This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2021-026139, filed Feb. 22, 2021, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a semiconductor device having a double-well structure and a method for manufacturing the same.
A semiconductor device including a semiconductor element can be formed on a semiconductor substrate using a double-well structure in which a well of a conductivity type different from the semiconductor substrate is formed along with another well having the same conductivity type as the semiconductor substrate. With such a double-well structure, a required chip area increases because the different wells need to be formed in the semiconductor substrate adjacent to one another and the associated manufacturing costs also increase since the wells need to be formed at deep positions in the semiconductor substrate.
Embodiments provide a semiconductor device having a double-well structure that is capable of preventing an increase in chip area and an increase in manufacturing cost and a method for manufacturing the semiconductor device.
In general, according to one embodiment, a semiconductor device for controlling a plurality of memory cell transistors includes a semiconductor substrate, a first well of a first conductivity type in the substrate, a second well of a second conductivity type that electrically separates the first well from the substrate therein and includes a first portion surrounding the first well, and a second portion facing a bottom portion of the first well and having a side surface contacting a side surface of the first portion, a third well of the first conductivity type in the substrate, the third well surrounding the first portion of the second well with being separated therefrom, and a first transistor that includes a gate electrode facing the first well via a first insulating film. A bottom surface of the first portion of the second well is closer to a surface of the substrate than a bottom surface of the second portion of the second well.
Next, certain example embodiments will be described with reference to the drawings. In the description of the drawings, the same components are denoted by the same reference numerals. The drawings are schematic. In addition, the embodiments illustrated in the drawings are presented for purposes of explaining certain devices and methods embodying technical concepts of the present disclosure and do not limit the possible materials, shapes, structures, arrangements, and the like of the various parts that may be utilized while still embodying the described technical concepts. The described embodiments may be modified in various aspects.
The semiconductor device Q1 includes a first well 11 of a first conductivity type formed in a semiconductor substrate 10, which is also of the first conductivity type, and a second well 12 of a second conductivity type. The second well 12 is formed in a region between the semiconductor substrate 10 and the first well 11 and functions to electrically separate the semiconductor substrate 10 from the first well 11. The second well 12 has a first portion 121 that surrounds the side surface of the first well 11 and a second portion 122 that is connected to the first portion 121 and covers a bottom portion of the first well 11. The first portion 121 is connected to the side surface of the second portion 122. In addition, a third well 13 of the first conductivity type is formed in an upper portion of the semiconductor substrate 10 so as to be separated from the second well 12. The third well 13 surrounds the side surface of the first well 11 and the second well 12.
In the present example, the first conductivity type is P type, and the second conductivity type is N type. Therefore, the first well 11 and the third well 13 are P-type wells, and the second well 12 is an N-type well. The P-type semiconductor substrate 10 is, for example, a silicon (Si) substrate. The impurity concentration of the semiconductor substrate 10 is lower than 1015 cm−3.
The first portion 121 of the second well 12 includes a side surface region 121a that covers an upper portion of the side surface of the first well 11 and a connection region 121b that covers a lower portion of the side surface of the first well 11 and connects the side surface region 121a and the second portion 122. An upper surface of the side surface region 121a is exposed at the upper surface of the semiconductor substrate 10, and the connection region 121b is formed below the side surface region 121a. The side surface of the upper portion of the connection region 121b is connected to the first well 11, and the side surface of the lower portion of the connection region 121b is connected to the outer edge of the second portion 122.
As viewed from a direction normal to the main surface of the semiconductor substrate 10 (hereinafter, such a view is referred to as “a plan view”), the boundary between the side surface region 121a and the first well 11 and the boundary between the connection region 121b and the second portion 122 match with each other. In addition, the bottom surface of the first portion 121 of the second well 12 is at a position shallower within the semiconductor substrate 10 than is the position of the bottom surface of the second portion 122 of the second well 12.
The second well 12 has a recess or bowl shape in which the first portion 121 forms a side portion and the second portion 122 forms a bottom portion. In the semiconductor substrate 10, the periphery of the first well 11 is surrounded by the first portion 121 and the second portion 122 of the second well 12. The semiconductor device Q1 has a double-well structure, and the first well 11 is electrically separated from the semiconductor substrate 10 by the second well 12. Since the first well 11 is electrically separated from the semiconductor substrate 10, the voltage applied to the first well 11 can be controlled independently of the potential of the semiconductor substrate 10.
In the semiconductor device Q1 having the double-well structure, the region of the first well 11 can be made smaller in size and depth than that of the full semiconductor substrate 10. For this reason, for example, when a voltage is applied to the first well 11, as compared with the case where the voltage is applied to the semiconductor substrate 10, the load of a booster circuit can be reduced, and the power consumption can be reduced.
For forming the double well, the second portion 122 of the second well 12 needs to be formed in a region in the semiconductor substrate 10, which is deeper into the semiconductor substrate 10 than the first well 11. In addition, for example, since the second portion 122 is formed in the P-type semiconductor substrate 10 that has an impurity concentration lower than 1015 cm−3, the impurity concentration of the second portion 122 is higher than 1015 cm−3. In order to maintain the potential of the second well 12 to be constant as a whole and in order to prevent leakage of crystal defects remaining due to ion implantation or otherwise the second portion 122 is formed so that the peak concentration of the N-type impurity concentration will be higher than 1016 cm−3 but lower than 1018 cm−3. Hereinafter, the peak concentration of an impurity is also simply referred to as a “peak concentration”.
As illustrated in
The semiconductor device Q1 includes a plurality of field effect transistors (FET) 50 formed in the first well 11. Each FET 50 is an insulated gate type field effect transistor in which a pair of electrode diffusion layers 51 of the second conductivity type formed in the first well 11 are used as a first main electrode and a second main electrode. The FET 50 has a gate electrode 52 facing the first well 11 via a gate insulating film 53 formed on the upper surface of the first well 11. In a plan view, one electrode diffusion layer 51 is a source electrode and the other electrode diffusion layer 51 is a drain electrode with the gate electrode 52 interposed therebetween. A channel of the FET 50 is formed in the upper portion of the first well 11 located below the gate insulating film 53.
