | A |
5645645 | Zhang et al. | Jul 1997 | A |
5648125 | Cane | Jul 1997 | A |
5648175 | Russell et al. | Jul 1997 | A |
5656093 | Burkhart et al. | Aug 1997 | A |
5661093 | Ravi et al. | Aug 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5676758 | Hasgawa et al. | Oct 1997 | A |
5679606 | Wang et al. | Oct 1997 | A |
5685946 | Fathauer et al. | Nov 1997 | A |
5688331 | Aruga et al. | Nov 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5712185 | Tsai et al. | Jan 1998 | A |
5716500 | Bardos et al. | Feb 1998 | A |
5716506 | Maclay et al. | Feb 1998 | A |
5719085 | Moon et al. | Feb 1998 | A |
5733816 | Iyer et al. | Mar 1998 | A |
5747373 | Yu | May 1998 | A |
5753886 | Iwamura et al. | May 1998 | A |
5755859 | Brusic et al. | May 1998 | A |
5756400 | Ye et al. | May 1998 | A |
5756402 | Jimbo et al. | May 1998 | A |
5772770 | Suda et al. | Jun 1998 | A |
5781693 | Ballance et al. | Jul 1998 | A |
5786276 | Brooks et al. | Jul 1998 | A |
5789300 | Fulford | Aug 1998 | A |
5800686 | Littau et al. | Sep 1998 | A |
5804259 | Robles | Sep 1998 | A |
5812403 | Fong et al. | Sep 1998 | A |
5814365 | Mahawill | Sep 1998 | A |
5820723 | Benjamin et al. | Oct 1998 | A |
5824599 | Schacham-Diamand et al. | Oct 1998 | A |
5830805 | Shacham-Diamand et al. | Nov 1998 | A |
5843538 | Ehrsam et al. | Dec 1998 | A |
5843847 | Pu et al. | Dec 1998 | A |
5844195 | Fairbairn et al. | Dec 1998 | A |
5846332 | Zhao et al. | Dec 1998 | A |
5846375 | Gilchrist et al. | Dec 1998 | A |
5846598 | Semkow et al. | Dec 1998 | A |
5849639 | Molloy et al. | Dec 1998 | A |
5850105 | Dawson et al. | Dec 1998 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5856240 | Sinha et al. | Jan 1999 | A |
5858876 | Chew | Jan 1999 | A |
5866483 | Shiau et al. | Feb 1999 | A |
5872052 | Iyer | Feb 1999 | A |
5872058 | Van Cleemput et al. | Feb 1999 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5882786 | Nassau et al. | Mar 1999 | A |
5883012 | Chiou | Mar 1999 | A |
5885404 | Kim et al. | Mar 1999 | A |
5885749 | Huggins et al. | Mar 1999 | A |
5888906 | Sandhu et al. | Mar 1999 | A |
5891349 | Tobe et al. | Apr 1999 | A |
5891513 | Dubin et al. | Apr 1999 | A |
5897751 | Makowiecki | Apr 1999 | A |
5899752 | Hey et al. | May 1999 | A |
5904827 | Reynolds | May 1999 | A |
5907790 | Kellam | May 1999 | A |
5910340 | Uchida et al. | Jun 1999 | A |
5913147 | Dubin et al. | Jun 1999 | A |
5915190 | Pirkle | Jun 1999 | A |
5918116 | Chittipeddi | Jun 1999 | A |
5920792 | Lin | Jul 1999 | A |
5926737 | Ameen et al. | Jul 1999 | A |
5932077 | Reynolds | Aug 1999 | A |
5933757 | Yoshikawa et al. | Aug 1999 | A |
5935334 | Fong et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5939831 | Fong et al. | Aug 1999 | A |
5942075 | Nagahata et al. | Aug 1999 | A |
5944902 | Redeker et al. | Aug 1999 | A |
5948702 | Rotondaro | Sep 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5951776 | Selyutin et al. | Sep 1999 | A |
5951896 | Mahawill | Sep 1999 | A |
5953591 | Ishihara et al. | Sep 1999 | A |
5953635 | Andideh | Sep 1999 | A |
5968610 | Liu et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5976327 | Tanaka | Nov 1999 | A |
5990000 | Hong et al. | Nov 1999 | A |
5990013 | Berenguer et al. | Nov 1999 | A |
5993916 | Zhao et al. | Nov 1999 | A |
6004884 | Abraham | Dec 1999 | A |
6007635 | Mahawill | Dec 1999 | A |
6010962 | Liu et al. | Jan 2000 | A |
6013191 | Nasser-Faili et al. | Jan 2000 | A |
6013584 | M'Saad | Jan 2000 | A |
6015724 | Yamazaki et al. | Jan 2000 | A |
6015747 | Lopatin et al. | Jan 2000 | A |
6020271 | Yanagida | Feb 2000 | A |
6030666 | Lam et al. | Feb 2000 | A |
6030881 | Papasouliotis et al. | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6037018 | Jang et al. | Mar 2000 | A |
6037266 | Tao et al. | Mar 2000 | A |
6039851 | Iyer | Mar 2000 | A |
6053982 | Halpin et al. | Apr 2000 | A |
6059643 | Hu et al. | May 2000 | A |
6063683 | Wu et al. | May 2000 | A |
6063712 | Gilton et al. | May 2000 | A |
6065424 | Shacham-Diamand et al. | May 2000 | A |
6072147 | Koshiishi | Jun 2000 | A |
6072227 | Yau et al. | Jun 2000 | A |
6077780 | Dubin | Jun 2000 | A |
6080529 | Ye et al. | Jun 2000 | A |
6083344 | Hanawa et al. | Jul 2000 | A |
6083844 | Bui-Le et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6087278 | Kim et al. | Jul 2000 | A |
6090212 | Mahawill | Jul 2000 | A |
6093457 | Okumura | Jul 2000 | A |
6093594 | Yeap et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6107199 | Allen et al. | Aug 2000 | A |
6110530 | Chen et al. | Aug 2000 | A |
6110836 | Cohen et al. | Aug 2000 | A |
6110838 | Loewenstein | Aug 2000 | A |
6113771 | Landau et al. | Sep 2000 | A |
6117245 | Mandrekar et al. | Sep 2000 | A |
6120640 | Shih et al. | Sep 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6136685 | Narwankar et al. | Oct 2000 | A |
6136693 | Chan et al. | Oct 2000 | A |
6140234 | Uzoh et al. | Oct 2000 | A |
6144099 | Lopatin et al. | Nov 2000 | A |
6147009 | Grill et al. | Nov 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6150628 | Smith et al. | Nov 2000 | A |
