The present application relates to the field of electronics, and more particularly, to methods of forming electronic component packages and related structures.
To form a stacked electronic component assembly, a stacked electronic component is mounted to a lower electronic component package. Failure in the solder interconnections between the stacked electronic component and the lower electronic component package can occur during solder reflow. Failure of the solder interconnections requires rework or scraping of the stacked electronic component assembly.
In the following description, the same or similar elements are labeled with the same or similar reference numbers.
As an overview and in accordance with one embodiment, referring to
Now in more detail,
Formed on upper surface 202U of substrate 202 are electrically conductive upper, e.g., first, traces 204, e.g., formed of copper. Formed on lower surface 202L of substrate 202 are lower, e.g., second, traces 206. Lower traces 206 are electrically connected to upper traces 204 by electrically conductive vias 208 extending through substrate 202 between upper surface 202U and lower surface 202L.
Stackable plasma cleaned via package 200 further includes an upper, e.g., first, solder mask 210 on upper surface 202U that protects first portions of upper traces 204 while exposing second portions, e.g., terminals 212 and/or bond fingers 214, of upper traces 204.
Stackable plasma cleaned via package 200 further includes a lower, e.g., second, solder mask 216 on lower surface 202L that protects first portions of lower traces 206 while exposing second portions, e.g., terminals 218, of lower traces 206.
Referring now to
From attach upper interconnection balls operation 102, flow moves to an attach electronic component operation 104. In attach electronic component operation 104, an electronic component 222 is attached.
In one embodiment, electronic component 222 is an integrated circuit chip, e.g., an active component. However, in other embodiments, electronic component 222 is a passive component such as a capacitor, resistor, or inductor. In another embodiment, electronic component 222 is a pre-packaged device. In yet another embodiment, a plurality of electronic components are mounted, e.g., in a stacked configuration.
In accordance with this embodiment, electronic component 222 includes an active surface 224 and an opposite inactive surface 226. Electronic component 222 further includes bond pads 228 formed on active surface 224.
Inactive surface 226 is mounted to upper solder mask 210 with an adhesive 230, sometimes called a die attach adhesive. In another embodiment, upper solder mask 210 is patterned to expose a portion of upper surface 202U of substrate 202 and inactive surface 226 is mounted to the exposed portion of upper surface 202U of substrate 202 with adhesive 230. Generally, electronic component 222 is mounted to substrate 202.
From attach electronic component operation 104, flow moves to a wirebond operation 106. In wirebond operation 106, bond pads 228 are electrically connected to upper traces 204, e.g., bond fingers 214 thereof, by electrically conductive bond wires 232.
Although electronic component 222 is illustrated and described as being mounted in a wirebond configuration, in other embodiments, electronic component 222 is mounted in a different configuration such as a flip chip configuration. In a flip chip configuration, flip chip bumps, e.g., solder, form the physical and electrical connections between bond pads 228 and upper traces 204, e.g., bond fingers 214 thereof, as discussed below in reference to
Although a particular electrically conductive pathway between bond pads 228 and lower traces 206 is described above, other electrically conductive pathways can be formed. For example, contact metallizations can be formed between the various electrical conductors.
Further, instead of straight though vias 208, in one embodiment, substrate 202 is a multilayer substrate and a plurality of vias and/or internal traces form the electrical interconnection between upper traces 204 and lower traces 206.
In accordance with one embodiment, one or more of upper traces 204 is not electrically connected to lower traces 206, i.e., is electrically isolated from lower traces 206, and electrically connected to bond pads 228. To illustrate, a first upper trace 204A of the plurality of upper traces 204 is electrically isolated from lower traces 206 and electrically connected to a respective bond pad 228. In accordance with this embodiment, the respective bond pad 228 electrically connected to upper trace 204A is also electrically isolated from lower traces 206.
In accordance with one embodiment, one or more of upper traces 204 is electrically connected to both bond pads 228 and to lower traces 206. To illustrate, a second upper trace 204B of the plurality of upper traces 204 is electrically connected to lower trace(s) 206 by a via 208. In accordance with this embodiment, the respective bond pad 228 electrically connected to upper trace 204B is also electrically connected to lower trace(s) 206.
In accordance with one embodiment, one or more of upper traces 204 is not electrically connected to a bond pad 228, i.e., is electrically isolated from bond pads 228, and is electrically connected to lower traces 206. To illustrate, a third upper trace 204C is electrically isolated from bond pads 228 and electrically connected to lower trace(s) 206. In accordance with this embodiment, the respective lower trace(s) 206 electrically connected to upper trace 204C are also electrically isolated from bond pads 228.
