The present invention relates to a spacer used to make the stress liner close to the gate.
Mechanical stresses within a semiconductor device substrate can modulate device performance. That is, stresses within a semiconductor device are known to enhance semiconductor device characteristics. Thus, to improve the characteristics of a semiconductor device, tensile and/or compressive stresses are created in the channel of the NFETs and/or PFETs.
It is known, for example, to provide a patterned and oxidized silicon liner in isolation regions, or spacers on gate sidewalls, to selectively induce the appropriate strain in the channels of the FET devices. By providing patterned oxidized spacers, the appropriate stress is applied closer to the device than the stress applied as a result of the trench isolation fill technique.
While these methods provide structures applying stresses to the devices, they may require additional materials and/or more complex processing, and thus, result in higher cost. In addition, in the methods described above, for example, the stresses in the channel are relatively moderate, which provide only moderate benefit in device performance.
Further, nitride stress liners have been used to improve device performance with enhanced carrier mobility in the channel. The strain induced in the channel by the liner, e.g., nitride, is sensitive to the distance between stress liner and the gate, which is separated by a spacer. However, in an effort to arrange the nitride close to the gate, the spacer is removed.
Further, it is known in the art to utilize two spacers, e.g., a first oxide spacer and a second nitride spacer, and to remove only the second nitride spacer. However, this still disadvantageously results in an oxide spacer of 10-20 nm remaining between the gate and nitride liner. Moreover, another thin oxide layer is below the nitride cover layer which can relax the strain in the channel.
The invention is directed to a process for enhancing strain in a channel with a stress liner. The process includes applying a first spacer composed of an first oxide and first nitride layer to a gate electrode on a substrate, applying a second spacer composed of a second oxide and second nitride layer, deep implanting source and drain in the substrate, and removing the second nitride, second oxide, and first nitride layers.
According to a feature of the present invention, the gate electrode may be formed by a poly gate etch. Moreover, the first oxide layer can be formed by gate reoxidation, and the first oxide layer can have a thickness of 1-5 nm. The first nitride layer may have a thickness of 10-15 nm.
In accordance with another feature of the invention, the removing of the first and second nitride layers and the second oxide layer can form an L-shaped oxide spacer adjacent the gate electrode spacer, and the process may further include depositing a stress contact liner over the gate and the L-shaped spacer.
According to a further feature of the present invention, the process can include forming suicide (on the gate electrode and the source/drain region) before the removal of the first and second nitride layers and the second oxide layer. Alternatively, the process can include forming silicide after the removal of the first and second nitride layers and the second oxide layer. Further, the removing of the first and second nitride layers and the second oxide layer can include one of a wet etch or a reactive ion etch.
The invention is directed to a spacer for enhancing stain in a channel. The spacer includes a first spacer composed of an first oxide couplable to a gate electrode and first nitride layer coupled to the first oxide layer, and a second spacer composed of a second oxide coupled to the first oxide layer and a second nitride layer coupled to the second oxide layer. The first and second nitride layers and the second oxide layer are removable to form an L-shaped oxide spacer.
The present invention is directed to a process for forming an integrated circuit. The process includes forming a gate electrode on a substrate, forming an L-shaped oxide spacer adjacent the gate electrode, and depositing a stress liner over the gate electrode and the L-shaped spacer.
According to a feature of the present invention, a vertical extent of the L-shaped oxide spacer can have a thickness between 1-5 nm. Further, the L-shaped spacer can be formed by a first oxide/nitride spacer and a second oxide/nitride spacer, in which the second oxide/nitride spacer and the nitride of the first oxide/nitride spacer are removed.
In accordance with the process, the forming of the L-shaped oxide layer may include forming an oxide layer over the gate electrode by reoxidation, depositing a first nitride layer over the oxide layer, forming a first spacer by reactive ion etching (RIE) and then performing an extension/halo implantation. The process also includes depositing a second oxide layer over the first nitride layer, depositing a second nitride layer over the second oxide layer, forming a second spacer by RIE, and removing the second nitride, second oxide, and first nitride layers. Moreover, prior to removing the second oxide and the first and second nitride layers, the process can include deep implanting source and drain in the substrate. The process can also include forming silicide on the gate electrode after the removal of the first and second nitride layers and the second oxide layer, or, alternatively, forming silicide before the removal of the first and second nitride layers and the second oxide layer. The removing of the first and second nitride layers and the second oxide layer can include one of a wet etch or a reactive ion etch.
In accordance with another feature of the invention, the gate electrode may be formed by a poly gate etch.
The present invention is directed to an integrated circuit having a gate electrode formed on a substrate, an L-shaped oxide spacer arranged adjacent the gate electrode, and a stress liner deposited over the gate electrode and the L-shaped spacer.
