Not Applicable
Not Applicable
The present invention is generally related to resistive switching devices. More particularly, embodiments according to the present invention provide a method to form an active metal material for resistive switching of a resistive switching device. The present invention can be applied to non-volatile memory devices but it should be recognized that the present invention can have a much broader range of applicability.
The success of semiconductor devices has been primarily driven by an intensive transistor down-scaling process. However, as field effect transistors (FET) approach sizes less than 100 nm, problems arise such as the short channel effect, that degrade device performance. Moreover, such sub 100 nm device sizes can lead to sub-threshold slope non-scaling and increase in power dissipation. It is generally believed that transistor-based memories such as those commonly known as Flash may end scaling within a decade.
Other non-volatile random access memory (RAM) devices such as ferroelectric RAM (Fe RAM), magneto-resistive RAM (MRAM), organic RAM (ORAM), and phase change RAM (PCRAM), among others, have been explored as next generation memory devices. These devices often require new materials and device structures that couple with silicon-based devices to form a memory cell, but they lack one or more key attributes. For example, Fe-RAM and MRAM devices have fast switching characteristics and good programming endurance, but their fabrication is not CMOS compatible they are usually large in size. Switching a PCRAM device requires a large amount of power. Organic RAM or ORAM devices are incompatible with large volume silicon-based fabrication and device reliability is usually poor.
From the above, a new semiconductor device structure and integration is desirable.
The present invention is generally related to resistive switching devices. More particularly, embodiments according to the present invention provide a method to form an active metal material for resistive switching of a resistive switching device. The present invention can be applied to non-volatile memory devices but it should be recognized that the present invention can have a much broader range of applicability.
In a specific embodiment, a method for forming an active material for a non-volatile memory device is provided. The method includes providing a substrate having a surface region. A first dielectric material is deposited overlying the surface region and a first wiring structure is formed overlying the first dielectric material. The method includes depositing a second dielectric material overlying the first wiring structure and forming a via opening in portions of the second dielectric material to expose a portion of the first wiring structure. A resistive switching material comprising a silicon material is deposited to fill a first portion of the via opening. In a specific embodiment, a metal material is deposited to fill a second portion of the via structure and overlying an exposed surface region of the second dielectric material. The metal material is configured to be in direct contact with the resistive switching material in a specific embodiment. The method deposits a diffusion barrier layer overlying the metal material and forms a masking layer overlying a first portion of the diffusion barrier layer while exposing a second portion of the diffusion barrier layer. In a specific embodiment the first portion overlies the via opening and the second portion overlies the second dielectric material. In a specific embodiment, the method includes selectively removing the metal material and the diffusion barrier layer from at least the surface region of the second dielectric material and maintaining the diffusion barrier material and the metal material in the second portion of the via opening and maintaining the metal material to be in physical and electrical contact with the resistive switching material.
Many benefits can be achieved by ways of the present invention. Certain materials such as noble metals have no suitable volatile species thus making reactive ion etching in fabrication not a viable option. Embodiments according to the present invention provide a method to eliminate a metal etching step for forming an active noble metal for resistive switching. The active noble material can be a part of a wiring stricture in certain implementation. The wiring structure is substantially free from defects resulting from etched particles from the noble materials and shorts are prevented. Additionally, the present method uses convention processing techniques without modification to the equipment. Depending on the embodiment, one or more of these benefits may be achieved. One skilled in the art would recognize other modifications, variations, and alternatives.
According to one aspect of the invention, a method for forming a non-volatile memory device configured with a resistive switching element, is disclosed. One technique includes providing a substrate having a surface region, depositing a first dielectric material overlying the surface region, and forming a first wiring structure overlying the first dielectric material. A process includes depositing a second dielectric material overlying the first wiring structure, and forming a via opening in the second dielectric material to expose a portion of the first wiring structure, while maintaining a portion of the second dielectric material. A method includes forming a resistive switching material comprising an amorphous silicon material within the via opening, and depositing a metal material comprising a silver material, wherein a first portion of the metal material overlies the resistive switching material, and wherein a second portion of the metal overlies at least the portion of the dielectric material, wherein the first portion of the metal material contacts the resistive switching material. An operation includes forming a diffusion barrier layer overlying the metal material, wherein a first portion of the diffusion barrier layer contacts the first portion of the metal material. and selectively removing the second portion of the metal material and a second portion of the diffusion barrier layer overlying the second portion of the metal material using a solution at a predetermined temperature while maintaining the portion of the diffusion barrier material and the first portion of the metal material within the via opening.
According to another aspect of the invention, a method for forming a silver active metal for a non-volatile memory device is disclosed. One technique includes forming a first wiring structure overlying a surface region of a substrate, depositing a first dielectric material overlying the first wiring structure, and forming a via opening in the first dielectric material to expose a portion of the first wiring structure, while maintaining a portion of the first dielectric material. A process includes forming a layer of resistive switching material within the via opening, wherein the resistive switching material comprises a silicon material, forming a silver material overlying the layer of resistive switching material and overlying the portion of the first dielectric material, and forming a diffusion barrier layer overlying the silver material to form a resulting structure. A method includes selectively removing a portion of the silver material and a portion of the diffusion barrier layer overlying the portion of the first dielectric material while maintaining a portion of the silver material and a portion of the diffusion barrier material overlying the layer of silicon material within the via opening.