As set forth above, in accordance with various embodiments, upper traces 204 are electrically connected to lower traces 206, to bond pads 228, and/or to lower traces 206 and bond pads 228. Thus, in accordance with various embodiments, upper interconnection balls 220 are electrically connected to lower traces 206 only, to bond pads 228 only, and/or to both lower traces 206 and bond pads 228.
Although various examples of connections between bond pads 228, upper traces 204, lower traces 206, and upper interconnection balls 220 are set forth above, in light of this disclosure, those of skill in the art will understand that any one of a number of electrical configurations are possible depending upon the particular application.
Referring now to
Referring now to
In yet another embodiment, attach electronic component operation 104 is performed simultaneously with attach upper interconnection balls operation 102. Accordingly, upper interconnection balls 220 are attached to terminals 212 and electronic component 222 is flip chip mounted with flip chip bumps 231 simultaneously, e.g., in a single reflow operation. Further, wirebond operation 106 is not performed and flow moves directly from both attach upper interconnection balls operation 102 and attach electronic component operation 104 to encapsulate operation 108.
Although stackable plasma cleaned via package 200 of
Illustratively, package body 334 is a cured liquid encapsulant, molding compound, or other dielectric material. Package body 334 protects electronic component 222, bond wires 232, upper interconnection balls 220, upper solder mask 210 and any exposed portions of upper surface 202U and/or upper traces 204 from the ambient environment, e.g., from contact, moisture and/or shorting to other structures.
Package body 334 includes a principal surface 334P parallel to upper surface 202U of substrate 202. Although the terms parallel, perpendicular, and similar terms are used herein, it is to be understood that the described features may not be exactly parallel and perpendicular, but only substantially parallel and perpendicular to within excepted manufacturing tolerances.
Via apertures 436 penetrate into package body 334 from principal surface 334P to expose upper interconnection balls 220. Each via aperture 436 exposes a respective upper interconnection ball 220 on a respective terminal 212. More particularly, exposed surfaces 438 of upper interconnection balls 220 are exposed through via apertures 436 while the remaining portions of upper interconnection ball 220 remain enclosed within package body 334.
In one embodiment, via aperture 436 are formed using a laser-ablation process. More particularly, a laser is repeatedly directed at principal surface 334P perpendicularly to principal surface 334P. This laser ablates, i.e., removes, portions of package body 334 leaving via apertures 436, sometimes called through holes.
To further illustrate, a first via aperture 436A of the plurality of via apertures 436 extends between principal surface 334P of package body 334 and a first upper interconnection ball 220A of upper interconnection balls 220. Accordingly, upper interconnection ball 220A is exposed through via aperture 436A.
Via aperture 436A tapers from principal surface 334P to upper interconnection ball 220A. More particularly, the diameter of via aperture 436A in a plane parallel to principal surface 334P is greatest at the top of via aperture 436A, and smallest at the bottom of via aperture 436A and gradually diminishes between the top and bottom of via aperture 436A. The top of via aperture 436A is located at principal surface 334P and the bottom of via aperture 436 is located at upper interconnection ball 220A in this embodiment.
Although only a single via aperture 436A is described in detail, in light of this disclosure, those of skill in the art will understand that the description is equally applicable to all of via apertures 436.
The inventors have discovered that contamination 540 is formed of the material of package body 334, e.g., molding compound. More particularly, it is believed that during the laser-ablation process used to form via apertures 436, the laser-ablated, i.e., removed, portion of package body 334 is redeposited on exposed surfaces 438 of upper interconnection balls 220 as contamination 540. Alternatively, or in addition, it is believed that during the laser-ablation process used to form via apertures 436, the portion of package body 334 above exposed surfaces 438 of upper interconnection balls 220 is not completely removed and thus remains as contamination 540.
Regardless of the mechanism for formation of contamination 540, the inventors have discovered that contamination 540 can interfere with reflow of upper interconnection balls 220 with lower interconnection balls of an upper electronic component package stacked upon stackable plasma cleaned via package 200. For example, contamination 540 can cause non-wetting of solder joints during SMT (Surface Mounting Technology) of another electronic component. More particularly, contamination 540 can inhibit intermixing of upper interconnection balls 220 with lower interconnection balls of an upper electronic component package stacked upon stackable plasma cleaned via package 200. Generally, contamination 540 can result in the formation of open circuits during reflow thus deceasing yield.
