The present inventions relates to semiconductor memory technology. More specifically, the present invention relates to semiconductor memory having both volatile and non-volatile semiconductor memory features.
Semiconductor memory devices are used extensively to store data. Memory devices can be characterized according to two general types: volatile and non-volatile. Volatile memory devices such as static random access memory (SRAM) and dynamic random access memory (DRAM) lose data that is stored therein when power is not continuously supplied thereto.
Non-volatile memory devices, such as flash erasable programmable read only memory (Flash EPROM) device, retain stored data even in the absence of power supplied thereto. Unfortunately, non-volatile memory devices typically operate more slowly than volatile memory devices. Accordingly, it would be desirable to provide a universal type memory device that includes the advantages of both volatile and non-volatile memory devices, i.e., fast operation on par with volatile memories, while having the ability to retain stored data when power is discontinued to the memory device. It would further be desirable to provide such a universal type memory device having a size that is not prohibitively larger than comparable volatile or non-volatile devices.
The present invention provides semiconductor memory having both volatile and non-volatile modes and methods of operation of the same.
In at least one embodiment, a method of operating a semiconductor storage device comprising a plurality of memory cells each having a floating body for storing, reading and writing data as volatile memory, and a floating gate or trapping layer for storing data as non-volatile memory is provided, including: reading and storing data to the floating bodies as volatile memory while power is applied to the device; transferring the data stored in the floating bodies, by a parallel, non-algorithmic process, to the floating gates or trapping layers corresponding to the floating bodies, when power to the device is interrupted; and storing the data in the floating gates or trapping layers as non-volatile memory.
In at least one embodiment, the method includes: transferring the data stored in the floating gates or trapping layers, by a parallel, non-algorithmic restore process, to the floating bodies corresponding to the floating gates or trapping layers, when power is restored to the cell; and storing the data in the floating bodies as volatile memory.
In at least one embodiment, the method includes initializing the floating gates or trapping layers, to each have the same predetermined state prior to the transferring.
In at least one embodiment, the predetermined state comprises a positive charge.
In at least one embodiment, the data transferred is stored in the floating gates or trapping layers with charges that are complementary to charges of the floating bodies when storing the data.
In at least one embodiment, the method includes restoring the floating gates or trapping layers to a predetermined charge state after the restore process.
In at least one embodiment, the method includes writing a predetermined state to the floating bodies prior to the transferring the data stored in the floating gates or trapping lavers to the floating bodies.
In at least one embodiment, the predetermined state is state “0”.
A semiconductor storage device that includes a plurality of memory cells is provided, wherein each memory cell has a floating body for storing, reading and writing data as volatile memory, and a floating gate or trapping layer for storing data as non-volatile memory, the device operating as volatile memory when power is applied to the device, and the device storing data from the volatile memory as non-volatile memory when power to the device is interrupted.
In at least one embodiment, data is transferred from the volatile memory to the non-volatile memory by a parallel, non-algorithmic mechanism.
In at least one embodiment, the device is configured to transfer data stored in non-volatile memory to store the data in the volatile memory when power is restored to the device.
In at least one embodiment, the data is transferred from the non-volatile memory to the volatile memory by a parallel, non-algorithmic mechanism.
In at least one embodiment, the memory cells function as multi-level cells.
A memory string comprising a plurality of semiconductor memory cells connected in series is provided, each semiconductor memory cell comprising: a floating substrate region having a first conductivity type; first and second regions each having a second conductivity type and interfacing with the floating substrate region, such that at least a portion of the floating substrate region is located between the first and second regions and functions to store data in volatile memory; a floating gate or trapping layer positioned in between the first and second regions, adjacent a surface of the floating substrate region and insulated from the floating substrate region by an insulating layer; the floating gate or trapping layer being configured to receive transfer of data stored by the volatile memory and store the data as nonvolatile memory in the floating gate or trapping layer upon interruption of power to the memory cell; a control gate positioned adjacent the floating gate or trapping layer; and a second insulating layer between the floating gate or trapping layer and the control gate.
In at least one embodiment, the semiconductor memory cells are substantially planar.
In at least one embodiment, the semiconductor memory cells comprise three-dimensional cells, each having a in extending from a substrate.
In at least one embodiment, a string selection transistor is connected to one end of the plurality of semiconductor memory cells connected in series, and a ground selection transistor is connected to an opposite end the plurality of semiconductor memory cells connected in series.
In at least one embodiment, the semiconductor memory cells function as multi-level cells.
A memory cell device including a plurality of memory strings assembled to form a grid of semiconductor memory cells is provided, each of the memory strings comprising a plurality of semiconductor memory cells connected in series, each semiconductor memory cell comprising: a floating substrate region having a first conductivity type; first and second regions each having a second conductivity type and interfacing with said floating substrate region, such that at least a portion of the floating substrate region is located between the first and second regions and functions to store data in volatile memory; a floating gate or trapping layer positioned in between the first and second regions, adjacent a surface of the floating substrate region and insulated from the floating substrate region by an insulating layer; the floating gate or trapping layer being configured to receive transfer of data stored by the volatile memory and store the data as nonvolatile memory in the floating gate or trapping layer upon interruption of power to the memory cell; a control gate positioned adjacent the floating gate or trapping layer; and a second insulating layer between the floating gate or trapping layer and the control gate.
In at least one embodiment, the memory strings form columns of the grid.
In at least one embodiment, the columns are insulated from one another by insulating members placed between the columns.
In at least one embodiment, the semiconductor memory cells function as multi-level cells.
These and other features of the invention will become apparent to those persons skilled in the art upon reading the details of the devices and methods as more fully described below.
Before the present devices and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a device” includes a plurality of such devices and reference to “the transistor” includes reference to one or more transistors and equivalents thereof known to those skilled in the art, and so forth.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
The terms “shadowing” “shadowing operation” and “shadowing process” refer to a process of copying the content of volatile memory to non-volatile memory.
“Restore”, “restore operation”, or “restore process”, as used herein, refers to a process of copying the content of non-volatile memory to volatile memory.
“Reset”, “reset operation”, or “reset process”, as used herein, refers to a process of setting non-volatile memory to a predetermined state following a restore process, or when otherwise setting the non-volatile memory to an initial state (such as when powering up for the first time, prior to ever storing data in the non-volatile memory, for example).
After the content of the volatile memory has been moved during a shadowing operation to nonvolatile memory, the shutdown of the memory device occurs, as power is no longer supplied to the volatile memory. At this time, the memory device functions like a Flash EPROM device in that it retains the stored data in the nonvolatile memory. Upon restoring power at event 108, the content of the nonvolatile memory is restored by transferring the content of the non-volatile memory to the volatile memory in a process referred to herein as the “restore” process, after which, upon resetting the memory device at event 110, the memory device is again set to the initial state (event 102) and again operates in a volatile mode, like a DRAM memory device, event 104.
