The present application claims priority from Japanese patent application JP 2008-089776 filed on Mar. 31, 2008, the content of which is hereby incorporated by reference into this application.
1. Field of the Invention
The present invention concerns a semiconductor device and a method of manufacturing the same and it particularly relates to a technique which is effective when applied to a memory cell using a solid electrolyte material for discriminating memory information by utilizing the difference of resistance, for example, a high density integrated memory circuit, a logic hybrid type memory in which a memory circuit and a logic circuit are disposed in one identical semiconductor substrate, or a semiconductor integrated circuit device having an analog circuit and, further, a random access memory at a high operation speed, having non-volatility, and operating at a low voltage.
2. Description of the Related Arts
As a recording technique using a solid electrolyte material, a solid electrolyte memory has been proposed. Details for the solid electrolyte memory are described in IEEE International Solid-State Circuits Conference (ISSCC) 2004, Digest, 2004, p. 16.3 and Proc. Non-Volatile Memory Technology Symposium (NVMTS) 2004, 2004, pp. 10-17. A structure for a memory area and a periphery thereof of a memory are to be described with reference to
The material for the solid electrolyte 21 is an alloy having a composition of Cu and S, and the solid electrolyte 21 contains ions A. BEC is formed by stacking a plug material 13 of low ion conductivity and an adhesion layer 14. For the upper electrode 15, a metal material of low mobility is used. This prevents movement upon application of an electric field. In “ON state” where the resistance of the memory area RM is low, an electroconductive filament formed of a metal A in the solid electrolyte connects the electrode 22 and BEC.
On the other hand, in “OFF state” where the resistance of the memory area RM is high, the electroconductive filament is disconnected. The operation method is to be described. Upon reading a value, the resistance of the memory area RM is measured and a high or low level thereof is corresponded to “0” or “1” respectively. The “ON operation” for putting the memory area RM to “ON state” is performed as described below. When a positive voltage is applied to the electrode 22, the electrode 22 is oxidized into the ion A. Then, ions A are conducted tonically in the solid electrolyte, and reduced near the lower electrode BEC or the filament, by which the filament is formed or grown. When the filament connects the electrode 22 and BEC, the resistance of the memory area RM is lowered. “OFF operation” of putting the memory area RM to “OFF state” is performed as described below. When a negative voltage is applied to the electrode 22, the metal A constituting the filament are oxidized into ions A. Then, the ions A are diffused in the solid electrolyte.
A crystal structure including Cu, Ta, and O at a compositional ratio of: Cu—Ta—O=1:2:6 is reported in Journal of Applied Physics, Vol. 96, pp. 4400-4404). The crystal is defined as a Cu—Ta—O crystal.
U.S. Pat. No. 6,891,186 describes a semiconductor memory using an oxide material. Resistance is changed by forming or eliminating a metal filament. In the semiconductor memory of U.S. Pat. No. 6,891,186, the place in which the metal filament is formed and eliminated is not in the oxide material.
Further, JP-A No. 2006-351780 describes a semiconductor memory of a structure in which a laminate, for example, of CuTe (copper telluride compound and GdOX (gadolinium oxide) is put between two electrodes and describes a method of improving the voltage withstanding of a memory layer by adding a metal element (for example, Cu) in the GdOx material.
The solid electrolyte memory involves a problem that stable rewriting is difficult since the amount of the ions A in the solid electrolyte and the shape of the electrode are changed by repeating rewriting. A typical structure of a circuit device studied by us for solving the problem is to be described with reference to
At first, the ON operation is to be described with reference to
Then, an OFF operation is to be described with reference to
The foregoing description is to be described again with reference to a current-voltage waveform shown in
However, an operation of further higher reliability is demanded in some application uses such as DRAM (Dynamic Access Memory) as application use of high reliability.
The technical problem intended to be solved by the invention is for the improvement of the technical problems described above and the invention intends to provide a highly reliable circuit device such as a memory device. Specifically, it intends to increase the number of endurance cycles and decrease variations in the rewriting voltage or rewriting resistance.
