A semiconducting ferroelectric device able to be manufactured at low temperatures and utilized in electronic memory systems is described. In some embodiments, the device allows for controlled switching of a ferroelectric layer between various polarization states.
Ferroelectric insulator materials that exhibit polarization are available. Such polarization can be reoriented by ion displacement in the crystal into two or more nonvolatile states that can be controllably switched between using an external electric field. Unfortunately, such devices can have short polarization state retention time, in part because charge accumulation at the ferroelectric insulator and semiconductor interface lead to threshold voltage drift. Further, ferroelectric insulator materials often cannot be satisfactorily annealed below 450 degrees C., which is a typical requirement for devices with channel lengths less than 90 nm. Devices with better polarization state control that are readily manufacturable are needed.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to the described embodiments, examples of which are illustrated in the accompanying drawings. To the extent possible, in the Figures similar structures will be identified using similar reference characters. It will be understood that the Figures are presented for the purpose of describing particular embodiments of the invention and are not intended to limit the invention thereto.
In one embodiment of operation, semiconducting ferroelectric device stack 10 of
In some embodiments, the substrate 12 includes a semiconductor that can be crystal silicon, crystal germanium, silicon carbide, silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technology, doped and/or undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, conventional metal oxide semiconductors (CMOS), and/or other semiconductor structures and/or technologies. In some embodiments, the substrate 12 can act as a semiconductive substrate. The substrate 12 can be biased or maintained at zero bias. The substrate can additionally support various circuitry, such as driver and/or decode circuitry, for example, associated with of one or more device stacks formed in and/or on substrate 12. Furthermore, when reference is made to a “substrate” in the following description, previous process steps may have been utilized to form regions and/or junctions in the base semiconductor structure or foundation.
In some embodiments, the first insulator layer 14 can include dielectrics such as deposited metal oxides or nitrides. Metal oxides or nitrides can include single, mixed, or layered oxides or nitrides. In some embodiments, hafnium, zirconium, lanthanum, yttrium, aluminum, magnesium and/or manganese oxides can be used. Alternatively or in addition aluminum nitride, hafnium nitride, and mixed nitride of aluminum and hafnium can be used. In some embodiments, a composition such as Hf(1−x)ZrxO2, where 0≤x≤1 can be used.
The first insulator layer 14 can have thickness ranging from 0.1 to 10 nm, with exact thickness depending on device stack size and application. The first insulator layer 14 can be formed by metal organic chemical vapor deposition, atomic layer deposition, pulse laser deposition, sputtering, or the other techniques.
In some embodiments, the semiconducting ferroelectric layer 16 can include one or more layers of a polarizable ferroelectric semiconducting material and typically has a thickness ranging from 1 to 80 nm. In some embodiments, thickness of the semiconducting ferroelectric layer 16 is greater than thickness of either the first insulator layer 14 or the second insulator layer 18. Typically, application of an applied electric field between electrode 20 and substrate 12 (acting as a semiconductive electrode) of less than 2 MV/cm is sufficient to modify polarity of the ferroelectric semiconducting material. In certain embodiments, an applied electric field between electrode 20 and substrate 12 of less than 2 MV/cm can be accomplished using an applied voltage less than 3V.
In some embodiments the semiconducting ferroelectric layer 16 can be formed from inorganic polycrystalline, ceramic, or crystalline materials, as well as organic polymeric materials such as polyvinylidene fluoride. In one embodiment the semiconducting ferroelectric layer 16 includes a material based on a ferroelectric ceramic, thin or thick film ferroelectric, or single crystal structure ferroelectric. Ferroelectric ceramics can be formed by using one or more combinations of films of strontium, bismuth, tantalum and oxygen, films of calcium, strontium, bismuth, tantalum and oxygen, films of strontium, bismuth, tantalum, niobium and oxygen, films of calcium, strontium, bismuth, tantalum, niobium and oxygen, films of bismuth, titanium and oxygen, films of bismuth, tantalum, titanium and oxygen, or films of bismuth, neodymium, titanium and oxygen. Alternatively or in addition, chemical solution deposition, metalorganic chemical vapor deposition (MOCVD), sputtering, laser ablation, or atomic layer deposition can be used.
In some embodiments, the ferroelectric ceramic can include a ferroelectric oxide having a crystal structure isomorphous with perovskite (CaTiO3). Perovskites can have the general formula ABO3, where A and B are cations. A-site cations can include Na+, K+, Na+, Ba2+, Sr2+, Pb2+, Bi3+, and Ca2+, while B-site cations can include Nb+, Ta5+, Zr4+, Ti4+, Pb4+, Sc3+, and Fe3+. Examples of ferroelectric ceramic oxide perovskites can include but are not limited to BaTiO3, PbTiO3, NaNbO3, KNbO3, KTaO3, BiScO3, and BiScO3. In some embodiments, cation substituents can be made, allowing ceramic solid solutions of, for example, BaTiO3 with PbTiO3 or BaTiO3 with CaTiO3. In addition to simple perovskites with a general ABO3 composition, a ferroelectric ceramic can be formed from complex perovskites where A and B sites are occupied by ions of a different valency in a fixed molar ratio. Examples include but are not limited to PbMg1/3Nb2/3O3 (PMN), PbSc1/2Ta1/2O3, and Bi1/2Na1/2TiO3.
Alternatively, ferroelectric oxides can include ilmenite ferroelectrics having a general ABO3 composition, but where the A cation is too small to fill the coordinated site of the perovskite structure. Ilmenite structure is made up of hexagonal close-packed layers of oxygen ions, and with the A and B ions occupying the octahedrally coordinated sites between the layers. Examples include but are not limited to LiNb2O3 or LiTa2O3. In some embodiments, other classes of ferroelectric oxide materials including tungsten bronze ferroelectrics, Aurivillius compounds, phosphate ferroelectrics, or oxygen tetrahedral ferroelectrics can also be used.
