Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Embodiments of this disclosure relate to wafer level chip scale packages and, more specifically, to shielded wafer level chip scale packages.
Radio frequency (RF) devices can be used for transmitting and/or receiving signals of a wide range of frequencies. For example, an RF devices can be used to wirelessly communicate RF signals in a frequency range of electromagnetic radiation typically used to produce and detect radio waves. Such a range can be from about 30 kHz to 300 GHz. In some situations, operation of an electronic device can adversely affect and/or be adversely affected by undesired RF signals.
Electromagnetic (EM) fields generated by radio frequency devices can interfere with (e.g., result in EM interference) or diminish the performance of other circuitry, as well as diminish the performance of wireless devices that use such an RF device.
In accordance with one aspect of the disclosure, an electronics package for use in a module of an electronic device is provided. The electronics package comprises a die, a substrate disposed under and attached to the die, the substrate including one or more redistribution layers, and a plurality of interconnect members disposed under and attached to the substrate, the interconnect members electrically connected to the die via the redistribution layers in the substrate. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the substrate and connected to ground via the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
In accordance with another aspect of the disclosure, a module for an electronic device is provided. The module comprises a package substrate and an electronics package mounted on the package substrate. The electronics package includes a die, a substrate disposed under and attached to the die, the substrate including one or more redistribution layers, and a plurality of interconnect members disposed under and attached to the substrate, the interconnect members electrically connected to the die via the redistribution layers in the substrate. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the substrate and connected to ground via the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation. The electronics package is mounted to the package substate via the interconnect. The module also comprises additional circuitry, the electronics package and additional circuitry disposed on the package substrate.
In accordance with another aspect of the disclosure, a wireless electronic device is provided. The wireless electronic device comprises an antenna and a front end module including one or more electronics packages. Each electronics package includes a die, a substrate disposed under and attached to the die, the substrate including one or more redistribution layers, and a plurality of interconnect members disposed under and attached to the substrate, the interconnect members electrically connected to the die via the redistribution layers in the substrate. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the substrate and connected to ground via the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
In accordance with another aspect of the disclosure, a method of manufacturing an electronics package for use in a module of an electronic device is provided. The method comprises forming or providing a substrate including one or more redistribution layers, forming or providing a die and attaching the die to one side of the substrate. The method also comprises forming or providing a plurality of interconnect members on an opposite side of the substrate, the interconnect members electrically connected to the die via the redistribution layers in the substrate. The method also comprises forming a metal shield over the die and extending over a peripheral boundary of the substrate so that the metal shield covers the die and at least a portion of the peripheral boundary of the substrate, the shield connected to ground via the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
In accordance with another aspect of the disclosure, an electronics package for use in a module of an electronic device is provided. The electronics package comprises a die, a plurality of interconnect members disposed under the die, and one or more vias that extend through the die and are electrically and thermally connected to one of more of the interconnect members. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the die and connected to ground via the one or more vias and the interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
In accordance with another aspect of the disclosure, a module for an electronic device is provided. The module comprises a package substrate and an electronics package mounted on the package substrate. The electronics package includes a die, a plurality of interconnect members disposed under the die, and one or more vias that extend through the die and are electrically and thermally connected to one of more of the interconnect members. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the die and connected to ground via the one or more vias and the interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation. The electronics package is mounted to the package substate via the interconnect members. The module also comprises additional circuitry, the electronics package and additional circuitry disposed on the package substrate.
In accordance with another aspect of the disclosure, a wireless electronic device is provided. The wireless electronic device comprises an antenna and a front end module including one or more electronics packages. Each electronics package includes a die, a plurality of interconnect members disposed under the die, and one or more vias that extend through the die and are electrically and thermally connected to one of more of the interconnect members. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the die and connected to ground via the one or more vias and the interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
In accordance with another aspect of the disclosure, a method of manufacturing an electronics package for use in a module of an electronic device is provided. The method comprises forming or providing a die, forming one or more vias through the die, and forming or providing a plurality of interconnect members under the die, the interconnect members electrically and thermally connected to the one or more vias. The method also comprises forming a metal shield over the die and extending over a peripheral boundary of the die so that the metal shield covers the die, the shield connected to ground via the one or more vias and the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation, the one or more vias configured to dissipate heat from the metal shield and the die.