In order to more fully understand the present invention, reference is made to the accompanying drawings. Understanding that these drawings are not to be considered limitations in the scope of the invention, the presently described embodiments and the presently understood best mode of the invention are described with additional detail through use of the accompanying drawings in which:
The present invention is generally related to resistive switching devices. More particularly, embodiments according to the present invention provide a method to form an active metal material for resistive switching of a resistive switching device. The present invention can be applied to non-volatile memory devices but it should be recognized that the present invention can have a much broader range of applicability.
Resistive switching behavior has been observed and studied in micrometer-scale amorphous silicon (a-Si) devices since the 1980s. A typical device consists of a pair of metal electrodes sandwiching an amorphous-Si layer in a so-called Metal/a-Si/Metal (M/a-Si/M) structure, in which the voltage applied across the pair of metal electrodes causes changes in the resistance of the a-Si material. These conventional M/a-Si/M based switching devices can have the advantages of high Ion/Ioff ratios, and can be fabricated with a CMOS compatible fabrication process and materials.
To further decrease cost per bit, device shrinking, process simplification, as well as yield improvement, among others, are necessary. Particles from an etching process, especially from a metal etch, produce defects that cause electrical shorts and impacting device reliability and rendering device inoperable. Embodiments according to the present invention provide a method and a structure to form a non-volatile memory device using silver as the active material free from a silver etch step to improve desirable material characteristic and device reliability.
The terms “bottom” and “top” are for references only and not meant to be limiting.
FIG. 1—area simplified diagrams illustrating a method for forming a resistive switching device for a non-volatile memory device according to an embodiment of the present invention. As shown in
As illustrate in
Referring to
The method subjects the first wiring material to a first pattern and etching process to form a first wiring structure 402 in a specific embodiment. As shown in
As shown in
In a specific embodiment, the resistive switching material is subjected to an etch back process to selectively remove the resistive switching material to maintain exposure of a second portion of the via and a substantially horizontal portion surrounding the via opening in a surface region of the second dielectric material while the resistive switching material is substantially maintained in the first portion of the via opening 802 as shown in
Referring to
In some embodiments, the silver material is in direct contact with the amorphous silicon used as the resistive switching material in a specific embodiment. In other embodiments, a thin layer of material, e.g. oxide, nitride, is formed prior to the deposition of the silver material on top of the amorphous silicon used as the resistive switching material. This interposing thin layer of material may be naturally or specifically grown or formed. In some embodiments, one or more etch operations (e.g. HF etch, Argon etch) may help control the thickness of this layer. In some embodiments, the thickness of the material (e.g. oxide) prior to deposition of the silver material may range from about 20 angstroms to about 50 angstroms; in other embodiments, the thickness may range from about 30 angstroms to about 40 angstroms; or the like. In some embodiments, an additional layer of amorphous silicon may be disposed upon the top of the thin layer of (oxide, nitride, barrier) material, prior to deposition of the silver material. This additional layer of amorphous silicon (potentially not intentionally doped) may be used to help bind the silver material to the thin layer of material (e.g. oxide, nitride, barrier). In some examples, the thickness may be on the order of 20-50 angstroms. In one example, the order of layers may be: undoped amorphous silicon used as the resistive switching material, a thin layer of material (e.g. oxide, nitride, barrier), a thin layer of amorphous silicon, and the silver material.
In a specific embodiment, the method forms an adhesion material 904 overlying the active metal material (for example, silver material). The adhesion material can be titanium, titanium nitride, tantalum nitride, titanium tungsten, and any combinations of these, and others. The adhesion material may be formed using a physical vapor deposition process, a chemical vapor deposition process, atomic layer deposition process, or a combination, and others.
As shown in
In various embodiments, the lift-off etching process can be performed with a wet etch process. The wet etch process includes using a solution comprising at least phosphoric acid, acetic acid, and nitric acid in a specific embodiment. In certain embodiment, the solution can be diluted using water, for example, de-ionized water. In a specific embodiment, the solution can have about 80% phosphoric acid, about 5% nitric acid, about 5% acetic acid, and about 10% de-ionized water. The wet etch process is further characterized by a removal rate or reaction rate. The reaction rate may be controlled by a proportion of acetic acid in the solution. An increase of acetic acid in the solution would slow the reaction rate in a specific embodiment. Depending on the embodiment, the wet etch process may be performed at room temperature or the solution may be heated, though the reaction may give out certain amount of heat. Reaction temperature can range from about room temperature (for example, about 25 Degree Celsius) to about 80 Degree Celsius or more preferably ranges from about 25 Degree Celsius to about 50 Degree Celsius. The solution is configured to weaken an adhesion between the metal material and the second dielectric material while maintaining the metal material to be in contact with the resistive switching material in the via opening in a specific embodiment. Etching by weakening the adhesion between two films is known as a lift-off process. As shown in
Referring to
Depending upon the embodiments, there can be other variations. For example, a contact material can be formed interposed between the first wiring material and the amorphous silicon material. The contact material can be a p+ polysilicon material or other silicon-based material having a suitable conductivity characteristic. The contact material controls a defect density in an interface region between the first wiring material and the amorphous silicon and allows for a desirable switching behavior in a specific embodiment. In other embodiments, the contact material may not be necessary.
Embodiments according to the present invention provide a method for forming an active metal material for resistive switching for a resistive switching device. The method selectively removes the active material from a surface region of a dielectric material to maintain the active material in a via structure for the resistive switching device in a specific embodiment. To illustrate the present invention, experiments have been performed.