The present invention thus provides a memory device which combines the fast operation of volatile memories with the ability to retain charge that is provided in nonvolatile memories. Further, the data transfer from the volatile mode to the non-volatile mode and vice versa, operate in parallel by a non-algorithmic process described below, which greatly enhances the speed of operation of the storage device. As one non-limiting practical application of use of a memory device according to the present invention, a description of operation of the memory device in a personal computer follows. This example is in no way intended to limit the applications in which the present invention may be used, as there are many applications, including, but not limited to: cell phones, laptop computers, desktop computers, kitchen appliances, land line phones, electronic gaming, video games, personal organizers. mp3 and other electronic forms of digital music players, and any other applications, too numerous to mention here, that use digital memory. In use, the volatile mode provides a fast access speed and is what is used during normal operations (i.e., when the power is on to the memory device). In an example of use in a personal computer (PC), when the power to the PC is on (i.e., the PC is turned on), the memory device according to the present invention operates in volatile mode. When the PC is shut down (i.e., power is turned off), the memory content of the volatile memory is shadowed to the non-volatile memory of the memory device according to the present invention. When the PC is turned on again (power is turned on), the memory content is restored from the non-volatile memory to the volatile memory. A reset process is then conducted on the non-volatile memory so that its data does not interfere with the data having been transferred to the volatile memory.
A buried layer 22 of the second conductivity type is also provided in the substrate 12, buried in the substrate 12, as shown. Region 22 is also formed by an ion implantation process on the material of substrate 12. A body region 24 of the substrate 12 is bounded by surface 14, first and second regions 16,18 and insulating layers 26 (e.g. shallow trench isolation (STI)), which may be made of silicon oxide, for example. Insulating layers 26 insulate cell 50 from neighboring cells 50 when multiple cells 50 are joined to make a memory device. A floating gate or trapping layer 6W is positioned in between the regions 16 and 18, and above the surface 14. Trapping layer/floating gate 60 is insulated from surface 14 by an insulating layer 62. Insulating layer 62 may be made of silicon oxide and/or other dielectric materials, including high “K” dielectric materials, such as, but not limited to, tantalum peroxide, titanium oxide, zirconium oxide, hafnium oxide, and/or aluminum oxide. Floating gate/trapping layer 60 may be made of polysilicon material. If a trapping layer is chosen, the trapping layer may be made from silicon nitride or silicon nanocrystal, etc. Whether a floating gate 60 or a trapping layer 60 is used, the function is the same, in that they hold data in the absence of power. The primary difference between the floating gate 60 and the trapping layer 60 is that the floating gate 60 is a conductor, while the trapping layer 60 is an insulator layer. Thus, typically one or the other of trapping layer 60 and floating gate 60 are employed in device 50, but not both.
A control gate 66 is positioned above floating gate/trapping layer 60 and insulated therefrom by insulating layer 64 such that floating gate/trapping layer 60 is positioned between insulating layer 62 and surface 14 underlying floating gate/trapping layer 60, and insulating layer 64 and control gate 66 positioned above floating gate/trapping layer 60, as shown. Control gate 66 is capacitively coupled to floating gate/trapping layer 60. Control gate 66 is typically made of polysilicon material or metal gate electrode, such as tungsten, tantalum, titanium and their nitrides. The relationship between the floating gate/trapping layer 60 and control gate 66 is similar to that of a nonvolatile stacked gate floating gate/trapping layer memory cell. The floating gate/trapping layer 60 functions to store non-volatile memory data and the control gate 66 is used for memory cell selection.
Cell 50 includes four terminals: word line (WL) terminal 70, source line (SL) terminal 72, bit line (BL) terminal 74 and buried well (BW) terminal 76. Terminal 70 is connected to control gate 66. Terminal 72 is connected to first region 16 and terminal 74 is connected to second region 18. Alternatively, terminal 72 can be connected to second region 18 and terminal 74 can be connected to first region 16. Terminal 76 is connected to buried layer 22.
When power is applied to cell 50, cell 50 operates like a currently available capacitorless DRAM cell. In a capacitorless DRAM device, the memory information (i.e., data that is stored in memory) is stored as charge in the floating body of the transistor, i.e., in the body 24 of cell 50. The presence of the electrical charge in the floating body 24 modulates the threshold voltage of the cell 50, which determines the state of the cell 50.
Alternatively, as illustrated in
A read operation of the cell 50 is now described with reference to
When power down is detected, e.g., when a user turns off the power to cell 50, or the power is inadvertently interrupted, or for any other reason, power is at least temporarily discontinued to cell 50, data stored in the floating body region 24 is transferred to floating gate/trapping layer 60. This operation is referred to as “shadowing” and is described with reference to
The high electric field between the floating gate/trapping layer region 60 and the floating body region 24, when floating body 24 is at state “)” causes electrons to tunnel from floating body 24 to floating gate/trapping layer 60 and the floating gate/trapping layer 60 thus becomes negatively charged. Conversely, the relatively lower electric field existent between the floating gate/trapping layer region 60 and floating body 24 when cell 50 is in the state “1” is not sufficient to cause electron tunneling from the floating body 24 to floating gate/trapping layer 60 and therefore floating gate/trapping layer 60 does not become negatively charged in this situation.
In one particular non-limiting embodiment, terminals 72 and 74 are allowed to float, about +18 volts is applied to terminal 70, and about +0.6 volts is applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 70 may be in the range of about +12.0 volts to about +20.0 volts, and voltage applied to terminal 76 may be in the range of about 0.0 volts to about 1.0 volts.
When power is restored to cell 50, the state of the cell 50 as stored on floating gate/trapping layer 60 is restored into floating body region 24. The restore operation (data restoration from non-volatile memory to volatile memory) is described with reference to
Note that this process occurs non-algorithmically, as the state of the floating gate/trapping layer 60 does not have to be read, interpreted, or otherwise measure to determine what state to restore the floating body 24 to. Rather, the restoration process occurs automatically, driven by electrical potential differences. Accordingly, this process is orders of magnitude faster than one that requires algorithmic intervention. Similarly, it is noted that the shadowing process also is performed as a non-algorithmic process. From these operations, it has been shown that cell 50 provides a memory cell having the advantages of a DRAM cell, but where non-volatility is also achieved.
To perform a shadowing process according to the embodiment described with regard to
When volatile memory of cell 50 is in state “0”, i.e., floating body 24 has a negative or neutral charge/voltage, the NPN junction is off, as noted above, and electrons do not flow in the floating body 24, as illustrated in
In one particular non-limiting example of the shadowing process according to this embodiment, about +3 volts are applied to terminal 72, about 0 volts are applied to terminal 74, about +1.2 volts are applied to terminal 70, and about +0.6 volts are applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about +3 volts to about +6 volts, the voltage applied to terminal 74 may be in the range of about 0.0 volts to about +0.4 volts, the voltage applied to terminal 70 may be in the range of about 0.0 volts to about +1.6 volts, and voltage applied to terminal 76 may be in the range of about 0.0 volts to about +1.0 volts.
Turning now to
In one particular non-limiting example of this embodiment, about 0 volts is applied to terminal 72, about +2 volts is applied to terminal 74, about −1.2 volts is applied to terminal 70, and about +0.6 volts is applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about +1.5 volts to about +3.0 volts, voltage applied to terminal 74 may be in the range of about 0.0 volts to about +0.6 volts, voltage applied to terminal 70 may be in the range of about 0.0 volts to about −3.0 volts, and voltage applied to terminal 76 may be in the range of about 0.0 volts to about +1.0 volts.
Note that this process occurs non-algorithmically, as the state of the floating gate/trapping layer 60 does not have to be read, interpreted, or otherwise measured to determine what state to restore the floating body 24 to. Rather, the restoration process occurs automatically, driven by electrical potential differences. Accordingly, this process is orders of magnitude faster than one that requires algorithmic intervention. From these operations, it has been shown that cell 50 provides a memory cell having the advantages of a DRAM cell, but where non-volatility is also achieved.
