1. Field of the Invention
The present invention relates to a semiconductor device, and more particularly to a semiconductor device including a switching element of a current-source inverter and two diodes provided for preventing destruction of the switching element.
2. Description of the Background Art
Inverters have a function of converting direct current power into alternating current power, and a function of converting an amplitude, a frequency, or a phase of alternating current power. They are used in various applications such as motor control, a power supply unit, and a ballast for a discharge lamp. Inverters include a voltage-source inverter operating as a voltage source, and a current-source inverter operating as a current source.
Referring to
As switching elements SW1-SW4 of current-source inverter 100, a transistor such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a field effect transistor may be used. When a reverse voltage (a voltage causing a collector potential to be higher than an emitter potential) is applied to a transistor, the transistor may be destroyed. Accordingly, to prevent the reverse voltage from being applied to switching elements SW1-SW4, a reverse blocking diode is connected in series with respect to a switching element. The reverse blocking diode has a cathode connected to a collector of the switching element, or an anode connected to an emitter of the switching element.
Further, when the reverse voltage is blocked by the reverse blocking diode, a reverse current (recovery current) may instantaneously flow into the switching element, and the switching element may be destroyed by a reverse voltage generated by the recovery current. Accordingly, to prevent the recovery current from flowing into switching elements SW1-SW4, a recovery current protection diode is connected in parallel with respect to a switching element. The recovery current protection diode has a cathode connected to a collector of the switching element, and an anode connected to an emitter of the switching element. Thereby, the recovery current flows toward the recovery current protection diode instead of flowing into the switching element.
Japanese Patent Laying-Open No. 62-210858 discloses a technique in which a pair of a reverse blocking diode and a circulation diode is packaged. Further, a circuit structure of a conventional inverter is disclosed in Akemi Sano et al., “Current-Source Inverter for Induction Heating Using IGBT”, Denko Giho, No. 28, 1994, pp. 54-59, and K. Nishida et al., “NOVEL CURRENT CONTROL SCHEME WITH DEADBEAT ALGORITHM AND ADAPTIVE LINE ENHANCER FOR THREE-PHASE CURRENT-SOURCE ACTIVE POWER FILTER”, IEEE Industry Applications Conference 36th Annual Meeting, 2001.
In current-source inverter 100, a reverse blocking diode and a recovery current protection diode are connected to each of switching elements SW1-SW4 as described above. Therefore, a module of current-source inverter 100 requires a space for disposing a semiconductor chip having a reverse blocking diode formed therein and a space for disposing a semiconductor chip having a recovery current protection diode formed therein, which has caused a problem that the module of current-source inverter 100 has a large size. Further, producing the module of current-source inverter 100 requires a step of producing a reverse blocking diode and a step of producing a recovery current protection diode, which has caused a problem that the number of production steps is increased.
These problems are not limited to the module of current-source inverter 100, and may arise in overall semiconductor devices having a structure that a reverse blocking diode and a recovery current protection diode are connected to a switching element.
One object of the present invention is to provide a semiconductor device capable of being produced in a smaller size and in less steps.
A semiconductor device of the present invention includes a switching element, a first diode, and a second diode. A collector of the switching element and a cathode of the first diode are electrically connected, or an emitter of the switching element and an anode of the first diode are electrically connected. The collector of the switching element and a cathode of the second diode are electrically connected, and the emitter of the switching element and an anode of the second diode are electrically connected. The first diode and the second diode are formed in an identical substrate.
According to the semiconductor device of the present invention, since the first diode and the second diode are formed in the identical substrate, the number of substrates can be reduced compared to the case where the first diode and the second diode are formed in separate substrates. Consequently, space occupied by the substrate can be reduced, and thus the semiconductor device can be produced in a smaller size. Further, two diodes can be produced at one time, and thus the semiconductor device can be produced in less steps.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Referring to
Referring to
Referring to
Referring to
It is to be noted that an “anode region” refers to an impurity region serving as an anode of a diode, and a “cathode region” refers to an impurity region serving as a cathode of a diode.
Semiconductor device 50 in the present embodiment includes transistor T, diode D1, and diode D2. Collector C of transistor T and cathode K1 of diode D1 are electrically connected. Collector C of transistor T and cathode K2 of diode D2 are electrically connected, and emitter E of transistor T and anode A2 of diode D2 are electrically connected. Diodes D1 and D2 are formed in identical substrate S1.
According to semiconductor device 50 in the present embodiment, since diodes D1 and D2 are formed in identical substrate S1, the number of substrates can be reduced compared to the case where diodes D1 and D2 are formed in separate substrates. Consequently, space occupied by the substrate can be reduced, and thus the semiconductor device can be produced in a smaller size. Further, two diodes D1 and D2 can be produced at one time, and thus the semiconductor device can be produced in less steps.
Furthermore, in semiconductor device 50, diode D1 has p-type impurity region 4 and n-type impurity region 1 within substrate S1, and diode D2 has p-type impurity region 6 and n-type impurity region 1 within substrate S1. Each cathode region of diodes D1 and D2 is formed by n-type impurity region 1.