In various embodiments, as the memory devices describe herein are small compared to standard memories, a processor, or the like, may include greater amounts of memory (cache) on the same semiconductor device. As such memories are relatively non-volatile, the states of such processors, or the like may be maintained while power is not supplied to the processors. To a user, such capability would greatly enhance the power-on power-off performance of devices including such processors. Additionally, such capability would greatly reduce the power consumption of devices including such processors. In particular, because such memories are non-volatile the processor need not draw power to refresh the memory states, as is common with CMOS type memories. Accordingly, embodiments of the present invention are directed towards processors or other logic incorporating memory devices, as described herein, devices (e.g. smart phones, network devices) incorporating processors or other logic incorporating such memory devices, and the like.
Further embodiments can be envisioned to one of ordinary skill in the art after reading this disclosure. In other embodiments, combinations or sub-combinations of the above disclosed invention can be advantageously made. The block diagrams of the architecture and flow charts are grouped for ease of understanding. However it should be understood that combinations of blocks, additions of new blocks, re-arrangement of blocks, and the like are contemplated in alternative embodiments of the present invention.
The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that various modifications and changes may be made thereunto without departing from the broader spirit and scope of the invention as set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
680652 | Elden | Aug 1901 | A |
4433468 | Kawamata | Feb 1984 | A |
4684972 | Owen et al. | Aug 1987 | A |
4741601 | Saito | May 1988 | A |
5242855 | Oguro | Sep 1993 | A |
5278085 | Maddox, III et al. | Jan 1994 | A |
5315131 | Kishimoto et al. | May 1994 | A |
5335219 | Ovshinsky et al. | Aug 1994 | A |
5360981 | Owen et al. | Nov 1994 | A |
5457649 | Eichman et al. | Oct 1995 | A |
5538564 | Kaschmitter | Jul 1996 | A |
5541869 | Rose et al. | Jul 1996 | A |
5594363 | Freeman et al. | Jan 1997 | A |
5614756 | Forouhi et al. | Mar 1997 | A |
5714416 | Eichman et al. | Feb 1998 | A |
5751012 | Wolstenholme et al. | May 1998 | A |
5840608 | Chang | Nov 1998 | A |
5970332 | Pruijmboom et al. | Oct 1999 | A |
5998244 | Wolstenholme et al. | Dec 1999 | A |
6128214 | Kuekes et al. | Oct 2000 | A |
6143642 | Sur, Jr. et al. | Nov 2000 | A |
6259116 | Shannon | Jul 2001 | B1 |
6291836 | Kramer et al. | Sep 2001 | B1 |
6436765 | Liou et al. | Aug 2002 | B1 |
6436818 | Hu et al. | Aug 2002 | B1 |
6492694 | Noble et al. | Dec 2002 | B2 |
6762474 | Mills, Jr. | Jul 2004 | B1 |
6768157 | Krieger et al. | Jul 2004 | B2 |
6815286 | Krieger et al. | Nov 2004 | B2 |
6838720 | Krieger et al. | Jan 2005 | B2 |
6858481 | Krieger et al. | Feb 2005 | B2 |
6858482 | Gilton | Feb 2005 | B2 |
6864127 | Yamazaki et al. | Mar 2005 | B2 |
6864522 | Krieger et al. | Mar 2005 | B2 |
6927430 | Hsu | Aug 2005 | B2 |
6939787 | Ohtake et al. | Sep 2005 | B2 |
6946719 | Petti et al. | Sep 2005 | B2 |
7020006 | Chevallier et al. | Mar 2006 | B2 |
7023093 | Canaperi et al. | Apr 2006 | B2 |
7026702 | Krieger et al. | Apr 2006 | B2 |
7102150 | Harshfield et al. | Sep 2006 | B2 |
7122853 | Gaun et al. | Oct 2006 | B1 |
7187577 | Wang et al. | Mar 2007 | B1 |
7221599 | Gaun et al. | May 2007 | B1 |
7238607 | Dunton et al. | Jul 2007 | B2 |
7254053 | Krieger et al. | Aug 2007 | B2 |
7289353 | Spitzer et al. | Oct 2007 | B2 |
7324363 | Kerns et al. | Jan 2008 | B2 |
7365411 | Campbell | Apr 2008 | B2 |
7405418 | Happ et al. | Jul 2008 | B2 |
7426128 | Scheuerlein | Sep 2008 | B2 |
7433253 | Gogl et al. | Oct 2008 | B2 |
7474000 | Scheuerlein et al. | Jan 2009 | B2 |
7479650 | Gilton | Jan 2009 | B2 |
7521705 | Liu | Apr 2009 | B2 |
7534625 | Karpov et al. | May 2009 | B2 |
7550380 | Elkins et al. | Jun 2009 | B2 |
7606059 | Toda | Oct 2009 | B2 |
7615439 | Schricker et al. | Nov 2009 | B1 |
7728318 | Raghuram et al. | Jun 2010 | B2 |
