The present invention relates generally to semiconductor manufacturing, and more particularly to systems and methods for the deposition of barrier film layers on a conductive feature of the device.
A common goal in the integrated circuit (IC) industry is to place more conductive circuitry into a smaller substrate surface area. Recent improvements in circuitry of ultra-large scale integration (ULSI) on semiconductor substrates indicate that future generations of semiconductor devices will require sub-quarter micron (or less) multilevel metallization. The multilevel interconnects that lie at the heart of this technology require planarization of interconnect features formed in high aspect ratio apertures, including contacts, vias, lines and other features. One example of the use of such multilevel metallization is in “dual damascene” processing, in which two channels of conductive materials are positioned in vertically separated planes perpendicular to each other and interconnected by a vertical “via” at their closest point.
Currently, copper and its alloys have become the metals of choice for ULSI technology because copper has a lower resistivity than aluminum, (1.7 μΩ-cm compared to 3.1 μΩ-cm for aluminum), a higher current carrying capacity, and significantly higher electromigration resistance. These characteristics are important for supporting the higher current densities experienced at high levels of integration and increased device speed. Further, copper has a good thermal conductivity and is available in a highly pure state.
However, copper readily forms copper oxide when exposed to atmospheric conditions or environments outside of processing equipment. Metal oxides can result in an increase the resistance of metal layers, become a source of particle problems, and reduce the reliability of the overall circuit.
One known solution is to deposit a passivating layer or an encapsulation layer such as a dielectric material on the metal layer to prevent metal oxide formation. However, the high dielectric constant of the dielectric material increases the interlayer capacitance in multilayer environments. Furthermore, the electromigration of copper in dielectric materials is unacceptably high.
Cobalt and cobalt alloys, which are conductive (low dielectric constant) and are good barriers to electromigration of copper, have been used for passivating copper. Cobalt may be deposited by electroless deposition techniques on copper. However, copper does not satisfactorily catalyze or initiate deposition of materials from electroless solutions. It is possible to activate the copper surface to cobalt deposition by first depositing a catalytic material, such as palladium, on the copper surface. Cobalt is then selectively deposited by electroless plating onto the catalytic material. However, deposition of the catalytic material may require multiple steps or the use catalytic colloidal compounds. Catalytic colloidal compounds, and colloidal palladium materials in particular, adhere to dielectric materials and result in the undesired, excessive, and non-selective deposition of the catalyst material on the substrate surface. Alternatively, palladium can be deposited selectively on copper surfaces by a displacement mechanism in which palladium replaces a thin layer of the exposed copper on the wafer surface. However, common semiconductor fabrication methods invariably leave copper atom contaminants on the wafer surface, so that palladium is deposited on undesired locations, e.g., dielectric surfaces, as well as desired locations, e.g., conductive metal feature. In the subsequent step of cobalt deposition, cobalt is electrolessly deposited wherever palladium is present, leading to the non-selective deposition of cobalt.
Non-selective deposition of passivation material may lead to surface contamination, unwanted diffusion of conductive materials into dielectric materials, and even device failure from short circuits and other device irregularities.
There is a need for methods and systems for deposition of passivation materials that eliminate or minimize their non-selective deposition.
In one aspect of the methods and systems of the present invention, a sacrificial protective layer is used to prevent stray electroless deposition of a conductive passivating layer on a substrate surface. In one or more embodiments, the protective layer is deposited onto a substrate surface having at least one conductive element, and the protective layer is processed to expose the conductive element of the substrate surface. A conductive passivating layer is then deposited, e.g., electrolessly, on the exposed conductive element(s) of the substrate. The sacrificial protective layer prevents nucleation of the passivating layer on the substrate surface during deposition of the passivating layer. Any undesired deposition of passivation material on areas other than the conductive element(s), e.g., on the protective layer, is eliminated with the removal of the protective layer.
In one or more embodiments, the protective layer is an organic material, such as photoresist, amorphous carbon, a dielectric material, or an etch stop material. In one or more embodiments, the method includes providing one or more intermediate layers disposed between the substrate surface and the protective layer.
One or more embodiments of the present invention contemplate the deposition of an intermediate layer onto the substrate surface prior to deposition of the protective layer.
In another aspect of the invention, a method of processing a semiconductor substrate to encapsulate a conductive element is provided. The method includes the steps of depositing a metallic passivating layer onto a substrate surface comprising a conductive element, masking the passivating layer to protect the underlying conductive element of the substrate surface, etching the unmasked passivating layer to expose the underlying intermediate layers or substrate surface, and removing the mask from the passivating layer after etching.
The methods and systems of the present invention provide a semiconductor device having a conductive element selectively encapsulated by a metallic passivating layer. The passivating layer interface with the conductive element is of low capacitance. The passivating layer also provides an effective barrier to electromigration of copper into adjacent dielectric regions. Significantly, the surface of the substrate is substantially free of stray electrolessly deposited passivation material, which reduces the incidence of surface contamination, device failure from short circuit, and other device irregularities.
Various objects, features, and advantages of the present invention can be more fully appreciated with reference to the following detailed description of the invention when considered in connection with the following drawings, in which like reference numerals identify like elements. The following drawings are for the purpose of illustration only and are not intended to be limiting of the invention, the scope of which is set forth in the claims that follow.
The words and phrases used herein should be given their ordinary and customary meaning in the art by one skilled in the art unless otherwise further defined.
“Substrate surface” as used herein refers to a layer of material that serves as a basis for subsequent processing operations. For example, a substrate surface may contain one or more “conductive elements,” such as aluminum, copper, tungsten, or combinations thereof, and may form part of an interconnect feature such as a plug, via, contact, line, wire, and may also form part of a metal gate electrode. A substrate surface may also contain one or more nonconductive materials, such as silicon, doped silicon, germanium, gallium arsenide, glass, and sapphire. The substrate surface may also contain one or more low k materials such as carbon-doped oxides, porous low k materials such as organic low k and inorganic low k materials and hybrids thereof, or air-gap structures.
The term “about” is used herein to mean approximately, in the region of, roughly or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value with a variance of 10%.
In step 110 in
In step 120 of
In step 130 of
The exposed protective layer is then etched to selectively remove the protective layer and expose the underlying conductive element. The etching technique is selective to the material of the protective layer and can be a dry etch such as HF vapor or reactive ion etch (RIE) with CHF3/O2 or plasma etch as described above. Plasma etching is performed by applying an electrical field to a gas containing a chemically reactive element, thereby generating reactive ions that can remove (etch) materials very rapidly. It also gives the chemicals an electric charge, which directs them toward the wafer vertically. This allows vertical etching profiles, which is desired in selective exposure of the features of the underlying substrate surface.
