The present invention relates to a semiconductor device, and particularly relates to a semiconductor device in which a plurality of field-effect transistors are cascode-connected.
A semiconductor device provided with a plurality of field-effect transistors has been conventionally known. As one example thereof,
As illustrated in
As illustrated in
In the semiconductor device 900, a relatively high parasitic inductance is caused in a cascode connection circuit because of the Al wires 315, 316, 317, 320, and 322. As a result, there is a problem that an impedance of an entire circuit becomes high. Further, in the semiconductor device 900, the normally-on MOSFET 302 and the normally-off MOSFET 303 are arranged side by side on the substrate 301, so that the substrate 301 needs to have a large area. Thus, there is a problem that the semiconductor device 900 is difficult to be incorporated in equipment or the number thereof allowed to be mounted on equipment is small.
On the other hand, PTL 1 discloses a semiconductor device provided with a first semiconductor chip and a second semiconductor chip. In the semiconductor device, the first semiconductor chip and the second semiconductor chip are stacked on a substrate and bonded to an electrode of the substrate by flip chip bonding through conductive bumps, so that an inductance of a circuit is decreased.
When a circuit of the semiconductor device described in PTL 1 operates, inductance is a matter of importance at portions where the first semiconductor chip and the second semiconductor chip are connected to the substrate and an external connection terminal. However, the first semiconductor chip and the second semiconductor chip in the circuit are connected to the substrate and the external connection terminals through the conductive bumps. Because the inductance of the conductive bumps is large, the semiconductor device has a problem that the inductance which is a matter of importance for the operation of the circuit is not able to be decreased sufficiently.
PTL 1: Japanese Unexamined Patent Application Publication No. 2011-54652 (Published on Mar. 17, 2011)
The invention has been made in view of the aforementioned problems, and aims to provide a semiconductor device or the like that is capable of decreasing an inductance, which is a matter of great importance for the operation of a cascode connection circuit, and improving performance of circuit operation.
In order to solve the aforementioned problem, a semiconductor device according to one aspect of the invention is a semiconductor device in which a plurality of field-effect transistors are cascode-connected, including a normally-off field-effect transistor as one of the plurality of field-effect transistors, which has a first primary surface on which a gate electrode and a drain electrode are formed and a second primary surface on which a source electrode is formed; and a die pad which has a first primary surface in contact with the second primary surface of the normally-off field-effect transistor and serves as a source terminal of the semiconductor device.
According to the one aspect of the invention, it is possible to decrease an inductance, which is a matter of great importance for an operation of a cascode connection circuit, and improve performance of circuit operation.
One embodiment of the invention will be described below in detail by using
First, a configuration of a semiconductor device 100 according to the present embodiment will be described by using
As illustrated in
As illustrated in
As illustrated in
The source electrode 110 which is arranged on the first primary surface S1 of the transistor 101 and the drain electrode 122 which is arranged on the first primary surface S2 of the transistor 102 are electrically connected by a conductor 131. The drain electrode 112 which is arranged on the first primary surface of the transistor 101 and the first terminal 103 are electrically connected by a conductor 132.
The gate electrode 121 which is arranged on the first primary surface S2 of the transistor 102 and the second terminal 104 are electrically connected by the conductive member 133. The gate electrode 111 which is arranged on the first primary surface S1 of the transistor 101 and the first primary surface S3 of the die pad 105 are electrically connected by the conductive member 134. Further, the source electrode 120 on the second primary surface S5 of the transistor 102 and the first primary surface S3 of the die pad 105 are electrically connected.
As illustrated in
The second primary surface S4 of the transistor 101 is die-bonded onto the first primary surface S3 of the die pad 105 with a solder or the like. The solder has a function of die-bonding the transistor 101 to the die pad 105 and also a function of electrically connecting the transistor 101 and the die pad 105. Note that, a conductive paste having high die-bonding performance may be used instead of the solder. The second primary surface S5 of the transistor 102 is die-bonded onto the first primary surface S3 of the die pad 105 by using a thermally conductive die-bonding material. When the die-bonding material has thermal conductivity, heat generated at the transistor 102 is able to be radiated to the die pad 105. Note that, the transistor 102 and the die pad 105 do not need to be electrically connected, so that the die-bonding member may not have conductivity.
