1. Field of the Invention
The present invention relates to a semiconductor device having a superjunction (hereinafter referred to as “SJ”) structure, such as an SJ MOSFET.
2. Description of the Related Art
A conventional SJ MOSFET is manufactured by forming a p-type body layer (base layer) on a substrate having an SJ structure including n-type columns and p-type columns arranged alternately along the surface, and forming an n-type source diffusion layer on the surface of the p-type body layer. When the column is patterned as fine as 2 μm or below, for example, the above-described structure has a limit in fine patterning because the body layer can not be made sufficiently small.
On the other hand, a trench-gate SJ MOSFET is known as a structure suitable for fine patterning. In the case of the trench-gate, positions for formation of n-type columns and p-type columns may deviate from positions for formation of trench-gates along the surface, or etching or the like for formation of trenches may advance deeper than an intended depth and reach the p-type column. In such the cases, a carrier passage can not be formed from the p-type body layer to the n-type column and an overall on-resistance of the semiconductor device is increased as a problem.
With regard to this problem, JP-A 2003-124464 (paragraph 0038, FIG. 1) discloses an SJ MOSFET including an n-type silicon region formed in a region that contains almost the entire of a carrier passage. This carrier passage links then-type column and the p-type column that cover the bottom of a trench-gate.
Even in the SJ MOSFET disclosed in the above-described document, it is required to form the n-type silicon region in consideration of displacements of the trench along the surface and in the vertical direction. Therefore, the n-type silicon region inevitably has a large width and depth, which ultimately limits fine patterning.
In a first aspect the present invention provides a semiconductor device, comprising: a first semiconductor layer of the first conduction type; a first main electrode formed on one surface of the first semiconductor layer; a second semiconductor layer of the first conduction type and a third semiconductor layer of the second conduction type formed on the other surface of the first semiconductor layer, the third semiconductor layer arranged periodically along the surface in association with the second semiconductor layer; a fourth semiconductor layer of the second conduction type formed on the surfaces of the second semiconductor layer and the third semiconductor layer; a fifth semiconductor layer of the first conduction type formed on the surface of the fourth semiconductor layer; a control electrode formed in a trench with an insulator interposed therebetween, the trench passing through the fourth and fifth semiconductor layers and reaching the second semiconductor layer; a sixth semiconductor layer of the first conduction type diffused from the bottom of the trench; and a second main electrode connected to the fourth and fifth semiconductor layers.
In a second aspect the present invention provides a semiconductor device, comprising: a first semiconductor layer of the first conduction type; a first main electrode formed on one surface of the first semiconductor layer; a second semiconductor layer of the first conduction type and a third semiconductor layer of the second conduction type formed on the other surface of the first semiconductor layer, the third semiconductor layer arranged periodically along the surface in association with the second semiconductor layer; a fourth semiconductor layer of the second conduction type formed on the surfaces of the second semiconductor layer and the third semiconductor layer; a fifth semiconductor layer of the first conduction type formed on the surface of the fourth semiconductor layer; a control electrode formed in a trench with an insulator interposed therebetween, the trench passing through the fourth and fifth semiconductor layers and reaching the second semiconductor layer; and a second main electrode connected to the fourth and fifth semiconductor layers, wherein the third semiconductor layer has a width in a direction of arrangement in association with the second semiconductor layer made narrower than the width of the second semiconductor layer in the direction of arrangement or the width of the trench in the direction of arrangement.
In a third aspect the present invention provides a semiconductor device, comprising: a first semiconductor layer of the first conduction type; a first main electrode formed on one surface of the first semiconductor layer; a second semiconductor layer of the first conduction type and a third semiconductor layer of the second conduction type formed on the other surface of the first semiconductor layer, the third semiconductor layer arranged periodically along the surface in association with the second semiconductor layer; a fourth semiconductor layer of the second conduction type formed on the surfaces of the second semiconductor layer and the third semiconductor layer; a fifth semiconductor layer of the first conduction type formed on the surface of the fourth semiconductor layer; a control electrode formed in a trench with an insulator interposed therebetween, the trench passing through the fourth and fifth semiconductor layers and reaching the second semiconductor layer, the trench having a width of the bottom made narrower than widths of other portions; and a second main electrode connected to the fourth and fifth semiconductor layers.
Preferred embodiments of the present invention will now be described below with reference to the accompanying drawings, in which:
The embodiments of the present invention are described below with reference to the drawings.