6153935 | Edelstein et al. | Nov 2000 | A |
6165912 | McConnell et al. | Dec 2000 | A |
6167834 | Wang et al. | Jan 2001 | B1 |
6169021 | Akram et al. | Jan 2001 | B1 |
6170428 | Redeker et al. | Jan 2001 | B1 |
6171661 | Zheng et al. | Jan 2001 | B1 |
6174450 | Patrick et al. | Jan 2001 | B1 |
6174812 | Hsiung et al. | Jan 2001 | B1 |
6176198 | Kao et al. | Jan 2001 | B1 |
6176667 | Fairbairn | Jan 2001 | B1 |
6177245 | Ward et al. | Jan 2001 | B1 |
6179924 | Zhao et al. | Jan 2001 | B1 |
6180523 | Lee et al. | Jan 2001 | B1 |
6182602 | Redeker et al. | Feb 2001 | B1 |
6184121 | Buchwalter et al. | Feb 2001 | B1 |
6189483 | Ishikawa et al. | Feb 2001 | B1 |
6190233 | Hong et al. | Feb 2001 | B1 |
6194038 | Rossman | Feb 2001 | B1 |
6197181 | Chen | Mar 2001 | B1 |
6197364 | Paunovic et al. | Mar 2001 | B1 |
6197680 | Lin et al. | Mar 2001 | B1 |
6197688 | Simpson | Mar 2001 | B1 |
6197705 | Vassiliev | Mar 2001 | B1 |
6203863 | Liu et al. | Mar 2001 | B1 |
6204200 | Shieh et al. | Mar 2001 | B1 |
6210486 | Mizukami et al. | Apr 2001 | B1 |
6217658 | Orczyk et al. | Apr 2001 | B1 |
6228233 | Lakshmikanthan et al. | May 2001 | B1 |
6228751 | Yamazaki et al. | May 2001 | B1 |
6228758 | Pellerin et al. | May 2001 | B1 |
6235643 | Mui et al. | May 2001 | B1 |
6237527 | Kellerman et al. | May 2001 | B1 |
6238513 | Arnold et al. | May 2001 | B1 |
6238582 | Williams et al. | May 2001 | B1 |
6241845 | Gadgil et al. | Jun 2001 | B1 |
6242349 | Nogami et al. | Jun 2001 | B1 |
6245396 | Nogami | Jun 2001 | B1 |
6245670 | Cheung et al. | Jun 2001 | B1 |
6251236 | Stevens | Jun 2001 | B1 |
6251802 | Moore et al. | Jun 2001 | B1 |
6258220 | Dordi et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6258270 | Hilgendorff et al. | Jul 2001 | B1 |
6261637 | Oberle | Jul 2001 | B1 |
6277733 | Smith | Aug 2001 | B1 |
6277752 | Chen | Aug 2001 | B1 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6281072 | Li et al. | Aug 2001 | B1 |
6281135 | Han et al. | Aug 2001 | B1 |
6291282 | Wilk et al. | Sep 2001 | B1 |
6291348 | Lopatin et al. | Sep 2001 | B1 |
6303044 | Koemtzopoulos | Oct 2001 | B1 |
6303418 | Cha et al. | Oct 2001 | B1 |
6306772 | Lin | Oct 2001 | B1 |
6312554 | Ye | Nov 2001 | B1 |
6312995 | Yu | Nov 2001 | B1 |
6319387 | Krishnamoorthy et al. | Nov 2001 | B1 |
6322716 | Qiao et al. | Nov 2001 | B1 |
6323128 | Sambucetti et al. | Nov 2001 | B1 |
6335288 | Kwan et al. | Jan 2002 | B1 |
6340435 | Bjorkman et al. | Jan 2002 | B1 |
6342733 | Hu et al. | Jan 2002 | B1 |
RE37546 | Mahawill | Feb 2002 | E |
6344410 | Lopatin et al. | Feb 2002 | B1 |
6350320 | Sherstinsky et al. | Feb 2002 | B1 |
6350697 | Richardson | Feb 2002 | B1 |
6351013 | Luning et al. | Feb 2002 | B1 |
6352081 | Lu et al. | Mar 2002 | B1 |
6355573 | Okumura | Mar 2002 | B1 |
6364949 | Or et al. | Apr 2002 | B1 |
6364954 | Umotoy et al. | Apr 2002 | B2 |
6364957 | Schneider et al. | Apr 2002 | B1 |
6375748 | Yudovsky et al. | Apr 2002 | B1 |
6376386 | Oshima | Apr 2002 | B1 |
6379575 | Yin et al. | Apr 2002 | B1 |
6383951 | Li | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6391753 | Yu | May 2002 | B1 |
6395150 | Van Cleemput et al. | May 2002 | B1 |
6403491 | Liu et al. | Jun 2002 | B1 |
6415736 | Hao et al. | Jul 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6418874 | Cox et al. | Jul 2002 | B1 |
6423284 | Arno | Jul 2002 | B1 |
6427623 | Ko | Aug 2002 | B2 |
6432819 | Pavate et al. | Aug 2002 | B1 |
6432831 | Dhindsa et al. | Aug 2002 | B2 |
6436193 | Kasai et al. | Aug 2002 | B1 |
6436816 | Lee et al. | Aug 2002 | B1 |
6440863 | Tsai et al. | Aug 2002 | B1 |
6441492 | Cunningham | Aug 2002 | B1 |
6446572 | Brcka | Sep 2002 | B1 |
6448537 | Nering | Sep 2002 | B1 |
6458718 | Todd | Oct 2002 | B1 |
6461974 | Ni et al. | Oct 2002 | B1 |
6462371 | Weimer et al. | Oct 2002 | B1 |
6465366 | Nemani et al. | Oct 2002 | B1 |
6477980 | White et al. | Nov 2002 | B1 |
6479373 | Dreybrodt et al. | Nov 2002 | B2 |
6488984 | Wada et al. | Dec 2002 | B1 |
6494959 | Samoilov et al. | Dec 2002 | B1 |
6499425 | Sandhu et al. | Dec 2002 | B1 |
6500728 | Wang | Dec 2002 | B1 |
6503843 | Xia et al. | Jan 2003 | B1 |
6506291 | Tsai et al. | Jan 2003 | B2 |
6509623 | Zhao | Jan 2003 | B2 |
6516815 | Stevens et al. | Feb 2003 | B1 |
6518548 | Sugaya et al. | Feb 2003 | B2 |
6527968 | Wang et al. | Mar 2003 | B1 |
6528409 | Lopatin et al. | Mar 2003 | B1 |
6537733 | Campana et al. | Mar 2003 | B2 |
6541397 | Bencher | Apr 2003 | B1 |
6541671 | Martinez et al. | Apr 2003 | B1 |
6544340 | Yudovsky | Apr 2003 | B2 |
6547977 | Yan et al. | Apr 2003 | B1 |
6551924 | Dalton et al. | Apr 2003 | B1 |
6558564 | Loewenhardt | May 2003 | B1 |
6565729 | Chen et al. | May 2003 | B2 |
6569773 | Gellrich et al. | May 2003 | B1 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6573606 | Sambucetti et al. | Jun 2003 | B2 |
6586163 | Okabe et al. | Jul 2003 | B1 |
6596599 | Guo | Jul 2003 | B1 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602434 | Hung et al. | Aug 2003 | B1 |
6603269 | Vo et al. | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6616967 | Test | Sep 2003 | B1 |
