1. Field of the Invention
This invention relates to a semiconductor device for use as a high-speed switching device and a power device, and relates, for example, to a horizontal-type field effect transistor.
2. Description of the Related Art
Heretofore, a power IC has been known in which there are formed, on the same substrate, a high withstand voltage semiconductor element for use in, for example, a high withstand voltage drive circuit, and a low withstand voltage semiconductor element for use in, for example, a low withstand voltage drive circuit. Many uses have been conceived regarding the power IC. Low on-resistance is required in a MOS field effect transistor having a high withstand voltage structure (hereinafter, a high voltage MOSFET) for use in an output stage of the power IC of this kind. To achieve the low on-resistance, the high voltage MOSFET is generally manufactured by a micro-process.
Meanwhile, as progress has been made in miniaturization and the high voltage MOSFET has come to be manufactured under the rule of 0.25 μm or less, an element separation region is changed from LOCOS to shallow trench isolation (STI). A high voltage MOSFET having a structure in which an element separation region is formed by the STI is described in, for example, Jpn. Pat. Appln. KOKAI Publication No. 2003-37267. In the high voltage MOSFET having such a structure, for example, in an element of a withstand voltage 20 V system, there may occur a problem that a source-drain voltage snaps back at about 15 V when a gate is on.
According to a first aspect of the present invention, there is provided a semiconductor device comprising: a body layer of a first conductivity type formed on a semiconductor substrate; a source layer of a second conductivity type formed in a surface region of the body layer; an offset layer of the second conductivity type formed on the semiconductor substrate; a drain layer of the second conductivity type formed in a surface region of the offset layer; an insulating film embedded in a trench formed in the surface region of the offset layer between the source layer and the drain layer; a gate insulating film formed on the body layer and the offset layer between the source layer and the insulating film; and a gate electrode formed on the gate insulating film. A first peak of an impurity concentration profile in the offset layer is formed at a position deeper than the insulating film.
According to a second aspect of the present invention, there is provided a semiconductor device comprising: a first semiconductor layer of a first conductivity type formed on a semiconductor substrate; a second semiconductor layer of a second conductivity type formed on the semiconductor substrate adjacently to the first semiconductor layer; a third semiconductor layer of the second conductivity type formed in a surface region of the first semiconductor layer, the third semiconductor layer having an impurity concentration higher than that of the second semiconductor layer; a fourth semiconductor layer of the second conductivity type formed in a surface region of the second semiconductor layer, the fourth semiconductor layer having an impurity concentration higher than that of the second semiconductor layer; an insulating film embedded in the surface region of the second semiconductor layer between the third semiconductor layer and the fourth semiconductor layer; a gate insulating film formed on the first semiconductor layer and the second semiconductor layer between the third semiconductor layer and the insulating film; and a gate electrode formed on the gate insulating film. A first peak of an impurity concentration profile in the second semiconductor layer is formed at a position deeper than the insulating film.
A semiconductor device in an embodiment of this invention will hereinafter be described with reference to the drawings. In the description, common reference numerals are assigned to common parts throughout the drawings.
A high voltage MOS field effect transistor in the embodiment of this invention will be described.
A p-type body layer 12 and an n-type offset layer 13 are formed on a p-type (or n-type) silicon semiconductor substrate 11. An n-positive-type source layer 14 is formed in a surface region of the p-type body layer 12. An n-positive-type drain layer 15 is formed in a surface region of the n-type offset layer 13. A trench is formed in the n-type offset layer 13 between the n-positive-type source layer 14 and the n-positive-type drain layer 15, and a silicon oxide film 16 is embedded in this trench.
A gate insulating film 17 is formed on the p-type body layer 12 and the n-type offset layer 13 between the n-positive-type source layer 14 and the n-positive-type drain layer 15. A gate electrode 18 is formed on the gate insulating film 17. A source electrode 19 is formed on the n-positive-type source layer 14. Moreover, a drain electrode 20 is formed on the n-positive-type drain layer 15.
It is to be noted that an example is shown here in which the p-type body layer 12 and the n-type offset layer 13 are directly formed on the semiconductor substrate 11. However, an n-positive-type semiconductor layer may be formed on the semiconductor substrate 11, and the p-type body layer 12 and the n-type offset layer 13 may be formed on the n-positive-type semiconductor layer.
