Selective metal encapsulation schemes

Information

  • Patent Grant
  • 7205228
  • Patent Number
    7,205,228
  • Date Filed
    Tuesday, March 30, 2004
    21 years ago
  • Date Issued
    Tuesday, April 17, 2007
    18 years ago
Abstract
A method and system of processing a semiconductor substrate includes, in one or more embodiments, depositing a protective layer on the substrate surface comprising a conductive element disposed in a dielectric material; processing the protective layer to expose the conductive element; electrolessly depositing a metallic passivating layer onto the conductive element; and removing at least a portion of the protective layer from the substrate after electroless deposition. In another aspect, a method and system of processing a semiconductor includes depositing a metallic passivating layer onto a substrate surface comprising a conductive element, masking the passivating layer to protect the underlying conductive element of the substrate surface, removing the unmasked passivating layer, and removing the mask from the passivating layer.
Description
FIELD OF THE INVENTION

The present invention relates generally to semiconductor manufacturing, and more particularly to systems and methods for the deposition of barrier film layers on a conductive feature of the device.


BACKGROUND OF THE INVENTION

A common goal in the integrated circuit (IC) industry is to place more conductive circuitry into a smaller substrate surface area. Recent improvements in circuitry of ultra-large scale integration (ULSI) on semiconductor substrates indicate that future generations of semiconductor devices will require sub-quarter micron (or less) multilevel metallization. The multilevel interconnects that lie at the heart of this technology require planarization of interconnect features formed in high aspect ratio apertures, including contacts, vias, lines and other features. One example of the use of such multilevel metallization is in “dual damascene” processing, in which two channels of conductive materials are positioned in vertically separated planes perpendicular to each other and interconnected by a vertical “via” at their closest point.


Currently, copper and its alloys have become the metals of choice for ULSI technology because copper has a lower resistivity than aluminum, (1.7 μΩ-cm compared to 3.1 μΩ-cm for aluminum), a higher current carrying capacity, and significantly higher electromigration resistance. These characteristics are important for supporting the higher current densities experienced at high levels of integration and increased device speed. Further, copper has a good thermal conductivity and is available in a highly pure state.


However, copper readily forms copper oxide when exposed to atmospheric conditions or environments outside of processing equipment. Metal oxides can result in an increase the resistance of metal layers, become a source of particle problems, and reduce the reliability of the overall circuit.


One known solution is to deposit a passivating layer or an encapsulation layer such as a dielectric material on the metal layer to prevent metal oxide formation. However, the high dielectric constant of the dielectric material increases the interlayer capacitance in multilayer environments. Furthermore, the electromigration of copper in dielectric materials is unacceptably high.


Cobalt and cobalt alloys, which are conductive (low dielectric constant) and are good barriers to electromigration of copper, have been used for passivating copper. Cobalt may be deposited by electroless deposition techniques on copper. However, copper does not satisfactorily catalyze or initiate deposition of materials from electroless solutions. It is possible to activate the copper surface to cobalt deposition by first depositing a catalytic material, such as palladium, on the copper surface. Cobalt is then selectively deposited by electroless plating onto the catalytic material. However, deposition of the catalytic material may require multiple steps or the use catalytic colloidal compounds. Catalytic colloidal compounds, and colloidal palladium materials in particular, adhere to dielectric materials and result in the undesired, excessive, and non-selective deposition of the catalyst material on the substrate surface. Alternatively, palladium can be deposited selectively on copper surfaces by a displacement mechanism in which palladium replaces a thin layer of the exposed copper on the wafer surface. However, common semiconductor fabrication methods invariably leave copper atom contaminants on the wafer surface, so that palladium is deposited on undesired locations, e.g., dielectric surfaces, as well as desired locations, e.g., conductive metal feature. In the subsequent step of cobalt deposition, cobalt is electrolessly deposited wherever palladium is present, leading to the non-selective deposition of cobalt.


Non-selective deposition of passivation material may lead to surface contamination, unwanted diffusion of conductive materials into dielectric materials, and even device failure from short circuits and other device irregularities.


There is a need for methods and systems for deposition of passivation materials that eliminate or minimize their non-selective deposition.


SUMMARY OF THE INVENTION

In one aspect of the methods and systems of the present invention, a sacrificial protective layer is used to prevent stray electroless deposition of a conductive passivating layer on a substrate surface. In one or more embodiments, the protective layer is deposited onto a substrate surface having at least one conductive element, and the protective layer is processed to expose the conductive element of the substrate surface. A conductive passivating layer is then deposited, e.g., electrolessly, on the exposed conductive element(s) of the substrate. The sacrificial protective layer prevents nucleation of the passivating layer on the substrate surface during deposition of the passivating layer. Any undesired deposition of passivation material on areas other than the conductive element(s), e.g., on the protective layer, is eliminated with the removal of the protective layer.


In one or more embodiments, the protective layer is an organic material, such as photoresist, amorphous carbon, a dielectric material, or an etch stop material. In one or more embodiments, the method includes providing one or more intermediate layers disposed between the substrate surface and the protective layer.


One or more embodiments of the present invention contemplate the deposition of an intermediate layer onto the substrate surface prior to deposition of the protective layer.


In another aspect of the invention, a method of processing a semiconductor substrate to encapsulate a conductive element is provided. The method includes the steps of depositing a metallic passivating layer onto a substrate surface comprising a conductive element, masking the passivating layer to protect the underlying conductive element of the substrate surface, etching the unmasked passivating layer to expose the underlying intermediate layers or substrate surface, and removing the mask from the passivating layer after etching.


The methods and systems of the present invention provide a semiconductor device having a conductive element selectively encapsulated by a metallic passivating layer. The passivating layer interface with the conductive element is of low capacitance. The passivating layer also provides an effective barrier to electromigration of copper into adjacent dielectric regions. Significantly, the surface of the substrate is substantially free of stray electrolessly deposited passivation material, which reduces the incidence of surface contamination, device failure from short circuit, and other device irregularities.





BRIEF DESCRIPTION OF THE DRAWING

Various objects, features, and advantages of the present invention can be more fully appreciated with reference to the following detailed description of the invention when considered in connection with the following drawings, in which like reference numerals identify like elements. The following drawings are for the purpose of illustration only and are not intended to be limiting of the invention, the scope of which is set forth in the claims that follow.



FIG. 1 is a flow chart illustrating steps undertaken in selective metal encapsulation schemes according to one or more embodiments of the present invention;



FIGS. 2–4 are schematic illustrations of exemplary deposition processes for the selective deposition of a conductive passivating layer according to one or more exemplary embodiments of the present invention;



FIG. 5 is a flow chart illustrating the steps undertaken in selective metal encapsulation schemes according to one or more embodiments of the present invention; and



FIG. 6 is a schematic illustration of an exemplary integration scheme for deposition of a selective metal encapsulation layer according to one or more embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The words and phrases used herein should be given their ordinary and customary meaning in the art by one skilled in the art unless otherwise further defined.


“Substrate surface” as used herein refers to a layer of material that serves as a basis for subsequent processing operations. For example, a substrate surface may contain one or more “conductive elements,” such as aluminum, copper, tungsten, or combinations thereof, and may form part of an interconnect feature such as a plug, via, contact, line, wire, and may also form part of a metal gate electrode. A substrate surface may also contain one or more nonconductive materials, such as silicon, doped silicon, germanium, gallium arsenide, glass, and sapphire. The substrate surface may also contain one or more low k materials such as carbon-doped oxides, porous low k materials such as organic low k and inorganic low k materials and hybrids thereof, or air-gap structures.


The term “about” is used herein to mean approximately, in the region of, roughly or around. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value with a variance of 10%.



FIG. 1 is a flow chart illustrating an exemplary processing sequence 100 undertaken in depositing a conductive passivating layer according to one or more embodiments of the present invention.


In step 110 in FIG. 1, a substrate surface is prepared for deposition of the passivating layer. The surface can be treated to remove surface contaminants using materials removal and/or cleaning techniques known in the art. Exemplary materials removal techniques include chemical mechanical polishing (CMP) and etching. Wet etching techniques using HF solution and dry etch techniques using HF vapor are suitable for removing dielectric materials, such as silicon oxide, from the substrate surface. Other etching techniques include downstream or remote plasma etching using a hydrogen and water plasma, or a hydrogen plasma and in situ etch processes using hydrogen, hydrogen and nitrogen, or ammonia to remove metal oxides from the substrate surface. CMP is suitable for removal of various materials, including metals and dielectric materials. Other exemplary surface treatments include ultrasonication and cleaning with an acidic solution to remove metal oxides and other contaminants from the substrate surface. The exposed conductive feature(s) can also be rinsed with distilled water to remove residual contaminants from the surface treatment process.


In step 120 of FIG. 1, a sacrificial protective layer is deposited on the substrate surface. The protective layer can be any material that is compatible with the semiconductor fabrication process and that is unaffected by the subsequent deposition of a passivating layer. Exemplary materials for the protective layer include dielectrics, such as SiN, SiC, SiOC/SiC, and SiCN, photoresist, and organics such as amorphous carbon. The protective layer is deposited using known techniques such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), spin-on deposition and physical deposition processes, e.g., sputtering. The thickness of the protective layer can vary depending upon the materials used and the methods of material deposition and removal. Exemplary layer thicknesses are in the range of about 100 Å to about 5000 Å. With advances in deposition technology, such as atomic layer deposition, further reductions in film thickness are anticipated.