The gate insulating film 53 is, for example, a silicon oxide film or an oxynitride film having a film thickness of 20 nm to 40 nm. The gate electrode 52 is a conductive polysilicon film to which phosphorus or arsenic is added at a concentration in a range of, for example, 1018 cm−3 to 1021 cm−3. The thickness of the gate electrode 52 is, for example, 10 nm to 500 nm. The gate insulating film 53 of the FET 50 is also referred to as a “first gate insulating film”.
When a plurality of transistors are formed on the semiconductor substrate 10, the transistors are separated from each other by element separators 20 and the third well 13 formed on the surface of the semiconductor substrate 10. Each element separator 20 is formed by, for example, shallow trench isolation (STI) features by which an insulator is buried in a trench having a depth of 0.1 μm to 0.5 μm. The insulator to be buried in the trench is, for example, a silicon oxide film.
A plurality of FETs 50 separated from each other by the element separators 20 formed at a depth of 0.1 μm or more are formed in the first well 11. Each FET 50 is, for example, a switch transistor (hereinafter, also referred to as a “word line switch transistor”) that controls the voltage applied to the word line connected to the gate electrode of a memory cell of the semiconductor memory.
For example, films used as materials for the gate insulating film 53 and the gate electrode 52 are sequentially deposited on the entire surface of the first well 11, and these films are patterned to form the gate insulating film 53 and the gate electrode 52. Each element separator 20 forms the trench by etching a portion of the surface of the first well 11 to a depth of, for example, 0.1 μm to 0.5 μm and burying the portion with an insulator such as a silicon oxide film. In this manner, the gate electrode 52 can be formed on a flat surface.
An upper surface insulating film 54 is disposed on the upper surface of the gate electrode 52. The upper surface insulating film 54 is, for example, a silicon oxide film or a silicon nitride film. A side surface insulating film 55 is formed on a side surface of a gate structure including the gate electrode 52 and the upper surface insulating film 54. The material of the side surface insulating film 55 is, for example, a silicon nitride film or a silicon oxide film having a film thickness of 5 nm to 490 nm.
An N-type electrode diffusion layer 51 serving as a source electrode or a drain electrode of an FET 50 is formed in the first well 11. Hereinafter, a source electrode and/or a drain electrode can also be referred to as a “main electrode”. The electrode diffusion layer 51 contains, for example, phosphorus, arsenic, or antimony so that a surface concentration is 1017 cm−3 to 1021 cm−3. An example of the depth of the electrode diffusion layer 51 is 10 nm to 500 nm. The electrode diffusion layer 51 is formed in a self-aligned manner with respect to the gate structure. For example, when the FET 50 is a word line switch transistor, the main electrode of the FET 50 is connected to the gate electrode of a memory cell. In the following, either or both of the source electrode and the drain electrode of a FET 50 can also be referred to as a main electrode 51.
The material of the gate electrode 52 may be, for example, a conductive polysilicon film to which phosphorus, arsenic, or boron is added at a concentration of 1017 cm−3 to 1021 cm−3. In addition, the material of the gate electrode 52 may be a stacked structural film of tungsten silicide (WSi) and polysilicon, a stacked film of tungsten (W) and titanium nitride (TiN), or a stacked film of tungsten (W) and tungsten nitride (WN). In addition, the material of the gate electrode 52 may be a stacked structural film of nickel silicate (NiSi), molybdenum silicate (MoSi), titanium silicate (TiSi), cobalt silicate (CoSi), and polysilicon. An example of the thickness of the gate electrode 52 is 10 nm to 500 nm.
The gate length of an FET 50 is, for example, 2 μm to 0.8 μm. In addition, the electrode diffusion layer 51 may be shared by adjacent FETs 50, may be connected to a common wiring that applies a write voltage, and may be electrically connected to the word line connected to a memory cell. In this manner, the FETs 50 can be arranged in an array shape so that the area of the electrode diffusion layer 51 can be reduced and, thus, the semiconductor device Q1 can be highly integrated.
An example of using the semiconductor device Q1 as a peripheral circuit of a semiconductor memory will be described below. First, an example of the circuit configuration will be described with reference to
One terminal of the memory cell block is connected to any one of data transfer lines BL1 and BL2 via a drain side select transistor ST1. Hereinafter, any one or all of the data transfer lines BL1 and BL2 are collectively referred to as “bit line(s) BL”. In addition, the other terminal of the memory cell block is connected to a source line SL via a source side select transistor ST2. The drain side select transistor ST1, the plurality of memory cells MT of the memory block, and the source side select transistor ST2 that are connected in series make up a “memory string” below.
A first select transistor SGT1 is connected to the gate electrode of each drain side select transistor ST1 via a drain side select gate line SN1. A second select transistor SGT2 is connected to the gate electrode of each source side select transistor ST2 via a source side select gate line SN2. Selection signals SGN1 and SGN2 for selecting one memory cell block from a plurality of the memory cell blocks are input to the drain side select gate line SN1 and the source side select gate line SN2 via the first select transistor SGT1 and the second select transistor SGT2. The first select transistor SGT1 and the second select transistor SGT2 are controlled by the row decoder 500.
One of data selection lines WL1, WL2, . . . WLn (where n is an integer of 16 or more) is connected to the gate electrodes of memory cells MT. In the following, any one or all of the data selection lines WL1, WL2, . . . WLn can be referred to as “a word line WL” and collectively each of the data selection lines WL1 . . . WLn may be referred to as “word lines WL”. The word line switch transistors Q11, Q12, . . . Q1n are connected to ends of the respective word lines WL. In the following, the word line switch transistors Q11, Q12, . . . Q1n are also referred to as “word line switch transistors QT”. Data control signals CGN1, CGN2, . . . CGNn are input to the gate electrodes of the memory cells MT via the word line switch transistors QT. The data control signals CGN1, CGN2, . . . CGNn are also referred to as “data control signals CGN”. The word line switch transistors QT are controlled by the row decoder 500.
The bit lines BL and the word lines WL are arranged in the direction to be orthogonal to each other. A memory cell MT is disposed at the intersection of each of the bit line BL and the word line WL and is associated with the bit line BL and the word line WL. Accordingly, each of the memory cells MT can independently store data.