In accordance with another aspect of the disclosure, an electronics package for use in a module of an electronic device is provided. The electronics package comprises, a die, a plurality of interconnect members disposed under the die, and a seal ring that extends along an outer boundary of the die. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the die and connected to ground via the seal ring and the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
In accordance with another aspect of the disclosure, a module for an electronic device is provided. The module comprises a package substrate and an electronics package mounted on the package substrate. The electronics package includes a die, a plurality of interconnect members disposed under the die, and a seal ring that extends along an outer boundary of the die. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the die and connected to ground via the seal ring and the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation. The electronics package is mounted to the package substate via the interconnect. The module also comprises additional circuitry, the electronics package and additional circuitry disposed on the package substrate.
In accordance with another aspect of the disclosure, a wireless electronic device is provided. The wireless electronic device comprises an antenna and a front end module including one or more electronics packages. Each electronics package includes a die, a plurality of interconnect members disposed under the die, and a seal ring that extends along an outer boundary of the die. A metal shield is disposed over the die, the metal shield in contact with a peripheral boundary of the die and connected to ground via the seal ring and the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
In accordance with another aspect of the disclosure, a method of manufacturing an electronics package for use in a module of an electronic device is provided. The method comprises forming or providing a die, forming a seal ring that extend along an outer boundary of the die, and forming or providing a plurality of interconnect members under the die. The method also comprises forming a metal shield over the die and extending over a peripheral boundary of the die so that the metal shield covers the die, the shield connected to ground via the seal ring and the plurality of interconnect members. The metal shield is configured to shield the die from stray power and electromagnetic radiation.
Embodiments of this disclosure will now be described, by way of non-limiting example, with reference to the accompanying drawings.
The following description of certain embodiments presents various descriptions of specific embodiments. However, the innovations described herein can be embodied in a multitude of different ways, for example, as defined and covered by the claims. In this description, reference is made to the drawings where like reference numerals can indicate identical or functionally similar elements. It will be understood that elements illustrated in the figures are not necessarily drawn to scale. Moreover, it will be understood that certain embodiments can include more elements than illustrated in a drawing and/or a subset of the elements illustrated in a drawing. Further, some embodiments can incorporate any suitable combination of features from two or more drawings.
However, in some instances, it may be preferable to shield only one (or only a few) of the electrical component (e.g., the WLCSP 20), rather than shielding the entire package 10, which is not contemplated in the package 10. Doing so would advantageously facilitate (e.g., allow) a reduction in the size of the package 10 in the height or Z directions, as the overmold 8 and/or shield 11 could be excluded from the package 10. Additionally, such shielding of specific electrical components (as compared to the whole package 10), such as shielding the WLCSP 20, would advantageously facilitate (e.g., allow) a reduction in the size of the package in the width or X direction and depth or Y direction (into the page in
The shielded package 20A differs from the shielded package 20′ in that the mold 24 is excluded and the die 21A substantially extends along (e.g., matches, coincides with) the length (in the X direction) and depth (in the Y direction into the page in
The shielded package 20AB differs from the shielded package 20A in that it does not include a substrate or redistribution layers (e.g., like substrate 22A and redistribution layers 23A). Rather, the vias (e.g., through substrate vias or TSVs) 26AB, 26AB′ extend through the die 21AB and electrically connect the shield 25AB with the interconnect members (e.g., solder connections, solder balls) 27AB to thereby ground the shield 25AB.