According to a feature of the invention, a vertical extent of the L-shaped oxide spacer can have a thickness between 1-5 nm. The L-shaped spacer can be formed by a first oxide/nitride spacer and a second oxide/nitride spacer, in which the second oxide/nitride spacer and the nitride of the first oxide/nitride spacer are removed. Further, the L-shaped oxide layer can be formed by removing nitride from an oxide/nitride spacer. A source and drain may be formed through deep implantation in the substrate. Further, silicide can be formed on the gate electrode and source/drain after removing nitride from an oxide/nitride spacer, or silicide can be formed before removing nitride from an oxide/nitride spacer. Moreover, the gate electrode may be formed by a poly gate etch.
A first oxide/nitride spacer is utilized before the halo/extension implant. The oxide layer is formed by reoxidation and can be as thin as 1-5 nm, preferably 1-2 nm. The nitride layer can be removed with a second spacer and before nitride cover layer deposition. In this manner, maximum stain can be induced in the channel to improve device performance.
Strain in the channel of MOSFET is sensitive to the proximity of nitride to the gate. The present invention is directed to a disposable spacer to make the stress liner close the gate, which includes a first spacer, e.g., oxide/nitride, of which the nitride layer is subsequently removed. As a result, the nitride stress liner may only be a few nanometers from the gate, which can increase the strain in the channel.
A first embodiment of the invention, illustrated in
Extension/halo implantation is performed, as is schematically illustrated in
As illustrated in
As shown in
In a second embodiment of the invention, the formation process in accordance with
The circuit as described above is part of the design for an integrated circuit chip. The chip design is created in a graphical computer programming language, and stored in a computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such as in a storage access network). If the designer does not fabricate chips or the photolithographic masks used to fabricate chips, the designer transmits the resulting design by physical means (e.g., by providing a copy of the storage medium storing the design) or electronically (e.g., through the Internet) to such entities, directly or indirectly. The stored design is then converted into the appropriate format (e.g., GDSII) for the fabrication of photolithographic masks, which typically include multiple copies of the chip design in question that are to be formed on a wafer. The photolithographic masks are utilized to define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.
While the invention has been described in terms of exemplary embodiments, those skilled in the art will recognize that the invention can be practiced with modifications and in the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3602841 | McGroddy | Aug 1971 | A |
4665415 | Esaki et al. | May 1987 | A |
4853076 | Tsaur et al. | Aug 1989 | A |
4855245 | Neppl et al. | Aug 1989 | A |
4952524 | Lee et al. | Aug 1990 | A |
4958213 | Eklund et al. | Sep 1990 | A |
5006913 | Sugahara et al. | Apr 1991 | A |
5060030 | Hoke | Oct 1991 | A |
5081513 | Jackson et al. | Jan 1992 | A |
5108843 | Ohtaka et al. | Apr 1992 | A |
5134085 | Gilgen et al. | Jul 1992 | A |
5310446 | Konishi et al. | May 1994 | A |
5354695 | Leedy | Oct 1994 | A |
5371399 | Burroughes et al. | Dec 1994 | A |
5391510 | Hsu et al. | Feb 1995 | A |
5459346 | Asakawa et al. | Oct 1995 | A |
5471948 | Burroughes et al. | Dec 1995 | A |
5557122 | Shrivastava et al. | Sep 1996 | A |
5561302 | Candelaria | Oct 1996 | A |
5565697 | Asakawa et al. | Oct 1996 | A |
5571741 | Leedy | Nov 1996 | A |
5592007 | Leedy | Jan 1997 | A |
5592018 | Leedy | Jan 1997 | A |
5670798 | Schetzina | Sep 1997 | A |
5679965 | Schetzina | Oct 1997 | A |
5683934 | Candelaria | Nov 1997 | A |
5840593 | Leedy | Nov 1998 | A |