In step 130 of FIG. 1, the protective layer is processed to remove materials above the underlying conductive element(s) so as to expose the conductive element in the underlying substrate surface. Conventional masking and materials removal techniques known in the art can be used. Etching is a common technique used for the selective removal of material. Before etching begins, a wafer is coated with photoresist and exposed to a circuit pattern (or other pattern corresponding to the conductive element) during photolithography. Etching removes material only from areas dictated by the photoresist pattern. The photoresist can be a positive photoresist, in which case the exposed areas of a positive resist film are removed by the process of development. Alternatively, the photoresist can be a negative photoresist, in which case the mask pattern is a negative of the underlying conductive layer structure and the unexposed areas of the resist film are removed by the process of development.


The exposed protective layer is then etched to selectively remove the protective layer and expose the underlying conductive element. The etching technique is selective to the material of the protective layer and can be a dry etch such as HF vapor or reactive ion etch (RIE) with CHF3/O2 or plasma etch as described above. Plasma etching is performed by applying an electrical field to a gas containing a chemically reactive element, thereby generating reactive ions that can remove (etch) materials very rapidly. It also gives the chemicals an electric charge, which directs them toward the wafer vertically. This allows vertical etching profiles, which is desired in selective exposure of the features of the underlying substrate surface.


In the next step 140, it is contemplated by one or more embodiments of the present invention that an initiation layer can be deposited on the substrate surface to initiate the electroless deposition process. The initiation layer can be a noble metal and is typically very thin, e.g., only a few monolayers thick. The initiation layer generally forms selectively on the exposed conductive element by displacement of the noble metal for the conductive metal, or can be deposited as colloidal palladium. Although the displacement process is selective for the conductive metal, there typically is some stray deposition occurring on the nonconductive surfaces, e.g., the protective layer. The substrate is then rinsed to remove the displacement solution.


A conductive passivating layer then is selectively electrolessly deposited on the initiation layer in step 150 of FIG. 1. The conductive material used as the passivating layer is generally a metal that does not form a solid solution with copper or other conductive metals, such as ruthenium, tantalum, tungsten, cobalt, palladium, nickel, tin, titanium, molybdenum, platinum, iron, and niobium and their alloys. In one or more embodiments, the passivating conductive metal is cobalt or a cobalt alloy. In one or more other embodiments, the passivating layer is deposited directly onto the conductive element (step 150), without the need to first deposit an initiation layer (step 140). Electroless deposition processes for certain cobalt alloys, using boron-containing reducing agents, permit electroless deposition of metal without the need for an initiation layer.


At least a portion of the protective layer is removed in step 160 of FIG. 1 to remove any undesired passivation material at nucleation sites outside of the conductive element area. In one or more embodiments, a portion of the thickness of the protective layer is removed to ensure the removal of stray electroless deposition on the protective coating. In other exemplary embodiments, the entire protective layer is removed to expose the underlying layer, which may be the substrate surface or an intermediate layer.


The protective layer is removed or lifted using materials removal techniques known in the art. Exemplary, non-limiting materials removal techniques include chemical mechanical polishing (CMP), etching and ashing, e.g., plasma ashing. Reactive ion etching using CHF3/O2, wet etch techniques using HF solution, or dry etch techniques using HF vapor, are suitable for removing dielectric materials. Other etching techniques include downstream or remote plasma etching using a hydrogen and water plasma or a hydrogen plasma and in situ etch processes using hydrogen, hydrogen and nitrogen or ammonia. Wet etching and ashing can be used for the removal of carbon-containing layers, such as amorphous carbon and photoresist. The appropriate technique depends upon the composition of the material being removed. The exposed conductive feature also can be rinsed with distilled water to remove residuals from the materials removal process.


The process provides a conductive element having a conductive passivating layer selectively deposited thereon. Elsewhere, the substrate surface is free of unwanted conductive material. In exemplary embodiments, other than the deposited passivating layer, the substrate is returned to its original state prior to deposition of the passivating layer and is ready for further processing.


The electroless deposition process is described in greater detail below. Additional information regarding electroless deposition technology, generally, is found in co-pending U.S. application Ser. No. 10/117,712, entitled “Electroless Deposition Methods” and co-pending U.S. application Ser. No. 10/284,855, entitled “Post Rinse To Improve Selective Deposition Of Electroless Cobalt On Copper For ULSI Application,” both of which are commonly owned and are incorporated by reference herein.


Electroless deposition is generally defined herein as deposition of a conductive material generally provided as charged ions in a bath over an active surface to deposit the conductive material by chemical reduction in the absence of an external electric current. Electroless deposition typically involves exposing a substrate to a solution by immersing the substrate in a bath or by spraying the solution over the substrate.


In one or more embodiments, an initiation layer may be formed on the exposed conductive elements by deposition of a noble metal in step 140. Embodiments of the present invention also contemplate the use of noble metals, such as gold, silver, iridium, rhenium, rhodium, rhenium, ruthenium, palladium, platinum, osmium, and combinations thereof. In one or more embodiments, the noble metal is selected from the group of palladium, platinum, or combinations thereof. The noble metal is deposited from an activation solution containing at least a noble metal salt and an inorganic acid. Examples of noble metal salts include palladium chloride (PdCl2), palladium sulfate (PdSO4), palladium ammonium chloride, and combinations thereof. Examples of inorganic acids include hydrochloric acid (HCl), sulfuric acid (H2SO4), hydrofluoric acid (HF) and combinations thereof. Alternatively, inorganic acids, such as carboxylic acids including acetic acid (CH3COOH), may be used in the activation solution for the initiation layer.


In one or more embodiments of the present invention, displacement of the exposed conductive element, e.g., copper, by a noble metal, e.g., palladium, is carried out as follows. In a displacement plating process, wafers with an exposed copper surface are immersed in a bath containing dissolved ions of a metal more noble than copper. With simple immersion, the copper dissolves, i.e., is oxidized, and a film of the more noble metal deposits, i.e., is reduced, to thereby displace atoms of copper with the noble metal. Displacement is selective to copper and the coating thickness is self-limiting. Depending on the porosity of the copper, the noble metal may be up to a few monolayers thick.


The noble metal salt may be in the deposition solution at a concentration between about 20 parts per million (ppm) and about 20 g/liter. The concentration of the metal salt may also be described as a volume percent with 1 vol % corresponding to about 40 ppm. The inorganic acid is used to provide an acidic deposition composition, for example, at a pH of about 7 or less. A pH level between about 1 and about 3 has been observed to be effective in displacement deposition of the noble metals from the activation solution. An acidic solution has also been observed to be effective in removing or reducing oxides, such as metal oxides including copper oxides, from the metal or dielectric surface of the substrate during the activation deposition process.


The activation solution for the initiation layer is generally applied to the substrate surface for between about 1 second and about 300 seconds at a composition temperature between about 15° C. and about 80° C. The activation solution is generally provided at a flow rate between about 50 ml/min and about 2000 ml/min. In one aspect a total application of about 120 ml and about 200 ml of activation solution was provided to deposit the activation layer. The activation solution generally provides for the deposition of a noble metal to a thickness of about 50 Å or less, such as about 10 Å or less. The initiation layer may be continuous or discontinuous.


An example of an activation solution composition for depositing the initiation material includes about 3 vol % (120 ppm) of palladium chloride and sufficient hydrochloric acid to provide a pH of about 1.5 for the composition, which is applied to the substrate surface for about 30 seconds at a flow rate of about 750 ml/min at a composition temperature of about 25° C.


In other embodiments, the initiation layer is formed by exposing the exposed conductive materials to a borane-containing composition in step 140. The borane-containing composition forms a metal boride layer selectively on the exposed conductive metals, which provides catalytic sites for subsequent electroless deposition processes.


The borane-containing composition includes a borane reducing agent. Suitable borane-containing reducing agents include alkali metal borohydrides, alkyl amine boranes, and combinations thereof. Examples of suitable borane-containing reducing agents include sodium borohydride, dimethylamine borane (DMAB), trimethylamine borane, and combinations thereof. The borane-containing reducing agent comprises between about 0.25 grams per liter (g/L) and about 6 g/L of the boron-containing composition. The borane-containing composition may additionally include pH-adjusting agents to provide a pH of between about 8 and about 13. Suitable pH adjusting agents include potassium hydroxide (KOH), sodium hydroxide (NaOH), ammonium hydroxide, ammonium hydroxide derivatives, such as tetramethyl ammonium hydroxide, and combinations thereof.


The conductive element is generally exposed to the borane-containing composition between about 30 seconds and about 180 seconds at a composition temperature between about 15° C. and about 80° C. The borane-containing composition may be delivered to the substrate at a flow rate between about 50 ml/min and about 2000 ml/min. In one aspect a total application of about 120 ml and about 200 ml of the borane-containing composition was provided to form the initiation layer of a metal boride compound.