After restoring the memory cell(s) 50, the floating gate(s)/trapping layer(s) 60 is/are reset to a predetermined state, e.g., a positive state as illustrated in
To perform a reset operation according to the embodiment of
Having described the various operations of cell 50 above, reference is again made to
At event 102, the memory device is initialized by first setting all of the floating gates/trapping layers to a positive state, in a manner as described above with reference to
The shadowing operation at event 106 is conducted in a mass parallel, non-algorithmic process, in any of the same manners described above, with each of the cells 50 performing the shadowing operation simultaneously, in a parallel operation. Because no algorithmic interpretation or measurement is required to transfer the data from non-volatile to volatile memory (24 to 60), the shadowing operation is very fast and efficient.
To restore the data into the volatile portion of the memory cells 50 of the memory device (i.e., restore charges in floating bodies 24), a state “0” is first written into each of the floating bodies 24, by a parallel process, and then each of the floating bodies is restored in any of the same manners described above with regard to a restoration process of a single floating body 24. This process is also a mass, parallel non-algorithmic process, so that no algorithmic processing or measurement of the states of the floating gates/trapping layers 60) is required prior to transferring the data stored by the floating gates/trapping layers 60 to the floating bodies 24. Thus, the floating bodies are restored simultaneously, in parallel, in a very fast and efficient process.
Upon restoring the volatile memory at event 108, the floating gates/trapping layers 60 are then reset at event 102, to establish a positive charge in each of the floating gates/trapping layers, in the same manner as described above with regard to initializing at event 102.
Up until this point, the description of cells 50 have been in regard to binary cells, in which the data memories, both volatile and non-volatile, are binary, meaning that they either store state “1” or state “0”.
The memory cell 50 described above with regard to
In addition, it may be advantageous to provide a structure that facilitates an increase of memory density over what is possible with a substantially planar design.
Device 50 further includes floating gates or trapping layers 60 on two opposite sides of the floating substrate region 24, as shown in
Device 50 includes four terminals: word line (WL) terminal 70, source line (SL) terminal 72, bit line (BL) terminal 74 and substrate (SUB) terminal 76. Control gate 66 is connected to terminal 70, first and second regions 16, 18 are connected to terminals 72 and 74, respectively, or vice versa, and the bulk substrate 12 is connected to terminal 76.
When power is applied, cell 50 operates in volatile mode, like a capacitorless DRAM cell. That is, data (memory information) is stored in the floating body 24 of the transistor. The presence of electrical charge in the floating body 24 modulates the threshold voltage of the device 50.
In one particular non-limiting embodiment, a charge of about 0.0 volts is applied to terminal 72, a charge of about +2.0 volts is applied to terminal 74, a charge of about −1.2 volts is applied to terminal 70, and a charge of about −10.0 volts is applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about 0.0 volts to about +0.4 volts, voltage applied to terminal 74 may be in the range of about +1.5 volts to about +3.0 volts, voltage applied to terminal 70 may be in the range of about 0.0 volts to about −3.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result.
Alternatively, as illustrated in
In one particular non-limiting embodiment, about 0.0 volts is applied to terminal 72, about +2.0 volts is applied to terminal 74, about +1.2 volts is applied to terminal 70, and about −10.0 volts is applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about 0.0 volts to about +0.6 volts, voltage applied to terminal 74 may be in the range of about +1.5 volts to about +3.0 volts, voltage applied to terminal 70 may be in the range of about 0.0 volts to about +1.6 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result, e.g., a positive voltage applied to terminal 72 and a neutral charge applied to terminal 74.
In one particular non-limiting embodiment, about −2.0 volts is applied to terminal 72, about 0.0 volts is applied to terminal 74, about −1.2 volts is applied to terminal 70, and about 0.0 volts is applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about −1.0 volts to about −3.0 volts, voltage applied to terminal 74 may be in the range of about 0.0 volts to about −3.0 volts, voltage applied to terminal 70 may be in the range of about 0.0 volts to about −3.0 volts, and voltage applied to terminal 76 may be in the range of about 0.0 volts to about +2.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result, e.g., a substantially neutral voltage applied to terminal 72 and a negative charge applied to terminal 74.
A read operation of the cell 50 is now described with reference to
In one particular non-limiting embodiment, about 0.0 volts is applied to terminal 72, about +0.4 volts is applied to terminal 74, about +1.2 volts is applied to terminal 70, and about −10.0 volts is applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, terminal 72 is grounded and is thus at about 0.0 volts, voltage applied to terminal 74 may be in the range of about +0.1 volts to about +1.0 volts, voltage applied to terminal 70 may be in the range of about +1.0 volts to about +3.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result. e.g., a positive voltage applied to terminal 72 and a neutral charge applied to terminal 74.
When power down is detected, e.g., when a user turns off the power to cell 50, or the power is inadvertently interrupted, or for any other reason, power is at least temporarily discontinued to cell 50, data stored in the floating body region 24 is transferred to floating gate/trapping layer 60 via a shadowing operation. With reference to
In one particular non-limiting embodiment, a voltage of about +6.0 volts is initially applied to terminal 72. After bringing the voltage applied to terminal 72 down to ground, a voltage of about +10.0 volts is applied to terminal 70. Voltages of about 0 volts and about −10.0 volts, respectively, are applied to terminals 74 and 76 throughout the process. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about +3.0 volts to about +6.0 volts, prior to dropping the voltage to about 0 volts; voltage applied to terminal 70 may be in the range of about +3.0 volts to about +12.0 volts; voltage applied to terminal 74 may be in the range of about 0.0 volts to about +0.6 volts, and voltage applied to terminal 76 may be in the range of about 4.0 volts to about −12.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result.
When power is restored to cell 50, the state of the cell 50 memory transistor as stored on floating gate/trapping layer 60 is restored into floating body region 24. The restore operation (data restoration from non-volatile memory to volatile memory) is described with reference to
Still referring to
In another embodiment of operation of the cell 50 of
The floating gate/trapping layer 60 will have been previously initialized or reset to have a positive charge prior to the operation of the cell 50 to store data in non-volatile memory via floating body 24. When floating body 24 has a positive charge/voltage, the NPN junction is on, as noted above. The application of the high voltage to terminal 72 at 16 energizes/accelerates electrons traveling through the floating body 24 to a sufficient extent that they can “jump over” the oxide barrier 62 between floating body 24 and floating gate/trapping layer 60, so that electrons enter floating gate/trapping layer 60. Accordingly, floating gate/trapping layer 60 becomes negatively charged by the shadowing process, when the volatile memory of cell 50 is in state “1” (i.e., floating body 24 is positively charged).