In the next step 140, it is contemplated by one or more embodiments of the present invention that an initiation layer can be deposited on the substrate surface to initiate the electroless deposition process. The initiation layer can be a noble metal and is typically very thin, e.g., only a few monolayers thick. The initiation layer generally forms selectively on the exposed conductive element by displacement of the noble metal for the conductive metal, or can be deposited as colloidal palladium. Although the displacement process is selective for the conductive metal, there typically is some stray deposition occurring on the nonconductive surfaces, e.g., the protective layer. The substrate is then rinsed to remove the displacement solution.
A conductive passivating layer then is selectively electrolessly deposited on the initiation layer in step 150 of
At least a portion of the protective layer is removed in step 160 of
The protective layer is removed or lifted using materials removal techniques known in the art. Exemplary, non-limiting materials removal techniques include chemical mechanical polishing (CMP), etching and ashing, e.g., plasma ashing. Reactive ion etching using CHF3/O2, wet etch techniques using HF solution, or dry etch techniques using HF vapor, are suitable for removing dielectric materials. Other etching techniques include downstream or remote plasma etching using a hydrogen and water plasma or a hydrogen plasma and in situ etch processes using hydrogen, hydrogen and nitrogen or ammonia. Wet etching and ashing can be used for the removal of carbon-containing layers, such as amorphous carbon and photoresist. The appropriate technique depends upon the composition of the material being removed. The exposed conductive feature also can be rinsed with distilled water to remove residuals from the materials removal process.
The process provides a conductive element having a conductive passivating layer selectively deposited thereon. Elsewhere, the substrate surface is free of unwanted conductive material. In exemplary embodiments, other than the deposited passivating layer, the substrate is returned to its original state prior to deposition of the passivating layer and is ready for further processing.
The electroless deposition process is described in greater detail below. Additional information regarding electroless deposition technology, generally, is found in co-pending U.S. application Ser. No. 10/117,712, entitled “Electroless Deposition Methods” and co-pending U.S. application Ser. No. 10/284,855, entitled “Post Rinse To Improve Selective Deposition Of Electroless Cobalt On Copper For ULSI Application,” both of which are commonly owned and are incorporated by reference herein.
Electroless deposition is generally defined herein as deposition of a conductive material generally provided as charged ions in a bath over an active surface to deposit the conductive material by chemical reduction in the absence of an external electric current. Electroless deposition typically involves exposing a substrate to a solution by immersing the substrate in a bath or by spraying the solution over the substrate.
In one or more embodiments, an initiation layer may be formed on the exposed conductive elements by deposition of a noble metal in step 140. Embodiments of the present invention also contemplate the use of noble metals, such as gold, silver, iridium, rhenium, rhodium, rhenium, ruthenium, palladium, platinum, osmium, and combinations thereof. In one or more embodiments, the noble metal is selected from the group of palladium, platinum, or combinations thereof. The noble metal is deposited from an activation solution containing at least a noble metal salt and an inorganic acid. Examples of noble metal salts include palladium chloride (PdCl2), palladium sulfate (PdSO4), palladium ammonium chloride, and combinations thereof. Examples of inorganic acids include hydrochloric acid (HCl), sulfuric acid (H2SO4), hydrofluoric acid (HF) and combinations thereof. Alternatively, inorganic acids, such as carboxylic acids including acetic acid (CH3COOH), may be used in the activation solution for the initiation layer.
In one or more embodiments of the present invention, displacement of the exposed conductive element, e.g., copper, by a noble metal, e.g., palladium, is carried out as follows. In a displacement plating process, wafers with an exposed copper surface are immersed in a bath containing dissolved ions of a metal more noble than copper. With simple immersion, the copper dissolves, i.e., is oxidized, and a film of the more noble metal deposits, i.e., is reduced, to thereby displace atoms of copper with the noble metal. Displacement is selective to copper and the coating thickness is self-limiting. Depending on the porosity of the copper, the noble metal may be up to a few monolayers thick.
The noble metal salt may be in the deposition solution at a concentration between about 20 parts per million (ppm) and about 20 g/liter. The concentration of the metal salt may also be described as a volume percent with 1 vol % corresponding to about 40 ppm. The inorganic acid is used to provide an acidic deposition composition, for example, at a pH of about 7 or less. A pH level between about 1 and about 3 has been observed to be effective in displacement deposition of the noble metals from the activation solution. An acidic solution has also been observed to be effective in removing or reducing oxides, such as metal oxides including copper oxides, from the metal or dielectric surface of the substrate during the activation deposition process.
The activation solution for the initiation layer is generally applied to the substrate surface for between about 1 second and about 300 seconds at a composition temperature between about 15° C. and about 80° C. The activation solution is generally provided at a flow rate between about 50 ml/min and about 2000 ml/min. In one aspect a total application of about 120 ml and about 200 ml of activation solution was provided to deposit the activation layer. The activation solution generally provides for the deposition of a noble metal to a thickness of about 50 Å or less, such as about 10 Å or less. The initiation layer may be continuous or discontinuous.
An example of an activation solution composition for depositing the initiation material includes about 3 vol % (120 ppm) of palladium chloride and sufficient hydrochloric acid to provide a pH of about 1.5 for the composition, which is applied to the substrate surface for about 30 seconds at a flow rate of about 750 ml/min at a composition temperature of about 25° C.
In other embodiments, the initiation layer is formed by exposing the exposed conductive materials to a borane-containing composition in step 140. The borane-containing composition forms a metal boride layer selectively on the exposed conductive metals, which provides catalytic sites for subsequent electroless deposition processes.
The borane-containing composition includes a borane reducing agent. Suitable borane-containing reducing agents include alkali metal borohydrides, alkyl amine boranes, and combinations thereof. Examples of suitable borane-containing reducing agents include sodium borohydride, dimethylamine borane (DMAB), trimethylamine borane, and combinations thereof. The borane-containing reducing agent comprises between about 0.25 grams per liter (g/L) and about 6 g/L of the boron-containing composition. The borane-containing composition may additionally include pH-adjusting agents to provide a pH of between about 8 and about 13. Suitable pH adjusting agents include potassium hydroxide (KOH), sodium hydroxide (NaOH), ammonium hydroxide, ammonium hydroxide derivatives, such as tetramethyl ammonium hydroxide, and combinations thereof.