An example of a borane-containing composition for forming the layer includes about 4 g/L of dimethylamine borane (DMAB) and sufficient sodium hydroxide to provide a pH of about 9 for the composition, which is generally applied to the substrate surface for about 30 seconds at a flow rate of about 750 ml/min at a composition temperature of about 25° C.


A rinsing agent, typically deionized water, is then applied to the substrate surface to remove any solution used in forming the initiation layer.


A metallic passivating layer is deposited by an electroless process on the initiation layer in step 150. In one or more embodiments of the present invention, the metal passivating layer comprises cobalt or a cobalt alloy. Cobalt alloys include cobalt-tungsten alloy, cobalt-phosphorus alloy, cobalt-tin alloys, cobalt-boron alloys, including ternary alloys, such as cobalt-tungsten-phosphorus and cobalt-tungsten-boron. One or more embodiments of the present invention also contemplate the use of other materials, including nickel, tin, titanium, tantalum, tungsten, molybdenum, platinum, iron, niobium, palladium, platinum, and combinations thereof, and other alloys including nickel cobalt alloys, doped cobalt and doped nickel alloys, or nickel iron alloys, to form the metal layer as described herein.


In one or more embodiments of the present invention, the metallic passivation material is deposited from an electroless solution containing at least a metal salt and a reducing agent. The electroless solution may further include additives to improve deposition of the metal. Additives may include surfactants, complexing agents, pH adjusting agents, or combinations thereof.


Suitable metal salts include chlorides, sulfates, sulfamates, or combinations thereof. An example of a metal salt is cobalt chloride. The metal salt may be in the electroless solution at a concentration between about 0.5 g/L and about 30 g/L.


Cobalt alloys, such as cobalt-tungsten may be deposited by adding tungstic acid or tungstate salts including sodium tungstate, and ammonium tungstate, and combinations thereof for tungsten deposition. Phosphorus for the cobalt-tungsten-phosphorus deposition may be formed by phosphorus-containing reducing agents, such as hypophosphite. Cobalt alloys, such as cobalt-tin may be deposited by adding stannate salts including stannic sulfate, stannic chloride, and combinations thereof. The additional metals salts, for example, for tungsten and tin, may be in the electroless solution at a concentration between about 0.5 g/L and about 30 g/L.


Suitable reducing agents include sodium hypophosphite, hydrazine, formaldehyde, and combinations thereof. The reducing agents have a concentration between about 1 g/L and about 30 g/L of the electroless solution. For example, hypophosphite may be added to the electroless solution at a concentration between about 15 g/L and about 30 g/L.


The reducing agents may also include borane-containing reducing agents, such as sodium borohydride, dimethylamine borane (DMAB), trimethylamine borane, and combinations thereof. The borane-containing reducing agent comprises between about 0.25 grams per liter (g/L) and about 6 g/L of the boron-containing composition. The presence of borane-containing reducing agents allow for the formation of cobalt-boron alloys such as cobalt-tungsten-boron and cobalt-tin-boron among others.


The metal electroless solutions described herein are generally applied to the substrate surface for between about 30 seconds and about 180 seconds at a composition temperature between about 60° C. and about 90° C. The electroless solution is generally provided at a flow rate between about 50 ml/min and about 2000 ml/min. In one embodiment of the present invention, a total application of between about 120 ml and about 200 ml of electroless solution was provided to deposit the electroless layer. The electroless solution generally provides for the deposition of a metal layer to a thickness of about 500 Å or less, such as between about 300 Å and about 400 Å.


An example of a cobalt electroless composition for forming a cobalt layer includes about 20 g/L of cobalt sulfate, about 50 g/L of sodium citrate, about 20 g/L of sodium hypophosphite, with sufficient potassium hydroxide to provide a pH of between about 9 and about 11 for the composition, which is applied to the substrate surface for about 120 seconds at a flow rate of about 750 ml/min at a composition temperature of about 80° C. A cobalt-tungsten layer is deposited by the addition of about 10 g/L of sodium tungstate.


An example of a cobalt electroless composition for forming a cobalt layer with a borane-containing reducing agent includes about 20 g/L of cobalt sulfate, about 50 g/L of sodium citrate, about 4 g/L of dimetylamineborane, with sufficient potassium hydroxide to provide a pH of between about 10 and about 12 for the composition, which is applied to the substrate surface for about 120 seconds at a flow rate of about 750 ml/min at a composition temperature of about 80° C. A cobalt-tungsten-boron layer is deposited by the addition of about 10 g/L of sodium tungstate.


Borane-containing reducing agents in the metal electroless deposition process allow electroless deposition on exposed conductive material without the need for an initiation layer. When an initiation layer is first deposited on the substrate surface prior to the metal electroless deposition, the process is typically performed in two processing chambers. When the metal electroless deposition process occurs without the initiation layer, such as with the use of borane-containing reducing agents in the metal electroless deposition, the electroless process can be performed in one chamber.


Additionally, the method of depositing the material from an electroless solution, whether the initiation layer or metal layer, may include applying a bias to a conductive portion of the substrate structure if available (i.e. a seed layer), such as a DC bias, during the electroless deposition process.


The initiation layer and/or metal passivating layer may be annealed (i.e., heated) at a temperature between about 100° C. to about 400° C. The anneal may be performed in a vacuum or in a gas atmosphere, such as a gas atmosphere of one or more noble gases (such as Argon, Helium), nitrogen, hydrogen, and mixtures thereof.


Suitable apparatus for performing electroless deposition processes include an Electra Cu™ ECP processing platform or Link™ processing platform that are commercially available from Applied Materials, Inc., located in Santa Clara, Calif. The Electra Cu™ ECP platform, for example, includes an integrated processing chamber capable of depositing a conductive material by an electroless process, such as an electroless deposition processing (EDP) cell, which is commercially available from Applied Materials, Inc., located in Santa Clara, Calif. The Electra Cu™ ECP platform generally includes one or more electroless deposition processing (EDP) cells as well as one or more pre-deposition or post-deposition cell, such as spin-rinse-dry (SRD) cells, etch chambers, or annealing chambers.


Suitable apparatus for deposition of dielectric films are the Producer™ CVD and PECVD systems, available from Applied Materials, Inc., located in Santa Clara, Calif. The Producer™ systems use a multichamber architecture in a design that transfers wafers in pairs to process modules; each module has two identical chambers that use common vacuum and gas delivery subsystems. In addition to handling the full range of conventional dielectric CVD and PECVD applications, the Producer™ system deposits DARC™, damascene nitride and low k films such as TEOS FSG, Black Diamond™ and BLOk™ (Barrier Low k).


Etching processes, including dry etch and plasma etch, can be carried out on an eMax™ etching system available from Applied Materials, Inc., located in Santa Clara, Calif. The system includes a low pressure/high gas flow regime, controllable magnetic field, and high rf power capability. The eMax™ system integrates etch, photoresist strip and barrier removal steps on a single system. Etch rates of over 6000 angstroms/min. is possible. Wet etch or wet cleaning processes can be accomplished on an Oasis Clean™ system, also available from Applied Materials, Inc., CA. The apparatus uses both ultrasonic cleaning and wet chemical cleaning processes to clean substrate surfaces.


A suitable integrated controller and polishing apparatus is the Mirra™ with iAPC or Mirra Mesa™ with iAPC, also available from Applied Materials, Inc., CA.



FIGS. 2A–2E illustrate an exemplary process for selective metal encapsulation of a conductive element according to one or more embodiments of the present invention. Device 200 is shown in FIG. 2A having a substrate 210 containing conductive element 220 therein. The features of device 200 represent only a portion of the device and the actual device may include additional layers and/or additional device features. Furthermore, the conductive element is represented in cross-section as a trench, however, is it within the scope of the invention for the conductive element to comprise a variety of shapes or forms and to perform a variety of functions. By way of example only, the conductive element can be an interconnect feature such as a plug, via, trench, contact, line, wire, and may also form part of a metal gate electrode. It can also be a metal film covering a substantial portion of the substrate surface. The conductive element is made up of a conductive material, e.g., a metal having high conductivity, for example, copper.


The metallic conductive element is formed in the substrate using, for example, selective electroless metallization, in which the conductive metal is catalytically deposited from a metal ion solution without the application of an electrical current. Because the conductive metals, and copper in particular, tend to diffuse into adjacent dielectric materials such as SiO2, it is common practice to line the via opening 220 with a diffusion barrier layer (not shown) such as titanium nitride, titanium tungsten, tantalum, tantalum nitride and tungsten nitride. In addition, the diffusion barrier layer is activated, for example by the deposition of a seed layer of palladium or displacement reaction with copper, to promote the autocatalytic deposition of copper. Other methods of metallic deposition include physical vapor deposition methods such as sputter deposition from the appropriate target. CMP techniques are used to polish away unwanted conductive metal and to prepare the substrate for deposition of the passivating layer.