Accordingly, from form via apertures operation 110, flow moves to a plasma clean upper interconnection balls operation 112. In plasma clean upper interconnection balls operation 112, upper interconnection balls 220 are plasma cleaned to remove contamination 540 as discussed in greater detail below with reference to
Illustratively, stackable plasma cleaned via package 200 is formed simultaneously with a plurality of stackable plasma cleaned via packages 200 in an array or strip which is later singulated. The array or strip is represented as substrate 646 in
In one embodiment, reactor volume 644 is evacuated, e.g., with a vacuum pump, to a subatmospheric pressure. However, in another embodiment, reactor volume 644 remains at atmospheric pressure.
In either case, process gas is introduced into reactor volume 644. Power, e.g., RF or AC power, is coupled to cathode 648 which operates as an electrode. The coupled power generates a plasma 650, which includes activated atoms and ions for example. Substrate 646 is located within plasma 650.
Substrate 646 is cleaned by plasma 650 to remove contamination 540. In one embodiment, the plasma activated atoms and ions travel through via apertures 436 to strike and/or react with contamination 540 to volatilize contamination 540. The volatilized contamination 540 is evacuated from reactor chamber 642 during processing, e.g., with a vacuum pump.
Of importance, the plasma cleaning process is a cost efficient high volume process with no adverse effect on package reliability.
In one specific embodiment, the process gas is Argon only, the power is a minimum of 500 watts, and the plasma cleaning time is 1, 3, or 5 minutes, although other plasma cleaning process parameters are used in other embodiments. For example, in another embodiment, the process gas is Argon and Oxygen to provide a mechanical and chemical cleaning of upper interconnection balls 220. In yet another example, the power is less than 500 watts.
Suitable plasma cleaners include: (1) Panasonic's plasma cleaner model ID number PSX307, model number NM-EFP1A available from Panasonic Factory Solutions Co., Ltd., 1375 Kamisukiawara, Showa-cho, Nakakoma-gun, Yamanashi 409-3895, Japan; and (2) Vision Semicon's direct plasma cleaner VSP-88D available from Vision Semicon Co. Ltd., #839, Tamnip-Dong, Yuseong-Gu, Daejeon Metropolitan-City, Korea. Although two examples are provided, in light of this disclosure, those of skill in the art will understand that other plasma cleaners are used in other embodiments.
By removing contamination 540, robust reflow of upper interconnection balls 220 with lower interconnection balls of an upper electronic component package stacked upon stackable plasma cleaned via package 200 is insured. More particularly, robust intermixing of upper interconnection balls 220 with lower interconnection balls of an upper electronic component package stacked upon stackable plasma cleaned via package 200 is insured thus maximizing yield.
Although specific embodiments were described herein, the scope of the invention is not limited to those specific embodiments. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of the invention is at least as broad as given by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3868724 | Perrino | Feb 1975 | A |
3916434 | Garboushian | Oct 1975 | A |
4322778 | Barbour et al. | Mar 1982 | A |
4532419 | Takeda | Jul 1985 | A |
4642160 | Burgess | Feb 1987 | A |
4645552 | Vitriol et al. | Feb 1987 | A |
4685033 | Inoue | Aug 1987 | A |