The memory cell array 200 has a configuration in which a plurality of the memory cell blocks are arranged in the data transfer line direction and the data selection line direction.
In
The row decoder 500 functions as a data selection line driver and is commonly connected to the gate electrodes of the word line switch transistors QT. The row decoder 500 controls the on/off state of each word line switch transistor QT by applying a voltage to the gate electrode of the word line switch transistor QT.
In the semiconductor memory illustrated in
Each memory cell MT is a nonvolatile semiconductor storage element, for example, a charge trap type storage element as illustrated in
The lower end of the columnar semiconductor 210 of the memory strings 250 is connected to the source line SL disposed on the P-type well of the substrate 10. The upper end of the columnar semiconductor 210 is connected to a bit line BL.
In the memory cell array 200 illustrated in
On the other hand, the drain side select gate lines SN1 are independent between the first memory cell array 201 and the second memory cell array 202. That is, a first drain side select gate line SN1a is connected to the gate electrode of the drain side select transistor ST1 of the first memory cell array 201. A first drain side select gate line SN1b is connected to the gate electrode of the drain side select transistor ST1 of the second memory cell array 202. The bit lines BL are connected to the first memory cell array 201 and the second memory cell array 202.
In the semiconductor memory having the memory cell array 200 in which memory cells MT are three-dimensionally arranged, for example, the peripheral circuit is formed around the memory cell array 200. A voltage higher than that of the memory cell MT is applied to each word line switch transistor QT in the peripheral circuit. For this reason, the semiconductor device Q1 having the double-well structure illustrated in
When the semiconductor device Q1 is applied to the word line switch transistors QT, all of the word line switch transistors QT connected to the row decoder 500 may be formed in the first well 11 having the same double-well structure. It is noted that, since the gate electrodes of the word line switch transistors QT are commonly connected and since the signal line through which the data control signal CGN propagates is shared in the adjacent memory cell blocks, the occupied area of the word line switch transistor QT can be reduced.
The operations of the semiconductor memory when the semiconductor device Q1 is applied to the word line switch transistors QT will be described below.
Data reading and data writing in the semiconductor memory maintains the voltage of the first well 11 on which the word line switch transistor QT is formed to be negative and decreases the voltage applied to the electrode diffusion layer 51. In this manner, by using the semiconductor device Q1 for each word line switch transistor QT, a negative voltage can be transferred to the word line WL, and thus, the same voltage is applied to the plurality of memory cell blocks. For this reason, as compared with the case where a channel voltage connected to the source line having a large capacitance changes, when the semiconductor device Q1 is applied to the word line switch transistors QT, the voltage divided for each word line WL can be applied. As a result, the operating speed of the semiconductor memory can be increased.
A voltage of 0 V or more in a range of, for example, 0 V to 4 V with respect to the semiconductor substrate 10 is applied to the second well 12. On the other hand, the voltage applied to the first well 11 is equal to or less than the voltage applied to the second well 12. A voltage in a range of, for example, −1 V to −4 V with reference to the semiconductor substrate 10 is applied to the first well 11. By disposing the second well 12 between the first well 11 and the semiconductor substrate 10 in this manner, a voltage lower than that of the semiconductor substrate 10 can be applied to the first well 11. Accordingly, even when the voltage applied to the main electrode formed in the first well 11 becomes negative with respect to the semiconductor substrate 10, the voltage applied to the first well 11 can be higher than the voltage applied to the main electrode. As a result, the semiconductor device Q1 can apply a negative voltage to the semiconductor substrate 10 while preventing junction leakage.
Hereinafter, the impurity concentration of the semiconductor device Q1 will be described with reference to
With respect to the impurity concentration in the semiconductor substrate 10, the impurity concentration in the portion deeper than the bottom portion of the element separator 20 will be described. That is, the description of the impurity concentration profile by the ion implantation or the like in the portion less than the depth (for example, 0.5 μm) of the bottom portion of the element separator 20 will be omitted. Additionally, the description of the impurity concentration profile caused by ion implantation for adjusting the threshold value of the channel and the ion implantation for forming the source electrode and drain electrode of the transistor will be omitted.
The word line switch transistors QT described with reference to
In a NAND-type electrically erasable programmable read-only memory (EEPROM), a voltage of 15 V or more is applied to the channel and the gate electrodes as follows. In the operations of the NAND-type EEPROM, a tunnel current is used for implanting or discharging electric charges into the charge storage layer of the memory cell. The tunnel current flows through a tunnel insulating film disposed between the charge storage layer and the channel of the substrate. Even in the NOR-type flash memory, the tunnel current may be used in order to make it less susceptible to a short channel effect during erasing of data. For example, in order to increase the number of memory cells to be erased within a unit time, data stored in a plurality of memory cells is erased at the same time. For this reason, by applying a positive voltage of 15 V or more with reference to the gate electrode to the channel of the memory cell, electrons are extracted from the charge storage layer, or holes are implanted into the charge storage layer to be recombined with electrons. On the other hand, during writing of data, the voltage applied to the channel is maintained to be 0 V, and a voltage of 15 V or more is applied to the word line connected to the gate electrode of the selected memory cell. Accordingly, by implanting electrons from the channel into the charge storage layer, the writing to the memory cell is performed.
In the NAND-type EEPROM, when the distance between the source electrode and the drain electrode is shortened and the miniaturization is promoted, the threshold value of the MOS transistor of the EEPROM becomes low, and the threshold value is distributed on the more negative side. For this reason, in order to sufficiently widen the difference between the write threshold value and the erase threshold value as a memory cell, it is necessary to control the erase threshold value to be lower. For this reason, a negative voltage in a range of, for example, 0 V to −3 V is applied to the gate electrode of the selected memory cell as compared with the source electrode and the drain electrode. Then, an operation of determining read is performed by measuring a current value or a drain conductance between the source and the drain, in which the threshold value is negative.