The surface can be further treated to clean the substrate surface of contaminants using techniques known in the art. Wet etching techniques using HF solution and dry etch techniques using HF vapor are suitable for removing dielectric materials, such as silicon oxide, from the substrate surface. Other etching techniques include downstream or remote plasma etching using a hydrogen and water plasma or a hydrogen plasma and in situ etch processes using hydrogen, hydrogen and nitrogen, or ammonia to remove metal oxides from the substrate surface. CMP is suitable for removal of various materials, including metals and dielectric materials. Other exemplary surface treatments include cleaning with an acidic solution to remove metal oxides and other contaminants from the substrate surface. The exposed conductive feature can also be rinsed with distilled water to remove residual contaminants from the surface treatment process.


After substrate surface preparation, a sacrificial protective layer 230 is deposited on the substrate surface, as is illustrated in FIG. 2B. The protective layer can be deposited by any method that is compatible with the device fabrication process and can be made up of any material that can be incorporated into the device fabrication process without detriment to the subsequent processing steps.


In exemplary embodiments, the protective layer is a photoresist, which can be applied to the substrate as a spin-on layer at a thickness of about 1000 Å to about 5000 Å. Subsequently, the photoresist is exposed and developed to define one or more openings 240 that provides access to the underlying conductive element(s) 220, as is shown in FIG. 2C. A thin layer 250 of passivation material is deposited on conductive element 220 by electroless deposition as described above and as shown in FIG. 2D. The passivating layer can be less than about 400 Å and can have a thickness in the range of about 30 Å to about 300 Å in at least some embodiments. The passivating layer may be deposited in two steps by first depositing an initiation layer, followed by depositing a conductive passivating layer. Alternatively, the passivating layer may be deposited in a single step directly onto the conductive element. Regardless of the method of passivating layer deposition, random nucleation sites 255 of the passivating metal also form on the protective layer 230. In a subsequent step shown in FIG. 2E, the photoresist 230 is lifted off of the substrate surface so that unwanted nucleation sites 255 are removed and the passivating layer 250 remains only on the conductive element 220. The photoresist is removed by conventional processes, such as wet etch or ashing, that is selected to remove the photoresist without negative effect on the underlying intermediate layer(s) or substrate surface. The substrate can be cleaned using wet solvent that does not dissolve the passivating layer. The device is then further processed consistent with its intended function.


The above procedure is attractive because it does not require the use of a high k dielectric material adjacent to the conductive element. Low k materials, e.g., polyarylethers, fluorinated polyarylethers, polyimides and fluorinated polyimides, benzocyclobutenes, carbon-doped oxides, organic and inorganic porous low k materials and hybrids thereof, and the like, can be directly applied to the substrate surface after completion of the processing steps set forth in FIGS. 2A–2E to provide improved electrical isolation between adjacent conductive regions of an integrated circuit that is advantageous in many semiconductor devices.


In another exemplary embodiment, the protective layer 230 is a dielectric barrier layer such as an etch stop layer. Exemplary etch stop materials include SiN or SiOC available from Applied Materials, Inc., located in Santa Clara, Calif., under the tradename Blok™. The etch stop layer (or other dielectric) is deposited as a thin layer, e.g., about 50 Å, over the substrate surface by, for example, PECVD or spin-on polymer deposition. Alternatively, a thick layer of dielectric material is deposited and is etched or polished back to a very thin protective layer, for example about 50 Å. The thinness of the protective layer is chosen to reduce the amount of high k material deposited on the metallic conductive element and thereby reduce interlayer capacitance. The conductive element is exposed by removing, i.e., etching, the dielectric layer in those areas not protected by a photomask (not shown) to define one or more openings 240 that exposes the underlying conductive element 220, as is shown in FIG. 2C. A passivating layer 250 is deposited as described above. The dielectric barrier (protecting layer) or at least a portion of the protecting layer is then removed along with surface contaminates 255. In one or more other exemplary embodiments, only a portion of the dielectric layer is removed (sufficient to remove stray electrolessly deposited sites 255), and additional dielectric material is deposited on the remaining dielectric layer to a final thickness. The final thickness is desirably low to minimize the effects of the high k material, and can be in the range of about 600 Å. The device is then further processed consistent with its intended function.


In another embodiment of the present invention, the protective layer 230 is an amorphous carbon layer. In one or more embodiments, the amorphous carbon layer is deposited onto the substrate surface, for example, by CVD or spin-on polymer deposition to a thickness of about 100 Å to about 5000 Å. The conductive element is exposed by masking the amorphous carbon film and developing the photoresist to expose the underlying amorphous carbon film. The carbon film is then removed, e.g., by etching, in those areas not protected by the photomask (not shown) to define one or more openings 240 that exposes the underlying conductive element(s) 220, as is shown in FIG. 2C. A passivating layer 250 is deposited as described above. The amorphous carbon layer is then removed along with surface contaminates 255 to eliminate stray electrolessly deposited passivation material (and other contaminants). Amorphous carbon can be removed by ashing, plasma ashing and wet or dry chemical etching. As with the use of a photoresist, the process results in the complete removal of the amorphous carbon film, so that no high k dielectric material remains adjacent to the conductive elements. The device is then further processed consistent with its intended function.


In another exemplary embodiment of the present invention, intermediate layers may be deposited between the substrate surface and the protective layer. FIGS. 3A–3F illustrate an exemplary process for such an integration scheme using a conductive passivating layer. Device 300 is shown in FIG. 3A having a substrate 310 containing a conductive element 320 therein. As noted above, the features of device 300 represent only a portion of the device and the actual device may include additionally layers and/or additional device features.


A sacrificial protective layer 330 is deposited on the substrate surface, as is illustrated in FIG. 3B. Prior to deposition of the protective layer, one or more intermediate layer(s) 335 is deposited on the substrate surface. The protective and intermediate layers can be any of the materials and layers described above, and can be deposited according to any of the method described herein or any other conventional technique. In an exemplary embodiment, the protective layer is a photoresist and the intermediate layer is a dielectric material such as an etch stop.


As is shown in FIG. 3B, dielectric material 335 is deposited over the substrate surface 310, e.g., by PECVD or spin-on polymer deposition, to a thickness of about 50 to about 1000 Å. A photoresist layer 330 then is applied to the intermediate layer as a spin-on layer at a thickness of about 1000 Å to about 5000 Å. Subsequently, the photoresist is exposed and developed to define one or more openings 340 that exposes the underlying intermediate layer 335 above the conductive element 320, as is shown in FIG. 3C. The conductive element is exposed by removing, i.e., etching, the dielectric layer in those areas not protected by a protective layer 330 to define one or more openings 345 that exposes the underlying conductive element 320, as is shown in FIG. 3D. In one or more embodiments of the present invention, the etch is selective for the intermediate layer 335, so that protective layer 330 is not affected by the etch process. In one or more embodiments, the photomask is removed only after etching of both the protective and intermediate layers.


A thin layer 350 of passivation material is deposited on conductive element 320 by electroless deposition as described above and as shown in FIG. 3E. The passivating layer can be less than about 400 Å, and has a thickness in the range of about 30 Å to about 300 Å in exemplary embodiments. The passivating layer 350 can be of the same or different thickness as the dielectric layer 335. The passivating layer may be deposited in two steps by depositing an initiation layer, followed by depositing the conductive passivating layer. Alternatively, the passivating layer may be deposited in a single step directly onto the conductive element. Regardless of the method of passivating layer deposition, random nucleation sites 355 of the passivating metal also form on the protective layer. In a subsequent step shown in FIG. 3F, the protective layer 330 (e.g., photoresist), including unwanted nucleation sites 355, is lifted off of the substrate surface, leaving the passivating layer 350 only on the conductive element 320. The photoresist is removed by conventional processes, such as wet etch or ashing, that is selected to remove the photoresist without negative effect on the underlying dielectric materials of the intermediate layer(s) or substrate surface. Upon removal of the photoresist layer, dielectric layer 335 covers the remaining surface of the substrate 310. In those embodiments where the dielectric layer 335 and the passivating layer 350 are of the same thickness, a smooth planar substrate surface containing the passivating layer embedded in a dielectric is obtained, as illustrated in FIG. 3F. The substrate can be cleaned using wet solvent that does not dissolve the passivating layer. The device is then further processed consistent with its intended function.



FIGS. 4A–4D illustrate still another embodiment of the present invention. FIG. 4A shows a device 400 including a first lower layer 430 of a first dielectric material and a second upper layer 440 of a second dielectric material deposited on a substrate 410. The device also includes a conductive element 420 embedded in the second dielectric/first dielectric/substrate composite. The layers are deposited and processed using conventional methods. The first and second materials of dielectric layers 430, 440 are selected to have different etching chemistries so that one layer is inert to etching under conditions that etch the other layer. Exemplary first and second dielectric materials include organic dielectrics such as organic low k materials and inorganic dielectrics such as carbon-doped oxides, SiOC, fluorine-doped silicon glass (FSG), and silicon oxide-based low k materials such as Black Diamond™ available from Applied Materials, Inc., located in Santa Clara, Calif. In an exemplary embodiment, the upper dielectric layer 440 is an organic low k material and the lower dielectric layer 430 is a carbon-doped oxide. In one or more embodiments, the upper and lower dielectric materials are the same, and an intermediate surface is treated to alter the etching characteristics of the layer. Exemplary treatments that alter etching properties of the layer include inert gas plasma treatments. The surface treated substrate acts as an etch stop. The surface treatment can be applied in a separate step or as an integral part of the deposition process for dielectric layers.