4706167 | Sullivan | Nov 1987 | A |
4716049 | Patraw | Dec 1987 | A |
4786952 | MacIver et al. | Nov 1988 | A |
4806188 | Rellick | Feb 1989 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4897338 | Spicciati et al. | Jan 1990 | A |
4905124 | Banjo et al. | Feb 1990 | A |
4964212 | Deroux-Dauphin et al. | Oct 1990 | A |
4974120 | Kodai et al. | Nov 1990 | A |
4996391 | Schmidt | Feb 1991 | A |
5021047 | Movern | Jun 1991 | A |
5072075 | Lee et al. | Dec 1991 | A |
5072520 | Nelson | Dec 1991 | A |
5081520 | Yoshii et al. | Jan 1992 | A |
5091769 | Eichelberger | Feb 1992 | A |
5108553 | Foster et al. | Apr 1992 | A |
5110664 | Nakanishi et al. | May 1992 | A |
5191174 | Chang et al. | Mar 1993 | A |
5229550 | Bindra et al. | Jul 1993 | A |
5239448 | Perkins et al. | Aug 1993 | A |
5247429 | Iwase et al. | Sep 1993 | A |
5250843 | Eichelberger | Oct 1993 | A |
5278726 | Bernardoni et al. | Jan 1994 | A |
5283459 | Hirano et al. | Feb 1994 | A |
5353498 | Fillion et al. | Oct 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5379191 | Carey et al. | Jan 1995 | A |
5404044 | Booth et al. | Apr 1995 | A |
5463253 | Waki et al. | Oct 1995 | A |
5474957 | Urushima | Dec 1995 | A |
5474958 | Djennas et al. | Dec 1995 | A |
5497033 | Fillion et al. | Mar 1996 | A |
5508938 | Wheeler | Apr 1996 | A |
5530288 | Stone | Jun 1996 | A |
5531020 | Durand et al. | Jul 1996 | A |
5546654 | Wojnarowski et al. | Aug 1996 | A |
5574309 | Papapietro et al. | Nov 1996 | A |
5581498 | Ludwig et al. | Dec 1996 | A |
5582858 | Adamopoulos et al. | Dec 1996 | A |
5616422 | Ballard et al. | Apr 1997 | A |
5637832 | Danner | Jun 1997 | A |
5674785 | Akram et al. | Oct 1997 | A |
5719749 | Stopperan | Feb 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5739581 | Chillara | Apr 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
5739588 | Ishida et al. | Apr 1998 | A |
5742479 | Asakura | Apr 1998 | A |
5774340 | Chang et al. | Jun 1998 | A |
5784259 | Asakura | Jul 1998 | A |
5798014 | Weber | Aug 1998 | A |
5822190 | Iwasaki | Oct 1998 | A |
5826330 | Isoda et al. | Oct 1998 | A |
5835355 | Dordi | Nov 1998 | A |
5847453 | Uematsu et al. | Dec 1998 | A |
5883425 | Kobayashi | Mar 1999 | A |
5894108 | Mostafazadeh et al. | Apr 1999 | A |
5903052 | Chen et al. | May 1999 | A |
5907477 | Tuttle et al. | May 1999 | A |
5924003 | Slocum | Jul 1999 | A |
5936843 | Ohshima et al. | Aug 1999 | A |
5952611 | Eng et al. | Sep 1999 | A |
6004619 | Dippon et al. | Dec 1999 | A |
6013948 | Akram et al. | Jan 2000 | A |
6021564 | Hanson | Feb 2000 | A |
6028364 | Ogino et al. | Feb 2000 | A |
6034427 | Lan et al. | Mar 2000 | A |
6035527 | Tamm | Mar 2000 | A |
6040622 | Wallace | Mar 2000 | A |
6056831 | Egitto et al. | May 2000 | A |
6060778 | Jeong et al. | May 2000 | A |
6069407 | Hamzehdoost | May 2000 | A |
6072243 | Nakanishi | Jun 2000 | A |
6081036 | Hirano et al. | Jun 2000 | A |
6119338 | Wang et al. | Sep 2000 | A |
6122171 | Akram et al. | Sep 2000 | A |
6127833 | Wu et al. | Oct 2000 | A |
6160705 | Stearns et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175087 | Keesler et al. | Jan 2001 | B1 |
6184463 | Panchou et al. | Feb 2001 | B1 |
6194250 | Melton et al. | Feb 2001 | B1 |
6204453 | Fallon et al. | Mar 2001 | B1 |
6214641 | Akram | Apr 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6239485 | Peters et al. | May 2001 | B1 |
D445096 | Wallace | Jul 2001 | S |
D446525 | Okamoto et al. | Aug 2001 | S |
6274821 | Echigo et al. | Aug 2001 | B1 |