For attaining the foregoing object, the present invention intends to provide a semiconductor device in which the phase state of the ion confinement layer in the memory area RM is crystalline. Particularly, the ion confinement layer in the crystalline state has a composition including ions A of high mobility and ions C of lower mobility compared with that of the ions A and, further, ions D having a polarity opposite to that of the ions A and the ions C. An example of the composition for the ion confinement layer in the crystalline state is: Cu—Ta—O=1:2:6. Since the crystallized ion confinement layer is stable, physical deformation of the memory area RM and excess fluctuation of the compositional ratio in the memory area RM. are less caused in a case of performing the rewriting operation. Accordingly, stable rewriting operation is possible.
Among the inventions disclosed in the present application, effects obtained by typical inventions are to be described below simply.
A memory device of high endurance characteristics can be attained.
Preferred embodiments of the present invention are to be described specifically with reference to the drawings. In the invention, contact between conductor layers includes not only a case of direct contact but also a case where they are in contact with each other while sandwiching a thin layer or a region of an insulator or a semiconductor that allows a current to flow therethrough.
As the material for the plug material 13, the adhesion layer 14, and the upper electrode 15, elements of low mobility are used preferably so as not to give undesired effects on the rewriting operation. Naturally, an identical material, for example, TiN can be used for the plug material 13 and the adhesion layer 14. The phase state of the ion confinement layer 11 is crystalline, and a composition including Cu, and Ta, O can be used as the material. The ion confinement layer 11 includes positive ions and negative ions. The positive ions include two or more kinds of positive ions and negative ions having difference in the mobility. Positive ions of high mobility are ions of small valence number and having a small ionic radius. Ag, Cu, Au, or Zn corresponds thereto. Further, positive ions of low mobility are ions of large valence number and having a large ionic radius, and Ta, W, Mo, or rare earth element (particularly, Gd) corresponds thereto. As the material for the ion supply layer 12, a composition including Cu, Ta, and S can be used. The ion supply layer includes positive ions and negative ions. Further, by using two or more kinds of positive ions of different mobilities for the positive ions, physical change such as voids or excessive resistance change can be prevented from being formed to the ion supply layer by a stable structure formed by the positive ions of low mobility and negative ions.
Further, when negative ions of the ion confinement layer 11 are elements different from the negative ions of the ion supply layer 12, it is possible to make a difference to the ion conductivity between the ion confinement layer 11 and the ion supply layer 12 and keep the gradient of the ionic concentration in one direction. The ionic concentration is higher near the upper electrode 15 and lower near the lower electrode BEC. In a case where the gradient of the ionic concentration is reversed, since the polarity of the rewriting voltage is reversed, no stable rewriting operation can be performed. This embodiment intends to keep the gradient of the ion concentration by making a difference in the ionic conductivity.
The invention has a feature of making the phase state of the ion confinement layer 11 crystalline. Description is to be made with reference to
For a preferred composition of the ion supply layer, an average composition is represented by the following general formula (1).
CuXTaYS(100-X-Y) (1)
(in which X and Y in the formula are represented each as: 40≦X≦80, 5≦Y≦20).
When the compositional ratio for Cu is more than the ratio described above, the resistance of the layer itself is lowered just like the electrode and does not function as the solid electrolyte. When the ratio is lower than that described above, the film becomes chemically instable, and setting becomes insufficient. When the compositional ratio of Ta is more than that described above, the set resistance is excessively high. When the ratio is lower than that described above, since voids are formed upon movement of the ions, possible number of rewriting cycles is decreased. In addition to them, other element may also be contained by 10 at % or less.
For a preferred composition of the ion confinement layer, the average composition is represented by the following general formula (2).
CuXTaYO(100-X-Y) (2)
(in which X and Y in the formula are represented each as: 10≦X≦50, 10≦Y≦30).
When the compositional ratio for Cu is more than that described above, the resistance of the layer itself is lowered just like the electrode and does not function as the solid electrolyte. When the ratio is lower than that described above, the film becomes chemically instable, and setting becomes insufficient. When the compositional ratio for Ta is more than that described above, the set resistance is excessively high. When the ratio is lower than that described above, heat resistance in the state of low resistance is insufficient. When the ratio for oxygen is more than that described above, setting becomes insufficient. When it is less than that described above, since voids are formed upon movement of the ions, possible number of rewritable cycles is decreased. In addition, other elements may also be contained by 10 at % or less.