Next, a configuration and an operation of an electronic circuit EC formed in the semiconductor device 100 will be described by using
In the circuit EC, parasitic inductances 12, 13, 15, 24, 25, and 26 are inductances which are caused to be parasitic in the circuit EC when respective elements are electrically connected to each other for forming the circuit EC. That is, in
The parasitic inductance 12 is an inductance of the conductor 131 which connects the source electrode 110 of the transistor 101 and the drain electrode 122 of the transistor 102. Moreover, the parasitic inductance 13 is an inductance of the conductor 132 which electrically connects the drain electrode 112 of the transistor 101 and the first terminal 103 (drain terminal DT). The parasitic inductance 15 is an inductance of the conductive member 134 which electrically connects the gate electrode 111 of the transistor 101 and a branch point 27. Here, the branch point 27 is a point at which the circuit EC branches to a current path which passes through the source electrode 120 of the transistor 102, the gate electrode 111 of the transistor 101, or the second primary surface S6 (source terminal ST) of the die pad 105. The branch point 27 exists on the first primary surface S3 of the die pad 105.
The parasitic inductance 24 is an inductance of the conductive member 133 which electrically connects the gate electrode 121 of the transistor 102 and the second terminal 104 (gate terminal GT). The parasitic inductance 25 is an inductance at a portion where the second primary surface S5 of the transistor 102 and the first primary surface S3 of the die pad 105 are connected. The parasitic inductance 26 is an inductance between the second primary surface S6 (source terminal ST) of the die pad 105 and the branch point 27.
In the circuit EC, current mainly flows from the drain terminal DT to the source terminal 5 via the parasitic inductance 13, the transistor 101, the parasitic inductance 12, the transistor 102, the parasitic inductance 25, the branch point 27, and the parasitic inductance 26 in this order.
A counter electromotive voltage which is caused in the circuit EC by the parasitic inductances 12, 13, 15, 25, and 26 is obtained by multiplying a value of each of the parasitic inductances by a change rate of the current. Therefore, as the change rate of the aforementioned main current increases, a counter electromotive force generated in the circuit EC by the parasitic inductances 12, 13, 15, 25, and 26 increases in the circuit EC. For example, when a current of 100 A flows through the circuit EC as a rectangular wave signal of around 1 MHz, there is a change of 100 A per 10 nanoseconds in the circuit EC. That is, the change rate of the current in the circuit EC becomes 1010 A/second. In this case, even when the parasitic inductances 12, 13, 25, and 26 are mere 1 nanohenry, a counter electromotive force of 10 V is to be caused in the circuit EC. Such a large counter electromotive force may have an influence on an operation of the circuit EC.
The transistor 102 is mainly in charge of control of the semiconductor device 100. Thus, the counter electromotive force applied to the source electrode 120 of the transistor 102 has a particularly great influence on the operation of the circuit EC. This counter electromotive force is caused in the parasitic inductances 25 and 26 (refer to
Meanwhile, as described above, the source electrode 120 which is arranged on the second primary surface S5 of the transistor 102 is in contact with the first primary surface S3 of the die pad 105 in the semiconductor device 100. Further, (a part of) the second primary surface S6 of the die pad 105 serves as the source terminal ST of the semiconductor device 100. Thus, the parasitic inductance 25 is an inductance which is caused at the portion where the second primary surface S5 of the transistor 102 and the first primary surface S3 of the die pad 105 are connected. The parasitic inductance 26 is an inductance which is caused between the first primary surface S3 and the second primary surface S6 of the die pad 105.
Accordingly, the parasitic inductance 25 and the parasitic inductance 26 are determined from a thickness of the portion where the second primary surface S5 of the transistor 102 and the first primary surface S3 of the die pad 105 are connected and a thickness of the die pad 105. The parasitic inductances 25 and 26 are almost proportional to a distance for which the current flows. Since both of the thickness of the portion and the thickness of the die pad 105 are sufficiently small as compared to a length of the semiconductor device 100 in a direction parallel to the first primary surface S3 of the die pad 105 (hereinafter, referred to as a reference direction), the parasitic inductance 25 and the parasitic inductance 26 are also small. Thus, the counter electromotive force which is generated in the parasitic inductance 25 and the parasitic inductance 26 and applied to the source electrode 120 of the transistor 102 is small, so that on-off of the transistor 102 is less likely to be inverted by the counter electromotive force. Accordingly, the circuit EC is able to operate stably.