5861651 | Brasen et al. | Jan 1999 | A |
5880040 | Sun et al. | Mar 1999 | A |
5940736 | Brady et al. | Aug 1999 | A |
5946559 | Leedy | Aug 1999 | A |
5960297 | Saki | Sep 1999 | A |
5981356 | Hsueh et al. | Nov 1999 | A |
5989978 | Peidous | Nov 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6025280 | Brady et al. | Feb 2000 | A |
6046464 | Schetzina | Apr 2000 | A |
6066545 | Doshi et al. | May 2000 | A |
6090684 | Ishitsuka et al. | Jul 2000 | A |
6107143 | Park et al. | Aug 2000 | A |
6117722 | Wuu et al. | Sep 2000 | A |
6133071 | Nagai | Oct 2000 | A |
6165383 | Chou | Dec 2000 | A |
6221735 | Manley et al. | Apr 2001 | B1 |
6228694 | Doyle et al. | May 2001 | B1 |
6246095 | Brady et al. | Jun 2001 | B1 |
6255169 | Li et al. | Jul 2001 | B1 |
6261964 | Wu et al. | Jul 2001 | B1 |
6265317 | Chiu et al. | Jul 2001 | B1 |
6274444 | Wang | Aug 2001 | B1 |
6281532 | Doyle et al. | Aug 2001 | B1 |
6284623 | Zhang et al. | Sep 2001 | B1 |
6284626 | Kim | Sep 2001 | B1 |
6319794 | Akatsu et al. | Nov 2001 | B1 |
6361885 | Chou | Mar 2002 | B1 |
6362082 | Doyle et al. | Mar 2002 | B1 |
6368931 | Kuhn et al. | Apr 2002 | B1 |
6403486 | Lou | Jun 2002 | B1 |
6403975 | Brunner et al. | Jun 2002 | B1 |
6406973 | Lee | Jun 2002 | B1 |
6461936 | von Ehrenwall | Oct 2002 | B1 |
6476462 | Shimizu et al. | Nov 2002 | B2 |
6493497 | Ramdani et al. | Dec 2002 | B1 |
6498358 | Lach et al. | Dec 2002 | B1 |
6501121 | Yu et al. | Dec 2002 | B1 |
6506652 | Jan et al. | Jan 2003 | B2 |
6509618 | Jan et al. | Jan 2003 | B2 |
6521964 | Jan et al. | Feb 2003 | B1 |
6531369 | Ozkan et al. | Mar 2003 | B1 |
6531740 | Bosco et al. | Mar 2003 | B2 |
6621392 | Volant et al. | Sep 2003 | B1 |
6635506 | Volant et al. | Oct 2003 | B2 |
20010009784 | Ma et al. | Jul 2001 | A1 |
20020074598 | Doyle et al. | Jun 2002 | A1 |
20020086472 | Roberds et al. | Jul 2002 | A1 |
20020086497 | Kwok | Jul 2002 | A1 |
20020090791 | Doyle et al. | Jul 2002 | A1 |
20030032261 | Yeh et al. | Feb 2003 | A1 |
20030040158 | Saitoh | Feb 2003 | A1 |
20030057184 | Yu et al. | Mar 2003 | A1 |
20030067035 | Tews et al. | Apr 2003 | A1 |
20050247986 | Ko et al. | Nov 2005 | A1 |
20070122988 | Luo et al. | May 2007 | A1 |
Entry |
---|
Horstmann et al., “Sub-50 nm gate length SOI transistor development for high performance microprocessors,” 2004, Materials Science and Engineering B 114-115, pp. 3-8. |
Orlowski et al., “Submicron Short Channel Effects Due to Gate Reoxidation induced Lateral Interstitial Diffusion,” 1987, IEEE IEDM, pp. 632-635. |
Brand et al., “Intel's 0.25 Micron, 2.0 Volts Logic Process Technology”, Intel Technology Journal Q3, 1998, pp. 1-9. |
Kern Rim, et al., “Transconductance Enhancement in Deep Submicron Strained-Si n-MOSFETs”, International Electron Devices Meeting, 26, 8, 1, IEEE, Sep. 1998. |
Kern Rim, et al., “Characteristics and Device Design of Sub-100 nm Strained Si N- and PMOSFETs”, 2002 Symposium on VLSI Technology Digest of Technical Papers, IEEE, pp. 98-99. |
Gregory Scott, et al., “NMOS Drive Current Reduction Caused by Transistor Layout and Trench Isolation Induced Stress”, International Electron Devices Meeting, 34.4.1, IEEE, Sep. 1999. |
F. Ootsuka, et al., “A Highly Dense, High-Performance 130nm node CMOS Technology for Large Scale System-on-a-Chip Application”, International Electron Devices Meeting, 23.5.1, IEEE, Apr. 2000. |
Shinya Ito, et al., “Mechanical Stress Effect of Etch-Stop Nitride and its Impact on Deep Submicron Transistor Design”, International Electron Devices Meeting, 10.7.1, IEEE, Apr. 2000. |
A. Shimizu, et al., “Local Mechanical-Stress Control (LMC): A New Technique for CMOS-Performance Enhancement”, International Electron Devices Meeting, IEEE, Mar. 2001. |
K. Ota, et al., “Novel Locally Strained Channel Technique for high Performance 55nm CMOS”, International Electron Devices Meeting, 2.2.1, IEEE, Feb. 2002. |
Number | Date | Country | |
---|---|---|---|
20070202654 A1 | Aug 2007 | US |