A metal-lined wire whose capacitance is smaller than the capacitance of the source line shared by memory cell transistors of larger blocks and which has a low resistance may be used as the word line. In addition, in order to reduce the power consumption during the reading and to operate at a high speed, a negative voltage in a range of, for example, 0 V to −3 V is applied as the gate voltage of each memory cell. When the threshold value is set to positive by implanting electrons into the charge storage layer, the read operation is performed by applying a positive voltage in a range of, for example, 0 V to 7 V from the drain electrode as the gate voltage of the memory cell. For this reason, it is desirable to apply a voltage of a positive or negative polarity to the drain electrode.
As described above, by applying a positive or negative voltage with reference to the drain electrode of each memory cell to each word line connected to the gate electrode of the memory cell, as compared with the case where only a positive voltage is applied, it is possible to perform the read operation at a high speed with respect to the threshold value in a wide range. By applying the semiconductor device Q1 to the word line switch transistors QT, it is easy to apply a positive or negative voltage to each word line with respect to the drain electrode of each memory cell.
In order to reduce the power consumption of the peripheral circuit, the peripheral circuit of the semiconductor memory is implemented by, for example, a CMOS circuit. The CMOS circuit requires a P-type well having a resistance sufficiently lower than that of the first well in order to prevent latch-up.
The gate structures of the semiconductor devices Q2 and Q3 are substantially the same as that of an FET 50. The semiconductor devices Q2 and Q3 are different from the FET in terms of the gate insulating film 53. The gate insulating films (also referred to as “second gate insulating films”) of the semiconductor devices Q2 and Q3 are thinner than the gate insulating film of the FET 50 in order to enable high-speed operations and low-voltage operations of the CMOS circuit. A silicon oxide film or an oxynitride film having a film thickness of, for example, 3 nm to 9 nm is used as the second gate insulating film. On the other hand, in order to maintain the reliability of the FET 50 to which a voltage of, for example, 15 V or more is applied, the first gate insulating film is thicker than the second gate insulating film. The first gate insulating film is a silicon oxide film or an oxynitride film having a film thickness of, for example, 20 nm to 40 nm.
Furthermore, an EEPROM, a flash memory, or the like requires a high voltage generation circuit that generates a high voltage from a lower voltage. The high voltage generation circuit generates a voltage of, for example, 10 V to 15 V or more with respect to the semiconductor substrate 10. For this reason, the high voltage generation circuit typically has a booster circuit. The booster circuit is, for example, a charge pump circuit. The charge pump circuit includes a plurality of capacitors for storing electric charges and a plurality of transistors for controlling the storage of the electric charges.
A semiconductor device Q4 illustrated in
It is noted that, in flash memory, during the erasing of data or the writing of data, a positive voltage of 15 V or more is usually applied to the first well 11 or the gate electrode 52 of an FET 50. From this viewpoint as well, a high breakdown voltage transistor having a thicker gate insulating film than the semiconductor devices Q2 and Q3 is generally required. A voltage of 15 V or more is applied between the drain electrode of the high breakdown voltage transistor and the semiconductor substrate. For this reason, it is necessary to maintain a junction breakdown voltage and reduce the junction leakage, and a region having an impurity concentration lower than that of the first well 11, for example, a region having an impurity concentration lower than 1015 cm−3 is required. As this region, the semiconductor device Q4 uses the semiconductor substrate 10. As illustrated in
A capacitor C1 illustrated in
In order to compare with the semiconductor device Q1, a semiconductor device Q1M as a comparative example will be described below with reference to
As illustrated in
The P-well 11M and the semiconductor substrate 10 are electrically separated by the N-well 15, the connection well 121M, and the buried well 122M. For this reason, a positive voltage can be applied to the P-well 11M independently of the P-type semiconductor substrate 10. As described above, the semiconductor device Q1M has the double-well structure.
The buried well 122M making up the double-well structure needs to be deeper than the P-well 11M. In addition, in order to maintain the junction breakdown voltage of, for example, 15 V or more, the buried well 122M is formed on the P-type semiconductor substrate 10 having an impurity concentration lower than 1015 cm−3. In order to maintain the potential of the buried well 122M to be constant, the peak concentration of the buried well 122M is, for example, 1016 cm−3 or more. The buried well 122M is expanded to a depth of, for example, 2 μm or more, typically 2 μm to 4 μm. That is, the position of the PN junction boundary between the P-well 11M and the buried well 122M is at a depth of, for example, 2 μm or more. In the structure of the comparative example, the peak concentration of the buried well 122M is lower than the peak concentration of the P-well 11M. This is because, when the energy of ion implantation is increased so as to dope the semiconductor substrate 10 with the impurity ions to deep positions, the manufacturing cost increases. In order to reduce the manufacturing cost, the impurity concentration of the buried well 122M is kept low.
A plurality of the FETs 50 are arranged in the P-well 11M. The electrode diffusion layer 51 which is the source electrode and the drain electrode of each FET 50 is formed in the P-well 11M.
When the peripheral circuit of the semiconductor memory is a CMOS circuit and the FETs 50 are applied to the word line switch transistors QT used in the peripheral circuit, in order to prevent latch-up in the CMOS circuit, the P-well 14 and N-well 15 are formed at positions shallower than the buried well 122M. The P-well 14 corresponds to the region of the CMOS circuit in which the NMOS is disposed. The N-well 15 corresponds to the region of the CMOS circuit in which the PMOS is disposed.
The depth of the P-well 14 is, for example, about 1 μm. In order to prevent the punch-through through the semiconductor substrate 10 between the facing N-wells 15, the N-well 15 is formed on the semiconductor substrate 10 at a depth of, for example, about 1.5 μm. Since the N-well 15 is deep in order to prevent the punch-through, the plane design rule cannot be reduced.
In the semiconductor device Q1M of the comparative example, the N-well 15 is formed in a ring shape around the P-well 11M. The N-well 15 is an upper portion of the side surface portion of the N-type well making up the double-well structure. Since the N-well 15 is formed at the shallow position of the semiconductor substrate 10 as described above, the buried well 122M formed at the deep position of the semiconductor substrate 10 is not directly connected to the N-well 15, and the N-type region is divided by the periphery of the P-well 11M. When the N-type region is divided, the P-type region is continuous between the P-well 11M and the semiconductor substrate 10. For this reason, the connection well 121M connects the N-well 15 and the buried well 122M. The connection well 121M is formed in a ring shape around the buried well 122M. The mask pattern of the connection well 121M and the mask pattern of the buried well 122M used in the lithography process are overlapped with a margin so that the N-well 15 and the buried well 122M are securely connected via the connection well 121M.