As described above, the counter electromotive force caused in the parasitic inductances 25 and 26 is applied to the source electrode 120 of the transistor 102. On the other hand, a counter electromotive force caused in the parasitic inductances 15 and 26 is applied to the gate electrode 111 of the transistor 101. As described above, the parasitic inductance 15 is an inductance between the gate electrode 111 of the transistor 101 and the branch point 27. On the other hand, the parasitic inductance 25 is an inductance at the portion where the second primary surface S5 of the transistor 102 and the first primary surface S3 of the die pad 105 are connected. As is clear from
Another embodiment of the invention will be described based on
A configuration of a semiconductor device 200 according to the present embodiment will be described below by using
As illustrated in
As illustrated in
According to the configuration of the semiconductor device 200, the parasitic inductance 25 depends on a thickness of the die pad 105, which extends from the second primary surface S6 of the die pad 105 to the branch point 27, and a thickness of the transistor 202. Moreover, the parasitic inductance 26 depends on a thickness of the portion where the second primary surface S5 of the transistor 202 and the die pad 105 are connected, in addition to a thickness of the transistor 202, which extends from the branch point 27 to the first primary surface S3 of the die pad 105.
Similarly to the semiconductor device 100 of the aforementioned embodiment, both of the thickness of the portion described above and the thickness of the die pad 105 are sufficiently small as compared to a length of the semiconductor device 200 in the reference direction. Moreover, the thickness of the transistor 202 is also sufficiently small as compared to the length of the semiconductor device 200 in the reference direction. Thus, the parasitic inductance 25 and the parasitic inductance 26 are also small.
As described above, since the parasitic inductances 25 and 26 are small in the semiconductor device 200, a counter electromotive force caused in the circuit EC is small. Accordingly, the circuit EC of the semiconductor device 200 is able to operate stably.
Another embodiment of the invention will be described based on
A configuration of a semiconductor device 300 according to the present embodiment will be described by using
As illustrated in
As illustrated in
As illustrated in
According to the configuration of the semiconductor device 300, it is possible to shorten the length of the conductive member 133 compared to that of the configuration of the semiconductor device 100. Accordingly, the parasitic inductance 24 which depends on the length of the conductive member 133 becomes small.
As described above, the parasitic inductance 24 of the semiconductor device 300 is smaller than the parasitic inductance 24 of the semiconductor device 100. Further, similarly to the semiconductor device 100 of the aforementioned embodiment, the parasitic inductance 25 and the parasitic inductance 26 are small in the semiconductor device 300. Accordingly, since a counter electromotive force caused in the circuit EC of the semiconductor device 300 is small, the circuit EC of the semiconductor device 300 is able to operate stably.
As illustrated in
Though the first terminal 103 extends in a direction orthogonal to a side surface of the die pad 105 (direction away from the die pad 105) in the semiconductor device 100, the first terminal 203 extends in a direction parallel to the side surface of the die pad 105 in the semiconductor device 300. Thus, it is possible to reduce the size of the semiconductor device 300 compared to the semiconductor device 100.
For example, when the semiconductor device 100 has the size of 7 mm×9 mm, the semiconductor device 300 has the size of 7 mm×6 mm (though the first terminal 103 and the second terminal 104 extend to the outside of the sealing member 106 in the semiconductor device 100, the first terminal 203 and the second terminal 204 are accommodated inside the sealing member 106 in the semiconductor device 300).
Another embodiment of the invention will be described based on
Here, a configuration of a semiconductor device 400 according to the present embodiment will be described by using
As illustrated in
As illustrated in
According to the configuration of the semiconductor device 400, similarly to the configuration of the semiconductor device 200 in the aforementioned embodiment, the parasitic inductance 25 depends on a thickness of the die pad 105, which extends from the second primary surface S6 of the die pad 105 to the branch point 27, and a thickness of the transistor 202. Moreover, the parasitic inductance 26 depends on a thickness of the portion where the second primary surface S5 of the transistor 202 and the die pad 105 are connected, in addition to a thickness of the die pad 105, which extends from the branch point 27 to the first primary surface S3 of the die pad 105. Further, according to the configuration of the semiconductor device 400, the length of the conductive member 133 is short similarly to the configuration of the semiconductor device 300 in the aforementioned embodiment.
Accordingly, the parasitic inductance 25 and the parasitic inductance 26 of the semiconductor device 400 are small similarly to the parasitic inductance 25 and the parasitic inductance 26 of the semiconductor device 200. Further, the parasitic inductance 24 of the semiconductor device 400 is small similarly to the parasitic inductance 24 of the semiconductor device 300 in the aforementioned embodiment.
As described above, since the parasitic inductances 24, 25, and 26 are small in the semiconductor device 400, a counter electromotive force caused in the circuit EC is small. Accordingly, the circuit EC of the semiconductor device 400 is able to operate stably.