Referring to FIG. 4B, the device is processed by CMP to remove a portion of the upper dielectric layer 440 and conductive element 420 from the substrate surface. In an exemplary embodiment, the dielectric layer 440 has a thickness of about 100 Å to about 400 Å after CMP processing. The surface is then cleaned as described above, for example, with an acid bath to remove residual traces of metal on the substrate surface. Subsequently, a passivating layer is deposited on the substrate surface using electroless deposition as described herein. The resultant layer forms a continuous passivating layer 450 on the conductive element and random discontinuous islands 455 of passivation material on the dielectric layer 440, as is shown in FIG. 4C. The device is then exposed to an etchant that selectively removes the remaining traces of dielectric layer 440. The final device includes a clean dielectric layer 430 in which a conductive metal layer 450 is embedded. In one or more embodiments, the metallic passivating layer (and a portion of the conductive element) may extend above the plane of the substrate surface. The device is then further processed consistent with its intended function.


One or more embodiments of the present invention also contemplate methods of encapsulating a conductive element using a conductive passivating layer without the need for first depositing a sacrificial protective layer. According to one or more embodiments of the present invention, a conductive element is encapsulated without stray electoless deposition of passivating metal elsewhere on the substrate surface by depositing a layer of the passivation material over the entire substrate surface or a portion thereof containing the conductive element(s), masking the passivation layer to protect the underlying conductive element(s) and removing the unmasked passivation material from the substrate surface to reveal the underlying substrate or other underlying intermediate layers. One or more embodiments of the present invention contemplate the deposition of an intermediate layer onto the substrate surface prior to deposition of the metallic passivating layer. The mask is subsequently removed to obtain the selectively encapsulated metal device, in which the surrounding substrate surface areas are substantially free of contaminants arising from the deposition of the passivating layer.



FIG. 5 is a flow chart illustrating an exemplary processing sequence 500 undertaken in encapsulating a conductive element with conductive passivating layer according to one or more embodiments of the present invention.


In step 510 in FIG. 5, a substrate surface is prepared as previously described by treating the substrate surface so as to expose the conductive element. The substrate surface can be treated using materials removal and cleaning techniques known in the art. Exemplary materials removal techniques include chemical mechanical polishing (CMP) and etching. Wet etching techniques using HF solution and dry etch techniques using HF vapor are suitable for removing dielectric materials, such as silicon oxide, from the substrate surface. Other etching techniques include downstream or remote plasma etching using a hydrogen and water plasma or a hydrogen plasma and in situ etch processes using hydrogen, hydrogen and nitrogen or ammonia to remove metal oxides from the substrate surface. CMP is suitable for removal of various materials, including metals. Other exemplary surface treatments include ultrasonication and cleaning with an acidic solution to remove metal oxides and other contaminants from the substrate surface. The exposed conductive feature can also be rinsed with distilled water to remove residual contaminants from the surface treatment process.


A conductive passivating layer then is deposited on the substrate surface in step 530 of FIG. 5. The conductive passivation material is generally a metal that does not form a solid solution with copper or other conductive metals, such as ruthenium, tantalum, tungsten, cobalt, palladium, nickel, tin, titanium, molybdenum, platinum, iron, and niobium and their alloys. In one or more embodiments, the passivating conductive metal is cobalt or a cobalt alloy. One or more embodiments contemplate the deposition of the conductive passivation layer as a continuous film across the substrate surface. The continuous film is deposited, for example, physical deposition techniques such as sputter deposition using a suitable target.


In step 540 of FIG. 5, the passivating layer is masked in a pattern of the underlying conducting elements. The passivating layer can be masked with photoresist, which is developed to remove selected areas of the photoresist film so that the underlying conductive elements are protected and the surrounding dielectric regions are exposed. The photoresist can be a positive photoresist, in which case the exposed areas of a positive resist film are removed by the process of development. Alternatively, the photoresist can be a negative photoresist, in which case the mask pattern is a negative of the underlying conductive layer structure and the unexposed areas of the resist film are removed by the process of development.


In step 550 of FIG. 5, the exposed passivating layer is then etched to selectively remove the unmasked passivating layer and to expose the underlying substrate surface. Exemplary etching processes for removal of cobalt includes etching at elevated temperatures, e.g., of greater than 120° C., using Cl2 gas, and including CO, CF4 or N2 gas for passivation. The etching process is selective for the metallic passivation material and leaves the substrate surface free of passivation material (and other contaminants) without deleterious effect to the substrate, i.e., the dielectric regions or conductive elements of the substrate.


The protective mask is then removed or lifted to expose the encapsulating passivating layer, as is shown in step 560. Materials removal techniques known in the art can be used. Wet etching and ashing can be used for the removal of the photoresist. The device also can be rinsed with distilled water to remove residuals from the materials removal process.



FIGS. 6A–6D illustrate an exemplary process for selective metal encapsulation of a conductive element according to one or more embodiments of the present invention. Device 600 is shown in FIG. 6A having a substrate 610 containing conductive element 620 therein. As above, the features of device 600 illustrate only a portion of the device and the actual device may include additional layers and/or additional device features. The metallic conductive element can be prepared as previously described or according to known methods in the art.


A thin layer 630 of passivation material is deposited as a continuous layer on substrate surface 610 as shown in FIG. 6B, thereby encapsulating at least the conductive element 620. The passivating layer can cover the entire substrate surface, or a selected region thereof; however, the deposited passivating layer should cover at least the conductive element(s). The passivating layer can be less than about 400 Å and has a thickness in the range of about 30 Å to about 300 Å in some embodiments. The passivating layer can be deposited using physical vapor deposition techniques such as sputtering. In sputtering, a target of a composition commensurate with the desired composition of the passivating layer is bombarded with a sputtering gas, typically an inert gas, to remove atoms from the target, which are then deposited on the substrate surface. A suitable apparatus for sputter deposition is the Endura™ processing system, available from Applied Materials, Inc., located in Santa Clara, Calif.


A photoresist 640 is deposited and developed as shown in FIG. 6C to mask the underlying conductive element 620 of the substrate surface. The photoresist can be applied to the substrate as a spin-on layer and developed using conventional techniques. The surface is then etched as shown by arrows 650 to remove exposed passivation material 655 and to uncover the underlying regions of the substrate surface 610. Exemplary etch process suitable for metals etching include the use of decoupled plasma source (DPS) technology. Suitable apparatus for metal etching of cobalt (or other passivating metals) includes the Centura System using Metal Etch DPS processing platform, available from Applied Materials located in Santa Clara, Calif.


In a subsequent step shown in FIG. 6D, the photoresist 640 is lifted off to reveal passivating layer 660 and to provide a passivating layer-encapsulated conductive element 665 in which the surrounding substrate surface is substantially free of surface contaminations.


Although various embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that incorporate these teachings, including embodiments with numerical values and ranges differing from those set forth herein. It is appreciated that the figures and discussion herein illustrate only a portion of an exemplary semiconductor device. Thus, the present invention is not limited to only those structures described herein.