When volatile memory of cell 50 is in state “0”, i.e., floating body 24 has a negative or neutral charge/voltage, the NPN junction is off, as noted above, and electrons do not flow in the floating body 24. Accordingly, when voltages are applied to the terminals as described above, in order to perform the shadowing process, the high positive voltage applied to terminal 72 does not cause an acceleration of electrons in order to cause hot electron injection into floating gate/trapping layer 60, since the electrons are not flowing. Accordingly, floating gate/trapping layer 60 retains its positive charge at the end of the shadowing process, when the volatile memory of cell 50 is in state “0” (i.e., floating body 24 is neutral or negatively charged). Note that the charge state of the floating gate/trapping layer 60 is complementary to the charge state of the floating body 24 after completion of the shadowing process. Thus, if the floating body 24 of the memory cell 50 has a positive charge in volatile memory, the floating gate/trapping layer 60 will become negatively charged by the shadowing process, whereas if the floating body of the memory cell 50 has a negative or neutral charge in volatile memory, the floating gate/trapping layer 60 will be positively charged at the end of the shadowing operation. The charges/states of the floating gates/trapping layers 60 are determined non-algorithmically by the states of the floating bodies, and shadowing of multiple cells occurs in parallel, therefore the shadowing process is very fast.
In one particular non-limiting example of the shadowing process according to this embodiment, about +3 volts are applied to terminal 72, about 0 volts are applied to terminal 74, about +1.2 volts are applied to terminal 70, and about −10.0 volts are applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about +3 volts to about +6 volts, the voltage applied to terminal 74 may be in the range of about 0.0 volts to about +0.4 volts, the voltage applied to terminal 70 may be in the range of about 0.0 volts to about +1.6 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts.
In another embodiment to perform a restore process, terminal 72 is set to a substantially neutral voltage, a positive voltage is applied to terminal 74, a negative voltage is applied to terminal 70 and a negative voltage that is more negative than the negative voltage applied to terminal 70 is applied to terminal 76. If the floating gate/trapping layer 60 is negatively charged, this negative charge enhances the driving force for the band-to-band hot hole injection process, whereby holes are injected from the n-region 18 into floating body 24, thereby restoring the “1” state that the volatile memory cell 50 had held prior to the performance of the shadowing operation. If the floating gate/trapping layer 60 is not negatively charged, such as when the floating gate/trapping layer 60 is positively charged or is neutral, the hot band-to-band hole injection process will not occur, resulting in memory cell 50 having a “0” state, just as it did prior to performance of the shadowing process. Accordingly, if floating gate/trapping layer 60 has a positive charge after shadowing is performed, the volatile memory of floating body 24 will be restored to have a negative charge “O” state), but if the floating gate/trapping layer 60 has a negative or neutral charge, the volatile memory of floating body 24 will be restored to have a positive charge (“1” state).
In one particular non-limiting example of this embodiment, about 0 volts is applied to terminal 72, about +2 volts is applied to terminal 74, about −1.2 volts is applied to terminal 70, and about +0.6 volts is applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about +1.5 volts to about +3.0 volts, voltage applied to terminal 74 may be in the range of about 0.0 volts to about +0.6 volts, voltage applied to terminal 70 may be in the range of about 0.0 volts to about −3.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts.
Note that the restore processes described above are non-algorithmic processes, as the state of the floating gate/trapping layer 60 does not have to be read, interpreted, or otherwise measured to determine what state to restore the floating body 24 to. Rather, the restoration process occurs automatically, driven by electrical potential differences. Accordingly, this process is orders of magnitude faster than one that requires algorithmic intervention. Similarly, it is noted that the shadowing processes described above are also performed as non-algorithmic processes. When multiple cells 50 are provided in a memory device, shadowing and restore operations are performed as parallel, non-algorithmic processes. From these operations, it has been shown that cell 50 provides a memory cell having the advantages of a DRAM cell, but where non-volatility is also achieved, and wherein a fin is provided to facilitate denser packing of memory cells and to suppress short channel effects, which in turn allows device scaling to smaller geometry.
After restoring the memory cell(s) 50, the floating gate(s)/trapping layer(s) 60 is/are reset to a predetermined initial state, e.g., a positive state as illustrated in
To perform a reset operation according to the embodiment of
Alternatively, if hot holes are collected during the shadowing operation, then a high positive voltage (e.g., about +18.0 volts, or a voltage in the range of about +12.0 volts to about +20.0 volts is applied to terminal 70 to reset the floating gate(s)/trapping layer(s) 60 to the initial state. Under this condition, electrons will tunnel into the floating gate(s)/trapping layer(s) 60 from the n+ junction region (either 16 or 18, or both, depending on whichever region(s) is/are grounded), resulting in the floating gate(s)/trapping layer(s) 60 being negatively charged in the initial state.
Referring now to
String 500 includes a selection transistor 68, a ground selection transistor 80, and a plurality (i.e., “n”) memory cell transistors 50 (50a, 50b, . . . , 50m, 50n), all of which are connected in series. Each memory cell transistor 50 includes a floating body region 24 of a first conducting type, and first and second regions 20 (corresponding to first and second regions 16 and 18 in the single cell embodiments of cell 50 described above) of a second conductivity type, which are spaced apart from each other and define a channel region. A buried insulator layer 22 isolates the floating body region 24 from the bulk substrate 12. A floating gate or trapping layer 60 is positioned above the surface of floating body 24 and is in between the first and second regions 20. An insulating layer 62 is provided between floating gate/trapping layer 60 and floating body 24 to insulate floating gate/trapping layer 60 from floating body 24. A control gate 66 is insulated and separated from the floating gate/trapping layer 60 by an insulating layer 64. The control gate 66 is capacitively coupled to the floating gate/trapping layer 60. The relationship between the floating gate/trapping layer 60 and the control gate 66 is similar to that of a non-volatile stacked gate floating gate memory cell. Cells 50 may be provided as substantially planar cells, such as the embodiments described above with reference to
In one particular non-limiting embodiment, as illustrated in
Alternatively, as illustrated in
In one particular non-limiting embodiment as illustrated in
However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about 0.0 volts to about +0.6 volts, voltage applied to terminal 74 may be in the range of about +1.5 volts to about +3.0 volts, voltage applied to terminal 70 of the selected control gate 66 may be in the range of about 0.0 volts to about +1.6 volts, voltage applied to the terminals 70 of the passing control gates 66 of the cells 50 not selected may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the string selection transistor 68 may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the ground selection transistor 80 may be in the range of about +1.0 volts to about +5.0 volts, and voltage applied to terminal 76 may be in the range of about 4.0 volts to about −12.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result.
In one particular non-limiting embodiment, as illustrated in
However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about −1.0 volts to about −3.0 volts, voltage applied to terminal 74 may be in the range of about 0.0 volts to about −3.0 volts, voltage applied to each of the terminals 70 may be in the range of about 0.0 volts to about −3.0 volts, voltage applied to the gate of the string selection transistor 68 may be in the range of about 0.0 volts to about 5.0 volts, voltage applied to the gate of the ground selection transistor 80 may be in the range of about 0.0 volts to about +5.0 volts, and voltage applied to terminal 76 may be in the range of about 0.0 volts to about +2.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result, even when the voltages applied to terminals 72 and 74 are not equal.
A read operation is now described with reference to
In one particular non-limiting embodiment, about 0.0 volts is applied to terminal 72, about +0.4 volts is applied to terminal 74, about +1.2 volts is applied to terminal 70 (and thus control gate 66) of the selected memory cell 50, about +3.0 volts is applied to each of the terminals 70 (and thus the passing control gates 66) of the non-selected memory cells 50, a voltage of about +3.0 volts is applied to the gate of the string selection transistor 68, a voltage of about +3.0 volts is applied to the gate of the ground selection transistor 80, and about −10.0 volts is applied to terminal 76.