An impurity concentration profile in the n-type offset layer 13 of the high voltage MOSFET shown in
As shown in
Next, the relation between the peak position of the impurity concentration profile in the n-type offset layer 13 of the high voltage MOSFET and the drain current will be described.
Next, a method of manufacturing the high voltage MOSFET in the embodiment shown in
As shown in
Next, the silicon semiconductor substrate 11 is etched by the RIE method to form a trench, and then the silicon oxide film 16 is formed in the trench on the semiconductor substrate 11 and on the silicon nitride film 21 by the CVD method, as shown in
Subsequently, as shown in
Next, as shown in
Subsequently, after the resist film 24 is released, a resist film 25 is formed by the photolithographic method, as shown in
Next, as shown in
Next, a metal film to be a source electrode and a drain electrode is deposited on the structure shown in
According to the semiconductor device having the manufacturing process described above, the peak position of the impurity concentration profile in the n-type offset layer 13 can be formed in a region deeper than the trench (the silicon oxide film 16). Thus, a high snap-back voltage during the on-operation can be maintained.
According to the embodiment of this invention, it is possible to provide a semiconductor device capable of improving the snap-back voltage during the on-operation.
The reason is described below why the high snap-back voltage during the on-operation can be maintained in the embodiment of this invention.
Space charge distributions in the n-type offset layer 13 at a voltage Vds=17 V at this point in the embodiment and in the conventional example are shown in
However, an electron current supplied from a channel concentrates on the edge portion of the silicon oxide film 16 in the conventional example as shown in
For the same reason, it is also possible to explain the case where the peak position of the impurity concentration profile is 0.5 μl to 0.8 μl deep from the upper end of the trench as shown in
Furthermore, as shown in
As described above, in the embodiment of this invention, since the peak position of the impurity concentration in the n-type offset layer 13 is in the region deeper than the silicon oxide film 16, the resistance in this deep region is reduced and the current density is thus increased, such that the current density in the edge portion of the silicon oxide film 16 can be low. Thus, the concentration of the current can be prevented, and the positive space charge can remain in the n-type offset layer 13 under the silicon oxide film 16, such that the electric field in the edge portion of the silicon oxide film 16 can be relaxed. As a result, the generation of the carriers due to the impact ionization can be reduced, thereby making it possible to maintain a high snap-back voltage.
It is to be noted that the embodiment described above is not the sole embodiment, and the configuration described above can be changed or various configurations can be added to form various embodiments.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general invention concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2005-233428 | Aug 2005 | JP | national |
2006-215204 | Aug 2006 | JP | national |
This is a continuation of U.S. application Ser. No. 11/501,715 filed on Aug. 10, 2006 which is an application based upon and claims the benefit of priority from prior Japanese Patent Applications No. 2005-233428, filed Aug. 11, 2005; and No. 2006-215204, filed Aug. 8, 2006, the entire contents of both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5374843 | Williams et al. | Dec 1994 | A |
5932897 | Kawaguchi et al. | Aug 1999 | A |
7646059 | Kawaguchi et al. | Jan 2010 | B2 |
20010015459 | Watanabe et al. | Aug 2001 | A1 |
20010036694 | Kikuchi et al. | Nov 2001 | A1 |
20020030225 | Nakamura et al. | Mar 2002 | A1 |
20020050619 | Kawaguchi et al. | May 2002 | A1 |
20020197782 | Kitamura | Dec 2002 | A1 |
20050153527 | Kitamura | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
58-127380 | Jul 1983 | JP |
2-180074 | Jul 1990 | JP |
8-88357 | Apr 1996 | JP |
8-97411 | Apr 1996 | JP |
2003-37267 | Feb 2003 | JP |
2003-60204 | Feb 2003 | JP |
2004-165648 | Jun 2004 | JP |
2006-210532 | Aug 2006 | JP |
2006-253334 | Sep 2006 | JP |
Entry |
---|
Edouard de Fresart, et al., “Integration of Multi-Voltage Analog and Power Devices in a 0.25 μm CMOS + Flash Memory Process”, Proc. of ISPSD'02, IEEE, 2002, pp. 305-308. |
Japanese Office Action for Japanese Patent Application No. 2006-215204 dated Aug. 4, 2011 with English translation. |
Number | Date | Country | |
---|---|---|---|
20100096696 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11501715 | Aug 2006 | US |
Child | 12645072 | US |