6627532 | Gaillard et al. | Sep 2003 | B1 |
6635578 | Xu et al. | Oct 2003 | B1 |
6638810 | Bakli et al. | Oct 2003 | B2 |
6645301 | Sainty et al. | Nov 2003 | B2 |
6645550 | Cheung et al. | Nov 2003 | B1 |
6656831 | Lee et al. | Dec 2003 | B1 |
6656837 | Xu et al. | Dec 2003 | B2 |
6663715 | Yuda et al. | Dec 2003 | B1 |
6677242 | Liu et al. | Jan 2004 | B1 |
6679981 | Pan et al. | Jan 2004 | B1 |
6688375 | Tumer | Feb 2004 | B1 |
6713356 | Skotnicki et al. | Mar 2004 | B1 |
6713835 | Horak et al. | Mar 2004 | B1 |
6717189 | Inoue et al. | Apr 2004 | B2 |
6720213 | Gambino et al. | Apr 2004 | B1 |
6740585 | Yoon et al. | May 2004 | B2 |
6740977 | Ahn et al. | May 2004 | B2 |
6743473 | Parkhe et al. | Jun 2004 | B1 |
6743732 | Lin et al. | Jun 2004 | B1 |
6756235 | Liu et al. | Jun 2004 | B1 |
6759261 | Shimokohbe et al. | Jul 2004 | B2 |
6762127 | Boiteux et al. | Jul 2004 | B2 |
6762435 | Towle | Jul 2004 | B2 |
6764958 | Nemani et al. | Jul 2004 | B1 |
6765273 | Chau et al. | Jul 2004 | B1 |
6767834 | Chung et al. | Jul 2004 | B2 |
6772827 | Keller et al. | Aug 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6794311 | Huang et al. | Sep 2004 | B2 |
6796314 | Graff et al. | Sep 2004 | B1 |
6797189 | Hung et al. | Sep 2004 | B2 |
6800336 | Fornsel et al. | Oct 2004 | B1 |
6800830 | Mahawili | Oct 2004 | B2 |
6802944 | Ahmad et al. | Oct 2004 | B2 |
6808564 | Dietze | Oct 2004 | B2 |
6808748 | Kapoor et al. | Oct 2004 | B2 |
6821571 | Huang | Nov 2004 | B2 |
6823589 | White et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6835995 | Li | Dec 2004 | B2 |
6846745 | Papasouliotis et al. | Jan 2005 | B1 |
6852550 | Tuttle et al. | Feb 2005 | B2 |
6858153 | Bjorkman et al. | Feb 2005 | B2 |
6861097 | Goosey et al. | Mar 2005 | B1 |
6861332 | Park et al. | Mar 2005 | B2 |
6869880 | Krishnaraj et al. | Mar 2005 | B2 |
6875280 | Ikeda et al. | Apr 2005 | B2 |
6878206 | Tzu et al. | Apr 2005 | B2 |
6879981 | Rothschild et al. | Apr 2005 | B2 |
6886491 | Kim et al. | May 2005 | B2 |
6892669 | Xu et al. | May 2005 | B2 |
6893967 | Wright et al. | May 2005 | B1 |
6897532 | Schwarz et al. | May 2005 | B1 |
6903511 | Chistyakov | Jun 2005 | B2 |
6908862 | Li et al. | Jun 2005 | B2 |
6911112 | An | Jun 2005 | B2 |
6911401 | Khandan et al. | Jun 2005 | B2 |
6921556 | Shimizu et al. | Jul 2005 | B2 |
6924191 | Liu et al. | Aug 2005 | B2 |
6930047 | Yamazaki | Aug 2005 | B2 |
6942753 | Choi et al. | Sep 2005 | B2 |
6946033 | Tsuel et al. | Sep 2005 | B2 |
6951821 | Hamelin et al. | Oct 2005 | B2 |
6958175 | Sakamoto et al. | Oct 2005 | B2 |
6958286 | Chen et al. | Oct 2005 | B2 |
6995073 | Liou | Feb 2006 | B2 |
7017269 | White et al. | Mar 2006 | B2 |
7018941 | Cui et al. | Mar 2006 | B2 |
7030034 | Fucsko et al. | Apr 2006 | B2 |
7049200 | Arghavani et al. | May 2006 | B2 |
7071532 | Geffken et al. | Jul 2006 | B2 |
7084070 | Lee et al. | Aug 2006 | B1 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7122949 | Strikovski | Oct 2006 | B2 |
7145725 | Hasel et al. | Dec 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183214 | Nam et al. | Feb 2007 | B2 |
7196342 | Ershov et al. | Mar 2007 | B2 |
7226805 | Hallin et al. | Jun 2007 | B2 |
7235137 | Kitayama et al. | Jun 2007 | B2 |
7252716 | Kim et al. | Aug 2007 | B2 |
7253123 | Arghavani et al. | Aug 2007 | B2 |
7256370 | Guiver | Aug 2007 | B2 |
7288482 | Panda et al. | Oct 2007 | B2 |
7341633 | Lubomirsky et al. | Mar 2008 | B2 |
7358192 | Merry et al. | Apr 2008 | B2 |
7364956 | Saito | Apr 2008 | B2 |
7365016 | Ouellet et al. | Apr 2008 | B2 |
7396480 | Kao et al. | Jul 2008 | B2 |
7416989 | Liu et al. | Aug 2008 | B1 |
7465358 | Weidman et al. | Dec 2008 | B2 |
7468319 | Lee | Dec 2008 | B2 |
7484473 | Keller et al. | Feb 2009 | B2 |
7488688 | Chung et al. | Feb 2009 | B2 |
7494545 | Lam et al. | Feb 2009 | B2 |
7500445 | Zhao et al. | Mar 2009 | B2 |
7553756 | Hayashi et al. | Jun 2009 | B2 |
7575007 | Tang et al. | Aug 2009 | B2 |
7581511 | Mardian et al. | Sep 2009 | B2 |
7604708 | Wood et al. | Oct 2009 | B2 |
7628897 | Mungekar et al. | Dec 2009 | B2 |
7682518 | Chandrachood et al. | Mar 2010 | B2 |
7708859 | Huang et al. | May 2010 | B2 |
7722925 | White et al. | May 2010 | B2 |
7723221 | Hayashi | May 2010 | B2 |
7749326 | Kim et al. | Jul 2010 | B2 |
7785672 | Choi et al. | Aug 2010 | B2 |
7790634 | Munro et al. | Sep 2010 | B2 |
7806078 | Yoshida | Oct 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7837828 | Ikeda et al. | Nov 2010 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7932181 | Singh et al. | Apr 2011 | B2 |
7939422 | Ingle et al. | May 2011 | B2 |
7968441 | Xu | Jun 2011 | B2 |
7976631 | Burrows | Jul 2011 | B2 |
7981806 | Jung | Jul 2011 | B2 |
7989365 | Park et al. | Aug 2011 | B2 |
8008166 | Sanchez et al. | Aug 2011 | B2 |
8058179 | Draeger et al. | Nov 2011 | B1 |
8071482 | Kawada | Dec 2011 | B2 |
8074599 | Choi et al. | Dec 2011 | B2 |
8076198 | Lee et al. | Dec 2011 | B2 |
8083853 | Choi et al. | Dec 2011 | B2 |
8119530 | Hori et al. | Feb 2012 | B2 |