However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, terminal 72 is grounded, and thus at about 0.0 volts, voltage applied to terminal 74 may be in the range of about +0.1 volts to about +1.0 volts, voltage applied to terminal 70 of the selected control gate 66 may be in the range of about 0.0 volts to about +3.0 volts; voltage applied to the terminals 70 of the passing control gates 66 of the cells 50 not selected may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the string selection transistor 68 may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the ground selection transistor 80 may be in the range of about +1.0 volts to about +5.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result, even when the voltages applied to terminals 72 and 74 are not equal.
When power down is detected, e.g., when a user turns off the power to string 500, or the power is inadvertently interrupted, or for any other reason, power is at least temporarily discontinued to string 500, data stored in the floating body regions 24 are transferred to floating gate/trapping layers 60 via a shadowing operation. With reference to
In one particular non-limiting embodiment, as illustrated in
When power is restored to string 500, the states of the memory cell transistors 50 memory as stored on the floating gates/trapping layers 60 are restored into floating body regions 24. The restore operation (data restoration from non-volatile memory to volatile memory) is described with reference to
In one non-limiting exemplary embodiment of the restore process, a voltage of about 0 volts is applied to terminal 72, a voltage of about +2.0 volts is applied to terminal 74, a voltage of about +1.2 volts is applied to terminal 70 of each selected cell 50, a voltage of about +3.0 volts is applied to each terminal 70 of each non-selected cell 50, a voltage of about +3.0 volts is applied to the gate of the string selection transistor 68, a voltage of about +3.0 volts is applied to the gate of the ground selection transistor 80, and a voltage of about −10 volts is applied to terminal 76.
However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about 0.0 volts to about +0.6 volts, voltage applied to terminal 74 may be in the range of about +1.5 volts to about +3.0 volts, voltage applied to terminal 70 of the selected control gate 66 may be in the range of about 0.0 volts to about +1.6 volts; voltage applied to the terminals 70 of the passing control gates 66 of the cells 50 not selected may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the string selection transistor 68 may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the ground selection transistor 80 may be in the range of about +1.0 volts to about +5.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts. Further, the voltages applied to terminals 72 and 74 may be reversed, and still obtain the same result, even when the voltages applied to terminals 72 and 74 are not equal.
Note that this process occurs non-algorithmically in parallel (only n parallel operations are needed for an entire array of n×m cells 50, where m is a positive integer indicating the number of rows in the array), as the state of the floating gates/trapping layers 60 do not have to be read, interpreted, or otherwise measured to determine what state to restore the floating bodies 24 to. Rather, the restoration process occurs automatically, driven by electrical potential differences. Accordingly, this process is orders of magnitude faster than one that requires algorithmic intervention. Similarly, it is noted that the shadowing process also is performed as a parallel, non-algorithmic process. When multiple cells 5) are provided in a memory device, shadowing and restore operations are performed as parallel, non-algorithmic processes.
In another embodiment of string 50 can be operated to perform a volatile to non-volatile shadowing process by a hot electron injection process. To perform a shadowing process according to this embodiment, a high positive voltage is applied to terminal 72 and a substantially neutral voltage is applied to terminal 74. Alternatively, a high positive voltage can be applied to terminal 74 and a substantially neutral voltage can be applied to terminal 72. A positive voltage is applied to terminal 70 of the selected cell 50, a positive voltage that is more positive than the positive voltage applied to the terminal 70 of the selected cell is applied to each of passing control gates 66 via the terminals 70 of the non-selected cells 50, a positive voltage more positive than the positive voltage applied to terminal 74 is applied to the gate of string selection transistor 68, a positive voltage more positive than the positive voltage applied to terminal 74 is applied to the gate of ground selection transistor 80, and a negative voltage is applied to terminal 76. A high voltage in this case is a voltage greater than or equal to about +3 volts. In one example, a voltage in the range of about +3 to about +6 volts is applied, although it is possible to apply a higher voltage. The floating gate/trapping layer 60 will have been previously initialized or reset to have a positive charge prior to the operation of the cell 50 to store data in non-volatile memory via floating body 24. When floating body 24 of a selected cell 50 has a positive charge/voltage, the NPN junction is on, as noted above, and electrons flow in the floating body 24. The application of the high voltage to terminal 72 at 16 energizes/accelerates electrons traveling through the floating body 24 to a sufficient extent that they can “jump over” the oxide barrier 62 between floating body 24 and floating gate/trapping layer 60, so that electrons enter floating gate/trapping layer 60. Accordingly, floating gate/trapping layer 60 becomes negatively charged by the shadowing process, when the volatile memory of cell 50 is in state “1” (i.e., floating body 24 is positively charged).
When volatile memory of a selected cell 50 is in state “0”, i.e., floating body 24 has a negative or neutral charge/voltage, the NPN junction is of, as noted above, and electrons do not flow in the floating body 24. Accordingly, when voltages are applied to the terminals as described above, in order to perform the shadowing process, the high positive voltage applied to terminal 72 does not cause an acceleration of electrons in order to cause hot electron injection into floating gate/trapping layer 60, since the electrons are not flowing. Accordingly, floating gate/trapping layer 60 retains its positive charge at the end of the shadowing process, when the volatile memory of cell 50 is in state “0” (i.e., floating body 24 is neutral or negatively charged). Note that the charge state of the floating gate/trapping layer 60 is complementary to the charge state of the floating body 24 after completion of the shadowing process. Thus, if the floating body 24 of the memory cell 50 has a positive charge in volatile memory, the floating gate/trapping layer 60 will become negatively charged by the shadowing process, whereas if the floating body of the memory cell 50 has a negative or neutral charge in volatile memory, the floating gate/trapping layer 60 will be positively charged at the end of the shadowing operation. The charges/states of the floating gates/trapping layers 60 are determined non-algorithmically by the states of the floating bodies, and shadowing of multiple cells occurs in parallel, therefore the shadowing process is very fast.
In one particular non-limiting example of the shadowing process according to this embodiment, about +3 volts are applied to terminal 72, about 0 volts are applied to terminal 74, about +1.2 volts are applied to terminal 70 of the selected cells, about +3.0 volts are applied to terminal 70 of the unselected cells, a voltage of about +3.0 volts is applied to the gate of the string selection transistor 68, a voltage of about +3.0 volts is applied to the gate of the ground selection transistor 80, and about −10.0 volts are applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about +3 volts to about +6 volts, the voltage applied to terminal 74 may be in the range of about 0.0 volts to about +0.4 volts, the voltage applied to terminal 70 of the selected cells may be in the range of about 0.0 volts to about +1.6 volts; voltage applied to the terminals 70 of the passing control gates 66 of the cells 50 not selected may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the string selection transistor 68 may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the ground selection transistor 80 may be in the range of about +1.0 volts to about +5.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts. To execute a complete shadowing operation of a memory device including NAND strings 500, the shadowing operations described herein with regard to NAND strings are performed “n” times.
