The present application claims priority to Chinese Patent Application No. 201510079521.5, filed on Feb. 13, 2015, entitled “SEMICONDUCTOR DEVICE WITH SHAPED CAVITIES FOR EMBEDDING GERMANIUM MATERIAL AND DOUBLE TRENCH MANUFACTURING PROCESSES THEREOF”, which is incorporated by reference herein for all purposes.
NOT APPLICABLE
NOT APPLICABLE
The present invention is directed to semiconductor processes and devices.
Since the early days when Dr. Jack Kilby at Texas Instruments invented the integrated circuit, scientists and engineers have made numerous inventions and improvements on semiconductor devices and processes. The last five decades or so have seen a significant reduction in semiconductor sizes, a reduction which translates to ever increasing processing speed and decreasing power consumption. So far, the development of semiconductor has generally followed Moore's Law, which roughly states that the number of transistors in a dense integrated circuit doubles approximately every two years. Now, semiconductor processes are pushing toward below 20 nm, where some companies are now working on 14 nm processes. Just to provide a reference, a silicon atom is about 0.2 nm, which means the distance between two discrete components manufactured by a 20 nm process is just about a hundred silicon atoms.
Manufacturing semiconductor devices is thus becoming more and more challenging and is pushing toward the boundary of what is physically possible. Huali Microelectronic Corporation™ is one of the leading semiconductor fabrication companies that has focused on the research and development of semiconductor devices and processes.
One of the recent developments in semiconductor technologies has been utilization of silicon germanium (SiGe) in semiconductor manufacturing. For example, SiGe can be used for manufacturing of a complementary metal-oxide-semiconductor (CMOS) with adjustable band gap. While conventional techniques exist for SiGe-based processes, these techniques are unfortunately inadequate for the reasons provided below. Therefore, improved methods and systems are desired.
The present invention is directed to semiconductor processes and devices. More specifically, embodiments of the present invention provide a semiconductor device that comprises a shaped cavity formed from two trench structures, and the shaped cavity is filled with silicon and germanium material. There are other embodiments as well.
The following description is presented to enable one of ordinary skill in the art to make and use the invention and to incorporate it in the context of particular applications. Various modifications, as well as a variety of uses in different applications, will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to a wide range of embodiments. Thus, the present invention is not intended to be limited to the embodiments presented, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
In the following detailed description, numerous specific details are set forth in order to provide a more thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without necessarily being limited to these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention.
The reader's attention is directed to all papers and documents which are filed concurrently with this specification and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference. All the features disclosed in this specification (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
Furthermore, any element in a claim that does not explicitly state “means for” performing a specified function, or “step for” performing a specific function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Section 112, Paragraph 6. In particular, the use of “step of” or “act of” in the Claims herein is not intended to invoke the provisions of 35 U.S.C. 112, Paragraph 6.
Please note, if used, the labels left, right, front, back, top, bottom, forward, reverse, clockwise and counter clockwise have been used for convenience purposes only and are not intended to imply any particular fixed direction. Instead, they are used to reflect relative locations and/or directions between various portions of an object.
As mentioned above, there are many challenges as semiconductor processes scale down. Downscaling IC provides many advantages, including reduction in power consumption and increase in computation speed, as electrons travel less distance from one IC component to another. For example, for CMOS devices, as the sizes of various critical dimensions (e.g., size of gate oxide) decrease, the carrier mobility drops quickly, which adversely affects device performance. SiGe technology, when utilized in various applications, can improve device performance by improving carrier mobility.
For certain types of devices and manufacturing processes thereof, SiGe technology can significantly improve device performance. For example, Intel™ explored the usage of SiGe when using a 90 nm process to improve the performance of logic units. As the manufacturing processes moved to 45 nm, 32 nm, and 22 nm, the amount of germanium content increased. In the early SiGe devices, germanium makes up less than 15% of the device. As device size decreases, the amount of germanium increases to 40% or even higher. For example, in a CMOS device, SiGe material is embedded in the source and drain regions. In the past, to increase the amount of embedding of SiGe material, U-shaped and Σ-shaped cavities (sometimes referred to as recesses) have been proposed for embedding the SiGe materials.