6280641 | Gaku et al. | Aug 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6351031 | Iijima et al. | Feb 2002 | B1 |
6353999 | Cheng | Mar 2002 | B1 |
6365975 | DiStefano et al. | Apr 2002 | B1 |
6376906 | Asai et al. | Apr 2002 | B1 |
6392160 | Andry et al. | May 2002 | B1 |
6395578 | Shin et al. | May 2002 | B1 |
6405431 | Shin et al. | Jun 2002 | B1 |
6406942 | Honda | Jun 2002 | B2 |
6407341 | Anstrom et al. | Jun 2002 | B1 |
6407930 | Hsu | Jun 2002 | B1 |
6448510 | Neftin et al. | Sep 2002 | B1 |
6451509 | Keesler et al. | Sep 2002 | B2 |
6471115 | Ijuin et al. | Oct 2002 | B1 |
6479762 | Kusaka | Nov 2002 | B2 |
6497943 | Jimarez et al. | Dec 2002 | B1 |
6517995 | Jacobson et al. | Feb 2003 | B1 |
6534391 | Huemoeller et al. | Mar 2003 | B1 |
6544638 | Fischer et al. | Apr 2003 | B2 |
6586682 | Strandberg | Jul 2003 | B2 |
6608757 | Bhatt et al. | Aug 2003 | B1 |
6660559 | Huemoeller et al. | Dec 2003 | B1 |
6715204 | Tsukada et al. | Apr 2004 | B1 |
6727645 | Tsujimura et al. | Apr 2004 | B2 |
6730857 | Konrad et al. | May 2004 | B2 |
6734542 | Nakatani et al. | May 2004 | B2 |
6740964 | Sasaki | May 2004 | B2 |
6753612 | Adae-Amoakoh et al. | Jun 2004 | B2 |
6774748 | Ito et al. | Aug 2004 | B1 |
6787443 | Boggs et al. | Sep 2004 | B1 |
6803528 | Koyanagi | Oct 2004 | B1 |
6815709 | Clothier et al. | Nov 2004 | B2 |
6815739 | Huff et al. | Nov 2004 | B2 |
6838776 | Leal et al. | Jan 2005 | B2 |
6888240 | Towle et al. | May 2005 | B2 |
6919514 | Konrad et al. | Jul 2005 | B2 |
6921968 | Chung | Jul 2005 | B2 |
6921975 | Leal et al. | Jul 2005 | B2 |
6931726 | Boyko et al. | Aug 2005 | B2 |
6953995 | Farnworth et al. | Oct 2005 | B2 |
6987314 | Yoshida et al. | Jan 2006 | B1 |
7015075 | Fay et al. | Mar 2006 | B2 |
7030469 | Mahadevan et al. | Apr 2006 | B2 |
7081661 | Takehara et al. | Jul 2006 | B2 |
7125744 | Takehara et al. | Oct 2006 | B2 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7198980 | Jiang et al. | Apr 2007 | B2 |
7242081 | Lee | Jul 2007 | B1 |
7282394 | Cho et al. | Oct 2007 | B2 |
7285855 | Foong | Oct 2007 | B2 |
7345361 | Mallik et al. | Mar 2008 | B2 |
7372151 | Fan et al. | May 2008 | B1 |
7429786 | Karnezos et al. | Sep 2008 | B2 |
7459202 | Magera et al. | Dec 2008 | B2 |
7548430 | Huemoeller et al. | Jun 2009 | B1 |
7550857 | Longo et al. | Jun 2009 | B1 |
7633765 | Scanlan et al. | Dec 2009 | B1 |
7671457 | Hiner et al. | Mar 2010 | B1 |
7777351 | Berry et al. | Aug 2010 | B1 |
20020017712 | Bessho et al. | Feb 2002 | A1 |
20020061642 | Haji et al. | May 2002 | A1 |
20020066952 | Taniguchi et al. | Jun 2002 | A1 |
20020195697 | Mess et al. | Dec 2002 | A1 |
20030025199 | Wu et al. | Feb 2003 | A1 |
20030128096 | Mazzochette | Jul 2003 | A1 |
20030141582 | Yang et al. | Jul 2003 | A1 |
20030197284 | Khiang et al. | Oct 2003 | A1 |
20040063246 | Karnezos | Apr 2004 | A1 |
20040145044 | Sugaya et al. | Jul 2004 | A1 |
20040159462 | Chung | Aug 2004 | A1 |
20050139985 | Takahashi | Jun 2005 | A1 |
20050242425 | Leal et al. | Nov 2005 | A1 |
20070273049 | Khan et al. | Nov 2007 | A1 |
20070281471 | Hurwitz et al. | Dec 2007 | A1 |
20070290376 | Zhao et al. | Dec 2007 | A1 |
20080194056 | Cain et al. | Aug 2008 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
20080233755 | Blais et al. | Sep 2008 | A1 |
20090230487 | Saitoh et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
05-109975 | Apr 1993 | JP |
05-136323 | Jun 1993 | JP |
07-017175 | Jan 1995 | JP |
08-190615 | Jul 1996 | JP |
10-334205 | Dec 1998 | JP |