In another embodiment to perform a restore process, terminal 72 is set to a substantially neutral voltage, a positive voltage is applied to terminal 74, a negative voltage is applied to terminal 70 of the selected cells, a positive voltage more positive than the positive voltage applied to terminal 74 is applied to terminal 70 of the unselected cells, a positive voltage more positive than the positive voltage applied to terminal 74 is applied to the gate of string selection transistor 68, a positive voltage more positive than the positive voltage applied to terminal 74 is applied to the gate of ground selection transistor 80, and a negative voltage that is more negative than the negative voltage applied to terminal 70 is applied to terminal 76. If the floating gate/trapping layer 60 of a selected cell 50 is negatively charged, this negative charge enhances the driving force for the band-to-band hot hole injection process, whereby holes are injected from the n-region 18 into floating body 24, thereby restoring the “1” state that the volatile memory cell 50 had held prior to the performance of the shadowing operation. If the floating gate/trapping layer 60 of a selected cell is not negatively charged, such as when the floating gate/trapping layer 60 is positively charged or is neutral, the hot band-to-band hole injection process will not occur, resulting in memory cell 50 having a “0” state, just as it did prior to performance of the shadowing process. Accordingly, if floating gate/trapping layer 60 has a positive charge after shadowing is performed, the volatile memory of floating body 24 will be restored to have a negative charge (“−0” state), but if the floating gate/trapping layer 60 has a negative or neutral charge, the volatile memory of floating body 24 will be restored to have a positive charge (“1” state).
In one particular non-limiting example of this embodiment, about 0 volts is applied to terminal 72, about +2 volts is applied to terminal 74, about −1.2 volts is applied to terminal 70 of the selected cells, about +3.0 volts are applied to terminal 70 of the unselected cells, a voltage of about +3.0 volts is applied to the gate of the string selection transistor 68, a voltage of about +3.0 volts is applied to the gate of the ground selection transistor 80, and about −10.0 volts are applied to terminal 76. However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about +1.5 volts to about +3.0 volts, voltage applied to terminal 74 may be in the range of about 0.0 volts to about +0.6 volts, voltage applied to terminal 70 of the selected cells may be in the range of about 0.0 volts to about −3.0 volts; voltage applied to the terminals 70 of the passing control gates 66 of the cells 50 not selected may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the string selection transistor 68 may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the ground selection transistor 80 may be in the range of about +1.0 volts to about +5.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts.
After restoring the memory cell(s) 50, the floating gates/trapping layers 60 are reset to a predetermined initial state, e.g., a positive state as illustrated in
To perform a reset operation according to the embodiment of
Alternatively, if hot holes re collected during the shadowing operation, that a high positive voltage (e.g., about +18 volts, or in the range of about +12 volts to about +20 volts) is applied to the terminals 70 of the selected cells to reset the floating gates/trapping layers 60 of the selected cells to the initial state. Under this condition, electron will tunnel into the selected floating gates/trapping layers 60 from the respective n+ junction regions, resulting in the floating gates/trapping layers 60 becoming negatively charged.
In one particular non-limiting embodiment, as illustrated in
However, these voltage levels may vary, while maintaining the relative relationships between the charges applied, as described above. For example, voltage applied to terminal 72 may be in the range of about 0.0 volts to about +3.0 volts, voltage applied to terminal 74 may be in the range of about 0.0 volts to about +3.0 volts, voltage applied to terminal 70 of the selected control gate 66 may be in the range of about −12.0 volts to about −20.0 volts; voltage applied to the terminals 70 of the passing control gates 66 of the cells 50 not selected may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the string selection transistor 68 may be in the range of about +1.0 volts to about +5.0 volts, voltage applied to the gate of the ground selection transistor 80 may be in the range of about +1.0 volts to about +5.0 volts, and voltage applied to terminal 76 may be in the range of about −4.0 volts to about −12.0 volts.
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application is a continuation of application Ser. No. 17/087,884, filed Nov. 3, 2020, which is a continuation of application Ser. No. 16/591,858, filed Oct. 3, 2019, now U.S. Pat. No. 10,825,520, which is a continuation of application Ser. No. 15/673,059, filed Aug. 9, 2017, now U.S. Pat. No. 10,468,102, which is a continuation of application Ser. No. 15/267,402, filed Sep. 16, 2016, now U.S. Pat. No. 9,761,311, which is a continuation of application Ser. No. 14/839,682, filed Aug. 28, 2015, now U.S. Pat. No. 9,460,790, which is continuation of application Ser. No. 14/307,424, filed Jun. 17, 2014, now U.S. Pat. No. 9,153,333, which is a division of application Ser. No. 13/903,923, filed May 28, 2013, now U.S. Pat. No. 8,787,085, which is a continuation of application Ser. No. 13/246,582, filed Sep. 27, 2011, now U.S. Pat. No. 8,472,249, which is a divisional application of application Ser. No. 12/257,023, filed Oct. 23, 2008, now U.S. Pat. No. 8,059,459, which claims the benefit of U.S. Provisional Application No. 60/982,382, filed on Oct. 24, 2007 and also claims the benefit of U.S. Provisional Application No. 60/982,374, filed on Oct. 24, 2007. Each of the above Applications (Ser. No. 17/087,884; 16/591,858; 15/673,059; 15/267,402; 14/839,682; 14/307,424; 13/903,923; 13/246,582; 12/257,023; 60/982,382 and 60/982,374) and U.S. Pat. Nos. 10,825,520; 10,468,102; 9,761,311; 9,460,790; 9,153,333; 8,787,085; 8,472,249 and 8,059,459 are hereby incorporated herein, in their entireties, by reference thereto. This application also hereby incorporates International Application No. PCT/US2007/024544 in its entirety, by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