8133349 | Panagopoulos | Mar 2012 | B1 |
8183134 | Wu | May 2012 | B2 |
8187486 | Liu et al. | May 2012 | B1 |
8211808 | Sapre et al. | Jul 2012 | B2 |
8298627 | Minami et al. | Oct 2012 | B2 |
8309440 | Sanchez et al. | Nov 2012 | B2 |
8313610 | Dhindsa | Nov 2012 | B2 |
8328939 | Choi et al. | Dec 2012 | B2 |
8368308 | Banna et al. | Feb 2013 | B2 |
8427067 | Espiau et al. | Apr 2013 | B2 |
8435902 | Tang et al. | May 2013 | B2 |
8475674 | Thadani et al. | Jul 2013 | B2 |
8491805 | Kushibiki et al. | Jul 2013 | B2 |
8501629 | Tang et al. | Aug 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
8512509 | Bera et al. | Aug 2013 | B2 |
8551891 | Liang | Oct 2013 | B2 |
8573152 | De La Llera | Nov 2013 | B2 |
8623148 | Mitchell et al. | Jan 2014 | B2 |
8623471 | Tyler et al. | Jan 2014 | B2 |
8642481 | Wang et al. | Feb 2014 | B2 |
8679982 | Wang et al. | Mar 2014 | B2 |
8679983 | Wang et al. | Mar 2014 | B2 |
8741778 | Yang et al. | Jun 2014 | B2 |
8747680 | Deshpande | Jun 2014 | B1 |
8765574 | Zhang et al. | Jul 2014 | B2 |
8771536 | Zhang et al. | Jul 2014 | B2 |
8771539 | Zhang et al. | Jul 2014 | B2 |
8772888 | Jung et al. | Jul 2014 | B2 |
8778079 | Begarney et al. | Jul 2014 | B2 |
8801952 | Wang et al. | Aug 2014 | B1 |
8808563 | Wang et al. | Aug 2014 | B2 |
8846163 | Kao et al. | Sep 2014 | B2 |
8895449 | Zhu et al. | Nov 2014 | B1 |
8900364 | Wright | Dec 2014 | B2 |
8921234 | Liu et al. | Dec 2014 | B2 |
8927390 | Sapre et al. | Jan 2015 | B2 |
8951429 | Liu et al. | Feb 2015 | B1 |
8956980 | Chen et al. | Feb 2015 | B1 |
8969212 | Ren et al. | Mar 2015 | B2 |
8980005 | Carlson et al. | Mar 2015 | B2 |
8980758 | Ling et al. | Mar 2015 | B1 |
8980763 | Wang et al. | Mar 2015 | B2 |
8992723 | Sorensen et al. | Mar 2015 | B2 |
8999839 | Su et al. | Apr 2015 | B2 |
8999856 | Zhang et al. | Apr 2015 | B2 |
9012302 | Sapre et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9023732 | Wang et al. | May 2015 | B2 |
9023734 | Chen et al. | May 2015 | B2 |
9034770 | Park et al. | May 2015 | B2 |
9040422 | Wang et al. | May 2015 | B2 |
9064815 | Zhang et al. | Jun 2015 | B2 |
9064816 | Kim et al. | Jun 2015 | B2 |
9072158 | Ikeda et al. | Jun 2015 | B2 |
9093371 | Wang et al. | Jul 2015 | B2 |
9093390 | Wang et al. | Jul 2015 | B2 |
9111877 | Chen et al. | Aug 2015 | B2 |
9111907 | Kamineni | Aug 2015 | B2 |
9114438 | Hoinkis et al. | Aug 2015 | B2 |
9117855 | Cho et al. | Aug 2015 | B2 |
9132436 | Liang et al. | Sep 2015 | B2 |
9136273 | Purayath et al. | Sep 2015 | B1 |
9144147 | Yang et al. | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9159606 | Purayath et al. | Oct 2015 | B1 |
9165786 | Purayath et al. | Oct 2015 | B1 |
9184055 | Wang et al. | Nov 2015 | B2 |
9190293 | Wang et al. | Nov 2015 | B2 |
9209012 | Chen et al. | Dec 2015 | B2 |
9236265 | Korolik et al. | Jan 2016 | B2 |
9245762 | Zhang et al. | Jan 2016 | B2 |
20010008803 | Takamatsu et al. | Jul 2001 | A1 |
20010015261 | Kobayashi et al. | Aug 2001 | A1 |
20010028093 | Yamazaki et al. | Oct 2001 | A1 |
20010028922 | Sandhu | Oct 2001 | A1 |
20010030366 | Nakano et al. | Oct 2001 | A1 |
20010034106 | Moise et al. | Oct 2001 | A1 |
20010034121 | Fu et al. | Oct 2001 | A1 |
20010036706 | Kitamura | Nov 2001 | A1 |
20010037856 | Park | Nov 2001 | A1 |
20010041444 | Shields et al. | Nov 2001 | A1 |
20010047760 | Mosiehl | Dec 2001 | A1 |
20010053585 | Kikuchi et al. | Dec 2001 | A1 |
20010053610 | Athavale | Dec 2001 | A1 |
20010054381 | Umotoy et al. | Dec 2001 | A1 |
20010055842 | Uh et al. | Dec 2001 | A1 |
20020000202 | Yuda et al. | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020016080 | Khan et al. | Feb 2002 | A1 |
20020016085 | Huang et al. | Feb 2002 | A1 |
20020028582 | Nallan et al. | Mar 2002 | A1 |
20020028585 | Chung et al. | Mar 2002 | A1 |
20020029747 | Powell et al. | Mar 2002 | A1 |
20020033233 | Savas | Mar 2002 | A1 |
20020036143 | Segawa et al. | Mar 2002 | A1 |
20020040764 | Kwan et al. | Apr 2002 | A1 |
20020040766 | Takahashi | Apr 2002 | A1 |
20020045966 | Lee et al. | Apr 2002 | A1 |
20020054962 | Huang | May 2002 | A1 |
20020069820 | Yudovsky | Jun 2002 | A1 |
20020070414 | Drescher et al. | Jun 2002 | A1 |
20020074573 | Takeuchi et al. | Jun 2002 | A1 |
20020090781 | Skotnicki et al. | Jul 2002 | A1 |
20020090835 | Chakravarti et al. | Jul 2002 | A1 |
20020096493 | Hattori | Jul 2002 | A1 |
20020098681 | Hu et al. | Jul 2002 | A1 |
20020106845 | Chao et al. | Aug 2002 | A1 |
20020124867 | Kim et al. | Sep 2002 | A1 |
20020129769 | Kim et al. | Sep 2002 | A1 |
20020153808 | Skotnicki et al. | Oct 2002 | A1 |
20020164885 | Lill et al. | Nov 2002 | A1 |
20020177322 | Li et al. | Nov 2002 | A1 |
20020187280 | Johnson et al. | Dec 2002 | A1 |
20020187655 | Tan et al. | Dec 2002 | A1 |
20030003757 | Naltan et al. | Jan 2003 | A1 |
20030010645 | Ting et al. | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030026060 | Hiramatsu et al. | Feb 2003 | A1 |
20030029566 | Roth | Feb 2003 | A1 |
20030029715 | Yu et al. | Feb 2003 | A1 |
20030032284 | Enomoto et al. | Feb 2003 | A1 |