7729158 | Toda et al. | Jun 2010 | B2 |
7749805 | Pinnow et al. | Jul 2010 | B2 |
7772581 | Lung | Aug 2010 | B2 |
7778063 | Brubaker et al. | Aug 2010 | B2 |
7786464 | Nirschl et al. | Aug 2010 | B2 |
7786589 | Matsunaga et al. | Aug 2010 | B2 |
7824956 | Schricker et al. | Nov 2010 | B2 |
7829875 | Scheuerlein | Nov 2010 | B2 |
7835170 | Bertin et al. | Nov 2010 | B2 |
7859884 | Scheuerlein | Dec 2010 | B2 |
7875871 | Kumar et al. | Jan 2011 | B2 |
7881097 | Hosomi et al. | Feb 2011 | B2 |
7897953 | Liu | Mar 2011 | B2 |
7898838 | Chen et al. | Mar 2011 | B2 |
7920412 | Hosotani et al. | Apr 2011 | B2 |
7924138 | Kinoshita et al. | Apr 2011 | B2 |
7968419 | Li et al. | Jun 2011 | B2 |
7984776 | Beyer et al. | Jul 2011 | B2 |
8004882 | Katti et al. | Aug 2011 | B2 |
8018760 | Muraoka et al. | Sep 2011 | B2 |
8045364 | Schloss et al. | Oct 2011 | B2 |
8054674 | Tamai et al. | Nov 2011 | B2 |
8067815 | Chien et al. | Nov 2011 | B2 |
8071972 | Lu et al. | Dec 2011 | B2 |
8088688 | Herner | Jan 2012 | B1 |
8097874 | Venkatasamy et al. | Jan 2012 | B2 |
8102698 | Scheuerlein | Jan 2012 | B2 |
8143092 | Kumar et al. | Mar 2012 | B2 |
8144498 | Kumar et al. | Mar 2012 | B2 |
8164948 | Katti et al. | Apr 2012 | B2 |
8168506 | Herner | May 2012 | B2 |
8183553 | Phatak et al. | May 2012 | B2 |
8187945 | Herner | May 2012 | B2 |
8198144 | Herner | Jun 2012 | B2 |
8207064 | Bandyopadhyay et al. | Jun 2012 | B2 |
8227787 | Kumar et al. | Jul 2012 | B2 |
8231998 | Albano et al. | Jul 2012 | B2 |
8233308 | Schricker et al. | Jul 2012 | B2 |
8237146 | Kreupl et al. | Aug 2012 | B2 |
8258020 | Herner | Sep 2012 | B2 |
8274812 | Jo et al. | Sep 2012 | B2 |
8315079 | Kuo et al. | Nov 2012 | B2 |
8320160 | Nazarian | Nov 2012 | B2 |
8374018 | Lu | Feb 2013 | B2 |
8385100 | Kau et al. | Feb 2013 | B2 |
8394670 | Herner | Mar 2013 | B2 |
20040026682 | Jiang | Feb 2004 | A1 |
20040170040 | Rinerson et al. | Sep 2004 | A1 |
20050020510 | Benedict | Jan 2005 | A1 |
20050029587 | Harshfield | Feb 2005 | A1 |
20050062045 | Bhattacharyya | Mar 2005 | A1 |
20060281244 | Ichige et al. | Dec 2006 | A1 |
20070008773 | Scheuerlein | Jan 2007 | A1 |
20070015348 | Hsu et al. | Jan 2007 | A1 |
20070087508 | Herner | Apr 2007 | A1 |
20070090425 | Kumar et al. | Apr 2007 | A1 |
20070105284 | Herner | May 2007 | A1 |
20070105390 | Oh | May 2007 | A1 |
20070205510 | Lavoie et al. | Sep 2007 | A1 |
20070228414 | Kumar et al. | Oct 2007 | A1 |
20070284575 | Li et al. | Dec 2007 | A1 |
20070290186 | Bourim et al. | Dec 2007 | A1 |
20080002481 | Gogl et al. | Jan 2008 | A1 |
20080006907 | Lee et al. | Jan 2008 | A1 |
20080048164 | Odagawa | Feb 2008 | A1 |
20080089110 | Robinett et al. | Apr 2008 | A1 |
20080090337 | Williams | Apr 2008 | A1 |
20080106925 | Paz de Araujo et al. | May 2008 | A1 |
20080106926 | Brubaker et al. | May 2008 | A1 |
20080185567 | Kumar et al. | Aug 2008 | A1 |
20080206931 | Breuil et al. | Aug 2008 | A1 |
20080278990 | Kumar et al. | Nov 2008 | A1 |
20080304312 | Ho et al. | Dec 2008 | A1 |
20080311722 | Petti et al. | Dec 2008 | A1 |
20090001345 | Schricker et al. | Jan 2009 | A1 |
20090014707 | Lu et al. | Jan 2009 | A1 |
20090052226 | Lee et al. | Feb 2009 | A1 |
20090095951 | Kostylev et al. | Apr 2009 | A1 |
20090152737 | Harshfield | Jun 2009 | A1 |
20090168486 | Kumar | Jul 2009 | A1 |
20090231910 | Liu et al. | Sep 2009 | A1 |
20090250787 | Kutsunai | Oct 2009 | A1 |
20090256130 | Schricker | Oct 2009 | A1 |
20090257265 | Chen et al. | Oct 2009 | A1 |
20090298224 | Lowrey | Dec 2009 | A1 |
20090321789 | Wang et al. | Dec 2009 | A1 |
20100012914 | Xu et al. | Jan 2010 | A1 |
20100019221 | Lung et al. | Jan 2010 | A1 |
20100019310 | Sakamoto | Jan 2010 | A1 |
20100032638 | Xu | Feb 2010 | A1 |
20100084625 | Wicker et al. | Apr 2010 | A1 |
20100085798 | Lu et al. | Apr 2010 | A1 |
20100090192 | Goux et al. | Apr 2010 | A1 |
20100101290 | Bertolotto | Apr 2010 | A1 |
20100102290 | Lu et al. | Apr 2010 | A1 |
20100157651 | Kumar et al. | Jun 2010 | A1 |
20100157710 | Lambertson et al. | Jun 2010 | A1 |
20100163828 | Tu | Jul 2010 | A1 |
20100176368 | Ko et al. | Jul 2010 | A1 |
20100219510 | Scheuerlein et al. | Sep 2010 | A1 |
20100221868 | Sandoval | Sep 2010 | A1 |