4300212 | Simko | Nov 1981 | A |
4959812 | Momodomi et al. | Sep 1990 | A |
5519831 | Holzhammer | May 1996 | A |
5581504 | Chang et al. | Dec 1996 | A |
5767549 | Chen et al. | Jun 1998 | A |
5999444 | Fujiwara et al. | Dec 1999 | A |
6005818 | Ferrant et al. | Dec 1999 | A |
6104045 | Forbes et al. | Aug 2000 | A |
6141248 | Forbes et al. | Oct 2000 | A |
6163048 | Hirose et al. | Dec 2000 | A |
6166407 | Ohta | Dec 2000 | A |
6229161 | Nemati et al. | May 2001 | B1 |
6341087 | Kunikiyo et al. | Jan 2002 | B1 |
6356485 | Proebsting et al. | Mar 2002 | B1 |
6376876 | Shin et al. | Apr 2002 | B1 |
6542411 | Tanikawa et al. | Apr 2003 | B2 |
6614684 | Shukuri et al. | Sep 2003 | B1 |
6653175 | Nemati et al. | Nov 2003 | B1 |
6661042 | Hsu | Dec 2003 | B2 |
6686624 | Hsu | Feb 2004 | B2 |
6724657 | Shukuri et al. | Apr 2004 | B2 |
6773968 | Forbes et al. | Aug 2004 | B1 |
6791882 | Seki et al. | Sep 2004 | B2 |
6801452 | Miwa et al. | Oct 2004 | B2 |
6828632 | Bhattacharyya | Dec 2004 | B2 |
6885581 | Nemati et al. | Apr 2005 | B2 |
6913964 | Hsu | Jul 2005 | B2 |
6925006 | Fazan et al. | Aug 2005 | B2 |
6937516 | Fazan et al. | Aug 2005 | B2 |
6954377 | Choi et al. | Oct 2005 | B2 |
6956256 | Forbes | Oct 2005 | B2 |
6969662 | Fazan et al. | Nov 2005 | B2 |
7023740 | Wong et al. | Apr 2006 | B1 |
7061806 | Tang et al. | Jun 2006 | B2 |
7081653 | Kawanaka | Jul 2006 | B2 |
7085153 | Ferrant et al. | Aug 2006 | B2 |
7085156 | Ferrant et al. | Aug 2006 | B2 |
7118986 | Steigerwalt et al. | Oct 2006 | B2 |
7158410 | Bhattacharyya et al. | Jan 2007 | B2 |
7170807 | Fazan et al. | Jan 2007 | B2 |
7190616 | Forbes et al. | Mar 2007 | B2 |
7212432 | Ferrant et al. | May 2007 | B2 |
7224019 | Hieda et al. | May 2007 | B2 |
7224020 | Wang et al. | May 2007 | B2 |
7259420 | Anderson et al. | Aug 2007 | B2 |
7259992 | Shirota | Aug 2007 | B2 |
7285820 | Park et al. | Oct 2007 | B2 |
7285832 | Hoefler et al. | Oct 2007 | B2 |
7301803 | Okhonin et al. | Nov 2007 | B2 |
7329580 | Cho et al. | Feb 2008 | B2 |
7352631 | Burnett et al. | Apr 2008 | B2 |
7391640 | Tang et al. | Jun 2008 | B2 |
7436695 | Nirschi et al. | Oct 2008 | B2 |
7440333 | Hsia et al. | Oct 2008 | B2 |
7447068 | Tsai et al. | Nov 2008 | B2 |
7450423 | Lai et al. | Nov 2008 | B2 |
7473611 | Cho et al. | Jan 2009 | B2 |
7504302 | Matthew et al. | Mar 2009 | B2 |
7541636 | Ranica et al. | Jun 2009 | B2 |
7542345 | Okhonin et al. | Jun 2009 | B2 |
7579241 | Hieda et al. | Aug 2009 | B2 |
7609551 | Shino et al. | Oct 2009 | B2 |
7622761 | Park et al. | Nov 2009 | B2 |
7683430 | Okhonin | Mar 2010 | B2 |
7733693 | Ferrant et al. | Jun 2010 | B2 |
7759715 | Bhattacharyya | Jul 2010 | B2 |
7760548 | Widjaja | Jul 2010 | B2 |
7847338 | Widjaja | Dec 2010 | B2 |
7898009 | Wilson et al. | Mar 2011 | B2 |
7898848 | Pirovano et al. | Mar 2011 | B2 |
7903472 | Chen et al. | Mar 2011 | B2 |
7947572 | Park et al. | May 2011 | B2 |
7982256 | Huo et al. | Jul 2011 | B2 |
8014200 | Widjaja | Sep 2011 | B2 |
8036033 | Widjaja | Oct 2011 | B2 |
8059459 | Widjaja | Nov 2011 | B2 |
8159878 | Widjaja | Apr 2012 | B2 |
8194451 | Widjaja | Jun 2012 | B2 |
8294193 | Widjaja | Oct 2012 | B2 |
8391066 | Widjaja | Mar 2013 | B2 |
8472249 | Widjaja | Jun 2013 | B2 |
8570803 | Widjaja | Oct 2013 | B2 |
8654583 | Widjaja | Feb 2014 | B2 |
8787085 | Widjaja | Jul 2014 | B2 |
9153333 | Widjaja | Oct 2015 | B2 |
9257179 | Widjaja | Feb 2016 | B2 |
9455262 | Widjaja | Sep 2016 | B2 |
9460790 | Widjaja | Oct 2016 | B2 |
9646693 | Widjaja | May 2017 | B2 |
9761311 | Widjaja | Sep 2017 | B2 |
9812203 | Widjaja | Nov 2017 | B2 |
9928910 | Widjaja | Mar 2018 | B2 |
9978450 | Widjaja | May 2018 | B2 |
10008266 | Widjaja | Jun 2018 | B1 |
10109349 | Widjaja | Oct 2018 | B2 |
10204684 | Widjaja | Feb 2019 | B2 |
10210934 | Widjaja | Feb 2019 | B2 |
10340006 | Widjaja | Jul 2019 | B2 |
10388378 | Widjaja | Aug 2019 | B2 |
10403361 | Widjaja | Sep 2019 | B2 |
10468102 | Widjaja | Nov 2019 | B2 |
10497443 | Widjaja | Dec 2019 | B2 |
10553281 | Widjaja | Feb 2020 | B2 |
10622069 | Widjaja | Apr 2020 | B2 |
10734076 | Widjaja | Aug 2020 | B2 |
10818354 | Widjaja | Oct 2020 | B2 |
10825520 | Widjaja | Nov 2020 | B2 |
11011232 | Widjaja | May 2021 | B2 |
11488665 | Widjaja | Nov 2022 | B2 |
11545217 | Widjaja | Jan 2023 | B2 |
20020018366 | von Schwerin et al. | Feb 2002 | A1 |
20020048193 | Tanikawa et al. | Apr 2002 | A1 |
20050024968 | Lee et al. | Feb 2005 | A1 |
20050032313 | Forbes | Feb 2005 | A1 |
20050124120 | Du et al. | Jun 2005 | A1 |
20060044915 | Park et al. | Mar 2006 | A1 |
20060125010 | Bhattacharyya | Jun 2006 | A1 |
20060157679 | Scheuerlein | Jul 2006 | A1 |
20060227601 | Bhattacharyya | Oct 2006 | A1 |
20060237770 | Hunag et al. | Oct 2006 | A1 |
20060278915 | Lee et al. | Dec 2006 | A1 |
20070004149 | Tews | Jan 2007 | A1 |
20070090443 | Choi et al. | Apr 2007 | A1 |
20070164351 | Hamamoto | Jul 2007 | A1 |
20070164352 | Padilla | Jul 2007 | A1 |
20070210338 | Orlowski | Sep 2007 | A1 |
20070211535 | Kim | Sep 2007 | A1 |
20070215954 | Mouli | Sep 2007 | A1 |
20070284648 | Park et al. | Dec 2007 | A1 |
20080048239 | Huo et al. | Feb 2008 | A1 |
20080080248 | Lue et al. | Apr 2008 | A1 |
20080123418 | Widjaja | May 2008 | A1 |
20080179656 | Aoki | Jul 2008 | A1 |
20080224202 | Young et al. | Sep 2008 | A1 |
20080265305 | He et al. | Oct 2008 | A1 |
20080303079 | Cho et al. | Dec 2008 | A1 |
20090016101 | Okhonin et al. | Jan 2009 | A1 |
20090034320 | Ueda | Feb 2009 | A1 |
20090065853 | Hanafi | Mar 2009 | A1 |
20090081835 | Kim et al. | Mar 2009 | A1 |
20090085089 | Chang et al. | Apr 2009 | A1 |
20090108322 | Widjaja | Apr 2009 | A1 |
20090108351 | Yang et al. | Apr 2009 | A1 |
20090109750 | Widjaja | Apr 2009 | A1 |
20090173985 | Lee et al. | Jul 2009 | A1 |
20090190402 | Hsu et al. | Jul 2009 | A1 |
20090251966 | Widjaja | Oct 2009 | A1 |
20090316492 | Widjaja | Dec 2009 | A1 |
20100008139 | Bae | Jan 2010 | A1 |
20100034041 | Widjaja | Feb 2010 | A1 |