As illustrated in
The semiconductor device Q2M illustrated in
Herein, a voltage of 0 V or more in a range of 0 V to 4 V with respect to the semiconductor substrate 10 is applied to the buried well 122M. On the other hand, a voltage in a range of, for example, −1 V to −5 V with respect to the semiconductor substrate 10 is applied to the P-well 11M so that the voltage of the P-well 11M is equal to or less than the voltage of the buried well 122M. Accordingly, even when the voltage of the main electrode 51 of an FET 50 is negative with respect to the semiconductor substrate 10, the voltage applied to the P-well 11M can be maintained so that a voltage more positive than the voltage of the P-well 11M is applied to the main electrode 51. By maintaining the voltage of the P-well 11M in this manner, the junction leakage current between the main electrode 51 and the P-well 11M is prevented, and the negative voltage with respect to the semiconductor substrate 10 can be applied to the memory cell array by the semiconductor device Q1.
Hereinafter, a method for manufacturing the semiconductor device Q1M as the comparative example will be described with reference to
First, as illustrated in
Next, the N-well 15 is formed by doping the semiconductor substrate 10 with N-type impurities by using an ion implantation method using the photoresist film 301 as a mask. The N-type impurities are, for example, phosphorus, arsenic, antimony, and the like.
In order to form the N-type well in the deep region of the semiconductor substrate 10, a thick photoresist film is required so that the unnecessary portion is doped with the N-type impurities. However, when the photoresist film is made thick, the photoresist film may collapse, or the width of the well in a plan view may be expanded due to the problem of resolution. In
Next, after the photoresist film 301 is removed, a photoresist film 302 is applied to the entire surface of the sacrificial oxide film 310. Then, as illustrated in
Next, the P-well 14 and the third well 13 are formed by doping the semiconductor substrate 10 with the P-type impurities by using the ion implantation method using the photoresist film 302 as a mask. The P-type impurity is, for example, boron or indium. The depth of the P-type well formed at this time can made smaller than that of the N-type well. This is because it is not necessary to form the P-well 11M and the P-well 14 by a common process. Since the depth of the P-type well is small, the energy of ion implantation can be lowered. Therefore, even when the thickness of the photoresist film 302 is made thinner than the thickness of the photoresist film 301 of 1.8 μm, the ion-implanted P-type impurities do not penetrate through the photoresist film 302. The thickness of the photoresist film 302 is, for example, 1.6 μm or less. Accordingly, the width of the third well 13 (illustrated as “zp” in
Next, after the photoresist film 302 is removed, a photoresist film 303 is applied to the entire surface of the sacrificial oxide film 310. Then, as illustrated in
The film thickness t2 of the photoresist film 303 is much larger than those of the photoresist film 301 and the photoresist film 302. For this reason, the cost of the photoresist member is high, and it takes time to sufficiently expose the thick photoresist film in the exposure process, so that the manufacturing cost increases.
As illustrated in
Next, after the photoresist film 303 is removed, a photoresist film 304 having a film thickness of t3 is applied to the entire surface of the sacrificial oxide film 310. Then, as illustrated in
The connection well 121M needs to be formed so that the N-type impurity concentration is higher than that of the P-well 11M, which has a P-type impurity concentration higher than 1016 cm−3 in a depth range of 1.5 μm to 2.5 μm. As illustrated in
Furthermore, in order to form the connection well 121M at a deep position, the photoresist film 304 cannot also decrease the minimum well width as compared with the photoresist film 301 for forming the N-wells 15 due to the problem of the resolution of the photoresist film. For this reason, the connection well 121M is formed in a process different from that of other N-type wells. As a result, as compared with the process in which the connection well 121M is not formed, the layout design in the lateral direction is expanded due to the width v of the connection well 121M. For example, in general, the width v of the connection well 121M with respect to the width zn is expanded according to the film thickness ratio of the photoresist film 301 and the photoresist film 304. As a result, there are restrictions on the reduction of the design rule of the double-well structure.
As described above, in the semiconductor device of the comparative example, the P-well 11M having the double-well structure and the semiconductor substrate 10 can be electrically separated from each other by forming the N-well 15, the connection well 121M, and the buried well 122M. However, in order to implement the double-well structure of the semiconductor device of the comparative example, a region where an N-type doped region in which N-type impurities are doped to form the connection well 121M and a P-type doped region in which P-type impurities are doped to form the P-well 11M overlap each other is generated. In
After that, the electrode diffusion layer 51, the gate electrode 52, and the like are formed by a known manufacturing method to form the semiconductor devices Q1M to Q4M and the capacitor C1M. Furthermore, in some examples, an interlayer insulating film may be formed on the transistor.
The method for manufacturing the semiconductor device Q1M of the comparative example having the double-well structure described above results in the following issues:
(1) The connection well 121M is formed by using a photolithography technique in a process separate from that used for forming the buried well 122M. For this reason, due to the alignment margin of the mask, an N-type impurity-doped overlapping region for forming the connection well 121M is formed inside the P-type doped region for forming the P-well 11M. As a result, the distance between the electrode diffusion layer 51, which is the source electrode or drain electrode of an FET 50, and the connection well 121M is less than the distance between the buried well 122M and the electrode diffusion layer 51. Accordingly, a decrease in breakdown voltage and an increase in leakage current occur. In order to prevent this decrease in breakdown voltage, it is necessary not to place the electrode diffusion layer 51 in the near vicinity of the connection well 121M, which leads to an increase in the area of the semiconductor device. Therefore, in the semiconductor device Q1M of the comparative example illustrated in
(2) Since the connection well 121M is formed in a process separate from that of the buried well 122M, the film thickness t3 of the photoresist film 303 is, for example, 2 μm to 7 μm. This film thickness t3 is considerably larger than those of the photoresist films 301 and 302. For this reason, the cost of the photoresist material is higher, and it additionally takes extra time to sufficiently expose the thicker photoresist film in an exposure process, so that the manufacturing cost increases.