The conductive element is generally exposed to the borane-containing composition between about 30 seconds and about 180 seconds at a composition temperature between about 15° C. and about 80° C. The borane-containing composition may be delivered to the substrate at a flow rate between about 50 ml/min and about 2000 ml/min. In one aspect a total application of about 120 ml and about 200 ml of the borane-containing composition was provided to form the initiation layer of a metal boride compound.
An example of a borane-containing composition for forming the layer includes about 4 g/L of dimethylamine borane (DMAB) and sufficient sodium hydroxide to provide a pH of about 9 for the composition, which is generally applied to the substrate surface for about 30 seconds at a flow rate of about 750 ml/min at a composition temperature of about 25° C.
A rinsing agent, typically deionized water, is then applied to the substrate surface to remove any solution used in forming the initiation layer.
A metallic passivating layer is deposited by an electroless process on the initiation layer in step 150. In one or more embodiments of the present invention, the metal passivating layer comprises cobalt or a cobalt alloy. Cobalt alloys include cobalt-tungsten alloy, cobalt-phosphorus alloy, cobalt-tin alloys, cobalt-boron alloys, including ternary alloys, such as cobalt-tungsten-phosphorus and cobalt-tungsten-boron. One or more embodiments of the present invention also contemplate the use of other materials, including nickel, tin, titanium, tantalum, tungsten, molybdenum, platinum, iron, niobium, palladium, platinum, and combinations thereof, and other alloys including nickel cobalt alloys, doped cobalt and doped nickel alloys, or nickel iron alloys, to form the metal layer as described herein.
In one or more embodiments of the present invention, the metallic passivation material is deposited from an electroless solution containing at least a metal salt and a reducing agent. The electroless solution may further include additives to improve deposition of the metal. Additives may include surfactants, complexing agents, pH adjusting agents, or combinations thereof.
Suitable metal salts include chlorides, sulfates, sulfamates, or combinations thereof. An example of a metal salt is cobalt chloride. The metal salt may be in the electroless solution at a concentration between about 0.5 g/L and about 30 g/L.
Cobalt alloys, such as cobalt-tungsten may be deposited by adding tungstic acid or tungstate salts including sodium tungstate, and ammonium tungstate, and combinations thereof for tungsten deposition. Phosphorus for the cobalt-tungsten-phosphorus deposition may be formed by phosphorus-containing reducing agents, such as hypophosphite. Cobalt alloys, such as cobalt-tin may be deposited by adding stannate salts including stannic sulfate, stannic chloride, and combinations thereof. The additional metals salts, for example, for tungsten and tin, may be in the electroless solution at a concentration between about 0.5 g/L and about 30 g/L.
Suitable reducing agents include sodium hypophosphite, hydrazine, formaldehyde, and combinations thereof. The reducing agents have a concentration between about 1 g/L and about 30 g/L of the electroless solution. For example, hypophosphite may be added to the electroless solution at a concentration between about 15 g/L and about 30 g/L.
The reducing agents may also include borane-containing reducing agents, such as sodium borohydride, dimethylamine borane (DMAB), trimethylamine borane, and combinations thereof. The borane-containing reducing agent comprises between about 0.25 grams per liter (g/L) and about 6 g/L of the boron-containing composition. The presence of borane-containing reducing agents allow for the formation of cobalt-boron alloys such as cobalt-tungsten-boron and cobalt-tin-boron among others.
The metal electroless solutions described herein are generally applied to the substrate surface for between about 30 seconds and about 180 seconds at a composition temperature between about 60° C. and about 90° C. The electroless solution is generally provided at a flow rate between about 50 ml/min and about 2000 ml/min. In one embodiment of the present invention, a total application of between about 120 ml and about 200 ml of electroless solution was provided to deposit the electroless layer. The electroless solution generally provides for the deposition of a metal layer to a thickness of about 500 Å or less, such as between about 300 Å and about 400 Å.
An example of a cobalt electroless composition for forming a cobalt layer includes about 20 g/L of cobalt sulfate, about 50 g/L of sodium citrate, about 20 g/L of sodium hypophosphite, with sufficient potassium hydroxide to provide a pH of between about 9 and about 11 for the composition, which is applied to the substrate surface for about 120 seconds at a flow rate of about 750 ml/min at a composition temperature of about 80° C. A cobalt-tungsten layer is deposited by the addition of about 10 g/L of sodium tungstate.
An example of a cobalt electroless composition for forming a cobalt layer with a borane-containing reducing agent includes about 20 g/L of cobalt sulfate, about 50 g/L of sodium citrate, about 4 g/L of dimetylamineborane, with sufficient potassium hydroxide to provide a pH of between about 10 and about 12 for the composition, which is applied to the substrate surface for about 120 seconds at a flow rate of about 750 ml/min at a composition temperature of about 80° C. A cobalt-tungsten-boron layer is deposited by the addition of about 10 g/L of sodium tungstate.
Borane-containing reducing agents in the metal electroless deposition process allow electroless deposition on exposed conductive material without the need for an initiation layer. When an initiation layer is first deposited on the substrate surface prior to the metal electroless deposition, the process is typically performed in two processing chambers. When the metal electroless deposition process occurs without the initiation layer, such as with the use of borane-containing reducing agents in the metal electroless deposition, the electroless process can be performed in one chamber.
Additionally, the method of depositing the material from an electroless solution, whether the initiation layer or metal layer, may include applying a bias to a conductive portion of the substrate structure if available (i.e. a seed layer), such as a DC bias, during the electroless deposition process.
The initiation layer and/or metal passivating layer may be annealed (i.e., heated) at a temperature between about 100° C. to about 400° C. The anneal may be performed in a vacuum or in a gas atmosphere, such as a gas atmosphere of one or more noble gases (such as Argon, Helium), nitrogen, hydrogen, and mixtures thereof.
Suitable apparatus for performing electroless deposition processes include an Electra Cu™ ECP processing platform or Link™ processing platform that are commercially available from Applied Materials, Inc., located in Santa Clara, Calif. The Electra Cu™ ECP platform, for example, includes an integrated processing chamber capable of depositing a conductive material by an electroless process, such as an electroless deposition processing (EDP) cell, which is commercially available from Applied Materials, Inc., located in Santa Clara, Calif. The Electra Cu™ ECP platform generally includes one or more electroless deposition processing (EDP) cells as well as one or more pre-deposition or post-deposition cell, such as spin-rinse-dry (SRD) cells, etch chambers, or annealing chambers.