Claims
  • 1. A method of processing a semiconductor substrate, comprising the steps of: depositing a protective layer on a topographically substantially flat substrate surface comprising an exposed conductive element;selectively removing a portion of the protective layer to expose the conductive element of the substrate surface;selectively electrolessly depositing a metallic passivating layer onto the exposed conductive element, wherein discontinuous regions of stray metallic passivating material are also deposited on the protective layer; andremoving at least a portion of the protective layer from the substrate after deposition of the metallic passivating layer, wherein the stray metallic passivating material deposited on the protective layer is also removed.
  • 2. The method of claim 1, wherein the substrate surface comprises a dielectric material in which the conductive element is disposed.
  • 3. The method of claim 1, wherein the substrate surface comprises a low k dielectric material.
  • 4. The method of claim 1, wherein a portion of the thickness of the protective layer is removed.
  • 5. The method of claim 1, wherein the entire thickness of the protective layer is removed.
  • 6. The method of claim 1, wherein the step of depositing a protective layer is accomplished using a technique selected from the group consisting of chemical vapor deposition (CVD), plasma enhance chemical vapor deposition (PECVD), spin on deposition and physical vapor deposition.
  • 7. The method of claim 1, wherein the protective layer comprises an organic material.
  • 8. The method of claim 7, wherein the organic material of the layer is selected from the group consisting of photoresist and amorphous carbon.
  • 9. The method of claim 8, wherein the steps of depositing and processing the photoresist protective layer comprise the steps of: depositing a photoresist over the substrate surface; andexposing and developing the photoresist under conditions that do not degrade the substrate surface to expose a selected region of an underlying layer.
  • 10. The method of claim 9, wherein the exposed and developed photoresist is removed after deposition of the metallic passivating layer by ashing or wet chemical etch.
  • 11. The method of claim 8, wherein the steps of depositing and processing the amorphous carbon protective layer comprise the steps of: depositing an amorphous carbon layer over the substrate surface; andetching the amorphous carbon layer under conditions that do not degrade the substrate surface.
  • 12. The method of claim 11, wherein the amorphous carbon layer is removed after deposition of the metallic passivating layer by ashing or reactive ion etch.
  • 13. The method of claim 1, wherein the protective layer comprises a dielectric material.
  • 14. The method of claim 13, wherein steps of depositing and processing the dielectric protective layer comprise the steps of: depositing a dielectric layer over the substrate surface; andselectively etching the dielectric layer under conditions that do not degrade the substrate surface.
  • 15. The method of claim 14, wherein the dielectric protective layer is removed after deposition of the passivating layer by etching using a technique selected from the group consisting of wet etch, dry etch, reactive ion etch and plasma etch.
  • 16. The method of claim 1, where steps for depositing and processing the protective layer comprise the steps of: depositing an intermediate layer on the substrate surface;depositing a protective layer on the intermediate layer;selectively removing the protective layer to expose the intermediate layer; andselectively removing the intermediate layer under conditions that do not degrade the conductive element.
  • 17. The method of claim 16, wherein the intermediate layer comprises an etch stop and the protective layer comprises a photoresist.
  • 18. The method of claim 16, wherein the intermediate layer comprises a dielectric material.
  • 19. The method of claim 1, wherein the conductive material comprises copper.
  • 20. The method of claim 1, wherein the passivating layer is selected from the group consisting of ruthenium, tantalum, tungsten, cobalt, palladium, nickel, tin, titanium, molybdenum, platinum, iron, and niobium, and alloys thereof.
  • 21. The method of claim 1, wherein the step of electrolessly depositing a metallic passivating layer comprises the steps of: depositing an initiation layer on the first conductive material by exposing the substrate to an activation solution;cleaning the substrate after deposition of the initiation layer; anddepositing a metallic passivating layer on the initiation layer by exposing the initiation layer to an electroless solution.
  • 22. A method of processing a semiconductor substrate, comprising: steps for depositing a protective layer on a topographically substantially flat substrate surface comprising an exposed conductive element disposed in a dielectric material;steps for processing the protective layer to expose the conductive element;steps for selectively electrolessly depositing a metallic passivating layer onto the conductive element, wherein discontinuous regions of stray metallic passivating material are also deposited on the protective layer; andsteps for removing at least a portion of the protective layer from the substrate after electroless deposition, wherein the stray metallic passivating material deposited on the protective layer is also removed.
  • 23. The method of claim 22, wherein the step of depositing a metallic passivating layer comprises the steps of: steps for depositing an initiation layer on the first conductive material by exposing the substrate to an activation solution;steps for cleaning the substrate after deposition of the initiation layer; andsteps for depositing a metallic passivating layer on the initiation layer by exposing the initiation layer to an electroless solution.
  • 24. The method of claim 22, where steps for depositing and processing the protective layer comprise the steps of: steps for depositing an intermediate layer on the substrate surface;steps for depositing a protective layer on the intermediate layer;steps for exposing and developing the protective layer to expose the intermediate layer; andsteps for etching the intermediate layer under conditions that do not degrade the conductive element.
  • 25. The method of claim 22, wherein steps for depositing and processing an amorphous carbon protective layer comprise the steps of: steps for depositing an amorphous carbon layer over the substrate surface; andsteps for etching the amorphous carbon layer under conditions that do not degrade the conductive element.
  • 26. The method of claim 22, wherein the steps for depositing and processing a photoresist protective layer comprise the steps of: steps for depositing a photoresist over the substrate surface; andsteps for exposing and developing the photoresist under conditions that do not degrade the conductive element.
  • 27. The method of claim 22, wherein the steps of depositing and processing a dielectric protective layer comprise the steps of: steps for depositing a dielectric protective layer over the substrate surface; andsteps for etching the dielectric protective layer under conditions that do not degrade the conductive element.
  • 28. A system for processing a semiconductor substrate, comprising: means for depositing a protective layer on a topographically substantially flat substrate surface comprising an exposed conductive element disposed in a dielectric material;means for processing the protective layer to expose the conductive element;means for selectively electrolessly depositing a metallic passivating layer onto the conductive element, wherein discontinuous regions of stray metallic passivating material are also deposited on the protective layer; andmeans for removing at least a portion of the protective layer from the substrate after electroless deposition, and for removing the stray metallic passivating material deposited on the protective layer.
  • 29. The system of claim 28, wherein the steps for depositing and processing a photoresist protective layer comprises the steps of: means for depositing a photoresist over the substrate surface; andmeans for exposing and developing the photoresist under conditions that do not degrade the conductive element.
  • 30. The system of claim 28, wherein the step of electrolessly depositing a metallic passivating layer comprises the steps of: means for depositing an initiation layer on the first conductive material by exposing the substrate to an activation solution;means for cleaning the substrate after deposition of the initiation layer; andsteps for depositing a metallic passivating layer on the initiation layer by exposing the initiation layer to an electroless solution.
  • 31. The system of claim 26, where steps for depositing and processing the protective layer comprises the steps of: means for depositing an intermediate layer on the substrate surface;means for depositing a protective layer on the intermediate layer;means for exposing and developing the protective layer to expose the intermediate layer; andmeans for etching the intermediate layer under conditions that do not degrade the conductive element.
  • 32. The system of claim 26, wherein steps for depositing and processing an amorphous carbon protective layer comprises the steps of: means for depositing an amorphous carbon layer over the substrate surface; andmeans for etching the amorphous carbon layer under conditions that do not degrade the conductive element.
  • 33. The system of claim 26, wherein depositing and processing a dielectric protective layer comprises: means for depositing a dielectric layer over the substrate surface; andmeans for etching the dielectric layer under conditions that do not degrade the conductive element.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. provisional application Ser. No. 60/475,351, filed Jun. 3, 2003, which is incorporated herein by reference.

