This application claims the priority benefit of Taiwan application serial no. 110114840, filed on Apr. 26, 2021. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a semiconductor structure, specifically to generate the physical unclonable function (PUF) code semiconductor structure.
To enhance security of chip use, generating physical unclonable function (PUF) codes in chips has become a trend in the market. The PUF codes may prevent data stored in the chip from being stolen. Here, the PUF codes serve to generate encryption keys through the unique fingerprint of each semiconductor element, and the generated keys can hardly be duplicated. The PUF code may also prevent reverse engineering attacks or damages to integrated circuits.
The PUF codes are often generated by applying the semiconductor structure in the chip; while the power is supplied, the semiconductor structure may be activated and randomly generate a digital value. The digital value of each chip is unique and thus may be considered as the fingerprint of the chip for data access identification.
The disclosure provides a semiconductor structure adapted to generate a physical unclonable function (PUF) code.
In an embodiment of the disclosure, a semiconductor structure is adapted to generate a PUF code. The semiconductor structure includes a metal layer, N titanium (Ti) structures, and N first titanium nitride (Ti-N) structures, wherein N is a positive integer. The metal layer forms N metal structures, and each of the Ti structures is respectively formed on one end of the metal structure. The first Ti-N structures respectively form on top of the Ti structures, wherein the metal structures, the Ti structures corresponding to the metal structures, and the first Ti-N structures corresponding to the metal structures respectively form a plurality of first pillars. The first pillars provide a plurality of resistance values, and the resistance values serve to generate the PUF code.
Based on the above, in one or more embodiments of the disclosure, the pillars composed of the metal structures, the Ti structures, and the Ti-N structures are formed on a chip. Since the pillars provide the resistance values with random distribution effects, the PUF code may be generated according to the resistance value of the pillars, so as to ensure confidentiality of chip operations.
In order to make the above features of the disclosure comprehensible, embodiments accompanied with figures are described in detail below.
With reference to
In addition, the Ti structure 120 is formed on top of the metal structure 130; for example, the Ti structure 120 is formed at one side S11 of the metal structure 130. In a process of forming the Ti structure 120 on top of the metal structure 130, the Ti-N structure 110 may be formed on top of the Ti structure 120. During a semiconductor manufacturing process, the Ti-N structure 110 may serve as a conductive barrier layer between the metal structure 130 and a silicon substrate. The Ti-N structure 110 may prevent the metal structure 130 from being diffused to the silicon substrate and may also provide enough conductivity for electron transfer. The Ti-N structure 110 may be formed on top of the Ti structure 120 through a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process, or a chemical vapor deposition (CVP) process, which should however not be construed as limitations in the disclosure.
According to the embodiment, the metal structure 130, the Ti structure 120, and the Ti-N structure 110 compose a pillar PI1. The pillar PH may provide a resistance value. Based on the resistance value provided by the pillar PI1, a chip may generate a PUF code acting as a basis of chip identification.
According to the embodiment, the resistance value of the pillar PI1 is correlated to a thickness h1 of the Ti structure 120 and the Ti-N structure 110, a critical dimension (CD) of the pillar PI1, and time and a temperature of an annealing process performed on the metal structure 130. Specifically, the resistance value of a pillar PH may be positively correlated to the thickness h1 of the Ti structure 120 and Ti-N structure 110, but the resistance value of the pillar PI1 may be negatively correlated to the CD of the pillar PI1.
Note that the metal structure 130 may be formed by a first metal layer (metal 1) of the chip. The metal structure 130 may also be formed by a topmost metal layer of a chip formed in a copper process. In addition, in one chip, one or a plurality of semiconductor structures 100 may be formed. If one single chip contains plural semiconductor structures 100, the semiconductor structures 100 may correspondingly provide a plurality of multi-bit PUF codes.
On the other hand, in an embodiment of the disclosure, given that the metal structure 130 is made of aluminum, an aluminum nitride structure may be formed between the metal structure 130 and the Ti structure 120. According to the embodiment, the aluminum nitride structure formed between the metal structure 130 and the Ti structure 120 may have random physical characteristics and may randomly provide different resistance values.