Thereby, diodes D1 and D2 have a common cathode region, and thus the semiconductor device can be produced in a smaller size and in less steps.
Further, in semiconductor device 50, p-type impurity regions 4 and 6 are separated from each other, and both are formed within n-type impurity region 1 in the upper surface of substrate S1.
Thereby, anode A1 of diode D1 and anode A2 of diode D2 can be formed on the upper surface of substrate S1.
Further, in semiconductor device 50, p-type impurity regions 4 and 6 are separated from each other with only n-type impurity region 1 interposed therebetween.
Thereby, a distance between anode A1 of diode D1 and anode A2 of diode D2 as seen in plane is reduced, and thus the semiconductor device can be produced in a smaller size.
Referring to
Since the structure and the circuit of semiconductor device 50 other than the above are the same as those of the semiconductor device in the first embodiment shown in
Semiconductor device 50 in the present embodiment further includes the plurality of p-type impurity regions 8a and 8b formed within n-type impurity region 1 between p-type impurity region 4 and p-type impurity region 6.
According to semiconductor device 50 in the present embodiment, the same effect as that of the semiconductor device in the first embodiment can be obtained. In addition, p-type impurity regions 8a and 8b serve as a guard ring. Specifically, when a reverse voltage is applied, a depletion layer spreads from a boundary between n-type impurity region 1 and each of p-type impurity regions 8a and 8b into n-type impurity region 1. Consequently, this depletion layer can suppress an electric field from concentrating on a boundary between n-type impurity region 1 and each of p-type impurity regions 4 and 6. Thereby, semiconductor device 50 can have an improved withstanding voltage.
It is to be noted that any number of p-type impurity regions 8a and 8b may be formed between p-type impurity region 4 and p-type impurity region 6: one p-type impurity region may be formed, and more than two p-type impurity regions may be formed.
Referring to
Since the structure and the circuit of semiconductor device 50 other than the above are the same as those of the semiconductor device in the first embodiment shown in
Semiconductor device 50 in the present embodiment further includes insulating layer 19 formed within n-type impurity region 1 between p-type impurity region 4 and p-type impurity region 6.
According to semiconductor device 50 in the present embodiment, the same effect as that of the semiconductor device in the first embodiment can be obtained. In addition, since a current path between p-type impurity region 4 and p-type impurity region 6 is lengthened, punch-through between p-type impurity region 4 and p-type impurity region 6 can be suppressed. Thereby, semiconductor device 50 can have an improved withstanding voltage.
Referring to
Semiconductor device 51 has a p-type impurity region 10, an n-type impurity region 11 (one impurity region), a p-type impurity region 12, conductive layers 21 and 22, conductive layer 30, and insulating layer 18. P-type impurity region 10 is formed in an lower surface of substrate S1, and n-type impurity region 11 is formed on p-type impurity region 10. P-type impurity region 12 is formed within n-type impurity region 11 in the upper surface of substrate S1. Insulating layer 18 is formed on the upper surface of substrate S1, and conductive layers 22 and 30 are formed to cover a portion of insulating layer 18. Conductive layers 22 and 30 are separated from each other. Conductive layer 22 is formed to the left of a space above insulating layer 18 in the drawing, and in contact with p-type impurity region 12. Conductive layer 30 is formed to the right of the space above insulating layer 18 in the drawing, and in contact with n-type impurity region 11. Conductive layer 21 is formed on the underside of substrate S1 in the drawing.
Referring to
It is to be noted that the circuit and the structure on the upper surface of semiconductor device 51 are the same as those of the semiconductor device in the first embodiment shown in
In semiconductor device 51 in the present embodiment, p-type impurity region 10 is formed in the lower surface of substrate S1, and p-type impurity region 12 is formed in the upper surface of substrate S1.
According to semiconductor device 51 in the present embodiment, the same effect as that of the semiconductor device in the first embodiment can be obtained. In addition, anode A1 of diode D1 can be formed on the lower surface of substrate S1 and anode A2 of diode D2 can be formed on the upper surface of substrate S1.
Referring to
Since the structure and the circuit of semiconductor device 51 other than the above are the same as those of the semiconductor device in the fourth embodiment shown in
Semiconductor device 51 in the present embodiment further includes conductive layer 30 formed on the upper surface of substrate S1 to be in contact with n-type impurity region 11, conductive layer 21 formed on the underside of substrate S1 to be in contact with p-type impurity region 10, and conductive layer 22 formed on the upper surface of substrate S1 to be in contact with p-type impurity region 12. Current path P1 of diode D1 from conductive layer 21 to conductive layer 30 and current path P2 of diode D2 from conductive layer 22 to conductive layer 30 are electrically separated.
According to semiconductor device 51 in the present embodiment, the same effect as that of the semiconductor device in the fourth embodiment can be obtained. In addition, punch-through between p-type impurity region 10 and p-type impurity region 12 can be suppressed, and thus semiconductor device 51 can have an improved withstanding voltage.