US Referenced Citations (365)
Number Name Date Kind
3205485 Noltingk Sep 1965 A
3229198 Libby Jan 1966 A
3767900 Chao et al. Oct 1973 A
3839067 Sosnowski et al. Oct 1974 A
3873361 Franco et al. Mar 1975 A
3920965 Sohrwardy Nov 1975 A
3982943 Feng et al. Sep 1976 A
4000458 Miller et al. Dec 1976 A
4004044 Franco et al. Jan 1977 A
4090006 Havas et al. May 1978 A
4207520 Flora et al. Jun 1980 A
4209744 Gerasimov et al. Jun 1980 A
4302721 Urbanek et al. Nov 1981 A
4339305 Jones Jul 1982 A
4368510 Anderson Jan 1983 A
4609870 Lale et al. Sep 1986 A
4616308 Morshedi et al. Oct 1986 A
4639380 Amelio et al. Jan 1987 A
4663703 Axelby et al. May 1987 A
4698766 Entwistle et al. Oct 1987 A
4750141 Judell et al. Jun 1988 A
4755753 Chern Jul 1988 A
4757259 Charpentier Jul 1988 A
4796194 Atherton Jan 1989 A
4901218 Cornwell Feb 1990 A
4938600 Into Jul 1990 A
4954218 Okumura et al. Sep 1990 A
4957605 Hurwitt et al. Sep 1990 A
4967381 Lane et al. Oct 1990 A
5089970 Lee et al. Feb 1992 A
5108570 Wang Apr 1992 A
5208765 Turnbull May 1993 A
5220517 Sierk et al. Jun 1993 A
5226118 Baker et al. Jul 1993 A
5231585 Kobayashi et al. Jul 1993 A
5236868 Nulman Aug 1993 A
5240552 Yu et al. Aug 1993 A
5260868 Gupta et al. Nov 1993 A
5262354 Cote et al. Nov 1993 A
5270222 Moslehi Dec 1993 A
5283141 Yoon et al. Feb 1994 A
5295242 Mashruwala et al. Mar 1994 A
5309221 Fischer et al. May 1994 A
5329463 Sierk et al. Jul 1994 A
5338630 Yoon et al. Aug 1994 A
5347446 Iino et al. Sep 1994 A
5367624 Cooper Nov 1994 A
5369544 Mastrangelo Nov 1994 A
5375064 Bollinger Dec 1994 A
5398336 Tantry et al. Mar 1995 A
5402367 Sullivan et al. Mar 1995 A
5408405 Mozumder et al. Apr 1995 A
5410473 Kaneko et al. Apr 1995 A
5420796 Weling et al. May 1995 A
5427878 Corliss Jun 1995 A
5444837 Bomans et al. Aug 1995 A
5469361 Moyne Nov 1995 A
5485082 Wisspeintner et al. Jan 1996 A
5490097 Swenson et al. Feb 1996 A
5495417 Fuduka et al. Feb 1996 A
5497316 Sierk et al. Mar 1996 A
5497381 O'Donoghue et al. Mar 1996 A
5503707 Maung et al. Apr 1996 A
5508947 Sierk et al. Apr 1996 A
5511005 Abbe et al. Apr 1996 A
5519605 Cawlfield May 1996 A
5525808 Irie et al. Jun 1996 A
5526293 Mozumder et al. Jun 1996 A
5534289 Bilder et al. Jul 1996 A
5541510 Danielson Jul 1996 A
5546312 Mozumder et al. Aug 1996 A
5553195 Meijer Sep 1996 A
5586039 Hirsch et al. Dec 1996 A
5599423 Parker et al. Feb 1997 A
5602492 Cresswell et al. Feb 1997 A
5603707 Trombetta et al. Feb 1997 A
5617023 Skalski Apr 1997 A
5627083 Tounai May 1997 A
5629216 Wijaranakula et al. May 1997 A
5642296 Saxena Jun 1997 A
5646870 Krivokapic et al. Jul 1997 A
5649169 Berezin et al. Jul 1997 A
5654903 Reitman et al. Aug 1997 A
5655951 Meikle et al. Aug 1997 A
5656128 Hashimoto et al. Aug 1997 A
5657254 Sierk et al. Aug 1997 A
5661669 Mozumder et al. Aug 1997 A
5663797 Sandhu Sep 1997 A
5664987 Renteln Sep 1997 A
5665199 Sahota et al. Sep 1997 A
5665214 Iturralde Sep 1997 A
5666297 Britt et al. Sep 1997 A
5667424 Pan Sep 1997 A
5674787 Zhao et al. Oct 1997 A
5686325 Moriuchi et al. Nov 1997 A
5694325 Fukuda et al. Dec 1997 A
5695810 Dubin et al. Dec 1997 A
5698989 Nulman Dec 1997 A
5719495 Moslehi Feb 1998 A
5719796 Chen Feb 1998 A
5735055 Hochbein et al. Apr 1998 A
5740429 Wang et al. Apr 1998 A
5751582 Saxena et al. May 1998 A
5754297 Nulman May 1998 A
5761064 La et al. Jun 1998 A
5761065 Kittler et al. Jun 1998 A
5764543 Kennedy Jun 1998 A
5777901 Berezin et al. Jul 1998 A
5787021 Samaha Jul 1998 A
5787269 Hyodo Jul 1998 A
5808303 Schlagheck et al. Sep 1998 A
5812407 Sato et al. Sep 1998 A
5823854 Chen Oct 1998 A
5824599 Schacham-Diamand et al. Oct 1998 A
5825356 Habib et al. Oct 1998 A
5825913 Rostami et al. Oct 1998 A
5828778 Hagi et al. Oct 1998 A
5831851 Eastburn et al. Nov 1998 A
5832224 Fehskens et al. Nov 1998 A
5838595 Sullivan et al. Nov 1998 A
5838951 Song Nov 1998 A
5844554 Geller et al. Dec 1998 A
5857258 Penzes et al. Jan 1999 A
5859777 Yokoyama et al. Jan 1999 A
5859964 Wang et al. Jan 1999 A
5859975 Brewer et al. Jan 1999 A
5862054 Li Jan 1999 A
5863807 Jang et al. Jan 1999 A
5867389 Hamada et al. Feb 1999 A
5870306 Harada Feb 1999 A
5871805 Lemelson Feb 1999 A
5883437 Maruyama et al. Mar 1999 A
5889991 Consolatti et al. Mar 1999 A
5901313 Wolf et al. May 1999 A
5903455 Sharpe, Jr. et al. May 1999 A
5910011 Cruse Jun 1999 A
5910846 Sandhu Jun 1999 A
5912678 Saxena et al. Jun 1999 A
5916016 Bothra Jun 1999 A
5923553 Yi Jul 1999 A
5926690 Toprac et al. Jul 1999 A
5930138 Lin et al. Jul 1999 A
5940300 Ozaki Aug 1999 A
5943237 Van Boxem Aug 1999 A
5943550 Fulford, Jr. et al. Aug 1999 A
5960185 Nguyen Sep 1999 A
5960214 Sharpe, Jr. et al. Sep 1999 A
5961369 Bartels et al. Oct 1999 A
5963881 Kahn et al. Oct 1999 A
5975994 Sandhu et al. Nov 1999 A
5978751 Pence et al. Nov 1999 A
5982920 Tobin, Jr. et al. Nov 1999 A
6002989 Shiba et al. Dec 1999 A
6012048 Gustin et al. Jan 2000 A
6017771 Yang et al. Jan 2000 A
6036349 Gombar Mar 2000 A
6037664 Zhao et al. Mar 2000 A
6041263 Boston et al. Mar 2000 A
6041270 Steffan et al. Mar 2000 A
6054379 Yau et al. Apr 2000 A
6059636 Inaba et al. May 2000 A
6064759 Buckley et al. May 2000 A
6072313 Li et al. Jun 2000 A
6074443 Venkatesh et al. Jun 2000 A
6077412 Ting et al. Jun 2000 A
6078845 Friedman Jun 2000 A
6094688 Mellen-Garnett et al. Jul 2000 A
6096649 Jang Aug 2000 A
6097887 Hardikar et al. Aug 2000 A
6100195 Chan et al. Aug 2000 A
6108092 Sandhu Aug 2000 A
6111634 Pecen et al. Aug 2000 A
6112130 Fukuda et al. Aug 2000 A
6113462 Yang Sep 2000 A
6114238 Liao Sep 2000 A
6127263 Parikh Oct 2000 A
6128016 Coelho et al. Oct 2000 A
6136163 Cheung et al. Oct 2000 A
6141660 Bach et al. Oct 2000 A
6143646 Wetzel Nov 2000 A
6148099 Lee et al. Nov 2000 A
6148239 Funk et al. Nov 2000 A
6148246 Kawazome Nov 2000 A
6150270 Matsuda et al. Nov 2000 A
6157864 Schwenke et al. Dec 2000 A
6159075 Zhang Dec 2000 A
6159644 Satoh et al. Dec 2000 A
6161054 Rosenthal et al. Dec 2000 A
6169931 Runnels Jan 2001 B1
6172756 Chalmers et al. Jan 2001 B1
6173240 Sepulveda et al. Jan 2001 B1
6175777 Kim Jan 2001 B1
6178390 Jun Jan 2001 B1
6181013 Liu et al. Jan 2001 B1
6183345 Kamono et al. Feb 2001 B1
6185324 Ishihara et al. Feb 2001 B1
6191864 Sandhu Feb 2001 B1
6192291 Kwon Feb 2001 B1
6197604 Miller et al. Mar 2001 B1
6204165 Ghoshal Mar 2001 B1
6210983 Atchison et al. Apr 2001 B1
6211094 Jun et al. Apr 2001 B1
6212961 Dvir Apr 2001 B1
6214734 Bothra et al. Apr 2001 B1
6217412 Campbell et al. Apr 2001 B1
6219711 Chari Apr 2001 B1
6222936 Phan et al. Apr 2001 B1
6226563 Lim May 2001 B1
6226792 Goiffon et al. May 2001 B1
6228280 Li et al. May 2001 B1
6230069 Campbell et al. May 2001 B1
6236903 Kim et al. May 2001 B1
6237050 Kim et al. May 2001 B1
6240330 Kurtzberg et al. May 2001 B1
6240331 Yun May 2001 B1
6245581 Bonser et al. Jun 2001 B1
6246972 Klimasauskas Jun 2001 B1
6248602 Bode et al. Jun 2001 B1
6249712 Boiquaye Jun 2001 B1
6252412 Talbot et al. Jun 2001 B1