20100046287 | Widjaja | Feb 2010 | A1 |
20100246277 | Widjaja | Sep 2010 | A1 |
20100246284 | Widjaja | Sep 2010 | A1 |
20110032756 | Widjaja | Feb 2011 | A1 |
20110042736 | Widjaja | Feb 2011 | A1 |
20110044110 | Widjaja | Feb 2011 | A1 |
20110228591 | Widjaja | Sep 2011 | A1 |
20120014180 | Widjaja | Jan 2012 | A1 |
20120069652 | Widjaja | Mar 2012 | A1 |
20130148422 | Widjaja | Jun 2013 | A1 |
20130250685 | Widjaja | Sep 2013 | A1 |
20140355343 | Widjaja | Dec 2014 | A1 |
20150371707 | Widjaja | Dec 2015 | A1 |
20170025534 | Widjaja | Jan 2017 | A1 |
20170365340 | Widjaja | Dec 2017 | A1 |
20210050059 | Widjaja | Feb 2021 | A1 |
Entry |
---|
Ban et al., A Scaled Floating Body Cell (FBC) Memory with High-k+Metal Gate on Thin-Silicon and Thin-BOX for 16-nm Technology Node and Beyond, Symposium on VLSI Technology, 2008, pp. 92-93. |
Campardo et al., VLSI Design of Non-Volatile Memories, ISBN 3-540-20198-X, 2005, pp. 94-95. |
Han et al., Programming/Erasing Characteristics of 45 nm NOR-Type Flash Memory Based on SOI FinFet Structure, J. Korean Physical Society, vol. 47, Nov. 2005, pp. S564-S567. |
Headland, Hot electron injection, Feb. 19, 2004. |
Ohsawa et al., Memory Design Using One-Transistor Gain Cell on SOI, Tech. Digest, IEEE International Solid-State Circuits, vol. 37, No. 11, 2002, pp. 1510-1522. |
Ohsawa et al., An 18.5ns 128Mb SOI DRAM with a Floating Body Cell, IEEE International Solid State Circuits Conference, 2005, pp. 458-459, 609. |
Okhonin et al., A Capacitor-less 1T-DRAM Cell, IEEE Electron Device Letters, vol. 23, No. 2, Feb. 2002, pp. 85-87. |
Okhonin et al., A SOI Capacitor-less 1T-DRAM Concept, IEEE International SOI Conference, 2001, pp. 153-154. |
Okhonin et al., Principles of Transient Charge Pumping on Partially Depleted SOI MOSFETs, IEE Electron Device letters, vol. 23, No. 5, May 2002, pp. 279-281. |
Pelizzer et al., A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications, 2006 Symposium on VLSI Technology Digest of Technical Papers, 2006, pp. 1-2. |
Ranica et al., Scaled 1T-Bulk devices built with CMOS 90nm technology for low-cost eDRAM applications, 2005 Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 38-39. |
Pierret, Semiconductor Device Fundamentals, ISBN: 0-201-54393-1, Addison-Wesley Publishing Company, Inc., 1996, 463-476. |
Tack et al., The Multistable Charge-Controlled Memory Effect in SOI Transistors at Low Temperatures, IEEE Transactions on Electron Devices, vol. 37, May 1990, pp. 1373-1382. |
Yoshida et al., A Design of a Capacitorless 1T-DRAM Cell Using Gate-Induced Drain Leakage (GIDL) Current for Low-power and High-speed Embedded Memory, International Electron Devices Meeting, 2003, pp. 1-4. |
Bawedin et al., “Floating-Body SOI Memory: concepts, Physics, and Challenges”, ECS Transactions 19.4 (2009), pp. 243-256. |
Chatterjee et al., “Taper isolated dynamic gain RAM cell.” Electron Devices Meeting; 1978 international; vol. 24, IEEE, 1978, pp. 698-699. |
Chatterjee et al., “Circuit Optimization of the Taper Isolated Dynamic Gain RAM Cell for VLSI Memories.” pp. 22-23, 1979 IEEE International Solid-State Circuits Conference. |
Chatterjee et al., “A survey of high-density dynamic RAM cell concepts.” Electron Devices, IEEE Transactions on, 26.6 (1979): 827-939. |
Erb, “Stratified charge memory.” Solid-State Circuits Conference; Digest of Technical Papers; 1978 IEEE International; vol. 21, IEEE, 1978, pp. 24-25. |
Leiss et al., “dRAM Design Using the Taper-Isolated Dynamic RAM Cell.” Solid-State circuits, IEEE Journal of 17.2 (1982): 337-344. |
Ranica et al., “A one transistor cell on bulk substrate (1T-Bulk) for low-cost and high density eDRAM.” VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on; IEEE, 2004, pp. 128-129. |
Ohsawa et al., “Autonomous refresh of floating body cell (FBC).” Electron Devices Meeting, 2008, IEDM 2008, IEEE International, IEEE, 2008, pp. 801-804. |
Lanyon et al., “Bandgap Narrowing in Moderately to Heavily Doped Silicon”, IEEE Trans. on Electron Devices, vol. ED-26, No. 7, 1979, pp. 1014-1018. |
Lin et al., “A new 1T DRAM Cell with enhanc3ed Floating Body Effect”, Proc. of 2006 IEEE International Workshop on Memory Tech., Design and Testing, pp. 1-5, 2006. |
Oh et al., “A 4-Bity Double SONOS Memory (DSM) with 4 Storage Nodes Per Cell for Ultimate Multi-Bit Operation”, 2006 Symposium on VLSI Tech. Digest of Tech. Papers, pp. 1-2, 2006. |
Rothemund et al., “Teh importance of being modular”, Nasture, vol. 485, May 2012, pp. 584-585. |
Reisch, “On bistable behavior and open-base breakdown of bipolar transistors in the avalanche regime-modeling and applications.” Electron Devices, IEEE Transactions on 39.6 (1992): 1398-1409. |
Sakui et al., “A new stataic memory cell based on teh reverse base current effect of bipolar transistors.” Electron Devices, IEEE Transactions on 36.6 (1989): 1215-1217. |
Sakui et al., “A new static memory cell based on reverse base current (RBC) effect of bipolar transistor.” Electron Devices Meeting; 1988, IEDM'88; Technical Digest; Internatioan. IEEE, 1988, pp. 44-47. |
Sze et al., Physics of Semiconductor Devices, Wiley Interscience, 2007, p. 104. |
Terada et al., “A new VLSI memory cell using capacitance coupling (CC cell).” Electron Devices, I Transactions on 31.9 (1984): pp. 1319-1324. |
Villaret et al., “Further insight into the physics and modeling of floating-body capacitorless DRAMs.” Electron Devices, IEEE Transactions on 52.11 (2005): pp. 2447-2454. |
Number | Date | Country | |
---|---|---|---|
20230045758 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
60982382 | Oct 2007 | US | |
60982374 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13903923 | May 2013 | US |
Child | 14307424 | US | |
Parent | 12257023 | Oct 2008 | US |
Child | 13246582 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17087884 | Nov 2020 | US |
Child | 17960441 | US | |
Parent | 16591858 | Oct 2019 | US |
Child | 17087884 | US | |
Parent | 15673059 | Aug 2017 | US |
Child | 16591858 | US | |
Parent | 15267402 | Sep 2016 | US |
Child | 15673059 | US | |
Parent | 14839682 | Aug 2015 | US |
Child | 15267402 | US | |
Parent | 14307424 | Jun 2014 | US |
Child | 14839682 | US | |
Parent | 13246582 | Sep 2011 | US |
Child | 13903923 | US |