Suitable apparatus for deposition of dielectric films are the Producer™ CVD and PECVD systems, available from Applied Materials, Inc., located in Santa Clara, Calif. The Producer™ systems use a multichamber architecture in a design that transfers wafers in pairs to process modules; each module has two identical chambers that use common vacuum and gas delivery subsystems. In addition to handling the full range of conventional dielectric CVD and PECVD applications, the Producer™ system deposits DARC™, damascene nitride and low k films such as TEOS FSG, Black Diamond™ and BLOk™ (Barrier Low k).
Etching processes, including dry etch and plasma etch, can be carried out on an eMax™ etching system available from Applied Materials, Inc., located in Santa Clara, Calif. The system includes a low pressure/high gas flow regime, controllable magnetic field, and high rf power capability. The eMax™ system integrates etch, photoresist strip and barrier removal steps on a single system. Etch rates of over 6000 angstroms/min. is possible. Wet etch or wet cleaning processes can be accomplished on an Oasis Clean™ system, also available from Applied Materials, Inc., CA. The apparatus uses both ultrasonic cleaning and wet chemical cleaning processes to clean substrate surfaces.
A suitable integrated controller and polishing apparatus is the Mirra™ with iAPC or Mirra Mesa™ with iAPC, also available from Applied Materials, Inc., CA.
The metallic conductive element is formed in the substrate using, for example, selective electroless metallization, in which the conductive metal is catalytically deposited from a metal ion solution without the application of an electrical current. Because the conductive metals, and copper in particular, tend to diffuse into adjacent dielectric materials such as SiO2, it is common practice to line the via opening 220 with a diffusion barrier layer (not shown) such as titanium nitride, titanium tungsten, tantalum, tantalum nitride and tungsten nitride. In addition, the diffusion barrier layer is activated, for example by the deposition of a seed layer of palladium or displacement reaction with copper, to promote the autocatalytic deposition of copper. Other methods of metallic deposition include physical vapor deposition methods such as sputter deposition from the appropriate target. CMP techniques are used to polish away unwanted conductive metal and to prepare the substrate for deposition of the passivating layer.
The surface can be further treated to clean the substrate surface of contaminants using techniques known in the art. Wet etching techniques using HF solution and dry etch techniques using HF vapor are suitable for removing dielectric materials, such as silicon oxide, from the substrate surface. Other etching techniques include downstream or remote plasma etching using a hydrogen and water plasma or a hydrogen plasma and in situ etch processes using hydrogen, hydrogen and nitrogen, or ammonia to remove metal oxides from the substrate surface. CMP is suitable for removal of various materials, including metals and dielectric materials. Other exemplary surface treatments include cleaning with an acidic solution to remove metal oxides and other contaminants from the substrate surface. The exposed conductive feature can also be rinsed with distilled water to remove residual contaminants from the surface treatment process.
After substrate surface preparation, a sacrificial protective layer 230 is deposited on the substrate surface, as is illustrated in
In exemplary embodiments, the protective layer is a photoresist, which can be applied to the substrate as a spin-on layer at a thickness of about 1000 Å to about 5000 Å. Subsequently, the photoresist is exposed and developed to define one or more openings 240 that provides access to the underlying conductive element(s) 220, as is shown in
The above procedure is attractive because it does not require the use of a high k dielectric material adjacent to the conductive element. Low k materials, e.g., polyarylethers, fluorinated polyarylethers, polyimides and fluorinated polyimides, benzocyclobutenes, carbon-doped oxides, organic and inorganic porous low k materials and hybrids thereof, and the like, can be directly applied to the substrate surface after completion of the processing steps set forth in
In another exemplary embodiment, the protective layer 230 is a dielectric barrier layer such as an etch stop layer. Exemplary etch stop materials include SiN or SiOC available from Applied Materials, Inc., located in Santa Clara, Calif., under the tradename Blok™. The etch stop layer (or other dielectric) is deposited as a thin layer, e.g., about 50 Å, over the substrate surface by, for example, PECVD or spin-on polymer deposition. Alternatively, a thick layer of dielectric material is deposited and is etched or polished back to a very thin protective layer, for example about 50 Å. The thinness of the protective layer is chosen to reduce the amount of high k material deposited on the metallic conductive element and thereby reduce interlayer capacitance. The conductive element is exposed by removing, i.e., etching, the dielectric layer in those areas not protected by a photomask (not shown) to define one or more openings 240 that exposes the underlying conductive element 220, as is shown in
In another embodiment of the present invention, the protective layer 230 is an amorphous carbon layer. In one or more embodiments, the amorphous carbon layer is deposited onto the substrate surface, for example, by CVD or spin-on polymer deposition to a thickness of about 100 Å to about 5000 Å. The conductive element is exposed by masking the amorphous carbon film and developing the photoresist to expose the underlying amorphous carbon film. The carbon film is then removed, e.g., by etching, in those areas not protected by the photomask (not shown) to define one or more openings 240 that exposes the underlying conductive element(s) 220, as is shown in
In another exemplary embodiment of the present invention, intermediate layers may be deposited between the substrate surface and the protective layer.
A sacrificial protective layer 330 is deposited on the substrate surface, as is illustrated in
As is shown in
A thin layer 350 of passivation material is deposited on conductive element 320 by electroless deposition as described above and as shown in
Referring to
One or more embodiments of the present invention also contemplate methods of encapsulating a conductive element using a conductive passivating layer without the need for first depositing a sacrificial protective layer. According to one or more embodiments of the present invention, a conductive element is encapsulated without stray electoless deposition of passivating metal elsewhere on the substrate surface by depositing a layer of the passivation material over the entire substrate surface or a portion thereof containing the conductive element(s), masking the passivation layer to protect the underlying conductive element(s) and removing the unmasked passivation material from the substrate surface to reveal the underlying substrate or other underlying intermediate layers. One or more embodiments of the present invention contemplate the deposition of an intermediate layer onto the substrate surface prior to deposition of the metallic passivating layer. The mask is subsequently removed to obtain the selectively encapsulated metal device, in which the surrounding substrate surface areas are substantially free of contaminants arising from the deposition of the passivating layer.
In step 510 in
A conductive passivating layer then is deposited on the substrate surface in step 530 of
In step 540 of
In step 550 of
The protective mask is then removed or lifted to expose the encapsulating passivating layer, as is shown in step 560. Materials removal techniques known in the art can be used. Wet etching and ashing can be used for the removal of the photoresist. The device also can be rinsed with distilled water to remove residuals from the materials removal process.