Ferroelectric ceramics or oxides can be modified by introduction of substituent or modifier atoms that act to adjust various material and electrical properties by replacement of some relatively small number of cation sites with other types of cations. For example, a standard wide band insulating ferroelectric such as PZT (PbZr(1−x)Ti(x)O3) can have various ratios of Zr to Ti modify the ferroelectric and other properties of the material. In those cases of PZT modification, for example, care is taken not to allow the material to become a semiconducting ferroelectric for the reason that the ferroelectric properties can be severely deteriorated. In the case of the semiconducting layer 16, the semiconductor ferroelectric can be designed to achieve high polarization and yet remain semiconducting for the low temperature annealing below 450 C. In the case of materials that can be made semiconducting ferroelectric, for example, with Bi2O3 added in quantities between 1%-20% of Bi4Ti3O12 or other Bismuth based Aurivillius ferroelectrics, a large increase in semiconducting properties can be tailored in such a way that the internal screening of the spontaneous or induced polarization by free carriers such as electrons and holes, can be controlled. In such cases the semiconducting ferroelectric layer 16 can also be enhanced in spontaneous polarization by the addition of polarization enhancement modifiers such as Nb, La, Ta, Zr, Dy, Sm, Cr, Sb, Fe, Si, Al, Pb, Hf, Ba, or Cd in quantities from 1% to 20%. Substitution or modification can occur along with, or after deposition of the semiconducting ferroelectric layer 16, and substitution levels in the semiconducting ferroelectric layer 16 can be uniform, increasing/decreasing, or have custom percentage levels at each atomic layer in the formed semiconducting ferroelectric layer 16
Ferroelectric ceramics or oxides can be changed in conductivity and influence the overall polarization due to screening by introduction of small amounts of dopant atoms that act to adjust various material and electrical properties. For example, the semiconducting ferroelectric layer 16 can be doped to have at most 1% of one of Dy, Sm, Sc, Cr, Sb, Fe, Si, Al, Ga, Ge, Hf, Ba or Y. Doping can occur along with or after deposition of the semiconducting ferroelectric layer 16, and dopant levels in the semiconducting ferroelectric layer 16 can be uniform, increasing/decreasing, or have custom doped levels at each atomic layer in the formed ferroelectric layer 16. For example, in some embodiments the semiconducting ferroelectric layer 16 can be highly doped with Nb for a first portion, doped with a combination of Nb and Ta in a second portion, and finally doped with lesser amounts of Nb in a third portion.
In some embodiments, a ferroelectric ceramic oxide can include a single layer of a bismuth based ceramic such as bismuth titanate doped with transition metals and rare earth dopants, such as Nb, La, Ta, Zr, Dy, Sm, Cr, CrSb, Fe, Si, Al, Pb, Hf, Ba, or Cd can be used. In some embodiments Bi4Ti3O12 doped with less than 15% by atomic mass of BixOy, where 1≤x≤2, and 1≤y≤3 (BiO or Bi2O3) can be used. Other embodiments include strontium bismuth tantalum oxide (SrBi2Ta2O9) material, a strontium bismuth tantalum niobium oxide (SrBi2[Ta(1−x),Nbx]2O9, where 0<x<1) material, a bismuth lanthanum titanium oxide ([Bi, La]4Ti3O12) material, or the like. In other embodiments, semiconducting ferroelectric layer 16 can be formed from multiple layers that include but are not limited to bismuth based ceramics.
In some embodiments, the second insulator layer 18 can include dielectrics such as deposited metal oxides or nitrides. Metal oxides or nitrides can include single, mixed, or layered oxides or nitrides. In some embodiments, hafnium, zirconium, lanthanum, yttrium, aluminum, magnesium and/or manganese oxides can be used. Alternatively or in addition aluminum nitride, hafnium nitride, and mixed nitride of aluminum and hafnium can be used. In some embodiments, a composition such as Hf(1−x)Zr(x)O2, where 0≤x≤1 can be used.
The second insulator layer 18 can have thickness ranging from 0.5 to 10 nm, with exact thickness depending on device stack size and application. The second insulator layer 18 can be formed by metal organic chemical vapor deposition, atomic layer deposition, pulse laser deposition, sputtering, or the other techniques. In some embodiments, composition or thickness of the second insulator layer 18 can be the same or similar to that of first insulator layer 14.
In some embodiments, the electrode 20 can include materials capable of carrying electric current and providing charge to the semiconducting ferroelectric layer 16. In some embodiments, metals can be used. Metals can include pure metals, metal alloys, or layered metals. In some embodiments titanium, aluminum, or titanium/aluminum alloys can be used. In some embodiments, doped or undoped polycrystalline silicon can be the top electrode.
Having described the general details of embodiments of the present invention, the following examples provide additional details.
In one embodiment, a device such as disclosed with respect to
Thin films (≤30 nm) of doped or undoped Bi4Ti3O12 were prepared by atomic layer deposition on a 5 nm film of HfO2 and covered with a 5 nm film of HfO2 before a step of rapid thermal annealing at 450 C for 1 min. under nitrogen.
The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated
The present disclosure is part of a non-provisional patent application claiming the priority benefit of U.S. Patent Application No. 63/161,113, filed on Mar. 15, 2021; U.S. Patent Application No. 63/161,125, filed on Mar. 15, 2021; U.S. Patent Application No. 63/161,135, filed on Mar. 15, 2021; and U.S. Patent Application No. 63/212,959, filed on Jun. 21, 2021; all of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63161113 | Mar 2021 | US | |
63161125 | Mar 2021 | US | |
63161135 | Mar 2021 | US | |
63212959 | Jun 2021 | US |