Specific embodiments of the invention will now be described by way of example with reference to the accompanying drawings wherein:
a is a perspective view of a heat dissipation component in accordance with a first embodiment of the present invention;
b is a perspective view of a heat dissipation component in accordance with a second embodiment of the present invention;
c is a perspective view of a heat dissipation component in accordance with a third embodiment of the present invention;
Reference will now be made in detail to certain embodiments of the invention, examples of which are also provided in the following description. Exemplary embodiments of the invention are described in detail, although it will be apparent to those skilled in the relevant art that some features that are not particularly important to an understanding of the invention may not be shown for the sake of clarity.
Furthermore, it should be understood that the invention is not limited to the precise embodiments described below and that various changes and modifications thereof may be effected by one skilled in the art without departing from the spirit or scope of the invention. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.
In addition, improvements and modifications which may become apparent to persons of ordinary skill in the art after reading this disclosure, the drawings, and the appended claims are deemed within the spirit and scope of the present invention.
When the terms “upper”, “lower”, “top”, “bottom”, “outer”, “inner”, “upwardly”, or “downwardly”, or similar terms are used herein, it should be understood that these terms have reference only to the structure shown in the drawings as it would appear to a person viewing the drawings, and are utilized only to facilitate describing the invention.
The term “connect” or “connection”, when used herein to describe the relationship between two or more structures, means that such structures are secured or attached to each other either directly or indirectly through intervening structures.
Referring now to the drawings, in which like reference numerals represent like parts throughout the drawings,
The heat dissipation component 200 has a first contacting area 208 at the top portion 204 for making a first connection with a semiconductor package, and a second contacting area 209 at the flange portion 202 for making a second connection with a base circuit board.
The heat dissipation component 200 may be made initially from a block of metal or alloy material, such as copper, or aluminum etc. The cavity 201 on the heat dissipation component 200 can be formed by punching, milling, or etching.
a shows a heat dissipation component 300 in accordance with an embodiment of the present invention. The heat dissipation component 300 has a generally rectangular cavity 301 defined by a generally rectangular flange portion 302. The heat dissipation component 300 has a first contacting area 308 for making a first connection with a semiconductor package and a second contacting area 309 for making a second connection with a base circuit board, for example, through a plurality of solder balls 203 (see
b shows a heat dissipation component 300′ in accordance with another embodiment of the present invention. The heat dissipation component 300′ has a trough or cavity 301′ defined by a pair of side flange portions 302′. According to the present embodiment, the heat dissipation component 300′ has a first contacting area 308′ for making a first connection with a semiconductor package and two second contacting areas 309′ defined by the pair of side flange portions 302′ for making second connections with a base circuit board.
c shows a heat dissipation component 300″ in accordance with a further embodiment of the present invention. The heat dissipation component 300″ has a cross-shaped cavity 301″ defined by four flange portions 302″ provided at the four corners of the heat dissipation component 300″ respectively. According to the illustrated embodiment, the heat dissipation component 300″ has a first contacting area 308″ for making a first connection with a semiconductor package and four second contacting areas 309″ for making second connections with a base circuit board.
Although a few embodiments of the heat dissipation component have been described, one skilled in the art would understand that the heat dissipation component could be of any other appropriate shapes and configurations.
For example, it has been shown that the first contacting area 208, 308, 308′, 308″ has a flat surface for mating with a flat top surface of a semiconductor package. However, it is contemplated that the first contacting area 208, 308, 308′, 308″ can be formed with a surface of any other shape conforming to the shape of the upper surface of a semiconductor package.
The semiconductor package 405 can be a lead-frame package, a BGA/CSP package, a flip chip package, a wafer level CSP package, a 3D package, a system-in-package (SiP), a system-on-package (SoP), a direct chip attachment (DCA), a chip on board (COB), or other type of package. The semiconductor package 405 may also be a die, dice, module, or a group of modules. Depending on its usage, the semiconductor package 405 can include embedded or non-embedded, active or passive integrated circuits. The semiconductor package 405 is coupled to the base circuit board 410, for example, through an array of solder balls 416. The base circuit board 410 can be in the form of a printed circuit board made of an organic circuit board or a ceramic circuit board.
The heat dissipation component 400 is thermally conductive and may be made of a metallic, or non-metallic material, or a combination of metallic or non-metallic materials. The heat dissipation component 400 has a first contacting area 408 at a top portion 404 for making a first connection with the upper portion 406 of the semiconductor package 405, and a second contacting area 409 at a flange portion 402 for making a second connection with the base circuit board 410.
Details of the first and second connections will now be described. Preferably, the first and second connections are highly thermally conductive. According to the embodiment depicted in
The adhesive 412 may be an organic glue, or an inorganic glue, or a combination of an organic glue and an inorganic glue. The heat dissipation component 400 can be connected to the semiconductor package 405 by sparing, coating, or printing the adhesive 412 onto the contacting area 408 of the heat dissipation component 400 or the upper portion 406 of the semiconductor package 405. The adhesive 412 may take the form of a thin layer spreading evenly over the entire upper portion 406 of the semiconductor package 405 for better heat dissipation performance. The adhesive 412 can ensure a close thermal connection between the heat dissipation component 400 and the semiconductor package 405 for effective heat dissipation.
The second connection in the form of solder balls 403 can be employed to connect the heat dissipation component 400 to the base circuit board 410. The second connection can be made through surface contact between at least a portion of the second contacting area 409 of the heat dissipation component 405 and an area of the base circuit board 410.