Then,
A schematic view of
Electro conductivity and Cu mobility are different between the inside of grain 102 and at the grain boundary 101. By making the grain size sufficiently smaller compared with the diameter of the lower electrode BEC, effect of the Cu—Ta—O grain boundary on the memory property is averaged to provide an effect of decreasing the inter-device fluctuation. It is obvious that Cu, Ta and oxides thereof can be deposited to the crystal grain boundary 101 by composition or crystallizing condition of Cu—Ta—O. It is considered that determination is possible as to whether the movement of Cu is caused mainly in the grain or caused at the grain boundary depending on the amount of deposition and the composition thereof. A memory of large capacity can be provided by decreasing variations between the devices. Further, by improving the reliability of operation, application to RAM requiring large possible number of rewriting is possible. Particularly, the memory device of the invention can be provided as a main memory device corresponding to refinement of 45 nm or less by replacing DRAM having an extensive market as the main memory device for computers but involves a problem in the refinement 45 nm or less for the process generation.
Conditions for crystallization of Cu—Ta—O are to be described with reference to
Further, we have further made an experiment for investigating the electric resistance of Cu—Ta—O, and it has been found that crystallizing temperature of Cu—Ta—O used in our experiment is 500° C. or higher and 700° C. or lower. The film thickness of Cu—Ta—O is, for example, from 5 to 60 nm and the film thickness of Cu—Ta—S is, for example, from 3 to 30 nm.
We observed a cross sectioned TEM (Transmission Electron Microscope) observation for the trially manufactured memory cell and
A vertical relation between Cu—Ta—O and Cu—Ta—S is to be described below. In a case of using a process step of forming a Cu—Ta—O film, crystallizing Cu—Ta—O and then forming a Cu—Ta—S film, since the heat resistant temperature of Cu—Ta—S may be lower than the crystallizing temperature of Cu—Ta—O, materials for Cu—Ta—S can be selected from wide compositions. For example, a composition of Cu:Ta:S=60:10:30 that sublimates by applying a thermal load at 600° C. can be used. Referring to the compositional ratio for Cu—Ta—S, when the Cu concentration is 10% or more and 50% or less, and Ta concentration is 10% or more and 30% or less, for instance, the amount of Cu supply is sufficient for the change of the resistance and this is considered to be advantageous for suppressing voids of the Cu—Ta—S material when Cu is supplied but use of other compositions is of course possible. Then, a manufacturing step of this memory is to be described with reference to
At first, by using a usual semiconductor step, an MIS transistor is formed and a diffusion layer is separated by a field oxide film. Then, after forming an interlayer dielectric film, a contact hole connected with the drain of the transistor is formed, and an adhesion layer 14 and a plug material 13 are formed by a chemical vapor deposition method. Then, CMP (Chemical Mechanical Polishing) is performed to form BEC. Further, a crystalline Cu—Ta—O film is formed.
Since sputtered particles incident by the sputtering to the substrate have high kinetic energy and can move freely to some extent on the substrate, they tend to form a crystalline state which is thermodynamically stable. Accordingly, temperature required for crystallization can be lowered compared with a case of forming a film in an amorphous state and then applying a thermal load. As a result, since the dopant injected into the silicon substrate moves by a high thermal load, this can avoid a problem that transistor characteristics are deteriorated.
Then, a fabrication method for Cu—Ta—O and Cu—Ta—S is to be described. For Cu-containing materials, fine fabrication by etching is generally difficult. For example, a damascene step is used in the Cu wiring step. A fabrication method in this embodiment is to be described with reference to
The hard mask 141 is fabricated by dry etching using a resist 142 as a mask. Then, resist ashing is performed to remove the resist 142.
Further, Cu—Ta—S and Cu—Ta—O are fabricated by dry etching using the hard mask 141. Since a higher selective ratio can be taken for the hard mask 141 to the Cu—Ta—O and Cu—Ta—S compared with the resist 142, finer fabrication is possible.
Then, connection portion between the memory area RM and a bit line and a connection portion between the source of the MIS transistor and a source line are formed and upper wirings are formed successively.
Then,
Further,
This embodiment has a feature that the ion confinement layer is crystallized by laser irradiation in the Cu—Ta—O crystallization methods shown in
Film formation of Cu—Ta—O is performed as described below. An amorphous Cu—Ta—O film is formed while controlling the substrate temperature upon sputtering to such a low level that Cu—Ta—O is not crystallized. Then, crystallization is performed for Cu—Ta—O by using laser irradiation.
