The invention relates to the field of semiconductor technology, in particular to an improved fin field effect transistor (finFET) device and a manufacturing method thereof.
It is known in the art that compressive stress increases carrier mobility of P-channel metal-oxide-semiconductor (PMOS) devices. One approach of introducing compressive stress in the PMOS transistor channel region includes growing an epitaxial layer of SiGe within recesses in the source/drain regions. In this approach, lattice mismatch between the epitaxial SiGe and the silicon substrate creates a uni-axial compressive stress within the channel region.
High germanium concentration in epitaxial silicon germanium may be needed to effectively boost channel compressive strain in PMOS devices. As the germanium concentration is increased, a level of uniaxial compressive strain occurring in the channel region may be further increased. Such uniaxial compressive strain may increase a degree of mobility of holes in the channel region of the PMOS transistor. However, as the Ge concentration increases in SiGe, high-density defects are generated, which limit its applications.
One object of the present invention is to provide an improved semiconductor transistor device and a fabrication method thereof to solve the deficiencies or shortcomings of the prior art.
One aspect of the invention provides a semiconductor device including a fin structure disposed on a substrate; and an epitaxial semiconductor layer disposed over an upper part of the fin structure and having an undercut.
According to some embodiments, the fin structure protrudes from the substrate in a first direction and the undercut has a surface parallel to a third direction perpendicular to the first direction.
According to some embodiments, the undercut comprises a curved surface.
According to some embodiments, the substrate comprises silicon.
According to some embodiments, the fin structure comprises silicon.
According to some embodiments, the semiconductor device is a PMOS transistor and the epitaxial semiconductor layer comprises compressively stressed silicon germanium.
According to some embodiments, the semiconductor device further includes an oxide liner layer conformally covering the undercut; and an isolation structure around the fin structure, wherein the oxide liner layer is in direct contact with the isolation structure.
According to some embodiments, the oxide liner layer comprises silicon dioxide.
According to some embodiments, the oxide liner layer has a thickness of 1-30 angstroms.
According to some embodiments, the epitaxial semiconductor layer has a right-left symmetric, concave polygonal cross-section.
Another aspect of the invention provides a method for forming a semiconductor device. A fin structure is provided on a substrate. An epitaxial semiconductor layer is then formed over an upper part of the fin structure. After forming the epitaxial semiconductor layer, a lower portion of the epitaxial semiconductor layer is etched, thereby forming an undercut.
According to some embodiments, the fin structure protrudes from the substrate in a first direction, and the undercut has a surface parallel to a third direction perpendicular to the first direction.
According to some embodiments, the undercut comprises a curved surface.
According to some embodiments, the substrate comprises silicon.
According to some embodiments, the fin structure comprises silicon.
According to some embodiments, the semiconductor device is a PMOS transistor and the epitaxial semiconductor layer comprises compressively stressed silicon germanium.
According to some embodiments, the method further the step of forming an oxide liner layer conformally covering the undercut and the step of forming an isolation structure around the fin structure, wherein the oxide liner layer is in direct contact with the isolation structure.
According to some embodiments, the oxide liner layer comprises silicon dioxide.
According to some embodiments, the oxide liner layer has a thickness of 1-30 angstroms.
According to some embodiments, the epitaxial semiconductor layer has a right-left symmetric, concave polygonal cross-section.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
In the following detailed description of the disclosure, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention.
Other embodiments may be utilized, and structural, logical, and electrical changes may be made without departing from the scope of the present invention. Therefore, the following detailed description is not to be considered as limiting, but the embodiments included herein are defined by the scope of the accompanying claims.
Please refer to
According to an embodiment of the present invention, as shown in
According to an embodiment of the present invention, as shown in
According to an embodiment of the present invention, the undercut 201c further include a surface S2 connected to the surface S1 and lower than the surface S1. According to an embodiment of the present invention, the surface S2 is not parallel to the first direction D1. According to an embodiment of the present invention, the surface S2 is not perpendicular to the second direction D2. According to an embodiment of the present invention, an interior angle ⊖1 between the surface S1 and the surface S2 is greater than 180 degrees.