In the semiconductor device according to the first embodiment, a high breakdown voltage transistor that utilizes a double-well structure in which an N-type well is formed at a deep position, the width of the N-type well surrounding the P-type well can be reduced. For this reason, it is possible to implement the double-well structure that prevents the punch-through with adjacent elements and is advantageous for miniaturization. In addition, the manufacturing process of the N-type well on the outer side of the double-well structure can be shortened, and the number of processes and the manufacturing cost can be reduced.
Hereinafter, a method for manufacturing the semiconductor device according to the first embodiment will be described with reference to
First, the side surface region 121a of the N-type well and the N-well 15 are formed in the same process by using the photoresist film 302 similarly to the method described with reference to
Next, the P-well 14 and the third well 13 are formed by doping the semiconductor substrate 10 with the P-type impurities by using the ion implantation method using the photoresist film 302 as a mask. At this time, the depths of the P-well 14 and the third well 13 can be made smaller than the depths of the side surface region 121a and the N-well 15. This is because it is not necessary to form the P-well 14 in the same process as the first well 11. For this reason, even when the film thickness of the photoresist film 302 is made thinner than the film thickness of the photoresist film 301 (for example, 1.8 μm), the ion-implanted P-type impurities do not penetrate the photoresist film 302. The film thickness of the photoresist film 302 is, for example, 1.6 μm or less. Therefore, the width zp of the third well 13 can be made smaller than the width zn of the side surface region 121a.
Next, after the photoresist film 302 is removed, the photoresist film 303 having a film thickness of t2 is applied to the entire surface of the sacrificial oxide film 310. Then, as illustrated in
At this time, as illustrated in
In order to implement a structure in which the height of the photoresist film 303 changes, for example, a halftone structure having a different amount of light transmission may be formed on the outer edge of the opening of the photoresist film 303. Then, a structure in which the height of the photoresist film 303 changes is created by one exposure by a known mask technique for increasing the amount of light transmission. In addition, for example, a “line/space” pattern smaller than the wavelength of light may be formed on the exposure mask. That is, the “line/space” pattern may be disposed on the outer periphery of the opening of the photoresist film 303 to reduce the amount of light transmission.
Next, the connection region 121b and the second portion 122 which is the lower portion of the double-well structure are simultaneously formed by doping the semiconductor substrate 10 with N-type impurities by using the ion implantation method using the photoresist film 303 as a mask. Furthermore, the first well 11 which is the upper portion of the double-well structure is formed by doping the semiconductor substrate 10 with the P-type impurities by using the ion implantation method using the photoresist film 303 as a mask. Accordingly, the first well 11 is formed in the semiconductor substrate 10 such that the upper portion of the side surface thereof is covered by the side surface region 121a, the lower portion of the side surface thereof is covered by the connection region 121b, and the bottom portion is covered by the second portion 122. At this time, since the second portion 122 needs to be deeper than the first well 11, the second portion 122 is formed at a depth of, for example, 2 μm to 4 μm. For this reason, the film thickness t2 of the photoresist film 303 is thick, and the film thickness t2 is, for example, 4 μm to 7 μm.
In an ion implantation process using the photoresist film 303 as a mask, the positions of the N-type impurities implanted into the semiconductor substrate 10 are shallow in the region where the outer edge resist 303A is disposed rather than the opening of the photoresist film 303 where the outer edge resist 303A is not disposed. That is, the N-type impurities are formed at shallow positions of the semiconductor substrate 10 because of the outer edge resist 303A having a film thickness of t4 that prevent the ion implantation. Accordingly, the connection region 121b connected to the second portion 122 is formed. In this manner, the connection region 121b and the second portion 122 of the second well 12 are simultaneously formed by one-time ion implantation process.
It is noted that, in the ion implantation process of forming the first well 11, the overlapping region 121p is formed by implanting the P-type impurities into the region of the side surface region 121a adjacent to the first well 11. In the region of the outer edge resist 303A, the P-type impurities are implanted into the shallow positions of the semiconductor substrate 10 by the ability of the outer edge resist 303A for preventing the ion implantation.
The width z3 of the outer edge resist 303A can be made smaller than the width zn determined by the resolution of the photoresist film 303. This is because, for example, the width of the opening of the photoresist film 303 is determined by the width z4 of the opening for forming the first well 11 having a width of 3 μm or more and z4+2×z3. The dimension of the width z3 may be reduced as compared with the dimension determined by the minimum line width.
Since the width z3 can be made smaller than the width zn, when the position of the boundary between the first well 11 and the connection region 121b and the position of the boundary between the second portion 122 and the connection region 121b are on the same line in a plan view, the distance y between the connection region 121b and the main electrode 51 of the semiconductor device Q4 in a plan view is larger than that of the comparative example. By securing the distance y in this manner, even when a voltage of 15 V or more with respect to the semiconductor substrate 10 is applied to the side surface region 121a, the punch-through from the side surface region 121a to the main electrode 51 of the semiconductor device Q4 can be prevented. For this reason, the increase in the layout area can be prevented as compared with the comparative example. In addition, by securing the distance y, for example, even when a voltage of 15 V or more with respect to the semiconductor substrate 10 is applied to the main electrode 51 of the semiconductor device Q4, the connection region 121b can prevent the punch-through at the time of, for example, 0 V.
As illustrated in
After that, the electrode diffusion layers 51, the gate electrodes 52, and the like are formed by a known manufacturing method to form the semiconductor devices Q1 to Q4 and the capacitor C1. Accordingly, the semiconductor device according to the first embodiment is manufactured.
As described above, the side surface region 121a and the connection region 121b are in contact with each other, and the connection region 121b and the second portion 122 are in contact with each other. For this reason, the P-type first well 11 is surrounded by the N-type second well 12 configured with the side surface region 121a, the connection region 121b, and the second portion 122. By surrounding the first well 11 with the second well 12, the first well 11 is electrically separated from the semiconductor substrate 10.
