Silicon carbide Schottky diode and method of making the same

Abstract
A method of forming silicon carbide Schottky diode is disclosed. The processes required two photo-masks only. The processes are as follows: firstly, an n+-silicon carbide substrate having an n− silicon carbide drift layer is provided. Then a silicon layer is formed on the drift layer. An ion implant is carried out to dope the silicon layer. Afterward the doped silicon layer is patterned to define an active region. A thermal oxidation is then followed to form a thick oxide layer by oxidizing the silicon layer and form guard rings by using the doped silicon layer as a diffused source. The thin oxide layer on the drift layer is then removed by dilute HF dip or by BOE (buffer oxide etching) solution dip. Thereafter, a top metal layer is deposited and patterned to define as anode. After a backside layer removal, a metal layer served as cathode is formed.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein: description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a cross-sectional view of forming a silicon layer on the n-silicon carbide epi-layer and then performing ion implant in accordance with the present invention.



FIG. 2 is a cross-sectional view of define active region by patterning the silicon layer in accordance with the present invention.



FIG. 3 is a cross-sectional view of performing a thermal oxidation to oxidize the silicon layer and drive in the impurities in accordance with the present invention.



FIG. 4 is a cross-sectional view of forming the anode electrode by deposited a top metal layer and patterning and then forming the backside metal layer.



FIG. 5 is s a top view of showing the silicon carbide Schottky diode in accordance with the present invention.



FIG. 6 is a cross-sectional view of an elementary structure of a Schottky diode in accordance with the prior art.



FIG. 7 is a cross-sectional view of a modified Schottky diode structure in accordance with the prior art.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The method of forming Schottky diode according to the present invention is shown in cross-sectional views from FIG. 1 to FIG. 4.


Referring to FIG. 1, an n-type impurity heavily doped silicon carbide substrate 100A having an n-type impurity doped silicon carbide the silicon carbide epi-layer 100B. The silicon layer can be selected from polycrystalline silicon or amorphous silicon.


Thereafter, an ion implantation using p-type ion species to dope the silicon layer 110 is performed. The p-type ion species can be B+ or BF2+, aluminum ions, gallium ions, or indium ions.


Referring to FIG. 2, a patterning process to define an active region 120 is then followed by a lithographic and wet etching or dry etching the silicon layer 110 until the drift layer 100B is exposed. Thereafter, please refer to FIG. 3, a thermal annealing process is conducted to form polyoxide layer 130 by oxidizing the silicon layer 110. During the processes a shallow p-type region 140 is formed into the n-drift layer 100B by using the p-type conductive impurities in the silicon layer 110 as a diffusion source. The shallow p-type region 140 is served as guard rings 140 and the oxide layer surrounded the active region is served as termination regions.


Since silicon carbide is known to be harder to oxidize than the silicon, at typical silicon oxidation temperature for appropriate annealing times, thus only very thin oxide layer 130A is formed on the exposed silicon carbide (n-drift layer 100B). For instance, a silicon carbide oxidation temperature is typical at a temperature between about 1400-1600° C. whereas a typical oxidation temperature of silicon is between about 900-1050° C. only. A removal of the thin oxide layer 130A is then performed by using a dilute HF or buffer oxide etching solution.


Referring to FIG. 4, a top metal layer 150 is then formed on the entire areas. The material of the top metal layer 150 is chosen, for example, from Al, AlCu, AlSiCu, Ti/Ni/Ag, Ti, TiN, and refractory metal


Referring to FIG. 4, a top metal layer 150 is then formed on the entire areas. The material of the top metal layer 150 is chosen, for example, from Al, AlCu, AlSiCu, Ti/Ni/Ag, Ti, TiN, and refractory metal silicide, such as TiSix, CoSix, NiSix etc. An anode electrode 150 defining step by patterning the top metal layer 150 is then conducted. After a backside material milling process by a chemical/mechanical polish to expose and thin the n+ silicon carbide substrate 100A, a backside metal layer 160 is formed thereafter as a cathode electrode.


The top view of the Schottky diode is shown in FIG. 5. For cutting a silicon carbide wafer into Schottky device dies, the top metal layer can provide good contrast.


The benefits of this invention are as follows:

    • (1) Only two photo-masks are required. Thus the invention provides processes of low cost.
    • (2) Thicker oxide film served as passivative layer and as termination region can enhance breakdown voltage and reduce leakage current.
    • (3) The device provides high breakdown voltage and lower Ron,sp and thus electron mobility performance can keep above a mean level.
    • (4) The p+ guard rings can enhance breakdown voltage and reduce reverse current.


As is understood by a person skilled in the art, the foregoing preferred embodiment of the present o invention is an illustration of the present invention rather than limiting thereon. It is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structure.

Claims
  • 1. A method of forming silicon carbide Schottky diode, the method comprising the steps of: providing a silicon carbide substrate with a first conductive impurity heavily doped and having a silicon carbide drift layer with said first conductive impurity doped formed thereon;forming a silicon layer on said drift layer;performing an ion implant using second conductive impurities as ion species to doped said silicon layer;patterning said silicon layer to define an active region where said drift layer is exposed;performing a thermal oxidation to form a thick oxide layer by oxidizing said silicon layer, form a thin oxide layer by oxidizing said drift layer of exposed portion and forming guard rings by driving in said second conductive impurities using said silicon layer as an impurity diffusion source;performing a dip-etching to remove said thin oxide layer to bare said drift layer;forming a top metal layer on said thick oxide layer and said bared drift layer;patterning said top metal layer to form anode electrode; andremoving all layers formed on a rear surface of said silicon carbide substrate until said silicon carbide substrate is exposed; andforming a backside metal layer on said rear surface to be as a cathode electrode.
  • 2. The method of claim 1 wherein said silicon layer is selected from the group consisting of amorphous silicon and polycrystalline silicon.
  • 3. The method of claim 1 wherein said first conductive impurities are nitrogen ions and said second conductive impurities are selected from boron ions, BF2+, Aluminum ions, Gallium ions, or Indium ions.
  • 4. The method of claim 1 wherein said step of performing a thermal anneal is carried out at a temperature of 900-1050° C.
  • 5. The method of claim 1 wherein said step of dip-etching is performed by using a dilute HF or a BOE (buffer oxide etching) solution.
  • 6. A silicon carbide Schottky diode, comprising: an n-type heavily doped silicon carbide substrate having an n-type silicon carbide drift layer formed thereon;a patterned silicon oxide layer formed on said silicon carbide drift layer having an opening portion being served as active region and oxide covered regions served as termination regions;a top metal layer served as anode electrode formed on said active region and extended a portion to cover a portion of said termination regions;guard rings formed into said silicon carbide drift layer, wherein said guard rings beneath said termination regions; anda cathode electrode formed on a rear surface of said silicon carbide substrate.
  • 7. The silicon carbide Schottky diode of claim 6 wherein said guard rings are p regions.
  • 8. The silicon carbide Schottky diode of claim 6 wherein said top metal layer is selected from the group consisting of Al, AlCu, AlSiCu, Ti/Ni/Ag, Ti, TiN, TiSix, CoSix, and NiSix.