Note that a plurality of the semiconductor structures 100 arranged on a plurality of chips in one wafer may provide the resistance values ranging from 42 kilo-ohm to 50 ohm. The resistance values of the semiconductor structures 100 may be randomly distributed and may serve as a fingerprint of each chip and a basis of chip identification. In addition, arrangement of a plurality of the semiconductor structures 100 in one single chip may further enhance the complexity of the chip fingerprint and thus effectively improve identification security.
With reference to
In addition, given that the metal structure 230 contains aluminum, no aluminum nitride structure is formed between the metal structure 230 and the Ti-N structure 210-2 if the Ti-N structure 210-2 is deposited on the metal structure 230. In an embodiment of the disclosure, the Ti-N structure 210-2 may further contain other metal nitride, such as tantalum nitride (TaN) or the like.
With reference to
While the PUF code is being read, the transistors T1˜TN may be turned on simultaneously or at different time points according to the scan signals S1˜SN. The pillar 311 is taken as an example. When the transistor T1 is turned on, if the reference power supply ES1 is a voltage source, the current flowing through the pillar 311 may be read to obtain read information; if the reference power supply ES1 is a current source, voltage differences at two ends of the pillar 311 may be read to obtain the read information. Besides, multiple read information may be obtained by turning on the transistors T2˜TN. Through combining the multiple read information corresponding to the pillars 311˜31N, the PUF codes may be generated.
Note that the above read information may be the sum of a plurality of analog current values or voltage values, and chips may convert the sum of the analog current values or voltage values through performing analog-digital conversion, so as to generate the digital PUF code. In another embodiment of the disclosure, through comparing whether the current value or voltage value of every read information is larger than a predetermined threshold value, the chips may respectively generate a plurality of digital codes corresponding to the pillars 311˜31N, and the chips generate the PUF codes through the combination of the digital codes.
Certainly, the details about how to generate the PUF codes as provided above are merely exemplary, and people having ordinary knowledge in the pertinent field may also obtain the digital PUF codes through different implementation details based on the resistance values respectively provided by the pillars 311˜31N, which should however not be construed as a limitation in the disclosure.
The transistors T1˜TN provided in one or more embodiments of the disclosure may transistors in any form, which should not be construed as a limitation in the disclosure.
Please refer to
In
With reference to
In the embodiment, the semiconductor structure 500 further includes transistors T1˜T5, and the transistors T1˜T5 are respectively coupled to the row wires WR1˜WR5 and collectively coupled to the reference power supply VG. In the embodiment, the reference power supply VG may be a ground power supply. Control terminals of the transistors T1˜T5 respectively receive scan signals S1˜S5. In the embodiment, the column wires WC1˜WC5 respectively receive the reference power supplies E1˜E5.
As to the implementation details, the transistors T1˜T5 may be turned on at different time points according to the scan signals S1˜S5. For example, when the transistor T1 is turned on, a path may be respectively formed by the reference power supplies ES1˜ES5 and the transistor T1 through the column wires WC1˜WC5 and the pillars 511˜515. Hence, when a voltage source serves as the reference power supplies ES1—ES5, multiple read information may be obtained by measurement of the current passing through the pillars 511˜515. When a current source serves as the reference power supplies ES1˜ES5, multiple read information may be obtained by measurement of the voltage differences between two terminals of the pillars 511˜515. In view of the above, through sequentially turning on the transistors T1˜T5, multiple read information correlated to the resistance values of the pillars 511˜555 may be obtained.
After integration of the read information, the PUF codes may be obtained.
Note that the reference power supplies ES1˜ES5 may have the same value. As provided in the embodiment shown in
To sum up, according to one or more embodiments of the disclosure, one or more semiconductor structures formed by the metal structures, the Ti structures, and the Ti-N structures are arranged in the chip, and the resistance values provided by one or more semiconductor structures are applied to generate the PUF codes in the chip. Thereby, the mechanism of generating the PUF codes may be effectively achieved without occupying a significant area in the chip, and the security of chip access may be guaranteed.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure covers modifications and variations provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
110114840 | Apr 2021 | TW | national |