Elevation for the temperature of the silicon wafer substrate can be mitigated by using laser irradiation not by a heat treatment using a furnace. Thus, since not only the problem that the transistor characteristics are deteriorated due to movement of a dopant in the diffusion layer can be avoided but also degradation of Low-k material can further be prevented, a Low-k material can be used for the interlayer dielectric film. By using the Low-k material, wiring delay in the semiconductor circuit can be mitigated and high speed operation can be performed. Generally, a Low-k material has low heat resistance. For example, when a thermal load exceeding 400° C. is applied to a porous Low-k material, since fine voids in the inside are eliminated to increase the dielectric constant k, wiring delay increases or wiring short circuit is caused by the deformation of Low-k material. The temperature at which a Low-k material is deteriorated naturally varies depending on the type of Low-k materials.
A laser irradiation method is to be described. A wafer is rotated around an axis in perpendicular to the surface of a silicon wafer and passing through the wafer center as a center, and a laser irradiation area is moved in the radial direction of the wafer. Further, the rotational speed is changed by the position of the laser irradiation region thereby keeping the linear speed of the laser constant. With the foregoing, a laser heat treatment at a uniform irradiation strength is possible.
The diffraction index of Cu—Ta—O in an amorphous state according to our measurement was 3.9 at a wavelength of 632.8 nm. While it is considered that crystallization is possible by controlling the laser irradiation intensity to 16 kW/mm2, the moving speed of the laser irradiation region to 25 mm/sec, and the irradiation length in the moving direction of the laser to 1 μm, since the diffraction index, the crystallization temperature, and the time required for crystallization vary depending on the composition of the Cu—Ta—O material, the irradiation intensity and the moving speed of the irradiation region are naturally controlled to optimum values.
Further, it is possible to crystallize Cu—Ta—O by selective heating by the laser irradiation and suppress temperature elevation for Cu—Ta—S formed therebelow. As a result, a structure where Cu—Ta—S is present below Ca—Ta—O can be formed by using Cu—Ta—S of a lower heat resistance temperature than the crystallization temperature for Cu—Ta—O.
This embodiment has a feature in crystallizing Cu—Ta—O by applying heat treatment in an electric furnace or IR furnace after forming an amorphous Cu—Ta—O film among the crystallization methods for Cu—Ta—O in
This embodiment has a feature of separating the memory area by CMP.
The manufacturing step of this memory is to be described with reference to
At first, MIS transistor is formed and a diffusion layer is separated by a field oxide film by using a usual semiconductor step. Then, after forming an interlayer dielectric film, contact holes connected with the drain and the source of the transistor are formed, and an adhesion layer 225 and a plug material 224 are formed by a chemical vapor deposition method (CVD). Then, CMP (Chemical Mechanical Polishing) is applied to form a connection portion between diffusion layer and 1 metal wire. Then, 1 metal wire 223 is formed by using a CVD film deposition and damascene fabrication. An example of the 1 metal wire material is W. Then, an etching stopper layer 221 and an interlayer dielectric film 226 are formed and, further, CVD and dry etching are performed to form a step difference portion 222. An example of the material for the etching stopper layer is SiN and an example of the material for the interlayer dielectric film 226 is PTEOS. Further, an example of the material for the step difference portion 222 is SiN.
Further, the ion confinement layer 11, an ion supply layer 12, and an upper electrode 15 are deposited. All of such film deposition can be performed by a sputtering method. However, in a case of using a deep hole with an aspect ratio between the height and the opening of the step difference portion exceeding 1, each of the layers is formed by using a CVD method.
Then, by performing CMP, a structure in which the memory area is separated shown in
Subsequently, by forming the upper wiring, a memory device is manufactured. Further, in a case of forming this structure by using a general semiconductor process, a step difference of from 10 to 500 nm is formed for Cu—Ta—O or Cu—Ta—S.
In this embodiment, the source line is disposed below the bit line, and the source line is wired by using the 1 metal wire 223. Further, a dry etching stopper layer 221 is formed so that the connection portion between the 1 metal wire and the upper wiring can be formed easily.
Number | Date | Country | Kind |
---|---|---|---|
2008-089776 | Mar 2008 | JP | national |