The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming a mold degating structure for a pre-molded substrate.
Semiconductor devices are commonly found in modern electronic products. Semiconductor devices perform a wide range of functions such as signal processing, high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, photo-electric, and creating visual images for television displays. Semiconductor devices are found in the fields of communications, power conversion, networks, computers, entertainment, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
A semiconductor die and/or discrete integrated passive device (IPD) can be integrated into a semiconductor package.
Semiconductor substrate panel 50 is known to crack or break-off about location 80 during mold degating, i.e., when removing mold gate 62. Mold compound 60 is highly tacky and can break off some metal from electrical interconnect 54 around the perimeter of semiconductor substrate panel 50 during mold degating, which causes defects and reduces yield. One known approach to cracking is to plate electrical interconnect 54 with gold at least around the perimeter of semiconductor substrate panel 50. However, gold plating increases manufacturing cost.
The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings. The term “semiconductor die” as used herein refers to both the singular and plural form of the words, and accordingly, can refer to both a single semiconductor device and multiple semiconductor devices.
Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, and resistors, create a relationship between voltage and current necessary to perform electrical circuit functions.
Back-end manufacturing refers to cutting or singulating the finished wafer into the individual semiconductor die and packaging the semiconductor die for structural support, electrical interconnect, and environmental isolation. To singulate the semiconductor die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual semiconductor die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with conductive layers, bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
Semiconductor die or discrete IPDs 104 are disposed in substrate area 102a of substrate 102 using a pick and place operation. Substrate area 102b is that portion of substrate 102 around and outside a footprint of substrate area 102a. No semiconductor die 104 are disposed on substrate area 102b. Semiconductor substrate panel 100 may contain hundreds or thousands of semiconductor die 104.
Encapsulant or mold compound 110 is deposited over semiconductor die or discrete IPDs 104 and substrate area 102a using a transfer molding process. An unmolded semiconductor substrate panel 100 is placed in a mold cavity. A predetermined amount of molding compound is placed in a transfer pot, heated and then forced under pressure, e.g. by plunger, through a gate into the mold cavity to cover semiconductor die or discrete IPDs 104 and substrate 102a. Mold cull 112 and mold gate 114 remain after the mold transfer. Mold cull 112 is the remaining or excess mold material in the transfer pot post mold. Mold gate 114 is the remaining mold material in the gate post mold. Encapsulant 110 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 110 is non-conductive, provides structural support, and environmentally protects the semiconductor device from external elements and contaminants.
Encapsulant or mold compound 110 is deposited over the semiconductor die or discrete IPDs 104 and substrate area 102a, leaving mold gate 114, see
Surface 145 of substrate edge 142 is coplanar with bottom surface 149 of substrate 102. Substrate edge 142 extends across area 144 and cantilever portion 146 of substrate edge 142 further extends under a portion of encapsulant 110 about 4-5 millimeters (mm) to location 148. An underfill material 150 is formed in substrate area 102a between conductive vias 128 and under cantilever portion 146. Underfill material 150 is also formed around substrate edge 142 in substrate area 102b. Underfill material 150 can be an epoxy-resin adhesive material. Substrate edge 142 extending across area 144 and cantilever portion 146 extending under encapsulant 110 provides reinforcement and reduces occurrences of cracking or damage to semiconductor substrate panel 100 during mold degating.
With each of the above examples, substrate edge 142 provides reinforcement under mold gates 114a and 114b and substrate area 102a to prevent damage to substrate panel 100 when the mold gates are removed.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
The present application claims the benefit of U.S. Provisional Application No. 62/936,027, filed Nov. 15, 2019, which application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62936027 | Nov 2019 | US |