20100321095 | Mikawa et al. | Dec 2010 | A1 |
20110089391 | Mihnea et al. | Apr 2011 | A1 |
20110133149 | Sonehara | Jun 2011 | A1 |
20110136327 | Han et al. | Jun 2011 | A1 |
20110155991 | Chen | Jun 2011 | A1 |
20110198557 | Rajendran et al. | Aug 2011 | A1 |
20110204312 | Phatak | Aug 2011 | A1 |
20110205782 | Costa et al. | Aug 2011 | A1 |
20110212616 | Seidel et al. | Sep 2011 | A1 |
20110227028 | Sekar et al. | Sep 2011 | A1 |
20110284814 | Zhang | Nov 2011 | A1 |
20110305064 | Jo et al. | Dec 2011 | A1 |
20110317470 | Lu et al. | Dec 2011 | A1 |
20120007035 | Jo et al. | Jan 2012 | A1 |
20120008366 | Lu | Jan 2012 | A1 |
20120012806 | Herner | Jan 2012 | A1 |
20120015506 | Jo et al. | Jan 2012 | A1 |
20120025161 | Rathor et al. | Feb 2012 | A1 |
20120033479 | Delucca et al. | Feb 2012 | A1 |
20120043519 | Jo et al. | Feb 2012 | A1 |
20120043654 | Lu et al. | Feb 2012 | A1 |
20120074507 | Jo et al. | Mar 2012 | A1 |
20120080798 | Harshfield | Apr 2012 | A1 |
20120104351 | Wei et al. | May 2012 | A1 |
20120108030 | Herner | May 2012 | A1 |
20120145984 | Rabkin et al. | Jun 2012 | A1 |
20120155146 | Ueda et al. | Jun 2012 | A1 |
20120205606 | Lee et al. | Aug 2012 | A1 |
20120235112 | Huo et al. | Sep 2012 | A1 |
20120252183 | Herner | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2405441 | Jan 2012 | EP |
2408035 | Jan 2012 | EP |
WO 2009005699 | Jan 2009 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 13/725,331, dated May 20, 2013. |
International Search Report and Written Opinion for PCT/US2012/045312 filed on Jul. 2, 2012. |
Office Action for U.S. Appl. No. 13/466,008, dated Jul. 29, 2013. |
Russo, U. et al, “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices”, IEEE Transactions on Electron Devices, Feb. 2009, pp. 193-200, vol. 56, Issue 2. |
Cagli, C. et al, “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction”, 2008 IEEE International Electron Devices Meeting (IEDM), Dec. 15-17, 2008, pp. 1-4, San Francisco, CA, USA. |
Office Action for U.S. Appl. No. 13/077,941, dated Aug. 12, 2013. |
Jian Hu et al., “Area-Dependent Switching in Thin Film-Silicon Devices”, Materials Research Society, Mal. Res. Soc. Symp Proc., 2003, pp. A18.3.1-A18.3.6, vol. 762. |
André Dehon, “Array-Based Architecture for FET-Based, Nanoscale Electronics”, IEEE Transactions on Nanotechnology, Mar. 2003, pp. 23-32, vol. 2, No. 1, IEEE. |
Herb Goronkin et al., “High-Performance Emerging Solid-State Memory Technologies”, MRS Bulletin, www.mrs.org/publications/bulletin, Nov. 2004, pp. 805-813. |
Gerhard Müller et al., “Status and Outlook of Emerging Nonvolatile Memory Technologies”, IEEE, 2004, pp. 567-570. |
A.E. Owen et al., “Memory Switching in Amorphous Silicon Devices”, Journal of NonCrystalline Solids 59 & 60,1983, pp. 1273-1280, North Holland Publishing Company/Physical Society of Japan. |
J. Campbell Scott, “Is There an Immortal Memory?”, www.sciencemag.org, Apr. 2, 2004, pp. 62-63, vol. 304 No. 5667, American Association for the Advancement of Science. |
S.H. Lee et al., “Full Integration and Cell Characteristics for 64Mb Nonvolatile PRAM”, 2004 Symposium on VLSI Technology Digest of Technical Papers, IEEE, 2004, pp. 20-21. |
Stephen Y. Chou et al., “Imprint Lithography With 25-Nanometer Resolution”, Science, Apr. 5, 1996, pp. 85-87, vol. 272, American Association for the Advancement of Science. |
S. Zankovych et al., “Nanoimprint Lithography: challenges and prospects”, Nanotechnology, 2001, pp. 91-95, vol. 12, Institute of Physics Publishing. |
A. Avila et al., “Switching in coplanar amorphous hydrogenated silicon devices”, Solid-State Electronics, 2000, pp. 17-27, vol. 44, Elsevier Science Ltd. |
Jian Hu et al., “Switching and filament formation in hot-wire CVD p-type a-Si:H devices”, Thin Solid Films, Science Direct, www.sciencedirect.com, 2003, pp. 249-252, vol. 430, Elsevier Science B.V. |
S. Hudgens et al., “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology”, MRS Bulletin, www.mrs.org/publications/bulletin, Nov. 2004, pp. 829-832. |
K. Terabe et al., “Quantized conductance atomic switch”, Nature, www.nature.com/nature, Jan. 6, 2005, pp. 47-50, vol. 433, Nature Publishing Group. |
Michael Kund et al., “Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20nm”, IEEE, 2005. |