An n+-type silicon substrate 11 forms a drain layer. On one surface of the substrate 11, n-type columns 12 and p-type columns 13 are alternately arranged at a certain interval along the surface to form an SJ structure. On the upper surfaces of the n-type columns 12 and the p-type columns 13, a p-type body layer (base layer) 14 is formed, and an n+-type source layer 15 is formed on the p-type body layer 14.
A trench 16 is formed from the n+-type source layer 15 through the p-type body layer 14 to a depth of the n-type column 12. A gate electrode 18 composed of polysilicon or the like is formed as buried in the trench 16 with a gate insulator 17 interposed therebetween. On a portion of the n-type column 12 facing the bottom of the trench 16, an n-type diffusion layer 19 is formed as covering the bottom.
Between adjacent gate electrodes 18, a contact trench 20 is formed from the n+-type source layer 15 to the p-type body layer 14. A source electrode 21 of aluminum is formed as buried in the contact trench 20 to make contacts with the n+-type source layer 15 and the p-type body layer 14 at the same time. On the other surface of the n+-type silicon substrate 11, a drain electrode 22 of aluminum is formed.
Specifically, in this embodiment, widths Wn and Wp in a direction of arrangement of the n- and p-type columns 12 and 13 are made equal to 2 μm or below. The width Wn of the n-type column 12 is made wider than the width Wp of the p-type column 13. This allows the gate electrode 18 to be formed surely on the n-type column 12 even if the trench 16 deviates more or less along the surface.
The following description is given to process steps of manufacturing the SJ MOSFET according to the first embodiment.
First, as shown in
Next, as shown in
Finally, as shown in
In this embodiment, contact with the p-type body layer 14 is realized by formation of the contact trench 20. Accordingly, in comparison with the case where the p-type body layer 14 and the n+-type source layer 15 are connected with the plane electrode, the interval between the gate electrodes 18 can be made narrower. This allows fine pattering as well.
In this embodiment, a trench 26 containing a gate electrode 28 buried therein with a gate oxide 27 interposed therebetween has a V-shape or U-shape with a tapered tip on the bottom, different from the preceding embodiment. When the width of the tip is made narrower than the width of the opening in this way, the margin of deviation along the surface can be made larger than that in the preceding embodiment. In addition, the width of the n-type diffusion layer 29 can be made narrower than that in the preceding embodiment. This allows finer pattering.
In the above description, three-dimensional shapes of the n-type columns 12 and the p-type columns 13 are not mentioned particularly. The n-type columns 12 and the p-type columns 13 may be arranged alternately in stripes as shown in
In the above embodiments, the p-type columns are formed through a process of burying. If the n-type epitaxial layer is formed of several split sub-layers, the p-type columns may be formed by repetitions of implanting and diffusing a p-type impurity to form each of the sub-layers.
In the above embodiments, the MOSFET is exemplified though the present invention is similarly applicable to an IGBT and the like having the SJ structure, needless to say.
Number | Date | Country | Kind |
---|---|---|---|
2005-193597 | Jul 2005 | JP | national |
This application is a Continuation of and claims the benefit of priority under 35 USC §120 from U.S. Ser. No. 11/477,454, filed Jun. 30, 2006, and claims the benefit of priority under 35 U.S.C. §119 from Japanese Patent Application No. 2005-193597, filed on Jul. 1, 2005, the entire contents of each which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6114727 | Ogura et al. | Sep 2000 | A |
6395604 | Kubo et al. | May 2002 | B1 |
6821824 | Minato et al. | Nov 2004 | B2 |
6844592 | Yamaguchi et al. | Jan 2005 | B2 |
6878989 | Izumisawa et al. | Apr 2005 | B2 |
7112519 | Yamaguchi et al. | Sep 2006 | B2 |
7161209 | Saito et al. | Jan 2007 | B2 |
20020175368 | Izumisawa et al. | Nov 2002 | A1 |
20040016962 | Okumura et al. | Jan 2004 | A1 |
20040238882 | Suzuki et al. | Dec 2004 | A1 |
20050156235 | Fujihira | Jul 2005 | A1 |
20070018243 | Ono et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
8-306914 | Nov 1996 | JP |
2003-124464 | Apr 2003 | JP |
2005-5655 | Jan 2005 | JP |
2005-522052 | Jul 2005 | JP |
WO 03085722 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080185640 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11477454 | Jun 2006 | US |
Child | 12050822 | US |