In the method for manufacturing the semiconductor device according to the first embodiment, unlike the manufacturing method of the comparative example, the second portion 122 and the connection region 121b are simultaneously formed by the same ion implantation process. That is, the recess shape of the N-type well covering the bottom surface of the first well 11 and the lower portion of the side surface is integrally formed. It is noted that, by the same ion implantation process, the overlapping region 121p is formed in the region of the N-type well at the same time as the first well 11.
The connection region 121b is formed in a self-aligned manner without alignment shift from the boundary between the second portion 122 and the connection region 121b. For this reason, the overlapping region which is generated by the manufacturing method of the comparative example and into which the N-type doped region of the P-well 11M extends can be minimized without requiring a margin for alignment shift or the like. Accordingly, the distance between the connection region 121b and the electrode diffusion layer 51 can be made wider than that in the comparative example. Therefore, it is possible to prevent a decrease in breakdown voltage and an increase in leakage current between the connection region 121b and the source electrode or drain electrode of each FET 50. In addition, it is not necessary to have a margin for alignment shift of the mask used in the photolithography technique. For this reason, with the semiconductor device Q1, the FET 50 can be provided in the vicinity of the connection region 121b as compared with the comparative example, and the layout area can be reduced.
It is noted that the N-type impurity concentration in the connection region 121b is higher than, for example, the P-type impurity concentration in the first well 11 formed in a depth range of 1.5 μm to 2.5 μm. Since the connection region 121b is formed by the same ion implantation process as the second portion 122, the peak concentration of the second portion 122 is higher than the peak concentration of the first well 11 at a depth of 1 μm or less. This point is different from the semiconductor device Q1 and the comparative example. As illustrated in
The method for manufacturing the semiconductor device Q1 described above does not require the manufacturing process of the connection well 121M, which is required in the manufacturing method of the comparative example. That is, in the manufacturing method of the comparative example, it is necessary to form the connection well 121M having a higher N-type impurity concentration than the P-type impurity concentration of the first well 11 in a depth range of 1.5 μm to 2.5 μm. On the other hand, in the method for manufacturing the semiconductor device Q1, a process of forming and exposing the photoresist film having a film thickness larger than those of the photoresist films 301 and 302 for forming the connection well 121M and the ion implantation process for additionally forming the N-type well are not required. Therefore, according to the method for manufacturing the semiconductor device Q1, the photoresist member with the high cost and the time-consuming process for sufficiently exposing the thick photoresist film are unnecessary, so that the manufacturing cost can be reduced.
<Modified Example>
A method for manufacturing the semiconductor device Q1 illustrated in
After a photoresist film 305 and the photoresist film 303 are sequentially applied to the entire surface of the sacrificial oxide film 310, as illustrated in
In order to allow the photoresist film 305 to remain in a ring shape along the outer edge of the opening of the photoresist film 303, for example, the photoresist film 305 having an exposure sensitivity or a resist dissolution rate of a photosensitized portion by development lower than that of the photoresist film 303 is used. Accordingly, a structure in which the photoresist film 305 is left along the outer edge of the opening of the photoresist film 303 can be created by one exposure. In such a case, since the step difference of the photoresist film is formed by devising the photoresist film, a low-cost chrome mask or the like can be used as a mask for exposure in the lithography process. Since a mask having a low resolution can be used, the cost of producing the mask can be reduced.
In the semiconductor device Q1 illustrated in
Next, the second portion 122 which is the lower portion of the double-well structure is formed by doping the semiconductor substrate 10 with the N-type impurities by using the ion implantation method using the photoresist stacked film of the photoresist film 305 and the photoresist film 303 as a mask. Furthermore, the first well 11 which is the upper portion of the double-well structure is formed by doping the semiconductor substrate 10 with the P-type impurities by using the ion implantation method using a photoresist stacked film as a mask. At this time, since the second portion 122 needs to be deeper than the first well 11, the second portion 122 is formed at a depth of, for example, 2 μm to 4 μm. For this reason, the thickness t2 of the photoresist stacked film is thick, and the film thickness t2 is, for example, 4 μm to 7 μm.
In this ion implantation process, in the region where the photoresist film 305 is left in the opening of the photoresist film 303, the positions of the N-type impurities implanted into the semiconductor substrate 10 become shallow because of the photoresist film 305 that prevent the ion implantation, so that the connection region 121b is formed. In addition, in the region where the photoresist film 305 is left in the opening of the photoresist film 303, the positions of the P-type impurities implanted into the semiconductor substrate 10 become shallow because of the photoresist film 305 that prevent the ion implantation. The overlapping region 121p is formed by implanting the P-type impurities into the region of the side surface region 121a adjacent to the first well 11.
After that, the electrode diffusion layers 51, the gate electrodes 52, and the like are formed by a known manufacturing method to form the semiconductor devices Q1 to Q4 and the capacitor C1. Accordingly, the semiconductor device Q1 illustrated in
In the semiconductor device Q1 illustrated in
The depth of the connection region 121b of the semiconductor device Q1 illustrated in
Also in the semiconductor device Q1 illustrated in
In addition, in the semiconductor device Q1 illustrated in
Hereinafter, an example of a method for manufacturing the semiconductor device according to the second embodiment will be described with reference to
As illustrated in
In order to form the tapered region in the opening of the photoresist film 303, for example, light absorption in a thick photoresist film is used. In the thick photoresist film, since the amount of light transmission decreases from the upper portion toward the lower portion of the photoresist film, the amount of exposure also decreases from the upper portion of the photoresist film toward the lower portion of the photoresist film. For this reason, the tapered region can be formed in the opening of the photoresist film. In addition, the photoresist film 303 having a higher photosensitivity toward the upper portion by changing the composition in the thickness direction may be used.
It is noted that, even in the development after exposure, in the case where a thick photoresist film is used, the component eluted from the upper portion of the photoresist film increases, and the photoresist film is likely to remain in the lower portion. The tapered region may be formed in the opening of the photoresist film 303 by using this method.
In addition, as illustrated in
A width z5 of the tapered region of the photoresist film 303 can be set to a value smaller than the width determined by the resolution of the photoresist film 303. The width of the opening of the photoresist film 303 is determined by z4+2×z5 with respect to the width z4 of the opening of the first well 11 having a width of, for example, 3 μm or more. Therefore, the size of the width z5 can be reduced from the dimension determined by the minimum line width.