W. Den Boer, “Threshold switching in hydrogenated amorphous silicon”, Appl. Phys. Letter, 1982, pp. 812-813, vol. 40, American Institute of Physics. |
P.G. Lecomber et al., “The Switching Mechanism in Amorphous Silicon Junctions”, Journal of Non-Crystalline Solids,1985, pp. 1373-1382, vol. 77 & 78, Elsevier Science Publishers B.V., North Holland Physics Publishing Division, North-Holland, Amsterdam. |
A. E. Owen et al., “Switching in amorphous devices”, Int. J. Electronics, 1992, pp. 897-906, vol. 73, No. 5, Taylor and Francis Ltd. |
M. Jafar et al., “Switching in amorphous-silicon devices”, Physical Review B, May 15, 1994, pp. 611-615, vol. 49, No. 19, The American Physical Society. |
Alexandra Stikeman, “Polymer Memory—The plastic path to better data storage”, Technology Review, www.technologyreview.com, Sep. 2002, pp. 31. |
Yong Chen et al., “Nanoscale molecular-switch crossbar circuits”, Nanotechnology, 2003, pp. 462-468, vol. 14, Institute of Physics Publishing Ltd. |
C. P. Collier et al., “Electronically Configurable Molecular-Based Logic Gates”, Science Jul. 16, 1999, pp. 391-395, vol. 285, No. 5426, American Association for the Advancement of Science. |
Office Action for U.S. Appl. No. 11/875,541 dated Jul. 22, 2010. |
Office Action for U.S. Appl. No. 11/875,541 dated Mar. 30, 2011. |
Office Action for U.S. Appl. No. 11/875,541 dated Oct. 5, 2011. |
Office Action for U.S. Appl. No. 11/875,541 dated Jun. 8, 2012. |
Jang Wook Choi, “Bistable [2]Rotaxane Based Molecular Electronics: Fundamentals and Applications”, Dissertation, Chapter 3, <http://resolver.caltech.edu/CaltechETD:etd-05242007-194737> 2007, pp. 79-120, California Institute of Technology, Pasadena. |
Sung-Hyun Jo et al., “A Silicon-Based Crossbar Ultra-High-Density Non-Volatile Memory”, SSEL Annual Report 2007. |
International Search Report for PCT/US2009/060023 filed on Oct. 8, 2009. |
Rainer Waser et al., “Nanoionics-based resistive switching memories”, Nature Materials, Nov. 2007, pp. 833-835, vol. 6, Nature Publishing Group. |
Written Opinion of the International Searching Authority for PCT/US2009/060023 filed on Oct. 8, 2009. |
Ex parte Quayle Action for U.S. Appl. No. 12/826,653 dated May 8, 2012. |
International Search Report for PCT/US2011/040090 filed on Jun. 10, 2011. |
Written Opinion of the International Searching Authority for PCT/US2011/040090 filed on Jun. 10, 2011. |
Notice of Allowance for U.S. Appl. No. 13/158,231 dated Apr. 17, 2012. |
Office Action for U.S. Appl. No. 12/835,704 dated Sep. 21, 2011. |
Office Action for U.S. Appl. No. 12/835,704 dated Mar. 1, 2012. |
Advisory Action for U.S. Appl. No. 12/835,704 dated Jun. 8, 2012. |
International Search Report and Written Opinion for PCT/US2011/046035 filed on Jul. 29, 2011. |
Office Action for U.S. Appl. No. 12/861,650 dated Jan. 25, 2012. |
Notice of Allowance for U.S. Appl. No. 12/861,650 dated Jun. 19, 2012. |
Sung Hyun Jo et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices,” Supporting Information, Dec. 29, 2008, pp. 1-4, vol. 9., No. 1, Department of Electrical Engineering and Computer Science, the University of Michigan, Ann Arbor, Michigan. |
Kuk-Hwan Kim et al., “Nanoscale resistive memory with intrinsic diode characteristics and long endurance,” Applied Physics Letters, 2010, pp. 053106-1-053106-3, vol. 96, American Institute of Physics. |
Sung Hyun Jo et al., “Si-Based Two-Terminal Resistive Switching Nonvolatile Memory”, IEEE, 2008. |
Sung Hyun Jo et al., “Nanoscale Memristor Device as Synapse in Neuromorphic Systems”, Nano Letters, 10, 1297-1301, 2010, pubs.acs.org/NanoLett, A-E, American Chemical Society Publications. |
Wei Lu et al., “Nanoelectronics from the bottom up”, Nature Materials, www.nature.com/naturematerials, Nov. 2007, pp. 841-850, vol. 6, Nature Publishing Group. |
Sung Hyun Jo et al., “Ag/a-Si:H/c-Si Resistive Switching Nonvolatile Memory Devices”, Nanotechnology Materials and Devices Conference, IEEE, 2006, pp. 116-117, vol. 1. |
Sung Hyun Jo et al., “Experimental, Modeling and Simulation Studies of Nanoscale Resistance Switching Devices”, 9th Conference on Nanotechnology, IEEE, 2009, pp. 493-495. |