As an example, SiGe technology refers to semiconductor devices and processes that utilize SiGe material to improve device performance. For example, SiGe can be used in a heterojunction bipolar transistor (HBT) that offers advantages over both conventional silicon bipolar and silicon CMOS for implementation of communications circuits. Among other features, the use of Ge material in these devices improves device performance. However, SiGe devices and processes have their challenges. Among other things, there are difficulties in growing lattice-matched SiGe alloy on Si. Uniformly growing SiGe at the Si-STI interface is desirable, as it increases the performance of the CMOS device. For example, SiGe processes for manufacturing CMOS and other types of devices may comprise detention of various logic gate patterning, such as 45/40 nm, 32/28 nm, and <22 nm, and it is important to maintain logic gate patterns and geometries.
As explained above, an important aspect of the SiGe filling material is its size or volume. Large filling material typically translates to better performance, and it is to be appreciated that embodiments of the present invention increases the cavity size of the substrate, thereby significantly increasing the volume of the SiGe filling material.
As illustrated in
It is to be appreciated that the SiGe material can be deposited into the cavity 204 in various ways, and thus may have a different composition. For example, the SiGe material may include 10% to 50% germanium content. In addition, concentration of the germanium material may vary within the cavity region.
Compared to the Σ-shaped cavity, the shape of cavity 204 provides an increase in volume of about 20% to 30%. The cavity 204 is later filled with SiGe material. Compared to devices with Σ-shaped cavities, a PMOS device with SiGe material filled into the cavity 204 can provide an improvement in PMOS performance of 3% and even greater. In addition to improvements in performance, the cavity shape, according to embodiments of the present invention, can also provide better yield compared to conventional cavity shapes. With a relatively large opening size, the amount of SiGe material filled into the cavity can be effectively controlled. There are other benefits of the cavity shaped illustrated in
As shown in
Spacers 402, 403, and 404 are formed, as shown in
In various embodiments, the sizes and distances of the spacers are predetermined according to the devices and the cavity to be formed. For example, spacer 404 is characterized by a width of about 10 nm to 20 nm, which defines the distance between the two trenches that are to be formed. In an embodiment, the distance from the spacer 404 is about 40 nm to 50 nm from the spacer 403, which defines the width of the trenches.
During the etching process, one or more etchants, such as TMAH, enter through trenches 405 and 406. For example, during a wet etching process, etchants expand into all directions, both sideways and downward. For example, as a result of etching from both sides of the region 410, the entirety of the region 410 is substantially removed. As explained above, region 410 consists essentially of silicon material that is a part of the substrate 401. The region 410 is a residual region of the substrate after the trenches 405 and 405 are formed. Depending on the amount of etching performed, the region 410 may include a portion that is not completely removed during the etching process. For example, the notched region 411 was a part of the region 410, and since it is at the bottom of the region 410, it is not removed during the etching process. The etchants are specifically selected to be effective in etching away silicon material. As can be seen in
It is to be appreciated that the convex cavity structures effectively increase the cavity size, and thereby increase the amount of SiGe material that can be filled into the cavity. For example, compared to the Σ-shaped cavity, the shape of a cavity created by the etching process illustrated in
In addition to improvements in performance, the cavity shape according to embodiments of the present invention can also provide better yield compared to conventional cavity shapes. With a relatively large opening size, the amount of SiGe material filled into the cavity can be effectively controlled. There are other benefits of the cavity shape as well.
Now referring to
According to an embodiment, the present invention provides a semiconductor device. The device includes a substrate comprising silicon material. The device also includes a cavity region positioned within the substrate. The cavity region comprises two convex sidewalls and a bottom surface interfacing with the substrate. The bottom surface has a notched region. The device also includes a filling material comprising silicon and germanium material positioned at least partially within the cavity region.
According to another embodiment, the present invention provides a method for fabricating a semiconductor device. The method includes providing a substrate, the substrate consisting essentially of silicon material. The method also includes forming a plurality of spacers overlaying the substrate. The plurality of spacers includes a first spacer, a second spacer, and a third spacer. The first spacer is spaced from the second spacer by a first trench region. The second spacer is spaced from the third spacer by a second trench region. The method further includes performing a first etching process using at least a first etchant to form a first trench at the first trench region and a second trench at the second trench region. The method also includes removing the plurality of spacers. The method includes performing a second etching process using at least a second etchant to form a shaped cavity. The shaped cavity includes two convex regions interfacing with the substrate. The method additionally includes filling the shaped cavity with silicon and germanium material.
While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201510079521.5 | Feb 2015 | CN | national |