A thin layer 630 of passivation material is deposited as a continuous layer on substrate surface 610 as shown in
A photoresist 640 is deposited and developed as shown in
In a subsequent step shown in
Although various embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that incorporate these teachings, including embodiments with numerical values and ranges differing from those set forth herein. It is appreciated that the figures and discussion herein illustrate only a portion of an exemplary semiconductor device. Thus, the present invention is not limited to only those structures described herein.
This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional application Ser. No. 60/475,351, filed Jun. 3, 2003, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3205485 | Noltingk | Sep 1965 | A |
3229198 | Libby | Jan 1966 | A |
3767900 | Chao et al. | Oct 1973 | A |
3839067 | Sosnowski et al. | Oct 1974 | A |
3873361 | Franco et al. | Mar 1975 | A |
3920965 | Sohrwardy | Nov 1975 | A |
3982943 | Feng et al. | Sep 1976 | A |
4000458 | Miller et al. | Dec 1976 | A |
4004044 | Franco et al. | Jan 1977 | A |
4090006 | Havas et al. | May 1978 | A |
4207520 | Flora et al. | Jun 1980 | A |
4209744 | Gerasimov et al. | Jun 1980 | A |
4302721 | Urbanek et al. | Nov 1981 | A |
4339305 | Jones | Jul 1982 | A |
4368510 | Anderson | Jan 1983 | A |
4609870 | Lale et al. | Sep 1986 | A |
4616308 | Morshedi et al. | Oct 1986 | A |
4639380 | Amelio et al. | Jan 1987 | A |
4663703 | Axelby et al. | May 1987 | A |
4698766 | Entwistle et al. | Oct 1987 | A |
4750141 | Judell et al. | Jun 1988 | A |
4755753 | Chern | Jul 1988 | A |
4757259 | Charpentier | Jul 1988 | A |
4796194 | Atherton | Jan 1989 | A |
4901218 | Cornwell | Feb 1990 | A |
4938600 | Into | Jul 1990 | A |
4954218 | Okumura et al. | Sep 1990 | A |
4957605 | Hurwitt et al. | Sep 1990 | A |
4967381 | Lane et al. | Oct 1990 | A |
5089970 | Lee et al. | Feb 1992 | A |
5108570 | Wang | Apr 1992 | A |
5208765 | Turnbull | May 1993 | A |
5220517 | Sierk et al. | Jun 1993 | A |
5226118 | Baker et al. | Jul 1993 | A |
5231585 | Kobayashi et al. | Jul 1993 | A |
5236868 | Nulman | Aug 1993 | A |
5240552 | Yu et al. | Aug 1993 | A |
5260868 | Gupta et al. | Nov 1993 | A |
5262354 | Cote et al. | Nov 1993 | A |
5270222 | Moslehi | Dec 1993 | A |
5283141 | Yoon et al. | Feb 1994 | A |
5295242 | Mashruwala et al. | Mar 1994 | A |
5309221 | Fischer et al. | May 1994 | A |
5329463 | Sierk et al. | Jul 1994 | A |
5338630 | Yoon et al. | Aug 1994 | A |
5347446 | Iino et al. | Sep 1994 | A |
5367624 | Cooper | Nov 1994 | A |
5369544 | Mastrangelo | Nov 1994 | A |
5375064 | Bollinger | Dec 1994 | A |
5398336 | Tantry et al. | Mar 1995 | A |
5402367 | Sullivan et al. | Mar 1995 | A |
5408405 | Mozumder et al. | Apr 1995 | A |
5410473 | Kaneko et al. | Apr 1995 | A |
5420796 | Weling et al. | May 1995 | A |
5427878 | Corliss | Jun 1995 | A |
5444837 | Bomans et al. | Aug 1995 | A |
5469361 | Moyne | Nov 1995 | A |
5485082 | Wisspeintner et al. | Jan 1996 | A |
5490097 | Swenson et al. | Feb 1996 | A |
5495417 | Fuduka et al. | Feb 1996 | A |
5497316 | Sierk et al. | Mar 1996 | A |
5497381 | O'Donoghue et al. | Mar 1996 | A |
5503707 | Maung et al. | Apr 1996 | A |
5508947 | Sierk et al. | Apr 1996 | A |
5511005 | Abbe et al. | Apr 1996 | A |
5519605 | Cawlfield | May 1996 | A |
5525808 | Irie et al. | Jun 1996 | A |
5526293 | Mozumder et al. | Jun 1996 | A |
5534289 | Bilder et al. | Jul 1996 | A |
5541510 | Danielson | Jul 1996 | A |
5546312 | Mozumder et al. | Aug 1996 | A |
5553195 | Meijer | Sep 1996 | A |
5586039 | Hirsch et al. | Dec 1996 | A |
5599423 | Parker et al. | Feb 1997 | A |
5602492 | Cresswell et al. | Feb 1997 | A |
5603707 | Trombetta et al. | Feb 1997 | A |
5617023 | Skalski | Apr 1997 | A |
5627083 | Tounai | May 1997 | A |
5629216 | Wijaranakula et al. | May 1997 | A |
5642296 | Saxena | Jun 1997 | A |
5646870 | Krivokapic et al. | Jul 1997 | A |
5649169 | Berezin et al. | Jul 1997 | A |
5654903 | Reitman et al. | Aug 1997 | A |
5655951 | Meikle et al. | Aug 1997 | A |
5656128 | Hashimoto et al. | Aug 1997 | A |
5657254 | Sierk et al. | Aug 1997 | A |
5661669 | Mozumder et al. | Aug 1997 | A |
5663797 | Sandhu | Sep 1997 | A |
5664987 | Renteln | Sep 1997 | A |
5665199 | Sahota et al. | Sep 1997 | A |
5665214 | Iturralde | Sep 1997 | A |
5666297 | Britt et al. | Sep 1997 | A |
5667424 | Pan | Sep 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5686325 | Moriuchi et al. | Nov 1997 | A |