20030038127 | Liu et al. | Feb 2003 | A1 |
20030038305 | Wasshuber | Feb 2003 | A1 |
20030054608 | Tseng et al. | Mar 2003 | A1 |
20030072639 | White et al. | Apr 2003 | A1 |
20030075808 | Inoue et al. | Apr 2003 | A1 |
20030077909 | Jiwari | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030087531 | Kang et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030098125 | An | May 2003 | A1 |
20030109143 | Hsieh et al. | Jun 2003 | A1 |
20030116087 | Nguyen et al. | Jun 2003 | A1 |
20030116439 | Seo et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030124465 | Lee et al. | Jul 2003 | A1 |
20030124842 | Hytros et al. | Jul 2003 | A1 |
20030127740 | Hsu et al. | Jul 2003 | A1 |
20030129106 | Sorensen et al. | Jul 2003 | A1 |
20030129827 | Lee et al. | Jul 2003 | A1 |
20030132319 | Hytros et al. | Jul 2003 | A1 |
20030140844 | Maa et al. | Jul 2003 | A1 |
20030143328 | Chen et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030152691 | Baude | Aug 2003 | A1 |
20030159307 | Sago et al. | Aug 2003 | A1 |
20030173333 | Wang et al. | Sep 2003 | A1 |
20030173347 | Guiver | Sep 2003 | A1 |
20030173675 | Watanabe | Sep 2003 | A1 |
20030181040 | Ivanov et al. | Sep 2003 | A1 |
20030183244 | Rossman | Oct 2003 | A1 |
20030190426 | Padhi et al. | Oct 2003 | A1 |
20030199170 | Li | Oct 2003 | A1 |
20030205329 | Gujer et al. | Nov 2003 | A1 |
20030215963 | AmRhein et al. | Nov 2003 | A1 |
20030216044 | Lin et al. | Nov 2003 | A1 |
20030221780 | Lei et al. | Dec 2003 | A1 |
20030224217 | Byun et al. | Dec 2003 | A1 |
20030224617 | Baek et al. | Dec 2003 | A1 |
20040005726 | Huang | Jan 2004 | A1 |
20040020801 | Zhao et al. | Feb 2004 | A1 |
20040026371 | Nguyen et al. | Feb 2004 | A1 |
20040033678 | Arghavani et al. | Feb 2004 | A1 |
20040033684 | Li | Feb 2004 | A1 |
20040050328 | Kumagai et al. | Mar 2004 | A1 |
20040058293 | Nguyen et al. | Mar 2004 | A1 |
20040069225 | Fairbairn et al. | Apr 2004 | A1 |
20040070346 | Choi | Apr 2004 | A1 |
20040072446 | Liu et al. | Apr 2004 | A1 |
20040092063 | Okumura | May 2004 | A1 |
20040099378 | Kim et al. | May 2004 | A1 |
20040101667 | O'Loughlin et al. | May 2004 | A1 |
20040115876 | Goundar et al. | Jun 2004 | A1 |
20040129671 | Ji et al. | Jul 2004 | A1 |
20040137161 | Segawa et al. | Jul 2004 | A1 |
20040144490 | Zhao et al. | Jul 2004 | A1 |
20040147126 | Yamashita et al. | Jul 2004 | A1 |
20040152342 | Li | Aug 2004 | A1 |
20040154535 | Chen et al. | Aug 2004 | A1 |
20040157444 | Chiu | Aug 2004 | A1 |
20040175929 | Schmitt et al. | Sep 2004 | A1 |
20040182315 | Laflamme et al. | Sep 2004 | A1 |
20040192032 | Ohmori et al. | Sep 2004 | A1 |
20040194799 | Kim et al. | Oct 2004 | A1 |
20040200499 | Harvey | Oct 2004 | A1 |
20040211357 | Gadgil et al. | Oct 2004 | A1 |
20040219737 | Quon | Nov 2004 | A1 |
20040219789 | Wood et al. | Nov 2004 | A1 |
20040263827 | Xu | Dec 2004 | A1 |
20050001276 | Gao et al. | Jan 2005 | A1 |
20050003676 | Ho et al. | Jan 2005 | A1 |
20050009340 | Saijo et al. | Jan 2005 | A1 |
20050009358 | Choi et al. | Jan 2005 | A1 |
20050026430 | Kim et al. | Feb 2005 | A1 |
20050026431 | Kazumi et al. | Feb 2005 | A1 |
20050035455 | Hu et al. | Feb 2005 | A1 |
20050051094 | Schaepkens et al. | Mar 2005 | A1 |
20050073051 | Yamamoto et al. | Apr 2005 | A1 |
20050079706 | Kumar et al. | Apr 2005 | A1 |
20050090120 | Hasegawa et al. | Apr 2005 | A1 |
20050098111 | Shimizu et al. | May 2005 | A1 |
20050105991 | Hofmeister et al. | May 2005 | A1 |
20050112876 | Wu | May 2005 | A1 |
20050112901 | Ji et al. | May 2005 | A1 |
20050164479 | Perng et al. | Jul 2005 | A1 |
20050167394 | Liu et al. | Aug 2005 | A1 |
20050181588 | Kim | Aug 2005 | A1 |
20050196967 | Savas et al. | Sep 2005 | A1 |
20050199489 | Stevens et al. | Sep 2005 | A1 |
20050205110 | Kao et al. | Sep 2005 | A1 |
20050205862 | Koemtzopoulos et al. | Sep 2005 | A1 |
20050208215 | Eguchi et al. | Sep 2005 | A1 |
20050214477 | Hanawa et al. | Sep 2005 | A1 |
20050218507 | Kao et al. | Oct 2005 | A1 |
20050221552 | Kao et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050236694 | Wu et al. | Oct 2005 | A1 |
20050239282 | Chen et al. | Oct 2005 | A1 |
20050251990 | Choi et al. | Nov 2005 | A1 |
20050266622 | Arghavani et al. | Dec 2005 | A1 |
20050266691 | Gu et al. | Dec 2005 | A1 |
20050269030 | Kent et al. | Dec 2005 | A1 |
20050287755 | Bachmann | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060000802 | Kumar et al. | Jan 2006 | A1 |
20060000805 | Todorow et al. | Jan 2006 | A1 |
20060005856 | Sun et al. | Jan 2006 | A1 |
20060006057 | Laermer | Jan 2006 | A1 |
20060011298 | Lim et al. | Jan 2006 | A1 |
20060016783 | Wu et al. | Jan 2006 | A1 |
20060019456 | Bu et al. | Jan 2006 | A1 |
20060019486 | Yu et al. | Jan 2006 | A1 |
20060021574 | Armour et al. | Feb 2006 | A1 |
20060024954 | Wu et al. | Feb 2006 | A1 |
20060024956 | Zhijian et al. | Feb 2006 | A1 |
20060033678 | Lubomirsky et al. | Feb 2006 | A1 |
20060040055 | Nguyen et al. | Feb 2006 | A1 |
20060043066 | Kamp | Mar 2006 | A1 |
20060046412 | Nguyen et al. | Mar 2006 | A1 |
20060046419 | Sandhu et al. | Mar 2006 | A1 |