The second portion 122 which is the lower portion of the double-well structure is formed by doping the semiconductor substrate 10 with N-type impurities by using the ion implantation method using the photoresist film 303 as a mask. Furthermore, the first well 11 which is the upper portion of the double-well structure is formed by doping the semiconductor substrate 10 with the P-type impurities by using the ion implantation method using the photoresist film 303 as a mask.
In this ion implantation process, in the tapered region of the photoresist film 303, the positions of the N-type impurities implanted into the semiconductor substrate 10 gradually become shallow because of the tapered region preventing the ion implantation, so that the connection region 121b is formed. In addition, in the tapered region of the photoresist film 303, the positions of the P-type impurities implanted into the semiconductor substrate 10 become shallow because of the tapered region preventing the ion implantation. The P-type impurities are implanted into the region of the side surface region 121a adjacent to the first well 11, and thus, the overlapping region 121p is formed.
After that, the electrode diffusion layers 51, the gate electrodes 52, and the like are formed by a known manufacturing method to form the semiconductor devices Q1 to Q4 and the capacitor C1. Accordingly, the semiconductor device Q1 illustrated in
<Modified Example>
It is noted that, at the position where the end portion of the connection region 121b is located inside the side surface region 121a, the side surface region 121a faces the semiconductor substrate 10. For this reason, even in a structure in which the end portion of the connection region 121b is located inside the side surface region 121a, the breakdown voltage characteristics of the second well 12 and the semiconductor substrate 10 are not deteriorated.
Due to the shape of the connection region 121b of the semiconductor device Q1 illustrated in
In addition, in the semiconductor device Q1 illustrated in
Also in the semiconductor device Q1 illustrated in
Hereinafter, a method for manufacturing the semiconductor device Q1 according to the modified example of the second embodiment will be described with reference to
As illustrated in
In order to form the tapered region as illustrated in
The width z5 of the tapered region can be set to a value smaller than the width determined by the resolution of the photoresist film 303. The width of the opening of the photoresist film 303 is determined by z6+2×z5 with respect to a width z6 of the opening of the connection region 121b having a width of, for example, 3 μm or more. In this manner, the size of the width z5 can be reduced from the dimension determined by the minimum line width.
The second portion 122 which is the lower portion of the double-well structure is formed by doping the semiconductor substrate 10 with N-type impurities by using the ion implantation method using the photoresist film 303 as a mask. Furthermore, the first well 11 which is the upper portion of the double-well structure is formed by doping the semiconductor substrate 10 with the P-type impurities by using the ion implantation method using the photoresist film 303 as a mask.
In this ion implantation process, in the tapered region of the photoresist film 303, the positions of the N-type impurities implanted into the semiconductor substrate 10 become shallow because of the tapered region preventing the ion implantation, so that the connection region 121b is formed. In addition, in the tapered region of the photoresist film 303, the positions of the P-type impurities implanted into the semiconductor substrate 10 become shallow because of the tapered region preventing the ion implantation. P-type impurities are implanted into the region of the side surface region 121a adjacent to the first well 11, and the overlapping region 121p is formed.
After that, the electrode diffusion layers 51, the gate electrodes 52, and the like are formed by a known manufacturing method to form the semiconductor devices Q1 to Q4 and the capacitor C1. Accordingly, the semiconductor device Q1 illustrated in
(Other Embodiments)
It is noted that the present disclosure is not limited to the above embodiments and modified examples. For example, as a method for forming the element separator and the insulating film, other methods of converting silicon into a silicon oxide film or a silicon nitride film, for example, a method of implanting oxygen ions into a deposited silicon or a method of oxidizing a deposited silicon may be used. In addition, as the charge storage layer, a titanium dioxide (TiO2) film, an aluminum oxide (Al2O3) film, a tantalum oxide film, a strontium titanate film, a barium titanate film, a lead zirconium titanate film, or a stacked film thereof may be used.
In addition, although a P-type Si substrate is used as the semiconductor substrate 10, another single-crystal semiconductor substrate containing silicon such as silicon germanium (SiGe) mixed crystal and silicon germanium carbon (SiGeC) mixed crystal may be used instead. In addition, as each gate electrode 52, a silicide of SiGe mixed crystal, SiGeC mixed crystal, TiSi, NiSi, CoSi, silicated tantalum (TaSi), WSi, MoSi, or the like may be used. Alternatively, a metal such as polyside, titanium (Ti), aluminum (Al), copper (Cu), TiN, or tungsten (W) or the like may be used for the gate electrode 52. The gate electrode 52 may be polycrystalline or may have a stacked structure of the above-mentioned metals. In addition, amorphous Si, amorphous SiGe, or amorphous SiGeC may be used for the gate electrode 52, or a stacked structure thereof may be used.
In addition, although the NAND-type memory cell is exemplified as a memory cell, the semiconductor device Q1 may be used for the peripheral circuit of the semiconductor memory in any type of memory cell. For example, the memory cell may be any one of a NOR-type memory cell, an AND-type memory cell, and a virtual ground type memory cell. In addition, the memory cell may be a MONOS (Metal Oxide Nitride Oxide Silicon) type memory cell that stores electric charges in the insulating film, and the memory cell may be a memory cell in which the gate electrode has a floating gate.
In addition, for clarifying the description, the semiconductor devices Q1 to Q4 and the capacitor C1 are illustrated in the same cross section, but it is not necessary to form all the semiconductor elements in the same cross section, and each semiconductor element may be formed on the corresponding well. For example, the capacitor C1 may not be formed. In such a case, the gate electrodes 52 of the semiconductor devices Q1 to Q4 may not be divided into the control gate electrodes 52a and the floating gates 52b.
In addition, although the above description is made based on the example in which the semiconductor device Q1 is applied to the peripheral circuit of the semiconductor memory, the semiconductor device Q1 may be applied to a semiconductor integrated circuit device having a built-in semiconductor memory. For example, the semiconductor device Q1 may be applied to a processor, a system LSI, or the like.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2021-026139 | Feb 2021 | JP | national |