5694325 | Fukuda et al. | Dec 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5698989 | Nulman | Dec 1997 | A |
5719495 | Moslehi | Feb 1998 | A |
5719796 | Chen | Feb 1998 | A |
5735055 | Hochbein et al. | Apr 1998 | A |
5740429 | Wang et al. | Apr 1998 | A |
5751582 | Saxena et al. | May 1998 | A |
5754297 | Nulman | May 1998 | A |
5761064 | La et al. | Jun 1998 | A |
5761065 | Kittler et al. | Jun 1998 | A |
5764543 | Kennedy | Jun 1998 | A |
5777901 | Berezin et al. | Jul 1998 | A |
5787021 | Samaha | Jul 1998 | A |
5787269 | Hyodo | Jul 1998 | A |
5808303 | Schlagheck et al. | Sep 1998 | A |
5812407 | Sato et al. | Sep 1998 | A |
5823854 | Chen | Oct 1998 | A |
5824599 | Schacham-Diamand et al. | Oct 1998 | A |
5825356 | Habib et al. | Oct 1998 | A |
5825913 | Rostami et al. | Oct 1998 | A |
5828778 | Hagi et al. | Oct 1998 | A |
5831851 | Eastburn et al. | Nov 1998 | A |
5832224 | Fehskens et al. | Nov 1998 | A |
5838595 | Sullivan et al. | Nov 1998 | A |
5838951 | Song | Nov 1998 | A |
5844554 | Geller et al. | Dec 1998 | A |
5857258 | Penzes et al. | Jan 1999 | A |
5859777 | Yokoyama et al. | Jan 1999 | A |
5859964 | Wang et al. | Jan 1999 | A |
5859975 | Brewer et al. | Jan 1999 | A |
5862054 | Li | Jan 1999 | A |
5863807 | Jang et al. | Jan 1999 | A |
5867389 | Hamada et al. | Feb 1999 | A |
5870306 | Harada | Feb 1999 | A |
5871805 | Lemelson | Feb 1999 | A |
5883437 | Maruyama et al. | Mar 1999 | A |
5889991 | Consolatti et al. | Mar 1999 | A |
5901313 | Wolf et al. | May 1999 | A |
5903455 | Sharpe, Jr. et al. | May 1999 | A |
5910011 | Cruse | Jun 1999 | A |
5910846 | Sandhu | Jun 1999 | A |
5912678 | Saxena et al. | Jun 1999 | A |
5916016 | Bothra | Jun 1999 | A |
5923553 | Yi | Jul 1999 | A |
5926690 | Toprac et al. | Jul 1999 | A |
5930138 | Lin et al. | Jul 1999 | A |
5940300 | Ozaki | Aug 1999 | A |
5943237 | Van Boxem | Aug 1999 | A |
5943550 | Fulford, Jr. et al. | Aug 1999 | A |
5960185 | Nguyen | Sep 1999 | A |
5960214 | Sharpe, Jr. et al. | Sep 1999 | A |
5961369 | Bartels et al. | Oct 1999 | A |
5963881 | Kahn et al. | Oct 1999 | A |
5975994 | Sandhu et al. | Nov 1999 | A |
5978751 | Pence et al. | Nov 1999 | A |
5982920 | Tobin, Jr. et al. | Nov 1999 | A |
6002989 | Shiba et al. | Dec 1999 | A |
6012048 | Gustin et al. | Jan 2000 | A |
6017771 | Yang et al. | Jan 2000 | A |
6036349 | Gombar | Mar 2000 | A |
6037664 | Zhao et al. | Mar 2000 | A |
6041263 | Boston et al. | Mar 2000 | A |
6041270 | Steffan et al. | Mar 2000 | A |
6054379 | Yau et al. | Apr 2000 | A |
6059636 | Inaba et al. | May 2000 | A |
6064759 | Buckley et al. | May 2000 | A |
6072313 | Li et al. | Jun 2000 | A |
6074443 | Venkatesh et al. | Jun 2000 | A |
6077412 | Ting et al. | Jun 2000 | A |
6078845 | Friedman | Jun 2000 | A |
6094688 | Mellen-Garnett et al. | Jul 2000 | A |
6096649 | Jang | Aug 2000 | A |
6097887 | Hardikar et al. | Aug 2000 | A |
6100195 | Chan et al. | Aug 2000 | A |
6108092 | Sandhu | Aug 2000 | A |
6111634 | Pecen et al. | Aug 2000 | A |
6112130 | Fukuda et al. | Aug 2000 | A |
6113462 | Yang | Sep 2000 | A |
6114238 | Liao | Sep 2000 | A |
6127263 | Parikh | Oct 2000 | A |
6128016 | Coelho et al. | Oct 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6141660 | Bach et al. | Oct 2000 | A |
6143646 | Wetzel | Nov 2000 | A |
6148099 | Lee et al. | Nov 2000 | A |
6148239 | Funk et al. | Nov 2000 | A |
6148246 | Kawazome | Nov 2000 | A |
6150270 | Matsuda et al. | Nov 2000 | A |
6157864 | Schwenke et al. | Dec 2000 | A |
6159075 | Zhang | Dec 2000 | A |
6159644 | Satoh et al. | Dec 2000 | A |
6161054 | Rosenthal et al. | Dec 2000 | A |
6169931 | Runnels | Jan 2001 | B1 |
6172756 | Chalmers et al. | Jan 2001 | B1 |
6173240 | Sepulveda et al. | Jan 2001 | B1 |
6175777 | Kim | Jan 2001 | B1 |
6178390 | Jun | Jan 2001 | B1 |
6181013 | Liu et al. | Jan 2001 | B1 |
6183345 | Kamono et al. | Feb 2001 | B1 |
6185324 | Ishihara et al. | Feb 2001 | B1 |
6191864 | Sandhu | Feb 2001 | B1 |
6192291 | Kwon | Feb 2001 | B1 |
6197604 | Miller et al. | Mar 2001 | B1 |
6204165 | Ghoshal | Mar 2001 | B1 |
6210983 | Atchison et al. | Apr 2001 | B1 |
6211094 | Jun et al. | Apr 2001 | B1 |
6212961 | Dvir | Apr 2001 | B1 |
6214734 | Bothra et al. | Apr 2001 | B1 |
6217412 | Campbell et al. | Apr 2001 | B1 |
6219711 | Chari | Apr 2001 | B1 |
6222936 | Phan et al. | Apr 2001 | B1 |
6226563 | Lim | May 2001 | B1 |
6226792 | Goiffon et al. | May 2001 | B1 |