Referring to
Referring to
It is to be noted that the structure on the upper surface of semiconductor device 52 is the same as that of the semiconductor device in the first embodiment shown in
Referring to
Semiconductor device 52 in the present embodiment includes transistor T, diode D1, and diode D2. Emitter E of transistor T and anode A1 of diode D1 are electrically connected. Collector C of transistor T and cathode K2 of diode D2 are electrically connected, and emitter E of transistor T and anode A2 of diode D2 are electrically connected. Diodes D1 and D2 are formed in identical substrate S1.
According to semiconductor device 52 in the present embodiment, the same effect as that of semiconductor device 50 in the first embodiment can be obtained.
Further, in semiconductor device 52, diode D1 has p-type impurity region 2 and n-type impurity region 3 within substrate S1, and diode D2 has p-type impurity region 2 and n-type impurity region 5 within substrate S1. Each anode region of diodes D1 and D2 is formed by p-type impurity region 2.
Thereby, diodes D1 and D2 have a common anode region, and thus the semiconductor device can be produced in a smaller size and in less steps.
Further, in semiconductor device 52, n-type impurity regions 3 and 5 are separated from each other, and both are formed within p-type impurity region 2 in the upper surface of substrate S1.
Thereby, cathode K1 of diode D1 and cathode K2 of diode D2 can be formed on the upper surface of substrate S1.
Further, in semiconductor device 52, n-type impurity regions 3 and 5 are separated from each other with only p-type impurity region 2 interposed therebetween.
Thereby, a distance between cathode K1 of diode D1 and cathode K2 of diode D2 as seen in plane is reduced, and thus the semiconductor device can be produced in a smaller size.
Referring to
Since the structure and the circuit of semiconductor device 52 other than the above are the same as those of the semiconductor device in the sixth embodiment shown in
Semiconductor device 52 in the present embodiment further includes the plurality of n-type impurity regions 7a and 7b formed within p-type impurity region 2 between n-type impurity region 3 and n-type impurity region 5.
According to semiconductor device 52 in the present embodiment, the same effect as that of the semiconductor device in the sixth embodiment can be obtained. In addition, n-type impurity regions 7a and 7b serve as a guard ring. Specifically, when a reverse voltage is applied, a depletion layer spreads from a boundary between p-type impurity region 2 and each of n-type impurity regions 7a and 7b into p-type impurity region 2. Consequently, this depletion layer can suppress an electric field from concentrating on a boundary between p-type impurity region 2 and each of n-type impurity regions 3 and 5. Thereby, semiconductor device 52 can have an improved withstanding voltage.
It is to be noted that any number of n-type impurity regions 7a and 7b may be formed between n-type impurity region 3 and n-type impurity region 5: one n-type impurity region may be formed, and more than two n-type impurity regions may be formed.
Referring to
Since the structure and the circuit of semiconductor device 52 other than the above are the same as those of the semiconductor device in the sixth embodiment shown in
Semiconductor device 52 in the present embodiment further includes insulating layer 19 formed within p-type impurity region 2 between n-type impurity region 3 and n-type impurity region 5.
According to semiconductor device 52 in the present embodiment, the same effect as that of the semiconductor device in the sixth embodiment can be obtained. In addition, since a current path between n-type impurity region 3 and n-type impurity region 5 is lengthened, punch-through between n-type impurity region 3 and n-type impurity region 5 can be suppressed. Thereby, semiconductor device 52 can have an improved withstanding voltage.
Referring to
Referring to
It is to be noted that the circuit of semiconductor device 53 is the same as that of the semiconductor device in the sixth embodiment shown in
In semiconductor device 53 in the present embodiment, n-type impurity region 13 is formed in the lower surface of substrate S1, and n-type impurity region 15 is formed in the upper surface of substrate S1.
According to semiconductor device 53 in the present embodiment, the same effect as that of the semiconductor device in the first embodiment can be obtained. In addition, cathode K1 of diode D1 can be formed on the lower surface of substrate S1 and cathode K2 of diode D2 can be formed on the upper surface of substrate S1.
Referring to
Since the structure and the circuit of semiconductor device 53 other than the above are the same as those of the semiconductor device in the ninth embodiment shown in
Semiconductor device 53 in the present embodiment further includes conductive layer 20 formed on the upper surface of substrate S1 to be in contact with p-type impurity region 14, conductive layer 31 formed on the underside of substrate S1 to be in contact with n-type impurity region 13, and conductive layer 32 formed on the upper surface of substrate S1 to be in contact with n-type impurity region 15. Current path P3 of diode D1 from conductive layer 20 to conductive layer 31 and current path P4 of diode D2 from conductive layer 20 to conductive layer 32 are electrically separated.
According to semiconductor device 53 in the present embodiment, the same effect as that of the semiconductor device in the ninth embodiment can be obtained. In addition, punch-through between n-type impurity region 13 and n-type impurity region 15 can be suppressed, and thus semiconductor device 53 can have an improved withstanding voltage.
It is to be noted that lifetime control may be performed in either one or both of diodes D1 and D2 shown in the first to tenth embodiments. Thereby, recovery loss of the diode can be reduced.
The present invention is suitable as a power semiconductor device. In particular, the present invention is suitable as a structure for protecting a switching element of a current-source inverter.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-017913 | Jan 2007 | JP | national |