20060051966 | Or et al. | Mar 2006 | A1 |
20060051968 | Joshi et al. | Mar 2006 | A1 |
20060054184 | Mozetic et al. | Mar 2006 | A1 |
20060060942 | Minixhofer et al. | Mar 2006 | A1 |
20060093756 | Rajagopalan et al. | May 2006 | A1 |
20060097397 | Russell et al. | May 2006 | A1 |
20060102076 | Smith et al. | May 2006 | A1 |
20060102587 | Kimura | May 2006 | A1 |
20060121724 | Yue et al. | Jun 2006 | A1 |
20060124242 | Kanarik et al. | Jun 2006 | A1 |
20060130971 | Chang et al. | Jun 2006 | A1 |
20060157449 | Takahashi et al. | Jul 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060166107 | Chen et al. | Jul 2006 | A1 |
20060166515 | Karim et al. | Jul 2006 | A1 |
20060178008 | Yeh et al. | Aug 2006 | A1 |
20060185592 | Matsuura | Aug 2006 | A1 |
20060191479 | Mizukami et al. | Aug 2006 | A1 |
20060191637 | Zajac et al. | Aug 2006 | A1 |
20060207504 | Hasebe et al. | Sep 2006 | A1 |
20060210723 | Ishizaka | Sep 2006 | A1 |
20060216878 | Lee | Sep 2006 | A1 |
20060222481 | Foree | Oct 2006 | A1 |
20060226121 | Aoi | Oct 2006 | A1 |
20060228889 | Edelberg et al. | Oct 2006 | A1 |
20060240661 | Annapragada et al. | Oct 2006 | A1 |
20060244107 | Sugihara | Nov 2006 | A1 |
20060246717 | Wang | Nov 2006 | A1 |
20060251800 | Weidman et al. | Nov 2006 | A1 |
20060251801 | Weidman et al. | Nov 2006 | A1 |
20060252252 | Zhu et al. | Nov 2006 | A1 |
20060252265 | Jin et al. | Nov 2006 | A1 |
20060254716 | Mosden et al. | Nov 2006 | A1 |
20060260750 | Rueger | Nov 2006 | A1 |
20060261490 | Su et al. | Nov 2006 | A1 |
20060264043 | Stewart et al. | Nov 2006 | A1 |
20060266288 | Choi | Nov 2006 | A1 |
20070025907 | Rezeq | Feb 2007 | A1 |
20070048977 | Lee et al. | Mar 2007 | A1 |
20070056925 | Liu et al. | Mar 2007 | A1 |
20070062453 | Ishikawa | Mar 2007 | A1 |
20070071888 | Shanmugasundram et al. | Mar 2007 | A1 |
20070072408 | Enomoto et al. | Mar 2007 | A1 |
20070090325 | Hwang et al. | Apr 2007 | A1 |
20070099428 | Shamiryan et al. | May 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070107750 | Sawin et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111519 | Lubomirsky et al. | May 2007 | A1 |
20070117396 | Wu et al. | May 2007 | A1 |
20070119370 | Ma et al. | May 2007 | A1 |
20070119371 | Ma et al. | May 2007 | A1 |
20070123051 | Arghavani et al. | May 2007 | A1 |
20070131274 | Stollwerck et al. | Jun 2007 | A1 |
20070154838 | Lee | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070181057 | Lam et al. | Aug 2007 | A1 |
20070193515 | Jeon et al. | Aug 2007 | A1 |
20070197028 | Byun et al. | Aug 2007 | A1 |
20070212288 | Holst | Sep 2007 | A1 |
20070227554 | Satoh et al. | Oct 2007 | A1 |
20070231109 | Pak et al. | Oct 2007 | A1 |
20070235134 | Iimuro | Oct 2007 | A1 |
20070238199 | Yamashita | Oct 2007 | A1 |
20070238321 | Futase et al. | Oct 2007 | A1 |
20070243685 | Jiang et al. | Oct 2007 | A1 |
20070259467 | Tweet et al. | Nov 2007 | A1 |
20070264820 | Liu | Nov 2007 | A1 |
20070266946 | Choi | Nov 2007 | A1 |
20070277734 | Lubomirsky et al. | Dec 2007 | A1 |
20070281106 | Lubomirsky et al. | Dec 2007 | A1 |
20070287292 | Li et al. | Dec 2007 | A1 |
20080020570 | Naik | Jan 2008 | A1 |
20080044990 | Lee | Feb 2008 | A1 |
20080063810 | Park et al. | Mar 2008 | A1 |
20080075668 | Goldstein | Mar 2008 | A1 |
20080081483 | Wu | Apr 2008 | A1 |
20080085604 | Hoshino et al. | Apr 2008 | A1 |
20080099147 | Myo et al. | May 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080099876 | Seto | May 2008 | A1 |
20080102570 | Fischer et al. | May 2008 | A1 |
20080102640 | Hassan et al. | May 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080121970 | Aritome | May 2008 | A1 |
20080124937 | Xu et al. | May 2008 | A1 |
20080142483 | Hua et al. | Jun 2008 | A1 |
20080153306 | Cho et al. | Jun 2008 | A1 |
20080156771 | Jeon et al. | Jul 2008 | A1 |
20080157225 | Datta et al. | Jul 2008 | A1 |
20080160210 | Yang et al. | Jul 2008 | A1 |
20080171407 | Nakabayashi et al. | Jul 2008 | A1 |
20080173906 | Zhu | Jul 2008 | A1 |
20080182381 | Kiyotoshi | Jul 2008 | A1 |
20080182383 | Lee et al. | Jul 2008 | A1 |
20080202892 | Smith et al. | Aug 2008 | A1 |
20080230519 | Takahashi | Sep 2008 | A1 |
20080233709 | Conti et al. | Sep 2008 | A1 |
20080254635 | Benzel et al. | Oct 2008 | A1 |
20080261404 | Kozuka et al. | Oct 2008 | A1 |
20080268645 | Kao et al. | Oct 2008 | A1 |
20080292798 | Huh et al. | Nov 2008 | A1 |
20080293248 | Park et al. | Nov 2008 | A1 |
20090001480 | Cheng | Jan 2009 | A1 |
20090004849 | Eun | Jan 2009 | A1 |
20090017227 | Fu et al. | Jan 2009 | A1 |
20090045167 | Maruyama | Feb 2009 | A1 |
20090072401 | Arnold et al. | Mar 2009 | A1 |
20090081878 | Dhindsa | Mar 2009 | A1 |
20090084317 | Wu et al. | Apr 2009 | A1 |
20090087960 | Cho et al. | Apr 2009 | A1 |
20090087979 | Raghuram | Apr 2009 | A1 |
20090095621 | Kao et al. | Apr 2009 | A1 |
20090098706 | Kim et al. | Apr 2009 | A1 |
20090104738 | Ring et al. | Apr 2009 | A1 |
20090104782 | Lu et al. | Apr 2009 | A1 |
20090111280 | Kao et al. | Apr 2009 | A1 |
20090120464 | Rasheed et al. | May 2009 | A1 |