Another embodiment of the invention will be described based on
A configuration of electronic equipment 500 according to the present embodiment will be described below by using
As illustrated in
The parasitic inductances 25 and 26 which cause the counter electromotive force to be applied to the source electrode 120 which is arranged on the second primary surface S5 of the transistor 102 (refer to
As described above, since the parasitic inductances 25 and 26 of the semiconductor device 100 are small, the counter electromotive force which is caused in the circuit EC of the semiconductor device 100 is small. Accordingly, the circuit EC of the semiconductor device 100 is able to operate stably. Therefore, it is possible to provide the electronic equipment 500 with less malfunction.
Each of the semiconductor devices (100, 200, 300, and 400) according to an aspect 1 of the invention is a semiconductor device in which a plurality of field-effect transistors are cascode-connected, including: a normally-off field-effect transistor (102) as one of the plurality of field-effect transistors, which has a first primary surface (S2) on which a gate electrode (121) and a drain electrode (122) are formed and a second primary surface (S5) on which a source electrode (120) is formed; and a die pad (105) which has a first primary surface (S3) in contact with the second primary surface of the normally-off field-effect transistor and also serves as a source terminal of the semiconductor device.
According to the aforementioned configuration, the second primary surface of the normally-off field-effect transistor and the first primary surface of the die pad are in contact with each other. The source electrode is formed on the second primary surface of the normally-off field-effect transistor and the first primary surface of the die pad also serves as the source terminal. Therefore, the source electrode of the normally-off field-effect transistor and the source terminal are electrically connected thorough the die pad having conductivity.
With the connection, the source electrode of the normally-off field-effect transistor is able to reach the source terminal only with an inductance of a part held between the first primary surface and the second primary surface of the die pad. Accordingly, with the aforementioned configuration, it is possible to decrease the inductance, which is a matter of great importance for an operation of a cascode connection circuit, and improve performance of circuit operation. The effect of the invention will be described in more detail as follows.
A parasitic inductance which is caused at a portion where the second primary surface of the transistor and the die pad are connected and a parasitic inductance which is caused between the first primary surface and the second primary surface of the die pad are determined from a thickness of the portion and a thickness of the die pad. Here, the parasitic inductances are almost proportional to a distance for which current flows. Since both of the thickness of the portion and the thickness of the die pad are sufficiently small as compared to a length of the semiconductor device in a reference direction, the parasitic inductances described above are also small.
In this manner, since the parasitic inductance which is caused at the portion where the second primary surface of the transistor and the die pad are connected and the parasitic inductance which is caused between the first primary surface and the second primary surface of the die pad are small, a counter electromotive force caused in the circuit of the semiconductor device due to the parasitic inductances is small. Accordingly, the circuit of the semiconductor device is able to operate stably.
Note that, the second primary surface of the normally-off field-effect transistor and the first primary surface of the die pad may be in contact with each other through a die-bonding material or an adhesive material such as a solder.
Each of the semiconductor devices (200 and 400) according to an aspect 2 of the invention may be configured to further include in the aspect 1 a normally-on field-effect transistor (101) as another one of the plurality of field-effect transistors, which has a first primary surface (S1) on which a source electrode (110), a gate electrode (111), and a drain electrode (112) are formed, in which a source electrode (front surface source electrode 120a) is formed not only on the second primary surface (S5) but also on the first primary surface (S2) of the normally-off field-effect transistor (102), and the source electrode which is formed on the first primary surface of the normally-off field-effect transistor and the gate electrode which is formed on the first primary surface of the normally-on field-effect transistor are connected by a conductive member (134).
According to the aforementioned configuration, a length of the conductive member which connects the source electrode of the normally-off field-effect transistor and the gate electrode of the normally-on field-effect transistor is able to be shortened. As a result thereof, parasitic inductances which depend on the length of the conductive member are able to be decreased. This is because the parasitic inductances are almost proportional to a distance for which current flows.
The semiconductor device according to an aspect 3 of the invention may be configured in the aspect 2 such that the normally-on field-effect transistor (101) has a breakdown voltage higher than that of the normally-off field-effect transistor (102 or 202).
According to the aforementioned configuration, even when a counter electromotive force applied to the gate electrode of the normally-on transistor is larger than a counter electromotive force applied to the source electrode of the normally-off transistor, on-off of the normally-on transistor is less likely to be inverted. Therefore, the circuit of the semiconductor device is able to operate more stably.
The invention is not limited to each of the embodiments described above and can be modified variously within the scope defined by the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the invention. Further, by combining the technical means disclosed in each of the embodiments, a new technical feature may be formed.
The invention is able to be used for a semiconductor device and electronic equipment provided with the semiconductor device.
Number | Date | Country | Kind |
---|---|---|---|
2013-112288 | May 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/055079 | 2/28/2014 | WO | 00 |