Sung Hyun Jo et al., “Nonvolatile Resistive Switching Devices Based on Nanoscale Metal/Amorphous Silicon/Crystalline Silicon Junctions”, Mater. Res. Soc. Symp. Proc., 2007, vol. 997, Materials Research Society. |
Sung Hyun Jo et al., “Si Memristive Devices Applied to Memory and Neuromorphic Circuits”, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010, pp. 13-16. |
Wei Lu et al., “Supporting Information”, 2008. |
Sung Hyun Jo et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Nano Letters, 2009, pp. 870-874, vol. 9 No. 2, American Chemical Society Publications. |
Sung Hyun Jo et al., “High-Density Crossbar Arrays Based on a Si Memristive System”, Supporting Information, 2009, pp. 1-4. |
Sung Hyun Jo et al., “Programmable Resistance Switching in Nanoscale Two-Terminal Devices”, Nano Letters, 2009, pp. 496-500, vol. 9 No. 1, American Chemical Society Publications. |
Shubhra Gangopadhyay et al., “Memory Switching in Sputtered Hydrogenated Amorphous Silicon (a-Si:H)”, Japanese Journal of Applied Physics, Short Notes, 1985, pp. 1363-1364, vol. 24 No. 10. |
S. K. Dey, “Electrothermal model of switching in amorphous silicon films”, J. Vac. Sci. Technol., Jan./Feb. 1980, pp. 445-448, vol. 17, No. 1, American Vacuum Society. |
J. Hajto et al., “The Programmability of Amorphous Silicon Analogue Memory Elements”, Mat. Res. Soc. Symp. Proc., 1990, pp. 405-410, vol. 192, Materials Research Society. |
M. J. Rose et al., “Amorphous Silicon Analogue Memory Devices”, Journal of Non-Crystalline Solids, 1989, pp. 168-170, vol. 115, Elsevier Science Publishers B.V., North-Holland. |
A. Moopenn et al., “Programmable Synaptic Devices for Electronic Neural Nets”, Control and Computers, 1990, pp. 37-41, vol. 18 No. 2. |
P.G. Le Comber, “Present and Future Applications of Amorphous Silicon and Its Alloys”, Journal of Non-Crystalline Solids, 1989, pp. 1-13, vol. 115, Elsevier Science Publishers B.V., North-Holland. |
J. Hu, et al., “AC Characteristics of Cr/p+a-Si:H/V Analog Switching Devices”, IEEE Transactions on Electron Devices, Sep. 2000, pp. 1751-1757, vol. 47 No. 9, IEEE. |
A.E. Owen et al., “New amorphous-silicon electrically programmable nonvolatile switching device”, Solid-State and Electron Devices, IEEE Proceedings, Apr. 1982, pp. 51-54, vol. 129, Pt. I., No. 2. |
J. Hajto et al., “Amorphous & Microcrystalline Semiconductor Devices: vol. 2, Materials and Device Physics”, Mar. 1, 2004, pp. 640-700, Artech House Publishers. |
J. Hajto et al., “Analogue memory and ballistic electron effects in metal-amorphous silicon structures”, Philosophical Magazine B, 1991, pp. 349-369, vol. 63 No. 1, Taylor & Francis Ltd. |
A. J. Holmes et al., “Design of Analogue Synapse Circuits using Non-Volatile a-Si:H Memory Devices”, Proceedings of ISCAS, 1994, pp. 351-354. |
Yajie Dong et al., “Si/a-Si Core/Shell Nanowires as Nonvolatile Crossbar Switches”, Nano Letters, Jan. 2008, pp. 386-391, vol. 8 No. 2, American Chemical Society. |
European Search Report for Application No. EP 09 81 9890.6 of Mar. 27, 2012. |
D. A. Muller et al., “The Electronic structure at the atomic scale of ultrathin gate oxides”, Nature, Jun. 24, 1999, pp. 758-761, vol. 399. |
J. Suñé et al., “Nondestructive multiple breakdown events in very thin SiO2 films”, Applied Physics Letters, 1989, pp. 128-130, vol. 55. |
A. E. Owen et al., “Electronic Switching in Amorphous Silicon Devices: Properties of the Conducting Filament”, Proceedings of 5th International Conference on Solid-State and Integrated Circuit Technology, IEEE, 1998, pp. 830-833. |
Sung Hyun Jo, “Nanoscale Memristive Devices for Memory and Logic Applications”, Ph. D dissertation, University of Michigan, 2010. |
Office Action for U.S. Appl. No. 12/894,098 dated Aug. 1, 2012. |
Sung Hyun Jo et al., “CMOS Compatible Nanoscale Nonvolatile Resistance Switching Memory”, Nano Letters, 2008, pp. 392-397, vol. 8, No. 2. |
Office Action for U.S. Appl. No. 12/582,086 dated Apr. 19, 2011. |
Office Action for U.S. Appl. No. 12/582,086 dated Sep. 6, 2011. |
Notice of Allowance for U.S. Appl. No. 12/582,086 dated Oct. 21, 2011. |
International Search Report for PCT/US2009/061249 filed on Oct. 20, 2009. |
Written Opinion of the International Searching Authority for PCT/US2009/061249 filed on Oct. 20, 2009. |