20090170221 | Jacques et al. | Jul 2009 | A1 |
20090170331 | Cheng et al. | Jul 2009 | A1 |
20090179300 | Arai | Jul 2009 | A1 |
20090189246 | Wu et al. | Jul 2009 | A1 |
20090194810 | Kiyotoshi et al. | Aug 2009 | A1 |
20090197418 | Sago | Aug 2009 | A1 |
20090202721 | Nogami et al. | Aug 2009 | A1 |
20090255902 | Satoh et al. | Oct 2009 | A1 |
20090258162 | Furuta et al. | Oct 2009 | A1 |
20090269934 | Kao et al. | Oct 2009 | A1 |
20090275146 | Takano et al. | Nov 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090275206 | Katz et al. | Nov 2009 | A1 |
20090277587 | Lubomirsky et al. | Nov 2009 | A1 |
20090277874 | Rui et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky et al. | Nov 2009 | A1 |
20090286400 | Heo et al. | Nov 2009 | A1 |
20090294898 | Feustel et al. | Dec 2009 | A1 |
20100003824 | Kadkhodayan et al. | Jan 2010 | A1 |
20100022030 | Ditizio | Jan 2010 | A1 |
20100048027 | Cheng et al. | Feb 2010 | A1 |
20100055408 | Lee et al. | Mar 2010 | A1 |
20100055917 | Kim | Mar 2010 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100062603 | Ganguly et al. | Mar 2010 | A1 |
20100075503 | Bencher | Mar 2010 | A1 |
20100093151 | Arghavani et al. | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100099263 | Kao et al. | Apr 2010 | A1 |
20100101727 | Ji | Apr 2010 | A1 |
20100105209 | Winniczek et al. | Apr 2010 | A1 |
20100130001 | Noguchi | May 2010 | A1 |
20100144140 | Chandrashekar et al. | Jun 2010 | A1 |
20100164422 | Shu et al. | Jul 2010 | A1 |
20100173499 | Tao et al. | Jul 2010 | A1 |
20100178748 | Subramanian | Jul 2010 | A1 |
20100178755 | Lee et al. | Jul 2010 | A1 |
20100180819 | Hatanaka et al. | Jul 2010 | A1 |
20100187534 | Nishi et al. | Jul 2010 | A1 |
20100187588 | Kim et al. | Jul 2010 | A1 |
20100187694 | Yu et al. | Jul 2010 | A1 |
20100190352 | Jaiswal | Jul 2010 | A1 |
20100197143 | Nishimura | Aug 2010 | A1 |
20100203739 | Becker et al. | Aug 2010 | A1 |
20100207205 | Grebs et al. | Aug 2010 | A1 |
20100240205 | Son | Sep 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20100330814 | Yokota et al. | Dec 2010 | A1 |
20110008950 | Xu | Jan 2011 | A1 |
20110011338 | Chuc et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110039407 | Nishizuka | Feb 2011 | A1 |
20110045676 | Park | Feb 2011 | A1 |
20110053380 | Sapre et al. | Mar 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110081782 | Liang et al. | Apr 2011 | A1 |
20110100489 | Orito | May 2011 | A1 |
20110111596 | Kanakasabapathy | May 2011 | A1 |
20110114601 | Lubomirsky et al. | May 2011 | A1 |
20110115378 | Lubomirsky et al. | May 2011 | A1 |
20110124144 | Schlemm et al. | May 2011 | A1 |
20110143542 | Feurprier et al. | Jun 2011 | A1 |
20110151674 | Tang et al. | Jun 2011 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110151678 | Ashtiani et al. | Jun 2011 | A1 |
20110155181 | Inatomi | Jun 2011 | A1 |
20110159690 | Chandrashekar et al. | Jun 2011 | A1 |
20110165771 | Ring et al. | Jul 2011 | A1 |
20110180847 | Ikeda et al. | Jul 2011 | A1 |
20110195575 | Wang | Aug 2011 | A1 |
20110217851 | Liang et al. | Sep 2011 | A1 |
20110226734 | Sumiya et al. | Sep 2011 | A1 |
20110227028 | Sekar et al. | Sep 2011 | A1 |
20110230052 | Tang et al. | Sep 2011 | A1 |
20110232737 | Ruletzki et al. | Sep 2011 | A1 |
20110266252 | Thadani et al. | Nov 2011 | A1 |
20110266682 | Edelstein et al. | Nov 2011 | A1 |
20110294300 | Zhang et al. | Dec 2011 | A1 |
20110298061 | Siddiqui et al. | Dec 2011 | A1 |
20120003782 | Byun et al. | Jan 2012 | A1 |
20120009796 | Cui et al. | Jan 2012 | A1 |
20120025289 | Liang et al. | Feb 2012 | A1 |
20120031559 | Dhindsa et al. | Feb 2012 | A1 |
20120052683 | Kim et al. | Mar 2012 | A1 |
20120068242 | Shin et al. | Mar 2012 | A1 |
20120103518 | Kakimoto | May 2012 | A1 |
20120104564 | Won et al. | May 2012 | A1 |
20120129354 | Luong | May 2012 | A1 |
20120135576 | Lee et al. | May 2012 | A1 |
20120161405 | Mohn et al. | Jun 2012 | A1 |
20120164839 | Nishimura | Jun 2012 | A1 |
20120180954 | Yang et al. | Jul 2012 | A1 |
20120181599 | Lung | Jul 2012 | A1 |
20120196447 | Yang et al. | Aug 2012 | A1 |
20120211462 | Zhang et al. | Aug 2012 | A1 |
20120223048 | Paranjpe et al. | Sep 2012 | A1 |
20120225557 | Serry et al. | Sep 2012 | A1 |
20120228642 | Aube et al. | Sep 2012 | A1 |
20120238102 | Zhang et al. | Sep 2012 | A1 |
20120238103 | Zhang et al. | Sep 2012 | A1 |
20120247670 | Dobashi et al. | Oct 2012 | A1 |
20120247671 | Sugawara | Oct 2012 | A1 |
20120267346 | Kao et al. | Oct 2012 | A1 |
20120285621 | Tan | Nov 2012 | A1 |
20120292664 | Kanike | Nov 2012 | A1 |
20120309204 | Kang et al. | Dec 2012 | A1 |
20130005103 | Liu et al. | Jan 2013 | A1 |
20130005140 | Jeng et al. | Jan 2013 | A1 |
20130034968 | Zhang et al. | Feb 2013 | A1 |
20130045605 | Wang et al. | Feb 2013 | A1 |
20130052827 | Wang et al. | Feb 2013 | A1 |
20130052833 | Ranjan et al. | Feb 2013 | A1 |
20130059440 | Wang et al. | Mar 2013 | A1 |
20130065398 | Ohsawa et al. | Mar 2013 | A1 |
20130082197 | Yang et al. | Apr 2013 | A1 |
20130089988 | Wang et al. | Apr 2013 | A1 |