According to an embodiment of the present invention, the epitaxial semiconductor layer 201 has a surface S3 connected to the surface S2 and lower than the surface S2. According to an embodiment of the present invention, the surface S3 is not parallel to the first direction D1. According to an embodiment of the present invention, the surface S3 is not perpendicular to the second direction D2. According to an embodiment of the present invention, the interior angle ⊖2 between the surface S3 and the surface S2 is less than 180 degrees. According to an embodiment of the present invention, the epitaxial semiconductor layer 201 has a left-right symmetric profile with respect to the central axis AX. According to an embodiment of the present invention, the epitaxial semiconductor layer 201 has a left-right symmetric, concave polygonal cross-section.
According to an embodiment of the present invention, the epitaxial semiconductor layer 201 may include an inclined top surface S4. According to an embodiment of the present invention, the top surface S4 is not parallel to the first direction D1. According to an embodiment of the present invention, the top surface S4 is not perpendicular to the second direction D2. According to an embodiment of the present invention, an interior angle ⊖3 between the top surface S4 and the surface S1 is less than 90 degrees. According to another embodiment of the present invention, the undercut 201c may comprise a curved surface.
According to an embodiment of the present invention, as shown in
Please refer to
As shown in
Subsequently, as shown in
As shown in
According to an embodiment of the present invention, the undercut 201c may further include a surface S2 connected to the surface S1 and lower than the surface S1. According to an embodiment of the present invention, the surface S2 is not parallel to the first direction D1. According to an embodiment of the present invention, the surface S2 is not perpendicular to the second direction D2. According to an embodiment of the present invention, the interior angle ⊖1 between the surface S1 and the surface S2 is greater than 180 degrees.
According to an embodiment of the present invention, the epitaxial semiconductor layer 201 may include a surface S3 connected to the surface S2 and lower than the surface S2. According to an embodiment of the present invention, the surface S3 is not parallel to the first direction D1. According to an embodiment of the present invention, the surface S3 is not perpendicular to the second direction D2. According to an embodiment of the present invention, the interior angle ⊖2 between the surface S3 and the surface S2 is less than 180 degrees. According to an embodiment of the present invention, the epitaxial semiconductor layer 201 has a left-right symmetric profile with respect to the central axis AX (shown in
According to an embodiment of the present invention, the epitaxial semiconductor layer 201 has an inclined top surface S4. According to an embodiment of the present invention, the top surface S4 is not parallel to the first direction D1. According to an embodiment of the present invention, the top surface S4 is not perpendicular to the second direction D2. According to an embodiment of the present invention, the interior angle ⊖3 between the top surface S4 and the surface S1 is less than 90 degrees. According to another embodiment of the present invention, the undercut 201c may have a curved surface.
According to an embodiment of the present invention, the surface S1 and the surface S2 may be formed with an oxide liner layer 201e. The oxide liner layer 201e conformally covers the surface S1 and the surface S2 of the undercut 201c. The oxide liner layer 201e is in direct contact with the isolation structure 102. According to an embodiment of the present invention, the oxide liner layer 201e may comprise silicon dioxide. According to an embodiment of the present invention, the thickness of the oxide liner layer 201e is 1-30 angstroms. In addition, according to an embodiment of the present invention, a Si-rich SiGe layer 201s may be formed on the top surface S4, and the silicon concentration of which is higher than that of the rest part of the epitaxial semiconductor layer 201. The Si-rich SiGe layer 201s on the top surface S4 can lead to a faster etching rate of the lower part of the epitaxial semiconductor layer 201 during the aforementioned recessing process, thereby forming the undercut 201c.
The present disclosure can effectively improve the operating performance of the PMOS fin field effect transistor by forming a compressively stressed silicon germanium layer with an undercut in the source or drain region of the PMOS fin field effect transistor.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
112101143 | Jan 2023 | TW | national |