6253366 Mutschler, III Jun 2001 B1
6259160 Lopatin et al. Jul 2001 B1
6263255 Tan et al. Jul 2001 B1
6268270 Scheid et al. Jul 2001 B1
6271670 Caffey Aug 2001 B1
6276989 Campbell et al. Aug 2001 B1
6277014 Chen et al. Aug 2001 B1
6278899 Piche et al. Aug 2001 B1
6280289 Wiswesser et al. Aug 2001 B1
6281127 Shue Aug 2001 B1
6284622 Campbell et al. Sep 2001 B1
6287879 Gonzales et al. Sep 2001 B1
6290572 Hofmann Sep 2001 B1
6291367 Kelkar Sep 2001 B1
6292708 Allen et al. Sep 2001 B1
6298274 Inoue Oct 2001 B1
6298470 Breiner et al. Oct 2001 B1
6303395 Nulman Oct 2001 B1
6303500 Jiang et al. Oct 2001 B1
6304999 Toprac et al. Oct 2001 B1
6307628 Lu et al. Oct 2001 B1
6314379 Hu et al. Nov 2001 B1
6317643 Dmochowski Nov 2001 B1
6320655 Matsushita et al. Nov 2001 B1
6324481 Atchison et al. Nov 2001 B1
6334807 Lebel et al. Jan 2002 B1
6336841 Chang Jan 2002 B1
6339727 Ladd Jan 2002 B1
6340602 Johnson et al. Jan 2002 B1
6345288 Reed et al. Feb 2002 B1
6345315 Mishra Feb 2002 B1
6346426 Toprac et al. Feb 2002 B1
6355559 Havemann et al. Mar 2002 B1
6360133 Campbell et al. Mar 2002 B1
6360184 Jacquez Mar 2002 B1
6363294 Coronel et al. Mar 2002 B1
6366934 Cheng et al. Apr 2002 B1
6368879 Toprac Apr 2002 B1
6368883 Bode et al. Apr 2002 B1
6368884 Goodwin et al. Apr 2002 B1
6379980 Toprac Apr 2002 B1
6381564 Davis et al. Apr 2002 B1
6388253 Su May 2002 B1
6389491 Jacobson et al. May 2002 B1
6391780 Shih et al. May 2002 B1
6395152 Wang May 2002 B1
6397114 Eryurek et al. May 2002 B1
6400162 Mallory et al. Jun 2002 B1
6405096 Toprac et al. Jun 2002 B1
6405144 Toprac et al. Jun 2002 B1
6417014 Lam et al. Jul 2002 B1
6426289 Farrar Jul 2002 B1
6427093 Toprac Jul 2002 B1
6432728 Tai et al. Aug 2002 B1
6435952 Boyd et al. Aug 2002 B1
6438438 Takagi et al. Aug 2002 B1
6440295 Wang Aug 2002 B1
6442496 Pasadyn et al. Aug 2002 B1
6449524 Miller et al. Sep 2002 B1
6455415 Lopatin et al. Sep 2002 B1
6455937 Cunningham Sep 2002 B1
6465263 Coss, Jr. et al. Oct 2002 B1
6470230 Toprac et al. Oct 2002 B1
6479902 Lopatin et al. Nov 2002 B1
6479990 Mednikov et al. Nov 2002 B2
6482660 Conchieri et al. Nov 2002 B2
6484064 Campbell Nov 2002 B1
6486492 Su Nov 2002 B1
6492281 Song et al. Dec 2002 B1
6495452 Shih Dec 2002 B1
6503839 Gonzales et al. Jan 2003 B2
6515368 Lopatin et al. Feb 2003 B1
6517413 Hu et al. Feb 2003 B1
6517414 Tobin et al. Feb 2003 B1
6528409 Lopatin et al. Mar 2003 B1
6529789 Campbell et al. Mar 2003 B1
6532555 Miller et al. Mar 2003 B1
6535783 Miller et al. Mar 2003 B1
6537912 Agarwal Mar 2003 B1
6540591 Pasadyn et al. Apr 2003 B1
6541401 Herner et al. Apr 2003 B1
6546508 Sonderman et al. Apr 2003 B1
6556881 Miller Apr 2003 B1
6560504 Goodwin et al. May 2003 B1
6563308 Nagano et al. May 2003 B2
6567717 Krivokapic et al. May 2003 B2
6580958 Takano Jun 2003 B1
6587744 Stoddard et al. Jul 2003 B1
6590179 Tanaka et al. Jul 2003 B2
6604012 Cho et al. Aug 2003 B1
6605549 Leu et al. Aug 2003 B2
6607976 Chen et al. Aug 2003 B2
6609946 Tran Aug 2003 B1
6616513 Osterheld Sep 2003 B1
6618692 Takahashi et al. Sep 2003 B2
6624075 Lopatin et al. Sep 2003 B1
6625497 Fairbairn et al. Sep 2003 B2
6630741 Lopatin et al. Oct 2003 B1
6640151 Somekh et al. Oct 2003 B1
6652355 Wiswesser et al. Nov 2003 B2
6660633 Lopatin et al. Dec 2003 B1
6678570 Pasadyn et al. Jan 2004 B1
6708074 Chi et al. Mar 2004 B1
6708075 Sonderman et al. Mar 2004 B2
6713377 Lee et al. Mar 2004 B2
6725402 Coss, Jr. et al. Apr 2004 B1
6728587 Goldman et al. Apr 2004 B2
6735492 Conrad et al. May 2004 B2
6751518 Sonderman et al. Jun 2004 B1
6774998 Wright et al. Aug 2004 B1
6911400 Colburn et al. Jun 2005 B2
20010001755 Sandhu et al. May 2001 A1
20010003084 Finarov Jun 2001 A1
20010006873 Moore Jul 2001 A1
20010030366 Nakano et al. Oct 2001 A1
20010039462 Mendez et al. Nov 2001 A1
20010040997 Tsap et al. Nov 2001 A1
20010042690 Talieh Nov 2001 A1
20010044667 Nakano et al. Nov 2001 A1
20020032499 Wilson et al. Mar 2002 A1
20020058460 Lee et al. May 2002 A1
20020070126 Sato et al. Jun 2002 A1
20020077031 Johannson et al. Jun 2002 A1
20020081951 Boyd et al. Jun 2002 A1
20020089676 Pecen et al. Jul 2002 A1
20020102853 Li et al. Aug 2002 A1
20020107599 Patel et al. Aug 2002 A1
20020107604 Riley et al. Aug 2002 A1
20020113039 Mok et al. Aug 2002 A1
20020127950 Hirose et al. Sep 2002 A1
20020128805 Goldman et al. Sep 2002 A1
20020149359 Crouzen et al. Oct 2002 A1
20020165636 Hasan Nov 2002 A1
20020173129 Shin et al. Nov 2002 A1
20020183986 Stewart et al. Dec 2002 A1
20020185658 Inoue et al. Dec 2002 A1
20020193899 Shanmugasundram et al. Dec 2002 A1
20020193902 Shanmugasundram et al. Dec 2002 A1
20020197745 Shanmugasundram et al. Dec 2002 A1
20020197934 Paik Dec 2002 A1
20020199082 Shanmugasundram et al. Dec 2002 A1
20030017256 Shimane Jan 2003 A1
20030020909 Adams et al. Jan 2003 A1
20030020928 Ritzdorf et al. Jan 2003 A1
20030154062 Daft et al. Aug 2003 A1
Foreign Referenced Citations (82)
Number Date Country
2050247 Aug 1991 CA
2165847 Aug 1991 CA
2194855 Aug 1991 CA
0 397 924 Nov 1990 EP
0 621 522 Oct 1994 EP
0 747 795 Dec 1996 EP
0 869 652 Oct 1998 EP
0 877 308 Nov 1998 EP
0 881 040 Dec 1998 EP
0 895 145 Feb 1999 EP
0 910 123 Apr 1999 EP
0 932 194 Jul 1999 EP
0 932 195 Jul 1999 EP
1 066 925 Jan 2001 EP
1 067 757 Jan 2001 EP
1 071 128 Jan 2001 EP
1 083 470 Mar 2001 EP
1 092 505 Apr 2001 EP
1 072 967 Nov 2001 EP
1 182 526 Feb 2002 EP
2 347 885 Sep 2000 GB
2 365 215 Feb 2002 GB
61-66104 Apr 1986 JP
61-171147 Aug 1986 JP
62172741 Jul 1987 JP
01-283934 Nov 1989 JP
3-202710 Sep 1991 JP
05-151231 Jun 1993 JP
05-216896 Aug 1993 JP
05-266029 Oct 1993 JP
06-110894 Apr 1994 JP
06-176994 Jun 1994 JP
06-184434 Jul 1994 JP
06-252236 Sep 1994 JP
06-260380 Sep 1994 JP
8-23166 Jan 1996 JP
08-50161 Feb 1996 JP
08-149583 Jun 1996 JP
08-304023 Nov 1996 JP
09-34535 Feb 1997 JP
9-246547 Sep 1997 JP
10-34522 Feb 1998 JP
10-173029 Jun 1998 JP
11-67853 Mar 1999 JP
11-126816 May 1999 JP
11-135601 May 1999 JP
2000-183001 Jun 2000 JP
2001-76982 Mar 2001 JP
2001-284299 Oct 2001 JP
2001-305108 Oct 2001 JP
2002-9030 Jan 2002 JP
2002-343754 Nov 2002 JP
434103 May 2001 TW
436383 May 2001 TW
455938 Sep 2001 TW
455976 Sep 2001 TW
WO 9534866 Dec 1995 WO
WO 9805066 Feb 1998 WO
WO 9845090 Oct 1998 WO
WO 9909371 Feb 1999 WO
WO 9925520 May 1999 WO
WO 9959200 Nov 1999 WO
WO 0000874 Jan 2000 WO
WO 0005759 Feb 2000 WO
WO 0035063 Jun 2000 WO
WO 0054325 Sep 2000 WO
WO 0079355 Dec 2000 WO
WO 0111679 Feb 2001 WO
WO 0115865 Mar 2001 WO
WO 0118623 Mar 2001 WO
WO 0125865 Apr 2001 WO
WO 0133277 May 2001 WO
WO 0133501 May 2001 WO
WO 0152055 Jul 2001 WO
WO 0152319 Jul 2001 WO
WO 0157823 Aug 2001 WO
WO 0180306 Oct 2001 WO
WO 0217150 Feb 2002 WO
WO 0231613 Apr 2002 WO
WO 0231613 Apr 2002 WO
WO 0233737 Apr 2002 WO
WO 02074491 Sep 2002 WO
Related Publications (1)
Number Date Country
20040248409 A1 Dec 2004 US
Provisional Applications (1)
Number Date Country
60475351 Jun 2003 US