6228280 | Li et al. | May 2001 | B1 |
6230069 | Campbell et al. | May 2001 | B1 |
6236903 | Kim et al. | May 2001 | B1 |
6237050 | Kim et al. | May 2001 | B1 |
6240330 | Kurtzberg et al. | May 2001 | B1 |
6240331 | Yun | May 2001 | B1 |
6245581 | Bonser et al. | Jun 2001 | B1 |
6246972 | Klimasauskas | Jun 2001 | B1 |
6248602 | Bode et al. | Jun 2001 | B1 |
6249712 | Boiquaye | Jun 2001 | B1 |
6252412 | Talbot et al. | Jun 2001 | B1 |
6253366 | Mutschler, III | Jun 2001 | B1 |
6259160 | Lopatin et al. | Jul 2001 | B1 |
6263255 | Tan et al. | Jul 2001 | B1 |
6268270 | Scheid et al. | Jul 2001 | B1 |
6271670 | Caffey | Aug 2001 | B1 |
6276989 | Campbell et al. | Aug 2001 | B1 |
6277014 | Chen et al. | Aug 2001 | B1 |
6278899 | Piche et al. | Aug 2001 | B1 |
6280289 | Wiswesser et al. | Aug 2001 | B1 |
6281127 | Shue | Aug 2001 | B1 |
6284622 | Campbell et al. | Sep 2001 | B1 |
6287879 | Gonzales et al. | Sep 2001 | B1 |
6290572 | Hofmann | Sep 2001 | B1 |
6291367 | Kelkar | Sep 2001 | B1 |
6292708 | Allen et al. | Sep 2001 | B1 |
6298274 | Inoue | Oct 2001 | B1 |
6298470 | Breiner et al. | Oct 2001 | B1 |
6303395 | Nulman | Oct 2001 | B1 |
6303500 | Jiang et al. | Oct 2001 | B1 |
6304999 | Toprac et al. | Oct 2001 | B1 |
6307628 | Lu et al. | Oct 2001 | B1 |
6314379 | Hu et al. | Nov 2001 | B1 |
6317643 | Dmochowski | Nov 2001 | B1 |
6320655 | Matsushita et al. | Nov 2001 | B1 |
6324481 | Atchison et al. | Nov 2001 | B1 |
6334807 | Lebel et al. | Jan 2002 | B1 |
6336841 | Chang | Jan 2002 | B1 |
6339727 | Ladd | Jan 2002 | B1 |
6340602 | Johnson et al. | Jan 2002 | B1 |
6345288 | Reed et al. | Feb 2002 | B1 |
6345315 | Mishra | Feb 2002 | B1 |
6346426 | Toprac et al. | Feb 2002 | B1 |
6355559 | Havemann et al. | Mar 2002 | B1 |
6360133 | Campbell et al. | Mar 2002 | B1 |
6360184 | Jacquez | Mar 2002 | B1 |
6363294 | Coronel et al. | Mar 2002 | B1 |
6366934 | Cheng et al. | Apr 2002 | B1 |
6368879 | Toprac | Apr 2002 | B1 |
6368883 | Bode et al. | Apr 2002 | B1 |
6368884 | Goodwin et al. | Apr 2002 | B1 |
6379980 | Toprac | Apr 2002 | B1 |
6381564 | Davis et al. | Apr 2002 | B1 |
6388253 | Su | May 2002 | B1 |
6389491 | Jacobson et al. | May 2002 | B1 |
6391780 | Shih et al. | May 2002 | B1 |
6395152 | Wang | May 2002 | B1 |
6397114 | Eryurek et al. | May 2002 | B1 |
6400162 | Mallory et al. | Jun 2002 | B1 |
6405096 | Toprac et al. | Jun 2002 | B1 |
6405144 | Toprac et al. | Jun 2002 | B1 |
6417014 | Lam et al. | Jul 2002 | B1 |
6426289 | Farrar | Jul 2002 | B1 |
6427093 | Toprac | Jul 2002 | B1 |
6432728 | Tai et al. | Aug 2002 | B1 |
6435952 | Boyd et al. | Aug 2002 | B1 |
6438438 | Takagi et al. | Aug 2002 | B1 |
6440295 | Wang | Aug 2002 | B1 |
6442496 | Pasadyn et al. | Aug 2002 | B1 |
6449524 | Miller et al. | Sep 2002 | B1 |
6455415 | Lopatin et al. | Sep 2002 | B1 |
6455937 | Cunningham | Sep 2002 | B1 |
6465263 | Coss, Jr. et al. | Oct 2002 | B1 |
6470230 | Toprac et al. | Oct 2002 | B1 |
6479902 | Lopatin et al. | Nov 2002 | B1 |
6479990 | Mednikov et al. | Nov 2002 | B2 |
6482660 | Conchieri et al. | Nov 2002 | B2 |
6484064 | Campbell | Nov 2002 | B1 |
6486492 | Su | Nov 2002 | B1 |
6492281 | Song et al. | Dec 2002 | B1 |
6495452 | Shih | Dec 2002 | B1 |
6503839 | Gonzales et al. | Jan 2003 | B2 |
6515368 | Lopatin et al. | Feb 2003 | B1 |
6517413 | Hu et al. | Feb 2003 | B1 |
6517414 | Tobin et al. | Feb 2003 | B1 |
6528409 | Lopatin et al. | Mar 2003 | B1 |
6529789 | Campbell et al. | Mar 2003 | B1 |
6532555 | Miller et al. | Mar 2003 | B1 |
6535783 | Miller et al. | Mar 2003 | B1 |
6537912 | Agarwal | Mar 2003 | B1 |
6540591 | Pasadyn et al. | Apr 2003 | B1 |
6541401 | Herner et al. | Apr 2003 | B1 |
6546508 | Sonderman et al. | Apr 2003 | B1 |
6556881 | Miller | Apr 2003 | B1 |
6560504 | Goodwin et al. | May 2003 | B1 |
6563308 | Nagano et al. | May 2003 | B2 |
6567717 | Krivokapic et al. | May 2003 | B2 |
6580958 | Takano | Jun 2003 | B1 |
6587744 | Stoddard et al. | Jul 2003 | B1 |
6590179 | Tanaka et al. | Jul 2003 | B2 |
6604012 | Cho et al. | Aug 2003 | B1 |
6605549 | Leu et al. | Aug 2003 | B2 |
6607976 | Chen et al. | Aug 2003 | B2 |
6609946 | Tran | Aug 2003 | B1 |
6616513 | Osterheld | Sep 2003 | B1 |
6618692 | Takahashi et al. | Sep 2003 | B2 |
6624075 | Lopatin et al. | Sep 2003 | B1 |
6625497 | Fairbairn et al. | Sep 2003 | B2 |
6630741 | Lopatin et al. | Oct 2003 | B1 |
6640151 | Somekh et al. | Oct 2003 | B1 |
6652355 | Wiswesser et al. | Nov 2003 | B2 |