The shielded package 20B differs from the shielded package 20′ in that the mold 24 is excluded and the die 21B substantially extends along (e.g., matches, coincides with) the length (in the X direction) and depth (in the Y direction into the page in
The shielded package 20BB differs from the shielded package 20B in that it does not include a substrate or redistribution layers (e.g., like substrate 22B and redistribution layers 23B). Rather, the a seal ring 26BB connects to the shield 25BB to the interconnect members (e.g., solder connections, solder balls) 27BB via the die 21BB (e.g., via foundry metal layers in the die 21BB) to thereby ground the shield 25BB. For example, the seal ring 26Bb connects to the shield 25Bb along a periphery of the die 21BB and extends inward therefrom.
With reference to
Any of the embodiments described above can be implemented in association with mobile devices such as cellular handsets. The principles and advantages of the embodiments can be used for any systems or apparatus, such as any uplink wireless communication device, that could benefit from any of the embodiments described herein. The teachings herein are applicable to a variety of systems. Although this disclosure includes some example embodiments, the teachings described herein can be applied to a variety of structures. Any of the principles and advantages discussed herein can be implemented in association with RF circuits configured to process signals in a frequency range from about 30 kilohertz (kHz) to 300 gigahertz (GHz), such as in a frequency range from about 450 MHz to 8.5 GHz and 24 GHz to 60 GHz. An acoustic wave resonator including any suitable combination of features disclosed herein be included in a filter arranged to filter a radio frequency signal in a fifth generation (5G) New Radio (NR) operating band within Frequency Range 1 (FR1). A filter arranged to filter a radio frequency signal in a 5G NR operating band can include one or more acoustic wave resonators disclosed herein. FR1 can be from 410 MHz to 7.125 GHz, for example, as specified in a current 5G NR specification. FR2 can be between 24.25 GHz to 52.6 GHz. One or more acoustic wave resonators in accordance with any suitable principles and advantages disclosed herein can be included in a filter arranged to filter a radio frequency signal in a fourth generation (4G) Long Term Evolution (LTE) operating band and/or in a filter with a passband that spans a 4G LTE operating band and a 5G NR operating band.
Aspects of this disclosure can be implemented in various electronic devices. Examples of the electronic devices can include, but are not limited to, consumer electronic products, parts of the consumer electronic products such as packaged radio frequency modules, uplink wireless communication devices, wireless communication infrastructure, electronic test equipment, etc. Examples of the electronic devices can include, but are not limited to, a mobile phone such as a smart phone, a wearable computing device such as a smart watch or an ear piece, a telephone, a television, a computer monitor, a computer, a modem, a hand-held computer, a laptop computer, a tablet computer, a microwave, a refrigerator, a vehicular electronics system such as an automotive electronics system, a stereo system, a digital music player, a radio, a camera such as a digital camera, a portable memory chip, a washer, a dryer, a washer/dryer, a copier, a facsimile machine, a scanner, a multi-functional peripheral device, a wrist watch, a clock, etc. Further, the electronic devices can include unfinished products.
Any of the embodiments described above can be implemented in association with mobile devices such as cellular handsets. The principles and advantages of the embodiments can be used for any systems or apparatus, such as any uplink cellular device, that could benefit from any of the embodiments described herein. The teachings herein are applicable to a variety of systems. Although this disclosure includes some example embodiments, the teachings described herein can be applied to a variety of structures. Any of the principles and advantages discussed herein can be implemented in association with RF circuits configured to process signals having a frequency in a range from about 30 kHz to 300 GHz, such as a frequency in a range from about 450 MHz to 8.5 GHz.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” “include,” “including” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” The word “coupled”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected”, as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
Moreover, conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” “for example,” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel apparatus, methods, and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. For example, while blocks are presented in a given arrangement, alternative embodiments may perform similar functionalities with different components and/or circuit topologies, and some blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these blocks may be implemented in a variety of different ways. Any suitable combination of the elements and acts of the various embodiments described above can be combined to provide further embodiments. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
Number | Date | Country | |
---|---|---|---|
63305387 | Feb 2022 | US | |
63305397 | Feb 2022 | US | |
63305384 | Feb 2022 | US |