Office Action for U.S. Appl. No. 12/861,650 dated Oct. 16, 2012. |
Notice of Allowance for U.S. Appl. No. 12/894,087 dated Oct. 25, 2012. |
Notice of Allowance for U.S. Appl. No. 13/149,807 dated Oct. 29, 2012. |
Notice of Allowance for U.S. Appl. No. 12/861,666 dated Nov. 14, 2012. |
Office Action for U.S. Appl. No. 13/156,232, dated Nov. 26, 2012. |
Notice of Allowance for U.S. Appl. No. 13/290,024 dated Nov. 28, 2012. |
Notice of Allowance for U.S. Appl. No. 12/814,410 dated Jan. 8, 2013. |
Corrected Notice of Allowance for U.S. Appl. No. 12/861,666 dated Jan. 11, 2013. |
Supplemental Notice of Allowance for U.S. Appl. No. 12/894,087 dated Jan. 11, 2013. |
Notice of Allowance for U.S. Appl. No. 13/314,513 dated Jan. 24, 2013. |
Office Action for U.S. Appl. No. 12/814,410 dated Apr. 17, 2012. |
Office Action for U.S. Appl. No. 12/835,699 dated Aug. 24, 2011. |
Notice of Allowance for U.S. Appl. No. 12/835,699 dated Feb. 6, 2012. |
Office Action for U.S. Appl. No. 12/833,898 dated Apr. 5, 2012. |
European Search Report for Application No. EP 1100 5207.3 of Oct. 12, 2011. |
Notice of Allowance for U.S. Appl. No. 12/833,898 dated May 30, 2012. |
Notice of Allowance for U.S. Appl. No. 12/939,824 dated May 11, 2012. |
Notice of Allowance for U.S. Appl. No. 12/940,920 dated Oct. 5, 2011. |
Office Action for U.S. Appl. No. 13/314,513 dated Mar. 27, 2012. |
Shong Yin, “Solution Processed Silver Sulfide Thin Films for Filament Memory Applications”, Technical Report No. UCB/EECS-2010-166, http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-166.html, Dec. 17, 2010, Electrical Engineering and Computer Sciences, University of California at Berkeley. |
Office Action for U.S. Appl. No. 13/149,653 dated Apr. 25, 2012. |
International Search Report for PCT/US2011/045124 filed on Jul. 22, 2011. |
Written Opinion of the International Searching Authority for PCT/US2011/045124 filed on Jul. 22, 2011. |
Peng-Heng Chang et al., “Aluminum spiking at contact windows in Al/Ti-W/Si”, Appl. Phys. Lett., Jan. 25, 1988, pp. 272-274, vol. 52, No. 4, American Institute of Physics. |
J. Del Alamo et al., “Operating Limits of Al-Alloyed High-Low Junctions for BSF Solar Cells”, Solid-State Electronics, 1981, pp. 415-420, vol. 24, Pergamon Press Ltd., Great Britain. |
Hao-Chih Yuan et al., “Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction”, NREL Conference Paper CP-520-42566, 33rd IEEE Photovoltaic Specialists Conference, May 11-16, 2008, National Renewable Energy Laboratory, San Diego, California. |
Notice of Allowance for U.S. Appl. No. 12/939,824 dated Jul. 24, 2012. |
Office Action for Application No. EP 1100 5207.3 dated Aug. 8, 2012. |
Notice of Allowance for U.S. Appl. No. 13/532,019 dated Nov. 14, 2012. |
Office Action for U.S. Appl. No. 13/149,653 dated Nov. 20, 2012. |
Office Action of U.S. Appl. No. 13/436,714 dated Dec. 7, 2012. |
Notice of Allowance for U.S. Appl. No. 13/118,258, dated Feb. 6, 2013. |
International Search Report and Written Opinion for PCT/US2012/040242, filed May 31, 2012. |
Office Action for U.S. Appl. No. 13/174,264 dated Mar. 6, 2013. |
Office Action for U.S. Appl. No. 13/679,976, dated Mar. 6, 2013. |
Notice of Allowance for U.S. Appl. No. 12/894,098, dated Mar. 15, 2013. |
Office Action for U.S. Appl. No. 13/465,188, dated Mar. 19, 2013. |
Office Action for U.S. Appl. No. 12/861,432 dated Mar. 29, 2013. |
Notice of Allowance for U.S. Appl. No. 13/748,490, dated Apr. 9, 2013. |
Office Action of U.S. Appl. No. 13/436,714 dated Aug. 27, 2013. |
Notice of Allowance for U.S. Appl. No. 13/679,976, dated Sep. 17, 2013. |
Office Action for U.S. Appl. No. 13/189,401 dated Sep. 30, 2013. |
Office Action for U.S. Appl. No. 13/462,653 dated Sep. 30, 2013. |
Corrected Notice of Allowability for U.S. Appl. No. 13/733,828, dated Oct. 1, 2013. |
Office Action for U.S. Appl. No. 13/594,665 dated Aug. 2, 2013. |
Notice of Allowance for U.S. Appl. No. 13/769,152, dated Oct. 8, 2013,. |
Notice of Allowance for U.S. Appl. No. 13/905,074 , dated Oct. 8, 2013. |
Notice of Allowability for U.S. Appl. No. 13/452,657, dated Oct. 10, 2013. |
Notice of Allowance for U.S. Appl. No. 13/174,264, dated Oct. 16, 2013. |
Office Action for U.S. Appl. No. 13/564,639, dated Dec. 6, 2013. |