Embodiment 1 of the invention will now be described with reference to the accompanying drawings.
A gate electrode 16 corresponding to a Schottky electrode is formed on the barrier layer 13, and ohmic electrodes 14 working as a source electrode and a drain electrode are formed on both sides of the gate electrode 16. A surface protection film 17 made of silicon nitride (SiN) is formed so as to cover the gate electrode 16 and the ohmic electrodes 14.
In the HFET of this embodiment, each ohmic electrode 14 is formed so as to have a base thereof penetrating the barrier layer 13 and reaching a portion of the operation layer 12 disposed beneath the 2DEG layer. Specifically, each ohmic electrode is formed by filling a conducting material in an opening formed so as to penetrate the barrier layer 13 and to trench the operation layer 12. The opening to be filled with the conducting material is formed to be deeper than the 2DEG layer and is preferably formed to be deeper than the 2DEG layer by 10 nm or more, so that the resultant ohmic electrode can attain low resistance. Also, as described below, when the opening is formed to be deeper than the 2DEG layer by 10 nm or more, the contact resistance is substantially constant, and hence, there is no need to strictly control the etching end point in forming the opening by the etching. Therefore, the semiconductor device can be easily fabricated.
Furthermore, an n-type impurity doped layer 18 doped with an n-type dopant of silicon or the like is formed in portions of the operation layer 12 and the barrier layer 13 in contact with the ohmic electrodes 14. Since the impurity doped layer 18 is thus formed in the portions of the operation layer 12 and the barrier layer 13 in contact with the ohmic electrodes 14, the contact resistance can be farther reduced. The concentration of silicon introduced into the impurity doped layer 18 is approximately 1×1019 cm−3.
Since the ohmic electrodes 14 are buried in the openings and the n-type dopant is introduced into the interfaces between the ohmic electrodes 14 and the operation layer 12 and the barrier layer 13 in this manner, the ohmic electrodes 14 can be in direct contact with the 2DEG layer in a large area, and hence, the contact resistance can be reduced. In order to reduce the contact resistance, each ohmic electrode 14 is ideally formed to have a width completely according with the width of the opening so as not to overhang the barrier layer 13.
As shown in
Moreover, the wall of the opening is preferably in an inclined shape. The ohmic electrode 14 is generally formed by a lift-off method in which a resist film is selectively formed on the barrier layer 13, a metal material is deposited and a portion of the metal material deposited on the resist film is removed together with the resist film. Therefore, when the wall of the opening is inclined, the metal material can be easily deposited within the opening so as to improve adhesiveness of the ohmic electrode onto the wall of the opening.
Embodiment 2 of the invention will now be described with reference to the accompanying drawings.
As shown in
When the capping layer 21 has the p-type conductivity, an effect to suppress current collapse is particularly attained. In the case where an ohmic electrode 14 is formed so as to be in contact with the top face of the p-type capping layer 21, however, the contact resistance is largely increased.
In the HFET of this embodiment, each of ohmic electrodes 14 working as a source electrode and a drain electrode is formed by filling an opening formed so as to penetrate the capping layer 21 and the barrier layer 13 and trench an operation layer 12 down to a portion thereof disposed beneath a 2DEG layer. Furthermore, an impurity doped layer 18 doped with an n-type impurity such as silicon is formed on portions of the capping layer 21, the barrier layer 13 and the operation layer 12 in contact with the ohmic electrodes 14.
In this manner, it is obvious that the contact resistance of an ohmic electrode can be largely reduced by forming an opening and forming the ohmic electrode in the opening. In this case, the opening is preferably formed to be deeper than the 2DEG layer by 10 nm or more so that the base of the ohmic electrode can reach a portion deeper than the 2DEG layer by 10 nm or more because the contact resistance can be thus further reduced. Also, when the opening is formed to be deeper than the 2DEG layer by 10 nm or more, the contact resistance is substantially constant, and hence, there is no need to strictly control the etching end point in forming the opening by the etching. Therefore, the semiconductor device can be easily fabricated.
In this manner, in the case where a capping layer is formed, the effect to reduce the contact resistance is particularly remarkable. The same effect can be attained not only when the capping layer has the p-type conductivity but also when it has the n-type conductivity or is undoped.
Embodiment 3 of the invention will now be described with reference to the accompanying drawing.
As shown in
Since the control layer 22 has the p-type conductivity and is in ohmic contact with the gate electrode 16, a pn junction is formed between the control layer 22 and an operation layer 12. Therefore, even when no bias is applied to the gate electrode 16, a depletion layer is formed directly below the control layer 22. As a result, the HFET of this embodiment is a normally off (enhancement) type transistor while an HFET having a general Schottky contact gate electrode not using the control layer 22 is a normally on (depletion) type transistor. In a power supply circuit of a power system in particular, a normally off type transistor is indispensable as a switch, and the semiconductor device of this embodiment is useful in such a use.
Embodiment 4 of the invention will now be described with reference to the accompanying drawings.
As shown in
An ohmic electrode 14 corresponding to a cathode electrode is formed so as to penetrate the barrier layer 13 and to reach a portion of the operation layer 12 disposed beneath the 2DEG layer, and an anode electrode 19 corresponding to a Schottky electrode is formed so as to surround the ohmic electrode 14. A surface protection film 17 made of silicon nitride (SiN) is formed so as to cover the ohmic electrode 14 and the anode electrode 19.
Also in this embodiment, an impurity doped layer 18 doped with an n-type impurity is formed on portions of the barrier layer 13 and the operation layer 12 in contact with the ohmic electrode 14. Also, when the ohmic electrode 14 is formed so as to reach a portion deeper than the 2DEG layer by 10 nm or more, the contact resistance can be further reduced.
Although each of the barrier layer, the capping layer and the control layer is made of a single film in each of the aforementioned embodiments, each of the barrier layer, the capping layer and the control layer may have a multilayered structure including a plurality of films stacked.
Each of the ohmic electrode and the Schottky electrode may be made of a general material, for example, an n-type ohmic electrode may be made of titanium (Ti), aluminum (Al) or a multilayered film of titanium (Ti) and aluminum (Al), a p-type ohmic electrode may be made of a multilayered film of nickel (Ni), platinum (Pt) and gold (Au), and a Schottky electrode may be made of a multilayered film of palladium (Pd) or alloy of palladium and silicon (PdSi) and gold (Au).
As described so far, according to the present invention, a semiconductor device using a group III-V nitride semiconductor including an ohmic electrode with small contact resistance can be realized, and the invention is useful as a semiconductor device or the like using a group III-V nitride semiconductor.
Number | Date | Country | Kind |
---|---|---|---|
2006-160206 | Jun 2006 | JP | national |