The present invention relates to a semiconductor chip arrangement.
Increasing the storage density of ROM semiconductor chips is associated with considerable technical complexity. Since the dimensions of the memory cells can be reduced only with considerable effort, increasing the size of a ROM inevitably leads to an increased space requirement on the relevant semiconductor chip.
When fabricating semiconductor chip stacks using face-to-face technology, two semiconductor modules are directly connected to one another to form an overall system by electrically conductively connecting connection contact areas which are arranged on the top sides (which face one another) of the semiconductor modules to one another. In addition, the semiconductor chips are permanently connected to one another in a mechanically stable manner. To this end, a connection plane comprising a metallic solder is preferably arranged between the semiconductor chips, the connection plane ensuring that the two components are connected in a mechanically stable manner and, at the same time, ensuring that the connections are electrically connected. In this case, by far the largest area proportion of this connection plane is used only to mechanically connect the two components and is not used electrically.
It is an object of the present invention to specify a ROM semiconductor memory, which makes it possible to increase the size of the memory without increasing the size of the semiconductor chip.
A semiconductor chip arrangement with ROM, having first and second semiconductor chips arranged on top of one another and electrically conductively connected to one another such that they are permanently fastened to one another and to common connection contact areas in a patterned connection plane. The connection plane has an arrangement of contact areas provided in a form of a memory cell array, and a respective memory cell is programmed by means of a respective one of two intended forms of the contact areas. Electrical connections of the contact areas to a read-out circuit present in at least one of the semiconductor chips are provided for applying an electrical potential and reading a respective memory cell.
There follows a more precise description of examples of the semiconductor chip arrangement with reference to
The semiconductor chip arrangement uses the connection plane between the semiconductor chips as ROM. For this purpose, the connection plane, which is formed from electrically conductive material, is patterned in such a manner that it has an arrangement of conductor areas, which arrangement is provided in the form of a memory cell array and can be read using the circuits present in the semiconductor chips. In this case, the conductor area assigned to a respective memory cell respectively has one of two intended forms, with the result that each memory cell has one of two programmed states. In this case, the read-out circuit may be arranged in one of the two semiconductor chips which are connected to one another or may be proportionately arranged in both semiconductor chips. Since the connection plane is passive and does not contain any active components, it is necessary to connect the relevant conductor areas to an electrical potential so that the respective programming of the memory cells can be detected by means of an electrical measurement. In the simplest case, the different forms of the conductor areas may be the presence or absence of a memory contact area that defines the memory cell. One preferred embodiment provides for the conductor area that is assigned to a respective memory cell to be connected to a portion of the connection plane that is connected to one of the potentials of the supply voltage.
The memory cell array provided in the connection plane 5 is programmed using a suitable mask when patterning the connection plane 5, with the result that memory contact areas 6 are produced or are not produced at the intended locations. If the potential VSS of the supply voltage is applied to the memory contact areas 6 present, for example by the second semiconductor chip 2, a voltage corresponding to the programming of the relevant memory cell can be tapped off at any location using the circuit illustrated in
In the further exemplary embodiment, the connection plane 5 is patterned in accordance with the illustration of
The conductor areas (the conductor strips 9 in this example) have separate electrical connections 11 to an associated read-out circuit, which is arranged in one of the semiconductor chips or proportionately in both semiconductor chips. In the example of
When reading a respective memory cell, a read-out circuit that has been provided uses the connection 11 to establish whether the relevant conductor area of this memory cell is at the higher or lower potential of the supply voltage. These voltage levels are defined as a logic zero and a logic one of the programming.
This exemplary embodiment has the advantage that power is consumed only when the memory cell array is being read. In addition, addressing is particularly simple since the first pads 7 and the second pads 8 are each in the form of strips and can already be used as bit lines. Running transversely to the latter, only the connections 11 on a respective row need to be connected to associated word lines. In this exemplary embodiment, the patterning of the connection plane 5 is thus already particularly well matched to the addressing of the memory cell array.
Number | Date | Country | Kind |
---|---|---|---|
103 08 323 | Feb 2003 | DE | national |
This application is a continuation of International Patent Application Serial No. PCT/DE2004/000269, filed Feb. 13, 2004, which published in German on Sep. 10, 2004 as WO 2004/077450, and is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4208726 | McElroy | Jun 1980 | A |
4939568 | Kato et al. | Jul 1990 | A |
5070026 | Greenwald et al. | Dec 1991 | A |
5319240 | Faure et al. | Jun 1994 | A |
5567657 | Wojnarowski et al. | Oct 1996 | A |
5592414 | Soneda et al. | Jan 1997 | A |
5840608 | Chang | Nov 1998 | A |
5847442 | Mills, Jr. et al. | Dec 1998 | A |
5943255 | Kutter et al. | Aug 1999 | A |
5959877 | Takahsasi | Sep 1999 | A |
6015738 | Levy | Jan 2000 | A |
6541869 | Gudesen | Apr 2003 | B1 |
6864123 | Shimoda | Mar 2005 | B2 |
Number | Date | Country |
---|---|---|
0 073 486 | Mar 1983 | EP |
WO-9921235 | Apr 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20060038263 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE2004/000269 | Feb 2004 | US |
Child | 11213341 | US |