The heat generated from the semiconductor package 405 can be dissipated through the adhesive 412 towards the top portion 404 and then the flange portion 402 of the heat dissipation component 400. The heat can further be dissipated from the flange portion 402 towards the solder balls 403 and finally to the base circuit board 410, which has a relatively large surface area for heat dissipation. The directions of heat dissipation are shown by the arrows.
Similarly, the heat generated from the semiconductor package 505 can be dissipated through the adhesive 512 towards the top portion 504 and then the flange portion 502 of the heat dissipation component 500. The heat can further be dissipated from the flange portion 502 towards the base circuit board 510 through the pins 503. The directions of heat dissipation are shown by the arrows.
One of the advantages of using pin and socket connections is that the heat dissipation component 500 can be produced as an individual product for a do-it-yourself component.
Although it has been shown that the heat dissipation component can be connected to the base circuit board by solder balls or pins and sockets, it is contemplated that other appropriate connecting means may be used. For example, the heat dissipation component can be connected to the base circuit board by a thermally conductive adhesive or glue.
The heat generated from the semiconductor package 605 can be dissipated through the adhesive 612 towards the top portion 604 of the heat dissipation component 600. The heat can further be dissipated from the top portion 604 of the heat dissipation component 600 towards the heat sink 616 through the adhesive 622. The directions of heat dissipation are shown by the arrows.
Although it has been shown that a heat sink 616 is adopted to serve as an additional heat-spreading component to enhance the heat dissipation performance of the semiconductor package, it is understood by one skilled in the art that other suitable heat spreading means such as a fan or a thermoelectric cooler can be used.
Although it has been described that one heat sink can be provided on top of the heat dissipation component, it is appreciated that more than one heat sink may be employed. The heat sink can be provided on the side of the heat dissipation component. The heat sink or heat dissipating fins may be formed integral with the heat dissipation component. The number and the arrangement of the fins provided on the heat sink may vary. The heat sink may also be provided with a contact area for making a connection with the base circuit board.
Although it has been described that the heat dissipation component is in the form of a cap and is in contact with a top surface of the semiconductor package, it is appreciated that the heat dissipation component can be manufactured as an integral part of the semiconductor package itself.
As shown in
The semiconductor package system of the present invention can be easily manufactured because the semiconductor package, the heat dissipation component, and the heat sink can be connected together at a correct operating position by adhesive means without the necessity of accurate alignment. The employment of heat dissipation component and heat sink in a semiconductor package system is cheaper and quieter than conventional forced airflow cooler.
The present invention also provides a method of improving heat dissipation of a semiconductor package.
A heat dissipation component 200, 300, 300′, 300″, 400, 500, 600, generally in the shape of a cap, can be formed initially from a block of metal or alloy material such as copper or aluminum by punching, milling, or etching. The formed heat dissipation component has a flange portion 202, 302, 302′, 302″, 402, 502, 602 and a top portion 204, 404, 504, 604. The flange portion and the top portion together define a cavity 201, 301, 301′, 301″, 401, 501, 601 for receiving therein a semiconductor package 405, 505, 605.
The semiconductor package 405, 505, 605 is mounted on a base circuit board 410, 510, 610 in such a position that the upper portion of the semiconductor package is distal to the base circuit board and that the lower portion of the semiconductor package is proximal and coupled to the base circuit board by conventional means such as solder balls.
The heat dissipation component 400, 500, 600 can be positioned over the semiconductor package 405, 505, 605 in such a manner that a first contacting area 408, 508, 608 at the top portion 404, 504, 604 makes a first connection with the upper portion 406, 506, 606 of the semiconductor package, and a second contacting area 409, 509, 609 at the flange portion 402, 502, 602 makes a second connection with the base circuit board 410, 510, 610.
Referring to the embodiment illustrated in
The second connection can be in the form of a plurality of solder balls 403 arranged in an array or other pattern. The heat dissipation component 400 can be connected to the base circuit board 410 through the solder balls 403 utilizing surface mount technology (SMT).
The second connection can also be realized by pin and socket connection as depicted in
The heat dissipation component 400 may be made of a metallic, or a non-metallic material, or a combination of metallic or non-metallic materials, and is highly thermally conductive. The heat generated from the semiconductor package 405 can be dissipated through the adhesive 412 towards the top portion 404 and then the flange portion 402 of the heat dissipation component 400. The heat can further be dissipated from the flange portion 402 of the heat dissipation component 400 towards the base circuit board 410 through the solder balls 403 (or the pins 503 of
To further enhance the heat dissipation performance, an additional heat sink 616 may be provided on the heat dissipation component 600, as illustrated in
Although it has been shown that an additional heat sink 616 is provided on top of the heat dissipation component 600 to enhance the heat dissipation performance of the semiconductor package, it is appreciated that a fan, or a thermoelectric cooler, or more heat sinks can be used, if necessary.
Although it has been shown and depicted in the drawings that the first contacting area 408, 508, 608 of the heat dissipation component 400, 500, 600 makes a first connection only with the upper surface 406, 506, 606 of the semiconductor package 405, 505, 605, it is understood that the heat dissipation component may make connection with the sidewall surface of the semiconductor package or both the top and sidewall surfaces of the semiconductor package.
While the present invention has been shown and described with particular references to a number of preferred embodiments thereof, it should be noted that various other changes or modifications may be made without departing from the scope of the present invention.