6660633 | Lopatin et al. | Dec 2003 | B1 |
6678570 | Pasadyn et al. | Jan 2004 | B1 |
6708074 | Chi et al. | Mar 2004 | B1 |
6708075 | Sonderman et al. | Mar 2004 | B2 |
6713377 | Lee et al. | Mar 2004 | B2 |
6725402 | Coss, Jr. et al. | Apr 2004 | B1 |
6728587 | Goldman et al. | Apr 2004 | B2 |
6735492 | Conrad et al. | May 2004 | B2 |
6751518 | Sonderman et al. | Jun 2004 | B1 |
6774998 | Wright et al. | Aug 2004 | B1 |
6911400 | Colburn et al. | Jun 2005 | B2 |
20010001755 | Sandhu et al. | May 2001 | A1 |
20010003084 | Finarov | Jun 2001 | A1 |
20010006873 | Moore | Jul 2001 | A1 |
20010030366 | Nakano et al. | Oct 2001 | A1 |
20010039462 | Mendez et al. | Nov 2001 | A1 |
20010040997 | Tsap et al. | Nov 2001 | A1 |
20010042690 | Talieh | Nov 2001 | A1 |
20010044667 | Nakano et al. | Nov 2001 | A1 |
20020032499 | Wilson et al. | Mar 2002 | A1 |
20020058460 | Lee et al. | May 2002 | A1 |
20020070126 | Sato et al. | Jun 2002 | A1 |
20020077031 | Johannson et al. | Jun 2002 | A1 |
20020081951 | Boyd et al. | Jun 2002 | A1 |
20020089676 | Pecen et al. | Jul 2002 | A1 |
20020102853 | Li et al. | Aug 2002 | A1 |
20020107599 | Patel et al. | Aug 2002 | A1 |
20020107604 | Riley et al. | Aug 2002 | A1 |
20020113039 | Mok et al. | Aug 2002 | A1 |
20020127950 | Hirose et al. | Sep 2002 | A1 |
20020128805 | Goldman et al. | Sep 2002 | A1 |
20020149359 | Crouzen et al. | Oct 2002 | A1 |
20020165636 | Hasan | Nov 2002 | A1 |
20020173129 | Shin et al. | Nov 2002 | A1 |
20020183986 | Stewart et al. | Dec 2002 | A1 |
20020185658 | Inoue et al. | Dec 2002 | A1 |
20020193899 | Shanmugasundram et al. | Dec 2002 | A1 |
20020193902 | Shanmugasundram et al. | Dec 2002 | A1 |
20020197745 | Shanmugasundram et al. | Dec 2002 | A1 |
20020197934 | Paik | Dec 2002 | A1 |
20020199082 | Shanmugasundram et al. | Dec 2002 | A1 |
20030017256 | Shimane | Jan 2003 | A1 |
20030020909 | Adams et al. | Jan 2003 | A1 |
20030020928 | Ritzdorf et al. | Jan 2003 | A1 |
20030154062 | Daft et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
2050247 | Aug 1991 | CA |
2165847 | Aug 1991 | CA |
2194855 | Aug 1991 | CA |
0 397 924 | Nov 1990 | EP |
0 621 522 | Oct 1994 | EP |
0 747 795 | Dec 1996 | EP |
0 869 652 | Oct 1998 | EP |
0 877 308 | Nov 1998 | EP |
0 881 040 | Dec 1998 | EP |
0 895 145 | Feb 1999 | EP |
0 910 123 | Apr 1999 | EP |
0 932 194 | Jul 1999 | EP |
0 932 195 | Jul 1999 | EP |
1 066 925 | Jan 2001 | EP |
1 067 757 | Jan 2001 | EP |
1 071 128 | Jan 2001 | EP |
1 083 470 | Mar 2001 | EP |
1 092 505 | Apr 2001 | EP |
1 072 967 | Nov 2001 | EP |
1 182 526 | Feb 2002 | EP |
2 347 885 | Sep 2000 | GB |
2 365 215 | Feb 2002 | GB |
61-66104 | Apr 1986 | JP |
61-171147 | Aug 1986 | JP |
62172741 | Jul 1987 | JP |
01-283934 | Nov 1989 | JP |
3-202710 | Sep 1991 | JP |
05-151231 | Jun 1993 | JP |
05-216896 | Aug 1993 | JP |
05-266029 | Oct 1993 | JP |
06-110894 | Apr 1994 | JP |
06-176994 | Jun 1994 | JP |
06-184434 | Jul 1994 | JP |
06-252236 | Sep 1994 | JP |
06-260380 | Sep 1994 | JP |
8-23166 | Jan 1996 | JP |
08-50161 | Feb 1996 | JP |
08-149583 | Jun 1996 | JP |
08-304023 | Nov 1996 | JP |
09-34535 | Feb 1997 | JP |
9-246547 | Sep 1997 | JP |
10-34522 | Feb 1998 | JP |
10-173029 | Jun 1998 | JP |
11-67853 | Mar 1999 | JP |
11-126816 | May 1999 | JP |
11-135601 | May 1999 | JP |
2000-183001 | Jun 2000 | JP |
2001-76982 | Mar 2001 | JP |
2001-284299 | Oct 2001 | JP |
2001-305108 | Oct 2001 | JP |
2002-9030 | Jan 2002 | JP |
2002-343754 | Nov 2002 | JP |
434103 | May 2001 | TW |
436383 | May 2001 | TW |
455938 | Sep 2001 | TW |
455976 | Sep 2001 | TW |
WO 9534866 | Dec 1995 | WO |
WO 9805066 | Feb 1998 | WO |
WO 9845090 | Oct 1998 | WO |
WO 9909371 | Feb 1999 | WO |
WO 9925520 | May 1999 | WO |
WO 9959200 | Nov 1999 | WO |
WO 0000874 | Jan 2000 | WO |
WO 0005759 | Feb 2000 | WO |
WO 0035063 | Jun 2000 | WO |
WO 0054325 | Sep 2000 | WO |
WO 0079355 | Dec 2000 | WO |
WO 0111679 | Feb 2001 | WO |
WO 0115865 | Mar 2001 | WO |
WO 0118623 | Mar 2001 | WO |
WO 0125865 | Apr 2001 | WO |
WO 0133277 | May 2001 | WO |
WO 0133501 | May 2001 | WO |
WO 0152055 | Jul 2001 | WO |
WO 0152319 | Jul 2001 | WO |
WO 0157823 | Aug 2001 | WO |
WO 0180306 | Oct 2001 | WO |
WO 0217150 | Feb 2002 | WO |
WO 0231613 | Apr 2002 | WO |
WO 0231613 | Apr 2002 | WO |
WO 0233737 | Apr 2002 | WO |
WO 02074491 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040248409 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60475351 | Jun 2003 | US |