20130098868 | Nishimura et al. | Apr 2013 | A1 |
20130119016 | Kagoshima | May 2013 | A1 |
20130119457 | Lue et al. | May 2013 | A1 |
20130119483 | Alptekin et al. | May 2013 | A1 |
20130130507 | Wang et al. | May 2013 | A1 |
20130187220 | Surthi | Jul 2013 | A1 |
20130193108 | Zheng | Aug 2013 | A1 |
20130217243 | Underwood et al. | Aug 2013 | A1 |
20130224960 | Payyapilly et al. | Aug 2013 | A1 |
20130260533 | Sapre et al. | Oct 2013 | A1 |
20130260564 | Sapre et al. | Oct 2013 | A1 |
20130284369 | Kobayashi et al. | Oct 2013 | A1 |
20130284370 | Kobayashi et al. | Oct 2013 | A1 |
20130298942 | Ren et al. | Nov 2013 | A1 |
20130302980 | Chandrashekar et al. | Nov 2013 | A1 |
20130337655 | Lee et al. | Dec 2013 | A1 |
20140004708 | Thedjoisworo | Jan 2014 | A1 |
20140021673 | Chen et al. | Jan 2014 | A1 |
20140057447 | Yang et al. | Feb 2014 | A1 |
20140065842 | Anthis et al. | Mar 2014 | A1 |
20140080308 | Chen et al. | Mar 2014 | A1 |
20140080309 | Park | Mar 2014 | A1 |
20140080310 | Chen et al. | Mar 2014 | A1 |
20140083362 | Lubomirsky et al. | Mar 2014 | A1 |
20140087488 | Nam et al. | Mar 2014 | A1 |
20140097270 | Liang et al. | Apr 2014 | A1 |
20140099794 | Ingle et al. | Apr 2014 | A1 |
20140134847 | Seya | May 2014 | A1 |
20140141621 | Ren et al. | May 2014 | A1 |
20140166617 | Chen | Jun 2014 | A1 |
20140166618 | Tadigadapa et al. | Jun 2014 | A1 |
20140190410 | Kim | Jul 2014 | A1 |
20140199851 | Nemani et al. | Jul 2014 | A1 |
20140225504 | Kaneko et al. | Aug 2014 | A1 |
20140227881 | Lubomirsky et al. | Aug 2014 | A1 |
20140234466 | Gao et al. | Aug 2014 | A1 |
20140248780 | Ingle et al. | Sep 2014 | A1 |
20140256131 | Wang et al. | Sep 2014 | A1 |
20140262031 | Belostotskiy et al. | Sep 2014 | A1 |
20140262038 | Wang et al. | Sep 2014 | A1 |
20140263272 | Duan et al. | Sep 2014 | A1 |
20140264533 | Simsek-Ege | Sep 2014 | A1 |
20140271097 | Wang et al. | Sep 2014 | A1 |
20140273373 | Makala et al. | Sep 2014 | A1 |
20140273406 | Wang et al. | Sep 2014 | A1 |
20140273451 | Wang et al. | Sep 2014 | A1 |
20140273462 | Simsek-Ege et al. | Sep 2014 | A1 |
20140273489 | Wang et al. | Sep 2014 | A1 |
20140273491 | Zhang et al. | Sep 2014 | A1 |
20140273492 | Anthis et al. | Sep 2014 | A1 |
20140273496 | Kao | Sep 2014 | A1 |
20140288528 | Py et al. | Sep 2014 | A1 |
20140302678 | Paterson et al. | Oct 2014 | A1 |
20140302680 | Singh | Oct 2014 | A1 |
20140308758 | Nemani et al. | Oct 2014 | A1 |
20140311581 | Belostotskiy et al. | Oct 2014 | A1 |
20140342532 | Zhu | Nov 2014 | A1 |
20140342569 | Zhu et al. | Nov 2014 | A1 |
20140349477 | Chandrashekar et al. | Nov 2014 | A1 |
20150011096 | Chandrasekharan et al. | Jan 2015 | A1 |
20150014152 | Hoinkis et al. | Jan 2015 | A1 |
20150031211 | Sapre et al. | Jan 2015 | A1 |
20150060265 | Cho et al. | Mar 2015 | A1 |
20150076110 | Wu et al. | Mar 2015 | A1 |
20150079797 | Chen et al. | Mar 2015 | A1 |
20150118858 | Takaba | Apr 2015 | A1 |
20150126035 | Diao et al. | May 2015 | A1 |
20150126039 | Korolik et al. | May 2015 | A1 |
20150126040 | Korolik et al. | May 2015 | A1 |
20150129541 | Wang et al. | May 2015 | A1 |
20150129545 | Ingle et al. | May 2015 | A1 |
20150129546 | Ingle et al. | May 2015 | A1 |
20150132953 | Nowling | May 2015 | A1 |
20150132968 | Ren et al. | May 2015 | A1 |
20150155177 | Zhang et al. | Jun 2015 | A1 |
20150170879 | Nguyen et al. | Jun 2015 | A1 |
20150170920 | Purayath et al. | Jun 2015 | A1 |
20150170924 | Nguyen et al. | Jun 2015 | A1 |
20150170935 | Wang et al. | Jun 2015 | A1 |
20150170943 | Nguyen et al. | Jun 2015 | A1 |
20150171008 | Luo | Jun 2015 | A1 |
20150179464 | Wang et al. | Jun 2015 | A1 |
20150206764 | Wang et al. | Jul 2015 | A1 |
20150214066 | Luere et al. | Jul 2015 | A1 |
20150214067 | Zhang et al. | Jul 2015 | A1 |
20150214092 | Purayath et al. | Jul 2015 | A1 |
20150214337 | Ko et al. | Jul 2015 | A1 |
20150221541 | Nemani et al. | Aug 2015 | A1 |
20150235863 | Chen | Aug 2015 | A1 |
20150235865 | Wang et al. | Aug 2015 | A1 |
20150235867 | Nishizuka | Aug 2015 | A1 |
20150247231 | Nguyen et al. | Sep 2015 | A1 |
20150249018 | Park et al. | Sep 2015 | A1 |
20150270140 | Gupta et al. | Sep 2015 | A1 |
20150275361 | Lubomirsky et al. | Oct 2015 | A1 |
20150275375 | Kim et al. | Oct 2015 | A1 |
20150294980 | Lee et al. | Oct 2015 | A1 |
20150332930 | Wang et al. | Nov 2015 | A1 |
20150357201 | Chen et al. | Dec 2015 | A1 |
20150357205 | Wang et al. | Dec 2015 | A1 |
20150371861 | Li et al. | Dec 2015 | A1 |
20150371866 | Chen et al. | Dec 2015 | A1 |
20160005572 | Liang et al. | Jan 2016 | A1 |
20160005833 | Collins et al. | Jan 2016 | A1 |
20160027654 | Kim et al. | Jan 2016 | A1 |
20160027673 | Wang et al. | Jan 2016 | A1 |
20160035586 | Purayath et al. | Feb 2016 | A1 |
20160035614 | Purayath et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
H08-264510 | Oct 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20140308816 A1 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
61544747 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13439079 | Apr 2012 | US |
Child | 14314812 | US |